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SINGLE-SITE MAGNETOTELLURIC RESPONSE FUNCTIONS
 USING B-ROBUST W-ESTIMATORS, WITH AN APPLICATION
. TO EARTHQUAKE PREDICTION RESEARCH
A/TZANIS'

o ABSTRACT

The accumulation of stress and strain is known to induce changes in the electrical
properties of rocks, which can be monitored for signs cof earthquake preparation
processes., To this effect, the Magnetctelluric sounding method presents some unigue
advantages. However, single-site MT data are notoriously susceptible to natural or
anthropogenic time-varying coherent noise, which may severely bias the response func-
tion estimators and degrade their repeatability, unless treated with dedicated processing
techniques. Such a technique 1is presented herein, involving the W-estimator with
random error weighting, followed by an iterative robustification scheme based on an
influence functicn approach. The algorithm 1is demonstrated on a set of severely
distorted data exhibiting a marginal distribution of cutliers, and is shown to effec-
tively reduce the bias errors and the variance. It is also applied to the long-term
monitoring of crustal resistivity with MT response functions at a noisy site located
near Aerinoc village, 5E Thessaly, Greece, achieving a sustainable repeatability threshold
of 10-20% and faring very well with respect to the data quoted from the internaticnal
literature.

KEY WORDS: Earthquake Prediction, Magnetotellurics, Impedance Tensor, Robust Estima-
tion, W-estimator.

1. INTRODUCTION

Earthquake preparation processes are thought te produce long and short term changes
in the electrical properties of rocks, for instance through the mechanisms described by
volume dilatancy models (Scholz, 193%0; Myachkin et al., 1975). Electromagnetic (EM)
fields may sense such changes, thereby offering a means of searching for earthguake
premonitory phenomena. Active measurements with dc fields were frequently reported to
have detected precursory resistivity changes and a large body of literature may be
found in the reviews of Park et al., (1993} and Johnston, (1937). Passive measurements
of ELF-ULF Magnetotelluric (MT) fields are not as successful. A respectable volume of
earlier work has been reviewed by Beamish (1982) and Kharin (1982}, but not much
progress has been made since, (for instance, see Johnston, 1997), with Ernst et al.,
(1293), Rozluski and Yukutake (1993) and Svetov et al., (1937} deserving attentiaon.
With the exception of Svetov et al. (1997}, not one of the references cited in the
international literature uses MT response functions, {(namely the MT impedance tensor),
which have yet to find their place in the arsenal of earthguake prediction research.

The hold up is due te the susceptibility of ELF-ULF MT data to coherent natural and
anthropogenic noise, which may severely degrade the quality and long term stability of
the response functions. Natural noise derives from phencmena such as time-dependent
streaming and { potentials, nearby lightning etc. Anthropogenic nolse derives from the
operation of electric and electronic devices. A balanced power distribution grid will
generate a fundamental at 50/60Hz and discrete higher order harmonics, easy to rid of.
An unstable grid, however, produces modulation and wide band interference, much harder
to deal with. Transient noise is generated by the switching of machines and may
propagate over long distances. It appears 1in the form of step functions, boxcar
functions, spiky or dispersed &-functions, damped guasi-sinuscids etc., debilitating a
broad-band spectrum. These types of noise may cause serious, even insurmountable
problems to single-site data and cannot be treated with standard metheds, as will be
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geen beloW. UdEilD yEHY [ re@anyly/)siien by usinglyremote referencing systems to obtain
consistent apd, repeatable respanse functions, it has proved difficult to reduce error
below several pm&ceat for good data and very much higher for poor data. Inasmu
brecu;qory resxst1v1ty changes” are 'expected (and are observed) to be only a
parﬁan;.- it. it £asy. o, see, why.progressshas-been slow.
1" Neva hsless, t'e MT fields are ufique #n their capacity to probe a broad deptl
i, L Tante with rasgive paint measuxements ‘on’ thessurface, Moreover, MT response functions
flay be'unsed to discriminate possible transient telluric precursors, by deconvolving
jthe ! inducBd | £x8m, the EBsal .observed -electric field, as in Arvidsson and Kulhanek,
1 (1%9g) [ e TFanida;” (1994) 7 Last Dut Act Deast, MT isia unique crustal sounding method,
with a'widn'range of academigmand commercial applifations. Therefore, it is compelling
it o LESeaICh for mgehgds of limproving the relighfiity and stability of the response
flinctions.
Noise reduction schemes for single-site data have been devised by several research-
ers. The earlier efforts included variants of the W-estimator (e.g. Jones et al., 1983;
Beamish, 1986). Later work concentrated on robust-resistant methods, (e.g. Egbert and
Booker, 1986; Chave et al., 1%B7; Larsen, 1989; Sutarno and Vozoff, 1991; Egbert and
Livelybrooks, 1996), wusing some form of the regression-M estimator. Of all these
approaches, the W-estimator is the simplest and most versatile and, as will be shown,
very powerful when combined with the right weighting schemes. Moreover, it can be
robustified to cope with data containing tailed marginal errcor distributions and
outliers. Such an algorithm has been developed by Tzanis (1988) and herein is adapted
to the frequency domain estimation of MT responses.
The algorithm is applied te the analysis of MT data from an earthquake prediction
experiment in SE Thessaly, Greece, involving long term observations of ULF natural
electromagnetic fields. This region exhibits moderate seismicity and considerable
earthquake hazard (e.g. Kouskcuna, 1991). During the 20" century only, the area
experienced eight main sequences, with twelve shallow earthguakes having magnitudes M
>6 (1905, 1911, 1930, 1941, 1954, 1855, 1957, 19%980). Of these, all the post-1954
earthguakes occurred within the rectangle 22.5°E~-23.3°E and 39°N-39.5°N in the periph-
ery of Volos, Velestinoe and Almyros cities. This area is characterised by rather
infregquent, albeit large earthquakes separated by decade-long pericds of guiescence,
during which it might be possible to observe stress-and-strain induced changes in the
electric properties of rocks.

b

2. FREQUENCY DOMAIN MT RESPONSE FUNCTION ESTIMATION

The conventional approach to single-site freguency domain Magnetotelluric impedance
tensor estimation is based on the assumpticn of stochastic (Gaussian) time processes.
The horizontal electric and magnetic field components are measured simultanecusly in
the time domain and in two, mutually orthogonal Cartesian frames, Following transfor-
mation inte the frequency domain, the most common method for estimating the impedance
tensor elements Z”, i =x,vy, is the least squares sclution of the two-input one-output
linear system

E=Z H+Z H +r , i=x, ¥, (1)
p3 in iy 'y 1

by minimising the noise ¢ (Sims et al., 1971), This yields a system of two eguations
in two unknowns,

EJFj uz;:‘H;Fj)+z,f{H,Fj1' i=x,¥, 1=X, Y (2)

When F=H, the sclution is kiased downwards by noise in the auto-spectra of the
magnetic channels only. When F=E the solution is biased upwards by noise in the auto-
spectra of the electric channels only. The quality of the solution can be monitored by
means of the predicted coherence function

Yin =Mi/Ei, Mi=sixHx++iyHy, i=x,y. (3}

where M represents the ourtput electric field component predicted from the estimated

impedance elements ¢q¢|&%lr]eglﬁ}%eﬁ%ns'ééé(p&daf&"ghfﬁﬁ;}c?\"'sc‘ﬂé\?ﬁf. Rq-lré'xe predicted coherence
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ate a refectabilersglytioniand, high/values an acgeptable solution. Given N spectral
izations iof ey E H, and H,ats a frequency o, it%ds necessary to provide at least
o I;m;rlnq cages of ua;se cantent, namely a populatibn (O } of stable, downwards
in#ed estimares and & population {U, } ofstable, upwards biaaed estimates. If the data
phmmden a0 adegiate distgibution c:f. h:.gh predicted eoherences. the bias errors reduce
»the magnituqu of gendom' errors. Each fof 1Ou} and {U,,| are used to calculate the
e pﬁutat;an_yaiues (U ?.and KU‘}_and variances aﬂl and nU”. The *true’ values of the
@dance tgnsor <= > elements can, then, be estimated from the lower and upper bounds.
In ghel tase.dff*Gaussian, {stapigpary} noise, straightforward averages of {Oﬂ} and {UHJ
ould “suffive” e provide ‘the “final” unblased elements. Unfortunately, the noise is
ugually nén-stationary _and guite_often coherent acp@ss channels (multiple coherent
nbise), evading the predicteld ccherence test, and/intreducing tailed marginal error
Qistributidns and sutliers, into {0} and (U}, thereby-providing biased and oscillatory
estimates <= > TIn the following, I will first attempt clarify the concepts and then
explain the robust W-estimation procedures developed to deal with such noise,

At frequency @, the N realizations of equation (1) can be cast into an over-
determined system of N equations in 2 unknowns, denoted by E =HZ. Alternatively, one
can arrange in a 2Nx2 matrix, N sub-systems of the form (2), generating an over-
determined system of 2N equations in 2 unknowns denoted by E, =H, Z. Then., one seeks to
obtain a maximum likelihood estimate of Z by minimising an expression of the form

Zpir =X (E-HZ) /0, n=1,2,.,mN

with m=1 or 2, where p{r) is a suitable loss functiecn, r, is the residual of the n™

observation and ¢ is a normalising error scale factor. For instance, a loss function
pir)=r‘/2 leads to the minimization of the L, norm

25, =% (E,-8,2)"

and corresponds to the standard least sguares (LS) sclution. In the presence of
biasing non-Gaussian noise, we seek to define a maximum likelihood estimator (M-
estimator) of the location of Z, which must show minimal bias (B-robust) and minimal
change of variance (V-robust). This approach to M-estimation usually reguires the
solution of a non-linear system of equations, but this can be avoided with iterative
procedures invelving the so-called influence funcrtion y(r) and weight factors of the
form w{y(r)). The influence function is generically related to the loss function,
usually as y{r)=p'(r)=dp(r)/dr. In general, one obtains an initial estimate «(0).
Then, looping over K iterations to convergence, one calculates the predicred ocutput
M (k)=H (k)e*(k), calculates r (k}=E (k)-M (k). yir (k)) and w(y(r }), modifies the
output as En(k+1J=Mn(k;+w¢w]rn(k) and cobtains new solutions e#{k+1l) and a new error
scale o(k+1). The successive approximations (k) are usually obtained with LS algo-
rithms. This is the regression-M estimation, for which one may seek details in Huber
[{1981) and Hampel et al., (1986).

Now, let z=Z, define any element, and 2=[Z  Z, ] any row of the tensor. The W-

iy
estimator is deflned as a weighted average <Z> of the observations

Z{N:2,,Z z) = LWz [Zw]',

gt

with the weights depending on the observations according to W =W(Z -Z) and being func-
tions of the location of ;‘within the sample space. Therefore, the W-estimator satisfies
the equatiocn

<Z> = an(zn-<z>}'zn-[EBWEZ“—<Z>J]'1
which can be modified ‘to yield
0 = EW(2Z -<2>) (2 —<2>) [EW(Z —<Z>)]"!

implying that
0 = Eplz-<Z>) with pUZ —<E>)={2 —<2>) W(Z —<Z>),
WYnoeiakn BiBAIoBAkn "OedppacTog” - Turua MewAoyiag. A.M.0.
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where p is Tustlanvtihe] expressinng oy [the general "form of a loss function with the error
scale omittred, since, <g>=E(Z(M]}» This means that the iterated W-estimator is a variant
of ' £he M-type estimafars| of Jlecakion! In fact it can be understood as a one-s
ré&fression-M estimator and as such, it possesses the same influence function and a
Lot ic yvariance {Hampel jet al. ., 1986).

-r-m orfler toaronstrdaet) a B-vobust W-estimator for MT response functions, consider the
hkass and ‘influence functions

r. |[rkg
Lo lrbg

~with weights wi(r)=y(¥l/|¥| and”r =as, where s isjthe standard deviation of the uncon-

taminated error distribution and @ is a real constant. This is a hybrid corresponding
to L, minimisation for ‘the small residuals and L, minimisation for the larger ones. The
influence function is non-decreasing, which is a requirement for convergence to unique
estimates. The weight function w(r) is continuous and downweights outliers without
break points cother than r . General convergence is guaranteed, provided that p(0}=0,
p'{r)>0 and 05 p(r) <1, (Huber, 1981).

Next, consider that one can always solve N systems of the form (2}, to obtain
populations e(N: e ,e ,.,* }, each estimate in the population exactly satisfying one of
the N finite data realisations. This can be used to compute the successive approxima-
tions <« (k)> to E{Z(N)}, using the one-step W-estimator. Thus, it is not necessary to set
up and solve any large over-determined system and the robust W-estimartion reduces to an
iterative re-weighted L5 scheme as follows: 1) Cbtain initial estimates of <+ (0)> and of
the error scale o{0). 2) Using equation (2), compute the predicted output M (k}=H <s(k}>
and the corresponding residual rn(k}:En{k}—Mnfk). 3} Modify the output as
M“rk+lJ=Mn{k)+w(r}x;(kJ, 4) Use the modified observations and equation (2)to compute N
estimates e (k+1). 5) Form the W-estimators

pl;f:'=J _%r-’-' |r|'<ru wzp’mz

II.:nM F) ,%' r?{ l r l> Iy’

<o (k+1)> = K« (k+1}W (k+1)- (I W (k+1)]?

for each element of « and compute the new RMS error scale o(k+l), then iterate from 2
until convergence. The error scale can be computed as

o(k) = [(Pt2N-4)) LK r (k)]

i.e. is a scaled RMS error with PB<l so that the error scale will not be underestimated
during the successive iterations. Egbert and Booker (1986) give a method to obtain the
appropriate B for any choice of r,. The form of the weight factors W, is also (and
apparently) important.

T T 5T T
200 © ? o |Dyx|Estimators o T oo
Q Y 00 a“ Yool ) & oPY
100 .‘6' G n“..ﬂ "“q o1, i "ﬁ n" o [ "ﬂ'ﬂ n.!" s o ."r»n !'
o " ol | | HLY s gl " oy |"|
" 0 n '
o}
160 . Random Errors. ; :
o}
sok =
0
0 20 40 60 80 100

Figure 1. An ensemble of :Dﬂl impedance tensor elements (top) and their random errors (bottom).

Wneoiokr BiBAI0Brkn "@edppaocTtog” - TuApa Mewhoyiag. A.MN.O.
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Figure 2. Left: The distribution of the original \D | population illustrated in Figure 1. Right: The final distribution of the
processed ensemble, after application of the robust W-estimator (see Figure 3).

One obvious choice is to use the influence weight wir), which has the functional form
Wir (k))=£(M (k)-H =(k)})) = f(H [+ tk)-={k}]}

and, therefore, is a genuine function of the location of o (k). This weight funcrion

is very stable and will always ensure convergence.

3. EXAMPLES

It is gquite apparent that the effectiveness of the W-estimator depends on the
choice of the weight function. The predicted ccherence has often been used, (e.g. Jones
et al., 1983; Egbert and Livelybrooks, 1996}, but I have found, that Pedersen’s (1982)
random errocr

g 4 - 7l E&E) o o

v — 4 Flyv-aa q - 753) (H]-H;) ‘ 1 S £ J Xy (4)

is very effective and quite robust (e.g. Tzanis 1988). In equation (4), v is the number
of degrees of freedom of the measured spectra, F is the 100a percentage point of an F
distribution with v-4 and 1 degrees of freedom and ¥,, is the coherency of H_and H_ . There
are very sparse references to the properties of the random errors and their usefulness.
The original study of Pedersen (1982), did not provide practical examples and to the best
of my knowledge, only Beamish (1986) and Tzanis and Beamish (1989), report their
implementation as weights, without giving details. Their efficiency however, is straight-
forward to demeonstrate.

Figure 1 illustrates a population {lOn|} above a predicted coherence threshold of
0.8, contaminated by multiple-coherent non-Gaussian noise producing a heavily tailed
marginal error distribution (Figure 2, left). It is clear that some estimators may
display large deviations from the expectation values, but it is also quite apparent that
all the outliers are invariably associated with large random errors, usually due to the
high power of the noisy electric field. The population mean is <0_>=79.58+i13.98 mV/
km-nT and a W-estimator with predicted ccherence weighting deoes not fare better for
obvious reasons (only coherent estimates enter the population). The W-estimator with
random error weighting yields <0 _>=68.28+i16.05 mV/km-nT and significantly reduces the
bias error. Thus, the random error emerges as a potentially useful diagnostic aid and
data processor.

Figure 3 shows the robust iterated W-estimator operating on a subset of the same
data series, (47 estimators of with predicted coherence above 0.85), setting
<0, (0)>=68.28+112.05 and using for weights W (k)=w(r )=y(r )|r |, r,=1.5 and f=0.45. The
algorithm stops auteomatically after the second decimal peint is fixed, yielding
<0 >=68.28+119.80. As can be seen, it eliminates the outliers and pushes the data
towards the expectation value, allowing the corrected population to yield stable (B~
robust) means with minimal wvariance (V-rcbust). Moreover, it converts the original
broad, skewed and tailed distribution, to almost Gaussian (Figure 2, right). It is
apparent that the estimate obtained by the iterated robust W-estimator did not improve

the starting wvalue wn(ﬁafﬁgﬁﬁéw}f"é%@%me'-%0%09@?;\?“&9.&& power of random

error weighting.
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Figure 3. Application of the robust iterated W-estimater to the Z  ensemble of Figure 1.

This algorithm will effectively downweight the influence of non-Gaussian noise,
provided that the population of noise-free data dominates the population ¢f noisy
data. Its performance is a function of noise and data statistics, progressively
deteriorating as the probability of receiving noise waveforms increases, until break-
down when the noise is as likely as the data and can cloak the distribution of the
noise-free population beyond recognition and recovery. In this event, the treatment
must be case-specific. The robust methods cannct cope with continuous harmonic multi-
ple coherent noise, for cbviocus reasons. In conclusion, the robust W-estimator can
provide effective means of overcoming non-Gaussian noise and can be useful for the

long-term monitoring of time-dependence in the MT response funcrions.

Figure 4. Location of the Aerino EMO and the tectonic lineaments in SE Thessaly, after Cratchley (1983).

4. APPLICATION TO EARTHQUAKE PREDICTION RESEARCH

The magnetotelluric data used in this study was recorded at a semi-permanent
Electromagnetic Observatory (EMO) located at an altitude of 210m and at co-ordinates
39%21.5'N and 22°45.2°E, near the village Aerinc¢ of Velestino county, S5E Thessaly
[Figure 4). The station was located on the hanging wall of the Chalkodonio mountain
fault, above the seismogenic volume of the three Ms 6-6.B events of 1957, Observations
were carried out with non-polarisjing, solid  sqluti b-PbC lectrodes and a 3-
component fluxgate i@%@n“ﬁme@:&?.”'ﬁ%e&&é" gc&% '?ia’%’?ggé”&’%"t% a'&'%g%icated automatic 7=
channel logging unit, egquipped with 20-bit 8-0 digitisers and capaciocus disks, capable
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;;ﬁkteﬁded autonomous operation. The observations were interrupted hetween August
November 1994, -du@é 0 a4 Brish-f ife thm: crippled the ectric field sensor system,
{ forfunatély leaving unscathed the other equipment, whith was better protected. The
operated normally until July 1995 when the logger malfunc€ioned and was decommissioned.

| REspansa Functions cannat be-estlmated?lt ﬁe}:gas shorter than approx. 50s, due to
the' low Sensitivity Of-Ethe maghetometer {resaiutlon > 0.01nT), and the continucusly
incteasing ngise levels from the expansion of Aerino village and nearby small agricul-
tural, industries. The results. for the longer periods are| estimated over fortnight to
month leng  intervads and.are presented in Eigures 5a and 5b for two distinct periods
and, in Figume € fdr the entire spectrum of the off-diagonial tensor elements z,and Z
In ‘genéral, - lFomg term magnetptelduric crustal monitoring with response functions
repeatable” 5" within 10-20% has been possible. Asjcan.be observed in Figure 5, the
shorter perioeds (higher freguencies) are estimated with better repeatability, within
approximately 10%, than the longer periocds, (lower freqguencies), which are estimated
with a repeatability of 15% or higher. These differences are attributed to the differ-
ent data and noise statistics at different parts of the spectrum but overall, the
technigque performs very well compared to the results guoted from the international
literature for single-site long period data, {(e.g. Park et al., 1993; Johnston, 1997).
At any rate, the available data indicate that no systematic observable changes in the
deep (lower crustal) geocelectric structure have taken place during October 1993 - July
1995, Nevertheless, long period (=50s) data may well miss the better part of the
schizosphere, where major earthquakes nucleate (10-15 km). Shorter period cbservations
with sensitive induction coils are likely to provide more meaningful information con
processes occurring at depths comparable to the strongly deforming volumes of inter-
mediate - large earthquakes.
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Figure 5a. Time dependence of the MT impedance tensor at T=90s.
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