EMPIRICAL THERMOCHEMICAL VALUES FOR HIGHER ORDER OXIDES – AN UNCRITICAL CONSIDERATION

Mariolacos K.¹

Beethovenstr. 38, D-37085 Göttingen, Germany. E-mail: kmariol@web.de

Abstract

This paper presents empirical thermochemical data for a number of higher order oxides and introduces the method employed for their calculations. ThIs method is based on experimentally measured data. *Key words:* Thermochemistry, empirical values, oxides.

Περίληψη

Στην παρούσα εργασία παρουσιάζονται εμπειρικά θερμοχημικά δεδομένα από μία σειρά υψηλής τάζεως οζειδίων και προτείνεται μεθοδολογία για τον υπολογισμό τους. Η μέθοδος βασίζεται σε πειραματικά δεδομένα. Λέζεις κλειδιά: Θερμοχημεία, εμπειρικές τιμές, οζείδια.

1. Method

The basis for the empirical calculation in the current study are the "uncritical" values given in **Table 1**, which lists the average thermochemical data for the binary oxides from Woods and Garrels (1987). The values for ΔG°_{cal} and ΔH°_{cal} [kJ/mol] respectively presented in **Table 2**, are calculated according the following principle: The sum of the values for the binary oxides are multiplied by the ratio of the sum corresponding to the atoms of the higher-order oxide over the sum corresponding to the atoms of the individual binary oxides. This yields the coefficients $C_G = \Delta G^{\circ}_{exp}/\Delta G^{\circ}_{cal}$ and $C_H = \Delta H^{\circ}_{exp}/\Delta H^{\circ}_{exp}$ respectively for both the ternary and quaternary oxides in the same table. For most of these calculations, the coefficients are approximately 1.10, with minimum and maximum values of 0.85 and 1.36. The average for all coefficients is $C_{G,H} = 1.0658$.

In order to generate the empirical values for the oxides listed in **Tables 3**, 4 and 5, the quantities ΔG^{o}_{cal} and ΔH^{o}_{cal} are multiplied by these coefficients.

For the current investigation only stoichiometric oxide compounds in a crystalline state were considered, i.e. carbonates, phosphates, nitrates etc. were not included. Additionally, neither compounds of other elements, e.g. chlorides, sulfides or fluorides, nor hydrates or hydroxides were considered. In accordance with the work of Woods and Garrels (1987), compounds of certain elements such as Ga, Gd, In, Nd and Tb are also not included in the current study. All values given here are based on a temperature of 298.15 K.

To clarify the proposed method, the following numerical examples are provided:

1. $Ba_2Fe_2O_5 \Rightarrow BaO + Fe_2O_3$

 $\Delta G^{o}_{cat} = [-521-743] \times [9/7] = -1625 [kJ/mol]; \Delta G^{o}_{emp} = (-1625) \times 1.066 = -1732 [kJ/mol]$

2. $Na_2Mg_2Si_2O_7 \Rightarrow Na_2O + MgO + SiO_2$;

 $\Delta G^{\circ}_{cai} = [-377-569-853] \times [13/8] = -2923 \text{ [kJ/mol]}; \quad \Delta G^{\circ}_{emp} = (-2923) \times 1.066 = -3115 \text{ [kJ/mol]}$ 3. PbCa₃Zn₄Si₄O₁₆ \Rightarrow PbO + CaO + ZnO + SiO₂;

 $\Delta G^{\circ}_{cal} = [-189-604-321-853] \times [28/9] = -6119 [kJ/mol]; \Delta G^{\circ}_{emp} = (-6119) \times 1.066 = -6522 [kJ/mol]$

4. $CaYFeBe_2Si_2O_{10} \Longrightarrow CaO + Y_2O_3 + Fe_2O_3 + BeO + SiO_2;$

 $\Delta G^{o}_{cal} = [-604-1817-743-577-853] \times [17/17] = -4594 [kJ/mol]; \quad \Delta G^{o}_{emp} = -4897 [kJ/mol]$

The values of ΔH^{o}_{emp} were calculated in a similar fashion.

Compound $\Delta G^{o}_{f} \Delta H^{o}_{f}$		Compound $\Delta G^{o}_{f} - \Delta H^{o}_{f}$			Compound $\Delta G^{o}_{f} = \Delta H^{o}_{f}$			
	[kJ/mol	.]		[kJ/mol	<u>]</u>	[kJ/mol]		
AgO	+11	-25	Fe ₂ O ₃	-743	-824	SeO ₂	-173	-227
Ag ₂ O	-11	-31	GeO ₂	-498	-559	SiO ₂	-853	-909
Al_2O_3	-1578	-1671	HgO	-58	-90	SnO	-257	-286
As ₂ O ₃	-580	-659	MnO	-363	-385	SnO ₂	-519	-581
As ₂ O ₅	-779	-921	K ₂ O	-320	-362	SrO	-564	-594
B_2O_3	-1191	-1270	La ₂ O ₃	-1726	-1824	SrO ₂	-582	-638
BaO	-521	-549	Li ₂ O	-561	-598	Ta ₂ O ₅	-1926	-2058
BeO	-577	-606	MgO	-569	-601	TeO ₂	-270	-322
Bi ₂ O ₃	-494	-575	MnO_2	-463	-520	ThO ₂	-1168	-1226
CaO	-604	-635	Mn_2O_3	-884	-961	TiO ₂	-887	-940
CdO	-228	-257	MoO ₃	-670	-747	Ti ₂ O ₃	-1433	-1521
CeO ₂	-1025	-1089	Na ₂ O	-377	-416	UO ₂	-1032	-1085
Ce ₂ O ₃	-1707	-1796	Nb_2O_5	-1765	-1898	UO3	-1146	-1223
CoO	-213	-236	NiO	-212	-240	V_2O_3	-1138	-1227
CrO ₃		-589	P_2O_5	-1361	-1506	V_2O_5	-1419	-1551
Cr ₂ O ₃	-1054	-1136	PbO	-189	-218	WO ₃	-764	-842
Cs ₂ O	-297	-332	PbO ₂	-217	-276	W_2O_5	-1284	-1413
Cs_2O_3	-360	-465	Rb ₂ O	-291	-333	Y_2O_3	-1817	-1905
CuO	-127	-156	Rb ₂ O ₃	-387	-488	Yb ₂ O ₃	-1727	-1815
Cu ₂ O	-147	-169	Sb ₂ O ₅	-844	-987	ZnO	-321	-350
FeO	-250	-271	Sc ₂ O ₃	-1819	-1909	ZrO ₂	-1040	-1099

Table 1 - Experimental thermochemical (average) values of binary oxides [1]

Table 2 - Experimental and calculated data for ΔG°_{exp} , ΔG°_{cal} , ΔH°_{exp} , ΔH°_{cal} with coefficients $C_{G}=\Delta G^{\circ}_{exp}/\Delta G^{\circ}_{cal}$ and $C_{H}=\Delta H^{\circ}_{exp}/\Delta H^{\circ}_{cal}$ respectively

a. Ternary oxides

Compound	ΔG^{o}_{exp}	ΔG^{o}_{cal}	C _G	ΔH^{o}_{exp}	ΔH^{o}_{cal}	Сн	
	[]	cJ/mol]		[k	J/mol]		
AgMoO ₄	-822	-659	1.25				
Ag ₂ CrO ₄				-731	-620	1.18	
Ag ₂ MoO ₄	-749	-681	1.10	-839	-778	1.08	
Ag ₂ WO ₄	-852	-775	1.10	-925	-873	1.06	
Al ₂ SiO ₅	-2441	-2431	1.00	-2589	-2580	1.00	
Al ₂ Si ₂ O ₇	-3143	-3343	0.94	-3346	-3547	0.94	

Al ₆ Si ₂ O ₁₃	-6434	-6381	1.01	-6815	-6772	1.01
BaMoO₄	-1442	-1191	1.21	-1548	-1296	1.19
BaWO ₄	-1546	-1285	1.20	-1681	-1391	1.21
BaSiO ₃	-1537	-1374	1.12	-1619	-1458	1.11
BaSi2O5	-2403	-2198	1.09	-2543	-2333	1.09
Ba ₂ SiO ₃	-1969	-1649	1.19	-2079	-1750	1.19
Ba ₂ SiO ₄	-2160	-1924	1.12	-2279	-2041	1.12
Ba2Si2Os	-3948	-3572	1.10	-4176	-3791	1.10
Ba ₃ SiO ₅	-2858	-2473	1.16	-3002	-2624	1.14
BeAl ₂ O ₄	-2178	-2155	1.01	-2300	-2277	1.01
BeSiO ₃	-1454	-1430	1.02	-1540	-1515	1.02
Be ₂ SiO ₄	-2038	-2002	1.02	-2153	-2121	1.01
CaFe ₂ O ₄	-1413	-1347	1.05	-1520	-1459	1.04
Ca ₂ Fe ₂ O ₅	-2000	-1732	1.15	-2134	-1876	1.14
CaMoO ₄	-1440	-1274	1.13	-1547	-1382	1.12
CaSiO ₂	-1547	-1457	1.06	-1632	-1544	1.06
Ca ₂ SiO ₄	-2196	-2040	1.08	-2312	-2162	1.07
Ca ₂ SiO ₅	-2785	-2623	1.06	-2931	-2779	1.05
Ca ₂ Si ₂ O ₇	-3759	-3497	1.07	-3960	-3706	1.07
CaWO ₄	-1538	-1368	1.12	-1643	-1477	1.07
CdSiO	-1104	-1081	1.02	-1188	-1166	1.02
FeALO	-1864	-1828	1.02	-1979	-1942	1.02
FeCr ₂ O ₄	-1358	-1304	1.02	-1459	-1407	1.02
FeMoO	-977	-920	1.06	-1076	-1018	1.04
FeSiO	-1119	-1103	1.00	-1193	-1180	1.00
FesSiO	-1375	-1544	0.89	-1475	-1652	0.89
FeTiO	-1159	-1137	1.02	-1236	-1211	1.02
FeWO.	-1061	-1014	1.02	-1161	-1113	1.02
K ₂ SiO ₂	-1465	-1173	1.05	-1553	-1271	1.04
KaSiaO.	-2335	-1759	1.23	-1555	-1006	1.22
K-SLO	-4085	-2932	1 39	-2405	-3177	1 36
LiAlO	-1128	-1069	1.05	-1100	-1134	1.05
Lissio	-1553	-1414	1.05	-1640	-1507	1.00
Li ₂ Si ₂ O ₂	-2396	-2121	1.10	-2540	-1307	1.09
MgALO.	-2179	-2121	1.01	-2304	-2200	1.12
MgCr.O.	-1669	-1623	1.01	-2304	1737	1.01
MgFe ₂ O ₄	-1326	-1312	1.05	-1/137	-1425	1.02
MgSiO.	-1320	-1422	1.01	1540	-1425	1.01
Mg-SiO	-2055	-1901	1.03	2175	-1310	1.02
MgTiO-	-1484	-1456	1.05	-2175	-2114	1.03
MpSiO.	12/1	-1450	1.02	1320	1204	1.02
Mn SiO	1631	-1210	0.06	-1520	-1294	0.05
MnWO	1204	-1702	1.07	-1727	1227	1.06
Na SiO	-1204	-1127	1.107	-1505	-1227	1.00
Na_2SIO_3	1772	-1230	1.19	-1050	-1525	1.10
NiALO	-1775	-1525	1.10	1029	-1039	1.19
NiFe-O	-1019	-1/90	1.02	1020	1064	1.01
NiFe204	-972	-955	1.02	-1080	-1004	1.01
NISIO3	1204	-1003	0.07	1400	1600	0.87
DbMcO	-1294	-1491	0.87	-1408	-1009	0.8/
PDIVIOU4	-930	-039	1.11	-10/1	-905	1.11
	-1001	-1042	1.02	-1134	-1129	1.00
PD2SIO4	-1233	-1439	0.80	-1330	-15/8	0.85
PDWO4	-1020	-955	1.07	-1122	-1060	1.06

SrSiO ₃	-1560	-1417	1.10	-1634	-1503	1.09
Sr ₂ SiO ₄	-2212	-1984	1.11	-2313	-2104	1.10
Sr ₃ SiO ₅	-2887	-2551	1.13	-3001	-2705	1.11
SrWO ₄	-1538	-1328	1.16	~1654	-1436	1.15
USiO ₄	-1891	-1885	1.00	-2000	-1994	1.00
$ZnAl_2O_4$				-2065	-2021	1.02
ZnSiO ₃	-1175	-1174	1.00	-1265	-1259	1.00
Zn_2SiO_4	-1525	-1644	0.93	-1638	-1763	0.93
Zn ₂ TiO ₄	-1535	-1691	0.91	-1649	-1806	0.91
ZnWO ₄	-1124	-1085	1.04	-1233	-1192	1.03
ZrSiO ₄	-1915	-1893	1.01	-2028	-2008	1.01

b. Quaternary oxides

Compound	ΔG^{o}_{exp}	ΔG^{o}_{cal}	Ca	ΔH^{o}_{exp}	ΔH^{o}_{cal}	C
Compound	[kJ/r	nol]	ΨG	[kJ/r	nol]	СH
CaAl ₂ SiO ₆	-3122	-3035	1.03	-3293	-3215	1.02
CaAl ₂ Si ₂ O ₈	-3999	-3945	1.01	-4226	-4179	1.01
Ca ₂ Al ₂ SiO ₇	-3791	-3642	1.04	-3989	-3858	1.03
Ca ₃ Al ₂ Si ₃ O ₁₂	-6277	-6070	1.03	-6639	-6430	1.03
CaFeSi ₂ O ₆	-2676	-2438	1.10	-2840	-2593	1.09
Ca ₃ Fe ₂ Si ₃ O ₁₂	-5416	-4400	1.23	-5760	-4736	1.22
CaMgSiO₄	-2143	-2026	1.06	-2262	-2145	1.05
CaMgSi ₂ O ₆	-3032	-2894	1.05	-3206	-3064	1.05
Ca2MgSi2O7	-3678	-3473	1.06	-3875	-3677	1.05
CaTiSiO ₅	-2455	-2344	1.05	-2590	-2484	1.04
Fe ₂ Al ₄ Si ₅ O ₁₈	-7961	-7775	1.02	-8450	-8268	1.02
Fe ₃ Al ₂ Si ₃ O ₁₂	-4970	-5362	0.93	-5302	-5702	0.93
FeMgSi ₂ O ₆	-2593	-2388	1.08	-2756	-2544	1.08
KAlSiO ₄	-2000	-1751	1.14	-2115	-1872	1.13
KAlSi ₂ O ₆	-2866	-2501	1.14	-3028	-2674	1.13
KAlSi ₃ O ₈	-3729	-3251	1.15	-3960	-3477	1.14
LiAlSiO ₄	-2007	-1904	1.05	-2121	-2022	1.05
LiAlSi2O6	-2868	-2720	1.05	-3038	-2889	1.05
Mg ₂ Al ₄ SiO ₁₀	-4982	-5100	0.98	-5278	-5408	0.97
Mg ₂ Al ₄ Si ₅ O ₁₈	-8666	-8700	1.00	-9161	-9225	0.99
Mg ₃ Al ₂ Si ₃ O ₁₂	-5949	-6000	0.99	-6275	-6362	0.99
NaAlSiO ₄	-1970	-1787	1.10	-2085	-1906	1.09
NaAlSi ₂ O ₆	-2833	-2553	1.11	-3023	-2724	1.11
NaAlSi ₃ O ₈	-3704	<u>-3</u> 318	1.12	-3924	-3541	1.11

2. Comments

The method outlined here provides an estimation and is intended only as a first approximation in those cases where, due to lack of thermochemical data, exact calculation of mineralogical processes is not possible. In these cases, an experimental determination of the unknown quantities should be undertaken. However, it should be not forgotten that the production of pure stoichiometric compounds and the experimental determination of there thermochemical data are not simple procedures.

Closer examination of **Tables 2a** and **2b** reveals that the coefficients C_G and C_H for potassium compounds have a higher average value, while magnesium and zinc compounds exhibit an average

value lower than 1.06 (the average for all compounds, as stated above). Thus, the empirical values for each group of elements can be determined individually.

The compounds in **Tables 3, 4, 5** and 6 were taken either from the Mineralogical Tables compiled by Strunz (1977) or from the literature.

A similar study of the free-enthalpy changes for sulfides was published by Barton and Skinner (1967).

Compound	ΔG^{o}_{emp}	ΔH^{o}_{enp}	Compound	$\Delta G^{\circ}_{\text{emp}}$	$\Delta H^o{}_{emp}$	Compound	ΔG^{o}_{emp}	ΔH^{o}_{emp}
Provide State	[kJ/	mol]	1	[kJ/ı	mol]		[kJ/ı	nol]
Al_2ZnO_4	-2024	-2154	LaVO ₄	-1676	-1798	$Pb_3V_2O_8$	-2476	-2723
Ba ₂ Fe ₂ O ₅	-1732	-1881	Li ₂ Ge ₇ O ₁₅	-4515	-4932	SbFeO ₄	-845	-964
BaTiO ₃	-1501	-1587	Li ₂ SiO ₃	-1507	-1606	Sc ₂ Si ₂ O ₇	-3916	-4130
BaSi ₂ O ₅	-2343	-2486	$Li_2Si_2O_5$	-2260	-2409	ScTaO₄	-1995	-2113
BaZrO ₃	-1664	-1756	Li ₄ SiO ₄	-2260	-2409	$SnPb_2O_4$	-1056	-1193
Bi ₄ Si ₃ O ₁₂	-3409	-3756	Li_2WO_4	-1412	-1535	$Sn_2Ta_2O_7$	-2843	-3053
Bi2Sn2O7	-1485	-1693	$Mg_2B_2O_5$	-2412	-2564	SrAl ₁₂ O ₁₉	-10436	-11035
BiVO ₄	-1019	-1133	$Mg_3B_2O_6$	-2948	-3133	SrFe ₁₂ O ₁₉	-6368	-6908
CaB ₂ O ₄	-1913	-2030	MgGeO ₃	-1137	-1236	SrB_2O_4	-1870	-1987
CaGeO ₃	-1174	-1273	Mg ₂ GeO ₄	-1592	-1731	SrTiO ₃	-1546	-1635
Ca ₂ GeO ₄	-1644	-1782	MgNb ₂ O ₆	-2487	-2663	SrZrO ₃	-1709	-1804
CaMn ₂ O ₄	-1586	-1701	MgSb ₂ O ₆	-1506	-1692	ThSiO ₄	-2154	-2275
Ca ₂ Ta ₂ O ₇	-3295	-3507	MgTi ₂ O ₅	-2483	-2628	ThTi ₂ O ₆	-3285	-3463
CeAsO ₄	-1325	-1447	Mg ₂ TiO ₄	-2172	-2299	TiBO3	-1398	-1487
CeVO ₄	-1666	-1783	MgWO ₄	-1421	-1538	Ti ₂ MgO ₄	-2134	-2262
$Co_2B_2O_5$	-1924	-2063	MnGeO ₃	-918	-1006	UMo ₂ O ₈	-2851	-3068
$Co_3B_2O_6$	-2351	-2523	Mn ₂ GeO ₄	-1284	-1409	UTe ₃ O ₈	-2775	-2999
CoGeO ₃	-758	-847	MnNb ₂ O ₆	-2268	-2433	UTi ₂ O ₆	-3067	-3237
Co2SiO4	-1590	-1708	MnSb ₂ O ₆	-1286	-1462	VBO ₃	-1241	-1330
CoWO ₄	-1041	-1149	$Mn_6Sb_2O_{15}^5$	-3412	-3737	V ₂ FeO ₄	-1479	-1596
Cr ₂ CuO ₄	-1259	-1377	Mn ₇ SiO ₁₂ ⁶	-4476	-4807	Y ₃ Al ₅ O ₁₂	-7237	-7623
Cr ₂ MnO ₄	-1510	-1621	MnTa ₂ O ₆	-2440	-2604	YAsO₄	-1383	-1506
Cr ₂ NiO ₄	-1349	-1466	MnTiO ₃	-1332	-1412	YBO3	-1603	-1691
CuAs ₂ O ₄	-753	-869	Mn ₂ ZnO ₄	-1284	-1397	YNbO₄	-1909	-2026
CuFeO ₂ ¹	-402	-455	Na ₂ GeO ₃	-932	-1039	Y ₂ Si ₂ O ₇	-3912	-4123
CuFeO ₂ ²	-474	-529	NaNbO ₃	-1141	-1233	YTaO ₄	-1994	-2111
Fe ₃ BO ₅ ³	-1746	-1891	Na ₂ Si ₂ O ₅	-1966	-2118	ZnCr ₂ O ₄	-1465	-1584
FeGeO ₃	-797	-885	NaTaO ₃	-1227	-1318	ZnFe ₂ O ₄	-1134	-1251
Fe ₂ MnO ₄	-1179	-1288	$Na_2U_2O_7$	-2550	-2745	Zn ₂ GeO ₄	-1222	-1357
FeNbO ₄	-1336	-1450	NiAs ₂ O ₄	-844	-958	ZnNb ₂ O ₆	-2223	-2396
FeNb ₂ O ₆	-2147	-2312	NiWO ₄	-1040	-1153	ZnSb ₂ O ₆	-1242	-1425
FeSb ₂ O ₆	-1166	-1341	PbCu ₆ O ₈	-1100	-1381	ZnTa ₂ O ₆	-2395	-2566
Fe ₅ Si ₃ O ₁₂ ⁴	-3935	-4272	PbSeO ₃	-386	-474	ZrTiO ₄	-2054	-2173
Fe ₂ ZnO ₄	-1134	-1251	PbSeO ₄	-416	-536	Zr5Ti7O24	-12323	-13039
Hg ₂ TeO ₄	-489	-615	PbTiO ₃	-1147	-1234	ZrV ₂ O ₇	-2621	-2824
K ₂ CrO ₄		-1014	$Pb_2V_2O_7^7$	-2094	-2304	ZnWO ₄	-1156	-1270
			$Pb_2V_2O_7^8$	-1985	-2203	ZrW ₂ O ₈	-3021	-3251
$Cu^{2+}Fe^{2+}O_2$		3 Fe ²⁺ ,	Fe ³⁺ BO ₅	5 N	$(n^{2+}Mn^{4+})$	Sb ₂ O ₁₅	7 -	Pb ²⁺ ₂ V ⁵⁺ ₂ (
$Cu^{1+}Fe^{3+}O_2$		$4 \text{ Fe}^{2+}_{3}\text{F}$	$e^{3+}{}_{2}Si_{3}O_{12}$	6 N	$4n^{2+4}Mn^{4+4}$	Si O ₁₂	8	Pb ⁴⁺ ₂ V ³⁺ ₂
-		0			and the second			

Table 3 - Empirical data of ΔG^{o}_{emp} and ΔH^{o}_{emp} for ternary oxides

Commented	ΔG^{o}_{emn}	ΔH ^o emp	Company	∆G° _{emp}	ΔH^{o}_{emp}	Comment	ΔG^{0}_{emn}	ΔH ^o emp
Compound	[kJ/	mol]	Compound	[kJ/	mol}	Compound	[kJ/	mol]
AlisBeSi2O17	-18113	-19254	Ca ₃ Mn ₂ Si ₄ O ₁₄	-5738	-6140	LaBSiO.	-2473	-2625
Al ₄ MgBeO ₂	-4516	-4772	Ca ₂ MnSi ₂ O ₂	-3325	-3575	LiAlSiO	-2029	-2155
Al,Be3Si4O18	-9297	-9847	CaNiSi2O6	-2541	-2717	LiAlSi206	-2899	-3079
BaAl2Ge2Os	-3598	-3851	CaSnB ₂ O ₆	-2466	-2650	LiAlSido	-4638	-4926
BaAl ₂ Si ₂ O ₂	-4090	-4336	CaSnSiO.	-2106	-2265	Li ₂ BeSiO4	-2122	-2252
BaBe ₂ Si ₂ O ₇	-3565	-3771	Ca ₃ Ti ₂ Si ₂ O ₁₂	-6160	-6533	LiFeSi	-2090	-2258
BaCa ₂ Si ₂ O ₉	-4518	-4780	CaTiZr ₃ O ₉	-4720	-4987	LiSbWO	-1486	-1663
BaCuSi ₄ O ₁₀	-3657	-3932	Ca ₁ V ₂ Si ₁ O ₁₂	-5531	-5907	Li3ScM02O12	-5147	-5492
BaFeSi ₄ O ₁₀	-3956	-4212	CaZn2TigO10	-8277	-8793	LiScSiO₄	-2192	-2317
BaSnSi ₃ O ₀	-3531	-3803	Ca ₂ ZnSi ₂ O ₇	-3248	-3461	LiScSi ₂ O ₄	-3132	-3309
BaTiGe ₃ O ₉	-3554	-3820	CaZrTi ₂ O ₂	-3709	-3919	Mg2AlBO	-2668	-2831
BaTiSi ₃ O ₉	-4217	-4472	CaYAI ₃ O7	-4262	-4488	MgAl ₂ SiO ₆	-3197	-3390
Ba ₂ TiSi ₂ O ₈	-3916	-4153	Cd ₃ Al ₂ Si ₃ O ₁₂	-5668	-6047	Mg2Al4SiO10	-5436	-5764
BeMg2Al6O12	-6774	-7157	Cd ₃ V ₂ Si ₃ O ₁₂	-4730	-5101	Mg2Al4Si3O18	-9272	-9832
BeMg ₃ Al ₈ O ₁₆	-9033	-9543	CeBSiO ₅	-2460	-2607	Mg2Al4Si11O20	-15028	-15935
Ca ₃ Al ₂ Si ₃ O ₁₂	-6469	-6853	CeNbTiO ₆	-2787	-2963	Mg1Al2Si2O12	-6395	-6781
Ca3Al2Si15O36	-18114	-19189	Co ₃ Al ₂ Si ₃ O ₁₂	-5636	-6003	Mg ₃ Cr ₂ Si ₃ O ₁₂	-5278	-5640
CaB ₂ Si ₂ O ₈	-3668	-3899	CsFeSi ₂ O ₆	-1834	-2000	Mg ₂ FeBO ₅	-2000	-2254
Ca2BeSi2O7	-3716	-3928	Cs ₃ Mn ₃ V ₄ O ₁₆	-4803	-5254	Mg ₃ Fe ₂ GeO ₈	-2701	-2961
CaBi2Nb2O9	-3051	-3312	Cs ₃ ScSi ₈ O ₁₉	-8917	-9461	MgFeSiO₄	-1782	-1898
Ca ₃ Cr ₂ Ge ₃ O ₁₂	-4596	-4967	CuZn2As2O8	-1545	-1794	Mg ₃ Fe ₂ Si ₃ O ₁₂	-4615	-4975
Ca ₃ Cr ₂ Si ₃ O ₁₂	-5352	-5713	Fe2Al4Si5O18	-8286	-8812	Mg ₂ MnBO ₅	-2113	-2264
CaCuSi ₄ O ₁₀	-3859	-4142	Fe ₃ Al ₂ Si ₃ O ₁₂	-5715	-6077	MgScBO ₄	-2225	-2350
CaFeSiO ₄	-1819	-1934	Fe2Ba3Ge3O12	-3756	-4118	MnAl ₂ Si ₂ O ₈	-3871	-4107
CaFeSi ₂ O ₆	-2599	-2764	FeCoBO ₄	-1334	-1448	Mn ₂ Al ₄ Si ₅ O ₁₈	-8636	-9164
Ca ₂ Fe ₃ Si ₃ O ₁₂ ⁱ	-4352	-4684	Fe ₃ Cr ₂ Si ₃ O ₁₂	-4598	-4937	Mn ₃ Al ₂ Si ₃ O ₁₂	-5956	-6320
CaK2As2O7	-1815	-2044	Fe2MgTi3O10	-3749	-4033	Mn ₃ Cr ₂ Si ₃ O ₁₂	-4839	-5180
CaLa ₄ Si ₃ O ₁₃	-7124	-7538	KAlGeO4	-1625	-1757	Mn ₃ Fe ₂ Si ₃ O ₁₂	-4176	-4515
CaMgAl ₁₄ O ₂₃	-12705	-13426	KAITi ₃ O ₈	-3507	-3744	NaBSi ₃ O ₈	-3049	-3269
CaMg ₂ Al ₁₆ O ₂₇	-14986	-15836	KFeSiO ₄	-1299	-1421	NaCrSi ₂ O ₆	-2213	-2384
CaMgGeO ₄	-1781	-1913	KFeSi ₂ O ₆	-1857	-2029	NaFeGe ₂ O ₆	-1568	-1742
Ca ₃ MgSi ₂ O ₈	-4319	-4572	KFeSi ₃ O ₈	-2413	-2639	NaFeSi2O6	-1912	-2082
CaMnSiO ₄	-1940	-2056	K ₂ TiSi ₄ O ₁₁	-4391	-4713	NaFe ₆ Si ₆ O ₂₀ ^u	-6014	-6547
CaMnSi ₂ O ₆	-2771	-2937	K ₂ ZrSi ₃ O ₉	-3931	-4210	Na ₂ FeSi ₂ O ₆	-2169	-2338
CaMn ₄ Si ₅ O ₁₅	-6928	-7342	K ₂ ZrSi ₆ O ₁₅	-6289	-6736	NaLa9Ge6O26	-10584	-11390
Na2Mg2Si2O7	-3115	-3336	Na ₂ ZıSi ₂ O ₇	-3226	-3360	Rb ₂ ZnSi ₅ O ₁₂	-3903	-4242
NaMnSi ₂ O ₆	-2048	-2436	Ni ₃ Al ₂ SiO ₈	-3943	-4208	Sc2Be3Si6O18	-10042	-13229
Na ₃ Mn ₅ Si ₈ O ₂₄ ⁱⁱⁱ	-8122	-8759	PbAl ₂ Si ₂ O ₈	-3630	-3876	SrAl ₂ Si ₂ O ₈	-4149	-4397
NaNbAl ₂ O ₆	-2643	-2832	Pb3BiAs3O12	-2114	-2479	SrCuSi ₄ O ₁₀	-3761	-4041
NaSbBe ₄ O ₇	-2076	-2319	Pb ₃ BiV ₃ O ₁₂	-3041	-3390	Sr ₂ V ₂ Si ₄ O ₁₄ ^{iv}	-5658	-5904
NaScSi ₂ O ₆	-2954	-3133	PbCu ₂ Se ₃ O ₉	-1117	-1373	YAl ₃ B ₄ O ₁₂	-6517	-6886
Na2TiSi2O7	-3009	-3219	Pb ₂ Fe ₂ Si ₂ O ₉	-2853	-3118	YNbTiO ₆	-2857	-3033
Na2TiSi4O11	-4512	-4828	Pb2Mn2Si2O9	-3079	-3338	Y ₂ SiBe ₂ O ₇	-4152	-4374
Na2Ti2Si2O9	-3760	-4023	Pb ₈ MnSi ₆ O ₂₁	-7701	-8288	YTiTaO ₆	-2961	-3135
Na ₂ ZrSi ₄ O ₁₁	-4839	-5167	PbZnSiO ₄	-1453	-1574	ZrK2Si3O9	-3931	-4210
i Ca ₂ Fe ²⁺ Fe ³⁺ ₂ S	$Si_3O_{12};$	ii NaFe ²⁺	3Fe ³⁺ 3Si ₆ O ₂₀ ;	iii Na ₃ Mn	$^{3+}_{3}Mn^{2+}_{2}$	Si ₈ O ₂₄ ; iv Sr ²	$5r^{4+}V^{3+}$	Si ₄ O ₁₄

Table 4 - Empirical data of $\Delta G^{o}_{\ emp}$ and $\Delta H^{o}_{\ emp}$ for quaternary oxides

Compound	ΔG^{o}_{emp}	ΔH^{o}_{emp}	Compound	ΔG^{o}_{emp}	ΔH^{o}_{emp}
	[kJ/ı	nol]	Compound	[kJ/mol]	
BaFe ₂ TiSi ₂ O ₉	-4014	-4266	Ca ₃ Zr ₂ Al ₂ SiO ₁₂	-6681	-7074
BaMg ₂ Al ₆ Si ₉ O ₃₀	-15011	-15902	Ca ₃ Zr ₂ Fe ₂ SiO ₁₂	-5313	-5685
BaNa ₂ Al ₄ Si ₄ O ₁₆	-7369	-7847	KNa3Al4Si4O16	~6668	-7158
$BaSr_2Mn_2Si_4O_{14}$	-5765	-6155	KNa ₃ Mg ₄ Si ₁₂ O ₃₀	-10266	-11084
CaAlFeSiO ₆	-2685	-2870	Mg ₂ Al ₁₄ B ₄ Si ₄ O ₃₇	-18164	-19292
CaCrAlSiO ₆	-2905	-3092	Mg ₃ Al ₄ Si ₃ BeO ₁₆	-8577	-9082
Ca ₂ FeB ₂ Si ₂ O ₁₀	-4375	-4657	MgCrAlSiO ₆	-2881	-3067
$Ca_6Mg_5MnB_{12}O_{30}$	-14268	-15126	NaMg ₂ CrSi ₃ O ₁₀	-3976	-4267
CaMn ₂ Be ₃ Si ₃ O ₁₂	-5961	-6304	Na ₂ BaTi ₂ Si ₄ O ₁₄	-5879	-6271
CaNa ₂ Al ₄ Si ₄ O ₁₆	-7552	-8037	Na ₂ Fe ₅ TiSi ₆ O ₂₀	-7797	-8354
Ca ₂ NaMg ₂ As ₃ O ₁₂	-3546	-3618	PbCa ₃ Zn ₄ Si ₄ O ₁₆	-6522	-7003
Ca ₃ TiFeSi ₃ O ₁₂	-5529	-5872	SrMg2Al6Si9O30	-15194	-16093
Ca ₃ Ti ₂ Fe ₂ SiO ₁₂	-5061	-5424	Y ₂ FeBe ₂ Si ₂ O ₁₀	-5280	-5573
CaZrBAl ₉ O ₁₈	-9407	-9965			

Table 5 - Empirical data of ΔG^{0}_{emp} and ΔH^{0}_{emp} for quinary oxides

Table 6 - Empirical data of ΔG^{o}_{emp} and ΔH^{o}_{emp} for senary oxides

Compound	ΔG° _{emp} [kJ/1	ΔH [°] emp mol]
CaMgFe ₂ Al ₂ SiO ₁₀	-4633	-4945
CaYFeBe ₂ Si ₂ O ₁₀	-4896	-5200
$Na_4BaTi_2B_2Si_{10}O_{30}$	-12497	-13330
Na ₃ Mg ₃ FeTiSi ₈ O ₂₄	-9136	<u>-9</u> 832

3. Acknowledgement

The translation of the paper in English by Dr. John Balk, University of Kentucky, is gratefully acknowledged.

4. References

Barton, P.B., and Skinner, B.J., 1967. Sulfide mineral stabilities. In H.L. Barnes (ed.), Geochemistry of Hydrothermal Ore Deposits, 238-326pp. Holt, Rinehart & Winston.

Strunz, H., 1977. Mineralogische Tabellen, Akademische Verlagsgesellschaft, Leipzig.

Woods, L.T., and Garrels, R., 1987. Thermodynamic Values at low Temperature for natural inorganic Materials: An uncritical Summary, Oxford University Press, New York, Oxford.