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Abstract

In the current work, five statistical and a dynamical model were employed for the studying

of the spatio-temporal attributes of An. sacharovi. The data that were employed in the current

analysis consisted of climatic data obtained from the WorldClim database that provides grid-

ded climatic data covering the period 1950-2000. Also, eight Regional Climate Model outputs

were obtained from the ESGF database, containing evaluation experiments in the context of the

EURO-CORDEX initiative at 0.11◦ spatial resolution. These data were employed for the calcu-

lation of certain bioclimatic variables, proposed through the WorldClim project. The information

concerning the presence of An. sacharovi mosquitoes was extracted from the vector database

created and maintained by Ecodevelopment S.A. and the epidemiological data were provided by

the HCDCP. The methodological tools applied consist of a certain set of statistical models and a

dynamical model. The statistical models provided an estimation of the environmental suitability

for An. sacharovi based on six explanatory variables and a set of An. sacharovi presence locations.

Furthermore, a dynamical model was employed, simulating malaria transmission. According to the

statistical models applied, the areas characterized as suitable are located over the plain of central

Macedonia in northern Greece, over the plain of Thessaly in central Greece, over the coastal areas

of northern Greece and over the plain of Serres, also in northern Greece. Additionally, suitable

areas are identified over coastal areas in southern mainland Greece, Attica, Peloponnese and over

the eastern islands of the Aegean Sea.
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Chapter 1

Introduction

1.1 Climate and Planetary Health

The climate is known to have a great impact on a plethora of fields and activities, among

which the state of human health is also included (IPCC, 2014). The recent research interest in

the field of climate science has been justifiably drawn to the ongoing environmental changes and

especially to the climatic changes that are in progress (Allan, 2017), due to their great resonance

on planetary issues (Parmesan and Yohe, 2002). As a consequence of climate change, the spatio-

temporal shifts in environmental and climatic conditions are able to induce further alterations to

all the various aspects that climate has an impact on (Thom et al., 2017). This situation is already

being observed in the sector of human health (Caminade et al., 2014). However, before proceeding

with the discussion concerning the impacts of climate change on the health sector, it is necessary

that a definition of climate change be given. According to the Third Assessment Report (TAR) of

the IPCC, climate change is defined as following:

”Climate change refers to a change in the state of the climate that can be identified (e.g. using

statistical tests) by changes in the mean and/or the variability of its properties, and that persists

for an extended period, typically decades or longer. It refers to any change in climate over time,

whether due to natural variability or as a result of human activity.”

The aforementioned definition alludes to the fact that severe alterations are being observed

to a massively dynamic system, such as the climate, whose attributes and mechanisms are not

fully understood yet. Such changes inevitably have an impact and can pose further changes and

alterations on a wide range of fields, including human health. The fact that even today there

remain unanswered questions regarding the climate and its in-lying mechanisms, induces large

uncertainties unto the impact modeling of climate change on all the various fields related to climate.

The climate-related diseases, as the diseases that are affected by climatic conditions are called, are

not an exception to this fact and thus, their modeling results as a perplexing matter.

According to the WHO, it was estimated that in 2012 approximately 23 % of all deaths occurring

worldwide, were related to climatic factors, mainly due to the environmental changes taking place,

that can function as a force multiplier (Watts et. al., 2016). This type of observed events and

their increasing magnitude is the reason why a large amount of effort is currently concentrated on
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the process of competent modeling of such dynamic and highly non-linear systems. The purpose

of such actions is the construction of efficient early warning systems (Semenza, 2015), especially

over vulnerable areas.

A prerequisite to this process, though, is the successful identification of the possible ways

through which the climate may exert its impact on the health sector. According to the 5th As-

sessment Report of the IPCC (2014), conducted by the 2nd Working Group (Impacts, Adaptation,

and Vulnerability), there are three fundamental approaches through which climate change displays

its impact on the health sector. These delineated pathways are:

1. The Direct impacts, through which extreme weather events are associated directly as the

causal effects of health risk (Mora et al., 2017)

2. The Indirect impacts, that are primarily associated with changes in natural systems and

ecosystems (Lyons et al., 2012).

3. The human induced impacts, related to undernutrition, population dislocation, mental stress

and occupational impacts.

Figure 1.1: Schematic of the possible routes through which climate change may impact the health
sector (IPCC, 2014).

As it is obvious from Figure 1.1 and the three pathways discerned by the IPCC, it becomes

evident that an efficient solution to the current environmental challenges posing a great threat on

human health, could only be approached via an interdisciplinary way (Horton and Lo, 2015). As

it is also stated in the 5th IPCC Report (WG2), the geography of a health-related event matters,

because:

”Location has an important influence on the potential for health losses caused by climate change

(Samson et al., 2011).”

More specifically, the geography of an event is constituted by the ensemble of physical and

human conditions prevailing at that particular location. In order for such a research discussion to
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be fruitful, scientists from miscellaneous fields need to offer their unique and peculiar perspective

in addressing such a challenging issue.

In response to this need, in 2015 the Rockfeller Foundation Lancet Commission initiated a

cooperation interested in Planetary Health, which is defined in the following way (Horton and Lo,

2015):

”The achievement of the highest attainable standard of health, wellbeing and equity worldwide

through judicious attention to the human systems (political, economic and social) that shape the

future of humanity and the Earths natural systems that define the safe environmental limits

within which humanity can flourish. Put simply, planetary health is the health of human

civilization and the state of the natural systems on which it depends.”

This initiative is only indicative of the academic endeavor that is currently in progress with

regards to bridging the gap between climate and health. Another initiative of outstanding impor-

tance is the establishment of a joint office between the WMO and WHO in 2014 (WMO-WHO,

2016), underlying the cruciality of cooperation between scientists and practitioners in the health

sector along with climate scientists. A diagram of the interconnected fabric of climate and health

impacts is presented in Figure 1.2 (Watts et. al., 2016). As it is depicted, there are three main

disease categories (in purple) that can potentially be affected by climatic changes and additionally,

climate change may indirectly cause undernutrition issues or lead to the creation of harmful algal

blooms. Also, climatic changes and their impact on numerous natural and societal aspects, may

trigger or enhance mental issues.

Figure 1.2: The impact of climate change on health (Watts et al., 2015).
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The point of interest in the current project is the impact of climate on a certain category of

diseases that are called ”vector-borne diseases”. According to ECDC, vector-borne diseases are:

”Infections transmitted by the bite of infected arthropod species, such as mosquitoes, ticks,

triatomine bugs, sandflies, and blackflies.”

More specifically, the vector-borne disease in concern is malaria, which is a mosquito-borne disease

(transmitted via mosquitoes).

As it is shown in Figure 1.2, vector-borne diseases are primarily affected by the change in the

temperature regime over a region and the shift in ecosystem balances due to biodiversity loss,

landscape alterations and the overall ecological disturbances caused by extreme weather events

and raised average and extreme temperatures.

The question concerning the impacts of climate change on health, is a very timely research

question, with a very rapidly growing amount of information flowing in and out of the impact

modeling process (Bush et al., 2017). Nevertheless, the assessment of climate change impacts is

highly dependent on the existence of information regarding the relation of the disease in concern

and the current climate (Parham and Michael, 2010). If such information is not available, then

climate change impact modeling is not possible. In many cases, this relation is highly non-linear,

posing severe difficulties and introducing considerable uncertainties in modeling even the current

state of the disease. A summarized table concerning the relation of climate and certain vector-borne

diseases, along with the associated confidence levels is presented in Figure 1.3 (IPCC, 2014).

Figure 1.3: Relation of climate and certain vector-borne diseases (IPCC, 2014).
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The interest of the current work emphasizes on assessing the current relation of climate and

malaria, primarily by assessing the impact of climate on the occurrence and activity of an effective

malaria vector (An. sacharovi) that is present over the study region (Greece). The ideal goal of

the current work would be to extract some quantitative results, describing the relation between

the current climate and the disease, so that future studies concerning the impact of climate change

on the activity of An. sacharovi over Greece, would be possible and meaningful.
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1.2 The issue in concern: The Global burden of Malaria

Malaria is a vector-borne disease that is caused by the Plasmodium parasite which is transmitted

through the bite of the female Anopheles mosquito. Malaria is listed among the most well-studied

vector-borne diseases (Leedale et al., 2016), due to the great burden that it causes, resulting to

more than 200 million infections and causing more than 500.000 deaths every year (WHO, 2016).

Approximately 70 % of those deaths occur in children under the age of 5. Malaria is mostly

prevalent in the sub-Saharan Africa and SE Asia, but historically malaria was present in the

extra-tropics (Figure 1.4), until it was eradicated through the application of malaria and vector

control programs. Nevertheless, recent re-emergences of malaria in places where it was previously

eliminated, draws attention from a variety of research fields, aiming to investigate the driving forces

that caused such events. Briefly, the scientific consensus agrees on the fact that malaria resurgence

is caused by a perplexing set of biotic and abiotic factors (Semenza, 2015).

Figure 1.4: Global malaria endemicity. a: Pre-intervention endemicity (1900), b: Contemporary
endemicity (2007) (Gething et al., 2010). The state at which the disease is constantly present
within a population is characterized as ”endemic”

Particular emphasis has been given on the impact of climate on malaria (Pascual et al., 2008).
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Such a focus is justifiable and expected, as the qualitative relation between the disease and climate

was known for centuries. For instance, the greek word for malaria is ”elonosia”, meaning the

disease of the marshes. In addition, the origin of the word ”malaria” translates to bad air in latin

(mala = bad and aria = air), suggesting that even the etymology of the words indicate that people

in early centuries had an intuitive information that, somehow, the disease is related to certain

environmental conditions. This observation still constitutes the basis for the study, modeling and

potential forecasting of the disease and huge improvements have been marked so that the pre-

existing qualitative knowledge on the relation between climate and malaria may become robustly

quantitative.

According to Gething et. al. 2011 a temperature suitability index constructed for P. vivax

globally, maps well beyond the area of the tropics, delineating regions under the possible impact of

malaria occurrence. As it is observed in Figure 1.5, extensive areas in the tropics are categorized

as suitable for malaria transmission, while in the extra-tropics the temperature suitability index

appears to be more localized and limited in geographic extent. Nevertheless, successful transmission

of the disease is also dependent on the occurrence of an effective malaria vector. As it is depicted

in Figure 1.6, the areas of the extra-tropics where the temperature suitability index is at medium

magnitudes are simultaneously areas where malaria vectors are present. Hence, at any given case

at which an infected person is introduced into those areas, transmission could potentially occur.

Figure 1.5: The temperature suitability index for P. vivax (Gething et al., 2011).

In this context, the Mediterranean was historically a region where malaria was observed. As

it is shown in Figure 1.5, the calculated index displays areas of increased suitability over the

Mediterranean and also, according to Figure 1.6, there are Anopheles species present, thus historical

malaria is explainable over the region of the Mediterranean. More specifically, Greece -which is

the focus of the current study- is an area suitable both for vector species capable for transmitting

malaria and for P. vivax and in fact, malaria was known to be endemic in Greece since 400

BC (Mandyla et. al. 2011). This matter emphasizes the fact that the necessary deterministic

circumstances for malaria transmission are present over Greece and at any given instance that
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Figure 1.6: Efficient malaria vectors (Sinka et al., 2012).

certain stochastic requirements are met, an outbreak may happen, as it did in years 2009, 2010,

2011 and 2012 (Danis et al.,2013). The stochastic requirements referred to above are primarily a

function of population movement and of the control measures applied, which in turn are a function

of further socio-economic factors, which will not be discussed in the current analysis.
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1.3 Malaria in Greece

Malaria constituted a source of significant health threat in Greece during the first decades of

the 20th century, causing approximately 1-2 million infections annually, throughout the period

1905-1940 (Vakali et al., 2012). During this period malaria cases were observed through the whole

extent of mainland Greece (Figure 1.7). Urban areas and areas located in high elevations were

excluded from this malaria intensive status (Vakali et al., 2012). Along with the high burden

of malaria, the dawn of the 20th century was accompanied by the formation of the Greek Anti-

Malaria League in 1905, by two eminent personalities, Constantinos Savvas, Professor of Hygiene

and Microbiology and president of the League and Dr. Ioannis Kardamatis, a pediatrician.

Figure 1.7: Areas of historical malaria transmission (Sudre et al., 2013)

The work of the Greek Anti-Malaria League was monumental. Through the well-instrumented

and massive distribution of quinine in 1907, malaria prevalence dropped impressively to 47 % (from

100 %) and further on to 13 % the following year until it reached 9 % in 1909. During the same

year, the first attempt to assess the geographic aspects of malaria was undertaken by the League

in 1909, by publishing the manual named ”Malaria in Greece and Crete”, which also included the

first map of malaria occurrence (Figure 1.8). In 1924 the League, under the supervision of Dr.

Kardamatis, published the work ”Statistical maps of swamps and frequency of malaria in Greece”

(Tsiamis et al., 2013) which was a further attempt to identify the geographic status quo of malaria

in northern Greece (Figure 1.9).

After almost two decades, during 1946-1960, remarkable effort was laid on anti-malaria pro-

grams and practices, which eventually resulted to Greece being declared free of malaria in 1974

(Tseroni et al., 2015). The successful implementation of malaria control actions was achieved by

the detection of both passive and active cases, efficient treatment of all incidents caused by P. vivax
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Figure 1.8: The first epidemiological map of the splenic index in Greece and Crete (Tsiamis et al.,
2013). The splenic index is used as a metric of the state of malaria transmission inside a population
and refers to the enlargement of the spleen (Chavez et al., 2011)

and systematic control of the vectors by means of applying practices such as the indoor residual

spraying (IRS), larviciding and the exploitation of larvivorous fishes in water bodies (Danis et al.,

2013).

Malaria was estimated to be present in the greek region from approximately the 5th century

BC, as it is addressed in the writings of Hippocrates who referred to a disease that was causing

fever and was related to the existence of marshes (Kousoulis et al., 2013). An interesting aspect in

Hippocrates's narrative though, is that he states that the occurrence of the disease was observed in

autumn and winter (Kousoulis et al., 2013), while it is known that climatic conditions are suitable

for malaria transmission during summer and autumn. Also, regardless of the fact that there are

not records or entomological archives concerning the Anopheles species present in ancient Greece,

it is safe to assume that there has not been a significant change on this aspect from the period

of the 5th century BC until the 20th century (Kousoulis et al., 2013) when entomological data

were eventually available. The kind of Plasmodium species responsible for malaria occurrence in

ancient Greece remains unknown, but from Hippocrates's description of the clinical attributes of

the patients, it is assumed that the main pathogen was either P. vivax or P. malariae (Kousoulis

et al., 2013).
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Figure 1.9: Swamps and malaria in Northern Greece, published by the Anti-Malaria League in
1924 (Mandyla et al., 2011)
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1.4 Mosquito life cycle and dependence on climatic param-
eters

The understanding of the different developmental stages of the mosquito life cycle is crucial for

decoding the various aspects of malaria transmission (Asare, 2016). All mosquito species proceed

through four basic stages, that include the aquatic part (egg, larvae and pupae) and the terrestrial

part, in which the adult mosquito emerges. All compartments of the development of a mosquito are

directly or indirectly affected by a series of climatic factors, a fact that very vividly delineates the

importance of a solid understanding of how climatology/meteorology affects the various aspects

of the mosquitos biology, yielding to the characteristic ecology of the vector. The life cycle of the

mosquito and its relation with the various climatic factors is presented in Figure 1.10.

Figure 1.10: The life cycle of a mosquito and its relation with climatic/meteorological factors
(Asare, 2016 adopted from Smith et al., 2013).

Egg stage

The availability of water-covered areas is essential for oviposition and hence, for the initiation

of the mosquito life cycle. Female mosquitoes of all species lay their eggs on areas covered with

water either in rafts (Culex spp.) or individually (Anopheles spp.). The preference of the type of

water body on which the female mosquitoes lay their eggs varies from species to species (Asare,

2016). For instance, the female mosquitoes of the An. gambiae species prefer to lay their eggs

on small and warm (sunlit) water bodies (Asare, 2016), while An. sacharovi species prefer waters

with a restricted content of salinity. In addition, mosquitoes of the Aedes albopictus species can

lay their eggs in any container on which there is available standing water. Aedes albopictus species

are also termed as small container breeders because they can lay their eggs even in the cap of a
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plastic bottle. Typically, oviposition includes the laying of 50 to 200 eggs.

Larvae stage

After oviposotion, all larvae lie in the water, some fully covered (Culex spp., Aedes spp.), while

other species (Anopheles) lie parallel to the water surface (Figure 1.11). During this stage, high

mortality is observed which can be due to abiotic reasons, such as flushing rainfall and increased

water temperature, or due to biotic reasons, such as predation and competition (Asare, 2016).

Figure 1.11: Eggs and larvae for Anophels sp., Aedes sp. and Culex sp. Source: https://www.

globe.gov/documents/11865/0dcf909a-b4b3-4793-969a-5f88c48fbf26

Pupae stage

The last stage of the aquatic part of the mosquito life cycle is the pupae stage. This part is very

short and typically its duration is 2 days, but as all stages, this is also temperature dependent, and

hence, there might be some variation from the 2 days normal period. At this stage metamorphosis

takes place and the adult stage of the mosquito is initiated (Asare, 2016).

Adult stage

The adult mosquito that results from the metamorphosis of pupae, is capable of producing eggs

after some days (Asare, 2016). At this stage the female vectors are in a blood seeking process and

it is at this stage that biting and hence transmission, occur (in the case that the vector acquires

the parasite from an infected person or an infected vector bites a susceptible human). After a

blood meal is acquired, female mosquitoes have sufficient protein supplies in order to proceed to
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their gonotrophic cycle. The completion of the gonotrophic cycle results to the laying of new eggs

on available water surfaces. The activity of the vector, the length of the gonotrophic cycle, the

frequency that a blood meal is required and the frequency of oviposition are all climate-sensitive

parameters (Asare, 2016).
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1.5 Malaria and Anopheles Mosquitoes

In the study of the dynamical evolution of an infectious disease, such as malaria, epidemiology

employs two fundamental approaches in order to simulate, explain, treat and prevent the disease

in concern. These two approaches consist of either the application of individual-based (or agent-

based) models (Bomblies, 2009) or of the use of compartmental models (Mandal et al., 2011). Agent

based models attempt to model in a very detailed way all the various individuals that constitute

the community in focus, modeling explicitly all the specific actions and interactions that might

possibly be related to the transmission of the disease (Arifin et al., 2013). Mainly, agent-based

models attempt to model the spatio-temporal behavior of the host. Currently, the behavior of

the vectors is not explicitly modeled. The application of agent-based models is possible only on

a very localized scale due to its specificity and its requirement of very detailed local information.

Such an attempt is made in the framework of the Open-Malaria project which is an open-source

agent-based model, especially applicable in areas with high endemicity (Williamson et al., 2016).

Compartmental models treat the modeling of the disease dynamics in a more crude and generic

way, by discriminating the population of the community in concern in certain compartments, that

describe their position with regards to the transmission cycle (Chitnis et al., 2008). Depending on

the disease, its evolution and dynamics, different kinds of compartmental models can be applied,

in order for a more representative modeling of the disease to be achieved. The more complete

form of a compartmental model is considered to be the SEIR model, which separates the initial

population into four categories, which are: S: Susceptibles (the total number of the naive population

that are the potential candidates for infection), E: Exposed (the compartment of the population

that has been infected but is not infectious yet), I: Infectious (the number of people that can

transmit the disease), R: Recovered (the number of people that have recovered from the disease).

Depending on the disease, the individuals can remain in this class if they have acquired immunity,

or otherwise return to the susceptible class (and re-enter the SEIR cycle). An SEIR model can be

very detailed, discriminating subclasses inside every class, accounting for gender, age, occupation,

demographical movement (births, deaths, migration) and any other characteristic that could be

relevant to transmission. Nevertheless, the most generic form of an SEIR model is presented below:

Figure 1.12: The flow diagram of an SEIR model (Chitnis, 2017 (from a presentation)).
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In the diagram presented above, there is a constant flow from the S class towards the R class.

Also, in every compartment there is a probability that certain portion of the initial population

is removed from the class, due to death caused either by the disease, or by other demographical

factors. The available pool of Susceptibles is given by Equation 1.1:

dS

dt
= Λ− rβσ I

N
− µσ (1.1)

The constant recruitment rate is denoted by Λ and represents the rate at which people are added

to the Susceptible class either by birth or migration. The number of contacts per unit time between

a Susceptible and an Infectious individual is denoted by r. The definition of r is dependent on the

nature of the disease (vector-borne diseases, air-borne diseases, sexually transmitted diseases etc.).

In the case of malaria, r is the mosquito bite. The probability of disease transmission is represented

by β. For malaria it is estimated that approximately 20-30 % of the contacts lead to a successful

transmission. N is the total population of the community, while I is the part of the population

that has already been infected and is capable of transmitting the disease onwards. Lastly, µ is the

rate at which people are removed from every class. The progression of the Susceptible class to the

Exposed class is described by Equation 1.2:

dE

dt
= rβσ

I

N
− εE (1.2)

In Equation 1.2, the per-capita rate of progression to the Infectious class is denoted by ε. The

continuation in the disease progression leads to a certain part of the population becoming infected

and hence, infectious. The infectious state is described by Equation 1.3, in which with γ the

recovery rate (per-capita) is represented.

dI

dt
= εE − γI − µI (1.3)

Finally, the Recovered class is described by Equation 1.4:

dR

dt
= γI − µR (1.4)

Successful malaria transmission requires the co-existence of an Anopheles female mosquito and

a host, one of which should belong to the Susceptible class and one of which should belong to the

Infectious class. Transmission occurs through the bite of the female Anopheles mosquito, during

its blood-feeding process (Asare, 2016). If the mosquito is infectious, it is able of transmitting

Plasmodium sporozoites through its salivary fluids during its bloodacquiring bite. The mosquito

injection infects the host and the life-cycle of Plasmodium inside the host is initiated. Approx-

imately, one hour after the bite, sporozoites enter the hepatic cells, via the bloodstream (CDC,

2016). By the time sporozoites reach the hepatic cells, their asexual reproduction begins, resulting

to the production of schizont and eventually, to the production of merozoites. During the time

of reproduction inside the liver, the disease is in a latent state and the host is asymptomatic.

Also, if the infection is caused by Plasmodium vivax or Plasmodium ovale, it is possible that the
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sporozoites lie dormant inside the liver, forming hypnozoites, which are able of causing relapses

after months or years (Cogswell, 1992).

After the individual acquires the Plasmodium sporozoites, there is a certain amount of time

required for the maturing of sporozoites and their invasion to the blood stream. The incubation

period is known to vary within different kinds of Plasmodiums. For instance, the Plasmodium vi-

vax requires 6-8 days to develop, the Plasmodium falciparum requires 5-7 days, Plasmodium ovale

requires 9 days, while Plasmodium malariae requires 12-16 days (Ngasala, 2010). The maturing

of schizonts leads to the release of merozoites into the red blood cells. From this state onwards,

the patient becomes symptomatic. In addition, it is possible that some merozoites, do not repro-

duce asexually successfully, and generate gametocyte cells. In the case that a susceptible vector

bites an infectious host, the gamecytes are ingested by the mosquito, through the blood and the

development of the Plasmodium inside the vector is initiated (sporogonic cycle). The duration of

the sporogonic cycle is temperature dependent (Detinova, 1962). The sporogony inside the vector

undergoes the stages of producing a zygote and ookinete cells that enter the female mosquitos

oocyst and eventually, after the bursting of the cyst, the sporozoites reach the vector's salivary

gland. From that stage, the vector remains infectious until its death. A schematic representation

of the Plasmodium life cycle is given in Figure 1.13.

Figure 1.13: The cycle of the Plasmodium parasites inside the mosquito and inside the human
(Source: malwest.gr)

A graphical representation of an SEIR model applied for malaria is given in Figure 1.14 as taken

from Mandal et al. (2011). As it is shown, the Susceptible class is constituted by all the individuals

of the community and is also affected by demographic movement (births, deaths, immigration,

emigration). After the incubation period is completed, the infected individual becomes infectious
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and can transmit the disease. If the patient recovers from the disease, then moves to the Recovered

class, and thus, if immunity is not acquired, the person is re-located to the pool of Susceptibles.

Also, if the infection was caused by Plasmodium vivax or ovale, there might be a possible connection

from the Recovered class to the Exposed class, because these two Plasmodiums are known to cause

relapses of the disease, due to their dormant lying in the liver (Cogswell, 1992).

Figure 1.14: An SEIR model applied for malaria (taken from Mandal et al., 2011).

The modeling of the disease dynamics, requires that both groups are modeled as to their

infectious state. In both groups (vectors and hosts) an SEI and an SEIR model could be applicable.

Malaria transmission occurs either when an infected mosquito bites a susceptible human, or when

a susceptible mosquito bites an infectious human. Also, a difference between the two populations

is that an infectious vector remains so until its death, hence, there is no Recovered class in the

mosquitos compartmental model.
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1.6 Modeling the impacts of climate on malaria distribution

Modeling the climatic impacts on vector-borne diseases requires that all the various mechanisms

of the disease are studied and modeled effectively. This is achievable by primarily two possible suite

of models: the mechanistic models and the correlative models (Peterson et. al., 2017). In addition,

studies related to the spatial and temporal distribution of vector-borne diseases are either focusing

on the ecology of the pathogen itself or on the ecology of the vector responsible for transmitting

the pathogen to the miscellaneous hosts, or both.

A great challenge in ecology is the modeling of the ecological niche of a species. The term

ecological niche is used for the description of a multi-dimensional space that favors the viability

of a species and the maintenance of their population (Hutchinson, 1957). The ecological niche

models appear in the literature with different terms such as species distribution models, habitat

distribution models or climatic envelope models. Silero (2011), proposes the use of the term

ecological niche models, which better reflects the modeling of the suitable habitats, in contrary to

the term species distribution models, which alludes to the per se modeling of the species distribution

(which is extremely difficult and usually not possible). Sillero's proposed terminology is adopted

throughout the whole extent of the current work.

The theoretical establishment of the ecological niche theory was laid on the foundations set by

Joseph Grinnell in 1917 and by Charles Elton in 1927. In Grinnell's notion, the niche constitutes

a subset of the habitat that is governed by environmental conditions that are conducive to the

species survival and reproduction. Elton's perspective of the niche was rather systemic, as certain

species constitute a node in a complex food network and are a functional part of a community. In

Grinnell's opinion, the environmental conditions constitute a primary modulator in the formulation

of the species spatial distribution, while in Elton's view the interspecies interactions is the dominant

forcing factor of the species spatial distribution.

From a geographic perspective, the occurrence of a species over a region could be approximated

as a point pattern. A fundamental question that arises from observing the clustering (or no clus-

tering) of the occurrences (which translates to points, when a point pattern analysis is applied) has

to do with whether the causes of a certain point pattern type lies in the environment in which the

occurrences co-exist or whether it lies on the interactions between the occurrences (Hengl et al.,

2009). If the spatial phenomenon in concern is governed by changes in the mean field of a broad

scale environmental variable, then these interactions are classified as first order interactions. If the

phenomenon in concern is modulated by the spatial interactions between neighboring occurrences

of the same phenomenon, then these interactions are classified as second order interactions and

they display high spatial autocorrelation. Placing the ecological niche theory into a geographic

context, Grinnell's view can be interpreted as a first order interaction between species and the

environment, while Elton's standpoint fits better to a second order interactions. In most cases, the

reality amalgamates both kinds of interactions, hence it could be stated that the best ecological
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niche approximation is a combination of both Grinnell's and Elton's views.

Figure 1.15: A gradient of the different types of niches, moving from the more generic (left) towards
the more specific (right).

Types of Ecological Niches

An issue that has justifiably attracted a lot of attention in ecology and the study of species

distribution, is the identification of the kind of niche that it is possible to be studied and modeled, so

that the conclusions drawn based on the model outputs are in agreement with what it is actually

modeled (Sillero, 2011). In scientific literature there seems to be an overall consensus on the

existence of different kinds of niches, that could be possibly placed on a niche gradient (Figure

1.15). Moving from the more generic ones towards the more constrained ones, these are the niche

typologies that arise from the relevant literature: the fundamental niche, the potential niche, the

realized niche and the occupied niche.

The full geographic range of a region that is governed by environmental conditions suitable

for the species viability and reproduction constitutes its fundamental niche. Nevertheless, there is

a set of biotic and abiotic factors that hinder the species from occupying their full fundamental

niche, hence, the species in concern may be absent from regions that carry suitable environmental

conditions. The biotic and abiotic factors in action that oppose the full expansion of the species are

primarily due to biotic interactions such as competition, predation, symbiosis and parasitism and

due to geographical limitations such as the existence of mountainous barriers (Sillero, 2011) or the

land use change that can disconnect patches that function as suitable species habitats (Wiens et

al., 2009). The biotic constraints, such as species competition, limit the fundamental niche to the

realized niche, while if abiotic factors are also included, then there is a jump from the realized niche
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towards the occupied niche, which is even more constrained. The general notion of the occupied

niche is that it reflects in a more realistic way the actual geographic area that a species can be

found and most authors agree that the occupied niche is a subdivision of the realized niche, which

in turn is a subset of the fundamental niche (Figure 1.16). Nevertheless, according to Pulliam

(2000) it is possible that the realized niche can occupy a broader area than the fundamental niche,

due to species immigration. This theory, under the name Source-Sink theory, claims that suitable

habitats for a species can function as sources and unsuitable habitats as sinks and that there can

be a constant flow from the source regions towards the sink regions.

Figure 1.16: The BAM (biotic, abiotic, movement) diagram depicting what are the main reasons
formulating the spatial distribution of a species and the niche that results from the three kinds
(BAM) of niche modulators (adopted from Sillero, 2011).
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1.6.1 Correlative Ecological Niche Models

Ecological niche models are either correlative or mechanistic models that exploit the information

of a species observed location, in combination with information that characterizes the environmen-

tal profile in which the species are located. For correlative models the occurrence of a species

is related to the environmental information by statistical means, while in the case of mechanistic

models the relation built between species occurrences and environmental conditions is rather based

on phenological laboratory experiments (Silero, 2011). A seemingly widely accepted fact is that

correlative models are able to spatially predict the species realized niche (Silero, 2011). A species

fundamental niche can only be approximated by using mechanistic models, that are able to iden-

tify and build a mathematical (rather than a statistical) relationship that inherently describes a

causal relationship between the spatial distribution of a species and the environmental conditions

engulfing the distribution of the species in concern. Such an approach would be unaffected by the

number of data available (Silero, 2011), hence a mechanistic model is not empirically derived. As it

was mentioned above, mechanistic models seek to establish a causal relationship between the com-

ponents of the studied system, while correlative models seek to correlate the different components

of the same system. The difference between the two aforementioned approaches lies on the fact

that correlation does not necessarily translate to causality. Nevertheless, the observed correlation

can assist and educate the procedure of establishing a mechanistic relationship.

Ecological niche models are useful tools for a variety of applications related to conservation

and planning, spatial epidemiology and disease modeling, ecology, study of invasive species in new

geographic domains (Phillips et al., 2006) and the study and modeling of the potential impact of

climate change (Wiens et al., 2009) on species distribution and the risk that arises with respect

to the spread of infectious diseases. Concerning the response of certain species to climate change,

ecological niche models can provide an estimate of whether their current environment would be

suitable in the future for their maintenance and reproduction and if not, what are the regions that

would provide a suitable habitat that would enable the species to survive and have offspring. This

approach is based on the assumption that the environmental requirements of a species will remain

the same in the future and that the species will shift its ecological niche geographically, so as to

find a favorable environment in which it could be established. However, the species might also be

able to adjust in their current location to the new climatic conditions and not seek to shift their

niche or they could also go extinct (Wiens et al., 2009).

A question of primary interest in ecology and evolution is related to the spatial distribution of

species, that is strongly determined by the environmental regime in which the species in concern

are able to establish and reproduce, delineating their ecological niche. Nevertheless, the observed

niche that species occupy over a geographic region is usually a subset of the one that they could

potentially occupy, thus, there has been a distinction between the potential niche and the realized

niche. There is a plethora of factors contributing to the formulation and the differentiation between

the various kinds of niches such as the species biology, the spatial resolution in which the analysis

is carried out, the explanatory variables that are included in the modeling approach and the
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modeling method that is employed for the approximation of the niche (Sillero, 2011), therefore,

the differentiation of the various kinds of niches is not a straightforward procedure.
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1.6.2 Dynamical-Mechanistic Models

The occurrence and evolution of malaria can be characterized as a highly dynamic system, as

its status and progression may alter severely in the course of a short time. Also, the incidence and

the change over time of malaria could be potentially described as a chaotic system, as it displays

dependency on initial conditions. The initial conditions refer to the system constituted of the host

and the vector population and provides information on the proportion of infected humans and/ or

infected vectors, that contribute to the propagation of the disease. Furthermore, the evolution of

the system can be importantly affected by intervention measures, such as the usage of bed nets and

the application of vector control practices (spraying with insecticides etc.) (Tompkins and Ermert,

2013). Also, the response of a certain community to the emergence of malaria occurrence or to the

malaria risk of occurrence, may affect severely the disease dynamics. In addition, the progression

of malaria may also lie on factors inherently describing the characteristics of the host and vector

populations. For instance, different vectors species may rank in different scales of anthropophilicity

or zoophilicity, which is a metric describing vectors biting preferences in acquiring their blood meal,

but is also directly influenced by the availability of either humans or livestock. Concerning the host

population, not all people are equally attractive to vectors, yielding to a very differentiated spatial

distribution of bites, inside a relatively small district that could be regarded as homogeneous.

From the aforementioned it is evident that the way host and vector populations interact is highly

variable and any attempt of modeling this system would unavoidably introduce a large degree of

uncertainty.

The modeling of malaria dynamics is performed either by the development and application

of statistical or dynamical models (Tompkins and Ermert, 2013). Statistical models rely on the

regression of past cases to a suite of environmental covariates. Nevertheless, although statistical

models are very widely-applied for modeling malaria transmission, they display certain limitations

such as the fact that the model that is produced depends on a certain number of samples, which

may hinder the successful application of the model when the training data available are limited.

Also, models built for a very specific location, may not be applicable for locations with different

characteristics and geographic attributes. In addition, statistical models may display some inade-

quacy when daily or sub-daily variations of the disease are required (Tompkins and Ermert, 2013).

On the other hand, if the equations describing the evolution of a dynamic system (such as malaria

transmission) are known, then they can efficiently be used in a dynamical model to simulate, model

and forecast the transmission cycle (Tompkins and Ermert, 2013). The use of either models finds

application in studies related to the construction of an early warning system or on applications

related to the impact that climate and environmental change may have on the spatio-temporal

dynamics of the disease. In both applications the goal is that a better intervention and response

strategy may be designed and achieved. Despite the fact that both types of models carry their

own suite of advantages and disadvantages, the dynamical models are comparatively less applied

and studied. One dynamical model that was developed with the purpose of explicitly modeling
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the malaria dynamics is the vector-borne disease community model of the International Center for

Theoretical Physics, Trieste called VECTRI (Tompkins and Ermert, 2013).

VECTRI is a dynamical malaria model accounting for the impact of temperature, rainfall

and population density on the transmission dynamics of the disease (Tompkins and Ermert, 2013).

Some of the innovative applications of malaria modeling in VECTRI is that it treats and models the

host-vector interaction as a unified system, instead of treating the host and vector populations as

two different entities (Tompkins and Ermert, 2013). Also, the impact of climatic factors is explicitly

modeled. More specifically, the impact of temperature is modeled using the concept of degree days

that need to be completed in order for the Anopheles mosquito to proceed from one stage to

the next in its developmental cycle. Rainfall has a direct impact on the surface hydrology model

parameterized in VECTRI, that provides an estimate of the available temporary water bodies that

form after a rain episode and provide the necessary aquatic environment for oviposition and the

development of the aquatic stages of the mosquito. Also, the interaction between host and vector is

achieved by providing information on the population density. This layer of information can provide

a quantitative insight into what is the availability of blood meals for Anopheles mosquitoes. The

ability of VECTRI to model the host-vector dynamics system, enables the distinction between

malaria occurring in peri-urban and rural environments. The VECTRI model in its current set

up is parameterized to model the transmission of the Plasmodium falciparum parasite that is

transmitted through the Anopheles gambiae complex (Tompkins and Ermert, 2013). The current

tunning of the model is suitable for malaria occurring in regions of sub-Saharan Africa, but it

would require further tunning and calibration to model malaria that is caused by the Plasmodium

vivax parasite and is transmitted by other Anopheles species (Sinka et al., 2012).

Figure 1.17: Schematic representation of the VECTRI model.
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1.7 Dissertation Aim and Structure

The discussion concerning the potentiality of malaria transmission lies on several factors related

to the possibility of introduction of the malaria parasite in a naive population, the environmental

suitability for an effective malaria vector and the existence of socioeconomic factors that would

nurture the emergence or even re-emergence of the disease. In order for malaria to emerge, all

the three aforementioned aspects have to co-exist (Semenza, 2015). Such a research question is

multi-sectoral (Danis et al., 2013) and requires input from the fields of medicine and epidemiology,

climatology, geography and ecology. Each of the aforementioned sectors has to provide answers to

certain questions, that they themselves will function as input in a decision support system that

would enable the making of educated and data-driven operational choices (Semenza, 2015), in

order to avert malaria risk.

For the case of Greece where malaria was endemic until the 1960s (Danis et al., 2013), the

primary research goal would be to identify what are the various aspects in the malaria transmission

cycle that would cause a potential revival of the disease. Once these aspects are successfully

identified, then anti-malaria activities can be informed so as to break the transmission cycle. A

study carried out under the presence of re-emergent cases should ideally respond to what is the

measure of receptivity and vulnerability in the area of study (Danis et al., 2013). Receptivity refers

to the presence of a vector that is capable of transferring the disease and thus, receptivity lies on

climatic and ecological factors. On the other hand, vulnerability refers to the introduction or the

presence of the parasite in a community, that could be potentially transferred through the biting

activity of the vectors. In Danis et al. (2013) it is stated that:

There appears therefore ample space for the development of an integrated malaria vector control

action plan adapted to the disease transmission patterns and the ecological setting of Greece.

Therefore, the four main question that the current dissertation aims to investigate are the following:

1. What is the ecological setting of Greece favoring the occurrence of An. Sacharovi (what is

its ecological niche)?

2. What is the spatial outline of receptivity of malaria over Greece?

3. How would a dynamical malaria model reproduce malaria activity in Greece?

4. How could a dynamical malaria model be calibrated for An. Sacharovi?

In Chapter 2 of the current document, the data that were used in the current analysis are

presented. Chapter 2 is divided in four main subsections. The first subsection is referring to the

climatic data used, the second subsection is referring to all the various geographic data used and

the third and fourth subsections are referring to the mosquito and malaria data used, respectively.

In Chapter 3 the methodological approach of the current analysis is presented. Chapter 3 is

also divided in two subsections and these are: the methodology of the correlative ecological niche

models and the methodology of the VECTRI model. In Chapter 4 the results are presented and

in Chapter 5 an overall discussion and criticism of the analysis is presented and the next research

questions are delineated.
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Chapter 2

Data

2.1 Climatic Data

2.1.1 Regional Climate Models

The current state-of-the-art tools in climate science is the use of climate models, which are math-

ematical representations of the atmosphere, simulating the known dynamic and thermodynamic

processes that govern the atmosphere in its entirety (Neelin, 2011). The fundamental question

that climate models were initially trying to address, was how would the energy equilibrium of

the climatic system be altered in a changing climate. The tools that were originally used for this

purpose were the Global Circulation Models (GCMs) that provided a crude representation of the

state of the atmosphere. Nevertheless, as time proceeded and the knowledge concerning climate

change became more solid, the questions of the global climate research community became more

specific and the requirements of the end-users became more refined, hence the need for a more

detailed representation of the climate arose. This evolution in the knowledge and the mechanics of

the climate system lead from the use of GCMs to the development of the Regional Climate Models

(RCMs). RCMs allow for the use of climatic information in a great variety of impact studies,

extending from agriculture and forestry, to renewable energy sources, sustainable development in

urban planning and studies of health impact. Of course, RCMs do not replace GCMs, but they

rather provide an added value in climate research.

The transition from GCMs to RCMs required the development of methodologies that would

efficiently allow for the downscaling of the initial information contained in GCMs to a finer spatial

resolution. For this purpose, two basic methodologies were developed and applied: the statistical

downscaling and the dynamical downscaling techniques. The dynamical downscaling techniques

translate the climatic conditions calculated and contained in a coarser resolution grid to an RCM

that is correctly nested and located into the coarser resolution grid (Neelin, 2011). The RCM

receives the information of the dynamic and thermodynamic state of the atmosphere from the

parent domain and re-solves the fundamental equations describing motion and energy in the inner

domain of concern. In the case of dynamical downscaling, the performance of the nested RCM is

highly dependent on the quality of the lateral conditions received from the parent domain (Laprise

et al., 2008, Laprise et al., 2012), and hence, a lot of effort is put on providing accurate and
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detailed information as initial conditions to drive an RCM. The initial conditions can be provided

by a GCM or by other products such as reanalysis datasets. Reanalysis datasets have undergone

the process of data assimilation and are considered to be the most accurate representation of the

past and current state of the atmosphere (Dee et al., 2011). When reanalysis data are used as

forcing fields of a climate experiment over a limited area, then this experiment is regarded as an

experiment performed in a perfect boundary setting (Giorgi and Gutowksi, 2015).

Perfect boundary experiments are used in hindcast simulations that aim to identify the bias

that is due to the RCM used (and not the bias due to the forcing fields used in the experiment),

so that the performance of the model can be assessed for a past period, for which the climate has

already occurred and thus, observational datasets are already available. Once the performance of

RCMs is assessed, then they can be used for future studies that investigate the spatio-temporal

patterns of climate change. Also, the miscellaneous hindcast experiments can effectively inform

the procedure of producing a model ensemble of many RCMs, so that the uncertainty of the final

product can be minimized (Pavlidis, 2015). This procedure is especially useful when the use of

climate information aims at guiding decision making and planning. From the aforementioned it is

shown that dynamical downscaling experiments is a rapidly growing field of increasing importance

and hence, there is a need for a coordinated application of such techniques.

This need in the field of climate research is met by the Coordinated Regional Climate Down-

scaling Experiment (CORDEX) which aims at organizing and regulating simulation experiments,

downscaling climatic information to RCMs (Giorgi and Gutowksi, 2015). More specifically, the

CORDEX initiative provides a common temporal and spatial context for downscaling experiments

and also regulates the various methods through which the simulations are performed, along with

the evaluation techniques employed (Giorgi et al., 2009). The spatial resolution of the CORDEX

experiments are performed on grids of 0.11 degrees, 0.22 degrees or 0.44 degrees which corresponds

to an approximately 12 km, 25 km and 50 km spatial resolutions respectively. Also, within the

CORDEX experiment, both multi-model and multi-physics experiments are conducted (Kotlarshki

et al., 2014, Katragkou et al., 2015).

For the current analysis, the output of 8 RCM hindcast model simulations was employed (Table

2.1), that were run for the EURO-CORDEX domain on a 0.11 degrees spatial resolution and covered

the standard hindcast period from 1990 to 2008. The model runs were forced with the ERA-Interim

reanalysis data and were made available on a daily timestep.

2.1.2 WorldClim Dataset

The WorldClim dataset is a global climatology product referring to the period 1950-2000. It

is derived using station data assembled in large data repositories which are spatially interpolated

using the splines interpolation method. The spatialization of the point data is assisted using

the elevation derived from the SRTM DEM. The variables that are produced in the WorldClim

project are minimum, maximum and mean monthly temperature and total monthly precipitation

(Hijmans et al., 2005), while the second version of the WorldClim project also included solar
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Table 2.1: The suite of Regional Climate Models employed in the current analysis, along with the
information concerning the institutes that developed the models and the institutes that run the
models.

Model Model Run by: Model Developed by:

ALADIN53.v1 Centre National de
Recherches Mtorologiques

Centre National de Recherches Mtorologiques

CCLM4-8-17.v1 Climate Limited-area
Modelling Community

Climate Limited-area Modelling Community

HIRHAM5.v1 Danish Meteorological
Institute

Danish Meteorological Institute

RACMO22E.v1 Royal Netherlands Mete-
orological Institute

Royal Netherlands Meteorological Institute

RCA4.v1 Swedish Meteorological
and Hydrological Insti-
tute

Swedish Meteorological and Hydrological Institute

RegCM4-2.v1 Meteorological and Hy-
drological Service of
Croatia

International Centre for Theoretical Physics

REMO2009.v1 Helmholtz-Zentrum
Geesthacht, Climate Ser-
vice Center, Max Planck
Institute for Meteorology

Max-Planck-Institut fr Meteorologie

WRF331F.v1 Institut Pierre Simon
Laplace/Institut National
de lEnvironnement In-
dustriel et des Risques
(IPSL- INERIS)

National Center for Atmospheric Research

radiation, vapour pressure and wind speed (Fick and Hijmans, 2017). The gridded surfaces are

available on a 1 km spatial resolution. The WorldClim is a widely-used dataset in ecological niche

modeling studies. The climatic variables of minimum, maximum monthly temperature and total

monthly precipitation were also utilized (along with the ensemble mean of RCMs described in the

previous section) for the calculation of the 19 bioclimatic variables, used as input in the ecological

niche modeling by means of employing correlative models.

2.1.3 Bioclimatic Variables

The bioclimatic variables used in the current analysis were derived from the WorldClim database,

where minimum and maximum mean monthly temperature, along with total monthly precipita-

tion were utilized for their calculation. The worth of calculating bioclimatic variables, instead of

using the initial climatic variables per se, lies on the fact that the bioclimatic variables obtain

a biological-ecological-environmental meaning that allows their use in various studies concerning

applied climatology.

The whole suite of the available variables consists of 19 bioclimatic variables (available through

the WorldClim website) that utilize temperature and precipitation in order to construct variables

related to the mean, variance and extremes of temperature and precipitation. Furthermore, a

30



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Impact of climate variability on mosquito occurrence and malaria transmission in Greece

subset of the bioclimatic variables combine both temperature and precipitation in one variable

(eg. mean temperature of wettest quarter). In addition, the bioclimatic variables refer either

to yearly values (eg. annual precipitation) or to monthly values (eg. minimum temperature of

warmest month) or to certain quarters (eg. mean temperature of coldest quarter - quarters refer

to a three-month period). In the current analysis quarters were selected over singular months,

because the available vector data usually cover the summer months. In the Figures below, the

selected bioclimatic variables that were exploited in the ecological niche modeling by means of

correlative models are presented.

The bioclimatic variables were selected meeting both quantitative and qualitative criteria. Con-

cerning the quantitative criteria, a detailed listing of those is presented in the Methodology Chapter

following. Concerning the qualitative criteria, those were the product of discussion with individuals

with expert opinion in the field of vector biology and control, concerning the parameters that are

potentially driving the activity of Anopheles mosquitoes.
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(a) Bio 2 (b) Bio 4

(c) Bio 10 (d) Bio 18

Figure 2.1: The bioclimatic variables used in the ecological niche modeling by means of correlative
models (the variables are calculated using the WorldClim dataset, equivalently the same variables
were also calculated using the RCM ensemble mean).
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2.2 Geographic Data

2.2.1 Digital Elevation Model

The surface topographical characteristics are provided through a Digital Elevation Model

(DEM) that contains values of topographical elevation on a grid. DEMs are usually derived from

satellite products or from interpolation techniques, where points of known (measured) altitude are

spatialized. The spatial resolution of such products is normally high, ranging from a couple of

hundred of meters to a couple of tens of meters. In the current analysis, the Shuttle Radar Topog-

raphy Mission (SRTM) is employed, with a spatial resolution of approximately 92 m in the area

of the Equator and approximately 85 m in the area of interest (Greece) (Farr et al., 2007). The

SRTM project was a collaboration between NASA, the National Geospatial Intelligence Agency,

and the German and Italian Space Agencies. The Shuttle operation scanned the whole globe on

the February of 2000 and the technique employed for data acquisition was the Interferometric

Synthetic Aperture Radar (InSAR) where a dual polarization radar scanned the Earths surface in

order to obtain terrestrial height (bathymetry estimations are not included) measurements (Farr et

al., 2007). The SRTM dataset is widely-used among a plethora of applications and also used for the

derivation of surface derivatives such as slope, aspect and curvature in standard GIS applications.

The elevation map of Greece is depicted in Figure 2.2.

After remapping the DEM file to the WorldClim grid, the elevation values range from 0 to 2709

m. Also, as it is shown in Figure 2.3, the majority of pixels (60 %) belong to areas where the

elevation is less than 500 m, while the remaining 40 % is constituted of pixels describing elevations

higher than 500m, with a decreasing frequency as the elevation increases. For instance, 13 % of the

pixels describe elevations greater than 1000 m, 3 % of the pixels belong to elevations greater than

1500 m and only 0.3 % of pixels characterize elevations greater than 2000 m. From Figures 2.2

and 2.3 it becomes evident that the area of interest is dominated by a topographical variety, which

eventually has an impact on the climatic regimes and furthermore, it can function as a potential

geographical barrier in the expansion of species.

The DEM file was also used for the derivation of the slope and aspect maps. Slope can be

defined as the rate of change of the elevation and it is the first derivative of the DEM file. For

its calculation, Horns algorithm was employed, which utilizes a 3x3 pixels neighborhood around

every pixel in concern. The 3x3 neighborhood scans the whole study region as a moving window

and eventually produces the slope file, measured in degrees. Concerning the aspect map, it uses

slope as input and calculates the orientation of the slopes. The aspect map is outputted in a scale

from 0 to 360 degrees, where 90 degrees is placed on the North, 180 degrees is placed on West, 270

degrees is placed on the South and 360 degrees is placed on the East. This scale represents aspect

values starting from the east and progressing counterclockwise. Slope and aspect were calculated

in GRASS GIS v7.0.
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Figure 2.2: Elevation derived from the SRTM dataset over the study area.

Figure 2.3: The histogram of the elevation file over the study area.
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2.2.2 Population Dataset

Population density data display usefulness in many impact applications related to human pres-

ence. Population information is usually acquired through census campaigns that are administered

by national governments and normally carried out every 10 years. Nevertheless, these data refer to

administrative areas that are of various geographic expands and irregular shapes and sizes, which

makes them inappropriate for spatial studies that require gridded data. The use of areal data on

studies that require spatialized data is known to cause the ecological fallacy issue, which assigns

the value of the corresponding areal polygon (eg: a polygon delineating an administrative unit)

to all the underlying pixels that belong to each respective administrative unit, creating a spatial

artifact.

A common practice for dealing with the aforementioned issue is the use of covariates (such as

satellite products), in order to spatially disaggregate census data and estimate population density

in a grid cell. Other approaches have employed the use of CLC 2012 urban classes, in order to

spatialize census data (Gallego 2010). The population data used in the current study are taken

from the Socioeconomic Data and Application Center (SEDAC) operated by NASA. The dataset

is termed as the Global Rural-Urban Mapping Project (version 1) (GRUMPv1) and it is derived

from the Gridded Population of the World (version 3) dataset (GPWv3) (Balk et al., 2005). The

GRUMP dataset has a spatial resolution of approximately 5km in the Equator and refers to data

corresponding to 2000. The dataset describes population density. For its construction, both census

and satellite data were employed (Balk et al., 2005).

Figure 2.4: Population density over the study region.
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2.2.3 Distance to Water-Covered Areas

As it has been extensively discussed in Chapter 1, the biology of the Anopheles mosquitoes

includes three aquatic stages, hence, the presence of available aquatic environments is of vital im-

portance for mosquito occurrence and survival. Nevertheless, the aquatic environment must occupy

a relatively small expanse, in order to accommodate efficiently the eggs of Anopheles mosquitoes.

Also, in limited area water bodies, there is absence of predators and thus, the survival probability

of the eggs increases. From the aforementioned, the knowledge of where are the water-covered

areas located can yield important information concerning the potential presence of mosquitoes

and can serve as a strong determinant of environmental suitability. In the current analysis, this

information was extracted from the Coordination of Information on the Environment (CORINE)

Land Cover (CLC) database.

The CLC initiative is an effort of the European Union to map the European land cover land-

scape. It originated in 1985 under the auspices of the European Commision, until 1994 when

the CLC program came under the administrative responsibility of the European Environmental

Agency (EEA). CLC contains 44 land cover classes that are produced by the Eionet network Na-

tional Reference Centers Land Cover (NRC/LC). Until the present day, there have been four CLC

versions. The last CLC (termed as CLC 2012) is included in the Copernicus Land Monitoring

Services. The CLC spatial resolution is defined using the Minimum Mapping Unit (MMU) which

is equal to 25 hectares for areal data and 100 meters for linear data. The CLC database is mainly

constructed by means of visual interpretation of satellite images with high resolution, however,

there are some countries that apply semi-automatic classification methodologies. Whichever the

classification methodology applied, the CLC database is a satellite bi-product and widely recog-

nized as a land cover database. Nevertheless, the 44 classes contained in the database integrate

both land cover and land use classes resulting to the mistaken interchangeable use of the terms

(land use and land cover). Nonetheless, because CLC is a satellite-derived database, the term land

cover is adopted and regarded as the correct term. Briefly, the CLC versions are presented in the

following table:

Table 2.2: The Corine Land Cover missions and characteristics.
CLC1990 CLC2000 CLC2006 CLC2012

Satellite data Landsat-5 MSS/TM Landsat-7 ETM SPOT-4/5 IRS P6 LISS III
Time consistency 1986-1998 2000 +/- 1 year 2006+/- 1 year 2011-2012

Geometric accuracy ≤ 50m ≤ 25m ≤ 25m ≤ 25m
Min. mapping unit 25 ha/ 100m 25 ha/ 100m 25 ha/ 100m 25 ha/ 100m

The CLC 2012 dataset was retrieved from the website of the National Cadastre and Mapping

Agency S.A. in a polygon vector file in the Greek Geodetic Reference System (EPSG: 2100), but

was reprojected to the World Geodetic Reference System (EPSG: 4326) for consistency reasons

with the other spatial covariates. The classes that were extracted from the initial set of the 44

classes were the following: Permanently irrigated land (code: 212), Rice fields (code: 213), Inland
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Figure 2.5: Water-covered areas extracted from CLC 2012.

marshes (code: 411), Peat bogs (code: 412), Salt marshes (code: 421), Salines (code: 422), Water

courses (code: 511), Water bodies (code: 512).

From all the aforementioned classes, only the class with code 412 was not found to be present

over Greece and was excluded from the analysis. In the current project, the water-covered areas

were not used directly as input to the set of the covariates, but their distance to the rest of the

geographic space was calculated and used instead. For this purpose, all the aforementioned classes

(except of peat bogs) were spatially aggregated and were treated onwards as a single spatial feature

(a polygon shapefile). The shapefile was rasterized in a 1km x 1km spatial resolution and the

geodetic growing distance was calculated. Nevertheless, it is known that mosquitoes can fly up to

a certain distance, hence it would be neither useful nor correct to introduce the geodetic distance

directly into the ecological niche models. For this purpose, there was a scaling of the derived

surface using an exponential function, so that from a threshold distance and beyond, the existence

of water-covered areas would be insignificant. The relation that was used was the following:

ScaledDistance = e−
distance

τ (2.1)

In the relation given above, the τ parameter is set equal to 5 km, because it is considered

that this is a reasonable median distance up to which mosquitoes can fly. However, when the

ecological niche modeling was carried out using the EURO-CORDEX ensemble which is available

in an approximately 12 km spatial resolution, the scaling to 5 km would yield distances that the

EURO-CORDEX grid would be unable to capture efficiently. Hence, a second scaled distance

is derived where the τ parameter is set equal to 15 km for the ecological niche modeling that

uses bioclimatic variables derived using the EURO-CORDEX ensemble. The resulting surfaces are

depicted in Figures 2.6 and 2.7. As it is shown, the scaling to 15 km results to a relatively more

generalized pattern, nevertheless, in both scalings one can discern the shape and location of the

water-covered areas as depicted in Figure 2.5.
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Figure 2.6: Distance to water-cover areas scaled to 5 km distance.

Figure 2.7: Distance to water-cover areas scaled to 15 km distance.
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2.3 Mosquito Data

A fundamental requirement for ecological niche modeling by means of correlative models is the

existence of presence/absence data. For the current analysis, these data were made available by

Ecodevelopment S.A., a private company which is located in northern Greece, that operates in the

area of mosquito control and precision agriculture. For the purpose of mosquito control applica-

tions, a wide network of mosquito traps is maintained through mainland Greece and measurements

of mosquito abundance are usually carried out weekly or biweekly. The sampling campaigns usually

extend through the whole period of vector activity, which is mainly from May until early October.

The companys mosquito sampling network is primarily constituted of 4 sub-networks with different

spatial coverages, and in some cases different sampling methodologies are applied (CO2 traps and

human bait traps). Also, in some networks the entomological analysis is carried out on a species

level, while on other networks the analysis is performed on a genus level. For the present analysis,

it was required that the spatial coverage of the stations had the largest possible extent and also,

that there was available information on a species level. Also, because the original data described

species abundance, it was required that abundance measurements were efficiently translated to

presence/absence data. The original data comprised of 106 stations sampling from May of 2011

until September of 2011 and of 26 stations measuring from April of 2016 until September of the

same year.

An issue that arose from the fact that the mosquito traps were normally sampled more than

once throughout the course of the available time-series, is that certain stations recorded presence

of the species in concern for some dates, while on other dates, no species was observed for the

same trap (Figures 2.8 and 2.9). Nevertheless, the fact that even once a presence was recorded in

a trap, it was regarded as a sufficient factor so that this trap would be classified as a ”Presence”

station. This approach constituted of characterizing a station as a ”Presence” station if at least one

measurement in the available time-series included a presence. Due to the spatial structuring of

the initial network, in which there is an increased clustering of traps in North-central Greece, it was

necessary that a second approach would be developed, that would allow for the ”declustering” of the

initial network. This approach made use of the stations that measured abundances => 1. Stations

that measured high abundance and were relatively the most remote ones were selected for the

Presence network, while stations in small distances that measured small abundances were omitted

from the network. The distance criterion is very important, because it provides an indication

of how clustered the network is. For applications such as ecological niche modeling by means

of correlative models, it is necessary that the presences are not highly clustered, because that

would introduce a sampling bias in the analysis and the suitability of that specific region would

erroneously be overestimated. On the other hand, not too many stations must be excluded from

the analysis because that would have a direct impact on the validity of the model output. The

network of presence and absence data that was eventually used for building the correlative models

is presented in Figure 2.10.
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Figure 2.8: Number of presence records in every station.

Figure 2.9: Number of absence records in every station.
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Figure 2.10: Number of absence records in every station.
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2.4 Malaria Data

Malaria data were made available by the Hellenic Center for Disease Control and Prevention

(HCDCP) and they refer to the period 2004-2015. The original data received, contained informa-

tion concerning the Plasmodium kind, the date of the reported start of the symptoms, the date

of the hospitalization (in the case that the patients were hospitalized), the date of the treatment

start, the municipality of residence and a classification of whether the incident was imported or

indigenous.

The primary Plasmodium kind of indigenous cases was Plasmodium vivax, while in 2010,

a Plasmodium falciparum incident was reported (HCDCP report, 2011) in the area of Attiki

(Marathonas). Although there is an observed malaria activity from 2004, the indigenous cases

were observed from 2009 onwards 2.11. The greatest number of incidents was observed during

2011 (37 cases). The cumulative spatial distribution of all Plasmodium kinds for both imported

and indigenous cases is presented in the Figures 2.12.

Figure 2.11: Number of malaria cases in Greece, for the period 19752010 (Vakali et al., 2012).
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(a) 2004 (b) 2005

(c) 2006 (d) 2007

(e) 2008 (f) 2009

(g) 2010 (h) 2011
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(a) 2012 (b) 2013

(c) 2014 (d) 2015

Figure 2.12: Malaria incidents reported for the period 2004-2015 by HCDCP (all Plasmodium
kinds depicting the accumulated number for both indigenous and imported cases).
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Chapter 3

Methodology

3.1 Construction of Bioclimatic Variables

The bioclimatic variables used in the current analysis were derived from the WorldClim database,

where minimum and maximum mean monthly temperature, along with total monthly precipitation

were utilized for their calculation. In conjuction, another set of bioclimatic variables was created,

using as input the RCM model runs obtained from the ESGF database. The variables used were,

likewise, minimum temperature (tasmin), maximum temperature (tasmax) and precipitation (pr).

All RCM models were used in an ensemble and the ensemble mean of the three aforementioned

variables was utilized for the construction of the 19 bioclimatic variables. A subset of the 19

bioclimatic variables was used as input in the ecological niche modeling by means of correlative

models.

3.2 Variable Selection

An issue of primary concern when constructing correlative models is the cautious and mean-

ingful selection of the suite of variables that will function as auxiliary parameters in the modeling

process. Such variables need to have a physical correlation with the dependent variable that is

modeled, so that the constructed model will have some explanatory capability. In addition, it is

important that the variables used as explanatory will not be correlated among themselves (presence

of collinearity). For this purpose in the current analysis, the Spearman correlation was calculated

for the whole suite of variables (the whole suit of variables is constituted by the 19 bioclimatic

variables contained in the WorldClim database, along with elevation, slope, aspect, population

density and distance to water-covered areas). The range of values for Spearman correlation varies

from -1 (for strong negative correlations) to 1 (for strong positive correlations). The Spearman

correlation is given by Equation 3.1:

rs = 1− 6
∑
d2

n(n2 − 1)
(3.1)

where n stands for the number of observations. The Spearman correlation was selected instead of

Pearson correlation, because the variables in concern were not linearly correlated among themselves.
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For the six variables that were eventually selected, a limit of 0.8 (or -0.8) was considered as

the threshold above (or below) which the variables were considered correlated. Of course, this

threshold is relatively arbitrary, but nevertheless it secures that strongly correlated variables will

not be used as explanatory variables. However, besides the quantitative criteria that were set, the

expert knowledge of Ecodevelopment S.A. (the private company that provided the mosquito data)

was also utilized, so that the selected variables would have a biological meaning on formulating

the distribution of An. sacharovi. In Figure 3.1 the correlation matrix of the six variables that

were eventually used is depicted. The correlations were calculated on a 0.95 confidence level. The

matrix presented below is symmetric. The non-statistically significant correlations were crossed

out.

Figure 3.1: Spearman correlation for the 6 auxiliary variables used in the correlative ecological
niche models.

46



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Impact of climate variability on mosquito occurrence and malaria transmission in Greece

3.3 Correlative Ecological Niche Modeling

Model Requirements

A basic requirement in ecological niche modeling is the availability of georeferenced data of

where certain species have been observed. This data are widely termed as presence data. In

addition, an important amount of information can be also inferred not only from where the species

have been observed, but also from which locations the species was absent (hence, absence data).

Both presence and absence data are complimentary one to the other and they co-function so as to

provide a more coherent picture of what is the actual distribution of the species. Also, inherently

in the presence and absence data lies the information of biotic and abiotic constraints that affect

the observed species distribution, therefore, they produce an acceptably realistic view of the actual

realized or occupied niche. Another important aspect, is that the number of presences and absences

is able to modify severely the final outcome of the niche modeling procedure. Also, the spatial

structure of the sampled locations can introduce a sampling bias in the niche modeling (Silero,

2011), highlighting the importance of a well-planned sampling methodology in the field, that is

systematically designed so as to address very specific scientific questions.

Regardless of the importance of the absence data, in many cases this information is not available

(Phillips et al., 2006). A proxy solution to this issue is the construction of a set of pseudo-absence

data (pseudo from the greek word pseudo which means falsely or counterfeit), that represent areas

where the species is most probably absent. The definition of the pseudo-absence data can be either

determined by the random sampling of an n number of points on geographic space or by using a

more sophisticated criterion that provides a higher level of confidence. The latter approach can

be defined either by setting a minimum distance from observed presence locations, or by using

the statistical distribution derived from presence data and using this same distribution to allo-

cate pseudo-absence data in unsuitable locations. Nevertheless, no matter how sophisticated the

pseudo-absence data definition is, there is always a risk that the pseudo-absences are placed over

locations carrying suitable environmental conditions for the species in concern (Silero, 2011). In ad-

dition, there have been developed certain niche modeling methodologies that exploit only presence

data and they have no use either for absence or pseudo-absence data. In the current analysis, 1000

pseudo-absence points were used and placed randomly at least 30 km away from presence locations.

Model Uncertainty

Ecological niche models, as all models, attempt to describe a realization of the reality and

because reality is way too complex from what a model is able to capture, the modeling approach

is possible only by means of applying simplifications and generalizations on what the model per-

ceives as a reality. The assumptions and simplifications applied comprise an inevitable source of
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uncertainty. If the output of the ecological niche models is to be used operationally for planning

and decision making, it is important that the uncertainty inherent in the models is quantified,

and also, that the exact source of uncertainty is identified (Wiens et al., 2009). The uncertainty

introduced in ecological niche modeling can be classified into four main categories: Uncertainty in

the explanatory variables used, uncertainty in the niche modeling algorithm applied, uncertainty

in the field observations of species presences and absences and uncertainty related to the spatial

scale in which the analysis is carried out (Phillips et al., 2006; Wiens et al., 2009).

3.3.1 Maximum Entropy

The Maximum Entropy (Maxent) algorithm is a machine learning methodology that aims at

applying a robust statistical inference, based only on the available information, which is usually

incomplete and fragmented (Phillips et al., 2006). Maxent was first applied in ecology in 2006

by Phillips et al., but before that, it was and still remains a data mining algorithm with various

applications in astronomy, image processing, statistical physics etc. (Phillips et al., 2006). The

basic concept of Maxent is that it utilizes the probability distribution of maximum entropy, in order

to produce an estimation of the target probability which is unknown, due to the fact that the prior

information is incomplete. The probability distribution of maximum entropy is influenced by

certain constraints that provide a proxy for the incomplete knowledge that affects the application

in concern (in the current case: the ecological niche of a certain species). These constraints are

constituted by a set of environmental variables called features, that formulate and affect the target

distribution. As an ecological niche modeling methodology, Maxent uses the locations of where the

species in concern has been observed, accompanied by information that describes the environmental

conditions observed in the same locations.

The big challenge in applying the Maxent algorithm is how can an unknown distribution be

approximated. Jaynes (1957) provided the answer to the aforementioned problem, which eventually

became the cornerstone of the Maxent approach: firstly, the unknown distribution can only be

approximated by using information on what are the constraints imposed on that distribution

and secondly, under those constraints the unknown distribution should acquire maximum entropy

(Phillips et al., 2006). The entropy of the probability distribution is given by the following equation:

η(π̂) = −
∑
x∈X

π̂ ln π̂x (3.2)

where:

π : The unknown probability distribution

X: The set of pixels in the study area

The quantity H is non-negative and the maximum number it can acquire is the natural log of the

number of pixels contained in the study area (X), hence, it can be seen that the geographic extent

of the area in which the algorithm is applied, along with the spatial resolution of the constraint
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features are able to greatly affect the model output. Generally, it can be stated that the higher

the entropy, the more constrained is the process modeled. As stated by Jaynes (1990):

The fact that a certain probability distribution maximizes entropy subject to certain constraints

representing our incomplete information, is the fundamental property which justifies the use of

that distribution for inference; it agrees with everything that is known but carefully avoids

assuming anything that is not known.

Maxent is a widely used methodology in ecological niche modeling and this is due to numerous

reasons. Firstly, it requires presence-only data, a fact that makes Maxent easily applicable to all

sampled datasets, since the lack of absence data is not uncommon and becomes a severe hindrance

to the application of other ecological niche modeling methods that require absences (apart from

presences). The set of presence data along with a set of spatialized environmental information

(which can either be of continuous or categorical nature) are sufficient for the application of the

algorithm. Secondly, there have been developed certain deterministic algorithms that secure the

convergence to the maximum entropy probability distribution. Also, the maximum entropy distri-

bution has a well-defined mathematical profile which is valuable in the analysis process. Thirdly,

by the fine-tuning of the l1-regularizations one can avoid the over-fitting of the model to the data.

Also, the model output is continuous and produces a scaled habitat suitability from 0 to 1, which

is much more flexible than a binary output that results in a surface that is characterized either

by 0 (unsuitable) or 1 (suitable) (Phillips et al., 2006). In addition, there are several ways one

can apply the Maxent algorithm such as: The MaxEnt Software (v3.4.1), the biomod2, maxent or

dismo packages in R, or by using the QSDM python plugin in QGIS.

Nevertheless, Maxent carries along some disadvantages which are mainly due to the fact that

it is a generally new methodology (compared to regression models) and hence, the theory behind

its correct application is limited (Phillips et al., 2006). Also, an important drawback in Maxent,

arises from the fact that the user-friendly platforms that have been developed for its easy and quick

application, have resulted to an extremely wide use of the algorithm using some default set values.

It is common in recent studies that model the ecological niche of various species, that the default

values are used with no further investigation of what their impact on the final model output is.

3.3.2 Generalized Linear Models

A very basic and common practice in statistics when there is a set of explanatory variables

on which a random variable is dependent on, is the application of a regression model. There is a

wide suite of regression models in statistics that range from very simplistic to more sophisticated

models and their applicability depends upon the research question in concern. The main attributes

that differentiate the various regression models with regards to their complexity is whether or not

they allow for a non-gaussian distribution in the response variable, whether or not they allow for

non-linearity in the explanatory variables and also, what are the main assumptions they make

concerning the distribution of errors and their linkage to the mean.
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One of the fundamental regression models in statistics is the General Linear Model, which

assumes that a response variable y is a linear function of a set of predictor variables, so that:

y ∼ N(µ, σ2) (3.3)

µ = b1x1 + b2x2 + ...+ bnxn + b0 (3.4)

With y being the response variable, µ the mean field, σ2 the variance, and the various x are

the predictor variables. This kind of models are characterized as ”General” because they allow

for more that one predictor variables to be included in the model (in contrary to the simple linear

models). In the General Linear Model described above it is assumed that the response variable

y follows the normal distribution and that the errors are not correlated. In the present case, the

response variable y is the habitat suitability for the occurrence of An. sacharovi mosquitoes and

the covariates in the model do not bear a gaussian form, hence General Linear Models could be

characterized as unfit for the current analysis, due to their assumptions.

The aforementioned deficiencies are dealt by the use of Generalized Linear Models (GLMs),

which can be characterized as an extension of General Linear Models. One of the primary advan-

taged of GLMs is that they do not lie on the assumption that the response variable is normally

distributed. GLMs also assume that the explanatory variables are linearly related to the response

variable. In addition, a structural element of a GLM is a probability distribution describing the

response variable. The probability distribution must belong to the exponential family of distribu-

tions, that have the following probability density function:

p(yi, λi, φ) = exp(
yiλi − b(λi)

φ
) + c(yi, φ) (3.5)

The parameter λi is the canonical parameter that depends on the explanatory variables and φ

is the dispersion parameter which is normally equal to 1 when the probability distribution used is

either the Poisson or the Binomial. In the current analysis, since the response variable is of binary

nature (presence-absence/pseudo-absence records) the most suitable probability distribution is the

Binomial.

In the case of modeling binary data employing the binomial distribution, the response variable

Yi can be approximated as:

Yi ∼ Binomial(ni, pi) (3.6)

The property that it is desired to be modeled is pi = Yi
ni

which is defined as the ration of the

hits in n independent Bernoulli trials. The mean value and the variance of the pi variable are

defined as following:

E(
Yi
ni

) = pi (3.7)

for the mean and
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var(
Yi
ni

) =
1

ni
pi(1− pi) (3.8)

for the variance

Apart from the probability distribution, the second structural element that a GLM carries, is a

monotonic link function that provides a description concerning how the mean relates to the linear

predictor. For the binomial distribution, a typical link function is the logarithmic link function:

g(µi) = logit(µi) = log(
µi

1− µi
) (3.9)

where µi refers to the mean value of the response variable Y.
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3.3.3 Generalized Additive Models

Generalized Additive Models (GAMs) can be considered as an extension of GLMs. The main

characteristic that differentiates GAMs from GLMs is that GAMs allow for a non-linear relationship

of the predictor variables, that basically utilizes a smooth function that is estimated from the data.

The parameters calculating the smooth function are simultaneously estimated for all the predictors

and then added (hence: additive). An issue that arises from using a smooth function is how this

smooth function will be defined (what will the parameters of the spline be) and also, how smooth

will it eventually be. GAMs can be characterized as models with high plasticity, which makes them

suitable for fit to data with complex structure. Nevertheless, a basic drawback of such a case, is

that GAMs are very easily over-fitted to the data. The general structure of a GAM model is the

following:

gµi = xiθ + f1(x1i) (3.10)

where µi ≡ E(Yi) and Yi is modeled using a distribution that belongs to the exponential family of

distributions. Yi is the response variable, fj are the smooth functions used for each predictor and

x are the predictors that compose the model.

3.3.4 Classification Tree Analysis

Classification Tree Analysis is a machine learning algorithm that aims to provide a relationship

between a response and various explanatory variables, in order to classify the variable in concern,

according to certain constraints. The constraints are provided by the predictor variables that are

used in the decision tree. The decision tree can either be categorical or a regression tree (if the

variables contained are continuous).

3.3.5 Random Forest

The random forest method for ecological niche modeling is classified among the machine-

learning algorithms and it comprises an extension of classification trees, in the sense that it uses

many classification trees (instead of a single tree) and thus, creates a forest (hence the name ran-

dom forest). Eventually, the final model combines the best predictions from all the trees (Cutler et

al., 2007). The algorithm is based on randomly bootstrapping the original data, which in the case

of ecological niche modeling are the predictor variables, for every node of the forest. The nodes

of the forest, in the current analysis, are comprised by the set of absence records. The predictor

variables that provide the best model for a certain node are retained.

The structure of a random forest consists of a root node that initiates the procedure using

a large number of bootstrap samples and then proceeds to the interior nodes that use different

randomly selected subsets of the predictor variables. In random forest, the randomly selected

subsets are chosen in a procedure called bagging. Starting from the root nodes and proceeding to
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the interior nodes, the random forest ends to the terminal node, that provide an estimate of the

best fit model to the data. Random forest is a widely used classification method, and its advantages

lie on the fact that it is a non-parametric approach, it can classify both continuous and categorical

data, it can handle a large number of input data and the final result is independent of the different

internal models that are developed, so that all models have an equal probability to be included in

the final model. The basic functionality of a random forest is depicted in the diagram.

Figure 3.2: A representation of how the random forest algorithm works. Source: https:

//support.bccvl.org.au/support/solutions/articles/6000083217-random-forest
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3.3.6 Ensemble Niche Modeling

There is a wide variety of correlative ecological niche modeling methodologies that provide a

solution to the modeling of species suitable habitats. The whole suite of available statistical mod-

els could be classified into three main categories, which are: regression models, machine learning

algorithms and classification - enveloping methodologies. Each approach is based on a different set

of assumptions and parameters, resulting to different model outputs. The difference and disagree-

ment in the modeled outputs, highlights the uncertainty inherently lying in the ecological models

applied (Wiens et al., 2009) and the issue of equifinality that arises from the complex nature of

the modeled phenomenon, which is approximated using statistical models that have too many pa-

rameters to be fine-tuned and the available knowledge and observation of the species distribution

and the environmental conditions is not sufficient to provide a statistically robust estimate of these

parameters, resulting to the issue of parameter non-identifiability (Dormann et al., 2012).

The aforementioned characteristics of the ecological modeling approach can be a great drawback

when their output aims at better informing the decision making procedure (Wiens et al., 2009). A

possible solution to this issue is the application of an ensemble of different niche models (Thuiller

et. al., 2009), so that there can be a quantification of the uncertainty introduced. In the current

analysis, the ensemble of the following ecological niche models was applied: Maximum Entropy,

Generalized Linear Models, Generalized Additive Models, Random Forest and Classification Tree

Analysis, that were described earlier.

As it was stated above, apart from the uncertainty introduced to the ecological niche model

outputs due to the modeling algorithm used, there is an additional source of uncertainty that is

imposed on the final output and it is introduced via the covariates. The environmental variables

that are used as predictors are also model outputs and thus, are also subject to uncertainties. More

specifically, climatic variables that result from Regional Climate Model (RCM) outputs can display

a systematic bias, which needs to be addressed, especially when they are used as input in impact

assessment studies. Despite the fact that RCM outputs are able to reproduce the basic climatic

spatiotemporal patterns over Europe, it is also highlighted that they display certain deficiencies

in their skill (Kotlarski et al., 2014). For instance, it is shown that there is a persistent warm

and dry bias in summer over the region of Southeastern Europe (Kotlarski et al., 2014). A typical

approach that is applied for addressing the aforementioned issue, is the calculation of a multimodel

ensemble that uses the mean, weighted mean or median of a suite of RCM outputs (Kotlarski et

al., 2014). This approach is also applied in the current work. The diagram above describes the

procedure followed, so that both the uncertainty introduced due to the modeling algorithm used

and due to the input variables used is effectively addressed.
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Figure 3.3: A schematic representation of the modeling procedure in the current analysis.
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3.3.7 Ensemble Niche Model Evaluation

A very robust and solid question after applying a model of any kind, is how one evaluates the

accuracy and validity of the model produced. Typically, there are two ways through which the

validation procedure is performed. Firstly, the model output is compared pixel-by-pixel (once the

model produces a spatial output) with a surface that is considered to be a valid realization of the

reality. The comparison in such a case is performed by applying several statistical error metrics,

that treat the true realization of the variable in concern as the observed value and the model output

as the modeled value. In fact, the true value of the variable in concern in the whole study domain

is actually unknown, but conventionally, this approach is applied in numerous evaluation studies

and is considered as a comparative tool for the assessment of a models performance. Apart from

the aforementioned method though, there is also another very widely-used approach for model

validation and this is the splitting of the initial dataset into two separate sets, one used exclusively

for training and one used exclusively for validation. There are different guidelines on how the initial

dataset should be separated, but the most commonly applied method is the random splitting. In

that, normally 60 % or 70 % of the initial data is used for training and the rest 40 % or 30 % is

used for validation. In the current analysis, 70 % of the data is used for training and the remaining

30 % is used for validation.

In the case that the input model data are of binary nature, the model is required to have a

good skill in identifying whether the explanatory variables used in the model are conducive to the

model predicting a zero (0) or an one (1) (in the present case: 0 for species absence and 1 for

species presence). This issue of discriminating and classifying a signal as true signal or a noise, was

first observed in radar signal detection and processing and later on in medical research. From 2000

onwards it has found a wide applicability in ecological niche models, as they are normally trained

on binary data (Jimenez-Valverde, 2012). The methodology applied for the successful identification

of hits and misses of a certain procedure was performed by calculating the Area Under the Receiver

Operating Characteristic (ROC) graph (Jimenez-Valverde, 2012). The area under the ROC curve

utilizes the models sensitivity along with model’s specificity, in order to assess how successful a

model is in discriminating and correctly classifying presence and absence records, without mixing

the two classes (e.g. classifying absences as presences (commission error) or classifying presences

as absences (omission error)). More specifically, a models sensitivity is defined in the following

way:

Sensitivity =
TruePositives

TruePositives+ FalseNegatives
(3.11)

while a models specificity is defined in the following way:

Specificity =
TrueNegatives

TrueNegatives+ FalseNegatives
(3.12)

In the current case, positives are regarded as the presences and negatives as the absences. The

AUC plot uses Sensitivity (on the y axis) versus 1-Specificity (on the x axis). The diagonal of
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this plot implies that the model has a random chance of discriminating correctly presences and

absences (AUC=0.5).

For the case of Maxent, where pseudo-absences are used instead of real absences, the AUC

plot uses in the x-axis the proportion of background points that were predicted by the model as

presences (instead of using 1-Specificity) (Jimenez-Valverde, 2012). It is desired that the AUC

value is as close to the unity as possible. Generally, when the AUC value is greater than 0.7, the

model is considered skillful, although this is an arbitrarily set threshold. Nevertheless, despite

its wide use and acceptance in assessing the accuracy of ecological niche models, the AUC metric

has received some criticism that led to its revisiting and modification. This led to the creation

of the True Skill Statistic (TSS), which is used in conjunction with AUC and it is considered to

compensate the deficiencies of AUC.

The TSS score, also known as Hanssen and Kuipers discriminant, utilizes sensitivity and speci-

ficity scores, is independent of the size of the dataset and also, is independent of prevalence (Al-

louche et al., 2006) when certain assumptions are met and the size of the sample is large (Somodi

et al., 2016). The values of TSS range from +1 to -1 with +1 describing a fully skillful model

and -1 a completely unskillful model. Values close to 0 describe a model that can produce correct

predictions only by chance (Allouche et al., 2006). The TSS metric is defined as:

TrueSkillStatistic = Sensitivity + Specificity − 1 (3.13)

In the current analysis, both AUC (ROC) and TSS metrics are used for assessing the models

skill.
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3.4 VECTRI Malaria Model

VECTRI is a compartmental model that explicitly represents the progression of the various

Anopheles development stages and the development of the parasite inside the vector (sporogonic

cycle) and inside the host. As it was discussed in Chapter 1, the development of the Anopheles

mosquitoes proceeds from the egg stage, to the larvae stage and to the pupae stage and eventually,

if the conditions are conducive, the adult mosquito emerges. VECTRI employs the degree day

concept in order to account for this progression. Also, the gonotrophic and the sporogonic cycles are

explicitly resolved using an array of bins, representing the various stages of the malaria transmission

cycle (Tompkins and Ermert, 2013). The progression from one stage to the other is performed

using the advection equation:

dL

dt
= RL

dL

df
(3.14)

where L is the larvae life cycle, f is the fractional growth stage and corresponds to the fractional

growth rate (Tompkins and Ermert, 2013).

In addition, the vector life-cycle is also analyzed using the bin approach. The two attributes

that directly influence the dynamics of malaria transmission is the development of the parasite

inside the vector (sporogonic cycle) and the development of the egg inside the female Anopheles

mosquito (gonotrophic cycle), which eventually has an impact on what rate new eggs are added to

the larvae cycle and how often mosquitoes are in a blood-meal searching mode, which translates in

bites (Tompkins and Ermert, 2013). Thus, the sporogonic and gonotrophic cycles are also included

in VECTRI in a two-dimensional array V(Ngono, Nsporo). When the vectors reach the last stage

of the sporogonic cycle they are considered to be infective to humans and the disease can transmit

to the host at any possible bite (Tompkins and Ermert, 2013). It is noteworthy though, that not

all bites from an infective vector to a susceptible host can result to a new infection. The percentage

of successful transmissions from an infectious vector to a susceptible human or the acquiring of a

blood meal from an infected host to a susceptible vector is estimated to be approximately 20-30

% (Ermert et al., 2010).

The basic concept on which the developmental stages in VECTRI are progressed, lies on the

concept of degree days (Tompkins and Ermert, 2013). Degree days is a common practice in

biology and ecology, yielding information on when the temperature criteria are met in order for

a certain species to proceed from one stage of its development cycle to the next (Gu and Novak,

2005). Degree day studies normally include the observation of the species in concern in constant

temperatures in laboratory experiments, but the output of this approach may yield very different

results than what is normally happening in the field, due to a series of other reasons, such as the

temperature variability, the quality of the environment in which the species is required to survive,

the possible presence of other members of the same species (for instance, larvae density in the

same pond), which would increase competition for the same resources etc. (Gu and Novak, 2005).

In order for a degree day approach to be defined, it is important that the minimum (or threshold)
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and maximum temperatures are identified. The degree day criterion requires that the average

temperature of a day exceeds the threshold temperature by at least 1 degree (Teng and Apperson,

2000). If that requirement is met, then one degree day is completed. In order for the species

to proceed in its developmental stages, it is necessary that a certain amount of degree days are

completed, thus, every degree day is accumulated to the next, until the total degree day number

is achieved.

3.4.1 Modeling of the Larvae Life Cycle

The life-cycle of larvae contains the transition from egg to larvae and from larvae to pupae.

The progression from one stage to the next can efficiently be approximated using the degree day

concept (Detinova, 1962). The larvae life-cycle contains the aquatic stages of the mosquitos life-

cycle, hence, the variable that primarily governs its growth rate is water temperature Twat which

should be above a threshold temperature TLmin so that the larvaes survival is possible. The degree

day concept included in VECTRI and describing the larvae growth rate is given by the following

equation:

RL =
Twat − TLmin

KL
(3.15)

A parameter that requires investigation and its setting may be debated is the KL parameter

which is the rate coefficient, indicating how many degree days are required in order for the lar-

vae to progress through its developmental stages. This parameter differentiates between different

Anopheles species. Also, although the aquatic mosquito stages contain the egg-larvae-pupae cy-

cle, VECTRI actually allocates one day for eggs progressing to larvaes and one day for larvaes

progressing to pupae.

In addition, apart from the growth rate of the larvae, an other aspect that may greatly influence

the transmission dynamics is the larvae mortality, which also displays strong dependency on tem-

perature (Tompkins and Ermert, 2013). Apart from temperature though, other biotic factors may

influence larvae mortality, such as the presence of predators or the increased larvae density. The

effect of biotic and abiotic factors on larvae mortality is incorporated in VECTRI by employing

the following relation:

PLsurv = (1− ML

wMLmax
)KflushPLsurv0 (3.16)

The term ML describes the total larvae biomass per unit surface area of a water body, while w

describes the fraction coverage of a grid cell by locations that could potentially function as breeding

sites. The term MLmax describes the total carrying capacity of the water pond. The term Kflush

incorporates the impact of heavy rainfall on larvae mortality and has a greater impact on young

stage larvae than on older stage larvae (Paaijmans et al., 2007). The effect of flushing rainfall is

incorporated in VECTRI using the following equation:
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Figure 3.4: Daily vector survival (%) as a function of temperature for An. gambiae (Craig et al.,
1999).

Kflush = Lf + (1− Lf )((1−Kflush,∞))e
−Rd
τflush +Kflush,∞) (3.17)

The Rd parameter describes the rainfall rate in mm per day, Kflush,∞ is the maximum value of

Kflush for newly hatched young larvae, and τflush describes how the effect of flushing increases on

larvae mortality as a function of the rainfall rate.

3.4.2 Modeling of the Vector Life Cycle

As it is expected, the effect of temperature on the mosquito life-cycle extends beyond the larvae

stage onto the adult stage (Tompkins and Ermert, 2013). High temperature is known to have a

negative effect on adult mosquito survival (Craig et al., 1999; Mordecai et al., 2017), nevertheless,

the exact thresholds of the maximum temperature that mosquitoes can tolerate is highly uncertain,

and varies between different genuses and species. This uncertainty lies primarily on the fact that

few samples are available for such high temperatures. Usually, the abrupt downward decrease of

such curves is due to the fact that a statistical model is forced to pass through those few samples

(Mordecai et al., 2017).

The effect of temperature on vector survival is incorporated in the VECTRI model using two

available schemes that are described below, either as a quadratic function of temperature, according

to Martens et al. (1995):

PVsurv1 = Kmar1,0 +Kmar1,1T2m +Kmar1,2T
2
2m (3.18)

or as an exponential function of temperature, according to Martens et al. (1997) and Craig et al.

(1999).

PVsurv2 = exp(
−1.0

Kmar2,0 +Kmar2,1T2m +Kmar2,2T 2
2m

) (3.19)
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3.4.3 Gonotrophic and Sporogonic Cycles

As it was discussed above, the gonotrophic cycle describes the egg development inside the

female mosquitoes. In order for the egg development to progress, it is necessary that a blood meal

is acquired. Currently, in the VECTRI model it is assumed that female mosquitoes acquire their

necessary blood meal during the first night of searching (Tompkins and Ermert, 2013), which might

not always be the case. The achievement of a blood meal is a direct function of the proximity to

populated areas, either by humans or by animals. The rate at which the egg development proceeds

inside the female mosquito is also a function of temperature and is incorporated in VECTRI

employing the degree day approach, as described below:

Rgono =
T2m − Tmingono

Kgono
(3.20)

The quantity in concern is the resulting number of female eggs that are laid by the female mosquito

(the male eggs are indifferent in the transmission cycle). The number of eggs laid by a female

mosquito is highly variable between the various species (Tompkins and Ermert, 2013).

The sporogonic cycle refers to the development of the malaria parasite inside the adult mosquito.

During every blood meal there is a possibility that the parasite is transmitted from the host to a

vector (or the opposite), depending on which of the two is infected and which is the susceptible

(Tompkins and Ermert, 2013). During every time step of the model run in VECTRI (currently:

daily time step) a certain portion of the susceptible mosquitoes move to the infected class, meaning

that they have acquired the malaria parasite. From that moment on, the development of the

parasite is occurring, until they reach the state when the mosquitoes themselves are infectious and

thus, can potentially transmit malaria in any of their next blood-meals. The rate at which the

parasite develops inside the mosquito is also dependent on temperature and is approximated in

VECTRI using the degree day concept, as given below:

Rsporo =
T2m − Tminsporo

Ksporo
(3.21)

3.4.4 Host Community

One of the modeling innovations introduced in VECTRI is the representation of the population

density on a spatialized grid, allowing for the inclusion of the ratio of potentially biting vectors

to potential hosts for every grid cell and the calculation of the human biting rate (hbr), which

describes the number of bites that individuals may potentially receive (Tompkins and Ermert,

2013). The human biting rate is given by the following equation:

¯hbr = (1− e
−H
τ∞ )

∑Nsporo
j=1 V (1, j)

H
(3.22)
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The term 1− e−Hτ∞ indicates what is the amount of zoophily for the Anopheles species in concern.

The zoophily parameter as given in the equation above gains greater weight in areas where popula-

tion density is relatively low and the only sources of available blood meals are animals (Tompkins

and Ermert, 2013). The term H represents the population density.
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3.4.5 Hydrology in VECTRI

The input concerning surface hydrology is of primary importance in a model of malaria trans-

mission, as it provides input related to the availability of potential breeding sites for vectors

(Tompkins and Ermert, 2013) and captures the impact of rainfall on the disease dynamics, allow-

ing for an investigation of the lag existing between rainfall events, adult mosquitoes emergence and

malaria occurrence, which could be ideally used in an early-warning system. Potential breeding

sites consist primarily of temporary water ponds that are found in the fringes of permanent water

bodies, such as lakes and rivers, or over areas where the surface attributes, such as slope, curvature

and soil type allow for the assemblance of the rainfall water in ponds. The latter, provides a more

suitable environment for oviposition, as there is generally lack of predators and the waters are

relatively calm (Tompkins and Ermert, 2013).

In the VECTRI model hydrology is not represented explicitly but a parametrization scheme is

used instead (Tompkins and Ermert, 2013). The VECTRI model is designed to operate and simu-

late malaria transmission in a regional scale and it has been shown that an explicit representation

of hydrology does not necessarily improve the model performance for regional scale studies (Asare

et al., 2016). According to Asare et. al. (2016) the improved surface hydrology is given by the

following equation:

dwpond

dt
=

2

phref
(
Wref

Wpond
)
P
2 ((Q(Wmax −Wpond) + PWpond)(1− f)−Wpond(E + flmax) (3.23)

In the equation presented above, Wpond represents the fractional coverage of water for every grid

cell and Wmax is the temporary pond coverage area, E is the evaporation rate, I represents the

infiltration rate and P is the precipitation rate. In addition, p is a parameter representing the shape

factor of the pond, href is the total depth of the reference pond, Wref is the reference fractional

coverage equated to Kw, Q is the runoff and f is equal to 1
4
Wpond

Wmax
.

Figure 3.5: A schematic representation of the hydrology in VECTRI (Asare et al., 2016).

3.4.6 Model Requirements

In order for the VECTRI model to produce an estimate of the malaria transmission dynamics,

it is required that precipitation and temperature fields are provided, and renewed in every time-
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step of the model, yielding an estimate of what is the status of transmission at any given time.

In addition, population density information is also required as a static input field. Nevertheless,

apart from the variables that are necessary to be provided for a successful model run, there is also

a suite of constants that need to be tuned, in order for the model to produce reliable and realistic

estimates of the parameters related to the vector and to the dynamics of malaria transmission.

Currently, these parameters are fine tuned for modeling the activity of Anopheles gambiae and

the dynamics of Plasmodium falciparum (Tompkins and Ermert, 2013), but fine tuning of these

constants is required for applying VECTRI to other geographic regions where other Anopheles

species are found and other plasmodium kinds are observed.

In the current analysis, the input temperature and rainfall data consisted of the same RCM

ensemble mean outputs that were used for calculating the bioclimatic variables that were employed

in the correlative models. The input data covered the period 1990-2008 and had a daily timestep.

3.4.7 Model Outputs

After a successful run of VECTRI, there are several outputs describing the dynamics of malaria

transmission. These outputs are:

Entomological Inoculation Rate (EIR): The number of infective bites that an individual receives

after a period of time.

Detectable Parasite Ratio (PRd): Number of people with malaria that is detectable after 10

days.

Human Biting Ration (HBR): Number of people that are bitten daily.

Cirmu sporozoite Protein Rate (CSPR): Fraction of EIR/HBR

Vector Density: Mosquito density measured per m2.

Larvae Density: Density of the mosquito larvae measured per m2.

Cases: Number of new malaria cases emerging.
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3.5 An attempt to calibrate VECTRI

As it was discussed above, VECTRI is currently fit for modeling malaria transmission over

areas where the primary vector is Anopheles gambiae. Nevertheless, Anopheles gambiae is absent

from the study region and the species in concern is Anopheles sacharovi, hence, it is desired that

the VECTRI parameters currently fit for An. gambiae, would be modified so as to better describe

An. sacharovi. The whole suite of parameters on which VECTRI is dependent on can be found in

Tompkins and Ermert (2013) and they can be classified into the following categories: parameters

related to larvae, parameters related to hydrology, parameters related to intervention measures

and to mosquito biting characteristics. Also, VECTRI assumes parameters related to immunity

and transmission, parameters related to the population and finally, parameters related to the

sporogonic and gonotrophic cycles. Most of these parameters in the current VECTRI version are

set using figures obtained from the literature.

The modifying of those parameters could either be performed by employing the same method

of reviewing the literature related to the species in concern or by applying an intelligent machine-

learning algorithm. By following the latter approach, model parameter setting would be treated

as an optimization problem that explores efficiently an enormously big search space. However,

before applying more intensive methods in model calibration, it is necessary that the available

literature would be reviewed and certain runs with the modified parameters would be performed.

The method of reviewing the literature was applied in the current analysis.

In the current attempt of calibrating VECTRI for An. sacharovi, only larvae parameters and

parameters related to the gonotrophic cycle were modified and also, from those parameters, only

parameters related to temperature were calibrated, with an exception to the larvae survival rate

due to non-climatic factors. The reason for modifying parameters related to the gonotrophic cycle

and larvae is because the VECTRI model output that is investigated in the current analysis is the

vector density.

Table 3.1: The default larvae and gonotrophic cycle parameters related to temperature in VECTRI
and the modified parameters taken from the literature.

Parameter Default VECTRI
value:

Modified value

Threshold temp. for egg development in vector (rtgono) 7.7 9.9

Degree days for egg development in vector (dgono) 37.1 36.7

Min. temp. for larvae survival (rlarv tmin) 12.16 15.5

Max. temp. for larvae survival (rlarv tmax) 38 35

Survival rate due to non-climatic factors (rlarvsurv) 0.987 0.85

Concerning the setting of parameters related to the gonotrophic cycle, the values were taken

from Detinova (1962). However, there are other studies expressing the duration of gonotrophy in

constant temperature, but do not provide information concerning the threshold temperatures. For

instance, Tavanol and Caglar (2008), refer to gonotrophy’s duration equal to 6.3 days under 27 ◦C,
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while Kasap et al. (1989) refer to the gonotrophic cycle being equal to 13.2 under 24 ◦C and equal

to 9.2 under 28 ◦C. In addition, the minimum temperature for larvae survival was set equal to

15.5 according to Kampen et al. (2003), however for maximum temperature values ranged in the

literature from 30 - 40◦C, thus this parameter was set equal to 35 ◦C. Also, according to Tavanol

and Caglar (2008) the survival rate due to non-climatic factors was set equal to 0.85.

The VECTRI run using the default values is further on referred to as the ”pre-calibration” run

and the VECTRI run with the new parameters is referred to as the ”post-calibration” run. Hence,

firstly, the monthly and seasonal means for both runs were calculated and their differences were

also calculated and investigated. Furthermore, for specific locations of known vector activity the

time-series of the ”pre-calibration” and the ”post-calibration” runs were extracted. Also, for both

runs, the vector density during the summer months was compared to the output of the ecological

niche models using the run exploiting the RCM data. The covariance between ”pre-calibration”

and ”post-calibration” to ecological suitability was also calculated.

66



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Chapter 4

Results

4.1 Suitability maps

4.1.1 Bioclimatic variables computed with the WorldClim dataset

The environmental suitability map that results from the application of the five statistical mod-

els (GAM, GLM, RF, CTA and MAXENT) using the bioclimatic variables computed with the

WorldClim dataset is presented in Figure 4.1. As it is shown, high suitability values are located

over the region of North-Central Greece and sporadic suitable locations are additionally located

over restricted areas in mainland Greece, over Attica, South Peloponnese and over the Eastern

islands of the Aegean Sea.

Figure 4.1: Environmental suitability of the ensemble niche modeling, where the bioclimatic vari-
ables were computed with the WorldClim dataset.
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Figure 4.2: Environmental suitability according to the 5 statistical methods used, where the bio-
climatic variables were computed with the WorldClim dataset.
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The map in Figure 4.1 resulted from the calculation of the ensemble median of the individual

maps presented in Figure 4.2. The ensemble median was chosen over the ensemble mean, because

the mean is known to be highly influenced by outliers. The differences observed in the maps of

Figure 4.2 is an aftereffect of the different mechanics, assumptions, limitations and capabilities

of each method applied. The miscellaneous patterns of suitability that result from the various

methods, highlight the need and the value of applying an ensemble methodology in correlative

ecological niche models. Applying an ensemble median, is considered as a reliable and convenient

option for filtering out the uncertainty introduced by each statistical method separately. As it is

shown in Figure 4.2 the spatial patterns yielded by GAM, RF and MAXENT display significant

similarities, while GLM and CTA yield a quite modified result that identifies suitable environments

for An. sacharovi in more extended regions. Such an observation flows from the fact that GAM,

RF and MAXENT are more sensitive to overfitting to the training dataset and thus their result is

highly driven by observations. As it is displayed in Figure 4.2, GAM, RF and MAXENT predict

high suitability over regions where there is an increased concentration of traps, while GLM and

CTA are less influenced by the clustering of traps.

For each of the five statistical models 100 evaluation runs were performed and the ROC and TSS

metrics were calculated for every run. The models that eventually contributed to the construction

of the ensemble median are the ones that scored a value of TSS greater than 0.7. The ROC

metrics of every statistical model of each run is presented in Figure 4.3. As it is shown, RF and

MAXENT display the best performance with regards to the ROC metric, followed by GLM. More

specifically, all RF and MAXENT runs yield ROC metrics greater than 0.75, while GLM yield

to ROC metrics slightly less than 0.75 for certain runs, but its overall performance is similar to

that of RF and MAXENT. GAM and CTA display a less good performance. With regards to the

TSS metric, all models display a relatively weaker performance (compared to the ROC metric).

Nevertheless, MAXENT seems to outperform the rest of the methods, followed by GLM, RF, CTA

and eventually, GAM. For MAXENT the lowest performance is greater than 0.6, while for RF the

lowest TSS score is equal to 0.6. For GLM the lowest TSS metric is less than 0.5 while for GAM

and CTA it approximates 0.

The statistical means of the ROC and TSS metrics for each statistical method separately for

all 100 runs are presented in Table 4.1. The highest ROC metric is achieved by MAXENT and is

equal to 0.94 followed by GLM and RF both yielding a ROC metric equal to 0.92. Lastly, CTA

and GAM result to a ROC metric equal to 0.79. With regards to the TSS metric, as it was obvious

from the figures above, the overall performance drops, but the pattern of performance is similar

between the five statistical methods. More specifically, MAXENT marks the highest TSS metric

equal to 0.86, GLM follow with a TSS equal to 0.83, followed by RF, CTA and GAM with TSS

metrics equal to 0.8, 0.6 and 0.58 respectively.
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Figure 4.3: The ROC metric for all 5 statistical methods, for all 100 runs performed for each
statistical method, run with bioclimatic variables computed with the WorldClim dataset.
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Figure 4.4: The TSS metric for all 5 statistical methods, for all 100 runs performed for each
statistical method, run with bioclimatic variables computed with the WorldClim dataset.
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Table 4.1: The mean values of the ROC and TSS metrics for all 100 runs performed with bioclimatic
variables that were computed with the WorldClim dataset.

GAM GLM RF CTA MAXENT

ROC 0.79 0.92 0.92 0.79 0.94
TSS 0.58 0.83 0.8 0.6 0.86

The results yielded from the aforementioned run in which the WorldClim data were employed,

are displaying a substantial dependency on the presence records and they create model outputs

that regard the departure from this assumption as erroneous and hence, classify those models as

less successful. Although there is not a robust independent model output that it is known from

the bibliography to be representative of the distribution of An. sacharovi over Greece, expert

opinion of individuals being active in the field of vector control over Greece (Ecodevelopment S.A.

company), state that the distribution of An. sacharovi is underrepresented from the map displayed

in Figure 4.1. One of the purposes of the current work was to investigate what is the impact of

the explanatory variables driving the statistical niche models. This investigation is presented in

the next section.
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4.1.2 Bioclimatic variables computed with the RCM ensemble mean
dataset

The resulting environmental suitability map for An. sacharovi, exploiting the ensemble mean

of RCM for the calculation of the bioclimatic variables is presented in Figure 4.5. The spatial

resolution of the composed map is significantly reduced (equal to 12 km), but the produced

result approximates in relatively better way the expected result (expected according to the expert

knowledge provided by Ecodevelopment S.A.). The hot-spot of high environmental suitability of

the region of North-Central Greece is maintained, but furthermore new areas are characterized as

suitable, that they either had a much more constrained extent in the run using the WorldClim

dataset or were completely obscured.

The additional areas that are characterized as suitable in the current run, are located over

the plain of Thessaly in central Greece, over the coastal areas of northern Greece (Kavala and

Alexandroupoli) and over the plain of Serres, also in northern Greece. Additionally, suitable areas

are identified over coastal areas in southern mainland Greece, Attica, Peloponnese and over the

eastern islands of the Aegean Sea. As it was described in the previous section, the final suitability

map is composed using the result of 100 runs for every statistical method. Eventually though, only

the ”best” runs contribute to the construction of the ensemble (Figure 4.5). In the current run,

the models composing the ensemble are presented in Figure 4.6.

Figure 4.5: Environmental suitability of the ensemble niche modeling, where the bioclimatic vari-
ables were computed with the RCM ensemble mean dataset.
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Figure 4.6: Environmental suitability according to the 5 statistical methods used, where the bio-
climatic variables were computed with the RCM ensemble mean dataset.
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As it is depicted, there seems to be a significant agreement between the predictions produced by

GLM, CTA and MAXENT, although CTA is not capable of capturing the magnitude of suitability,

but it rather captures its spatial pattern. In the current run, GAM and RF appear to be sensitive to

the spatial structure of the training locations (traps) and they yield a rather localized result, due to

overfitting. The fact that three models produce a more spatially extended result of environmental

suitability (from the whole suit of five models) affects the calculation of the ensemble median, which

subsequently affects the final composite suitability map. With regards to the reason why the run

employing the ensemble mean of RCM produces a differentiated result to the run employing the

WorldClim dataset, could possibly be attributed to the difference in the spatial resolution of the

fields used as explanatory variables. In the case of employing the RCM ensemble mean, where the

spatial resolution of the fields is approximately 12 km, it is possible that in areas with high trap

density, more than one traps are located inside a pixel. This results in many traps being ”filtered

out” and hence, the mosquito trap network is, somehow, ”de-clusterized”.

Concerning the performance of the current run, there appears that the overall performance is

relatively lower compared to the run using WorldClim. Based on Figure 4.7, the best performing

models appear to be GLM and RF, followed by MAXENT, GAM and CTA. The lowest performance

of GAM and CTA is slightly less than 0.5. With regards to the TSS metric presented in Figure 4.8,

the performance is lower, compared to the ROC metric. GLM and RF yield as the best performing

models, with their lowest values being greater than 0.25. The lowest performances of MAXENT,

GAM and CTA approximates 0, with the difference that the bad performing runs in MAXENT

have a reduced density. In the current application of the correlative niche models, the TSS metric

displays higher variability across the 100 runs performed for each model.

Table 4.2: The mean values of the ROC and TSS metrics for all 100 runs performed with bioclimatic
variables that were computed with the RCM ensemble mean dataset.

GAM GLM RF CTA MAXENT

ROC 0.79 0.92 0.92 0.79 0.94
TSS 0.58 0.83 0.8 0.6 0.86

The statistical means of the ROC and TSS metrics for each statistical method separately for

all 100 runs are presented in Table 4.2. The highest ROC metric is achieved by MAXENT and

GLM and is equal to 0.85 followed by RF and GAM, yielding a ROC metric equal to 0.82 and 0.77

respectively. Lastly, CTA result to a ROC metric equal to 0.76. Concerning the TSS metric, GLM

marks the highest TSS score equal to 0.68, MAXENT follows with a TSS equal to 0.67, followed

by RF with a score equal to 0.61 and GAM and CTA with TSS metrics equal to 0.56 and 0.53

respectively.
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Figure 4.7: The ROC metric for all 5 statistical methods, for all 100 runs performed for each
statistical method, run with bioclimatic variables computed with the RCM ensemble mean dataset.
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Figure 4.8: The TSS metric for all 5 statistical methods, for all 100 runs performed for each
statistical method, run with bioclimatic variables computed with the RCM ensemble mean dataset.
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4.2 Vector density output from VECTRI

4.2.1 Vector density before calibration

The VECTRI output of concern in the current analysis is vector density, expressed in m−2.

The ”before calibration” runs refer to running VECTRI using its default parameters, describing

the biology of An. gambiae. The first step towards calibrating VECTRI for An. sacharovi was

to assess what does the model produce as output with its current setting, over the region in

concern. The output of vector density with respect to its seasonal values is displayed in Figure

4.9. As it is shown, vector density is 0 during winter and spring and displays its highest values

during summer, while during autumn vector density declines. During summer, vector density

displays increased values throughout the whole domain of the study region, with an exception to

the high elevation areas. Also, the highest values of vector density are observed over the plain of

the Central Macedonia area in northern Greece, the plain of Thessaly and sporadic location over

southern mainland Greece and over the Peloponesse. Also, high density values are observed in

western Greece, a pattern that is substantially maintained also in autumn.

Analyzing the same output, but calculating its monthly values instead, yields the result pre-

sented in Figure 4.10. From what it is shown, vector’s activity onset takes place during June,

proceeds on to July, peaks during August and declines thereafter until November, when eventually

it disappears. From what it is known through the available literature, vector activity is initiated

early in spring . Also, the spatial extend of vector density is well expanded over areas with high

elevation that it is known that provide an unwelcoming environment for mosquitoes.

Figure 4.9: Vector density output from VECTRI before calibration. The maps correspond to the
statistical means for the period 1991-2008.
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The aforementioned observations are possibly due to the fact that the current temperature

thresholds provide a wide temperature window for Anopheles mosquitoes and thus, provides the

opportunity to them to be present over such extended regions with varying temperature regimes.

This observation provides a hint to the successful calibration of VECTRI, so that it would restrict

to a more confined range the temperature limits tolerated by An. sacharovi. This attempt is

presented in the following section.

Figure 4.10: Vector density output from VECTRI before calibration. The maps correspond to the
statistical means for the period 1991-2008.
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4.2.2 Vector density after calibration

The result of modifying the parameters in VECTRI related to the gonotrophic cycle and the

larvae characteristics of the vector are presented in Figure 4.11. The purpose of the current re-

adjustment of the VECTRI parameters was to calibrate the model for An. sacharovi, instead of

An. gambiae as it presently is. As it is shown, vector activity is 0 during winter and spring,

but well-established during summer and autumn. In addition, the magnitude of vector density is

severely affected and more specifically, it is severely reduced. Nevertheless, the spatial pattern of

vector density acquired, impressively resembles the environmental suitability map for An. sacharovi

that was discussed earlier in this Chapter. The difference between summer and autumn is minor,

however, when looking at the monthly means of the same output in Figure 4.11, that is not the

case.

As it was observed in the ”pre-calibration” runs, the vector activity onset is missed, with the

current run being even more delayed as vector activity is predicted to have its onset during July.

The highest vector density is observed during August and September, a fact that it is in agreement

with the literature. However, vector activity declines rapidly in October. Although there are

certain questions that need to be addressed concerning the delayed vector onset and its decreased

density values, it is encouraging that the spatial pattern of the current run comes in agreement

with the suitability map for An. sacharovi.

Figure 4.11: Vector density output from VECTRI after calibration. The maps correspond to the
statistical means for the period 1991-2008.
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Figure 4.12: Vector density output from VECTRI after calibration. The maps correspond to the
statistical means for the period 1991-2008.
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4.2.3 Assessment of the performance of VECTRI calibration

Vector density time-series

Apart form the spatial characteristics of the VECTRI output, it is worth noting that vector

density displays a well-established seasonality also. For seven locations (Figure 4.13) where vector

activity was intense, the time-series of vector density were extracted and plotted over the time-

period in concern. In Figures 4.14 and 4.15, both time-series as extracted from the pre-calibration

and the post-calibration runs are plotted together for comparison. What is remarkable, is the

difference in magnitude between the two runs. What additionally emerges as an interesting fact,

is that although the temporal pattern is consistent, every year develops its own characteristics, a

fact that is related to the climatic conditions prevailing during that particular year. For instance,

years 1999, 2002 and 2005 display density values that exceed significantly the average values and

also, after 2005 until 2008 a systematic decline is observed through all the locations located in

mainland and northern Greece. The time-series in Geraki and Laerma do not strictly follow the

aforementioned pattern and that is mainly due to the fact that the prevailing climatic conditions

are much differentiated from the ones prevailing in mainland and northern Greece.

Concerning the time-series extracted from the the post-calibration run, these are also plotted

separately in Figures 4.16 and 4.17. As it can be seen, vector density gradually increases from

1991 until 1995 and the following year it is very abruptly reduced. From 1995 until 2003, vector

density is steadily increasing until it reaches its maximum during 2003 and the declines abruptly the

following year. During years 2004, 2005 and 2006 vector density again displays progressive increase

until lastly, it drops during 2008. The aforementioned pattern is observed for all locations with

an exception to Laerma (in the island of Rhodes) that instead displays an almost static vector

density with limited variability across the years 1991-1994, but displays an impressive increase

during 1995, which the following year, however, returns to the values observed during 1991-1994.

For the same location, values display a substantial increase throughout the period 2000-2008, with

an exception to the year 2006.

Figure 4.13: Random locations for which the following time-series were extracted.
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Figure 4.14: Time-series extracted from the VECTRI runs before calibration (in red) and after
calibration (in blue).
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Figure 4.15: Time-series extracted from the VECTRI runs before calibration (in red) and after
calibration (in blue).
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Figure 4.16: Time-series extracted from the VECTRI run after calibration.
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Figure 4.17: Time-series extracted from the VECTRI run after calibration.
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Agreement with the suitability maps

The environmental suitability map that was discussed at the beginning of Chapter 4, was

constructed using vector data ranging from May to September, so for this reason, the VECTRI

outputs in the current step were averaged over the same period and compared to the map provided

by the correlative ecological niche models. he vector density outputs from VECTRI before and

after calibration averaged over months May through to September are presented below in Figures

4.18. The scatterplots of the two VECTRI runs to environmental suitability are presented in

Figures 4.19 and 4.20. As it can be seen, the r2 value of the linear model applied is equal to

0.202 before the calibration and increases to 0.561 after the calibration. This increase is indicative

of the growth in resemblance between the VECTRI post-calibration run and the environmental

suitability map. Of course, this does not state that the post-calibration run is successful and free

of errors, but it rather states that calibrating VECTRI can yield a useful resource and tool.

(a) pre-calibration (b) post-calibration

Figure 4.18: Pre-calibration and post-calibration vector density.
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Figure 4.19: Scatterplot between vector density before calibration and environmental suitability
for An. sacharovi. The r2 of the linear model applied is 0.202. The equation that describes the
linear model is the following: y=0.0031 + 0.032x.

Figure 4.20: Scatterplot between vector density before calibration and environmental suitability
for An. sacharovi. The r2 of the linear model applied is 0.561. The equation that describes the
linear model is the following: y=(2.5e-05) + (2e-0.4)x.
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Chapter 5

Discussion

One of the objectives of the current analysis was to identify the ecological niche of An. sacharovi

and thus further identify regions were there is a potential risk of malaria occurrence. For this reason,

both correlative and dynamic models were employed, as both display different kinds of strengths

and weaknesses. Through this practice, both models can contribute with a unique way in the

modeling of the ecological niche of An. sacharovi.

Concerning the application of correlative models, a suite of Presence and Absence data was

used, along with a suit of environmental variables. A common source of uncertainty in bibliogra-

phy with regards to the accuracy of correlative ecological niche models, results from the fact that

the covariates that are used as predictors contain errors and uncertainties themselves, that are

consequently transferred into the niche models. A possible answer to such an issue is the use of an

ensemble of environmental predictors, so that the final product of the modeling process could be

reduced. In the current analysis, two runs of correlative ecological niche models were performed,

one using the WorldClim dataset and one using the ensemble mean of seven RCM models ran in

the context of the EURO-CORDEX domain. The results of the first run yielded to better error

metrics, but the spatial patterns of the second run produced a suitability map that approximates

better the expected reality. In this point, the expected reality was provided in a qualitative manner

by Ecodevelopment S.A.

5.1 Occurrence records

Through the application of correlative ecological niche models it becomes evident that the

predictions produced display high dependency on the spatial structure of the input data. This fact

highlights the need for a thorough study concerning the optimal location of the initial network.

The location of mosquito traps over a region is a form of spatial sampling and thus, there must be

a very specific strategy regarding how this spatial sampling is going to be performed. A guideline

in such issues is the identification of the research question (or questions) that need to be addressed.

The spatial sampling needs to be performed in such a way so that it can effectively address the

research question and can meet the requirements of the analysis that is to be applied. It can not
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be stressed enough that not all spatial arrangements of spatial samples are suitable for all kinds of

analysis. The correspondence of the sampling strategy and the analysis that is to follow are highly

linked to the success and accuracy of the analysis.

In the current case of building a correlative model in order to assess the ecological niche of a

species, two significant distinctions need to be made that are related to the nature of the species in

concern. Normally, occurrence data are collected by geolocating the geographic points of where the

species (or their nests) were found. However, in the current case, the presences were not extracted

from the actual coordinates of where mosquitoes were found, but were rather inferred from the

coordinates of the traps that captured the mosquitoes. As a result, the presence points used in

the current work can be potentially considered as an underestimation of the actual presences of

the species in concern over the study region. Additionally, as it was discussed in Chapter 2 the

traps measured abundances of mosquitoes and therefore, a transformation from abundances to

presences/absences was necessary. This transformation was an additional source of uncertainty

to the results of the current analysis. A possible way of addressing how severe is the uncertainty

introduced due to the aforementioned issue, would be the application of a sensitivity analysis, where

various methodologies of transforming abundances to presences/absences is applied. Furthermore,

the measurement of the abundances of mosquitoes in traps can be proven to be a challenge in the

case that the niches of more than one mosquito species is studied. In that case, the transformation

of the abundances to presence/absence records should be performed in such a way, so that the

differences in occurrences between the miscellaneous species are emphasized.

5.2 Sensitivity to the spatial resolution of the covariates

As it became evident from the current analysis, the spatial resolution of the covariate fields

that were used, generated substantial differences in the predicted environmental suitability of An.

sacharovi. As it was discussed, this can be primarily attributed to the spatial arrangement and

density of the mosquito traps, but it would be also important for the impact of the spatial scale

of the covariate fields per se to be assessed. This could be attained by exploiting a high resolution

climatic dataset and gradually upscaling it to lower spatial resolutions (bigger grid cells) and

each time quantifying the changes in the resulting ecological niche. It is expected that there is

a relation between the coverage of the area in concern, the proximity metrics of the occurrence

network and the spatial resolution of the covariate fields. The challenging need would be to identify

the mathematical form of such a relation, so that future studies of ecological niche modeling could

be performed using covariates bearing the most suitable spatial resolution.

5.3 Fine tuning in parameters of correlative models

It is very common in the relevant bibliography that researchers applying various statistical

models in ensemble niche applications, use the default set parameters of the respective softwares
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or programming packages. Although this tactic secures the fact that the model outputs are com-

parable among themselves, with respect to the mechanics and parameters of each model, it does

not secure that each model is used in its full capacity. The use of the default parameters of the

”biomod 2” package in R were also used in the current analysis, but by no means this is consid-

ered a scientifically robust practice. The suitability maps produced are inseperably joint to the

model parameters that generated the model outputs and thus the validity and accuracy of the final

product is dependent on the model parameters. Another issue that needs to be highlighted is that

the various statistical models are not disconnected among themselves. For instance, under certain

parameterization a GAM can behave as a GLM (so it would no longer be a GAM) or MAXENT

can behave as a logistic regression. Thus, the fine tuning needs to be performed under caution, so

that the set of parameters that differentiate the miscellaneous models are not obscured, but rather

strengthened.

5.4 Vector ”reanalysis”

As it is extremely common in atmospheric sciences, the accuracy of a model output is usually

assessed by comparing the desired surface to a dataset that it is relatively considered as the closest

representation of reality. This practice proves to be very useful and provides a point of reference

between atmospheric scientists. The products that are considered to be the most accurate and up-

to-date are the climatic reanalysis products that combine both model output data, observational

data and satellite products.

Likewise, it would be useful if an equivalent vector ”reanalysis” product could be generated, so

that there is a point of reference when assessing the accuracy of the predicted ecological niche of a

vector species. One way that the vector ”reanalysis” could be obtained is by spatially interpolat-

ing the vector abundances measured in every trap, employing multivariate geostatistical methods

(regression kriging). The result of such a procedure would be to have an estimate of the number

of mosquitoes for every grid cell of the study region.

5.5 Concerning future work

As a step forward, it would be interesting to find out how are the temporal patterns of environ-

mental suitability going to change, under certain Representative Concentration Pathways in the

future and identify locations that used to bare suitable conditions and are estimated to no longer

do so in the future and vice versa. Concerning the calibration of VECTRI, more test run need to

be performed and a robust sensitivity analysis needs to be carried out, concerning the impact of

all the in-lying parameters on which the biology of An. sacharovi is dependent on. Furthermore,

the calibration of VECTRI could be considered as an optimization problem, so its approximation

and solution could be obtained through the implementation of an optimization algorithm, that

would provide an acceptable value for each VECTRI parameter, based on a certain set of criteria.
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Such an optimization algorithm is the Genetic Algorithms that mimic the mechanism of natural

selection. Lastly, An. sacharovi is not the only effective malaria vector over the study region, so it

would be a much desired goal to extend the current work to other Anopheles species, such as An.

hyrcanus and An. Pseudopictus.
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