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- ANISOTROPY EFFECTS ON THE ELASTIC PARAMETERS OF
ROCKS; 'DETERMINATION  USING ULTRASONIC TECHNIQUES
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ABSTRACT

In the present investigation anisotropy of rocks is determined using ultra-
sonic techniques, in relation to the deformatiocn parameters. For this purpose,
P and S wave velocities v, V_) were measured along the main axis of cylindric
specimens of dolerite (Vandée), rhyolite (Vandée, France) and marble (Carrara,
Italy) oriented along the three axes of rock-fabric, by turning the specimens
every 20 Gra (grades) Furthermore radial measurements of P-wave velocities
(V, raay} Were made in every 20 Gra around the cylindric surface of the specimens,
at every 1 cm of length. Anisotropy was expressed by means of V. /v, and /2 -
ratios, confirming that the two above non destructive methods can be used for
anisotropy determination.

INTRODUCTION

Stones do not behave mechanically in the same way along different direc-
tions. Orientation of minerals in rocks cause anisotropic phenomena, referred
to the physical and mechanical properties. Deformaticn is cne of the more
important properties related to the rock fabric. This property is expressed by
Elastic moduli, such as Young’'s modulus and Poisson’s ratio, obtained either
statically using loading techniques, or dynamically using ultrascnic and
resonance frequency technigques. Weathering is alsc related to the rock fabric,
causing different phenomena in different directions.

Anisotropy measurements are given in terms of a system of anisotropic axes.
Most often, these axes cannot coincide with the system of the sco-called global
reference axes, corresponding usually to the micrcfabric orientation.

The easier non-destructive method for determining anisotropy in a rock is
using P and S wave ultrasonic velocity techniques, with dynamic elastic moduli
determinaticn along x,v,z directions in the space.

This paper is a preliminary approach for determining anisctropic deformation
and weathering results obtained in rocks.

DETERMINATION OF THE ELASTIC MODULI OF ROCKS

Elastic moduli, used to express the deformation ability of rocks, may be ob-
tained by dynamic methods in addition tc static compression or shear tests. Dy-
namic elastic moduli are obtained by rapid application of stress to the sample.

Two different dynamic methods can be proposed for this purpose. The first
is referred to the P & S wave ultrasonic velocity measurements, along core spe-
cimens, while the second is referred to the excitation and detection of mecha-
nical resonance freguencies in small cylindric rods and prismatic bars.
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i *¥6 the specimen axe, provided deformation data.

The! stati_c meth'qd is referred to a direct compressional technique. For this
purpose, small deformation [Jauges) attached both horizontally and vertically

' Test presuilts .compared statisticallyeach other, determine regressions for
an aecurate expréssion ©f the statilc elastic moduli using dynamic, non-destru-
ctive techrigues.

The"use of the above dynamic methods, instead of the direct static ones, is

'related obviouslyi tol the gimplidity iof these methods and the preservation of

the specimens.

Statdc Elastic Meduli’ of rocks

Deformaticndatasmaysbercbtainedsfromicompression tests and used to calculate
the static elastic moduli of intact rock. The mecdulus of elasticity (E), or
Young’s modulus and the Poisson’s ratio (n} are the most common used. The modu-
lus of elasticity, which is a form of Hocke's law, is derived from applied axi-
al compressive stresses and resulting axial strains. Peisson's ratio is
calculated from axial and diametral strains resulting from applied axial com-
pressive stresses.

The above parameters are useful in estimating elastic response of intact
rock to compression from in situ, construction and post-construction stresses.
Abutment stresses in a dam or those exerted against the rock by water-pressure
tunnel are examples of post-construction stresses. The values for E-modulus
may be obtained from stress-strain diagrams. Between the average modulus, tan-
gent modulus and secant modulus, referred in the literature, the last one is
the more common used, predicting the maximum elastic deformation that would
occur at the 50 % of ultimate strength (Johnson & De Graff, 1988).

Dynamic elastic moduli

Ultrasonic velocity tests (PUNDIT): Modulus of elasticity (E;), and Poisson's
ratio (n,) may be obtained by dynamic methods. One common dynamic method for
elastic moduli determination is to subject the rock sample to compression and
shear wave pulses. Compression and shear wave transducers are attached to the
ends of the core specimen, for this purpose. Wave velocity is calculated from
the travel time of the pulse through the specimen. Samples may be lcaded to
approximately field conditions because both P & S wave responses increase with
compression. Typically the dynamic modulus of elasticity is greater than the
static one, because the response of the specimen to very short duration strain
and low stress level is essentially purely elastic (Clark, 1966).

Ultrascnic velocity is not only related to the elastic moduli but it is a
very good index for rock quality classification and weathering determination
(Christaras, 1991).

nical nance encie DO- : The procedure consists of
exciting a specimen by means of a light external mechanical impulse and of the
analysis of the transient natural vibration during the subsequent free relaxation.
This excitation is given in such a way as to favour the desired vibration mode.
A pinpoint transducer is used to pick up the mechanical vibration (Mosse,
1990} . Tests are carried out on thin cylindric rods or prismatic bars..
Specimens can easily be excited into flexural or torsional modes in order
to obtain the E-modulus and the Poisson's ratio (Spinner & Tefft, 1961, Glan-
dus, 1981). To excite a response, a light and elastic tap is given, in the cen-
tre or on the side of the specimen, depending on cur decision to cbtain a lon-
gitudinal, flexural or torsional vibration. To detect the resulting vibration
and to convert it into electrical signals, a hand-held piezo-electric vibration
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@hﬂ T: Regressions between the -methods usedt ﬂ(?&#_-elation Coefficients (r)
, rid« Standard Deviations (SD)' are also given (Christaras et al. 1994)

I § X e Regression r SD of Y

|, ponpIT @ynamic, rystatic E, -3.16+1.05E, 0.994 38.02
Elas€icity [Modulus

-ﬁ' GRINDO-SONIC dynamic / E,=-3.12+1.05E, 0.997 38.02

|8tatic Elgsticity Modulus
PUNDIT dyngmic / Static n_+0.063+0.71n, 0.737 0.057
Poissond s«Ratio
GRINDO-SONIC ‘dynamic / n_=0.029+0485n= 0.962 0.057

Static Poisson‘s Ratio
PUNDIT / GRINDO-SONIC

P-wave velocities V£L=—270.85+1.05VF 0.988 1334
PUNDIT / GRINDO-SONIC
S-wave velocities ng=45'72*‘1-01vs 0.982 801.9
GRINDO-SONIC / PUNDIT
Elasticity Modulus E,;=0.83+0.98E, 0.992 35.79
PUNDIT P-wave / Static E_=3.02g" 0055 0.970 38.02

Elasticity Modulus

detector is used, in contact with the test sample.

For E-modulus (E,)) and Poisson’'s ratio (nﬂql determination, flexural and
torsional vibration freguencies are measured. Torsional measurements are made
in two directions and a mean value is used for the calculation of the elastic
moduli.

Velocity values (V__, V_ ), are calculated from the above elastic moduli.

Experimental results: Eight different rock types from Central and Western
France were studied regarding their elasticity moduli, determined both by sta-
tic and dynamic methods.

Two dynamic methods were used for this investigation. The first is referred
to the P & S wave ultrasonic velocity determination while the second is refer-
red to mechanical rescnance fregquency detection. Both of them provided data
comparable to those that had been obtained by the static method.

According to our statistical interpretation the two methods provided results
that were significantely comparable between them as well as with those ob-
tained by the static method. A consistent difference noted between the static
and dynamic values underlines our cbservation.

ANISOTROPY OF ROCKS AND ULTRASONIC TECHNIQUES

Ultrasonic velocity measured along different directions can provide data
concerning the anisotropic physico-mechanical behaviour of rocks. Data obtained,
using a provisional system of x,y,z axes, can determine the global reference
ellipsoid of anisotropy in the space.

In our investigation the dolerite of EBouzantese (Bou, Massif Central,
France), the rhyolite (roches bleues) of Mareuil (Rb, Vandée, France) and the
marble of Carrara (Ca, Italy) were studied in order to determine their aniso-
tropy using ultrasonic techniques Tables 2, 3, 4). For this purpose, P and S
wave velocities v, V) were measured along the main axis of cylindric speci-
mens oriented along the three perpendicular principal axes of rock-fabric. The
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l%ylindr:.c spegiméns wereé placed between the 300 KHz|' P & orthogonal S1, S2 wave
|'brafisducers of 'the'PUNDIT velocimeter. Measurements, for both P & S waves, were
rakari, m,mry 20 Graj»rotating«the.specimens around their main axis. Further-
more measurements of radial P wave velocities (v, ) were made in every 20 Gra
{grades) . around the cylindric surfaceé of the specimens, at every 1 cm of

- length. The specimens were of dia. 5.cm x 10 cm length. The tests were perfor-
- med in the 'lLaboratoire de Construgtion. Civile et Maritime, Université de La

Rochelle, France”

Test regults of the above itltrasonic measurements were given by regression
diag::a.rﬁs showing the linear relationship observed between anisotropy and modu-
lus of elasticity (Figures 1-6). The anisotropy was expressed by the ratio of

Dolerite. Vp/Vp(rad) versus E anisolropy
around arzes z.y.1 Data every 20 Gra.

o B-x & E-y o E-z

Fig. 1: Dolerite from EBouzantese
L] {France). Correlation dia-
gram between the ratio of
the axial and radial P-waves
{every 20 Gra) and the modu-
lus of Elasticity. Measure-
ments were performed along
the three axes.

Modulus of Elasticity (B, GPa)

09 L0 1.0 L1 L1

Dolerite. Yp/Vp(rad) versus Vp/¥s anlso-
tropy around azes x.y.s.Dala every 20Gra

o (Vp/¥s)-x a (Vp/Vs)-y © (Vp/Ve)-z

el asle y: Fig. 2: Dolerite from Bouzantese
ﬂlﬂmlﬂ'ﬂ"h" (France). Correlation dia-
8 gram hbetween the ratio of

the axial and radial P-

2 waves (expression of
s anisotropy) and the ratioc
i L7 -% of P & S waves for every
= 20 Gra (expression of
\ anisotropy). Measurements
1.7 3 = were performed along the
Urﬂd—Wrﬂﬂﬂ) three axes.
O
D
1.8 v T o T T
LK) 1.0 1.0 1.1 1.1

¥p/Vp(rad) ratio
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O E-x P = o E—x
81
—_ A ﬁ; — By aa Fig. 3: Marble from Carrara.
E : . RS (Italy). Correlation
& a diagram between the
= 40 ratio of the axial and
3 g M radial P-waves (every
| B o 20 Gra, expression of
a j /////;ﬂ anisotropy) and the
LTS :-ﬂﬂ-%m < modulus of Elasticity.
E d Ll o Measurements were per-
i 1 m_%m formed aleng the three
ra-9.5¢ axes.
43 T T Y
o8 o9 0.9 1.0 Lo
¥p/Vp{rad) ratio
Marble. Vp/Vp{rad) versus Vp/¥s aniso—
tropy arcund sxes 1.y.3.Dala every 20Cra
O (¥p/¥s)-x & (Vp/Vs)-y © (Vp/¥a)-x
1.7
S D T I Yprd]. et e Fig. 4: Marble from Carrara
1.7 (Italy). Correlation
diagram between the
% ratio of the axial and
w 157 radial P-waves (ex-
% pression of
o anisotropy! and the
1.8+ ratio of P & S waves
for every 20 Gra (ex-
pression of
15 T v v anisotropy). Measure-
os 09 L2 1.0 1.0 ments were performed
¥p/¥pirad) ratle along the cthree axes.
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o E-x 4 E-y © Bz
by |
. m Fig. 5: Rhyolite from Vandée
“J- y (F‘rance}. Correlation
5.‘5“ diagram between the ra-
-~ / “‘.4‘. tio of the axial and
. ] axis x: radial P-waves {every 20

“l%h“ H“‘m{"‘” Gra, expression of

anisotropy) and the
modulus of Elasticity.
Measurements were per-
formed along the three

/ axes.

o8 0.9 I; l:l 1.2 13
¥p/Vp(rad) ratio

2 8 3
b
§:
i
3

Modulus of Elasticity (B, 0Ps)
&

1

Ihulh. Yp/Vp{rad) versus ¥p/Vs anise-
tropy around azes 1.y.3.Date every 20Cra

o (¥p/Me)-x & (¥p/Vs)-y © (¥p/Ve)-2

20
l axis x (Yp V)= 1.80+0.98{¥p/Yprad)
1.9
(T/va=1 5450 T0vp Vpred) Fig. 6: Rhyolite from Vandée

S e e (France)). Correlation
£ A g diagram between the ra-
i e tio of the axial and
-

173 radial P-waves (expres-

sion of anisotropy) and
lﬂ Unﬂd-lmm the ratio of P & S waves

""'—f e ; for every 20 Gra (ex-
pression of anisotropy).

is -

T T T *
[ 3.} o9 1.0 L1 L2 13 Measurements were per-
Yp/Vpirad) ratic formed along the three

axes.
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