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Abstract 
 
 
In recent years, there has been an increasing interest in graphical models and their use 
for the representation of causal relationships between the individual variables of a 
complex, multivariate system. 
In order to study the interdependence between the observed variables of a multi-
variable dynamic system or stochastic process, several methods have been developed, 
with more important, the ones that estimate the dependence of the temporal evolution of 
a variable on another, a concept known as Granger causality. 
In the causality analysis of a system consisting of  𝐾 variables it is important to also 
include the interaction with the remaining 𝐾 − 2 variables in the estimation of the 
connection or causality from 𝑋 to 𝑌, and this is referred to as direct Granger causality. 
In the context of information theory, two such methods are those given by the Partial 
Transfer Entropy statistic, which is customary to be applied to stationary time series and 
Partial Transfer Entropy on Rank Vectors (PTERV) which can be applied directly in both 
stationary and non-stationary time series.  
When 𝐾 is large, there is a need to select the most relevant of the 𝐾 − 2 variables with 
the driving variable 𝑋 or the response variable 𝑌, in order to have more accurate results. 
In this work, we focus on this selection process, evaluating some approaches in the 
effort to propose a new, more effective approach to the Granger causality statistic 
PTERV.  The purpose of the thesis is to create causal networks with 𝐾 nodes by 
appropriately applying PTERV to 𝐾 non-stationary time series. In the application in 
finance, PTERV is applied directly to stock indices, and not their returns in order to 
estimate direct causal effects on the financial indices. 
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Περίληψη 

 

Τα τελευταία χρόνια, υπάρχει συνεχώς αυξανόμενο ενδιαφέρον για τα γραφικά μοντέλα 
και τις xρήσεις τους για την αναπαράσταση σχέσεων αιτιότητας μεταξύ των επιμέρους 
μεταβλητών ενός πολύπλοκου, πολυμεταβλητού συστήματος. 
Για τη μελέτη της αλληλεξάρτησης μεταξύ των παρατηρούμενων μεταβλητών ενός 
πολύ-μεταβλητού δυναμικού συστήματος ή στοχαστικής διαδικασίας έχουν αναπτυχθεί 
διάφορες μέθοδοι, με πιο σημαντικές αυτές που εκτιμούν την εξάρτηση που έχει η 
χρονική εξέλιξη μιας μεταβλητής από κάποια άλλη, έννοια γνωστή ως αιτιότητα κατά 
Granger. 
 Στην ανάλυση αιτιότητας χρονοσειρών από 𝛫 μεταβλητές είναι σημαντικό στην 
εκτίμηση της σύνδεσης ή αιτιότητας από τη 𝛸 στη 𝛶 να συμπεριληφθεί και η 
αλληλεπίδραση με τις υπόλοιπες 𝛫 − 2 μεταβλητές, δηλαδή η άμεση αιτιότητα κατά 
Granger. 
Στο πλαίσιο των μεθόδων που βασίζονται στη θεωρία πληροφορίας, δύο τέτοιες 
μέθοδοι είναι αυτές που δίνονται από τα στατιστικά Partial Transfer Entropy όπου 
συνηθίζεται να εφαρμόζεται σε στάσιμες χρονοσειρές και Partial Transfer Entropy on 
Rank Vectors (PTERV) όπου έχει τη δυνατότητα να εφαρμόζεται απευθείας και σε 
στάσιμες, αλλά και σε μη-στάσιμες χρονοσειρές. Όταν το 𝛫 είναι μεγάλο, υπάρχει 
ανάγκη επιλογής των πιο σχετικών από τις 𝛫 − 2 μεταβλητές με τη μεταβλητή οδηγό 𝛸 
ή τη μεταβλητή απόκρισης 𝛶. 
 Στην εργασία αυτή εστιάζουμε σε αυτή τη διαδικασία επιλογής, αξιολογώντας κάποιες 
προσεγγίσεις στην προσπάθεια να προτείνουμε μια νέα πιο αποτελεσματική 
προσέγγιση σε σχέση με το στατιστικό εκτίμησης άμεσης αιτιότητας κατά Granger 
PTERV.  Σκοπός της εργασίας είναι η δημιουργία δικτύων αιτιότητας με 𝛫 κόμβους 
εφαρμόζοντας κατάλληλα το PTERV σε 𝛫 μη-στάσιμες χρονοσειρές.  
Γίνεται εφαρμογή της PTERV απευθείας σε χρηματιστηριακούς δείκτες και όχι τις 
αποδόσεις τους, ωστε να εκτιμηθούν οι σχέσεις αιτιότητας των χρηματιστηριακών 
δεικτών. 
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Σύνοψη 
 

Τα τελευταία χρόνια, παρουσιάζεται αυξανόμενο ενδιαφέρον για τη θεωρία γράφων και 
τις εφαρμογές της σε κάθε επιστημονικό πεδίο. Τα δίκτυα, ένας τρόπος αναπαράστασης 
της δομής πολύπλοκων συστημάτων χρησιμοποιώντας τη θεωρία γράφων, 
χρησιμοποιούνται ευρέως και με αυξανόμενη τάση. Μία από τις πολλές εφαρμογές τους 
είναι η οπτικοποίηση και ανάλυση των σχέσεων αιτιότητας μεταξύ των συστημάτων ή 
μεταξύ των συνιστωσών ενός ενιαίου συστήματος. 

Για να μελετηθεί η αλληλεξάρτηση μεταξύ των παρατηρούμενων μεταβλητών ενός 
δυναμικού πολυμεταβλητού συστήματος , έχουν αναπτυχθεί αρκετές μέθοδοι, με πιο 
σημαντικές, εκείνες τις οποίες εκτιμούν την άμεση εξάρτηση της χρονικής εξέλιξης μιας 
μεταβλητής από την άλλη, μια έννοια γνωστή ως αιτιότητα κατά Granger [9]. 

Αυτές οι έννοιες έχουν επίσης επεκταθεί στο πλαίσιο της θεωρίας πληροφορίας, στο 
οποίο έχουν αναπτυχθεί πολλά μέτρα και προτείνονται συνεχώς νέα. Ένα πολύ γνωστό 
μέτρο που χρησιμοποιείται για την ανίχνευση σχέσεων αιτιότητας από τη μεταβλητή 𝛸 
στη μεταβλητή 𝛶 είναι η  Εντροπία μεταφοράς [11], που συνηθίζεται η εφαρμογή της σε 
στάσιμες χρονολογικές σειρές. 

Το μέτρο αυτό έχει ένα σημαντικό μειονέκτημα, δεν περιλαμβάνει την αλληλεπίδραση με 
τις υπόλοιπες 𝛫 − 2 μεταβλητές του συστήματος. Για το σκοπό αυτό, προτείνεται από 
τον Valkorin στο [14] μια πολυμεταβλητή έκδοση της μετρικής αυτής, η Partial Transfer 
Entropy. 

Σε εφαρμογές πραγματικού κόσμου, τα περισσότερα από τα παρατηρούμενα φαινόμενα 
περιγράφονται από δεδομένα χρονολογικών σειρών που δεν είναι στάσιμα. Αυτή η 
συνειδητοποίηση, γεννά την ανάγκη για μέτρα ικανά να συλλάβουν τις σχέσεις 
αιτιότητας σε μη στάσιμες χρονολογικές σειρές. 

Στο [17] , οι Staniek and Lehnertz προτείνουν μία διαφορετική εκδοχή της Transfer 
Entropy, την Symbolic Transfer Entropy (STE), η οποία βασίζεται στη Permutation 
Entropy των Bandt και Pompe [16]. Συγκεκριμένα, αντί για τη χρήση των τιμών κάθε 
χρονοσειράς για τον υπολογισμό της Εντροπίας, χρησιμοποιούν τα σύμβολα διάστασης 
𝑚 που δημιουργούνται από τη κατάταξη ανά 𝑚 των τιμών της χρονοσειράς είτε σε 
αύξουσα είτε σε φθίνουσα σειρά. Λόγω της ανάγκης για την συμπερίληψη των 
υπόλοιπων 𝛫 − 2 μεταβλητών που προαναφέρθηκε, προτείνεται στο [20] η 
πολυμεταβλητή εκδοχή της μετρικής αυτής, η Partial Symbolic Transfer Entropy. 

Το πρόβλημα με την STE βρίσκεται στο γεγονός ότι δεν είναι το ακριβές ανάλογο της 
TE. Η επισήμανση αυτή, γίνεται από τον Κουγιουμτζή στο [18] όπου προτείνεται μία 
μετρική η οποία αποτελεί αυτό το ακριβές ανάλογο, η Transfer Entropy on Ranked 
Vectors (TERV). Η αντίστοιχη πολυμεταβλητή εκδοχή της, η Partial Transfer Entropy on 
Ranked Vectors (PTERV) προτείνεται στο [19]  από τον Κουγιουμτζή και αποτελεί τη 
βασική μετρική που χρησιμοποιούμε σε αυτή την εργασία.  
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Όπως αναφέραμε παραπάνω, σημαντικό στοιχείο στη μελέτη των σχέσεων αιτιότητας 
από μία μεταβλητή 𝛸 σε μία μεταβλητή 𝛶 αποτελεί η συμπερίληψη στους υπολογισμούς 
των υπόλοιπων 𝛫 − 2 μεταβλητών του συστήματος. Όταν όμως μελετούμε ένα σύστημα 
με μεγάλο αριθμό μεταβλητών 𝛫, υπολογιστικά και εννοιολογικά προβλήματα μπορεί να 
προκύψουν. Για παράδειγμα, με την παρουσία περιττών μεταβλητών, η εφαρμογή της 
τυπικής διαδικασίας ανάλυσης στην οποία συμπεριλαμβάνουμε στους υπολογισμούς 
μας όλες τις υπόλοιπες μεταβλητές μπορεί να οδηγήσει σε χαμηλότερη ακρίβεια στην 
ανίχνευση των σωστών σχέσεων αιτιότητας. 

Διάφορες προσπάθειες έχουν γίνει στο παρελθόν για τη μείωση των μεταβλητών 
δέσμευσης. 

Οι Marinazzo et al [33] αντιμετωπίζουν αυτό το ζήτημα, με μια προσέγγιση στο πλαίσιο 
της θεωρίας της πληροφορίας. Στο έργο τους, επιλέγουν τις μεταβλητές με τα 
μεγαλύτερα επίπεδα αμοιβαίας πληροφορίας με την αντίστοιχη οδηγό μεταβλητή σε 
κάθε ζεύγος του συστήματος. Χρησιμοποιούν έναν αλγόριθμο ο οποίος αφού εντοπίσει 
τη μεταβλητή αυτή, τη προσθέτει στο υποσύνολο των μεταβλητών δέσμευσης και 
προχωράει βρίσκοντας τις μεταβλητές με τη μεγαλύτερη τιμή αμοιβαίας πληροφορίας 
ως προς το σύνολο αυτό. Η διαδικασία αυτή επαναλαμβάνεται έως ότου το υποσύνολο 
αυτό, φτάσει το προκαθορισμένο μέγεθος από τον ερευνητή. Στη συγκεκριμένη εργασία, 
χρησιμοποιήθηκε η τεχνική αυτή στον όρο δέσμευσης της μετρικής Granger causality [9] 
και εξάχθηκε το συμπέρασμα πως η χρήση ενός υποσύνολου των μεταβλητών του 
συστήματος ως μεταβλητές δέσμευσης, οδηγεί σε αποτελέσματα πολύ κοντά σε εκείνα 
που λαμβάνουμε χρησιμοποιώντας όλες τις 𝐾 − 2 μεταβλητές και ειδικότερα σε μικρά 
δείγματα. 

Μια άλλη προσπάθεια μείωσης του αριθμού των μεταβλητών δέσμευσης, γίνεται από 
τους Zhou et al [34]. Σε αυτή τη δουλειά γίνεται μια προσπάθεια να μειωθεί η διάσταση 
των μεταβλητών αυτών χρησιμοποιώντας την Ανάλυση Κύριων Συνιστωσών (Principal 
Component Analysis, PCA)  και χρησιμοποιώντας τους γραμμικούς συνδυασμούς των 
συντελεστών των  Κύριων Συνιστωσών που αντιπροσωπεύουν το μεγαλύτερο μέρος 
της διακύμανσης με τις υπόλοιπες μεταβλητές του συστήματος, ως μεταβλητές 
ρύθμισης. Η ανάλυσή του, χρησιμοποιώντας την αιτιότητα του Granger ως μετρική για 
τον εντοπισμό των σχέσεων αιτιότητας, κατέληξε στο συμπέρασμα ότι η χρήση του PCA 
οδηγεί σε ελάχιστη απώλεια πληροφορίας που δεν επηρεάζει πραγματικά την ανάλυση 
συνδεσιμότητας. Επίσης, αυτή η μέθοδος, ανάλογα με το μέγεθος του δείγματος, 
εκτελείται σε εύλογο χρονικό διάστημα καθιστώντας τη έτσι, ένα πιθανώς πολύτιμο 
εργαλείο για την εκτίμηση των σχέσεων αιτιότητας. 

Οι δικές μας προσεγγίσεις στο πρόβλημα αυτό, είναι παρόμοιες με τις παραπάνω και 
χρησιμοποιούνται σε συνδυασμό με τις μετρικές PTERV και PTE, οι οποίες 
προέρχονται από τη θεωρία πληροφορίας και ο υπολογισμός τους βασίζεται σε όρους 
Εντροπίας. 
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δοκιμάσουμε να χρησιμοποιήσουμε μία μονό μεταβλητή δέσμευσης, τη μεταβλητή αυτή 
η οποία παρουσιάζει τη μεγαλύτερη τιμή αμοιβαίας πληροφορίας με την οδηγό 
μεταβλητή, σε κάθε ζεύγος μεταβλητών αντίστοιχα. 

Στη δεύτερη μας προσπάθεια, θα χρησιμοποιήσουμε την τεχνική της PCA, και θα 
ορίσουμε το υποσύνολο μεταβλητών δέσμευσης ως τον γραμμικό συνδυασμό των 
συντελεστών (coefficients) της πρώτης κύριας συνιστώσας (PC1) με τις αντίστοιχες 
μεταβλητές του συστήματος. 

Οι υπολογισμοί αυτοί θα πραγματοποιηθούν και σε προσομοιωμένα συστήματα αλλά 
και σε πραγματικές μη στάσιμες χρηματοοικονομικές χρονοσειρές. 

Μετά το πέρας των υπολογισμών αυτών, συμπεραίνουμε ότι οι μέθοδοι που 
χρησιμοποιήσαμε για τη μείωση των μεταβλητών δέσμευσης στις συγκεκριμένες 
μετρικές, δίνουν παρόμοια και σε κάποιες περιπτώσεις καλύτερα αποτελέσματα από 
την δέσμευση σε όλες τις 𝛫 − 2 μεταβλητές. 

 Ένα άλλο πλεονέκτημα της δέσμευσης σε ένα μικρότερο υποσύνολο μεταβλητών, είναι 
ότι μειώνεται πολύ το υπολογιστικό κόστος διατηρώντας παράλληλα τη ποιότητα των 
αποτελεσμάτων. Τον μικρότερο χρόνο εκτέλεσης τον προσομοιώσεων είχε η μέθοδος 
με τη χρήση της μίας μεταβλητής που παρουσιάζει τη μεγαλύτερη τιμή αμοιβαίας 
πληροφορίας με την οδηγό μεταβλητή, ως υποσύνολο δέσμευσης. Αμέσως μετά στη 
κατάταξη βρίσκεται η μέθοδος που κάνει χρήση του PCA και τέλος η μέθοδος με τη 
δέσμευση σε όλο το σύνολο των υπόλοιπων μεταβλητών του συστήματος. 

Στην εφαρμογή σε χρηματοοικονομικά δεδομένα, χρησιμοποιώντας δεδομένα του 
δείκτη MSCI για 23 ανεπτυγμένες αγορές, προσπαθήσαμε να βρούμε τη μετρική και τις 
τιμές παραμέτρων οι οποίες περιγράφουν καλύτερα τις σχέσεις που απαρτίζουν τη 
δομη του συστήματος. 

Βασισμένοι στις τιμές των μέτρων ακρίβειας που παρατηρήσαμε στις προσομοιώσεις 
και στον αριθμό συνδέσεων των δικτύων της εφαρμογής, καταλήγουμε οτι η PTERV για 
μικρή διάσταση ενσωμάτωσης 𝑚 = 2, καταφέρνει να προσεγγίσει καλύτερα τη δομή του 
αληθινού αυτού συστήματος. 
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Introduction 

 
Dynamic networks and time series are scientific fields with a wide range of applications. 
Quite recently, dynamic networks built from time series have been the subject of 
research, notably in health sciences, environmental sciences and finance. 
 
A very interesting field of study that combines these two concepts is focused in 
detecting the interdependencies between a complex system’s variables. Specifically, 
the dependence of the temporal evolution of a variable on another, a concept called 
Granger causality [9]. On this context, many methods based in Information theory have 
been developed in order to detect causality relationships between time series. As the 
interactions with the rest of the variables of the system are of great importance, 
multivariate versions of these measures have been proposed over time. 
 
A known issue among these multivariate measures is that when the system under study 
has a great number of variables, computational and conceptual problems can occur. 
 
The aim of this work is to propose some new methods in order for these measures to be 
able to operate with a smaller number of conditioning variables while still returning 
relevant and trustworthy results. 
 
 
In chapter 1, we describe the basic properties and statistics of time series, we define 
time series stationarity and finally we analyse some stochastic models for time series 
construction. 
In chapter 2, we analyse the correlation measures that are used in time series analysis 
and we also introduce the measures of causality that are used in this work.  
In chapter 3, an introduction to the tests that are used to detect significant relationships 
between time series is made and then the randomization test is analysed 
In chapter 4, we discuss principal component analysis, a dimension reduction method 
that is used later in this work to reduce the dimension of the conditioning variables 
subset. 
In chapter 5, we introduce the concept of networks and their basic definitions and 
characteristics that are necessary for the reader in order to understand this work. 
In chapter 6, the methodology of the construction of networks derived from time series 
is discussed. Specifically, the concept of the False Discovery Rate (FDR), a method 
used to decrease the statistical errors occurred in detecting significant network 
connections is analysed. 
In chapter 7, we describe the accuracy measures that are used in this work to evaluate 
the efficiency of the metrics to identify the correct network connections. Namely, we 
discuss specificity and sensitivity. 
In chapter 8, the main subject of this work is presented. Previous attempts from the 
academic world are discussed and our approach is analysed. 
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In chapter 9, we describe the methodology of the simulations conducted, the system 
that is used and the results these simulations have generated. 
In chapter 10, an application of our methodology to real-world financial time series is 
presented. We describe the data used, the procedure that was followed and we make 
comments on the results.  
In chapter 11, we conclude with a brief discussion of the overall results and suggestions 
of future research on the subject. 
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 Figure 1.1 ECB reference exchange rate, US dollar/Euro (1999-2017 daily data points).                             
Source: European Central Bank statistical warehouse. 

Chapter 1.  Time series 

 

In this first chapter, we will summarize the main features and properties of the time 
series. We will focus mainly on the elements that are necessary for the reader to 
understand our work. These elements consist of the definition of the time series, how 
time series are formed, their basic properties and statistics and ways to measure the 
relationship between multiple time series. 

 

1.1 Definition 

A time series of length n consists of a set of ordered observations 𝑥௧ୀଵ
௡ = {𝑥ଵ, 𝑥ଶ,… ,𝑥௡} of 

a variable X. Because the values of the observed variable change with some small or 
large randomness or as we call it in statistical analysis, stochasticity, we consider the 
observed quantity as a random variable X. 

Usually these numbers are taken at equally spaced time steps 𝑡 = 1,2, … , 𝑛 according to 
a fixed sampling time. Time series are divided into discrete and continuous, as well as 
univariate and multivariate. Simply stated, a time series is a set of numbers describing 
the evolution of a variable (or variables in the case of multivariate time series) in time.  

Time series are used in a broad range of scientific fields such 
as statistics, econometrics, signal processing, electroencephalography, weather 
forecasting, etc. 

In Fig1.1, we present a real-world example of a univariate financial time series. 
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1.2 Time Series Parameters 

We present below, the most common parameters used in time series analysis which 
relate to the stochastic process from which the time series originates as well as the 
statistics we receive when we only have limited observations of the time series, thus, 
when we have a sample. 

 

 Mean value 
 
Parameter:  𝜇 = 𝐸[𝑋௧] 
 

Sample statistic:  𝑋ത =  
ଵ

௡
 ∑ 𝑋௧

௡
௧ୀଵ  

 
 Variance 

 
Parameter: 𝜎ଶ = 𝑉𝑎𝑟[𝑋௧] = 𝐸(𝑋௧ − 𝜇)ଶ 
 

Sample statistic: 𝑠ଶ =
ଵ

௡ିଵ
∑ (𝑥௧

௡
௧ୀଵ − �̅�)ଶ 

 
 Autocovariance 

 
Parameter: 𝛾(𝜏) = 𝑐𝑜𝑣(𝑥௧, 𝑥௧ାఛ) = 𝐸(𝑥௧ − 𝜇)(𝑥௧ାఛ − 𝜇) 
 

Sample statistic: 𝑐(𝜏) =  
ଵ

௡ି|ఛ|  
 ∑ (𝑥௧ − �̅�௡ି|ఛ| 

ఛୀଵ )(𝑥௧ାఛ − �̅�) 

 
 Autocorrelation 

 

Parameter: 𝜌(𝜏) =
ఊ(ఛ)

ఊ(଴)
=

ఊ(ఛ)

ఙమ  

 

Sample statistic:  𝑟(𝜏) =  
௖(ఛ)

௖(଴)
=

௖(ఛ)

௦మ  

 
 
We should also mention that the autocorrelation parameter can only be defined if 
the time series {𝑋௧} is stationary. 

    

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

18 
 

1.3 Stationarity 

Stationarity is a fundamental concept for time series analysis. In a simple way, we 
define as stationary, a time series that has no change in its mean value and its variance 
over time and from which any periodic changes have been removed [1].  

Stationarity is divided into two categories, strict and weak stationarity. 

A time series is said to be strictly stationary if the joint probability distribution of the 
stochastic process that produces it is unaffected by changes in time [1]. That means the 
following relation must hold: 

𝐹൫𝑋௧ଵ, … , 𝑋௧೙
൯ = 𝐹(𝑋௧ଵାఛ, … , 𝛸௧௡ାఛ) ∀ 𝜏 ∈ ℝ  

In practice, strict stationarity is a very difficult condition to apply. This is why in most 
cases we use a simpler version, the weak stationarity.  

For a time series to be considered weakly stationary two conditions must be in effect.   
The mean value of the time series {𝑋௧} and the autocovariance of {𝑋௧} and {𝑋௧ା఑} must 
be independent of time.  

 In particular, {𝑋௧} is weakly stationary if these two relations hold at the same time: 

 

 𝐸[𝑋௧] = 𝜇, 𝜇 ∈ ℝ 
 

 𝑐𝑜𝑣(𝑋௧, 𝑋௧ାఛ) = 𝛾఑ ,  𝛾఑ ∈ ℝ 
 

Ιt is easy to prove that if a time series is strictly stationary, it is automatically and weakly 
stationary. In real world, we often deal with time series that are non-stationary, but we 
are able, using various methods, to identify and remove the cause of non-stationarity. 

  

1.4 Testing time series stationarity 

As mentioned above, in real-world applications, many time series exhibit non-stationary 
behavior. These characteristics are very common in financial time series such as stock 
price indices. There are numerous approaches used to examine the stationarity of time 
series data. The most popular among them are the Augmented Dickey-Fuller test 
(ADF), the Phillips-Peron test (PP) and the Kwiatkowski, Phillips, Schmidt and Shin test 
(KPSS). In this work we will use the Augmented Dickey-Fuller test [23][24]. 
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1.4.1 Augmented Dickey-Fuller test 

The ADF test was developed by Dickey and Fuller and it used to detect the presence of 
unit roots. 

A unit root test, is used to investigate whether a time series contains a unit root and 
thus, is non-stationary. The null hypothesis is generally defined as non-stationarity of 
the time series / presence of unit root and the alternative hypothesis suggests that the 
data under examination are stationary or trend stationary depending on the test used 
[22]. 

There are three main versions of this test, each corresponding to different type of data 
[23], [24]: 

 

a) Test for a unit root 
 

𝛥𝑦௧ = 𝜑∗𝑦௧ିଵ + ෍ 𝜑௜

௣ିଵ

௜ୀଵ
𝛥𝑦௧ିଵ + 𝑢௧ 

 

b) Test for a unit root with drift: 

 

𝛥𝑦௧ = 𝛽ఖ+ 𝜑∗𝑦௧ିଵ + ෍ 𝜑௜

௣ିଵ

௜ୀଵ
𝛥𝑦௧ିଵ + 𝑢௧ 

 
 
 

c) Test for a unit root with drift and deterministic trend added: 
 

𝛥𝑦௧ = 𝛽ఖ+ 𝜑∗𝑦௧ିଵ + ෍ 𝜑௜

௣ିଵ

௜ୀଵ
𝛥𝑦௧ିଵ + 𝛽ଵ𝑡 + 𝑢௧ 

 

Where 𝑦௧ denotes the log return of the time series value (e.g. stock index) at the time 
period 𝑡 and 𝛥𝑦௧ =  𝑦௧ − 𝑦௧ିଵ.  Considering the other parameters, 𝛽 is the drift term, 𝑡 is 
the linear trend term, 𝑝 is the lag term and 𝑢௧ is the error term. 

About the test hypotheses, the null hypothesis states that the time series is non-
stationary or in other words contains a unit root and the alternative hypothesis states 
stationarity of the time series. 

𝐻଴: 𝜑∗ = 0 

𝐻଴: 𝜑∗ < 0 
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The t-statistic  𝑡 =
ఝ∗

ඥ௏௔௥(ఝ∗)
  must be calculated in order to test if our time series contain 

a unit root. Then, as the classic testing procedure dictates, it will be compared to the 
corresponding critical value at a pre-set significance level. If the null hypothesis is 
rejected, we can conclude that the time series 𝑦௧ doesn’t contain a unit root and thus it 
is stationary. 

Considering the choice of one of the above models, it is suggested [25] that the form of 
the test can be based upon the graphical inspection of the time series. 

Moreover, another important aspect is the selection of the appropriate value of the lag 
term 𝑝. If we assign a small value, we may be lead to over reject the null hypothesis 
when it is true. If we assign a large value the power of the test to reject the null 
hypothesis may be reduced. One suggested solution to this problem, is based on 
information criteria such as Akaike Information Criterion (AIC) [31]. In other words, we 
identify the proper lag length that minimizes the information criteria. There are also 
other methods to determine the appropriate time lag, but we only mention AIC because 
this is the one that is used in this work, as described with more details in a next section, 
in which we describe the simulations methodology. 

 

 

 

1.5 Stochastic models for time series construction 

In this section, the most well-known stochastic processes that are used to generate time 
series are described. In real-world applications, which are usually of great complexity, 
the following simple procedures can be combined together to form a model. 

In each of the procedures described below, we present first the univariate and then the 
multivariate versions which can be considered as generalizations of the univariate cases 
in that they are essentially multiple univariate processes combined. 

 

1.5.1 White noise 

White noise 𝑊𝑁(𝜇, 𝜎ଶ) is a sequence {𝑒௧} of independent and identically distributed         
random variables (iid) [2]. Since the above statement applies, they come from the same 
probability distribution and all are mutually independent [3] and therefore, for each of 
them apply the following: 

 𝐸{𝑒௧} = 𝜇   
 𝑉𝑎𝑟{𝑒௧} =  𝜎ଶ 

Also, due to the independence of the variables, the following applies: 
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𝐶𝑜𝑣(𝑒௧ , 𝑒௧ା௞) = 0 𝑖𝑓 𝑘 ≠ 0  

                                                  𝐶𝑜𝑣(𝑒௧ , 𝑒௧ା௞) = 𝜎ଶ 𝑖𝑓 𝑘 = 0 

 

A k-dimensional vector white noise can be represented by a dimension vector k as 
follows: 

𝐸௧ = {𝑒ଵ௧, 𝑒ଶ௧ , … , 𝑒௞௧} 

In this vector, each of the 𝐾 elements is a white noise with an average μ and 
variance  𝜎ఐ

ଶ. 

Also, the mean value and the variance of a Κ-dimensional white noise can be 
respectively represented by a vector of 𝜇௜ components and a diagonal matrix Σ with 𝜎ఐ

ଶ 
diagonal components. 

White noise is a process that occurs very often in real world time series simulations. 
Also, we can assume by its properties that it seems to be a weakly stationary process. 

 

1.5.2 Random walk 

Random walk is a stochastic process that comes from the white noise process. 

Let's assume that we have a white noise process {𝑒௧} with an average μ and a variance 
of 𝜎ଶ. 

A process {𝑋௜} is called a random walk, if the following apply: 

                                       𝑋௜ = 𝑋௜ାଵ + 𝑒௜ and 𝑋ଵ = 𝑒ଵ 

We can easily prove that for the process {𝑋௜} the following statements stand: 

 𝐸[𝑋௜] = 𝑡𝜇 
 𝑉𝑎𝑟[𝑋௜] = 𝑡𝜎ଶ 

 

Because the mean value and the variance of this process are dependent on time, the 
random walk is not considered a stationary process [1]. 

A k-dimensional random walk can also be described by the same set of equations, with 
the difference that now we consider 𝑋௜ and 𝐸௜ as vectors and not as single elements. 
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1.5.3 Autoregressive process 

An autoregressive process of order p, AR(p), is a process where the variable at time 𝑡 
depends on the variable at 𝑝 previous times. 

In the univariate case we have a time series, which is described by the equation: 

𝑋௧ = 𝜑ଵ𝛸௧ିଵ+ . . . +𝜑௣𝑋௧ି௣ + 𝑒௧ , where 𝑒௧  ~ 𝑊𝑁(0, 𝜎௫௜
ଶ )  and 𝜑௜ ∈ ℝ 

It can be shown that the AR (p) process is stationary, since the roots of the 
characteristic equation: 

𝜆௣ − 𝜑ଵ𝜆௣ିଵ-…- 𝜑௣ିଵ𝜆-𝜑௣ = 0 are all within the unit cycle [4]. 

VAR models (vector autoregressive models) are used for multivariate time series. The 
structure that they follow is that each variable is a linear function of past lags of itself 
and past lags of the other variables.  

A VAR process of order 𝑝 and of dimension 𝑘, can be described by the following 
equations: 

𝑋ଵ,௧ = 𝜑ଵ,଴ + 𝜑ଵ,ଵ𝛸ଵ,௧ିଵ+ . . . +𝜑ଵ,௣𝑋ଵ,௧ି௣ + 𝑒ଵ,௧ 

                                                                       ⋮       
𝑋௞,௧ = 𝜑௞,଴ + 𝜑௞,ଵ𝛸௞,௧ିଵ+ . . . +𝜑௞,௣𝑋௞,௧ି௣ + 𝑒௞,௧ 

 

 Where 𝑒௜௝ ~𝑊𝑁(0, 𝜎ଶ) and 𝜑௜,௝ ∈ ℝ, we also consider 𝜑௜,଴ = 0 

 

1.5.4 Moving average process 

A moving average process of order q, or MA(q), is defined by the following equation [1]: 

𝛸௧ =  θଵℇఛିଵ + ⋯ +  𝜃௤ℇఛି୯ +  ℇఛ 

Where 𝜃௜ ∈ ℝ and 𝑒௧  ~ 𝑊𝑁(0, 𝜎ఌ
ଶ) . Moreover, this process is weakly stationary for every 

value of 𝜃௜ [1]. 

In the multivariate case, the vector moving average process of order q, or VMA(q) is 
described by the following 𝑘 equations: 

𝑋ଵ,௧ = 𝜃ଵ,ଵℇଵ,௧ିଵ  + ⋯ + 𝜃ଵ,௤ℇଵ,௧ି௤ +  ℇଵ,௧ 

                                                                                           ⋮ 

𝑋௞,௧ = 𝜃௞ିଵℇ௞,௧ିଵ + ⋯ +  𝜃௞,୯ ,ℇ௞,௧ି୯ +  ℇ௞,௧ 
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Chapter 2.  Measures of Correlation and Causality 

 

A major part of time series analysis focuses in finding relationships between them. 
Meanwhile, the list of measures proposed for this purpose are constantly being 
renewed. These measures are categorized in linear if they only detect linear 
relationships and in non-linear if they have the ability to identify non-linear relationships 
as well.  

They are also divided into direct and indirect measures. Direct measures are these that 
have the potential to detect and eliminate the correlations that occur due to a common 
influence from a third or more time series. Indirect measures do not have this ability and 
ultimately detect all correlations, indirect and direct. 

In this section we will describe the following measures: Cross correlation (CRCO), 
Partial cross correlation, Cross mutual information (CMI), Granger causality index (GCI), 
Conditional Granger causality index (CGCI), Transfer Entropy (TE), Partial transfer 
entropy (PTE), Transfer entropy on ranked vectors (TERV), Partial transfer entropy on 
ranked vectors (PTERV). 

 

2.1 Cross-correlation 

Cross-correlation is the simplest linear correlation measure. It is the generalization of 
the above mentioned auto-correlation function to the multivariate case.  Autocorrelation 
calculates the relationship of a time sequence with itself for various time delays. From 
the above definition we can conclude that the cross-correlation function calculates the 
relationship of two time series for various time delays. If the time delay is zero, then we 
actually get the Pearson Correlation coefficient. 

The expression of the cross-correlation measure is [1]: 

 

𝑟௫௬(ఛ) =  
∑ (𝑥௧ − �̅�)(𝑦௧ାఛ − 𝑦ത)௡ି|௧|

௧ୀଵ

ඥ∑ (𝑥௧ − �̅�)ଶ ∑ (𝑦௧ − 𝑦ത)ଶ௡
௧ୀଵ

௡
௧ୀଵ

 

Where τ denotes the time lag. 

The measure of cross-correlation is relatively simple in its calculation, but it also has 
some drawbacks. It can only detect linear relationships between time series, and cannot 
separate direct from indirect correlations. 

Cross-correlation’s possible values range in the interval [-1,1]. The interpretation of 
these values is given below: 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

24 
 

 If 𝑟 >  0, there is a positive linear correlation between the two time series, 
meaning that the time series are moving similarly to each other. 

 If 𝑟 < 0, the linear correlation is negative, meaning a complete reverse relation 
between the values of the time series. 

 If 𝑟 =  0, there is no linear correlation between the time series. 
 

Despite being a classic measure of correlation it can actually detect causal relations too 
[5], depending on the adjustment of the time lag parameter τ: 

 

 If 𝑟௫௬(଴) ≠ 0 & 𝜏 = 0, then {𝑥௧} and {𝑦௧} are instantaneously related. 

 If 𝑟௫௬(ఛ) ≠ 0 & 𝜏 > 0, then {𝑥௧} causes {𝑦௧}. 

 If 𝑟௫௬(ఛ) ≠ 0 & 𝜏 < 0, then {𝑦௧} causes {𝑥௧}. 

 

2.2 Cross Mutual Information 

Mutual information is an indirect, non-linear correlation measure based on the concept 
of Shannon’s Entropy [6].  

Shannon’s Entropy is given from the formula:  

𝐻(𝑋) = − ෍ 𝑝௫(𝑥)𝑙𝑜𝑔ଶ𝑝௫(𝑥)

௫

 

and it represents the number of bits required on average to describe the variable X. In 
other words, it measures the uncertainty of a random variable X [7]. 

The joint Shannon’s entropy of two random variables 𝑋 and 𝑌 is a generalization of the 
above formula [7]:  

𝐻(𝑋, 𝑌) = − ෍ ෍ 𝑝௫௬(𝑥, 𝑦)𝑙𝑜𝑔ଶ

௬௫

𝑝௫௬(𝑥, 𝑦) 

The mutual information of the random variables X and Y can now be defined as [7]: 

𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) = ෍ ෍ 𝑝௫௬(𝑥, 𝑦)𝑙𝑜𝑔ଶ

௬௫

𝑝௫௬(𝑥, 𝑦)

𝑝௫(𝑥)𝑝௬(𝑦)
 

Mutual information is a measure of how much the uncertainty of variable X has been 
reduced due to the knowledge of variable Y and vice versa. In other words, it calculates 
how much information the two variables share [7]. 

In terms of time series, mutual information can be expressed as: 
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𝐼௑௒(ఛ) = ෍ ෍ 𝑝௑௒(𝑥௧, 𝑦௧ାఛ)𝑙𝑜𝑔ଶ

𝑝௑௒(𝑥௧, 𝑦௧ାఛ)

𝑝௫(𝑥௧)𝑝௬(𝑦௧ାఛ)
௬೟శഓ௫೟

 

where τ denotes the time lag parameter. As far as the range of values is concerned, 
mutual information is always a positive quantity, while it is zero if and only if the two 
variables are independent.  
 

If we wish to include a third variable, or a set of variables to our calculations, the 
Conditional mutual information between 𝑋 and 𝑌 conditioning on 𝑍 can be calculated 
using the following formula [8]: 

𝐼(𝑋; 𝑌|𝑍) = ෍ 𝑝(𝑥, 𝑦, 𝑧)

௫,௬,௭

𝑙𝑜𝑔
𝑝(𝑥, 𝑦|𝑧)

𝑝(𝑥|𝑧)𝑝(𝑦|𝑧)
 

 

2.3 Granger causality index 

The Granger causality index is a linear measure proposed by Granger in 1969 [9]. The 
idea behind this measure is extremely simple: We are looking at whether we can have a 
better prediction of the future values of a time series {𝑌௧} if we also include in our model 
the time series {𝑋௧}, compared to only including exclusively previous values of {𝑌௧}. In 
the case that the prediction is improved, we assume that the time series {𝑋௧} 
affects {𝑌௧}. 

This measure can be described in terms of mathematics in a very simple manner: 

Suppose we have two time series, {𝑋௧} and {𝑌௧}. We construct two models to 
predict {𝑌௧}, one of which contains only past values of {𝑌௧} and hence it can be 
described by the following expression: 

𝑦௧ = ෍ 𝑎௜𝑦௧ି௜ + 𝑒௧

௞

௜ୀଵ

 

 

The second model also contains past values of the time series {𝑋௧} and can be formed 
as: 

𝑦௧ = ෍ 𝑎௜𝑦௧ି௜ + ෍ 𝑏௜𝑥௧ି௜ +

௞

௜ୀଵ

௞

௜ୀଵ

𝑒௧
ᇱ 
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The coefficients 𝑎௜ , 𝑏௜   that appear in the two above models are estimated by a method 
that minimizes the dispersion of the terms 𝑒௧ and 𝑒௧

ᇱ. Such methods are the maximum 
likelihood method and the least squares method. 

The answer to whether or not the time series {𝑋௧} affects {𝑌௧}  will be given to us by the 
variances of the terms 𝑒௧  and 𝑒௧

ᇱ [9]. For this purpose, the two variances are compared. If 
the second term shows less variance, this means that we make better predictions if we 
also include the past values of {𝑋௧} in the model and therefore we assume that the time 
series {𝑋௧} affects {𝑌௧}. The formula from which we get the Granger index is as follows 
[10]: 

𝐺𝐶𝐼௑→௒ =  ln
𝑉𝑎𝑟(௘೟)

𝑉𝑎𝑟(௘೟
ᇲ)

 

For this measure to be successfully applied, weak stationarity is required. This issue 
can be addressed by applying the measure to the parts of the time series that are 
considered to satisfy this property. It is also obvious, that the influence of other variables 
in the outcome is ignored. Finally, although this measure was originally developed to 
identify linear relationships, several methods have been developed recently based on 
Granger's philosophy of detecting nonlinear relationships. 

 

2.4 Conditional Granger Causality Index 

This measure constitutes an enhanced version of the Granger causality index in sense 
that it is able to detect and eliminate indirect relationships. There is exactly the same 
logic in the methodology of its calculations, except that the new term {𝑍௧} that accounts 
for the possible influence of all other variables in the system on {𝑌௧} is now added to 
both models. If we assume that our system consists of a total of 𝐾 time series, 
including {𝑋௧} and {𝑌௧}, the new term regards the multivariate time series: 

𝑍௧ = ൛𝑧ଵ,௧, … , 𝑧௄ିଶ,௧ൟ 

The corresponding models for calculating the index will be configured as follows. 

The first model for the prediction of {𝑌௧} now becomes: 

𝑦௧ = ෍ 𝑎௜𝑦௧ି௜ + ෍ 𝐶௜𝑍௜

௞

௜ୀଵ

+ 𝑒௧

௞

௜ୀଵ

 

The second model that contains {𝑋௧} becomes: 

𝑦௧ = ෍ 𝑎௜𝑦௧ି௜ + ෍ 𝑏௜𝑥௧ି௜

௞

௜ୀଵ

+ ෍ 𝐶௜𝑍௜

௞

௜ୀଵ

+ 𝑒௧
ᇱ

௞

௜ୀଵ
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The calculation of the index and the conclusions drawn are similar to the simple version 
of GCI. We calculate the dispersions of the two terms 𝑒௧, 𝑒௧

ᇱ and if the dispersion in the 
second model is less than the first, then we assume that the time series {𝑋௧}  affects 
{𝑌௧}. The formula from which we get the CGCI value is the following [10]: 

𝐶𝐺𝐶𝐼௑→௒ =  ln
𝑉𝑎𝑟(௘೟)

𝑉𝑎𝑟(௘೟ᇲ)
 

2.5 Transfer Entropy 

Transfer entropy is another measure that is based on entropy. It was first proposed by 
Schreiber in [10]. It captures the effect that {𝑋௧} exerts on {𝑌௧}, at 𝑇 time steps ahead, 
while accounting for the current state of {𝑌௧}. In order to quantify it we have to construct 
three vectors. The first two vectors contain current and past values of {𝑋௧} and {𝑌௧}. 

𝒙𝒕 =  ቂ𝑥௧, 𝑥௧ିఛഖ
, … , 𝑥௧ି(௠ೣିଵ)ఛఞቃ 

𝒚𝒕 = ቂ𝑦௧, 𝑦௧ିఛ೤
, … , 𝑦௧ି(௠೤ିଵ)ఛ௬ቃ 

 

And the third, is the future response vector of dimension T, 

𝑦௧
் = [𝑦௧ାଵ, 𝑦௧ାଶ, … , 𝑦௧ା்] 

 

Where 𝑚௫ and 𝑚௬ are the embedding parameters, 𝜏௫ and 𝜏௬ denote the time lag, and 𝑇 
is the time step ahead. An intuitive way to express transfer entropy is given below [12]: 

𝑇𝐸௑→௒ = 𝐻(𝑦௧
்|𝒙𝒕) − 𝐻(𝑦௧

்|𝒙𝒕, 𝒚𝒕) 

 

This can be translated as the number of bits required on average to describe 𝑦௧ା் while 
𝒙𝒕 is known, less the number of bits required on average to describe 𝑦௧ା் while both 𝒙𝒕 
and 𝒚𝒕 are known. Another representation of transfer entropy that resembles the mutual 
information formula is the following [11]: 

 

𝑇𝐸௑→௒ =  ෍ 𝑝(𝑦௧
்,

௬೟శ೅

𝒙𝒕, 𝒚𝒕)𝑙𝑜𝑔ଶ

𝑝(𝑦௧
்|𝒙𝒕, 𝒚𝒕)

𝑝((𝑦௧
்|𝒚𝒕))

 

 

As far as the method of estimation is concerned, discretization of the observed variables 
𝒙𝒕 and  𝒚𝒕 can be assumed for the discrete variable x, where the Shannon entropy sum 
is over the possible bins of 𝑥 and 𝑝(𝑥) is the probability mass function of 𝑥 [18]. 
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Although more recent research [15] suggests that the use of the 𝑘-nearest neighbor’s’ 
method may be more appropriate when dealing with systems that contain a large 
number of variables. The use of the 𝑘- nearest neighbor’s approach is described in [13]. 

 

 

2.6 Partial Transfer Entropy 

This measure was proposed by Valkorin [14] and it is basically an extension of transfer 
entropy that enables it to be able to identify direct relations among time series. Its 
approach in eliminating indirect relations is similar to the one used in CGCI in the sense 
that a vector 𝑍௧ = ൛𝑧ଵ,௧, … , 𝑧௄ିଶ,௧ൟ , containing every other variable in the system, is used 
to nullify the effect of other variables on {𝑋௧} and {𝑌௧}. An intuitive way to express partial 
transfer entropy is the following [12]:  

 

𝑃𝑇𝐸௑→௒|௓ = 𝐻(𝑦௧
்|𝒙𝒕, 𝒛𝒕) − 𝐻(𝑦௧

்|𝒙𝒕, 𝒚𝒕, 𝒛𝒕) 

 

The method used by Valkorin in order to estimate the entropies is the correlation sums, 
but as mentioned above, the use of the 𝑘-nearest neighbor’s’ method, may be more 
appropriate if certain conditions are met. 

 

 

 

2.7 Symbolic Transfer Entropy 

Bandt and Pompe in [16] suggest a different discretization method that produces far 
less bins for the high dimensional variables. This is possible by the rank ordering of the 
components of vector variables [18]. By substituting the sample vectors with rank 
vectors in Shannon Entropy we can get Bandt’s and Pompe’s Permutation Entropy [16]: 

 

𝐻(𝑛) = − ෍ 𝑝(𝜋) log 𝑝( 𝜋) 

  

  

where the sum runs over all 𝑚! permutations 𝜋 of order 𝑚. 
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The ranked vectors are formed as following [18]:  For each point 𝒚𝒕, the ranks of its 
components, either in ascending or descending order, form a rank vector 

 𝑦௧ෝ = ൣ𝑟௧,ଵ, 𝑟௧,ଶ, … , 𝑟௧,௠൧ where 𝑟௧,௝ ∈ {1,2, … , 𝑚} for 𝑗 = {1,2, … , 𝑚} is the rank order of the 
component  𝑦௧ି(௝ିଵ)ఛ. If two components of 𝒚𝒕 are equal, the smallest rank is assigned 

to the component appearing first in 𝒚𝒕. 

In [17], the same conversion is also proposed for Transfer Entropy. The arguments in 
the equation of TE are modified as follows:  

The sample vectors 𝒙𝒕 and 𝒚𝒕 are replaced by the rank vectors 𝑦௧ෝ  and 𝑥௧ෝ  respectively 
and the future response vector 𝑦௧ା் is replaced by the future response rank vector 𝑦ො௧ା். 

The result, called Symbolic Transfer Entropy, can be defined as: 

𝑆𝑇𝐸௑→௒ = 𝐼( 𝑦ො௧ା்; 𝑥௧ෝ |𝑦௧ෝ ) = −𝐻(𝑦ො௧ା் , 𝑥௧ෝ  , 𝑦௧ෝ ) + 𝐻(𝑥௧ෝ  , 𝑦௧ෝ ) + 𝐻(𝑦ො௧ା் , 𝑦௧ෝ ) − 𝐻(𝑦௧ෝ ) 

 

2.8 Partial Symbolic Transfer Entropy 

This measure was proposed in [20] and it is basically an extension of symbolic transfer 
entropy that enables it to include the effect of the current state of Z on the future of the 
response Y and the current state of X. In a similar way as the abovementioned Partial 
Transfer Entropy, we can define PSTE as: 
 

𝑃𝑆𝑇𝐸௑→௒ = 𝐼( 𝑦ො௧ା்; 𝑥௧ෝ |𝑦௧ෝ , 𝑧௧ෝ )

= −𝐻(𝑦ො௧ା், 𝑥௧ෝ  , 𝑦௧ෝ , 𝑧௧ෝ ) + 𝐻(𝑥௧ෝ  , 𝑦௧ෝ , 𝑧௧ෝ ) + 𝐻(𝑦ො௧ା் , 𝑦௧ෝ , 𝑧௧ෝ ) − 𝐻(𝑦௧ෝ , 𝑧௧ෝ ) 

 

 
2.9 Transfer Entropy on Ranked Vectors 

Transfer entropy on ranked vectors (TERV) is a correction of STE proposed by 
Kugiumtzis in [18]. The issue with STE, is that while sample vectors 𝒙𝒕 and 𝒚𝒕 
correspond directly to their respective ranked vectors 𝑥௧ෝ   and 𝑦௧ෝ  and preserve the vector 
dimension, the vector  𝑦௧

் = [𝑦௧ାଵ, 𝑦௧ାଶ, … , 𝑦௧ା்] of dimension 𝑇 is mapped to the ranked 
vector of  𝒚௧ାఛ = ൣ𝑦௧ା் , … , 𝑦௧ା்ି(௠ିଵ)ఛ൧ which is the following vector, of dimension 𝑚 : 

𝒚ෝ௧ା் = ൣ𝑟௧ା்,ଵ, … , 𝑟௧ା்,௠൧ 

This difference in the dimension of the sample and the respective ranked vector has 
implications in the computation of entropy terms [18]. For the future response sample 
vector of TE, 𝑦௧

் , TERV assigns the future response rank vector, of dimension 𝑇: 

 

𝒚ෝ௧ 
்

= ൣ𝑟௧,௠ାଵ, … , 𝑟௧,௠ା்൧ 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

30 
 

Thus, Transfer entropy on ranked vectors can be defined as following [18]: 

 

𝑇𝐸𝑅𝑉௑→௒ = 𝐼( 𝑦ො௧
்; 𝑥௧ෝ |𝑦௧ෝ ) = −𝐻(𝑦ො௧

் , 𝑥௧ෝ  , 𝑦௧ෝ ) + 𝐻(𝑥௧ෝ  , 𝑦௧ෝ ) + 𝐻(𝑦ො௧
்  , 𝑦௧ෝ ) − 𝐻(𝑦௧ෝ ) 

 

 

2.10 Partial Transfer Entropy on Ranked Vectors 

If we suppose that we have a system containing 𝐾 multivariate time series, we can 
extend TERV to be able to capture the effect of the current state of the 𝐾 − 2 remaining 
variables on the future of the response variable 𝑦௧ and the current state of 𝑥௧ [19]. 

If we denote 𝑍௧ = ൛𝑧ଵ,௧ , … , 𝑧௄ିଶ,௧ൟ as a vector containing every other variable in the 
system, we can define PTERV in a similar way as PTE and PSTE as following [19]: 

 

𝑃𝑇𝐸𝑅𝑉௑→௒ = 𝐼( 𝑦ො௧
்; 𝑥௧ෝ |𝑦௧ෝ , 𝑧௧ෝ ) = −𝐻(𝑦ො௧

் , 𝑥௧ෝ  , 𝑦௧ෝ , 𝑧௧ෝ ) + 𝐻(𝑥௧ෝ  , 𝑦௧ෝ , 𝑧௧ෝ ) + 𝐻(𝑦ො௧
்  , 𝑦௧ෝ , 𝑧௧ෝ ) − 𝐻(𝑦௧ෝ , 𝑧௧ෝ ) 

For PTERV, the possible rank permutations of 𝑍௧ are (𝑚!)௄ିଶ, which clearly shows that 
the demand for largest time series lengths increases with both 𝐾 and 𝑚 [19]. 
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Chapter 3.  Testing for relationships between time series 

 

In this chapter we describe the ways in which we can check whether two time series 
have a relationship of correlation or causality. Initially, we summarize all kinds of tests 
that can be used to separate whether the connection between the time series is 
important or not. Then, we proceed by analyzing the test we used in this work.  

 

3.1 The different types of tests 

The simplest way to define the validity of a connection is by setting a cut-off threshold. If 
the measure used to detect the connection has a value greater than that, we think it is 
important and we consider it significant, otherwise we reject it. This way, though, is 
extremely simple to implement, is arbitrary and is clearly based on the researcher’s 
experience.  

Another way of separating the significant from the non-significant links, is parametric 
tests. These tests require specific assumptions about the distribution of the population 
so that they can be implemented. After testing these assumptions, we then define the 
two hypotheses: 

 𝐻଴: the connection is not significant  

 𝐻ଵ: the connection is significant 

We then calculate a statistic metric from the data and then we check the location in 
which this statistic is found in relation to the distribution it is supposed to follow. If it is at 
the edges of the distribution, we consider it to be an extreme value and therefore the 
zero hypothesis is rejected. If the zero hypothesis was valid, our statistic would appear 
in the distribution as a standard value. 

When we collect data and we can’t be certain about the distribution that they follow, we 
resort to non-parametric tests. This type of tests, have a similar methodology to the 
parametric ones, except that they do not assume any statistical assumptions and do not 
require normality in the distributions of variables. 

Randomization tests differ from the previous two types in the procedure that they follow. 
In order to decide whether the link is important or not, they compare the statistic formed 
by the measure of the two time series, with a distribution that is randomly formed by the 
same measure. In order to obtain this distribution, we retain one time series unchanged  
in each iteration, while we shift the second, in a process that does not alter its internal 
consistency. As before, if our statistics are at the edges of the distribution, we consider 
the link to be important. 
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3.2 The randomization test  

The randomization test can be applied to all measures used to find relationships 
between time series. The idea is this: We initially take the measure value from the 
original time series. Then moving continuously one of our time series, while keeping the 
second one intact, we take the value of the measure for the new couples that arise and 
shape the distribution of these measures. Because these shifted time series have been 
randomly generated, if our original pair actually had a relationship, the value of the 
measure would be an extreme value in relation to all the rest, and therefore we expect it 
to appear at the edges of the distribution. If this happens, we consider the value of the 
measure and thus the relation of the time series, as significant. More specifically, this 
shifting procedure is as follows:  

Let us assume that we have applied a measure c to our network connections and now 
we must examine whether the connection of the time series {𝑥௧} and {𝑦௧} is significant. 
In the test that we will apply, the zero hypothesis is that the value we got for the 
connection is due to random factors and therefore we must consider it zero. 

The alternative hypothesis is obviously that this connection is significant and therefore 
different from zero. If we denote the value of the measure as 𝑚௫௬

଴  the two hypotheses 
can be defined as follows: 

𝐻଴: 𝑐௫௬
଴ = 0 

𝐻ଵ: 𝑐௫௬
଴ ≠ 0 

We will then form the randomized distribution, with the help of which we will decide 
whether the value of the measure is significant or not. This distribution is formed by the 
values of the same measure in M different pairs of time series originating from the 
original, after some random shifting. The new pairs of time series are produced as 
follows: We maintain the time series {𝑥௧}  and move the time series {𝑦௧} by one random 
step p, different in each iteration. The resulting time series takes the following form:  

൛𝑦௧
௜ൟ = ൛𝑦௣ାଵ, 𝑦௣ାଶ, … , 𝑦௡ , 𝑦ଵ, … , 𝑦௣ൟ 

The way in which the shift is made is such that the inner bonds and dynamics of the 
original time series are maintained. This is because some measures need those bonds 
to deliver the right results. It is also suggested that M is a large enough number so that 
we can get results at the desired level of significance. However, it is not necessarily 
good to get all the n-1 possible shifts, because then computational costs will incur, 
especially for a big length n. 

Then we calculate the value of the measure for each of the above M couples of the form 
{𝑥௧} , ൛𝑦௧

௜ൟ that will occur for each of the shifts and we denote the M + 1 results as 

𝑚௫௬
଴ , 𝑚௫௬భ

ଵ ,… 𝑚
௫௬ಾ
ெ , where 𝑚௫௬

଴  is the value of the original time series couple. We sort 

these results in ascending order and check if the value is at the edges of the list. 
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The statistic we use to test our hypothesis, is the following [21]: 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =

⎩
⎪
⎨

⎪
⎧ 2

𝑟𝑎𝑛𝑘൫𝑚௫௬
଴ ൯ − 0.326

𝑀 + 1 + 0.348
 , 𝑖𝑓 𝑟𝑎𝑛𝑘൫𝑚௫௬

଴ ൯ <
𝑀 + 1

2
 

2 ቆ1 −
𝑟𝑎𝑛𝑘൫𝑚௫௬

଴ ൯ − 0.326

𝑀 + 1 + 0.348
ቇ , 𝑖𝑓 𝑟𝑎𝑛𝑘൫𝑚௫௬

଴ ൯ ≥
𝑀 + 1

2

 

 

Then we conduct the following test: If the p-value is smaller than α, where α is the 
significance level, then the zero hypothesis is rejected and therefore the connection we 
have is important. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

34 
 

Chapter 4. Dimension reduction methods 

 

In statistics, we refer to dimensionality reduction as the methods that help us reduce the 
number of random variables of our system, into a smaller number of so-called principal 
variables. In general, there are many processes that help us achieve a dimension 
reduction of our system. In this work, we focus in Principal component analysis (PCA) 
which is considered as the main linear technique for dimensionality reduction. 

 

4.1 Principal Component Analysis 

PCA is a multivariate dimension reduction technique that has its aim in the explanation 
of relationships among several difficult-to-interpret, correlated variables in terms of a 
few components which are uncorrelated with each other and are capable of accounting 
for nearly all the variation present in the observed data. PCA therefore finds a linear 
transformation of original variables into a new set of variables called principal 
components which are uncorrelated with each other and are capable of accounting for 
the variation of the obtained data and are derived in such a way that the first few of 
them can often provide enough information about the data and so the dimensionality of 
the problem can considerably be reduced [26]. 

The calculation of the principal components and the final form of the data is a simple 
and straightforward process that requires understanding of basic mathematical 
concepts. The steps followed in this procedure are described below [27]: 

After the collection of our data, the first step is to subtract the mean value from them. 
This means subtracting the mean from each time series of our system separately. By 
following this procedure, we will end up with a dataset with zero mean. Next, we 
compute the covariance matrix, which is a square matrix of dimensions (𝑘 × 𝑘) 
supposing that our system is of dimension 𝐾. Because the covariance matrix is square, 
it is possible now to calculate the eigenvectors and eigenvalues of it. These, will help us 
choose the components that we find more suitable for use. This choice of components 
is the most important step, because the final form of our data will be derived by them.  

The most important relationship between our systems’ variables is given by the 
eigenvector with the highest eigenvalue [27]. In other words, this is the principal 
component of our data. If we rank the eigenvectors based on their corresponding 
eigenvalues, we have a ranking of components in which the higher a component is 
ranked, the more of the variance of our system it is able to explain. In our work, we will 
experiment using only the first principal component (PC1) to transform our data, as this 
component holds the most of the information of our system. Now, we construct a new 
matrix of vectors containing the eigenvectors we want to keep, placing them based on 
the ranking we mentioned above. In our case, this matrix will only contain the 
eigenvectors that were ranked first.  
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As a final step, we can derive our final data by multiplying the transposed vector of 
matrices we have created (the eigenvectors are now in rows) with the transposed matrix 
of our mean-adjusted data, in which each data dimension corresponds to a row.  

There is also a procedure of getting the initial data back from the final dataset, but it 
doesn’t concern this work. 
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Chapter 5.  Networks 

 

In this chapter we will summarize the main aspects of the networks, the categories in 
which they are separated and some important concepts related to them and are 
necessary for the understanding of our work.  

 

 

5.1 Definition 

A Network (or graph) is a method of representing a set of entities in which some pairs of 
entities are linked together. The entities that form the network are called vertices and we 
denote their total number with 𝑛, while the links formed between them are called edges 
and their total count is denoted as 𝑚. The number 𝑛 is called order of the network while 
the number 𝑚 is the size of the network. In summary we can say that a graph is an 
ordered pair 𝐺 (𝑉, 𝐸), where the set 𝐸 contains the network’s edges and 𝑉 is the set of 
its nodes. 

 

 

5.2 Categories of Networks 

Networks are divided into directed and undirected, and also in weighted and non- 

weighted. 

In undirected networks, the edges are not oriented. This means, that the existence of 

the edge 𝐴 − 𝐵 automatically results in the existence of the edge 𝐵 − 𝐴 and the edge is  

represented by a straight line. In directed networks, there may be the edge 𝐴 − 𝐵 but 
this doesn’t necessarily means that the edge 𝐵 − 𝐴 will exist too. To make sense of the 
direction of an edge in these networks, the links are represented by arrows. 
 
In undirected networks, the edge set 𝐸 in consists of bipartite sets of nodes {𝑘, 𝜆} while 
in directed networks, it consists of ordered pairs {𝜅, 𝜆}. A directed network is called 
symmetric, if for each pair {𝑘, 𝜆} belonging to 𝐸, there is the corresponding pair {𝜆, 𝜅}. 
 
An example of a directed and an undirected network is presented in figures 3.1. 
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 Figure 3.1 An example of directed and undirected networks. From “Network Science”. Albert 
Laszlo Barabasi. 

 Figure 3.2. An example of a weighted and a non-weighted network.  

 

 

 

 

 

 

 

 

In weighted networks, a weight 𝑤௜௝ is assigned to each of the edges, which 
represents the magnitude of the corresponding link.  On the other hand, non- 
weighted networks handle all the connections between the nodes as equal.  

Figure 3.2 presents an example of a weighted and a non-weighted (binary) 
network: 

 

 

 

 

 

 

 

 

 

In our work, we will use directed, non-weighted networks to study causality relationships 
using the information measures described in a previous chapter. 

 

5.3 The Adjacency matrix 

The adjacency matrix is a mathematical representation of the network’s structure. In 
other words, it is a matrix that contains the list of edges between the nodes of the 
network. The adjacency matrix of a network of 𝑁 nodes is of size 𝑁 ∗ 𝑁 [28]. 
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 Figure 3.3. The structure of an adjacency matrix. From “Network Science”. Albert Laszlo 
Barabasi. 

Below there is an example of an adjacency matrix which represents a network with 4 
nodes: 

 

 

 

 

 

 

 

About the elements of the adjacency matrix, for directed networks each cell is as 
follows: 

𝐴௜௝ = 1, if a link exists pointing from node j to node i. 

𝐴௜௝ = 0, if the nodes i, j are not connected. 

For undirected networks, we have 2 cells corresponding to each link, for example if 
nodes i and j are connected the link is represented both in 𝐴௜௝ and in 𝐴௝௜  (𝐴௜௝ = 1, 𝐴௝௜ =

1).  

The adjacency matrix of weighted networks is a little different. Its elements are 
populated by the weight of the connection rather than a binary indicator: 

𝐴௜௝ = 𝑤௜௝ 

 

 

 

 

 

 

 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

39 
 

Chapter 6.   Networks from time series 

As described in the previous chapter, a network is a set of entities, some of which are 
linked to each other by some relationships. When referring to time series networks, 
these entities are the time series we are concerned with, and the links between them 
are the relationships that may exist between each pair of these time series. 

In order for a network to exist, we must have at least two time series as nodes. Then we 
have to decide which measure we will use to discover relationships between these time 
series and with which method we will test if we accept the existence or not of any 
relationship between them. Depending on the measure of our choice, the network will 
be formed as undirected, if we use a correlation measure or a directed, if the measure 
gives us causality relationships, for example if one time series affects another one. We 
also have to decide if our network will have weights, or if the edges will be binary.  

The method that we chose to use in this work to test whether a link is considered 
significant or not, have been described in detail in Section 1.7.  

 

6.1 False Discovery Rate (FDR) 

In our attempt to identify existing connections in a network of 𝑛 time series, we 
simultaneously perform 𝑛 (𝑛 − 1) hypothesis tests. When performing such tests, there 
are 2 types of errors that may occur: 

Type I errors, where the null hypothesis is rejected while it is true, and type II errors 
where the null hypothesis is not rejected while it is actually false. In this paragraph we 
will be concerned with type I errors. In a test, type I errors are controlled by the 
significance level 𝛼, usually equal to 0.05. This means that in a simple hypothesis test 
there is a 5% probability of rejecting the null hypothesis while it is true. The problem lies 
in the fact that if we carry out multiple tests at the same time, the likelihood of such an 
error increases considerably. In 𝑚 simultaneous checks the probability of error is 
equivalent to 1 − 0.95௠. Indicatively, we mention that in a network consisting only of 5 
time series , in which 𝑚 = 5(5 − 1) = 20 tests will be conducted, the probability of error 
is: 𝑝 = 1 − 0.95ଶ଴ = 1 − 0.3585 = 0.6415 = 64.15% and therefore on a relatively 
small network the probability of an error occurrence is greater than the probability of 
non-occurrence. 

False discovery rate is a statistical method used in multiple hypotheses testing to 
correct the above problem. In a set of results in which the null hypothesis was rejected, 
the FDR process is designed to control the expected percentage of null hypotheses that 
were falsely rejected.  

The concept of the false discovery rate was first proposed in 1995 by Y.Benjamini and 
Y.Hochberg [29] and was established as a commonly accepted way of controlling the 
rate of errors in hypothesis rejection. 
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 Table 6.1. Number of errors realized in m hypotheses tests.  

 

Let’s suppose we have multiple tests for null hypotheses from which the 

𝑚଴ are true, 𝑅 is the number of rejected cases (discoveries) and 𝑉 is the number of the 
hypotheses that while true, were incorrectly rejected. In our tests, 𝑅 is a random 
observed variable, while the variables 𝑆, 𝑇, 𝑈, 𝑉 as shown in Table 3.1 are non-
observable random variables. If we set 𝑄 as the percentage of false discoveries, then 
the false discovery rate is given by the formula:  

𝐹𝐷𝑅 = 𝐸(𝑄) = 𝐸 ൜
𝑉

𝑉 + 𝑆
ൠ = 𝐸(

𝑉

𝑅
) 

We want to keep this value below a certain threshold 𝑎. The procedure proposed 
by Benjamini and Hochberg is as follows: 

Let 𝑝ଵ, … , 𝑝௠ be the observed p-values of the 𝑚 hypotheses tests, sorted in 
ascending order. We find the highest 𝑘 value for which: 

𝑝௞ ≤  
𝑘

𝑚
𝑎 

 

Where 𝑎 denotes the significance level of the FDR procedure. We reject every 
null hypothesis 𝐻௜ for 𝑖 = 1,2, … , 𝑘. By following this procedure, 𝑎% type I errors 
can occur in our multiple tests. 

 

 

 

 

 

 

 

 

 True Null 
Hypotheses 

True Alternative 
Hypotheses 

Total 

Rejected Null 
Hypotheses 

𝑉 𝑆 𝑅 

Accepted Null 
Hypotheses 

𝑈 𝑇 𝑚 − 𝑅 

Total 𝑚଴ 𝑚 − 𝑚଴ 𝑚 
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 Table 7.1.  Possible outcomes of a classification test  

Chapter 7.  Accuracy measures 

In this paragraph we describe the concepts of sensitivity and specificity as statistical 
measures used to evaluate the performance of a binary classification test. 

 

7.1 Sensitivity and specificity 

Sensitivity and specificity are statistical measures for the performance of a binary 
categorization test, which have their roots in diagnostic tests [30]. These two measures 
are closely related to Type I and II errors. For each test, there is usually an inverse 
relationship between these two measures, through which we try to find the optimal 
equilibrium point that suits our research. In some cases we need a larger value of 
sensitivity and a smaller value of specificity, while in other cases we want the opposite. 

In the table 7.1 we present every possible outcome of a classification test and then we 
define the concepts of sensitivity and specificity based on these outcomes. 

 A true positive test result is one that detects the condition when the condition is 
present. 

 A true negative test result is one that does not detect the condition when the 
condition is absent. 

 A false positive test result is one that detects the condition when the condition is 
absent. 

 A false negative test result is one that does not detect the condition when the 
condition is present. 

Now that we have a clear picture of the possible outcomes, we can define the 2 
accuracy measures. 

Sensitivity measures the ability of a test to detect the condition when the condition is 
present. Thus, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). 

 

Specificity measures the ability of a test to correctly exclude the condition (not detect 
the condition) when the condition is absent. Thus, 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃). 

 

 

 True False 
Test Positive True Positives (TP) False Positive (FP) 
Test Negative False Negative (FN) True Negative (TN) 
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Chapter 8. Reduction of the number of conditioning variables 

While searching for causality relationships between time series, it is important to take 
into account the conditioning effect from the rest of the variables included in the system. 
When the number of the remaining 𝐾 − 2 variables is large, computational and 
conceptual problems can occur. For example, in the presence of redundant variables, 
the application of the standard analysis using full conditioning, may result in a lower 
accuracy in the detection of the correct causalities. 

 Marianazzo et al [33] addresses this issue, from an information theory approach. In his 
work, he selects the 𝑘 most informative variables to the driver variable using the 
following algorithm: 

First, the Mutual Information of the driver and the other variables is calculated in order 
to select the first variable of the conditioning subsystem. The second variable of the 
subsystem is selected as the variable that jointly with the first variable, maximizes the 
mutual information with the driver variable. This procedure continues until the subset of 
the conditioning variables reaches a size of 𝑘. 

 Finally, by using this technique in the conditioning term of Granger causality, 
Marianazzo concludes that conditioning to a smaller number of variables, chosen as the 
most informative ones for the driver node, leads to results very close to the ones that 
are obtained via full conditioning.  

Another attempt to reduce the number of conditioning variables, is made by Zhou et al 
[34]. In this work, an attempt is made to reduce the dimension of the conditioning 
variables using Principal Components Analysis and using the linear combinations of the 
Principal Components that account for the most of the variance as the conditioning 
variables. His analysis, using conditional Granger causality, concluded that the use of 
PCA leads to a minimum loss of information which doesn’t really affect the connectivity 
analysis. Also this method, depending on the dataset, runs in a reasonable time frame 
making it a potentially valuable tool in the estimation of casual relationships. 

 

8.1 Our approach 

In our work, we address this issue using variations of the above methods in an effort to 
propose an efficient approach in reducing the number of conditioning variables. 
Specifically, we are using two Entropy based measures. These are, Partial Transfer 
Entropy which is customary to be applied to stationary time series and Partial Transfer 
Entropy on Rank Vectors which can be applied directly in both stationary and non-
stationary time series. 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

43 
 

8.1.1 Using Mutual Information 

Our first attempt is made in terms of information theory. In particular, we choose as a 
conditioning subset, the variable that shares the maximum value of mutual information 
with the driver variable in each of the variable pairs contained in the system. We 
decided to keep only one variable, in an attempt to minimize the dimension of the 
entropy terms in the computation of PTE and PTERV, and thus to be able to obtain 
good results even with small data samples. 

The procedure for this selection of the most informative variables to the driver, is the 
following: First, the mutual information between every pair in the system is calculated. 
As a second step, these values are sorted for every individual variable in the system 
and the variable that maximizes the mutual information for each of the individual 
variables is kept. Finally, these most informative variables to the driver, are used as the 
conditioning variable every time their corresponding counterpart is in the driver position. 

 

8.1.2 Using Principal Component Analysis 

Our second attempt lies in the context of dimension reduction methods. Specifically, 
Principal components analysis. The method in use here is described below: 

First, the principal components of the dataset are calculated. Then, we only keep the 
first principal component (PC1) as this holds the most information about our system. 

Finally, we use as the conditioning variable, the linear combination between the 
coefficients of the first principal component and the remaining 𝐾 − 2 variables of our 
system. 
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Chapter 9. Simulations in a generated system 

In this chapter, we describe the simulations performed to evaluate the time series 
causality measures described in Chapter 2 and to assess the capability of the new 
methods, used to define the set of conditioning variables in each of the metrics, to 
improve their results. 

In order to be led in safe conclusions, we generated a system of which the links are 
known and the evaluation of each combination of measure and dimension reduction 
method was based on whether the results we get at each different simulation setup go 
hand in hand with the previously known connections of the system. 

 In each of the simulations we performed, we kept certain parameters unchanged, while 
changing some others in order to understand the behavior of the measures on different 
system settings. 

 

9.1 Coupled Henon Maps 

Coupled Henon Maps is a non-linear system that can be generated by choosing the 
number of time series, their length and the coupling strength between them. 

In our work we generate a system with 𝐾 = 5 variables and a coupling strength of  𝑐 =

0.4. The equations describing this system are the following [31], [32]: 

𝑋ଵ,௧ = 1.4 − 𝑋ଵ,௧
ଶ + 0.3𝑋ଵ,௧ିଶ 

𝑋ଶ,௧ = 1.4 − 0.5𝑐(𝑋ଵ,௧ିଵ + 𝑋ଷ,௧ିଵ) + (1 − 𝑐)𝑋ଶ,௧ିଵ
ଶ + 0.3𝑋ଶ,௧ିଶ 

𝑋ଷ,௧ = 1.4 − 0.5𝑐(𝑋ଶ,௧ିଵ + 𝑋ସ,௧ିଵ) + (1 − 𝑐)𝑋ଷ,௧ିଵ
ଶ + 0.3𝑋ଷ,௧ିଶ 

𝑋ସ,௧ = 1.4 − 0.5𝑐(𝑋ଷ,௧ିଵ + 𝑋ହ,௧ିଵ) + (1 − 𝑐)𝑋ସ,௧ିଵ
ଶ + 0.3𝑋ସ,௧ିଶ 

𝑋ହ,௧ = 1.4 − 𝑋ହ,௧
ଶ + 0.3𝑋ହ,௧ିଶ 

 

In this system, each map is coupled to the next apart to the first and the last map, the 
first only drives the second and the last only drives the second last, with the first and 
last map uncoupled. These relationships in our 5 variable system are shown below as a 
network representation: 
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 Figure 8.1.  The causal relationships between a 5 variable Coupled Henon maps system.  

 Figure 9.1.  The coupled Henon maps system for N=1000. 

 

 

 

 

 

 

 

 

9.2 Setting-up the simulations 

Starting from the time series length, we decided to generate 3 systems of different 
size, 𝑁 =  1000, 4000, 12000, so that we will be able to capture the changes in measure 
performance while the time series length increases.  

In term of stationarity, we apply PTERV in both stationary and non-stationary time 
series and PTE only in the stationary data, as it is not fit to detect causality relationships 
in non-stationary time series [17]. Specifically, the time series generated from the set of 
equations describing Coupled Henon maps are classified as stationary according to the 
Augmented Dickey-Fuller test which rejects the null hypothesis of the existence of a unit 
root, for all the 𝐾 = 5 time series of our system and for every length 𝑁 

The generated coupled Henon systems for each value of N are shown in figures 9.1, 9.2 
and 9.3. 
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 Figure 9.2.  The coupled Henon maps system for N=4000. 

 Figure 9.3.  The coupled Henon maps system for N=12000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To create non-stationary time series, we followed a method described by D.Kugiumtzis 
et al [18]. Below we describe the exact procedure. 

First a Gaussian random walk time series of the same length as the original time series 
is generated, where the standard deviation of the random steps is the same as this of 
the coupled Henon maps. Then, a moving average smoothing of order 100 is applied to 
it. Then, this smoothed stochastic trend is added to the time series of the first variable of 
the coupled Henon maps. Then, we repeat this process for the 4 remaining time series. 
The resulting time series are the following: 
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 Figure 9.5.  The non-stationary coupled Henon maps system for N=4000. 

 Figure 9.6.  The non-stationary coupled Henon maps system for N=12000. 

 Figure 9.4.  The non-stationary coupled Henon maps system for N=1000. 
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Indeed, the Augmented Dickey-Fuller test accepts the null hypothesis, and thus a unit 
root exists, making these time series non-stationary. 

The coupling strength of the coupled Henon maps is set to 𝐶 = 0.4 which is generally 
considered a strong coupling. 

The embedding dimensions 𝑚௫, 𝑚௬, 𝑚௭ are set to 2 and later at 3 for both Partial 
Transfer Entropy and Partial Transfer Entropy on Ranked Vectors. The time lag 
parameters 𝜏௫, 𝜏௬ and 𝜏௭ are set to 1 for both the measures. The time steps ahead for 

the future response sample vector 𝑦௧
்  of PTE and the future response rank vector 𝒚ෝ௧ 

் of 

PTERV is set to 𝑇 = 1. Finally, the number of nearest neighbors for the computation of 
the entropy terms in PTE is set to 10 

 

9.3 Evaluating measure performance 

For the evaluation of the measures, the randomization test described in a previous 
chapter is used. The number of surrogates is set to 100. Also, 100 realizations of these 
computations are generated, with the exception of Partial Transfer Entropy in the 𝑁 =

12000 set-ups that due to computational costs the realizations are decreased to 10, in 
order to calculate the FDR rejections. That is, the rejections of the null hypothesis of no 
causality in every realization of the system. 

Finally, we use the accuracy measures of specificity and sensitivity to evaluate the 
quantities of FDR rejections in each simulation set up. In terms of networks, sensitivity 
and specificity can be defined as following [33]:  

Sensitivity denotes the percentage of the existing links that are detected and Specificity 
denotes the percentage of missing links correctly recognized as non-existing. 

 

9.4 Results 

In this section, we present the results of the simulations described above.  The FDR 
rejections for each coupling of the system and also values of sensitivity and specificity 
are presented in the following tables. 

Partial Transfer Entropy 

As mentioned in the previous section, this measure is applied only in the stationary form 
of the data. 
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 Table 9.1. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=2 and N=1000   
using all three ways of defining the conditioning variables. 

 Table 9.2. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=2 and N=4000 
using all three ways of defining the conditioning variables. 
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 Table 9.3. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=2 and N=12000 
using all three ways of defining the conditioning variables. 

 Table 9.4. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=3 and N=1000 
using all three ways of defining the conditioning variables. 
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 Table 9.5. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=3 and N=4000 
using all three ways of defining the conditioning variables. 

 Table 9.6. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=3 and N=12000 
using all three ways of defining the conditioning variables. 
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 Table 9.7. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors for 
m=2 and N=1000 using all three ways of defining the conditioning variables. 

 

Partial Transfer Entropy on Ranked Vectors 

On the contrary, PTERV is applied to both stationary and non-stationary data. Below we 
present the result tables first for the stationary and then for the non-stationary time 
series. 
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 Table 9.8. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors for 
m=2 and N=4000 using all three ways of defining the conditioning variables. 

 Table 9.9. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors for 
m=2 and N=12000 using all three ways of defining the conditioning variables. 
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 Table 9.10. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors 
for m=3 and N=1000 using all three ways of defining the conditioning variables. 

 Table 9.11. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors 
for m=3 and N=4000 using all three ways of defining the conditioning variables. 
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 Table 9.12. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked 
Vectors for m=3 and N=12000 using all three ways of defining the conditioning variables. 

 Table 9.13. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors 
for m=2 and N=1000 using all three ways of defining the conditioning variables. 
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 Table 9.15. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors 
for m=2 and N=12000 using all three ways of defining the conditioning variables. 

 Table 9.14. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors 
for m=2 and N=4000 using all three ways of defining the conditioning variables. 
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 Table 9.16. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors 
for m=3 and N=1000 using all three ways of defining the conditioning variables. 

 Table 9.17. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors 
for m=3 and N=4000 using all three ways of defining the conditioning variables. 
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 Table 9.18. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors 
for m=3 and N=12000 using all three ways of defining the conditioning variables.  
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9.5 Summary 

For the Partial Transfer Entropy applied to stationary data, the best results based on the 
accuracy measures used are for an embedding dimension of 𝑚 = 2 and a sample 
length of 1000 (sensitivity =1, specificity =1). In the same metric settings, also the 
method using PCA produces very decent results with a value of sensitivity equal to 0.89 
and specificity =1.  For the different conditioning methods separately, the best results for 
full conditioning were obtained for the setup mentioned above. For the method using 
PCA the maximum values of the accuracy measures were obtained for m=2 and 𝑁 =

1000, 4000 (sensitivity = 0.89, specificity =1). By conditioning to the most informative 
variable to the driver, we obtain the best results for 𝑚 = 2 and 𝑁 = 4000 (sensitivity = 
0.89 and specificity = 0.67). For PTE applied in all these different parameter value 
combinations, we can observe that superior results to the full conditioning are given by 
the PCA method for 𝑚 = 3 and 𝑁 = 1000 and almost the same values were observed 
between the PCA conditioning and the full conditioning for 𝑚 = 3 and 𝑁 = 12000. 

When Partial Transfer Entropy on Ranked Vectors is applied to stationary data, the best 
results are obtained for the full conditioning for 𝑚 = 2 and 𝑁 = 1000 (sensitivity = 0.89, 
specificity = 1) and for the method using PCA for 𝑚 = 3 and 𝑁 = 4000 with the same 
accuracy measure values. When the information based method is used, it produces the 
biggest values of the accuracy metrics for 𝑚 = 3 and 𝑁 = 4000 (sensitivity = 0.89, 
specificity = 0.67). In these simulations, the PCA based method gives superior results to 
the full conditioning for 𝑚 = 2, 𝑁 = 12000 and for an embedding dimension of 3 for 
every sample length.  

Moving to the non-stationary time series in which PTERV is applied, the most accurate 
results are given for the full conditioning in a sample length of 4000 and 𝑚 = 2 
(sensitivity = 0.89, specificity = 1). We can observe that in the non-stationary data 
simulations, the method based on mutual information is dominating in 3 of the 6 
different parameter value sets. Specifically, this method has superior results to the 
others for 𝑚 = 2 and 𝑁 = 12000 (0.78, 0.83) and for 𝑚 = 3 and 𝑁 = 1000 and 12000 
while it comes second to the PCA based method for 𝑁 = 4000, with a perfect sensitivity 
of 1 but with a zero specificity.  

The superiority of the partial conditioning methods in a higher embedding dimension 
(𝑚 = 3) and in long time series lengths (𝑁 = 12000) can be well explained. As the 
dimension of the entropy terms in the equations of PTERV and PTE increases both with 
time series length 𝑁 and the embedding dimension 𝑚 [18], we can conclude that 
reducing the dimension of the system by keeping a smaller number of variables in the 
conditioning terms can lead us to more accurate results. 

Concluding the simulations chapter, we must also mention another advantage of partial 
conditioning. Both methods outperformed the full conditioning one in the time needed 
for the simulations to run. Because all simulations were implemented in the same 
computer, we are able to compare the computational cost of each method. The faster 
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method is the one using the most informative variable to the driver, that needed for its 
completion about the 40% of the time that the full conditioning method took to complete. 
The PCA method comes second with approximately 70%. This leads us to the 
conclusion that partial conditioning reduces greatly the computational costs while 
simultaneously maintaining a decent level of accuracy and actually overpowering the full 
conditioning in some cases. 

All simulations were implemented using MATLAB 2016a on a HP 15-ac126nv laptop 
with a RAM of 8GB and an Intel Core i7-4510U CPU of 2.0 GHz while MATLAB being 
the only active application at the moment. 
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 Figure 10.1. The original system of the 23 variables of the MSCI index 

Chapter 10. Application in Financial time series 

 

10.1 Data description  

The dataset is the Morgan Stanley Capital International’s (MSCI) market capitalization 
weighted index of 23 developed markets in North America, Europe, and the Asia/Pacific 
Region. It is calculated with the help of the equities values of companies representative 
of the market structure. The dataset comprises 1300 daily values for each market in the 
period 5 of March 2004- 5 for March 2009, excluding weekends and holidays.  

The list of countries included in this dataset is given below: Australia, New Zealand, 
Japan, Hong Kong, Singapore, Austria, Belgium, Denmark, Finland, France, Germany, 
Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, UK, 
Canada and USA. 

 

10.2 Methodology 

As mentioned above, the time series length is 𝑁 = 1300. The 23 time series of the 
dataset are Non-stationary according to the Augmented Dickey-Fuller test. To transform 
them to stationary, in order to compare the measure performance, we take their first 
differences. 

The original non-stationary system of 23 time series and the system derived from their 
first differences, are shown in the figures below: 
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 Figure 10.2. The system of the 23 variables of the MSCI index, after taking 
the first differences. 

 

 

 

 

 

 

 

 

 

 

 

The 2 measures, are set in the same way as described in the simulations chapter 
above, with the exception that the embedding dimensions 𝑚௫, 𝑚௬, 𝑚௭ are set in the 
interval from 2 to 6. 

The time lag parameters 𝜏௫, 𝜏௬ and 𝜏௭ are set to 1 for both the measures. The time steps 

ahead for the future response sample vector 𝑦௧
்  of PTE and the future response rank 

vector 𝒚ෝ௧ 
் of PTERV is set to 𝑇 = 1. Finally, the number of nearest neighbors for the 

computation of the entropy terms in PTE is set to 10 

 

10.3 Results 

In this section, we present the networks constructed from the adjacency matrices that 
were produced following the method described above. First we have to comment here, 
that Partial Transfer Entropy failed to deliver any statistically significant causality 
relationships in all different combinations of conditioning methods and metric parameter 
settings and thus, networks couldn’t be constructed. 

On the other hand, Partial Transfer Entropy on Ranked Vectors was able to identify 
significant connections both in stationary and non-stationary data in almost every 
combination of parameter values. The networks constructed using PTERV differ in their 
number of connections across the different embedding dimensions and different 
conditioning sets. 

Below these networks will be presented and some comments will be made in the 
following section. 
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 Figure 10.3. The network constructed using PTERV for m=2 and conditioning 
to all the remaining 𝑲 − 𝟐 variables in the original non-stationary data. 
Number of connections = 495. 

 Figure 10.4. The network constructed using PTERV for m=2 and conditioning 
using PCA in non-stationary data. Number of connections = 231 

Starting with the original non-stationary time series, we will compare the networks 
constructed using the three different methods of selecting the subset of variables that 
will be used in the conditioning term of PTERV. 

For an embedding dimension of 𝑚 = 2 the following networks are constructed. 
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Figure 10.5. The network constructed using PTERV for m=2 and conditioning using the most 
informative variable to the driver in non-stationary data. Number of connections = 338 

 Figure 10.6. The network constructed using PTERV for m=3 and conditioning to all 
the remaining 𝑲 − 𝟐 variables in the original non-stationary data. Number of 
connections = 362 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For an embedding dimension of 𝑚 = 3 the networks are the following. 
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Figure 10.7. The network constructed using PTERV for m=3 and conditioning 
using PCA in non-stationary data. Number of connections = 259 

Figure 10.8. The network constructed using PTERV for m=3 and conditioning using the most 
informative variable to the driver in non-stationary data. Number of connections = 237 
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 Figure 10.9. The network constructed using PTERV for m=2 and conditioning 
to all the remaining 𝑲 − 𝟐 variables in stationary data. Number of 
connections = 463 

Figure 10.10. The network constructed using PTERV for m=2 and conditioning 
using PCA in stationary data. Number of connections = 336 

Next, the networks constructed by applying PTERV in the stationary data are presented. 

For 𝑚 = 2 we have extracted the following networks. 
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 Figure 10.12. The network constructed using PTERV for m=3 and conditioning to all 
the remaining 𝑲 − 𝟐 variables in stationary data. Number of connections = 343 

Figure 10.11. The network constructed using PTERV for m=2 and conditioning using the most 
informative variable to the driver in stationary data. Number of connections = 235 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For 𝑚 = 3 we have extracted the following networks. 
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Figure 10.13. The network constructed using PTERV for m=3 and conditioning using PCA in 
stationary data. Number of connections = 150 

Figure 10.14. The network constructed using PTERV for m=3 and conditioning using the most 
informative variable to the driver in stationary data. Number of connections = 529 
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10.4 Summary 

To evaluate the networks constructed from the methodology described in a previous 
section, we have to look into the simulations of the previous chapter for guidance. 

The most relevant simulations based on the parameter values are these for a sample 
length of N=1000 which is relevantly close to the N=1300 of the financial time series 
used in this application. 

For this sample length, the optimal results in the simulations were obtained when full 
conditioning was applied together with a small embedding dimension (𝑚 = 2), giving 
almost identical values of sensitivity and specificity. In the application, we can observe 
that using these parameter settings the number of connections is similar for the non-
stationary and the stationary data, 495 and 463 respectively.  

This fact leads us to the conclusion that there is a high probability that these parameter 
settings are the optimal for the detection of causal relationships in this real world 
system. 
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Chapter 11. Conclusions 

Ιn this work we have studied the effect of partial conditioning to a limited subset of the 
confounding variables while estimating casual connectivity between the variables of a 
system, as an alternative of full conditioning which can sometimes lead to computational 
and conceptional issues.  By conducting our analysis in a simulated system and in a 
real world financial dataset, we have shown that conditioning on a small number of 
variables, chosen either as the most informative ones for the driving variable or as a 
linear combination between our systems’ confounding variables with the coefficients of 
the PC1, can lead to results very close and in some cases even better to those obtained 
using full conditioning. 

 The superiority of the results given by partial conditioning in the cases that the 
embedding dimension or the sample length are higher, is explained by the dimension 
reduction that these methods offer. As mentioned in a previous chapter, the dimension 
of the entropy terms in the equations of 𝑃𝑇𝐸 and 𝑃𝑇𝐸𝑅𝑉 increases both with the time 
series length and the embedding dimension. The partial conditioning methods come to 
reduce this dimension, thus leading to more accurate results. 

Another advantage of partial conditioning is the reduction of the computational cost. 
Having a smaller conditioning subset, reduces substantially the time that is needed to 
complete a set of simulations. 

We can conclude that partial conditioning using the above methods is a powerful tool 
that produces trustworthy results with an accuracy level very close to the one obtained 
by full conditioning while substantially reducing the computational cost. 
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