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ABSTRACT 

 

 This thesis is an extension to the existing literature on applications of network theory 

for portfolio selection. Until now, networks for portfolio selection are identified via Pearson 

correlation -a linear correlation measure- of stock returns while the stocks from which the 

portfolios are constructed are chosen based on common centrality measures. In the current 

thesis not only Pearson but also non-linear measures are applied which lead to both 

symmetric and asymmetric adjacency matrices. In total, 6 different types of (overlapping) 

networks are identified: Net Ι: Pearson correlation with replacement of negative values by 

zero, ii) Net ΙΙ: Absolute values of Pearson correlation, iii) Net ΙΙΙ: Normalized Mutual 

Information, iv) Net IV: Directed Normalized Mutual Information, v): Net V: Information 

Interdependence, vi): Net VI: Information Dependence (Asymmetric). For each node of 

those overlapping networks, the following are computed: strength, closeness centrality, 

betweenness centrality, eigenvector centrality, eccentricity; portfolios are constructed from 

the stocks with the highest and the lowest score on those measures. Apart from the 

application of non-linear measures and the identification of directed networks, a separate 

study for the 2008 financial crisis era is performed in order to also come up with the best 

performing networks during periods of extreme volatility. Portfolios are evaluated based on 

returns, total risk, systemic risk, adjusted to total risk return and adjusted to systemic risk 

return. 

 

 Regarding the most crucial conclusions to be made, networks identified through 

Pearson Correlation achieve higher returns. However, non-linear measures are superior 

when it comes to building portfolios of less risk (both total and systematic). Concerning 

adjusted to risk return, top performance is shared between linear measures and the best 

performing non-linear ones. However, during the crisis the superiority of non-linear 

measures is evident, with the importance of directed networks during high volatility eras 

becoming lucid as well. 
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ΠΕΡΙΛΗΨΗ 

Η παξνύζα δηπισκαηηθή εξγαζία απνηειεί επέθηαζε ηεο έξεπλαο πνπ έρεη γίλεη γηα 

ηελ αμηνπνίεζε ηεο ζεσξίαο δηθηύσλ ζηε δεκηνπξγία ραξηνθπιαθίσλ. Μέρξη ηώξα κε βάζε 

ηηο απνδόζεηο ησλ κεηνρώλ αλαγλσξίδνληαη δίθηπα κέζα από ηνλ ζπληειεζηή ζπζρέηηζεο 

Pearson -ν νπνίνο απνηειεί έλα γξακκηθό κέηξν ζπζρέηηζεο- θαη επηιέγνληαη κεηνρέο κε 

βάζε γλσζηά κέηξα θεληξηθόηεηαο. ηελ παξνύζα εξγαζία αλαγλσξίδνληαη δίθηπα όρη 

κόλν κε ηνλ Pearson αιιά θαη κε κε γξακκηθά κέηξα πνπ νδεγνύλ ζε ζπκκεηξηθνύο αιιά 

θαη κε ζπκκεηξηθνύο πίλαθεο γεηηλίαζεο.  πλνιηθά αλαγλσξίδνληαη 6 ηύπνη 

(επηθαιππηόκελσλ) δηθηύσλ: Net Ι: Pearson correlation κε κεδεληζκό αξλεηηθώλ βαξώλ, ii) 

Net ΙΙ: Απόιπηεο ηηκέο Pearson correlation, iii) Net ΙΙΙ: Normalized Mutual Information, iv) 

Net IV: Directed Normalized Mutual Information, v): Net V: Information Interdependence, 

vi): Net VI: Information Dependence (Asymmetric). Γηα θαζέλα από ηα επηθαιππηόκελα 

δίθηπα θάζε ηύπνπ ππνινγίδεηαη ην strength, ε closeness centrality, ε betweenness 

centrality ε eigenvector centrality θαη ε eccentricity θάζε θόκβνπ θαη ζρεκαηίδνληαη 

ραξηνθπιάθηα από ηηο κεηνρέο πνπ έρνπλ ηηο ρακειόηεξεο θαη ηηο πςειόηεξεο ηηκέο ζε θάζε 

ελα από απηά ηα κέηξα. Δθηόο από ηελ  εθαξκνγή κε γξακκηθώλ κέηξσλ θαη ηελ 

αλαγλώξηζε θαηεπζπλόκελσλ δηθηύσλ, γίλεηαη θαη μερσξηζηή κειέηε γηα ηελ πεξίνδν ηεο 

ρξεκαηννηθνλνκηθήο θξίζεο ηνπ 2008 έηζη ώζηε λα δηαπηζησζεί ηα ραξηνθπιάθηα πνηώλ 

δηθηύσλ απνδίδνπλ θαιύηεξα ζε πεξηόδνπο πνιύ πςειήο κεηαβιεηόηεηαο. Σα 

ραξηνθπιάθηα αμηνινγνύληαη κε βάζε ηελ απόδόζε ηνπο, ηνλ θίλδπλν (ζπλνιηθό θαη 

ζπζηεκηθό) αιιά θαη ηελ απόδνζε πξνο ηνλ θίλδπλν ηνπο.  

Όζνλ αθνξά ηα βαζηθόηεξα ζπκπεξάζκαηα, ηα δίθηπα πνπ αλαγλσξίδνληαη 

κέζσ Pearson ζεκεηώλνπλ θαιύηεξεο επηδόζεηο όζνλ αθνξά ην θέξδνο, ελώ ηα κε 

γξακκηθά κέηξα ππεξηεξνύλ ζηε δεκηνπξγία ραξηνθπιαθίσλ ρακειόηεξνπ θηλδύλνπ 

(ζπλνιηθνύ θαη ζπζηεκαηηθνύ). Αλαθνξηθά κε ηελ πξνζαξκνζκέλε ζηνλ θίλδπλν 

απόδνζε, δίθηπα κέζσ Pearson ελαιιάζζνληαη ζηελ θνξπθή κε θάπνηα από ηα κε 

γξακκηθά δίθηπα. Μέζα ζηελ θξίζε όκσο ε ππεξνρή ησλ κε γξακκηθώλ κέηξσλ είλαη 

ζαθήο, κε ηελ ζεκαζία ησλ θαηεπζπλόκελσλ δηθηύσλ λα αλαδεηθλύεηαη εμίζνπ θαηά 

ηελ πεξίνδν πςειήο κεηαβιεηόηεηαο. 
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ΥΝΟΨΗ 

 Η δηαρείξηζε ραξηνθπιαθίνπ θαη ε επηινγή ησλ θαηάιιεισλ πεξηνπζηαθώλ 

ζηνηρείσλ γηα ηε δηάξζσζε ηνπ είλαη έλα από ηα κείδνλα δεηήκαηα ησλ 

ρξεκαηννηθνλνκηθώλ θαη απαζρνιεί ηόζν νξγαληζκνύο θαη εηαηξίεο όζν θαη απινύο 

πνιίηεο. Έλαο από ηνπο ζεκειηώδεηο ζηόρνπο ηεο δηαρείξηζεο ραξηνθπιαθίνπ είλαη ε 

δηαθνξνπνίεζε ηνπ, ε επηινγή δειαδή πεξηνπζηαθώλ ζηνηρείσλ νη απνδόζεηο ησλ 

νπνίσλ ζπζρεηίδνληαη αξλεηηθά έηζη ώζηε λα κεηώλεηαη ν ζπλνιηθόο θίλδπλνο ηνπ 

ραξηνθπιαθίνπ.  

 Η επηινγή πεξηνπζηαθώλ ζηνηρεηώλ γίλνηαλ ζην παξειζόλ θπξίσο εκπεηξηθά θαη 

βαζηδόκελε πάλσ ζε ηζηνξηθά ζηνηρεία γηα ηηο απνδόζεηο ησλ κεηνρώλ θαη ησλ 

ππνινίπσλ πξντόλησλ. Απηό άιιαμε όηαλ ν Markowitz ην 1952 δεκηνύξγεζε ηε 

ζύγρξνλε ζεσξία ραξηνθπιαθίνπ, ε νπνία εθηόο από ηηο ηζηνξηθέο ηηκέο θάζε 

πεξηνπζηαθνύ ζηνηρείνπ ιακβάλεη ππόςε ηνλ θίλδπλν ηνπ αιιά θαη ηηο ζπζρεηίζεηο ησλ 

ζηνηρείσλ απηώλ θαη απνζθνπεί ζηελ επηινγή ηνπ άξηζηνπ ραξηνθπιαθίνπ, απηνύ 

δειαδή κε ηελ πςειόηεξε αλακελόκελε απόδνζε δεδνκέλνπ ηνπ θηλδύλνπ ή απηνύ κε 

ην ρακειόηεξν δπλαηό εθηηκώκελν θίλδπλν δεδνκέλεο ηεο αλακελόκελεο απόδνζεο. O 

Markowitz κάιηζηα βξαβεύζεθε κε λόκπει νηθνλνκηθώλ ην 1990. 

 Βαζηδόκελνη πάλσ ζηε ινγηθή ηεο ζεσξίαο ηνπ Markowitz, θάπνηνη ζπγγξαθείο 

έρνπλ ήδε θαηαθύγεη ζηε ζεσξία δηθηύσλ ώζηε λα θαηαθέξνπλ λα επηιέμνπλ κε 

κεγαιύηεξε επηηπρία πεξηνπζηαθά ζηνηρεία γηα ηε δεκηνπξγία ελόο βέιηηζηνπ 

ραξηνθπιαθίνπ. Οη Pozzi, Di Matteo, & Aste (2013) πξνζπαζνπλ λα δεκηνπξγήνπλ 

ραξηνθπιαθία κεηνρώλ «αληη-ζπζρεηηδόκελσλ» θαηά ην δπλαηόλ πεξηζζόηεξν. Γηα λα 

ην επηηύρνπλ απηό, αλαγλσξίδνπλ επηθαιππηόκελα δίθηπα ρξνλνζεηξώλ κεηνρώλ κέζσ 

ηνπ ζπληειεζηή ζπζρέηηζεο Pearson θαη ζηε ζπλέρεηα ππνινγίδνπλ γηα θάζε θόκβν ησλ 

δηθηύσλ απηώλ ηελ degree centrality, ηελ closeness centrality, ηελ eigenvector 

centrality, ηελ betweenness centrality θαζώο θαη ηελ eccentricity. Σν βαζηθό ηνπο 

ζπκπέξαζκα είλαη όηη ραξηνθπιάθηα πνπ επελδύνπλ ζε κεηνρέο-θόκβνπο ηεο 

πεξηθέξεηαο απνδίδνπλ θαιύηεξα όζνλ αθνξά ηελ πξνζαξκνζκέλε ζηνλ θίλδπλν 

απόδνζε. Οη Peralta, Zareei (2016)  πξνβαίλνπλ ζηελ επνλνκαδόκελε ξ-dependent 

strategy ζεσξώληαο όηη κε ηελ ζηξαηεγηθή απηή πξνζεγγίδνπλ νξζόηεξα ηελ ζεσξία ηνπ 

Markowitz. ύκθσλα κε ηε ζηξαηεγηθή ηνπο, δελ επηιέγνπλ πάληα πεξηθεξεηαθνύο 

θόκβνπο-κεηνρέο αιιά εμεηάδνπλ ηε ζπζρέηηζε ηεο eigenvector centrality κε ηνλ δείθηε 

Sharpe ησλ κεηνρώλ θαη αλάινγα κε ην αλ απηή ε ηηκή μεπεξλάεη ε όρη έλα 
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ζπγθεθξηκέλν θαηώθιη επελδύνπλ ζηηο 20  πεξηζζόηεξν ή ιηγόηεξν central κεηνρέο 

αληίζηνηρα. Δπίζεο, ελώ νη Pozzi et al. (2013) δεκηνπξγνύλ θάπνηα ζπλζεηηθά κέηξα 

θεληξηθόηεηαο βάζεη ησλ κέηξσλ πνπ ππνινγίδνπλ, νη Peralta, Zareei (2016)  

βαζίδνληαη απνθιεηζηηθά ζην eigenvector centrality. 

 θνπόο ηεο παξνύζαο δηπισκαηηθήο εξγαζίαο είλαη λα επεθηείλεη ηελ έξεπλα 

πνπ έρεη γίλεη όζνλ αθνξά ηελ αμηνπνίεζε ησλ δηθηύσλ ζηε δεκηνπξγία 

ραξηνθπιαθίνπ. Βαζηθό ζέκα πνπ εμεηάδεηαη είλαη ε θαηαιιειόηεηα ηνπ ζπληειεζηή 

ζπζρέηηζεο Pearson σο κέηξνπ γηα ηελ αλαγλώξηζε δηθηύσλ. Ο Pearson, ν νπνίνο 

ρξεζηκνπνηείηαη ηόζν ζηε ζεσξία ραξηνθπιαθίνπ όζν θαη ζηα paper ησλ Pozzi et al. 

(2013) & Peralta, Zareei (2016) είλαη έλα γξακκηθό κέηξν ζπζρέηηζεο. ηε 

βηβιηνγξαθία όκσο ππάξρνπλ ζεκαληηθέο ελδείμεηο όηη νη ζρέζεηο κεηαμύ ησλ 

ρξεκαηννηθνλνκηθώλ πεξηνπζηαθώλ ζηνηρείσλ είλαη κε γξακκηθέο. Έηζη ινηπόλ 

αλαγλσξίδνληαη 6 δηαθνξεηηθά είδε επηθαιππηόκελσλ δηθηύσλ: i) Net Ι: Pearson 

correlation κε κεδεληζκό αξλεηηθώλ βαξώλ, ii) Net ΙΙ: Απόιπηεο ηηκέο Pearson 

correlation, iii) Net ΙΙΙ: Normalized Mutual Information, iv) Net IV: Directed 

Normalized Mutual Information, v): Net V: Information Interdependence, vi): Net VI: 

Information Dependence (Asymmetric). Απν ηα παξαπάλσ δίθηπα, ηα πξώηα δύν είλαη 

γξακκηθά ελώ ηα ππόινηπα κε γξακκηθά, κε ηα δίθηπα iv θαη vi λα είλαη κε ζπκκεηξηθά. 

Σελ αμία εμέηαζεο κε ζπκκεηξηθώλ δηθηύσλ ππνγξακκίδνπλ κάιηζηα θαη νη Peralta, 

Zareei (2016).   

Αθνύ αλαγλσξηζηνύλ απηνί νη 6 δηαθνξεηηθνί ηύπνη επηθαιππηόκελσλ δηθηύσλ, 

γηα θάζε έλα απν ηα επηθαιππηόκελα δίθηπα ππνινγίδνληαη ηα κέηξα πνπ ππνιόγηζαλ 

θαη νη Pozzi et al. (2013). Κάζε θνξά δεκηνπξγνύληαη ραξηνθπιάθηα ίζεο ζηάζκηζεο κε 

ηηο 20 κεηνρέο κε πςειόηεξνπο θαη ρακειόηεξνπο δείθηεο θαη ππνινγίδεηαη ε επίδνζε 

ηνπο όζνλ αθνξά ηα παξαθάησ θξηηήξηα: απόδνζε (return), ζπλνιηθόο θίλδπλνο 

(variance), ζπζηεκηθόο-κε δηαθνξνπνηήζηκνο θίλδπλνο (beta), απόδνζε 

πξνζαξκνζκέλε ζην ζπλνιηθό θίλδπλν (κία παξαιιαγή ηνπ γλσζηνύ δείθηε Sharpe), 

απόδνζε πξνζαξκνζκέλε ζην ζπζηεκηθό θίλδπλν (κία παξαιιαγή ηνπ γλσζηνύ δείθηε 

Treynor). Οη επηδόζεηο απηέο ππνινγίδνληαη γηα πεξίνδν δηαθξάηεζεο από 51 κέρξη 250 

εκέξεο. ηε ζπλέρεηα ππνινγίδεηαη ε κέζε επίδνζε θαζελόο από ηα έμη δίθηπα όζνλ 

αθνξά ην θάζε από ηα 5 θξηηήξηα (κέζνο όξνο ησλ επηδόζεσλ ησλ επηθαιππηόκελσλ 

δηθηύσλ αλά εκέξα δηαθξάηεζεο).  
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 Μέζα απν ηελ αλάιπζε, ηα κέηξα θεληξηθόηεηαο strength, closeness, 

eigenvector θαίλνληαη λα είλαη απηά πνπ νδεγνύλ ζε ραξηνθπιάθηα κε θαιύηεξε 

απόδνζε –πξνζαξκνζκέλε ζηνλ θίλδπλν θαη κε-, ρακειόηεξν θίλδπλν θαη 

επηβεβαηώλνπλ θαη ηε βηβιηνγξαθία πεξί επέλδπζεο ζε κεηνρέο ηεο πεξηθέξεηαο ηνπ 

δηθηύνπ. Η ζύγθξηζε κεηαμύ ησλ δηαθνξεηηθώλ δίθηπσλ δείρλεη όηη ηα δίθηπα πνπ 

αλαγλσξίδνληαη κέζσ Pearson ζεκεηώλνπλ θαιύηεξεο επηδόζεηο όζνλ αθνξά ην θέξδνο, 

ελώ ηα κε γξακκηθά κέηξα ππεηεξνύλ αλαθνξηθά κε ηε δεκηνπξγία ραξηνθπιαθίσλ 

ρακειόηεξνπ θηλδύλνπ (ζπλνιηθνύ θαη ζπζηεκαηηθνύ). Όζνλ αθνξά ηελ 

πξνζαξκνζκέλε ζηνλ θίλδπλν απόδνζε, δίθηπα κέζσ Pearson ελαιιάζζνληαη ζηελ 

θνξπθή κε θάπνηα από ηα κε γξακκηθά δίθηπα.  

Γηα ηελ εμαγσγή πεξαηηέξσ ζπκπεξαζκάησλ, αθνινπζείηαη ε ίδηα δηαδηθαζία 

γηα ηελ πεξίνδν ηεο ρξεκαηννηθνλνκηθήο θξίζεο ηνπ 2008, ε νπνία νξηνζεηείηαη ζηα 

πιαίζηα απηήο ηεο εξγαζίαο κεηαμύ  01/08/2007 θαη 31/03/2009. Σελ πεξίνδν απηή ε 

ππεξνρή ησλ κε γξακκηθώλ δηθηύσλ είλαη εκθαλήο, ηδηαίηεξα ζηελ θαηαζθεπή 

ραξηνθπιαθίσλ ρακειόηεξνπ θηλδύλνπ. Σελ πεξίνδν ηεο θξίζεο  θαηαδεηθλύεηαη επίζεο 

ε ζεκαληηθόηεηα θαη ησλ κε ζπκκεηξηθώλ δηθηύσλ αθνύ είλαη πεξηζζόηεξεο νη 

πεξηπηώζεηο ζηηο νπνίεο ζεκεηώλνπλ ηελ θαιύηεξε επίδνζε.  

Αλαθνξηθά κε ην πνην δίθηπν απνδίδεη θαιύηεξα, θξίλεηαη όηη ην vi (Information 

Dependence) απνδίδεη θαιύηεξα ζε ζύγθξηζε κε ην έηεξν κε ζπκκεηξηθό iv (Directed 

Normalized Mutual Information). Σν δίθηπν iii (Normalized Mutual Information) 

βξίζθεηαη κε ζπλέπεηα ζηηο πξώηεο ζέζεηο, ην net v (Information Interdependence) 

δηαθξίλεηαη όκσο γηα ηηο επηδόζεηο ηνπ θαηά ηε δηάξθεηα ηεο θξίζεο. 

Γηα ηελ επεμεξγαζία ησλ δεδνκέλσλ ρξεζηκνπνηήζεθαλ ηα ινγηζκηθά R θαη 

Matlab. Από ηελ R ρξεζηκνπνηήζεθαλ νη βηβιηνζήθεο: igraph, sna, entropy. 
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PROLOGUE 

 

This thesis examines the issue of selection of the most suitable assets in order 

for a well-diversified portfolio to be constructed. As stated in Farlex Financial 

Dictionary, portfolio diversification entails the “investing in different asset classes and 

in securities of many issuers in an attempt to reduce overall investment risk and to avoid 

damaging a portfolio’s performance by the poor performance of a single security, 

industry or country.” Risk is usually measured by the volatility (variance) of the returns. 

Portfolio selection is crucial for practical purposes for both institutions and individuals, 

and plays a key role to the sustaining of lifetime consumption and bequest. On the one 

hand, institutions, mutual funds, pension funds and hedge funds are only examples of 

those that face this decision when managing large portfolios. On the other hand, even 

individuals are confronted with this issue when making their financial plans and 

thinking about the consequences of their choices (Detemple, 2012). Regarding 

diversification in particular, -as mentioned in Pozzi et. al (2013)- managing risk is of the 

utmost importance in periods of financial turmoil (Meucci, 2013 ; Hull J.C, 2012). A 

look at the recent Global Financial Stability Reports by the International Monetary Fund 

is indicative of the fact that we are living in an era characterized by such potential 

instability and risk.  However, irrespective of the economic status, solely focusing on 

the risk can have positive results in the returns as well. According to theory, there is no 

point in a mere minimization of risk -not considering the expected returns- by the 

investor (Sharpe, 1964). However, there is extensive empirical evidence of low risk 

anomalies, according to which low risk assets outperform high risk ones (Unger, 2015; 

Blitz and van Vliet, 2007; Clarke et. al, 2006). This is another reason which renders the 

minimization of risk important for portfolio optimization.  

Subject thesis is an extension on the existing literature of exploiting network science 

in order to build well-diversified portfolios, consisting of stocks as anti-correlated as 

possible. After the prologue, the main part includes: i) a literature review on modern 

portfolio theory and applications of network science on the matter, ii) the data processed, 

iii) the applied methodology, iv) the results. On the epilogue, the main conclusions as well 

as proposals for further research are mentioned. The appendices include images and graphs 

for further study. 
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MAIN PART 

Literature Review 

Modern Portfolio Theory 

 

Before 1952, portfolio selection was a result of ad hoc methods lacking any 

mathematical background. Emphasis was mainly given to the individual returns of each 

investment. Markowitz (1952, 1959) was the one that came up with a revolutionary 

mathematical way for portfolio construction. 

 

Instead of focusing solely on returns, he stressed the importance of risk in a 

portfolio as well. The optimum portfolio would be the one with the maximum expected 

return given the level of risk or - given the expected return -the one with the minimum 

risk among all the possible portfolios. In order for this problem to be solved, it is also of 

the utmost importance to study how each asset co-moves along with the other ones. 

 

Markowitz was the first one that demonstrated how diversification can help to 

reduce the total portfolio risk without losing on return. He initiated a new logic in 

investing by proposing a focus on overall risk-reward characteristics rather than solely 

on individual ones. The assumptions of this model have to be comprehended in order 

for it to be properly utilized: 

 Investors examine each asset assuming that it is represented by a probability 

distribution of expected returns to be generated during a holding period. It is 

also assumed that this distribution is normal. 

 Investors maximize their one-period expected utility and their utility curves are 

characterized by decreasing marginal utility of wealth. In other words, investors’ 

utility increases as their wealth does so as well, but each unit of wealth being 

added results in progressively lower utility increase. 

 Investors calculate portfolio risk based on the volatility of its expected returns 

 Investment decisions are made depending on expected return and risk, the 

investor’s utility curves are therefore functions of expected return and variance 

(or standard deviation) 
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 Single period investment horizon. In the beginning, the investor opts for the 

suitable assets (or asset classes) and allocates his wealth accordingly by 

assigning weights to each asset. During the holding period each of them 

generates a random rate of return. In the end, the investor’s return is a weighted 

average of the returns from each asset. 

 Investors opt for higher returns to lower risk and lower risk for the same return 

 Risk-averse investors. They will accept more risk only if this will increase 

expected return.  

 Markets are perfectly efficient (no taxes or transaction costs) 

Return & risk 

 

Return 

Let N be the assets of the portfolio with returns Rk, k=1,2…N. In addition, let:  

 Rp:  portfolio return 

 wk: weight of asset k 

 ζk: standard deviation of asset k 

  (  )   the mean or expected return of asset k 

 

Then portfolio return is calculated as follows: 

   ∑   

 

   

 (  )    ( ) 

Risk 

According to Markowitz model, the risk of a portfolio is a function of the risk of 

each asset (the variance of each asset’s returns) and the covariance between the returns 

of all the assets of which the portfolio consists. Portfolio risk is calculated as follows: 

   (  )     
  ∑ ∑  

 

   

 

   

          ( ) 

, where     is the covariance of the returns of stock k and stock l. Covariance is a 

measure of the degree to which two variables tend to move in tandem. However, its 

interpretation can sometimes turn out to be ambiguous. For instance, a high covariance 

between two risky assets could indicate either a strong positive correlation or a weak 

positive correlation between asset returns, depending on whether subject time series are 
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characterized by low or high volatility respectively. In order therefore for such 

ambiguity to be eschewed, the covariance can be replaced by the product of the 

correlation coefficient and the standard deviation of each of the assets returns. Taking 

that into consideration, the following formula for portfolio risk is also applicable: 

   (  )     
  ∑ ∑  

 

   

 

   

                ( ) 

Portfolio risk depends on the variance of each asset’s returns, the covariance 

between the assets and the portfolio weights assign to each asset. Covariance is of 

higher importance than the individual risk of each asset, and the more assets are the 

portfolio includes, the higher is the importance of covariance in contrast to individual 

risk. 

 

Systematic risk 

Risk in stock markets is divided in systematic and unsystematic risk.  The 

unsystematic risk is the one inherent in each company or sector someone invests. 

Unsystematic risk is also called diversifiable as this is the one which can be decreased 

through diversification. Systematic is the risk that characterizes the whole market. 

Systematic risk cannot be diversified; therefore it is also called undiversifiable risk. 

Systematic risk can be measured through beta (Sharpe, 1963). Beta is calculated as 

follows: 

  =
   

  
    (4) 

   : Covariance of stock’s k returns with market returns (a market index is chosen as 

representative of the market) 

  
 :  Variance of market returns  

 

Beta is indicative of whether and in what extent a stock moves in tandem with 

the market. Table 1 shows how beta is interpreted: 
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Table 1: Beta coefficient values and interpretation 

β<0 The stock moves opposite to the market 

β=0 The stock moves in a manner uncorrelated to the market 

0<β<1 Stock-market moves are correlated but the stock moves less than the market 

β=1 Stock-market moves are totally correlated 

β>1 Stock-market moves are correlated but the stock moves more than the 

market 

 

The larger the beta of a stock, the more systematic risk this stock is believed to 

have. 

 

Efficient portfolio 

 

 An efficient Markowitz portfolio can contain assets of any number. For starters, 

the asset allocation between two assets is examined. In such a portfolio, an investors 

invests w1 and w2 in the two assets, with w2=1-w1. The logic is similar for portfolios of 

more assets. In the case of a two-asset portfolio, 3 extreme cases can be examined at 

first: 

a. Correlation Coefficient of 1 between the two assets 

 

 

Image 1: Expected return and risk for correlation coefficient of 1 between two assets 
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In this first case, portfolio risk and return are merely linear combinations of the 

risk and return of each asset.  

b. Correlation Coefficient of -1 between the two assets 

 

Image 2: Expected return and risk for correlation coefficient of -1 between two assets 

In this second case, portfolio risk and return remain linear combinations of the 

risk and return of each asset.  It should also be noted that portfolio risk of assets with a 

correlation coefficient of -1 is always lower that the respective of perfectly positively 

correlated assets. When two assets are perfectly negatively correlated, a portfolio of 

zero risk can be constructed. 

c. Correlation Coefficient of 0 between the two assets 

 

Image 3: Expected return and risk for correlation coefficient of 0 between two assets 
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In this third case, the portfolio risk is the square root of the weighted mean of the 

variance of the two risky assets, while the portfolio’s expected return logic remains the 

same. 

Comparing the three scenarios, it can be inferred that ξ=1 is the only case in 

which no benefit from diversification exists. Irrespective of the wealth allocation 

between the two assets, both the portfolio mean return and risk are simple weighted 

averages. No portfolio can be regarded as inefficient, investors choose among the 

possible portfolios only with risk as a criterion. On the other hand, when asset returns 

correlation is less than 1, there is a diversification effect. Investors can therefore reduce 

the individual asset risk they are subjected to through a diversified portfolio. Such a 

constructed portfolio will allow the same expected return with less amount of risk.  

 

Image 4: Combinations of risk and return for different values of correlation coefficient (Ross et al, 2002). 
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Image 5: Efficient Frontier and Feasible Set of Portfolios  

 

Adding more assets to the analysis, the goal of the Markowitz model is the 

construction of an efficient portfolio. The latter refers to a portfolio with the best 

possible expected return given the level of risk or the least possible risk given the 

amount of expected return. The set of all the efficient portfolios is called the efficient 

frontier. The efficient frontier is located “on the northwest” of the feasible set of 

portfolios. The feasible set refers to all the portfolios that can be constructed with the 

available assets by the investor. In other words, the efficient frontier consists of all the 

dominant portfolios in terms of risk and return in comparison to all the possible ones. 

Image 6 is indicative of the efficient frontier. It begins from the Minimum 

Variance Portfolio (point V) and ends at the maximum return portfolio (point A). 

Therefore the curve VA is the efficient frontier and contains all the efficient portfolios. 

Subject image changes if short selling is allowed. Short selling is common market 

practice nowadays. Short selling involves the borrowing and selling of assets that are 

not owned by the investor. It is incited by a belief that the subject asset’s price will 

decrease. In that case, the investor can buy the security at the lower price after some 

time, return the shares to the owner and earn the difference of the borrowing and the 
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afterwards buying price. Apparently if the security price rises after the short position, 

the investor incurs a loss.  

 

Image 6: MVP and Efficient Frontier with no short selling (Lee, Lee, Lee, 2010) 

 

Short selling increases the efficient frontier bounds to plus/minus infinity, as 

depicted below. An investor can continuously short sell B and reinvest in A. That would 

result in upper infinity as the maximum expected return.  On the other hand, if someone 

short sells A and reinvests in B, this can result in an infinitely negative expected returns, 

which explain the minus infinity as the new bound. 

 

Image 7: MVP and Efficient Frontier with short selling (Lee, Lee, Lee, 2010) 
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Constructing efficient portfolios 

In order to find the minimum variance portfolio weights, one can minimize the 

Lagrange function F for portfolio variance (Lee, Lee, Lee, 2010). 

      
  ∑ ∑       

 

   

 

   

     

Subject to w1+w2+w3+…+wN-1+wN=1 

  ∑ ∑           (  ∑   
 
   ) 

   
 
         (5) 

, where ι1 is the Lagrange multiplier, ξkl the correlation coefficient between the asset 

returns, wk, wl the asset weights and ζk and ζl the assets standard deviation. 

By adding a condition about the expected return, one can find other points of the 

efficient frontier curve (Lee, Lee, Lee, 2010).  

      
  ∑ ∑       

 

   

 

   

     

, Subject to 

∑     
 
    (  )      , where R*=expected return 

∑    

 

   

   

The Lagrangian objective function is rewritten as follows: 

  ∑ ∑           [ 
  ∑     (  ) 

   ] 
   

 
      (  ∑   

 
   )      (6) 

In case short selling is allowed, then the second constraint is replaced by 

∑ |  | 
      

and the Lagrangian function is the following (Lee, Lee, Lee, 2010): 

  ∑ ∑           [ 
  ∑     (  ) 

   ] 
   

 
      (  ∑ |  | 

   )       (7) 

 

This altered constraint still demands the sum of the wealth to be 1 but allows for 

negative positions, in line with the essence of short selling. A similar alteration is 

needed for Minimum Variance Portfolio if short selling is allowed. 
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The final choice of the optimal portfolio among the efficient ones depends on 

the each investor’s type and in particular on the risk tolerance of each investor. This is 

depicted in the investor utility curves. An investor is indifferent between portfolios on 

the same curve. The optimum portfolio for each investor is located on the intersection of 

the utility curve with the efficient frontier.   

For instance, in the Image 8 portfolios A and B are the optimum for two 

different investors. Both portfolios are efficient as they are located on the efficient 

frontier. However investor B is less risk averse than A and therefore opts for a portfolio 

with higher risk (and higher expected return). 

  

Image 8: Selection of the optimal portfolio (Lee, Lee, Lee, 2010) 

 

Assessing Portfolio Performance 

 

Investors often judge a portfolio’s performance only by the return achieved. 

However, they should always keep in mind the risk incurred in order for this return to 

be attained. In literature, there are several ratios and formulas which are utilized in order 

for the performance of the portfolio to be evaluated. Two of the most basic ones, which 

take both the risk and the return into consideration, can be found below: 
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Sharpe Ratio 

The Sharpe Ratio is a method for calculating the adjusted to risk return, 

developed by Nobel laureate William F. Sharpe (Sharpe, 1966). The ratio is calculated 

as follows: 

   
     

  
,  (8) 

,where  rk : the expected return of asset k 

 rf: the risk free rate (e.g. Treasury bill interest rate) 

 ζk: asset k standard deviation 

 

Treynor Ratio 

The Treynor Ratio (Treynor, Black, 1973) is similar to Sharpe Ratio in the sense 

that it calculates risk adjusted return. The difference is that instead of total risk (standard 

deviation), Treynor Ratio has systematic risk (beta) as its denominator. 

   
     

  
 (9) 

 

Networks  

Networks and Graphs 

As stated by Newman (2010), “a network -also called a graph in the 

mathematical literature- is a collection of vertices joined by edges”. Vertices are also 

called nodes while edges are often reported as links. Barabasi (2016) defines a network 

as “a catalog of a system’s components often called nodes or vertices and the direct 

interactions between them, called links or edge”.  

In most cases, there is at most one link between two nodes. If there is more than 

one edge between two vertices, then those edges that connect the same pair of vertices 

constitute a multiedge (Newman, 2010), while a network containing multiedges is 

called a multigraph (Newman, 2010). In addition, vertices are not usually connected to 

themselves; however, if they do, such a link connecting a node to itself is known as a 

self-edge or self-loop (Newman, 2010). 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 
Networks as a method for portfolio selection 

 

23 

 

There are different ways in order for a network to be mathematically 

represented. The adjacency matrix belongs to the rudiments of those ways. The 

adjacency matrix A of a simple graph A is one with elements Akl such that:  

 

Akl = 1, if there is a link between node k and node l 

Akl= 0, otherwise 

 

An example of adjacency matrices can be found on image 9. 

 

Image 9: Networks and Adjacency Matrices (Barabasi, 2016)  

It can be noticed that networks containing no self-loops have adjacency matrices 

whose diagonal elements equal to zero. 

It should also be mentioned that if the matrix is symmetric (such the matrix in b. 

Undirected network), then if there is an edge between k and l, there will be an edge 

between l and k as well. If this is not the case, (such as in matrix C. Directed Network), 

then the matrix is called asymmetric. In asymmetric matrices, the fact that there is a link 

from node k to l does not mean that there is also a node from l pointing to k. 

Apart from networks whose adjacency matrix elements equal to either 1 or 0, 

there are also the so called weighted networks, in which each link from node k to node l 

has a unique weight wkl (Barabasi, 2016). Weights are usually positive but there is no 

reason why they cannot be negative (Newman, 2010). An example of weighted 

adjacency matrix can be found below in image 10. 
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Image 10: Example of a weighted adjacency matrix 

A distinction should also be made between undirected and directed networks. A 

directed network or directed graph or a digraph is a network that contains edges 

pointing from one node to another. The adjacency matrix of a digraph is not symmetric 

(Newman, 2010).  

Distance is also a fundamental notion when studying graph theory and describes 

numerically how remote objects are. Distance between objects belonging to a set X is a 

number given to any pair K,Λ   X.  The pair (X, d) is called metric space. Distance in 

space X is defined in terms of an equivalence ( ) between the objects of X, satisfying 

the below conditions: 

d: YxY ->ℝ: (K, Λ) → d (K,Λ) 

 Positivity: d(K,Λ) ≧ 0 

 Identical beings are Indiscernible: K Λ => d(K,Λ)=0, d(K,Λ)>0 => K≉Λ 

 Identity of Indiscernibles:  d(K,Λ)=0 => K Λ 

 Triangle Inequality: d(K,Λ)≤ d(K,Ψ)+d(Ψ, Λ) 

 Symmetry: d(K,Λ)=d (Λ,K) 

 

In statistics, networks and geometry two generalizations are applicable in order 

for real-world challenges to be met: the divergence meeting the first three 

aforementioned conditions and the asymmetric distance which satisfies the first four 

(Antoniou). 
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Graph Filtering 

In literature, several methods have been proposed so that complex data sets are 

filtered out and a subgraph of representative links is extracted, being regarded as the key 

information. This need for filtering a densely connected graph has been found to be of 

great importance in the case of correlation networks, in which, if any filtering procedure 

is not present, links among all elements exist (Tumminello, Aste, Matteo, & Mantegna, 

2005). 

In order for the below to be better comprehended, it should be noted that a tree is 

a connected, undirected network containing no closed loops while a graph is planar if it 

is possible to draw it on a plane without any of its links crossing (Newman, 2010). 

One of the most fundamental methods for graph filtering is the Minimum 

Spanning Tree (Mantegna, 1999). This filtering method results in a spanning subgraph 

of a connected, weighted, undirected graph. This subgraph connects all the nodes 

together; however no cycles are reported (the MST is a tree) and the selected edges have 

the minimum possible total edge weight. 

Another filtering procedure is the Planar Maximally Filtered Graph 

(Tumminello et al., 2005). It is similar to the Minimum Spanning Tree, with the main 

difference being that the resulting spanning subgraph must be a planar graph.  

The MST and the PMFG can be summarized in the below steps (Tumminello et 

al., 2005). First, a similarity measure between the different nodes is set. For example, in 

case of correlation networks, Pearson correlation coefficient can be such a measure. 

Then, a list G is created by sorting the similarities in a decreasing order. After the 

sorting, in order for an MST to be constructed, starting from the very first element of G, 

the respective edge is added if and only if the graph remains a forest (acyclic graph 

consisting only of trees) or a tree. In order for a PMFG to be constructed, the process is 

similar. However, after creating the list G and starting from its very first element, the 

respective edge is added if and only if the produced graph remains planar. 

Centrality/Peripherality Measures 

 

Degree Centrality- Strength 

The concept of centrality deals with the issue of finding the most important or 

the most central nodes in a network. Degree centrality is the simplest measure of all. 

Degree centrality refers to the degree of a vertex; in other words, degree is the number 
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of edges connected to a vertex. In case of directed networks, in-degree and out-degree 

are applicable and refer to the number of edges stemming from or pointing to a vertex 

respectively. In case of weighted networks, the strength is computed. Strength is the 

sum of the weights of the edges with which a node is connected. Strength of a vertex k 

in a graph with adjacency matrix αkl and N vertices is defined as follows (Barrat, 

Barthélemy, Pastor-Satorras, Vespignani, 2004) 

   ∑      

 

   

                (  ) 

 

Eigenvector Centrality 

Eigenvector centrality (Bonacich, 1987) is actually an extension of degree 

centrality. Degree (or strength) does not discriminate between the nodes connected to a 

vertex; in other words, it assigns the same importance to all connections. This is not the 

case with eigenvector centrality. Many times, a nodes’ importance exists in the fact that 

it is connected to nodes which are themselves important, which is exactly the concept 

behind eigenvector centrality. The latter assigns each vertex a score which is 

proportional to the sum of the scores of the vertices with which a vertex is connected. 

For a graph G:= (V,E) with W=(wk,l) its weighted adjacency matrix, the relative 

centrality score of a vertex k can be defined as:  

   
 

 
∑      

   

       (  ) 

,with ι being a constant. This can be also written as the eigenvector equation  

Wx=ιx          (12) 

There may be several eigenvalues; the ι, however, is the largest eigenvalue and 

the eigenvector centrality is the eigenvector corresponding to the largest eigenvalue. 

Eigenvector centrality is computed for both directed and undirected networks. In case of 

directed networks, the right eigenvector refers to the in-eigenvector centrality, while the 

left eigenvector to the out-eigenvector (Newman, 2010). The out-eigenvector can be 

computed by computing the right eigenvector of the transposed adjacency matrix. It 

should also be noted that mathematically, only nodes of a strongly connected 

component of at least two nodes or the out-component of such a component can have an 

eigenvector centrality different from zero. It should thus be inferred that acylic networks 

–which have no such strongly connected components- will have all their vertices have 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Barth%26%23x000e9%3Blemy%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15007165
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pastor-Satorras%20R%5BAuthor%5D&cauthor=true&cauthor_uid=15007165
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vespignani%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15007165
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zero eigenvector centrality. Therefore eigenvector centrality is considered to be of no 

use for acyclic networks (Newman, 2010). 

 

 

Closeness Centrality 

Closeness centrality demonstrates the average distance of a node from the others 

nodes in the network. If dkl is the geodesic path from vertex k to vertex l, then closeness 

centrality of a vertex k is calculated as follows (Freeman, 1978)  

 

  =
 

∑       
  (13) 

In other words, one can say that closeness is the reciprocal of farness. In case of 

directed networks, in-closeness and out-closeness are defined accordingly. 

Two issues are often reported with regards to closeness. The first is that the 

values tend to have a small range from the smallest to largest, thus rendering the 

discrimination between central and less central vertices relatively difficult (Newman, 

2010).  The second one is that if two vertices are in different components or if there is 

no path between two vertices (in case of directed networks), the distance between those 

two vertices is infinite and the Ck is zero. A common practice in order for this issue to 

be eschewed is the computation of closeness only inside the different components or the 

computation of the harmonic mean distance (the mean of the inverse distances).  

Another practice, which is implemented in this thesis, is to list the total number of 

vertices instead as the path length in case there is no (directed) path between two 

vertices. 

 

Betweenness Centrality 

 

Betweenness centrality (Freeman, 1977) measures how much a node is located 

in paths between other nodes.  The betweenness centrality of a node k is calculated as 

follows: 

   ∑
   ( )

   
         

         (  ) 

   :  total number of shortest paths from vertex m to vertex n 

   ( ): total number of those shortest paths which pass through k 
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Eccentricity 

 

The eccentricity of a node is the highest geodesic distance of this node and any 

other node. In other words, eccentricity captures how far a vertex is from the most 

distant vertex in the graph. In case of directed networks, in-eccentricity and out-

eccentricity are applicable.  

 

Networks and portfolio selection in literature 

 

Network theory has also been exploited in the portfolio selection process. Pozzi, 

Di Matteo and Aste (2013) have initiated the use of the network centrality measures in 

order to build well diversified portfolios. Working on equity data from the American 

Stock Exchange market, they first identify moving weighted correlation networks. 

Further to the construction of the dependency matrices, the authors proceed with the 

identification of filtered networks. In order to filter the matrices, they use two very well-

known tools: the Minimum Spanning Tree (Mantegna, 1999) and the Planar Maximally 

Filtered Graph (Tumminello et. al, 2005). Having identified the moving filtered 

networks, they compute the following centrality and peripherality indices: degree, 

betweenness, eccentricity, closeness and eigenvector. Their proposed strategy involves 

the selection of nodes of low centrality in favor of highly centralized ones. They also 

come up with two synthetic centrality indices which are found to be performing better 

than the regular centralities. The main finding is that investors should opt for stocks that 

belong to the network periphery, with the network centralities being the criterion of 

selection. This strategy is found to be resulting in portfolios of lower risk and better 

returns in comparison to portfolios constructed with other traditional methods. 

Peralta and Zareei (2016) also try to exploit networks in the portfolio selection 

process. Their method has many similarities with the one of Pozzi et al (2013), as they 

also propose the use of nodes centrality for asset selection. The originality of their work 

is found in the following two factors: i) instead of the synthetic centrality indices they 

use eigenvector centrality, ii) they come up with an investing method that is said to be 

more in accordance with the logic of the Markowitz model. They argue that Pozzi et al. 

(2013) do not take the individual performance of assets into consideration, which can 
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have a negative impact on the portfolio performance. For this reason they propose the 

so- called ξ-dependent strategy. According to this strategy, the correlation between the 

nodes’ centrality and their Sharpe Ratio is computed. If the correlation between the 

centrality and Sharpe ratio values is found to be below a certain threshold, they naively 

invest in the 20 stocks with the lower centrality (which is similar to Pozzi et al, 2013). 

If, however, ξ exceeds a certain limit, then they naively invest in the 20 stocks with the 

higher centrality. 

 

Information Theory 

 

Information theory studies -among other issues- the quantification of 

information. A basic notion of information theory is information entropy (Shannon, 

1948). The latter refers to the mean amount of information which a 

probabilistic stochastic source of data produces. If we let   
 ,   

 , …,    
   be  the  ̃    

distinct observed values of each Variable    , λ=1,2,…,N, Shannon’s (1948) entropy is 

defined as follows: 

 ̃    ∑ ̃(  
 )     ̃(  

 )

  

   

        (  ) 

Information entropy is often regarded as a measure of uncertainty. Joint 

Shannon entropy which measures such an uncertainty characterizing a set of variables is 

defined for two variables        as: 

 ̃     ∑∑ ̃(   
     

 )

 ̃ 

   

     ̃(   
     

 )

 ̃ 

   

    (  ) 

, where     { ̃    ̃ }     ̃      ̃    ̃ . Joint entropy is not a distance as it does not 

satisfy all the below conditions (Antoniou): 

 Positivity:  [Κ,Λ ]≧0  

  [Κ,Κ]= [Κ]≠0 Not satisfied  

  [Κ,Λ] = 0 ⟺ Κ,Λ are deterministic Not satisfied  

 Triangle Inequality:   [Κ ,Z] ≤   [Κ ,Λ] +   [Λ ,Z]  

https://en.wikipedia.org/wiki/Probability_theory
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 Symmetry:   [Κ ,Λ] =   [Λ , Κ]  

 

Mutual information  [  Λ] of two variables        is the defined as the sum of 

their information entropies   ̃  and  ̃  minus their joint entropy  ̃   or else: 

 [   ]=  ̃ + ̃ - ̃      (17) 

Mutual Information is not a distance since it only satisfies the first and the fifth 

property (Antoniou): 

 Positivity:  [Κ ;Λ ]≧0  

   [Κ; Κ] =   [Κ] Not satisfied  

   [Κ; Λ] = 0 ⟺ Κ,Λ Independent Not satisfied  

 Triangle Inequality:   [Κ ; Z] ≤   [Κ ; Λ] +   [Λ ; Z] Not satisfied 

 Symmetry:   [Κ ; Λ] =   [Λ; Κ]  

 

Conditional Entropy, illustrating the uncertainty about a variable Κ after 

observing a variable Λ is defined as follows: 

 [Λ|Κ]= [Κ ,Λ]−  [Κ]   (18) 

 

Conditional entropy satisfies the first properties and is thus regarded as an 

asymmetric distance (Antoniou): 

 Positivity:  [Κ,Λ]≧0  

   [Κ|Κ] = 0  

   [Κ|Κ] = 0 ⟺Κ=θ(B) ⟹ Κ~Λ  

 Triangle Inequality:   [Κ |Z] ≤   [Κ |Λ] +   [Λ |Z]  

 

 

The sum  

 [Κ|Λ] +  [Λ|Κ] = 𝒹(Κ ,Λ)         (19) 

of the conditional entropies of two random variables defines a distance in random 

variables algebra and is known as Rokhlin information distance [Rokhlin, 1961; 
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Rokhlin, 1967; Martin, England, 1981; Katok, 2007]. This sum satisfies the following 

properties (Antoniou): 

 Positivity: 𝒹(Κ ,Λ)≧0  

 Identical beings are Indiscernible: Κ≈Λ ⟹𝒹(Κ ,Λ)=0  

 Identity of Indiscernibles: 𝒹(Κ ,Λ)= 0 ⟹ Κ≈Λ  

 Triangle Inequality: 𝒹(Κ ,Λ)≦ 𝒹(Κ ,𝛧)+ 𝒹(𝛧 ,Λ)  

 Symmetry: 𝒹(Κ ,Λ)=𝒹(Λ ,Κ)  

 

Information distance can take the following values:  

0≤ [Κ|Λ]+  [Λ|Κ]≤  [Κ,Λ]≤ [Κ]+ [Λ] . 

In order for a distance with values from 0 to 1 to be available, the following 

normalized distance is applicable: 

  (   )  
 [ | ]  [ | ]

 [   ]
   

 [ ]  [ ]

 [   ]
   

 [   ]

 [   ]
            (  )  

Mutual information and Pearson Correlation Coefficient achieve maximum 

values in case of deterministically dependent variables. This can be estimated through 

affinity, similarity and proximity, which are defined by the distance in a manner that 

objects with large affinity will have a small distance (Deza, Deza, 2013)  

Affinity between K,Λ in a set X is a number 𝓌: (Κ,Λ)⟼ 𝓌 (Κ->Λ)=𝓌ΚΛ, 

satisfying the following properties (Antoniou): 

 Α1. Values: −1≤𝓌(Κ→Λ)≤1  

 Α2. 𝓌ΚΛ=1 Λ is positively determined by Κ   

 Α3. 𝓌ΚΛ>0 Λ positively depends on Κ   

 Α4. 𝓌ΚΛ=0 Λ is not influence by Κ  

 Α5. 𝓌ΚΛ<0 Λ negatively depends on Κ   

 Α6. 𝓌ΚΛ=−1 Λ is negatively determined by Κ   

 

Similarity is the symmetric affinity Α7. 𝓌ΚΛ=𝓌BΛ, while proximity is the 

positive symmetric affinity  Α8. 𝓌ΚΛ≥0 . 

In order for someone to switch between proximity to distance and vice versa, 

subtracting from 1 is applicable as follows: 
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 Proximity from distance: w=1-d 

 Distance from proximity: d=1-w 

 

Apart from mutual information, normalized mutual information (proximity), 

defined as follows: 

 ̃   
 ̃     ̃     ̃   

    { ̃   ̃ }
                    (  ) 

 

,where 0≤ ̃   ≤1. 

 

 Based on information distance, the following proximity can be defined, named 

as information dependence 

 ̃   
 ̃     ̃     ̃   

 ̃  

       (  ) 

,where    ̃      

The above formula is extracted as follows: 

 ̃       (   )  
 [ | ]   [ | ]

 [   ]
 

 [ ]   [ ]   [   ]

 [   ]
 

 [   ]

 [   ]
      (  ) 

 Finally, the following positive affinity is also applicable, originating from 

conditional entropy and named as Information Dependence: 

 ̃   
 ̃     ̃     ̃   

 ̃ 

       (  ) 

, where    ̃    . The above formula is extracted as follows: 

 ̃  =1- ℐ[Λ|Κ]= 1-
 [ | ]

 [ ]
 

 [ ]  [ ]  [   ]

 [ ]
 

 [   ]

 [ ]
    (  ) 

 

Critique on existing literature 

 

As already mentioned, Markowitz’s work has been groundbreaking and in the 

field of portfolio optimization. The impact of his work was so remarkable that he 

received a Nobel Prize in Economics in 1990. 
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However, there are some serious issues to point out when it comes to the 

application of the theory. It has been recognized that a Markowitz optimal portfolio is 

highly sensitive to even a small alteration in expected asset returns (Black and 

Litterman, 1992). Jorion (1985) found that changing a few observations in the sample is 

able to significantly alter the asset allocation. Best and Grauer (1991) go on to note that 

a mere slight increase in an asset mean can lead to exclusion of half of the assets from 

the portfolio. Nevertheless, such a dramatic change will only slightly affect the portfolio 

expected return and volatility. 

This issue of over-sensitivity to returns becomes more important if we consider 

the following point. Someone has only a finite number of past observations, based on 

which the expected returns are computed. However, since many years there is evidence 

that a historical average is not an accurate estimator of future returns (Merton, 1980; 

Jorion, 1985). Similar estimation errors have been reported regarding the covariance 

matrix (Jobson and Korkie, 1980). 

However, Chopra and Ziemba (1993) also noted that for an investor with a 

mediocre affinity for risk, mean-variance optimization is eleven times more sensitive to 

estimation error in returns in contrast to estimation error in risk (variance), while the 

model is two times more prone to estimation error in risk (variance) in comparison to 

estimation error in covariance. 

Not only are the inputs prone to estimation error, but it has also been reported 

that the Markowitz model as an optimization procedure has an error-maximizing 

property (Michaud, 1989). In other words, it has the tendency to increase the influence 

of estimation errors as it assigns high weights to assets with high expected returns, small 

variance or negative covariance.  

In addition, according to Sharpe (1964), investors should hold the market 

portfolio as this is theoretically the one achieving the highest Sharpe ratio. One may be 

thus tempted to note that according to theory there is no point in ignoring returns and 

focusing solely on the minimization of risk (Scherer, 2010). Nevertheless, there is 

significant empirical evidence of low risk stocks performing better than high risk ones 

and of the minimum variance portfolio outperforming the market one. (Haugen and 

Baker, 1991; Blitz and van Vliet, 2007; Clarke et. al, 2006). This is another argument in 

favor of excluding expected returns from portfolio selection. 
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An important point to be made about network theory in portfolio selection is that 

the usability of financial filtered networks could turn out questionable. Pozzi et. al 

(2013) use both the Minimum Spanning Tree and the Planar Maximally Filtered Graph 

while Peralta and Zareei (2016) choose only the Minimum Spanning Tree in order to 

filter the correlation matrix. The reason of this choice is the reduction of data 

complexity as a fully connected network is regarded as difficult to analyze. However, 

the analyst has to wonder whether such filtering is in line with the research objective 

and whether this is a proper way to handle correlations from a finance point of view. 

Tse et. al (2010) report that both MST & PMFG are characterized by serious 

information loss. The reason for this is that high correlations edges can be neglected 

while low correlation ones are kept in order to satisfy the topological criteria set. They 

mention that this reduces the usefulness of the aforementioned filtered networks, 

especially regarding their ability to identify the correlations among assets. This ability is 

of the utmost importance in portfolio construction, whereas restrictions such as the 

filtered network being a tree or planar do not seem to add anything to the analysis as far 

as finance is concerned. Instead, if high correlations are removed so that such criteria 

are satisfied, this can turn out to be detrimental to the selected portfolio performance.  

However, the most important issue to point out is the choice of the correlation 

measure. Both Markowitz and the existing literature in networks & portfolio selection 

try to identify the correlations between the asset returns with the Pearson correlation 

coefficient. The latter refers to a linear measure of dependence between the two 

variables. However, as stated by Fiedor (2014) there is strong evidence in literature that 

financial markets are characterized by non-linearity. Fiedor (2014) comes up with a 

series of examples from literature having provided us with evidence of non-linearity in 

financial markets. Such examples include rates of return in commodities (Frank, 

Stengos, 1989), currency rate changes (Hsieh, 1989; Brock, Hsieh, LeBaron,1991; 

Meese,Rose,1991; Brooks, 1996; Qi, Wu, 2003), financial indexes (Scheinkman, 

Lebaron, 1989), the FTSE-100 index (Abhyankar, Copeland, Wong, 1995). Stock 

returns [Qi, 1999; McMillan, 2001; Sornette, Andersen, 2002; Oh, Kim, 2002] and 

market index returns [Franses, Van Dijk, 1996; Chen, 1996; Abhyankar, Copeland, 

Wong, 1997; Ammermann, Patterson 2003], which are more close to the scope of this 

thesis, have also been found to be characterized from non-linearity. Furthermore, apart 

from symmetric relations between stocks, directed ones could also be examined. Lead-
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lag relationships have already been studied in financial literature [Kullmann, Kertesz, 

Kaski, 2008; Curme et  al., 2014;  Sandoval, 2013;  Billio et. al, 2012]  As also stated by 

Peralta & Zareei (2016), who have already adopted network theory in portfolio 

selection, the construction of directed networks of stocks is regarded as extremely 

appealing. Therefore, the identification of directed networks as well as symmetric 

networks through non-linear measures does seem to have very valid grounds. 

Data  

The dataset used consists of daily closing prices of 185 highly capitalized stocks 

of the S&P-500 index, which demonstrate non-negative total equity from October to 

December 2012.  Stocks chosen are mentioned in the appendix. Data source is 

Datastream by Thomson Reuters. Testing time period is between 01/10/2002 and 

31/12/2012. This is a dataset resembling the one used by Peralta & Zareei (2016).  

Methodology 

For all stocks of the dataset, daily logarithmic returns are computed as follows: 

  =ln(
  

    
)  (26) 

 rt : the daily logarithmic return 

 pt: price of a stock at day t 

 pt-1: price of a stock t-1 

The returns are split in overlapping windows of 125 observations, with the 

oldest 25 observations being replaced by 25 new ones as we move from window to 

window. For each of the windows, the networks mentioned in Table 2 are identified. 

Table 2: List of Networks identified and studied 

Net Ι: Pearson correlation with 

negative values replaced by zero 

 ̃  
  ⟦ ̃    ⟧   ̃   

 

   ̃  
    

Net ΙΙ: Absolute values of 

Pearson correlation  

| ̃|     | ̃|     

Net ΙΙΙ: Normalized Mutual 

Information 
 ̃   

 ̃     ̃     ̃   

    { ̃   ̃ }
 

   ̃     

Net IV Directed Normalized 

Mutual Information 

 ̃     ̃  ⟦ ̃   ̃ ⟧    ̃      
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Net V: Information 

Interdependence 
 ̃   

 ̃     ̃     ̃   

 ̃  

 
   ̃     

Net VI: Information 

Dependence (Asymmetric) 
 ̃   

 ̃     ̃     ̃   

 ̃ 

 
   ̃     

 

As shown in the third column of Table 2, the networks are weighted. Net I, 

NetII, NetIII and Net V are symmetric, while Net IV and Net VI are asymmetric. The 

networks are not exposed to any filtering due to the reasons described in the literature 

review section. The formulas used for the aforementioned networks are depicted on 

Table 3.  

Table 3: Formulas for the different networks 

 ̃   
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(27)- Pearson Correlation 
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(28)-the empirical mean of the 

Variable        

 

⟦         ⟧  {
                              
                          

} 
The Iverson bracket of the 

          

[Knuth D.1992] 

  
 ,   

 , …,    
   the  ̃    distinct observed 

values of each Variable    , 

ν=1,2,…,N 

  ̃    ∑ ̃(  
 )     ̃(  
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The empirical Entropy of the 

Variable         

 

    ̃       ( ̃ ) 

 ̃(  
 )=

∑ ⟦  
    

 ⟧ 
   

 
, i=1,2,…,  ̃  

(30)- The empirical probability  

of the variable       
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The Empirical Joint Entropy  

of the Variables        

    { ̃    ̃ }     ̃      ̃    ̃  

 ̃(   
     

 )  
∑ ⟦  

     
 ⟧⟦  

     
 ⟧ 

   

 
 

(31)- The empirical joint 

probability of the Variables 

       

 

For the purpose of identification of Networks III, IV, V, VI, the observations are 

discretized into 8 distinct states. This is a number chosen in previous literature, too 

(Navet, Chen, 2008). Besides, the binning in 8 states was chosen based on the famous 

Sturges’ rule (Sturges, 1926), which indicates the optimal number of bins (denoted here 

as k): 

k=1 +log2(N) (32) 

Furthermore, as shown by David Scott (Scott, 2009) , Sturges’ rule concides 

with some more modern rules such as the Terrell-Scott inequality for the optimal 

number of bins for sample sizes n ≈ 100. 

For each of the windows and the respective networks identified, the following 

are computed -where applicable- for each of the stocks- vertices: 

 Strength, in-Strength, out-Strength 

 in-Eigenvector, out-Eigenvector 

 Betweenness 

 Closeness, in- Closeness, out- Closeness 

 Eccentricity, in- Eccentricity, out- Eccentricity 

 

For the degree and eigenvector centrality, the link between vertex θ and vertex ι 

is  ̃  
 , | ̃|  ,  ̃   ,  ̃    ,  ̃   ,  ̃    depending on the network tested, while for 

betweenness, closeness and eccentricity the link between vertex θ and vertex ι equals to 

1 minus the aforementioned weights ( ̃  
 , | ̃|  ,  ̃   ,  ̃    ,  ̃   ,  ̃  ). 

After the above centrality/peripherality measures are computed, the stocks-

vertices with the 20 highest and the 20 lowest values are chosen per window/network. 
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Thus, two portfolios are constructed per window/network, one from the most central 

and one from the least central stocks-vertices. 

In order for the performance of those portfolios to be tested (short selling is 

prohibited), the performance criteria mentioned in Table 4 are computed for each of 

them for a holding period of 51, 52, 53…248, 249, 250 days: 

Table 4: Portfolio performane criteria 

Return (33) 
   ∑   

 

   

 (  ) 

 

Variance (34)    (  )     
  ∑ ∑  

 

   

 

   

      

Beta (35)    ∑     

 

   

 

Risk adjusted 

return (36) 
  

  
  

  
 

Systemic risk 

adjusted return 

(37) 

  
  

  

  
 

 

  
  and   

  are similar to Sharpe and Treynor ratios respectively. The only 

difference is that the risk free rate is not included. Risk free rate was excluded as it 

would not add anything to the analysis, it terms of which network is the best-performing 

one. 

Then, for each network & centrality/peripherality measure, I have computed the 

mean of the results for each performance criterion per holding day. The images in the 

results section as well as in the appendix namely depict how the portfolios stemming 

from each network type and network centrality have performed on average per holding 

day in terms of each of the 5 performance criteria set for the whole testing period. The 

same methodology has also been applied only for the financial crisis period (August 

2007-March 2009) in separate, so as to check which networks and centrality measures 

perform better at times of extreme volatility. 
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Results 

 

One of the first points to be made is that, in accordance with the findings of 

Pozzi et. al. (2013) portfolios made of stocks/vertices with lower strength, closeness and 

eigenvector centrality perform better in terms of return, risk and adjusted to risk return 

in contrast to stocks/vertices of high centrality values. The same is the case with 

stocks/vertices of higher eccentricity in comparison to the ones of lower eccentricity. 

 

Image 11: First example- Less central vertices outperform more central ones (higher return) 
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Image 12: Second example- Less central vertices outperform more central ones (higher return adjusted to 

risk) 

 

Image 13: Third example-Less central vertices outperform more central ones (lower risk) 
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Regarding strength, the nets recognized by Pearson Correlation have in most 

cases the best results in Return. In only 9.5% of the cases (all of them for holding 

periods of less than 150 days) the results of Net 6 in are better. However, the case is 

exactly the opposite when risk criteria and not return are set as targets.  Net 6 out 

produces the best results in 100% of the testing holding periods regarding beta, while 

Net 5 the best results for variance in 99% of the holdings periods. Net 3’s results are 

also close to optimal regarding beta and variance while Net 6 in also demonstrates 

satisfactory results regarding variance. The results regarding risk-adjusted return are 

mixed between linear and non-linear measures. As shown in the relevant graph, too, the 

results of Nets 1 &2 almost coincide with those of Net 3 and Net 6 out, while the 

percentage table reveals that the split between linear and non-linear nets is close to 50% 

- 50%.  The same networks are the optimal for systemic risk adjusted return as well. 

However, the networks recognized by non-linear measures produce the best results in 

most of the cases as shown by both the respective image and the percentage table (Net 6 

out being the best in 67.5% of the cases) 

 

Image 14: Closeness- Pearson correlation networks outperform the rest in terms of return 
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Image 15: Strength- Networks identified by non-linear measures outperform the rest in terms of risk 

 

 

Image 16: Closeness- The best non-linear measures perform equally well or sometimes better than the 

linear measures in terms of adjusted to risk return 
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The results of closeness centrality demonstrate significant similarity with those 

of the strength. The Pearson Correlation Networks 1&2 produce again the best results in 

Return, while the bigger the holding period, the bigger the gap between those 

aforementioned networks and the second best performing Net 3 and Net 6 out. This is 

identical to the image of the strength return results. While the linear measures stemming 

networks are the best performing ones about return, the non-linear stemming ones are -

exactly as for strength- the best performing ones about risk measures. Net 3 produces 

satisfactory -though not the best- results concerning both beta and variance; Net 6 (in) is 

among the best options for variance while the best results stem again from Net 5 and 

Net 6 (out) for variance and beta respectively.  The results for adjusted to (systemic) 

risk return are no objection to the general empirical result of similarity between strength 

and closeness. Nets 1,2 as well as Net3 and Net 6 (out) in are among the best 

performing regarding risk adjusted return, with the best performance per holding day 

being almost equally split between linear and non-linear measures. Just like strength, 

the same networks are the best performing for systemic risk adjusted return as well, 

with the non-linear Net 6 (out) being the best performing one for the majority of the 

holding days. 

Although not identical to the results of strength and closeness, the results of 

eigenvector centrality also have significant similarities with those of the aforementioned 

centrality measures. Regarding return, Nets 1 & 2 are the best performing ones. Unlike 

strength and closeness, Net 1 is the best performing one. However, the differences 

between two Pearson stemming networks are negligible. Therefore, the main conclusion 

to be drawn regarding return is the same as in the previous cases; namely that the 

networks recognized by Pearson correlation appear to be leading to better results. As far 

as risk criteria are concerned, non-linear networks constitute once more the best options. 

Net 3 and Net 6 (in) are the best regarding beta, while Net 5 and Net 6 out (and then Net 

3) the best concerning variance. In comparison to strength/closeness, two points about 

risk measures and eigenvector centrality could me made: i) Net 6 (in) appears as one of 

the best choices for the first time, ii) there are different networks to be opted for 

depending on the investing horizon. For a short investing horizon, the directed non-

linear networks are better in 100% of the holding days (Net 6 in for beta, Net 6 out for 

variance). On the other hand, the undirected non-linear networks are the best performing 

in most of the cases in which the holding period is longer (Net 3-93%-Beta, Net5-63%-
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Variance). Although the difference of the results between Nets 3,5 & 6 is not 

significantly large, this different image per investment horizon (and especially the fact 

that directed networks perform better the longer this investing horizon) cannot be 

neglected. 

 

Image 17: Eigenvector- Asymmetric measures prevail for a shorter horizon in terms of risk minimization 

Regarding eccentricity, the best results [biggest return, (systemic) risk adjusted 

return and smallest beta, variance] stem from the portfolios constructed from stocks 

(nodes) with the highest eccentricity. This may appear as a difference compared to the 

centrality measures mentioned above, for which the nodes with the minimum centrality 

scores were chosen in order for portfolios to be constructed. However, this should not 

provoke confusion. As already mentioned in literature, “the lower the eccentricity of a 

particular node, the closer it is to every other node, that is, the more central it is” (Kaya, 

2013). However, unlike the centrality measures, the best results do not necessarily come 

from Pearson correlation recognized networks. In fact, 70% of the best results stem 

from non-linear measures and mainly Net 6 (in) and Net 5. Eccentricity’s results 

resemble, however, those of centrality measures concerning risk criteria as the best 

results for beta and variance come from networks recognized from non-linear measures. 

Net 6 (out) is the best for beta, which was also the case for strength and closeness 

centrality.  Net 6 (in) is the best option for variance. Finally, non-linear networks and 

especially Net 5 are the best options for risk-adjusted return. Net 3 is among the best 
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options for adjusted to (systemic) risk return while Net 6 (out) only for systemic risk 

adjusted return.  

The above analysis about eccentricity is only worth it from such a point of view 

that the linear measures are compared to the non-linear ones. In fact, the portfolio 

performance of eccentricity is significantly inferior to the one of portfolios constructed 

with strength, closeness and eigenvector centrality. Based on the results of this thesis, 

eccentricity is therefore suggested to be an unsuitable criterion in order for optimal 

portfolios to be constructed. 

 

Image 18: Eccentricity- High eccentricity vertices outperform low eccentricity ones but are outperformed 

by strength, closeness, eigenvector. 
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Betweenness centrality is also found to be unsuitable for the purposes of this 

essay. The performance of portfolios constructed from nodes with minimum 

betweenness are in most cases equal or inferior to the one of high-centrality portfolios, 

while neither maximum or minimum betweenness centrality nodes can lead to results 

that minimum strength, closeness eigenvector can, judging from the results of this 

thesis. The reason behind this may be that many nodes have betweenness centrality 

equal to zero; therefore Betweenness itself may not be a sufficient criterion in order to 

select the optimal stocks (20 in our case). 

 

Image 19: Beta betweenness 
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Image 20: Variance Betweenness 

 

Image 21: Betweenness Return 

In a nutshell, the results of this thesis indicate that eccentricity and betweenness 

would better be not regarded as someone’s first option when trying to implement 

network theory for portfolio selection. On the other hand, opting for stocks/vertices with 

the minimum strength, closeness or eigenvector centrality appears as the optimal 

decision. The main conclusion until now is that such networks recognized by Pearson 

Correlation more or less to the best results regarding return, whereas networks 

recognized by non-linear measures lead to far better results as far as risk in concerned. 
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In order to further check the latter results, the same methodology (with an 

overlap of 115 observations) was applied specifically for the period of the financial 

crisis of 2008. In particular, the financial crisis testing period was chosen to be between 

01.08.2007 and 31.03.2009. The logic of setting the start point on August 2007 is that 

BNP Paribas froze three of their funds at that month, admitting their inability to price 

the CDOs (collateralized debt obligations), more or less accepting their high exposure to 

subprime loans.  On 02/04/2009, a global stimulus package of $5tn was agreed, which is 

why the end of the turmoil was set by the writer at the end of March 2009. 

Regarding strength, the best results for return do not only stem from Net1 & Net 

2 anymore, as for about 60% of the tested holding days the best results stem from some 

of the non-linear networks. Nevertheless, the most impressive results are observed in 

the case of risk and risk adjusted return.  When examining the whole testing period, it 

was already shown that portfolios constructed by networks recognized from non-linear 

measures perform better in terms of risk, meaning that portfolios of less risk are 

constructed. This finding is confirmed during the crisis period, in which, however, the 

difference between the risk of the two categories of portfolios becomes much bigger. 

Images 22 & 23 about variance and beta respectively are indicative. 

During both the whole period and the crisis period, the least containing risk 

portfolios are those that have been constructed from non-linear networks. However, 

during the crisis there is a much greater gap between linear and non-linear ones. In 

addition, during the crisis all non-linear networks result in portfolios of less risk 

compared to the linear ones, which was not the case for the whole period.  Non-linear 

measures are also found to be superior also in terms of (systemic) risk adjusted return, 

as their portfolios achieve higher adjusted to risk return for 100% of the holding days. 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 
Networks as a method for portfolio selection 

 

49 

 

 

Image 22: Strength Beta during the whole period (right) and crisis (left).Superiority of non-linear 

measures in contrast to linear ones is more evident during the crisis 

 

 

Image: 23: Strength Variance during the whole period (right) and crisis (left).Superiority of non-linear 

measures in contrast to linear ones is more evident during the crisis 

Just as for the whole testing period, the results of closeness centrality are almost 

identical to the ones of strength for the crisis period as well.  In other words, non-linear 

nets (Net 4 out, Net 5) achieve the best performance in return for most of the holding 

days tested, with the based on Pearson correlation Net 2 also achieving the best 

performance for an important amount of holding days. Net 6 (in) and Net 5 are the 
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optimal choices as far as beta and variance is concerned. Concerning risk adjusted 

return, Net 4 out and Net 3 have the greatest performance. However, it should be noted 

that in contrast to risk, the differences between the networks and the constructed 

portfolios are not notably big for risk adjusted return. 

 

Image 24: Return (closeness) during the crisis- Less difference between central and less central vertices; 

Non-linear measures are also taking over in terms of performance 

 

As far as eigenvector centrality is concerned, Net 1 & Net 2 still manage to 

achieve the best performance in return, with this superiority being greater the larger the 

investing horizon. The results about risk show some similarity to the ones of closeness 

and strength, in terms of choosing between linear and nonlinear measures. However, 

Net 6 out (and not Net 6 in which was the best for strength & closeness) is the optimal 

choice for eigenvector centrality, with Net 5 being the second best performing network. 

Regarding (systemic) risk adjusted return, the results of the different networks do not 

notably differ with each other. Nevertheless, Net 6 out and Net 3 are the best 

performing networks.  
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Image 25: Eigenvector Crisis; Linear measures remain the best regarding return 

 

 

Image 26: Eigenvector Crisis-Net 6 is the best performing in terms of risk minimization 

 

Until now, the main point of the discussion is the comparison between networks 

recognized by linear and nonlinear measures. However, a comparison should also be 

made between symmetric and asymmetric networks. One point to be made is that 

(excluding betweenness), Net 4 is not the best performer for any one of the tested 

investing horizons for the whole testing period. However, Net 4 (out) seems to be quite 

a good performer during the crisis period. In particular, it’s the optimal choice for 32% 

of the holding days in return (strength), 58% in risk adjusted return and 32.50% in 

systemic risk adjusted return. In addition, those percentages are significantly bigger for 
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a larger investing horizon (64%, 98%, 65% for Return, risk adjusted and systemic risk 

adjusted return respectively). The corresponding percentages are (almost) identical for 

closeness due to the aforementioned similarity of the results of the two centrality 

measures.   

The above comments about Net 4 indicate that directed networks seem to be of 

greater value during the crisis period. This turns out to be true if Table 5 is consulted. 

Table 5: Frequency table of best performance per criterion; Division in i)networks from linear measures, 

symmetric networks from non-linear measures, asymmetric networks from non-linear measures, ii)whole 

testing period, crisis period 

 

The above summarizes what has been described in the analysis of each centrality 

measure’s results. In the whole period, linear networks seem to be superior as far as 

return is concerned while nonlinear in terms of risk with asymmetric ones performing 

better in terms of beta and symmetric ones in terms of variance. Regarding adjusted to 

risk return, linear measures perform better for eigenvector centrality, while the results 

are mixed for strength and closeness. 

Apart from the worse performance of linear measures during the crisis, which 

has already been analyzed, it is evident that asymmetric networks’ superiority increases 

significantly during the crisis for most the cases [strength/closeness: return-variance-

risk adjusted return , Eigenvector: return-beta-variance-(systemic) risk adjusted return].  

 

Strength Linear NL Symmetric NL Asymmetric Strength Linear NL Symmetric NL Asymmetric

Return 90,00% 0,50% 9,50% Return 42,50% 21,50% 36,00%

Beta 0,00% 0,00% 100,00% Beta 0,00% 10,50% 89,50%

Variance 0,00% 99,00% 1,00% Variance 0,00% 57,00% 43,00%

Risk adj. return 51,00% 43,50% 5,50% Risk adj. return 0,00% 36,50% 63,50%

Systemic risk adj.return 3,50% 29,00% 67,50% Systemic risk adj.return 0,00% 59,00% 41,00%

Eigenvector Linear NL Symmetric NL Asymmetric Eigenvector Linear NL Symmetric NL Asymmetric

Return 100,00% 0,00% 0,00% Return 77,00% 5,00% 18,00%

Beta 0,00% 46,50% 53,50% Beta 0,00% 0,00% 100,00%

Variance 0,00% 31,50% 68,50% Variance 0,00% 0,00% 100,00%

Risk adj. return 100,00% 0,00% 0,00% Risk adj. return 26,00% 31,50% 42,50%

Systemic risk adj.return 85,50% 0,00% 14,50% Systemic risk adj.return 27,00% 33,50% 39,50%

Closeness Linear NL Symmetric NL Asymmetric Closeness Linear NL Symmetric NL Asymmetric

Return 93,00% 0,00% 7,00% Return 45,50% 19,00% 35,50%

Beta 0,00% 0,00% 100,00% Beta 0,00% 10,50% 89,50%

Variance 0,00% 99,00% 1,00% Variance 0,00% 57,00% 43,00%

Risk adj. return 54,00% 41,50% 4,50% Risk adj. return 1,50% 35,00% 63,50%

Systemic risk adj.return 5,00% 27,50% 67,50% Systemic risk adj.return 0,00% 59,00% 41,00%

WHOLE PERIOD CRISIS
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In order for a comparison between nonlinear symmetric and asymmetric 

networks to be possible, the investing horizon should also be taken into consideration. 

With the exception of variance (strength/closeness), asymmetric networks perform 

better than nonlinear symmetric for more than 150 holding days during the crisis. On 

the other hand, symmetric networks seem to be performing better in terms of return and 

(systemic) risk adjusted return for a smaller investing horizon during the same period. It 

should be also noted that asymmetric networks perform better in terms of both beta and 

variance when it comes to a smaller investing horizon during the crisis. 

 

Table 6: Frequency table of best performance per criterion. Additional division in max horizon (holding 

days: 151-250) and min horizon (51-150) 

 

 

Strength Linear NL Symmetric NL Asymmetric Strength Linear NL Symmetric NL Asymmetric

Return 100,00% 0,00% 0,00% Return 36,00% 0,00% 64,00%

Beta 0,00% 0,00% 100,00% Beta 0,00% 0,00% 100,00%

Variance 0,00% 100,00% 0,00% Variance 0,00% 100,00% 0,00%

Risk adj. return 56,00% 44,00% 0,00% Risk adj. return 0,00% 2,00% 98,00%

Systemic risk adj.return 2,00% 32,00% 66,00% Systemic risk adj.return 0,00% 32,00% 68,00%

Eigenvector Linear NL Symmetric NL Asymmetric Eigenvector Linear NL Symmetric NL Asymmetric

Return 100,00% 0,00% 0,00% Return 100,00% 0,00% 0,00%

Beta 0,00% 93,00% 7,00% Beta 0,00% 0,00% 100,00%

Variance 0,00% 63,00% 37,00% Variance 0,00% 0,00% 100,00%

Risk adj. return 100,00% 0,00% 0,00% Risk adj. return 1,00% 28,00% 71,00%

Systemic risk adj.return 72,00% 0,00% 28,00% Systemic risk adj.return 12,00% 34,00% 54,00%

Closeness Linear NL Symmetric NL Asymmetric Closeness Linear NL Symmetric NL Asymmetric

Return 100,00% 0,00% 0,00% Return 37,00% 0,00% 63,00%

Beta 0,00% 0,00% 100,00% Beta 0,00% 0,00% 100,00%

Variance 0,00% 100,00% 0,00% Variance 0,00% 100,00% 0,00%

Risk adj. return 60,00% 40,00% 0,00% Risk adj. return 0,00% 2,00% 98,00%

Systemic risk adj.return 5,00% 29,00% 66,00% Systemic risk adj.return 0,00% 32,00% 68,00%

Strength Linear NL Symmetric NL Asymmetric Strength Linear NL Symmetric NL Asymmetric

Return 80,00% 1,00% 19,00% Return 49,00% 43,00% 8,00%

Beta 0,00% 0,00% 100,00% Beta 0,00% 21,00% 79,00%

Variance 0,00% 98,00% 2,00% Variance 0,00% 14,00% 86,00%

Risk adj. return 46,00% 43,00% 11,00% Risk adj. return 0,00% 71,00% 29,00%

Systemic risk adj.return 5,00% 26,00% 69,00% Systemic risk adj.return 0,00% 86,00% 14,00%

Eigenvector Linear NL Symmetric NL Asymmetric Eigenvector Linear NL Symmetric NL Asymmetric

Return 100,00% 0,00% 0,00% Return 54,00% 10,00% 36,00%

Beta 0,00% 0,00% 100,00% Beta 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 100,00% Variance 0,00% 0,00% 100,00%

Risk adj. return 100,00% 0,00% 0,00% Risk adj. return 51,00% 35,00% 14,00%

Systemic risk adj.return 99,00% 0,00% 1,00% Systemic risk adj.return 42,00% 33,00% 25,00%

Closeness Linear NL Symmetric NL Asymmetric Closeness Linear NL Symmetric NL Asymmetric

Return 86,00% 0,00% 14,00% Return 54,00% 38,00% 8,00%

Beta 0,00% 0,00% 100,00% Beta 0,00% 21,00% 79,00%

Variance 0,00% 98,00% 2,00% Variance 0,00% 14,00% 86,00%

Risk adj. return 48,00% 43,00% 9,00% Risk adj. return 3,00% 68,00% 29,00%

Systemic risk adj.return 5,00% 26,00% 69,00% Systemic risk adj.return 0,00% 86,00% 14,00%

WHOLE PERIOD-max horizon CRISIS-max horizon

WHOLE PERIOD-min horizon CRISIS-min horizon
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Table 7: Comparing the performance of non-linear symmetric networks. The percentages do not have 

sum equal to 1, the rest of the respective best performances have been achieved by the rest networks 

 

Comparing Net 3 and Net 5, it should be pointed out that both of them are 

usually among the best performers in terms of return, risk and adjusted to risk return. 

More accurately, they usually refrain from placing at the bottom. However, it should be 

noted that Net 3 performs better during the whole period while Net 5 does so during the 

crisis. Regarding strength and closeness, Net 3 is among the top options for (systemic) 

risk adjusted return and beta, with Net 5 being the next option having a significant 

difference from the top. Net 5 is the best option for building a portfolio of low variance. 

On the other hand, during the crisis Net 5 is one of the two best options for 

beta/variance, with Net 3 being the next option. Regarding eigenvector, the main point 

to be made is that Net 5 does not perform well at all in terms or return/adjusted to risk 

return during the whole period while Net 3’s performance is sufficient. During the 

Strength Net 3 Net 5 Strength Net 3 Net 5 Strength Net 3 Net 5

Return 0,50% 0,00% Return 0,00% 0,00% Return 1,00% 0,00%

Beta 0,00% 0,00% Beta 0,00% 0,00% Beta 0,00% 0,00%

Variance 0,00% 99,00% Variance 0,00% 100,00% Variance 0,00% 98,00%

Risk adj. return 43,50% 0,00% Risk adj. return 44,00% 0,00% Risk adj. return 43,00% 0,00%

Systemic risk adj.return 29,00% 0,00% Systemic risk adj.return 32,00% 0,00% Systemic risk adj.return 26,00% 0,00%

Eigenvector Net 3 Net 5 Eigenvector Net 3 Net 5 Eigenvector Net 3 Net 5

Return 0,00% 0,00% Return 0,00% 0,00% Return 0,00% 0,00%

Beta 46,50% 0,00% Beta 93,00% 0,00% Beta 0,00% 0,00%

Variance 0,00% 31,50% Variance 0,00% 63,00% Variance 0,00% 0,00%

Risk adj. return 0,00% 0,00% Risk adj. return 0,00% 0,00% Risk adj. return 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% Systemic risk adj.return 0,00% 0,00% Systemic risk adj.return 0,00% 0,00%

Closeness Net 3 Net 5 Closeness Net 3 Net 5 Closeness Net 3 Net 5

Return 0,00% 0,00% Return 0,00% 0,00% Return 0,00% 0,00%

Beta 0,00% 0,00% Beta 0,00% 0,00% Beta 0,00% 0,00%

Variance 0,00% 99,00% Variance 0,00% 100,00% Variance 0,00% 98,00%

Risk adj. return 41,50% 0,00% Risk adj. return 40,00% 0,00% Risk adj. return 43,00% 0,00%

Systemic risk adj.return 27,50% 0,00% Systemic risk adj.return 29,00% 0,00% Systemic risk adj.return 26,00% 0,00%

Strength Net 3 Net 5 Strength Net 3 Net 5 Strength Net 3 Net 5

Return 1,00% 20,50% Return 0,00% 0,00% Return 2,00% 41,00%

Beta 0,00% 10,50% Beta 0,00% 0,00% Beta 0,00% 21,00%

Variance 0,00% 57,00% Variance 0,00% 100,00% Variance 0,00% 14,00%

Risk adj. return 36,50% 0,00% Risk adj. return 2,00% 0,00% Risk adj. return 71,00% 0,00%

Systemic risk adj.return 59,00% 0,00% Systemic risk adj.return 32,00% 0,00% Systemic risk adj.return 86,00% 0,00%

Eigenvector Net 3 Net 5 Eigenvector Net 3 Net 5 Eigenvector Net 3 Net 5

Return 0,00% 5,00% Return 0,00% 0,00% Return 0,00% 10,00%

Beta 0,00% 0,00% Beta 0,00% 0,00% Beta 0,00% 0,00%

Variance 0,00% 0,00% Variance 0,00% 0,00% Variance 0,00% 0,00%

Risk adj. return 27,50% 4,00% Risk adj. return 20,00% 8,00% Risk adj. return 35,00% 0,00%

Systemic risk adj.return 18,50% 15,00% Systemic risk adj.return 17,00% 17,00% Systemic risk adj.return 20,00% 13,00%

Closeness Net 3 Net 5 Closeness Net 3 Net 5 Closeness Net 3 Net 5

Return 1,00% 18,00% Return 0,00% 0,00% Return 2,00% 36,00%

Beta 0,00% 10,50% Beta 0,00% 0,00% Beta 0,00% 21,00%

Variance 0,00% 57,00% Variance 0,00% 100,00% Variance 0,00% 14,00%

Risk adj. return 35,00% 0,00% Risk adj. return 2,00% 0,00% Risk adj. return 68,00% 0,00%

Systemic risk adj.return 59,00% 0,00% Systemic risk adj.return 32,00% 0,00% Systemic risk adj.return 86,00% 0,00%

NL Symmetric WHOLE PERIOD NL Symmetric WHOLE PERIOD-MAX HORIZON NL Symmetric WHOLE PERIOD-MIN HORIZON

NL Symmetric CRISIS NL Symmetric CRISIS-MAX HORIZON NL Symmetric CRISIS-MIN HORIZON
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crisis, however, Net 5 is the second best performing one, with Net 3 being the third best 

option. 

Table 8: Comparing the performance of non-linear asymmetric networks. The percentages do not have 

sum equal to 1, the rest of the respective best performances have been achieved by the rest networks 

 

 

Regarding asymmetric networks, Net 4 does not make it to the top performers 

for any of the tested holding days during the whole testing period. However, Net 4 (out) 

shows up a regularly good performer during the crisis [strength/closeness: return- 

(systemic) risk adjusted return].  Nevertheless, it should be noted that Net 6 clearly 

outperforms Net 4, judging from both the whole as well as the crisis period. During the 

whole period, Net 6 (out) is the best beta performer for all holding days, the best 

systemic risk adjusted return performer for most of the days, while its performance in 

risk adjusted return and variance is also among the top. During the crisis, Net 6 is by far 

the best beta performer for strength/eigenvector/closeness, while it is also the best 

variance performer for eigenvector. On this other hand, Net 4’s risk performance during 

the crisis is very poor and often comparable to the one of Net 1 & Net 2. Their seeming 

superiority in adjusted to (systemic) risk return during the crisis is due to the return. 

Strength Net 4 in Net 4 out Net 6 in Net 6 out Strength Net 4 in Net 4 out Net 6 in Net 6 out Strength Net 4 in Net 4 out Net 6 in Net 6 out

Return 0,00% 0,00% 9,50% 0,00% Return 0,00% 0,00% 0,00% 0,00% Return 0,00% 0,00% 19,00% 0,00%

Beta 0,00% 0,00% 0,00% 100,00% Beta 0,00% 0,00% 0,00% 100,00% Beta 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 1,00% 0,00% Variance 0,00% 0,00% 0,00% 0,00% Variance 0,00% 0,00% 2,00% 0,00%

Risk adj. return 0,00% 0,00% 0,00% 5,50% Risk adj. return 0,00% 0,00% 0,00% 0,00% Risk adj. return 0,00% 0,00% 0,00% 11,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 67,50% Systemic risk adj.return 0,00% 0,00% 0,00% 66,00% Systemic risk adj.return 0,00% 0,00% 0,00% 69,00%

Eigenvector Net 4 in Net 4 out Net 6 in Net 6 out Eigenvector Net 4 in Net 4 out Net 6 in Net 6 out Eigenvector Net 4 in Net 4 out Net 6 in Net 6 out

Return 0,00% 0,00% 0,00% 0,00% Return 0,00% 0,00% 0,00% 0,00% Return 0,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 53,50% 0,00% Beta 0,00% 0,00% 7,00% 0,00% Beta 0,00% 0,00% 100,00% 0,00%

Variance 0,00% 0,00% 0,00% 68,50% Variance 0,00% 0,00% 0,00% 37,00% Variance 0,00% 0,00% 0,00% 100,00%

Risk adj. return 0,00% 0,00% 0,00% 0,00% Risk adj. return 0,00% 0,00% 0,00% 0,00% Risk adj. return 0,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 14,50% 0,00% Systemic risk adj.return 0,00% 0,00% 28,00% 0,00% Systemic risk adj.return 0,00% 0,00% 1,00% 0,00%

Closeness Net 4 in Net 4 out Net 6 in Net 6 out Closeness Net 4 in Net 4 out Net 6 in Net 6 out Closeness Net 4 in Net 4 out Net 6 in Net 6 out

Return 0,00% 0,00% 7,00% 0,00% Return 0,00% 0,00% 0,00% 0,00% Return 0,00% 0,00% 14,00% 0,00%

Beta 0,00% 0,00% 0,00% 100,00% Beta 0,00% 0,00% 0,00% 100,00% Beta 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 1,00% 0,00% Variance 0,00% 0,00% 0,00% 0,00% Variance 0,00% 0,00% 2,00% 0,00%

Risk adj. return 0,00% 0,00% 0,00% 4,50% Risk adj. return 0,00% 0,00% 0,00% 0,00% Risk adj. return 0,00% 0,00% 0,00% 9,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 67,50% Systemic risk adj.return 0,00% 0,00% 0,00% 66,00% Systemic risk adj.return 0,00% 0,00% 0,00% 69,00%

Strength Net 4 in Net 4 out Net 6 in Net 6 out Strength Net 4 in Net 4 out Net 6 in Net 6 out Strength Net 4 in Net 4 out Net 6 in Net 6 out

Return 0,00% 32,00% 4,00% 0,00% Return 0,00% 64,00% 0,00% 0,00% Return 0,00% 0,00% 8,00% 0,00%

Beta 0,00% 0,00% 89,50% 0,00% Beta 0,00% 0,00% 100,00% 0,00% Beta 0,00% 0,00% 79,00% 0,00%

Variance 0,00% 0,00% 43,00% 0,00% Variance 0,00% 0,00% 0,00% 0,00% Variance 0,00% 0,00% 86,00% 0,00%

Risk adj. return 5,50% 58,00% 0,00% 0,00% Risk adj. return 0,00% 98,00% 0,00% 0,00% Risk adj. return 11,00% 18,00% 0,00% 0,00%

Systemic risk adj.return 1,00% 32,50% 7,50% 0,00% Systemic risk adj.return 0,00% 65,00% 3,00% 0,00% Systemic risk adj.return 2,00% 0,00% 12,00% 0,00%

Eigenvector Net 4 in Net 4 out Net 6 in Net 6 out Eigenvector Net 4 in Net 4 out Net 6 in Net 6 out Eigenvector Net 4 in Net 4 out Net 6 in Net 6 out

Return 0,00% 0,00% 0,00% 18,00% Return 0,00% 0,00% 0,00% 0,00% Return 0,00% 0,00% 0,00% 36,00%

Beta 0,00% 0,00% 0,00% 100,00% Beta 0,00% 0,00% 0,00% 100,00% Beta 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 100,00% Variance 0,00% 0,00% 0,00% 100,00% Variance 0,00% 0,00% 0,00% 100,00%

Risk adj. return 0,00% 0,00% 0,00% 42,50% Risk adj. return 0,00% 0,00% 0,00% 71,00% Risk adj. return 0,00% 0,00% 0,00% 14,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 39,50% Systemic risk adj.return 0,00% 0,00% 0,00% 54,00% Systemic risk adj.return 0,00% 0,00% 0,00% 25,00%

Closeness Net 4 in Net 4 out Net 6 in Net 6 out Closeness Net 4 in Net 4 out Net 6 in Net 6 out Closeness Net 4 in Net 4 out Net 6 in Net 6 out

Return 0,00% 31,50% 4,00% 0,00% Return 0,00% 63,00% 0,00% 0,00% Return 0,00% 0,00% 8,00% 0,00%

Beta 0,00% 0,00% 89,50% 0,00% Beta 0,00% 0,00% 100,00% 0,00% Beta 0,00% 0,00% 79,00% 0,00%

Variance 0,00% 0,00% 43,00% 0,00% Variance 0,00% 0,00% 0,00% 0,00% Variance 0,00% 0,00% 86,00% 0,00%

Risk adj. return 5,50% 58,00% 0,00% 0,00% Risk adj. return 0,00% 98,00% 0,00% 0,00% Risk adj. return 11,00% 18,00% 0,00% 0,00%

Systemic risk adj.return 1,00% 32,50% 7,50% 0,00% Systemic risk adj.return 0,00% 65,00% 3,00% 0,00% Systemic risk adj.return 2,00% 0,00% 12,00% 0,00%

NL Asymmetric- CRISIS NL Asymmetric- CRISIS- MAX HORIZON NL Asymmetric- CRISIS- MIN HORIZON

NL Asymmetric- WHOLE PERIOD NL Asymmetric- WHOLE PERIOD- MAX HORIZON NL Asymmetric- WHOLE PERIOD- MIN HORIZON
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However, returns in such a crisis period are by default negligible; risk is of the utmost 

importance at such times and after all, Net 4 does not manage to have such a 

performance in adjusted to (systemic) risk return during the whole period. Net 6’s 

consistency leads therefore to the conclusion that it is more suitable than Net 4 in order 

for portfolios with low risk or relatively high adjusted to risk return to be constructed. 

 

EPILOGUE-CONCLUSIONS 

In a nutshell, the main conclusions to be drawn from this thesis are the following: 

 Stocks with lower strength, eigenvector, and closeness centrality and higher 

eccentricity scores form better performing portfolios in terms of return, risk 

(total and systemic), and adjusted risk return.  

 Eccentricity performs worse in comparison to strength, eigenvector and 

closeness. No conclusion can be drawn about betweenness centrality. 

 Networks identified from linear correlation measures lead to better performing 

portfolios in terms of return 

 Networks identified from nonlinear measures lead to portfolios containing less 

systematic and unsystematic risk, while networks identified from the best 

performing nonlinear measures perform equally or sometimes better than the 

ones identified from linear ones. 

 During periods of crisis, the better performance of nonlinear measures in 

contrast to linear measures in terms of building of portfolios of less total and 

systematic risk is emphatic. 

 During periods of crisis, the importance of asymmetric networks is increased in 

order for better performance to be ensured. 

 For strength/closeness, asymmetric networks build portfolios of less systematic 

risk and higher adjusted to systematic risk return. 

 Net 6 (Information Dependence) is the best of the asymmetric networks tested. 

Net 3(Normalized Mutual Information) performs decently both during the whole 

period and the crisis while Net 5(Information Interdependence) performs better 

than Net 3 during the crisis. 
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The application of the same methodology to further datasets would be very useful in 

order for the possibility of the extraction of more generic conclusions to be examined. 

Furthermore, apart from network centralities, network communities could also be 

exploited in portfolio selection and especially in asset allocation. Instead of allocating 

wealth among different asset categories or sector, which is common practice, it would 

be very fruitful to check if an allocation between network communities can lead to 

better performance and risk mitigation. 
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APPENDICES 

Appendix A. Images 

Appendix A.1.1- Whole Testing Period 

 

Strength 

 

Image 27: Strength-Return 

 

Image 28: Strength-Beta 
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Image 29: Strength-Variance 

 

Image 30: Strength-Adjusted to risk return 
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Image 31: Strength-Adjusted to systemic risk return 

Eigenvector 

 

Image 32: Eigenvector-Return 
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Image 33: Eigenvector Beta 

 

Image 34: Eigenvector Variance 
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Image 35: Eigenvector Adjusted to risk return 

 

Image 36: Eigenvector Adjusted to systemic risk return 
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Closeness 

 

Image 37: Closeness Return 

 

Image 38: Closeness Beta 
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Image 39: Closeness Variance 

 

Image 39: Closeness Adjusted to risk return 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 
Networks as a method for portfolio selection 

 

65 

 

 

Image 40: Closeness Adjusted to systemic risk return 

Betweenness 

 

Image 41: Betweenness Return 
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Image 42: Betweenness Beta 

 

 

 

 

Image 43: Betweenness Variance 
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Image 44: Betweenness Adjusted to risk return 

 

 

 

 

Image 45: Betweenness Adjusted to systemic risk return 
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Eccentricity 

 

Image 46: Eccentricity Return 

  

 

 

Image 47: Eccentricity Beta 
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Image 48: Eccentricity Variance 

 

 

 

 

Image 49: Eccentricity Adjusted to risk return 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 
 
Prokopios Karadimos 
 

 

 

Image 50: Eccentricity Adjusted to systemic risk return 

 

Appendix A.1.2- Whole Testing Period/Crisis axis bounds 

 

The images of Appendix A.1.2 refer to the same values as Appendix A.1.1. However, 

they are plotted now with same axis bounds as the crisis images in Appendix A.2 in 

order for a comparison between the whole testing period and the crisis period to be 

facilitated. 

Strength 

 

Image 51: Strength return 
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Image 52: Strength Beta 

 

 

 

 

Image 53: Strength Variance 
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Image 54: Strength Adjusted to risk return 

 

 

 

 

Image 55: Strength Adjusted to systemic risk return 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 
Networks as a method for portfolio selection 

 

73 

 

Eigenvector 

 

Image 56: Eigenvector Return 

 

Image 57: Eigenvector Beta 
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Image 58: Eigenvector Variance 

 

Image 59: Eigenvector Adjusted to risk return 
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Image 60: Eigenvector Adjusted to systemic risk return 

 

Closeness 

 

 

Image 61: Closeness return 
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Image 62: Closeness beta 

 

Image 63: Closeness variance 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 
Networks as a method for portfolio selection 

 

77 

 

 

Image 64: Closeness Adjusted to risk return 

 

Image 64: Closeness Adjusted to systemic risk return 
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Betweenness 

 

Image 65: Betweenness Return 

 

Image 66: Betweenness beta 
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Image 67: Betweenness variance 

 

Image 68: Betweenness Adjusted to risk return 
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Image 69: Betweenness Adjusted to systemic risk return 

 

 

Eccentricity 

 

Image 70: Eccentricity return 
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Image 71: Eccentricity beta 

 

 

 

 

 

Image 72: Eccentricity variance 
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Image 73: Eccentricity Adjusted to risk return 

 

Image 74: Eccentricity Adjusted to systemic risk return 
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Appendix A.2- Crisis Period 

 

Strength 

 

 

Image 75: Strength return during the crisis 

 

Image 76: Strength beta during the crisis 
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Image 77: Strength variance during the crisis 

 

Image 78: Strength Adjusted to risk return during the crisis 
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Image 79: Strength Adjusted to systemic risk return during the crisis 

 

Eigenvector 

 

Image 80: Eigenvector return during the crisis 
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Image 81: Eigenvector beta during the crisis 

 

Image 82: Eigenvector variance during the crisis 
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Image 83: Eigenvector Adjusted to risk return during the crisis 

 

Image 84: Eigenvector Adjusted to systemic risk return during the crisis 
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Closeness 

 

Image 85: Closeness return during the crisis 

 

Image 86: Closeness beta during the crisis 
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Image 87: Closeness variance during the crisis 

 

Image 88: Closeness Adjusted to risk return during the crisis 
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Image 89: Closeness Adjusted to systemic risk return during the crisis 

 

Betweenness 

 

Image 90: Betweenness return during the crisis 
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Image 91: Betweenness beta during the crisis 

 

Image 92: Betweenness variance during the crisis 
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Image 93: Betweenness Adjusted to risk return during the crisis 

 

Image 94: Betweenness Adjusted to systemic risk return during the crisis 
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Eccentricity 

 

Image 95: Eccentricity return during the crisis 

 

Image 96: Eccentricity beta during the crisis 
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Image 97: Eccentricity variance during the crisis 

 

Image 97: Eccentricity Adjusted to risk return during the crisis 
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Image 98: Eccentricity Adjusted to systemic risk return during the crisis 
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Appendix B. Frequency Tables 

 

Table 9: Frequency Table of best performances per performance criterion: whole testing period (Oct 

2002-Dec 2012), holding days: 51-250 

 

 

 

 

 

Strength Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 8,50% 81,50% 0,50% 0,00% 0,00% 0,00% 9,50% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 99,00% 1,00% 0,00%

Risk adj. return 2,00% 49,00% 43,50% 0,00% 0,00% 0,00% 0,00% 5,50%

Systemic risk adj.return 2,50% 1,00% 29,00% 0,00% 0,00% 0,00% 0,00% 67,50%

Eigenvector Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 100,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 46,50% 0,00% 0,00% 0,00% 53,50% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 31,50% 0,00% 68,50%

Risk adj. return 79,50% 20,50% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 76,50% 9,00% 0,00% 0,00% 0,00% 0,00% 14,50% 0,00%

Closeness Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 12,00% 81,00% 0,00% 0,00% 0,00% 0,00% 7,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 99,00% 1,00% 0,00%

Risk adj. return 2,00% 52,00% 41,50% 0,00% 0,00% 0,00% 0,00% 4,50%

Systemic risk adj.return 2,50% 2,50% 27,50% 0,00% 0,00% 0,00% 0,00% 67,50%

Betweenness Net 1 Net 2 Net 3 Net 4 Net 5 Net 6

Return 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Beta 0,00% 18,00% 0,00% 0,00% 82,00% 0,00%

Variance 36,50% 63,50% 0,00% 0,00% 0,00% 0,00%

Risk adj. return 0,50% 0,00% 0,00% 88,50% 11,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 30,00% 70,00% 0,00%

Eccentricity Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 30,00% 0,00% 9,50% 0,00% 0,00% 24,50% 36,00% 0,00%

Beta 0,00% 0,00% 2,50% 0,00% 0,00% 0,00% 0,00% 97,50%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Risk adj. return 7,50% 0,00% 25,50% 0,00% 0,00% 64,50% 0,00% 2,50%

Systemic risk adj.return 0,00% 0,00% 19,50% 0,00% 0,00% 60,50% 0,00% 20,00%

WHOLE PERIOD
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Table 10: Frequency Table of best performances per performance criterion: whole testing period(Oct 

2002-Dec 2012), holding days: 151-250 (max horizon) 

 

 

 

 

 

 

 

Strength Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 2,00% 98,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00%

Risk adj. return 0,00% 56,00% 44,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 2,00% 32,00% 0,00% 0,00% 0,00% 0,00% 66,00%

Eigenvector Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 100,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 93,00% 0,00% 0,00% 0,00% 7,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 63,00% 0,00% 37,00%

Risk adj. return 96,00% 4,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 72,00% 0,00% 0,00% 0,00% 0,00% 0,00% 28,00% 0,00%

Closeness Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 1,00% 99,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00%

Risk adj. return 0,00% 60,00% 40,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 5,00% 29,00% 0,00% 0,00% 0,00% 0,00% 66,00%

Betweenness Net 1 Net 2 Net 3 Net 4 Net 5 Net 6

Return 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Variance 0,00% 100,00% 0,00% 0,00% 0,00% 0,00%

Risk adj. return 0,00% 0,00% 0,00% 87,00% 13,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 36,00% 64,00% 0,00%

Eccentricity Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 60,00% 0,00% 2,00% 0,00% 0,00% 19,00% 19,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Risk adj. return 15,00% 0,00% 14,00% 0,00% 0,00% 66,00% 0,00% 5,00%

Systemic risk adj.return 0,00% 0,00% 10,00% 0,00% 0,00% 50,00% 0,00% 40,00%

WHOLE PERIOD-MAX HORIZON
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Table 11: Frequency Table of best performances per performance criterion: whole testing period(Oct 

2002-Dec 2012), holding days: 51-150 (min horizon) 

 

 

 

 

 

 

Strength Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 15,00% 65,00% 1,00% 0,00% 0,00% 0,00% 19,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 98,00% 2,00% 0,00%

Risk adj. return 4,00% 42,00% 43,00% 0,00% 0,00% 0,00% 0,00% 11,00%

Systemic risk adj.return 5,00% 0,00% 26,00% 0,00% 0,00% 0,00% 0,00% 69,00%

Eigenvector Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 100,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Risk adj. return 63,00% 37,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 81,00% 18,00% 0,00% 0,00% 0,00% 0,00% 1,00% 0,00%

Closeness Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 23,00% 63,00% 0,00% 0,00% 0,00% 0,00% 14,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 98,00% 2,00% 0,00%

Risk adj. return 4,00% 44,00% 43,00% 0,00% 0,00% 0,00% 0,00% 9,00%

Systemic risk adj.return 5,00% 0,00% 26,00% 0,00% 0,00% 0,00% 0,00% 69,00%

Betweenness Net 1 Net 2 Net 3 Net 4 Net 5 Net 6

Return 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Beta 0,00% 36,00% 0,00% 0,00% 64,00% 0,00%

Variance 73,00% 27,00% 0,00% 0,00% 0,00% 0,00%

Risk adj. return 1,00% 0,00% 0,00% 90,00% 9,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 24,00% 76,00% 0,00%

Eccentricity Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 0,00% 0,00% 17,00% 0,00% 0,00% 30,00% 53,00% 0,00%

Beta 0,00% 0,00% 5,00% 0,00% 0,00% 0,00% 0,00% 95,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Risk adj. return 0,00% 0,00% 37,00% 0,00% 0,00% 63,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 29,00% 0,00% 0,00% 71,00% 0,00% 0,00%

WHOLE PERIOD-MIN HORIZON
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Table 12: Frequency Table of best performances per performance criterion: financial crisis period(Aug 

2007-Mar 2009), holding days: 51-250 

 

 

 

 

 

 

Strength Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 3,00% 39,50% 1,00% 0,00% 32,00% 20,50% 4,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 10,50% 89,50% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 57,00% 43,00% 0,00%

Risk adj. return 0,00% 0,00% 36,50% 5,50% 58,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 59,00% 1,00% 32,50% 0,00% 7,50% 0,00%

Eigenvector Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 29,50% 47,50% 0,00% 0,00% 0,00% 5,00% 0,00% 18,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Risk adj. return 14,00% 12,00% 27,50% 0,00% 0,00% 4,00% 0,00% 42,50%

Systemic risk adj.return 9,00% 18,00% 18,50% 0,00% 0,00% 15,00% 0,00% 39,50%

Closeness Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 0,00% 45,50% 1,00% 0,00% 31,50% 18,00% 4,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 10,50% 89,50% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 57,00% 43,00% 0,00%

Risk adj. return 0,00% 1,50% 35,00% 5,50% 58,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 59,00% 1,00% 32,50% 0,00% 7,50% 0,00%

Betweenness Net 1 Net 2 Net 3 Net 4 Net 5 Net 6

Return 0,00% 0,50% 0,00% 0,50% 26,00% 73,00%

Beta 25,00% 75,00% 0,00% 0,00% 0,00% 0,00%

Variance 6,50% 93,50% 0,00% 0,00% 0,00% 0,00%

Risk adj. return 0,00% 1,50% 0,00% 25,50% 16,00% 57,00%

Systemic risk adj.return 0,00% 17,00% 0,00% 0,00% 37,50% 45,50%

Eccentricity Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 0,00% 0,00% 13,50% 0,00% 0,00% 2,50% 84,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Risk adj. return 17,00% 0,00% 24,00% 5,00% 16,50% 0,00% 0,00% 37,50%

Systemic risk adj.return 0,00% 0,00% 39,00% 0,00% 0,00% 1,00% 8,50% 51,50%

CRISIS
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Table 13: Frequency Table of best performances per performance criterion: financial crisis period(Aug 

2007-Mar 2009), holding days: 151-250 (max horizon) 

 

 

 

 

 

Strength Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 6,00% 30,00% 0,00% 0,00% 64,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00%

Risk adj. return 0,00% 0,00% 2,00% 0,00% 98,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 32,00% 0,00% 65,00% 0,00% 3,00% 0,00%

Eigenvector Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 48,00% 52,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Risk adj. return 0,00% 1,00% 20,00% 0,00% 0,00% 8,00% 0,00% 71,00%

Systemic risk adj.return 12,00% 0,00% 17,00% 0,00% 0,00% 17,00% 0,00% 54,00%

Closeness Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 0,00% 37,00% 0,00% 0,00% 63,00% 0,00% 0,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00%

Risk adj. return 0,00% 0,00% 2,00% 0,00% 98,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 32,00% 0,00% 65,00% 0,00% 3,00% 0,00%

Betweenness Net 1 Net 2 Net 3 Net 4 Net 5 Net 6

Return 0,00% 0,00% 0,00% 1,00% 52,00% 47,00%

Beta 0,00% 100,00% 0,00% 0,00% 0,00% 0,00%

Variance 0,00% 100,00% 0,00% 0,00% 0,00% 0,00%

Risk adj. return 0,00% 0,00% 0,00% 0,00% 28,00% 72,00%

Systemic risk adj.return 0,00% 0,00% 0,00% 0,00% 47,00% 53,00%

Eccentricity Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Risk adj. return 0,00% 0,00% 4,00% 2,00% 27,00% 0,00% 0,00% 67,00%

Systemic risk adj.return 0,00% 0,00% 31,00% 0,00% 0,00% 0,00% 1,00% 68,00%

CRISIS-MAX HORIZON
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Table 14: Frequency Table of best performances per performance criterion: financial crisis period(Aug 

2007-Mar 2009), holding days: 51-250 (min horizon) 

 

 

 

 

 
 
 

Strength Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 0,00% 49,00% 2,00% 0,00% 0,00% 41,00% 8,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 21,00% 79,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 14,00% 86,00% 0,00%

Risk adj. return 0,00% 0,00% 71,00% 11,00% 18,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 86,00% 2,00% 0,00% 0,00% 12,00% 0,00%

Eigenvector Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 11,00% 43,00% 0,00% 0,00% 0,00% 10,00% 0,00% 36,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%

Risk adj. return 28,00% 23,00% 35,00% 0,00% 0,00% 0,00% 0,00% 14,00%

Systemic risk adj.return 6,00% 36,00% 20,00% 0,00% 0,00% 13,00% 0,00% 25,00%

Closeness Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 0,00% 54,00% 2,00% 0,00% 0,00% 36,00% 8,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 21,00% 79,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 14,00% 86,00% 0,00%

Risk adj. return 0,00% 3,00% 68,00% 11,00% 18,00% 0,00% 0,00% 0,00%

Systemic risk adj.return 0,00% 0,00% 86,00% 2,00% 0,00% 0,00% 12,00% 0,00%

Betweenness Net 1 Net 2 Net 3 Net 4 Net 5 Net 6

Return 0,00% 1,00% 0,00% 0,00% 0,00% 99,00%

Beta 50,00% 50,00% 0,00% 0,00% 0,00% 0,00%

Variance 13,00% 87,00% 0,00% 0,00% 0,00% 0,00%

Risk adj. return 0,00% 3,00% 0,00% 51,00% 4,00% 42,00%

Systemic risk adj.return 0,00% 34,00% 0,00% 0,00% 28,00% 38,00%

Eccentricity Net 1 Net 2 Net 3 Net 4 in Net 4 out Net 5 Net 6 in Net 6 out

Return 0,00% 0,00% 27,00% 0,00% 0,00% 5,00% 68,00% 0,00%

Beta 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Variance 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%

Risk adj. return 34,00% 0,00% 44,00% 8,00% 6,00% 0,00% 0,00% 8,00%

Systemic risk adj.return 0,00% 0,00% 47,00% 0,00% 0,00% 2,00% 16,00% 35,00%

CRISIS-MIN HORIZON
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Appendix C. -Stocks of the dataset 

 

Table 15: Stocks included in the dataset 

 

 

 

 

 

ABBOTT LABORATORIES TARGET LOWE'S COMPANIES PRUDENTIAL FINL.

ADOBE SYSTEMS DEERE DOMINION RESOURCES EDISON INTL.

E I DU PONT DE NEMOURS MORGAN STANLEY MCDONALDS SOUTHERN

BOSTON PROPERTIES WALT DISNEY MARSH & MCLENNAN BB&T

ALLSTATE DOW CHEMICAL METLIFE AT&T

HONEYWELL INTL. DTE ENERGY CVS HEALTH CHEVRON

AMGEN EBAY MICROSOFT STATE STREET

HESS BANK OF AMERICA 3M STARBUCKS

AMERICAN EXPRESS CITIGROUP NATIONAL OILWELL VARCO PUBLIC STORAGE

AFLAC ECOLAB NEWMONT MINING STRYKER

AMERICAN INTL.GP. EMERSON ELECTRIC NIKE 'B' SUNTRUST BANKS

ANADARKO PETROLEUM EOG RES. NOBLE ENERGY SYMANTEC

ALEXION PHARMS. EQUITY RESD.TST.PROPS. SHBI NORFOLK SOUTHERN SYSCO

VALERO ENERGY ESTEE LAUDER COS.'A' NISOURCE TEXAS INSTRUMENTS

APACHE EXXON MOBIL COACH THERMO FISHER SCIENTIFIC

APPLE NEXTERA ENERGY NORTHROP GRUMMAN MARATHON OIL

ARCHER-DANLS.-MIDL. MACY'S WELLS FARGO & CO UNION PACIFIC

AUTOMATIC DATA PROC. FRANKLIN RESOURCES MONSANTO UNITED TECHNOLOGIES

BAKER HUGHES FREEPORT-MCMORAN CAPITAL ONE FINL. UNITEDHEALTH GROUP

BERKSHIRE HATHAWAY 'B' GAP OCCIDENTAL PTL. VORNADO REALTY TRUST

BAXTER INTL. GENERAL DYNAMICS ORACLE WAL MART STORES

BECTON DICKINSON GENERAL MILLS PACCAR WASTE MANAGEMENT

VERIZON COMMUNICATIONS GILEAD SCIENCES EXELON WEYERHAEUSER

FIRSTENERGY MCKESSON PPL WHOLE FOODS MARKET

BRISTOL MYERS SQUIBB GENERAL ELECTRIC PEPSICO WILLIAMS

ONEOK HALLIBURTON PFIZER YAHOO

SEMPRA EN. GOLDMAN SACHS GP. CONOCOPHILLIPS TJX

FEDEX HERSHEY PG&E MOLSON COORS BREWING 'B'

BROWN-FORMAN 'B' REYNOLDS AMERICAN ALTRIA GROUP CBS 'B'

CSX HOME DEPOT PNC FINL.SVS.GP. BANK OF NEW YORK MELLON

CONSTELLATION BRANDS 'A' BIOGEN AETNA CHUBB

CARDINAL HEALTH ILLINOIS TOOL WORKS PPG INDUSTRIES TRANSOCEAN

CATERPILLAR INTUIT PRAXAIR PROLOGIS

CELGENE INTEL COSTCO WHOLESALE ACCENTURE CLASS A

CENTURYLINK INTERNATIONAL PAPER T ROWE PRICE GROUP RALPH LAUREN CL.A

JP MORGAN CHASE & CO. JOHNSON & JOHNSON PROCTER & GAMBLE MOTOROLA SOLUTIONS

CIGNA DEVON ENERGY QUALCOMM AON CLASS A

CISCO SYSTEMS KELLOGG REGENERON PHARMS. INGERSOLL-RAND

COCA COLA KIMBERLY-CLARK US BANCORP TIME WARNER

COLGATE-PALM. BLACKROCK MERCK & COMPANY AMERICAN TOWER

CONSOLIDATED EDISON ELI LILLY PRICELINE GROUP EXPRESS SCRIPTS HOLDING

CORNING UNITED PARCEL SER.'B' SCHLUMBERGER DUKE ENERGY

CUMMINS LOCKHEED MARTIN CHARLES SCHWAB MONDELEZ INTERNATIONAL CL.A

DANAHER LOEWS SHERWIN-WILLIAMS EATON

COGNIZANT TECH.SLTN.'A' CARNIVAL SIMON PROPERTY GROUP

MEDTRONIC HP JOHNSON CONTROLS INTL.

WALGREENS BOOTS ALLIANCE ALLERGAN CROWN CASTLE INTL.
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