E. PETRACHEK

By terminating BCP Project 629 the present status of the tectonic-metallogenic development of the Alpino-Caucasian orogenic belt was established. However, this compilation has only opened the door for further analysis and discussion. From the part concerning the Eastern Mediterranean it being described:

The group of deposits are corresponding with the plate tectonic stage of development in the Eastern Meditteranean area and they are in principle the same as within the main belt between Algeria and Afghanistan. The extension of the crust began during Permian and during Triassic it was leading to the formation of a long rift-valley, which, extending in SE - NW direction from the Black Sea to go through the Caucasus. The stretched magmatism in pre-hypothermal conditions, various deposits of Fe, P, Zn, Cu, Sn, Pb and related are connected with it. A general trend of zonal aggregations C - W of the southern margin of the Alpae it be connecting with the deposits of the type Belgrade. An important outline were separated the Eastern and the African plate and extended to the axis of the north border, by forming the Dinaric triangle. The deformed rigid bands of this ocean floor contain well known chlorite ore and copper ore deposits of Roumanie, Apusen and Cerna. The following, partly stratiform, partly lenticular colliedious are existing stratified sequence with various polymetallic deposits in the Southern Carpathians, Western Bulgaria and Romania. The late tectonic compressions caused a thinning up of the earth crust and metamorphism in the Alpine palaeoegeographic zones and basic metal deposits within the inner are of the Carpathians.

Now as come to the open problems: the map published on SEDPUS, September 1973, displays the present position of the tectonic-metallogenic units, divided during different periods. Already 1972 and later, the present outline permitted to be understood. We understand that hypothetically assumed questions concerning the former position of the SEDPUS map are possible, SEDPUS is the present day map.
One of the key aspects of Kelvin's argument was the presence of an ancient landmass, which he referred to as the "Antarctica" or "Antarctic Continent." He believed that this landmass could explain the distribution of fossils and the similarity of flora and fauna across different continents. Kelvin was particularly interested in the geological evidence of fossils and the ways in which they could be used to support his theory of continental drift.

His work, however, faced criticism from other geologists and scientists. Some argued that the evidence for continental drift was insufficient, while others pointed out the lack of direct evidence for the movement of continents. Despite these challenges, Kelvin's ideas laid the groundwork for later developments in the field of continental drift and plate tectonics.