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Abstract

In recent years, there has been an increasing interest in graphical models and their use
for the representation of causal relationships between the individual variables of a
complex, multivariate system.

In order to study the interdependence between the observed variables of a multi-
variable dynamic system or stochastic process, several methods have been developed,
with more important, the ones that estimate the dependence of the temporal evolution of
a variable on another, a concept known as Granger causality.

In the causality analysis of a system consisting of K variables it is important to also
include the interaction with the remaining K — 2 variables in the estimation of the
connection or causality from X to Y, and this is referred to as direct Granger causality.

In the context of information theory, two such methods are those given by the Partial
Transfer Entropy statistic, which is customary to be applied to stationary time series and
Partial Transfer Entropy on Rank Vectors (PTERV) which can be applied directly in both
stationary and non-stationary time series.

When K is large, there is a need to select the most relevant of the K — 2 variables with
the driving variable X or the response variable Y, in order to have more accurate results.
In this work, we focus on this selection process, evaluating some approaches in the
effort to propose a new, more effective approach to the Granger causality statistic
PTERV. The purpose of the thesis is to create causal networks with K nodes by
appropriately applying PTERV to K non-stationary time series. In the application in
finance, PTERV is applied directly to stock indices, and not their returns in order to
estimate direct causal effects on the financial indices.

Key Words

Graph theory, Financial networks, Time series, Non stationarity, Granger causality, Partial
Transfer Entropy, Partial Transfer Entropy on Ranked Vectors, False Detection Rate, Mutual
Information, Principal component analysis, Sensitivity, Specificity, ,Accuracy measures.



MepiAnyn

Ta TeAeuTaia xpovia, UTTAPXEI CUVEXWG AUEAVOUEVO EVOIAPEPOV VIO TA YPAPIKA JOVTEAQ
Kal TIG XPAOEIG TOUG YIa TNV avatrapdoTaon OXEoEwV AITIOTATAG HETAEU TWV ETTINEPOUG
METABANTWYV €VOG TTOAUTTAOKOU, TTOAUPETABANTOU CUCTAUATOG.

MNa 1 HEAETN TNG AAANAEEAPTNONG PETAEU TWV TTAPATNPOUUEVWY PETARBANTWY €VOG
TTOAU-PETABANTOU BUVANIKOU CUCTAUATOG 1] OTOXAOTIKAG dladikaciag £Xouv avaTTTuxOei
O1G@opeG PEBODOI, PE TTIO ONUAVTIKEG AUTEG TTOU EKTIMOUV TNV £EAPTNON TTOU €XEI N
XPOVIKNA €EENIEN MG PETABANTAG ATTO KATTOIA AAAN, évvola YVWOTA WG AITIOTNTA KATA
Granger.

21NV avaAuaon aImétnTag Xpovooelipwy atrd K YETABANTEG gival onPavTikO 0TV
EKTiUNON TNG oUVOEONG | AITIOTATAG OTTO TN X OTN Y va CUUTTEPIANPOEI Kal N
aAANAeTTiOpaon e TIG UTTOAOITTEG K — 2 PETABANTEG, dnAadn n dueon aimdétnTa Katd
Granger.

270 TTAQioI0 Twv PeBGdWY TTOU BacifovTal 0Tn Bewpia TTANpoYopiag, dUO TETOIES
pEBodOI gival auTég TTou divovTal aTro Ta oTaTIoTIKG Partial Transfer Entropy 61rou
ouvnBideTal va epapuoleTal o€ OTAOIUES XPOVOOEIPEG Kal Partial Transfer Entropy on
Rank Vectors (PTERV) é1rou €xel Tn duvaTdTnTa VA £QOPPOETAI ATTEUBEIAG Kal O€
OTACIMEG, OAAG KAl O€ PN-OTACIPEG XpovooelpéS. OTtav To K gival peydo, uttdpxel
avAaykn €TMIAOYAG TWV TTIO OXETIKWVY ATTO TIG K — 2 YETAPBANTEG ME TN PETAPBANTH 0dNnyo X
1 TN YMETABANTHA atTokpiong Y.

2Tnv epyacia auth eoTiafoupe o€ auTh Tn diadikaoia TTIAOYNG, agIOAOYWVTAG KATTOIEG
TTPOCEYYIOEIG OTNV TTPOCTTABEIN VA TTPOTEIVOUNE PIA VEQ TTIO ATTOTEAECUATIKA
TIPOOEYYION O€ OXEON KE TO OTATIOTIKO EKTINNONG APEONG AITIOTNTAG KaTd Granger
PTERV. Zkomodg TnG epyaciag gival n dnuioupyia SIKTUWV aimidtnTag pe K KOUBouUg
epapudlovtag KatdAAnAa 10 PTERV o€ K un-oTACIUEG XPOVOOEIPEG.

Fvetal epappoyn Tng PTERV atreuBeiag o€ xpnuatiotnplakoug OeiKTeG Kal OXI TIG
a1TOdO0EIG TOUG, WOTE VA EKTIUNOOUV Ol OXECEIG AITIOTNTAG TWV XPNHATIOTNPIAKWY
OEIKTWV.

NEEEIg KAEIDIG

Ocwpia 'pdewv, Xpnuatooikovopikd Aiktua, XpovoAoyikéG Zeipég, Mn ZtaoiyétnTta, AIméTnTa
katé Granger, Evtpotria pepikAg HETAQOPAG, , EvTpoTTia YePIKAG PETAPOPAS OE dlaTETAYUEVA
dlavuopara, Weudéc TocooTd avixveuong, Apoifaia NMAnpogopia, AvaAuon KUpiwy
ouvioTwowv, EvaioBnaia, EidikétnTa, MéTpa akpifeiag.
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Zuvoyn

Ta TeAeuTaia Xpovia, TTAPOUCIACETAI QUEAVOUEVO EVRIQPEPOV YIa Tn Bewpia ypapwyv Kal
TIG EQAPUOYEG TNG 0€ KABE eTIOTNUOVIKO TTEdi0. Ta diKTUA, £Vag TPOTTOG AvATTOPACTACONG
TNG OOMNG TTOAUTTAOKWY CUCTANATWY XPNOILOTTOIWVTAG TN Bewpia ypdepwy,
XPNOIKOTTOIOUVTAI EUPEWG KAl JE augavouevn Taon. Mia atrd TG TTOAAEG EQaPUOYES TOUG
€ival n oTITIKOTToINON Kal avAAUCH TWV OXECEWV AITIOTNTOG HETAEU TwV CUCTAUATWY 1
METALU TWV CUVIOTWOWYV EVOG EVIAIOU OUCTANATOG.

MNa va peAetnBei n aAANAEEAPTNON METACU TWV TTAPATNEOUNEVWY PETARANTWY VOGS
OUVAWIKOU TTOAUMETABANTOU CUCTAUATOG , £XOUV avaTTTUXOEi apkeTEG uEBODOI, YE TTIO
ONMOVTIKEG, EKEIVEG TIG OTTOIEG EKTIMOUV TNV AUECN €6APTNON TNG XPOVIKAG £CENIENG WIaG
METABANTAG a1t TNV AAAN, pia évvola yvwoTh wg aimétnta katd Granger [9].

AUTEG 01 Evvoleg £XOUV €TTIONG €TTEKTAOEI 0TO TTAQICIO TNG BeWpiag TTANpPoYopIag, oTo
OTTOI0 £XOUV avATITUXOEI TTOANG PETPA KAl TTPOTEIVOVTAI OUVEXWG VEA. 'Eva TTOAU yvwoTo
METPO TTOU XPNOIUOTIOIEITAI YIA TNV AVIXVEUOTN OXE0EWV AITIOTNTAG OTTO TN YETARANTA X
oTtn YeTaBANTA Y gival n EvTpotria petagopdg [11], Tou ouvnBileTal n e@apuoyr TG o€
OTACIUEG XPOVOAOYIKEG OEIPEG.

To YETPO AUTO £XEI EVA ONUAVTIKO MEIOVEKTNHA, eV TTEPIAANBAvEl TNV aAAnAeTTidpaon e
TIG UTTOAOITTEG K — 2 PETARANTEG TOU CUOTAPATOG. [0 TO OKOTTO AUTO, TTPOTEIVETAI OTTO
Tov Valkorin oo [14] yia TToAupeTaBANTA €kdoon TNG METPIKNAG auTAG, N Partial Transfer
Entropy.

2€ EQAPMOYEG TTPAYMATIKOU KOO UOU, T TTEPICOOTEPA ATTO TA TTAPATNPOUUEVA QAIVOUEVA
TTEPIYPAPOVTAI OTTO OEDOUEVA XPOVOAOYIKWYV OEIPWYV TTOU OeV gival oTdoiua. AuTth n
OUVEIBNTOTTOINOT, YEVVA TNV AVAYKN YIa PETPA IKAVA va CUANGBOUV TIG OXEOEIG
AITIOTNTAG O€ YN OTACIPEG XPOVOAOYIKEG OEIPEG.

210 [17], o1 Staniek and Lehnertz TrpoTteivouv pia d1a@QopeTIKr) €kdoXN TNG Transfer
Entropy, Tnv Symbolic Transfer Entropy (STE), n otmroia Baciletal otn Permutation
Entropy Twv Bandt kai Pompe [16]. Zuykekpipéva, avTi yia Tn Xprion Twv TINWY KAOE
XPOVOOEIPAG yIa TOV UTTOAOYIONO TNG EVTpOoTTiag, XpnoIdoTrolouv Ta oUuBoAa didotaong
m TTou dnuioupyouvTal atro TN KATATagn avda m Twv TIHWV TG XPOVOOEIPAG EiTE O€
augouoa €ite o€ POivouoa oelpd. Adyw TNG avaykng yia TNV CUPTTEPIANYN TwV
uTTOAOITTWYV K — 2 PETABANTWYV TTOU TTpoavVa@EPONKE, TTpoTeiveTal oTo [20] n
TTOAUPETABANTA €kdOXNA TNG WETPIKAG auTtng, n Partial Symbolic Transfer Entropy.

To TTpoRANua e TV STE BpiokeTal 0TO yYeEYOVOg OTI eV gival TO akpIBEG avAAoyo TNG
TE. H emonuavaon autr, yiveral armmo tov KouyloupTdr oTo [18] 61Tou TrpoTeiveTal pia
METPIKN n oTroia atroTeAEi autd To akpIfég avaAloyo, n Transfer Entropy on Ranked
Vectors (TERV). H avrtioTtoixn TToAupeTaBANTA ekdoxn Tng, n Partial Transfer Entropy on
Ranked Vectors (PTERV) mrpoteivetal o1o [19] amd tov KouylouuTdr) Kal atroTeAEi TN
BaoIKA METPIKA TTOU XPNOIKUOTTOIOUNE OE QUTA TNV £pyaaia.
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Omwg ava@EPauE TTaPATTAVW, ONUAVTIKO OTOIXEIO OTN MEAETN TWV OXEOEWV AITIOTATOG
aTTo Hia METABANTA X 0€ pia HeETABANTA Y atroTeEAEI N CUMTTEPIANYN OTOUG UTTOAOYIOWOUG
TWV UTTOAOITTWYV K — 2 PJETABANTWY TOU cUOTAPATOS. OTav Opwg PEAETOUUE £va oUOTNUO
ME MEYAAO ap1BuS peTABANTWY K, UTTOAOYIOTIKA Kal EVVOIOAOYIKG TTPOBANUATA UTTOPEI VO
TTpoKUWouV. MNa TTapddelyua, YE TRV TTAPOUCIa TTEPITTWV PETARANTWY, N EQAPUOYN TNG
TUTTIKAG d1adikaoiag avaAuong oTnv oTroia CUPTTEPIAAUBAVOUUE OTOUG UTTOAOYICHOUG
MaG OAeG TIG UTTOAOITTEG PETABANTEG PUTTOPET va 0dNyroel o€ XauNAOTEPN aKpiBela oTNV
AViXVEUON TWV CWOTWV OXECEWV AITIOTNTAG.

A1d@opeg TTPOOTTABEIEG £XOUV YivEl OTO TTAPEABSY yia TN YEiwoN TwV YETABANTWYV
déopeuong.

O1 Marinazzo et al [33] avTigeTwTTiouv autd To {ATNUA, KME PIA TTPOCEYYION OTO TTAQICIO
TNG Bewpiag TNG TTANPOPOPIAG. 2TO £€PYO TOUG, ETTIAEYOUV TIG UETABANTEG PE TA
MEYaAUTepa TTITTEDQ apoIBaiag TTANPoYopIag Ye TNV avtioToixn odnyod PeTapANnTr o€
KABg {eUyog TOU oUCTAUATOG. XpNOIKOTTOIoUV £vav aAyOpIBPOo O OTTOI0G APOU EVTOTTIOEI
TN METABANTA QUTA, TN TTPOCBETEI OTO UTTOOUVOAO TwV PETABANTWY dé0ouEUoNG Kal
TTPOXWPAEI BPICKOVTAG TIG HETABANTEG ME TN MEYAAUTEPN TIKA apoIBaiag TTAnpoopiag
W¢ TTPOG To oUVOAo auTd. H diadikaoia auTr) eTavaAauBaveral éwg OTOU TO UTTOOUVOAO
auTo, @TACEl TO TTPOKABOPIoUEVO HEYEBOG ATTO TOV EPEUVNTI]. ZTN OUYKEKPIPEVN Epyaaia,
XPNOIKOTTOINONKE N TEXVIKI AUTH OTOV Op0 OE0UEUONG TNG METPIKNG Granger causality [9]
Kal e€GXONKe TO CUPTTEPACUA TTWG N XPNoN VOGS UTTOCUVOAOU TwV PETARANTWY TOU
OUCTAMATOG WG METABANTEG DECUEUONG, 0ONYEi O€ aTTOTEAEOUATA TTOAU KOVTA O€ €KEiva
TTOU AQUBAVOUUE XPNOIMOTTOIWVTAG OAES TIG K — 2 PETABANTEG Kal €1BIKOTEPA OE UIKPA
ociyuara.

Mia GAAN TTpooTTABEIa PEiwOoNG Tou apIiBuoU Twv PETARANTWY OECPEUONG, YiVETAI ATTO
Toug Zhou et al [34]. Z& auTr| Tn douA&id yiveTal pia TTpooTTddeIa va ueiwBei n didotaon
TWV PETABANTWY QUTWV XpnoiyoTrolwvTag TNV AvaAuon Kupiwv ZuvioTwowv (Principal
Component Analysis, PCA) kal xpnOIJOTTOIWVTAG TOUG YPAUMIKOUG CUVOUAOHOUG TWV
OUVTEAECTWYV TWV KUPIWV ZuVIOCTWOWYV TTOU AVTITIPOCWTTEUOUV TO PHEYOAUTEPO PEPOG
TNG SIOKUPAVONG PE TIG UTTOAOITTEG UETAPBANTEG TOU CUCTANOTOG, WG UETABANTEG
puBuiong. H avaAuor) Tou, XpNOILOTTIOIWVTAG TNV AITIOTNTA Tou Granger wg PETPIKNA yia
TOV EVTOTTIOHMO TV OXECEWV AITIOTNTAG, KATEANEE OTO CUPTTEPAC A OTI N Xprion Tou PCA
odnyei o€ eEAAXI0TN aTTWAEIQ TTANPOYOPIag TToU OeV ETTNPEACEI TTIPAYMATIKA TNV avaAuon
ouvdeoIuoTNTaG. ETTiong, auth n péBodog, avaloya ue 10 pé€yeBOG Tou deiypaTog,
eKTEAEITAI O€ EUAOYO XpoVIKO dIGoTNUa KABIOTWVTAG TN €101, éva TTIBAVWG TTOAUTIHNO
EPYOAEIO YIO TNV EKTIKNON TWV OXECEWV AITIOTNTAG.

O1 dIKEG pag TTpooEeyyioelS 0TO TTPORANPA AUTO, gival TTAPOPOIEG PE TIGC TTAPATTAVW KAl
XPNOIYOTTOIOUVTAI 0€ CUVOUQOWO UE TIG UETPIKEG PTERV kai PTE, ol o1Toieg
TTpoépyovTal atrd TN Bewpia TTANPOPOPIAG Kal 0 UTTOAOYIONOG TOUG BaadileTal o€ OpouUg
EvrpoTriag.
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2UYKEKPIYEVA, YIA VO OPICOUME TA UTTOOUVOAQ TWV PETABANTWY dE0UEUONG,
XPNOIYOTTOIOUME OTN TTPWTN MOG TTPooTTadeia Tnv apoifaia TTAnpogopia. Oa
OOKIJACOUE VA XPNOIKOTTOINCOUUE Wi Jovo JETABANTA d€oueuong, TN HETABANTH auTth
N oTToia TTapPoucIAlel TN JEYAAUTEPN TIKA apolBaiag TTAnpoopiag Pe TRV odnyo
METABANTH, 0€ KABE (eUyOG PETABANTWYV AVTIOTOIXA.

21N deUTEPN pag TTpooTTdBbela, Ba xpnolyoTtroifooupe TNV TEXVIKA TNG PCA, kai Ba
OpPiICOUPE TO UTTOOUVOAO PETABANTWY OE0UEUONG WG TOV YPAUMIKO oUVOUAOUO TwV
ouvTeAeoTwy (coefficients) Tng TTpwTNG KUpIag cuvioTwoag (PC1) YE TIG avTIOTOIXES
METAPBANTESC TOU CUCTAPATOG.

O1 uttoAoyiopoi auTtoi Ba TTPAYUATOTTOINBOUV KAl GE TIPOCOUOIWHEVA CUCTHUATA OAAG
KOl O€ TTIPAYMATIKEG JN OTACIUES XPNMOTOOIKOVOUIKEG XPOVOOEIPEG.

MeTd TO TTEPAG TWV UTTOAOYICPWY QUTWY, CUUTTEPAIVOUUE OTI oI HEB0DOI TTOU
XPNOIYOTTOINCOUE YIA TN MEiwon TwV PETABANTWY OECUEUONG OTIG CUYKEKPIPEVES
METPIKEG, BivOUV TTAPOPOIA KAl € KATTOIEG TTEPITITWOEIG KAAUTEPA ATTOTEAEOUATA ATTO
TNV O€0HEUON O€ OAEG TIG K — 2 PETABANTEG.

‘Eva GANO TTAEOVEKTNUA TNG DECUEUONG O€ £VA PIKPOTEPO UTTOOUVOAO PETABANTWY, gival
OTI MEIWVETAI TTOAU TO UTTOAOYIOTIKO KOOTOG dIaTNPWVTAG TTAPAAANAQ TN TTOI0TNTA TWV
ATTOTEAEOPATWY. TOV PIKPOTEPO XPOVO EKTEAEONG TOV TTPOCONOIWCEWV EiXE N PEBODOG
ME TN XPAOoN TNG Miag HETaBANTAG TTOU TTAPOUCIAlEl TN JEYAAUTEPN TIMA apoIBaiag
TTANPoQopiag e TNV 0dnNyo YETABANTHA, WG UTTOOUVOAO déouEUoNG. ANECWG PETA OTN
KataTagn BpiokeTtal n pEBodog TTou Kavel Xprion Tou PCA kai TEAog N péBodog ue Tn
OéoeUOT O€ OAO TO OUVOAO TWV UTTOAOITIWY PETARBANTWY TOU CUCTAPATOG.

2TNV EQAPUOYI O€ XPNMOTOOIKOVOUIKA dEDOPEVA, XPNOIMOTIOIWVTAG dEdOPEVA TOU
0eiktn MSCI yia 23 aveTTTUYUEVEG AYOPEG, TTPOCTTAONCAUE VO BPOUKE TN METPIKN KAl TIG
TIMEG TTAPAUETPWY Ol OTTOIEG TTEPIYPAPOUV KAAUTEPA TIG OXECEIG TTOU ATTAPTICOUV TN
doun Tou CUCTANOTOG.

Baoiopévol oTIg TINES TWV PETPWY OKPIBEIAG TTOU TTAPATAPHCAUE OTIG TIPOCOUOIWOEIG
Kal oToV aplBud ouvlETEWVY TwV BIKTUWYV TNG EQAPUOYNG, kataArlyouue ot n PTERV yia
MIKPR 81d0TAON EVOWPATWONG m = 2, KATAPEPVEI VA TTPOCEYYioel KAAUTEPA T OO TOU
aAnBivou autoU CUCTANATOG.
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Introduction

Dynamic networks and time series are scientific fields with a wide range of applications.
Quite recently, dynamic networks built from time series have been the subject of
research, notably in health sciences, environmental sciences and finance.

A very interesting field of study that combines these two concepts is focused in
detecting the interdependencies between a complex system’s variables. Specifically,
the dependence of the temporal evolution of a variable on another, a concept called
Granger causality [9]. On this context, many methods based in Information theory have
been developed in order to detect causality relationships between time series. As the
interactions with the rest of the variables of the system are of great importance,
multivariate versions of these measures have been proposed over time.

A known issue among these multivariate measures is that when the system under study
has a great number of variables, computational and conceptual problems can occur.

The aim of this work is to propose some new methods in order for these measures to be
able to operate with a smaller number of conditioning variables while still returning
relevant and trustworthy results.

In chapter 1, we describe the basic properties and statistics of time series, we define
time series stationarity and finally we analyse some stochastic models for time series
construction.

In chapter 2, we analyse the correlation measures that are used in time series analysis
and we also introduce the measures of causality that are used in this work.

In chapter 3, an introduction to the tests that are used to detect significant relationships
between time series is made and then the randomization test is analysed

In chapter 4, we discuss principal component analysis, a dimension reduction method
that is used later in this work to reduce the dimension of the conditioning variables
subset.

In chapter 5, we introduce the concept of networks and their basic definitions and
characteristics that are necessary for the reader in order to understand this work.

In chapter 6, the methodology of the construction of networks derived from time series
is discussed. Specifically, the concept of the False Discovery Rate (FDR), a method
used to decrease the statistical errors occurred in detecting significant network
connections is analysed.

In chapter 7, we describe the accuracy measures that are used in this work to evaluate
the efficiency of the metrics to identify the correct network connections. Namely, we
discuss specificity and sensitivity.

In chapter 8, the main subject of this work is presented. Previous attempts from the
academic world are discussed and our approach is analysed.
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In chapter 9, we describe the methodology of the simulations conducted, the system
that is used and the results these simulations have generated.

In chapter 10, an application of our methodology to real-world financial time series is
presented. We describe the data used, the procedure that was followed and we make

comments on the results.
In chapter 11, we conclude with a brief discussion of the overall results and suggestions

of future research on the subject.
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Chapter 1. Time series

In this first chapter, we will summarize the main features and properties of the time
series. We will focus mainly on the elements that are necessary for the reader to
understand our work. These elements consist of the definition of the time series, how
time series are formed, their basic properties and statistics and ways to measure the
relationship between multiple time series.

1.1 Definition

yuen

a variable X. Because the values of the observed variable change with some small or
large randomness or as we call it in statistical analysis, stochasticity, we consider the
observed quantity as a random variable X.

Usually these numbers are taken at equally spaced time steps t = 1,2, ..., n according to
a fixed sampling time. Time series are divided into discrete and continuous, as well as
univariate and multivariate. Simply stated, a time series is a set of numbers describing
the evolution of a variable (or variables in the case of multivariate time series) in time.

Time series are used in a broad range of scientific fields such
as statistics, econometrics, signal processing, electroencephalography, weather
forecasting, etc.

In Fig1.1, we present a real-world example of a univariate financial time series.

008

1000 2000 2001 2002 2003 2004 2008 2006 2007 2008 2000 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 1.1 ECB reference exchange rate, US dollar/Euro (1999-2017 daily data points).
Source: European Central Bank statistical warehouse.
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1.2 Time Series Parameters

We present below, the most common parameters used in time series analysis which
relate to the stochastic process from which the time series originates as well as the
statistics we receive when we only have limited observations of the time series, thus,
when we have a sample.

e Mean value

Parameter: u = E[X;]
Sample statistic: X = % X,
e Variance
Parameter: 62 = Var[X,] = E(X; — n)?
Sample statistic: s2 = —— X1, (x, — %)?

e Autocovariance

Parameter: y(t) = cov(xy, Xt 47) = EQr — W) (Xpyr — 1)

Sample statistic: c(r) = —— Y"1 (x, — ©) (xp4e — )

n—|z|

e Autocorrelation

Y@ _y®

Parameter: p(7) = 0 = o2

@ _ @

Sample statistic: r(7) = c0) 52

We should also mention that the autocorrelation parameter can only be defined if
the time series {X,} is stationary.

17



1.3 Stationarity

Stationarity is a fundamental concept for time series analysis. In a simple way, we
define as stationary, a time series that has no change in its mean value and its variance
over time and from which any periodic changes have been removed [1].

Stationarity is divided into two categories, strict and weak stationarity.

A time series is said to be strictly stationary if the joint probability distribution of the
stochastic process that produces it is unaffected by changes in time [1]. That means the
following relation must hold:

F(Xe1, 0 Xt,) = FXt140 0 Xensr) VT ER

In practice, strict stationarity is a very difficult condition to apply. This is why in most
cases we use a simpler version, the weak stationarity.

For a time series to be considered weakly stationary two conditions must be in effect.
The mean value of the time series {X;} and the autocovariance of {X,} and {X,,,} must
be independent of time.

In particular, {X,} is weakly stationary if these two relations hold at the same time:

i E[Xt]zﬂ; JuER

o cov(Xe, Xtir) = Vi Y ER

It is easy to prove that if a time series is strictly stationary, it is automatically and weakly
stationary. In real world, we often deal with time series that are non-stationary, but we
are able, using various methods, to identify and remove the cause of non-stationarity.

1.4 Testing time series stationarity

As mentioned above, in real-world applications, many time series exhibit non-stationary
behavior. These characteristics are very common in financial time series such as stock
price indices. There are numerous approaches used to examine the stationarity of time
series data. The most popular among them are the Augmented Dickey-Fuller test
(ADF), the Phillips-Peron test (PP) and the Kwiatkowski, Phillips, Schmidt and Shin test
(KPSS). In this work we will use the Augmented Dickey-Fuller test [23][24].
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1.4.1 Augmented Dickey-Fuller test

The ADF test was developed by Dickey and Fuller and it used to detect the presence of
unit roots.

A unit root test, is used to investigate whether a time series contains a unit root and
thus, is non-stationary. The null hypothesis is generally defined as non-stationarity of
the time series / presence of unit root and the alternative hypothesis suggests that the
data under examination are stationary or trend stationary depending on the test used
[22].

There are three main versions of this test, each corresponding to different type of data
[23], [24]:

a) Test for a unit root

p-1
Ay =@ yea + ) ) Qi Aye—q +ue

=
b) Test for a unit root with drift:

p-1
Ay = Bot @y + ) ) Qi Aye—q +ue

1=

c) Test for a unit root with drift and deterministic trend added:

p—-1
Ay =Bot ¢ ye1 + ) . Qi Ay + Pit +uy

1=

Where y, denotes the log return of the time series value (e.g. stock index) at the time
period t and 4y, = y: — y;_,. Considering the other parameters, g is the drift term, t is
the linear trend term, p is the lag term and u, is the error term.

About the test hypotheses, the null hypothesis states that the time series is non-
stationary or in other words contains a unit root and the alternative hypothesis states
stationarity of the time series.

HO:(p* :0
Hy: 9" <0
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ar(e*)
a unit root. Then, as the classic testing procedure dictates, it will be compared to the
corresponding critical value at a pre-set significance level. If the null hypothesis is
rejected, we can conclude that the time series y, doesn’t contain a unit root and thus it
is stationary.

The t-statistic t = must be calculated in order to test if our time series contain

Considering the choice of one of the above models, it is suggested [25] that the form of
the test can be based upon the graphical inspection of the time series.

Moreover, another important aspect is the selection of the appropriate value of the lag
term p. If we assign a small value, we may be lead to over reject the null hypothesis
when it is true. If we assign a large value the power of the test to reject the null
hypothesis may be reduced. One suggested solution to this problem, is based on
information criteria such as Akaike Information Criterion (AIC) [31]. In other words, we
identify the proper lag length that minimizes the information criteria. There are also
other methods to determine the appropriate time lag, but we only mention AlIC because
this is the one that is used in this work, as described with more details in a next section,
in which we describe the simulations methodology.

1.5 Stochastic models for time series construction

In this section, the most well-known stochastic processes that are used to generate time
series are described. In real-world applications, which are usually of great complexity,
the following simple procedures can be combined together to form a model.

In each of the procedures described below, we present first the univariate and then the
multivariate versions which can be considered as generalizations of the univariate cases
in that they are essentially multiple univariate processes combined.

1.5.1 White noise

White noise WN (u, 5?) is a sequence {e,} of independent and identically distributed
random variables (iid) [2]. Since the above statement applies, they come from the same
probability distribution and all are mutually independent [3] and therefore, for each of
them apply the following:

o Efed=1p
e Var{e} = o?

Also, due to the independence of the variables, the following applies:
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Cov(es, erpy) =0if k+0

Cov(ep erry) =02if k=0

A k-dimensional vector white noise can be represented by a dimension vector k as
follows:

Er = {e1r ety s €kt }

In this vector, each of the K elements is a white noise with an average p and
variance o2.

Also, the mean value and the variance of a K-dimensional white noise can be
respectively represented by a vector of u; components and a diagonal matrix Z with ¢
diagonal components.

White noise is a process that occurs very often in real world time series simulations.
Also, we can assume by its properties that it seems to be a weakly stationary process.

1.5.2 Random walk
Random walk is a stochastic process that comes from the white noise process.

Let's assume that we have a white noise process {e;} with an average y and a variance
of 2.

A process {X;} is called a random walk, if the following apply:
Xi = Xi+1 + ei and X1 = 31

We can easily prove that for the process {X;} the following statements stand:

Because the mean value and the variance of this process are dependent on time, the
random walk is not considered a stationary process [1].

A k-dimensional random walk can also be described by the same set of equations, with
the difference that now we consider X; and E; as vectors and not as single elements.
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1.5.3 Autoregressive process

An autoregressive process of order p, AR(p), is a process where the variable at time t
depends on the variable at p previous times.

In the univariate case we have a time series, which is described by the equation:
Xe = 1 Xe 1+ ... +@pXp + e, where e, ~WN(0,0%) and ¢; € R

It can be shown that the AR (p) process is stationary, since the roots of the
characteristic equation:

P — P71 - ¢,_12-¢, = 0 are all within the unit cycle [4].

VAR models (vector autoregressive models) are used for multivariate time series. The
structure that they follow is that each variable is a linear function of past lags of itself
and past lags of the other variables.

A VAR process of order p and of dimension k, can be described by the following
equations:

Xit = P10+ Q1181011 - FP1pX10-p T €11

Xt = Pro t Pr1Xie-11 - FPrpXir—p + €kt
Where e;; ~WN(0,02) and ¢; ; € R, we also consider ¢;, = 0

1.5.4 Moving average process
A moving average process of order q, or MA(q), is defined by the following equation [1]:
Xt - 618-,_-_1 + -+ qu‘r—q + ST

Where 6; € R and e, ~ WN(0,0?) . Moreover, this process is weakly stationary for every
value of 6; [1].

In the multivariate case, the vector moving average process of order q, or VMA(Q) is
described by the following k equations:

X1t =01180210 + 4 014€ g+ €1t

Xt = Ok1€xp—1 -+ Ok q Ext—qt Exr
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Chapter 2. Measures of Correlation and Causality

A major part of time series analysis focuses in finding relationships between them.
Meanwhile, the list of measures proposed for this purpose are constantly being
renewed. These measures are categorized in linear if they only detect linear
relationships and in non-linear if they have the ability to identify non-linear relationships
as well.

They are also divided into direct and indirect measures. Direct measures are these that
have the potential to detect and eliminate the correlations that occur due to a common
influence from a third or more time series. Indirect measures do not have this ability and
ultimately detect all correlations, indirect and direct.

In this section we will describe the following measures: Cross correlation (CRCO),
Partial cross correlation, Cross mutual information (CMI), Granger causality index (GCl),
Conditional Granger causality index (CGCI), Transfer Entropy (TE), Partial transfer
entropy (PTE), Transfer entropy on ranked vectors (TERV), Partial transfer entropy on
ranked vectors (PTERV).

2.1 Cross-correlation

Cross-correlation is the simplest linear correlation measure. It is the generalization of
the above mentioned auto-correlation function to the multivariate case. Autocorrelation
calculates the relationship of a time sequence with itself for various time delays. From
the above definition we can conclude that the cross-correlation function calculates the
relationship of two time series for various time delays. If the time delay is zero, then we
actually get the Pearson Correlation coefficient.

The expression of the cross-correlation measure is [1]:

3 = DO )
TXy(T) - ) N2\ — 2
\/Zt=1(xt _x) Zt=1 t _y)

Where 1 denotes the time lag.

The measure of cross-correlation is relatively simple in its calculation, but it also has
some drawbacks. It can only detect linear relationships between time series, and cannot
separate direct from indirect correlations.

Cross-correlation’s possible values range in the interval [-1,1]. The interpretation of
these values is given below:
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e Ifr> 0, there is a positive linear correlation between the two time series,
meaning that the time series are moving similarly to each other.

e Ifr <0, the linear correlation is negative, meaning a complete reverse relation
between the values of the time series.

e |Ifr = 0, there is no linear correlation between the time series.

Despite being a classic measure of correlation it can actually detect causal relations too
[5], depending on the adjustment of the time lag parameter T:

o Ifryy0) # 0&7 =0, then {x.} and {y,} are instantaneously related.
o Ifry e #0&7 > 0,then {x.} causes {y.}.
o Ifryym # 0&71 <0,then {y,} causes {x.}.

2.2 Cross Mutual Information

Mutual information is an indirect, non-linear correlation measure based on the concept
of Shannon’s Entropy [6].

Shannon’s Entropy is given from the formula:

HOO = = ) p(0)log;p,()

and it represents the number of bits required on average to describe the variable X. In
other words, it measures the uncertainty of a random variable X [7].

The joint Shannon’s entropy of two random variables X and Y is a generalization of the
above formula [7]:

HOGY) == D7 Py (6 1)10gs Py (5,7)
x y

The mutual information of the random variables X and Y can now be defined as [7]:

Dxy (X, Y)

I(X,Y) = H(X) + H(Y) — H(X,Y) = Zgwﬂm“’gzm

X

Mutual information is a measure of how much the uncertainty of variable X has been
reduced due to the knowledge of variable Y and vice versa. In other words, it calculates
how much information the two variables share [7].

In terms of time series, mutual information can be expressed as:
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! =ZZP (X0 yerr)log Pxy (Xt Ver)
XY (1) xy (Xt Y+t pr(xt)py(ytﬂ)

Xt YVt+t

where 1 denotes the time lag parameter. As far as the range of values is concerned,
mutual information is always a positive quantity, while it is zero if and only if the two
variables are independent.

If we wish to include a third variable, or a set of variables to our calculations, the
Conditional mutual information between X and Y conditioning on Z can be calculated
using the following formula [8]:

p(x,y|z)

106Y12) = ) p(ey,2)log st

xX,V,Z

2.3 Granger causality index

The Granger causality index is a linear measure proposed by Granger in 1969 [9]. The
idea behind this measure is extremely simple: We are looking at whether we can have a
better prediction of the future values of a time series {Y,} if we also include in our model
the time series {X,}, compared to only including exclusively previous values of {Y;}. In
the case that the prediction is improved, we assume that the time series {X,}

affects {Y;}.

This measure can be described in terms of mathematics in a very simple manner:

Suppose we have two time series, {X;} and {Y;}. We construct two models to
predict {Y;}, one of which contains only past values of {Y;} and hence it can be
described by the following expression:

k

Ve = Z aiYe—i T e

i=1

The second model also contains past values of the time series {X,} and can be formed

as.
k k
Ve = Z aiye—i + Z bix._; +e;
i=1

i=1
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The coefficients a;, b; that appear in the two above models are estimated by a method
that minimizes the dispersion of the terms e, and e/. Such methods are the maximum
likelihood method and the least squares method.

The answer to whether or not the time series {X,} affects {Y;} will be given to us by the
variances of the terms e, and e/ [9]. For this purpose, the two variances are compared. If
the second term shows less variance, this means that we make better predictions if we
also include the past values of {X;} in the model and therefore we assume that the time
series {X,} affects {Y;}. The formula from which we get the Granger index is as follows
[10]:
Vare,

GClxLy = In Vare,
For this measure to be successfully applied, weak stationarity is required. This issue
can be addressed by applying the measure to the parts of the time series that are
considered to satisfy this property. It is also obvious, that the influence of other variables
in the outcome is ignored. Finally, although this measure was originally developed to
identify linear relationships, several methods have been developed recently based on
Granger's philosophy of detecting nonlinear relationships.

2.4 Conditional Granger Causality Index

This measure constitutes an enhanced version of the Granger causality index in sense
that it is able to detect and eliminate indirect relationships. There is exactly the same
logic in the methodology of its calculations, except that the new term {Z,} that accounts
for the possible influence of all other variables in the system on {Y;} is now added to
both models. If we assume that our system consists of a total of K time series,
including {X;} and {Y;}, the new term regards the multivariate time series:

Zy = {Zl,t, ey ZK—Z,t}
The corresponding models for calculating the index will be configured as follows.
The first model for the prediction of {Y;} now becomes:

k

k
Ve = Z a;ye—i + Z CiZ; + e

i=1 i=1

The second model that contains {X,} becomes:

k k k
Ve = Z aiye—i + Z bixi_; + Z CiZ; + e
i=1 i=1

i=1
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The calculation of the index and the conclusions drawn are similar to the simple version
of GCI. We calculate the dispersions of the two terms e;, e; and if the dispersion in the
second model is less than the first, then we assume that the time series {X,} affects
{Y;}. The formula from which we get the CGCI value is the following [10]:

VaT'(et)

CGCIy_,y = In
X=Y Var(etl)

2.5 Transfer Entropy

Transfer entropy is another measure that is based on entropy. It was first proposed by
Schreiber in [10]. It captures the effect that {X,} exerts on {Y;}, at T time steps ahead,
while accounting for the current state of {Y;}. In order to quantify it we have to construct
three vectors. The first two vectors contain current and past values of {X;} and {Y;}.

Xy = [xt» Xt—1y ---)xt—(mx—l)‘rx]

Ye = [ytfyt—‘ryﬂ ---ﬂYt—(my—l)‘ry]

And the third, is the future response vector of dimension T,

3’tT = [Ve+1 Ve4zs oo Vel

Where m, and m,, are the embedding parameters, 7, and 7, denote the time lag, and T
is the time step ahead. An intuitive way to express transfer entropy is given below [12]:

TEx .y = H(y,_Tlxt) - H(ytT|xt’ Ye)

This can be translated as the number of bits required on average to describe y;,r while
x, is known, less the number of bits required on average to describe y, . while both x;

and y; are known. Another representation of transfer entropy that resembles the mutual
information formula is the following [11]:

POV X0 Ye)

TEy_y = Z T x;, v)log, ———
X-Y p(Ve, X0 Ye)log, P(()’th’t))

Vt+T

As far as the method of estimation is concerned, discretization of the observed variables
x; and y, can be assumed for the discrete variable x, where the Shannon entropy sum
is over the possible bins of x and p(x) is the probability mass function of x [18].
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Although more recent research [15] suggests that the use of the k-nearest neighbor’s’
method may be more appropriate when dealing with systems that contain a large
number of variables. The use of the k- nearest neighbor’s approach is described in [13].

2.6 Partial Transfer Entropy

This measure was proposed by Valkorin [14] and it is basically an extension of transfer
entropy that enables it to be able to identify direct relations among time series. Its
approach in eliminating indirect relations is similar to the one used in CGCI in the sense
that a vector Z;, = {zu, "'fZK—Z,t} , containing every other variable in the system, is used
to nullify the effect of other variables on {X;} and {Y;}. An intuitive way to express partial
transfer entropy is the following [12]:

PTEx y)z = H(y{ |x., z,) — HQYY | X0, Yo, 2¢)

The method used by Valkorin in order to estimate the entropies is the correlation sums,
but as mentioned above, the use of the k-nearest neighbor’s’ method, may be more
appropriate if certain conditions are met.

2.7 Symbolic Transfer Entropy

Bandt and Pompe in [16] suggest a different discretization method that produces far
less bins for the high dimensional variables. This is possible by the rank ordering of the
components of vector variables [18]. By substituting the sample vectors with rank
vectors in Shannon Entropy we can get Bandt’'s and Pompe’s Permutation Entropy [16]:

H) == ) p(m)logp(m)

where the sum runs over all m! permutations m of order m.
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The ranked vectors are formed as following [18]: For each point y,, the ranks of its
components, either in ascending or descending order, form a rank vector

Ve = |11, Te2s oo Tem] Where 1, ; € {1,2, ..., m} for j = {1,2, ..., m} is the rank order of the
component y;_;_q),- If two components of y, are equal, the smallest rank is assigned
to the component appearing first in y,.

In [17], the same conversion is also proposed for Transfer Entropy. The arguments in
the equation of TE are modified as follows:

The sample vectors x; and y, are replaced by the rank vectors y; and x; respectively
and the future response vector y, . is replaced by the future response rank vector ;..

The result, called Symbolic Transfer Entropy, can be defined as:

STEx .y = I(?t+T; ftb,’\t) = —H()?HT,J’C} :)/’\t) + H(ft 13”}) + H(lA’t+T :)”\t) — H(J;)

2.8 Partial Symbolic Transfer Entropy

This measure was proposed in [20] and it is basically an extension of symbolic transfer
entropy that enables it to include the effect of the current state of Z on the future of the
response Y and the current state of X. In a similar way as the abovementioned Partial
Transfer Entropy, we can define PSTE as:

PSTEx_y = I(yt+T;9?t|)//\t; Z\t)
= —H@+1. %0, V0, 20) + HOG, V4, 20) + HG i, Ve 2e) — HOw Zt)

2.9 Transfer Entropy on Ranked Vectors

Transfer entropy on ranked vectors (TERV) is a correction of STE proposed by
Kugiumtzis in [18]. The issue with STE, is that while sample vectors x; and y;
correspond directly to their respective ranked vectors x; and y; and preserve the vector
dimension, the vector y! = [y11, Ve+2, --» Yesr] Of dimension T is mapped to the ranked
vector of y,,, = [yt+T, ...,yt+T_(m_1)T] which is the following vector, of dimension m :

Ye+T = [rt+T,1' "-'rt+T,m]

This difference in the dimension of the sample and the respective ranked vector has
implications in the computation of entropy terms [18]. For the future response sample
vector of TE, y!, TERV assigns the future response rank vector, of dimension T

~T _
Ye = [rt,m+1' ---»Tt,m+T]

29



Thus, Transfer entropy on ranked vectors can be defined as following [18]:

TERVy .y = 1(9[; 6|9 = —~HG{, %, 9) + HE,5) + HL ,5) — HGr)

2.10 Partial Transfer Entropy on Ranked Vectors

If we suppose that we have a system containing K multivariate time series, we can
extend TERV to be able to capture the effect of the current state of the K — 2 remaining
variables on the future of the response variable y, and the current state of x, [19].

If we denote Z; = {Zl,t’ s ZK—Z,t} as a vector containing every other variable in the
system, we can define PTERV in a similar way as PTE and PSTE as following [19]:

PTERVyy = 1(9{; |V, 2) = —HL, %, Y0, 2) + H& , 90, 20) + HO! 90, 20) —HO 22)

For PTERV, the possible rank permutations of Z, are (m!)X~2, which clearly shows that
the demand for largest time series lengths increases with both K and m [19].

30



Chapter 3. Testing for relationships between time series

In this chapter we describe the ways in which we can check whether two time series
have a relationship of correlation or causality. Initially, we summarize all kinds of tests
that can be used to separate whether the connection between the time series is
important or not. Then, we proceed by analyzing the test we used in this work.

3.1 The different types of tests

The simplest way to define the validity of a connection is by setting a cut-off threshold. If
the measure used to detect the connection has a value greater than that, we think it is
important and we consider it significant, otherwise we reject it. This way, though, is
extremely simple to implement, is arbitrary and is clearly based on the researcher’s
experience.

Another way of separating the significant from the non-significant links, is parametric
tests. These tests require specific assumptions about the distribution of the population
so that they can be implemented. After testing these assumptions, we then define the
two hypotheses:

H,: the connection is not significant
H,: the connection is significant

We then calculate a statistic metric from the data and then we check the location in
which this statistic is found in relation to the distribution it is supposed to follow. If it is at
the edges of the distribution, we consider it to be an extreme value and therefore the
zero hypothesis is rejected. If the zero hypothesis was valid, our statistic would appear
in the distribution as a standard value.

When we collect data and we can’t be certain about the distribution that they follow, we
resort to non-parametric tests. This type of tests, have a similar methodology to the
parametric ones, except that they do not assume any statistical assumptions and do not
require normality in the distributions of variables.

Randomization tests differ from the previous two types in the procedure that they follow.
In order to decide whether the link is important or not, they compare the statistic formed
by the measure of the two time series, with a distribution that is randomly formed by the
same measure. In order to obtain this distribution, we retain one time series unchanged
in each iteration, while we shift the second, in a process that does not alter its internal
consistency. As before, if our statistics are at the edges of the distribution, we consider
the link to be important.
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3.2 The randomization test

The randomization test can be applied to all measures used to find relationships
between time series. The idea is this: We initially take the measure value from the
original time series. Then moving continuously one of our time series, while keeping the
second one intact, we take the value of the measure for the new couples that arise and
shape the distribution of these measures. Because these shifted time series have been
randomly generated, if our original pair actually had a relationship, the value of the
measure would be an extreme value in relation to all the rest, and therefore we expect it
to appear at the edges of the distribution. If this happens, we consider the value of the
measure and thus the relation of the time series, as significant. More specifically, this
shifting procedure is as follows:

Let us assume that we have applied a measure c to our network connections and now
we must examine whether the connection of the time series {x;} and {y,} is significant.
In the test that we will apply, the zero hypothesis is that the value we got for the
connection is due to random factors and therefore we must consider it zero.

The alternative hypothesis is obviously that this connection is significant and therefore
different from zero. If we denote the value of the measure as my,, the two hypotheses
can be defined as follows:

HO:CJ?y = O
Hl:C)(C)y 0

We will then form the randomized distribution, with the help of which we will decide
whether the value of the measure is significant or not. This distribution is formed by the
values of the same measure in M different pairs of time series originating from the
original, after some random shifting. The new pairs of time series are produced as
follows: We maintain the time series {x;} and move the time series {y;} by one random
step p, different in each iteration. The resulting time series takes the following form:

i} = per Ypszs 0 Y Vi 0 V)

The way in which the shift is made is such that the inner bonds and dynamics of the
original time series are maintained. This is because some measures need those bonds
to deliver the right results. It is also suggested that M is a large enough number so that
we can get results at the desired level of significance. However, it is not necessarily
good to get all the n-1 possible shifts, because then computational costs will incur,
especially for a big length n.

Then we calculate the value of the measure for each of the above M couples of the form
{x:} , {y}} that will occur for each of the shifts and we denote the M + 1 results as

1 M 0 . Y . .
wytoees My, where my,, is the value of the original time series couple. We sort

these results in ascending order and check if the value is at the edges of the list.

mgy, m
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The statistic we use to test our hypothesis, is the following [21]:

rank(mg,) — 0.326 , M+1
M+ito3as 0 U renk(my) <—;
p —value =
rank(mg,) — 0.326 , oy M+1
2\ = iv1ro3as ) S renk(my) =

Then we conduct the following test: If the p-value is smaller than a, where a is the

significance level, then the zero hypothesis is rejected and therefore the connection we

have is important.
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Chapter 4. Dimension reduction methods

In statistics, we refer to dimensionality reduction as the methods that help us reduce the
number of random variables of our system, into a smaller number of so-called principal
variables. In general, there are many processes that help us achieve a dimension
reduction of our system. In this work, we focus in Principal component analysis (PCA)
which is considered as the main linear technique for dimensionality reduction.

4.1 Principal Component Analysis

PCA is a multivariate dimension reduction technique that has its aim in the explanation
of relationships among several difficult-to-interpret, correlated variables in terms of a
few components which are uncorrelated with each other and are capable of accounting
for nearly all the variation present in the observed data. PCA therefore finds a linear
transformation of original variables into a new set of variables called principal
components which are uncorrelated with each other and are capable of accounting for
the variation of the obtained data and are derived in such a way that the first few of
them can often provide enough information about the data and so the dimensionality of
the problem can considerably be reduced [26].

The calculation of the principal components and the final form of the data is a simple
and straightforward process that requires understanding of basic mathematical
concepts. The steps followed in this procedure are described below [27]:

After the collection of our data, the first step is to subtract the mean value from them.
This means subtracting the mean from each time series of our system separately. By
following this procedure, we will end up with a dataset with zero mean. Next, we
compute the covariance matrix, which is a square matrix of dimensions (k X k)
supposing that our system is of dimension K. Because the covariance matrix is square,
it is possible now to calculate the eigenvectors and eigenvalues of it. These, will help us
choose the components that we find more suitable for use. This choice of components
is the most important step, because the final form of our data will be derived by them.

The most important relationship between our systems’ variables is given by the
eigenvector with the highest eigenvalue [27]. In other words, this is the principal
component of our data. If we rank the eigenvectors based on their corresponding
eigenvalues, we have a ranking of components in which the higher a component is
ranked, the more of the variance of our system it is able to explain. In our work, we will
experiment using only the first principal component (PC1) to transform our data, as this
component holds the most of the information of our system. Now, we construct a new
matrix of vectors containing the eigenvectors we want to keep, placing them based on
the ranking we mentioned above. In our case, this matrix will only contain the
eigenvectors that were ranked first.
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As a final step, we can derive our final data by multiplying the transposed vector of
matrices we have created (the eigenvectors are now in rows) with the transposed matrix
of our mean-adjusted data, in which each data dimension corresponds to a row.

There is also a procedure of getting the initial data back from the final dataset, but it
doesn’t concern this work.
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Chapter 5. Networks

In this chapter we will summarize the main aspects of the networks, the categories in
which they are separated and some important concepts related to them and are
necessary for the understanding of our work.

5.1 Definition

A Network (or graph) is a method of representing a set of entities in which some pairs of
entities are linked together. The entities that form the network are called vertices and we
denote their total number with n, while the links formed between them are called edges
and their total count is denoted as m. The number n is called order of the network while
the number m is the size of the network. In summary we can say that a graph is an
ordered pair G (V, E), where the set E contains the network’s edges and V is the set of
its nodes.

5.2 Categories of Networks

Networks are divided into directed and undirected, and also in weighted and non-
weighted.

In undirected networks, the edges are not oriented. This means, that the existence of
the edge A — B automatically results in the existence of the edge B — A and the edge is

represented by a straight line. In directed networks, there may be the edge A — B but
this doesn’t necessarily means that the edge B — A will exist too. To make sense of the
direction of an edge in these networks, the links are represented by arrows.

In undirected networks, the edge set E in consists of bipartite sets of nodes {k, 1} while
in directed networks, it consists of ordered pairs {x, 1}. A directed network is called

symmetric, if for each pair {k, A} belonging to E, there is the corresponding pair {4, k}.

An example of a directed and an undirected network is presented in figures 3.1.
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Undirected network Directed network

Figure 3.1 An example of directed and undirected networks. From “Network Science”. Albert
Laszlo Barabasi.

In weighted networks, a weight w;; is assigned to each of the edges, which

represents the magnitude of the corresponding link. On the other hand, non-
weighted networks handle all the connections between the nodes as equal.

Figure 3.2 presents an example of a weighted and a non-weighted (binary)

network:
Y N
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Weighted Graph Unweighted Graph

Figure 3.2. An example of a weighted and a non-weighted network.

In our work, we will use directed, non-weighted networks to study causality relationships
using the information measures described in a previous chapter.

5.3 The Adjacency matrix

The adjacency matrix is a mathematical representation of the network’s structure. In
other words, it is a matrix that contains the list of edges between the nodes of the
network. The adjacency matrix of a network of N nodes is of size N * N [28].
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Below there is an example of an adjacency matrix which represents a network with 4
nodes:

o

Figure 3.3. The structure of an adjacency matrix. From “Network Science”. Albert Laszlo

About the elements of the adjacency matrix, for directed networks each cell is as
follows:

A;j =1, ifalink exists pointing from node j to node i.
A;j = 0, if the nodes i, j are not connected.

For undirected networks, we have 2 cells corresponding to each link, for example if
nodes i and j are connected the link is represented both in A4;; and in 4;; (4;; =1, Aj; =

1.

The adjacency matrix of weighted networks is a little different. Its elements are
populated by the weight of the connection rather than a binary indicator:

Aij = wyj
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Chapter 6. Networks from time series

As described in the previous chapter, a network is a set of entities, some of which are
linked to each other by some relationships. When referring to time series networks,
these entities are the time series we are concerned with, and the links between them
are the relationships that may exist between each pair of these time series.

In order for a network to exist, we must have at least two time series as nodes. Then we
have to decide which measure we will use to discover relationships between these time
series and with which method we will test if we accept the existence or not of any
relationship between them. Depending on the measure of our choice, the network will
be formed as undirected, if we use a correlation measure or a directed, if the measure
gives us causality relationships, for example if one time series affects another one. We
also have to decide if our network will have weights, or if the edges will be binary.

The method that we chose to use in this work to test whether a link is considered
significant or not, have been described in detail in Section 1.7.

6.1 False Discovery Rate (FDR)

In our attempt to identify existing connections in a network of n time series, we
simultaneously perform n (n — 1) hypothesis tests. When performing such tests, there
are 2 types of errors that may occur:

Type | errors, where the null hypothesis is rejected while it is true, and type Il errors
where the null hypothesis is not rejected while it is actually false. In this paragraph we
will be concerned with type I errors. In a test, type I errors are controlled by the
significance level a, usually equal to 0.05. This means that in a simple hypothesis test
there is a 5% probability of rejecting the null hypothesis while it is true. The problem lies
in the fact that if we carry out multiple tests at the same time, the likelihood of such an
error increases considerably. In m simultaneous checks the probability of error is
equivalent to 1 — 0.95™. Indicatively, we mention that in a network consisting only of 5
time series , in which m = 5(5 — 1) = 20 tests will be conducted, the probability of error
is:p=1-—0.95%% = 1—-0.3585 = 0.6415 = 64.15% and therefore on a relatively
small network the probability of an error occurrence is greater than the probability of
non-occurrence.

False discovery rate is a statistical method used in multiple hypotheses testing to
correct the above problem. In a set of results in which the null hypothesis was rejected,
the FDR process is designed to control the expected percentage of null hypotheses that
were falsely rejected.

The concept of the false discovery rate was first proposed in 1995 by Y.Benjamini and
Y.Hochberg [29] and was established as a commonly accepted way of controlling the
rate of errors in hypothesis rejection.
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Table 6.1. Number of errors realized in m hypotheses tests.

True Null True Alternative Total
Hypotheses Hypotheses
Rejected Null %4 S R
Hypotheses
Accepted Null U T m—R
Hypotheses
Total mg m—mg m

Let’'s suppose we have multiple tests for null hypotheses from which the

m, are true, R is the number of rejected cases (discoveries) and V is the number of the
hypotheses that while true, were incorrectly rejected. In our tests, R is a random
observed variable, while the variables S, T, U,V as shown in Table 3.1 are non-
observable random variables. If we set Q as the percentage of false discoveries, then
the false discovery rate is given by the formula:

FDR—E()—E{ v }—EV
SEQ =By g = ER)
We want to keep this value below a certain threshold a. The procedure proposed

by Benjamini and Hochberg is as follows:

Let p,, ..., p, be the observed p-values of the m hypotheses tests, sorted in
ascending order. We find the highest k value for which:
k

< —a
Pk m

Where a denotes the significance level of the FDR procedure. We reject every
null hypothesis H; fori = 1,2, ..., k. By following this procedure, a% type I errors
can occur in our multiple tests.
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Chapter 7. Accuracy measures

In this paragraph we describe the concepts of sensitivity and specificity as statistical
measures used to evaluate the performance of a binary classification test.

7.1 Sensitivity and specificity

Sensitivity and specificity are statistical measures for the performance of a binary
categorization test, which have their roots in diagnostic tests [30]. These two measures
are closely related to Type | and Il errors. For each test, there is usually an inverse
relationship between these two measures, through which we try to find the optimal
equilibrium point that suits our research. In some cases we need a larger value of
sensitivity and a smaller value of specificity, while in other cases we want the opposite.

In the table 7.1 we present every possible outcome of a classification test and then we
define the concepts of sensitivity and specificity based on these outcomes.

e A true positive test result is one that detects the condition when the condition is
present.

e A true negative test result is one that does not detect the condition when the
condition is absent.

e A false positive test result is one that detects the condition when the condition is
absent.

e A false negative test result is one that does not detect the condition when the
condition is present.

Now that we have a clear picture of the possible outcomes, we can define the 2
accuracy measures.

Sensitivity measures the ability of a test to detect the condition when the condition is
present. Thus,

Sensitivity = TP/(TP + FN).

Specificity measures the ability of a test to correctly exclude the condition (not detect
the condition) when the condition is absent. Thus,

Specificity = TN/(TN + FP).

Table 7.1. Possible outcomes of a classification test

True False
Test Positive True Positives (TP) False Positive (FP)
Test Negative False Negative (FN) True Negative (TN)
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Chapter 8. Reduction of the number of conditioning variables

While searching for causality relationships between time series, it is important to take
into account the conditioning effect from the rest of the variables included in the system.
When the number of the remaining K — 2 variables is large, computational and
conceptual problems can occur. For example, in the presence of redundant variables,
the application of the standard analysis using full conditioning, may result in a lower
accuracy in the detection of the correct causalities.

Marianazzo et al [33] addresses this issue, from an information theory approach. In his
work, he selects the k most informative variables to the driver variable using the
following algorithm:

First, the Mutual Information of the driver and the other variables is calculated in order
to select the first variable of the conditioning subsystem. The second variable of the
subsystem is selected as the variable that jointly with the first variable, maximizes the
mutual information with the driver variable. This procedure continues until the subset of
the conditioning variables reaches a size of k.

Finally, by using this technique in the conditioning term of Granger causality,
Marianazzo concludes that conditioning to a smaller number of variables, chosen as the
most informative ones for the driver node, leads to results very close to the ones that
are obtained via full conditioning.

Another attempt to reduce the number of conditioning variables, is made by Zhou et al
[34]. In this work, an attempt is made to reduce the dimension of the conditioning
variables using Principal Components Analysis and using the linear combinations of the
Principal Components that account for the most of the variance as the conditioning
variables. His analysis, using conditional Granger causality, concluded that the use of
PCA leads to a minimum loss of information which doesn'’t really affect the connectivity
analysis. Also this method, depending on the dataset, runs in a reasonable time frame
making it a potentially valuable tool in the estimation of casual relationships.

8.1 Our approach

In our work, we address this issue using variations of the above methods in an effort to
propose an efficient approach in reducing the number of conditioning variables.
Specifically, we are using two Entropy based measures. These are, Partial Transfer
Entropy which is customary to be applied to stationary time series and Partial Transfer
Entropy on Rank Vectors which can be applied directly in both stationary and non-
stationary time series.
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8.1.1 Using Mutual Information

Ouir first attempt is made in terms of information theory. In particular, we choose as a
conditioning subset, the variable that shares the maximum value of mutual information
with the driver variable in each of the variable pairs contained in the system. We
decided to keep only one variable, in an attempt to minimize the dimension of the
entropy terms in the computation of PTE and PTERYV, and thus to be able to obtain
good results even with small data samples.

The procedure for this selection of the most informative variables to the driver, is the
following: First, the mutual information between every pair in the system is calculated.
As a second step, these values are sorted for every individual variable in the system
and the variable that maximizes the mutual information for each of the individual
variables is kept. Finally, these most informative variables to the driver, are used as the
conditioning variable every time their corresponding counterpart is in the driver position.

8.1.2 Using Principal Component Analysis

Our second attempt lies in the context of dimension reduction methods. Specifically,
Principal components analysis. The method in use here is described below:

First, the principal components of the dataset are calculated. Then, we only keep the
first principal component (PC1) as this holds the most information about our system.

Finally, we use as the conditioning variable, the linear combination between the
coefficients of the first principal component and the remaining K — 2 variables of our
system.
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Chapter 9. Simulations in a generated system

In this chapter, we describe the simulations performed to evaluate the time series

causality measures described in Chapter 2 and to assess the capability of the new
methods, used to define the set of conditioning variables in each of the metrics, to
improve their results.

In order to be led in safe conclusions, we generated a system of which the links are
known and the evaluation of each combination of measure and dimension reduction
method was based on whether the results we get at each different simulation setup go
hand in hand with the previously known connections of the system.

In each of the simulations we performed, we kept certain parameters unchanged, while
changing some others in order to understand the behavior of the measures on different
system settings.

9.1 Coupled Henon Maps

Coupled Henon Maps is a non-linear system that can be generated by choosing the
number of time series, their length and the coupling strength between them.

In our work we generate a system with K = 5 variables and a coupling strength of ¢ =
0.4. The equations describing this system are the following [31], [32]:

X =14—-X?, +03Xy,_,
Xt =14—-05c(Xyp—q +X3,-1)+ (11— c)Xzz't_l + 0.3X5¢,
X3¢ =14—-05c(Xpp-1 +X4p-1) + (11— c)X32_t_1 + 0.3X3:_;
Xge=14—05c(X3p_1 + X5 1) + (1 —)XZ,_; + 0.3X,,_,
X5 = 14— X2, +0.3X5,_,
In this system, each map is coupled to the next apart to the first and the last map, the
first only drives the second and the last only drives the second last, with the first and

last map uncoupled. These relationships in our 5 variable system are shown below as a
network representation:
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Figure 8.1. The causal relationships between a 5 variable Coupled Henon maps system.

9.2 Setting-up the simulations

Starting from the time series length, we decided to generate 3 systems of different
size, N = 1000,4000, 12000, so that we will be able to capture the changes in measure
performance while the time series length increases.

In term of stationarity, we apply PTERV in both stationary and non-stationary time
series and PTE only in the stationary data, as it is not fit to detect causality relationships
in non-stationary time series [17]. Specifically, the time series generated from the set of
equations describing Coupled Henon maps are classified as stationary according to the
Augmented Dickey-Fuller test which rejects the null hypothesis of the existence of a unit
root, for all the K = 5 time series of our system and for every length N

The generated coupled Henon systems for each value of N are shown in figures 9.1, 9.2
and 9.3.

A ; . . ; . . . ; .
o 100 200 300 400 500 600 700 8OO 900 1000

Figure 9.1. The coupled Henon maps system for N=1000.
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Figure 9.2. The coupled Henon maps system for N=4000.

0 2000 4000 G000 8000 10000 12000

Figure 9.3. The coupled Henon maps system for N=12000.

To create non-stationary time series, we followed a method described by D.Kugiumtzis
et al [18]. Below we describe the exact procedure.

First a Gaussian random walk time series of the same length as the original time series
is generated, where the standard deviation of the random steps is the same as this of
the coupled Henon maps. Then, a moving average smoothing of order 100 is applied to
it. Then, this smoothed stochastic trend is added to the time series of the first variable of
the coupled Henon maps. Then, we repeat this process for the 4 remaining time series.
The resulting time series are the following:
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Figure 9.4. The non-stationary coupled Henon maps system for N=1000.

o 500 1000 1500 2000 2500 3000 3500 4000

Figure 9.5. The non-stationary coupled Henon maps system for N=4000.

150

0 2000 4000 G000 B000 10000 12000

Figure 9.6. The non-stationary coupled Henon maps system for N=12000.
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Indeed, the Augmented Dickey-Fuller test accepts the null hypothesis, and thus a unit
root exists, making these time series non-stationary.

The coupling strength of the coupled Henon maps is set to C = 0.4 which is generally
considered a strong coupling.

The embedding dimensions m,, m,,, m, are set to 2 and later at 3 for both Partial

Transfer Entropy and Partial Transfer Entropy on Ranked Vectors. The time lag
parameters t,, 7, and 7, are set to 1 for both the measures. The time steps ahead for

the future response sample vector y! of PTE and the future response rank vector y,." of

PTERV is setto T = 1. Finally, the number of nearest neighbors for the computation of
the entropy terms in PTE is set to 10

9.3 Evaluating measure performance

For the evaluation of the measures, the randomization test described in a previous
chapter is used. The number of surrogates is set to 100. Also, 100 realizations of these
computations are generated, with the exception of Partial Transfer Entropy in the N =
12000 set-ups that due to computational costs the realizations are decreased to 10, in
order to calculate the FDR rejections. That is, the rejections of the null hypothesis of no
causality in every realization of the system.

Finally, we use the accuracy measures of specificity and sensitivity to evaluate the
quantities of FDR rejections in each simulation set up. In terms of networks, sensitivity
and specificity can be defined as following [33]:

Sensitivity denotes the percentage of the existing links that are detected and Specificity
denotes the percentage of missing links correctly recognized as non-existing.

9.4 Results

In this section, we present the results of the simulations described above. The FDR
rejections for each coupling of the system and also values of sensitivity and specificity
are presented in the following tables.

Partial Transfer Entropy

As mentioned in the previous section, this measure is applied only in the stationary form
of the data.
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Table 9.1. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=2 and N=1000

using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, > X, |55 10 91
X, =X, |19 0 16
Xy -2 X; |6 1 14
X3 -> X1 2 2 9
X=X, |0 3 6
X.—=X, |0 1 1
Xl — Xs 2 1 2
Xs -2 X1 4 0 2
X, = X3 52 10 89
X3 -2 X, 39 1 61
X,-=X, |0 2 11
Xs—=X, |0 0 7
Xz - Xs 0 1 2
XS =3 X2 | 1 2
X3 =) X4 39 5 438
Xy =2 X3 51 6 91
X3 = Xs 0 5 0
XS =% X3 6 S 85
X,:—>Xs |34 0 16
Specificity | 1 1 0.89
Sensitivity | 1 0 1

Table 9.2. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=2 and N=4000

using all three ways of defining the conditioning variables.

K=5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, - X, |100 77 100
X, =2 X 94 1 60
Xy > X3 |56 21 48
X; =X 18 19 25
X=X, |0 73 57
X4 - X1 7 14 6
X1 =9 Xs 9 2 4
Xs—=Xy |9 5 3
X=X |93 78 100
X3 b Xz 85 6 94
X=X, |0 12 21
Xs—2X, |0 10 28
Xz - Xs 2 : ] 4
XS - Xz 0 p | 2
X3 2X, 90 34 88
Xs—> X3 | 96 47 100
X3 - Xs 10 11 6
Xs—=>X; |62 48 100
X =2 Xs 89 0 47
Xs 2> X, | 100 77 100
Specificity | 0.95 0.89 0.89
Sensitivity | 1 0.67 g
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Table 9.3. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=2 and N=12000
using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X1 - X2 10 9 10
X, =X 7 0 8
X1 => X3 10 74 8
X3 — X1 2 S5 1
X1 o X4 0 10 10
X=X |0 0 0
X]_ =2 Xs S 0 0
Xs - X1 0 0

X, = X5 10 10 10
X3 =X, 10 0 10
X, =X, 0 7 10
X4 - Xz 0 4 10
Xz - Xs 0 0 0
XS -> Xz 0 ; | 1
X3 - X4 10 4 10
X3 - X3 10 6 10
X3 —> Xs 8 2 4
Xs—>X; |5 9 10
Xy = Xg 10 0 10
Xs . X4 10 9 10
Specificity | 0.73 0.84 0.68
Sensitivity | 1 0.67 1

Table 9.4. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=3 and N=1000
using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X=X, |23 7 86
Xz - X1 0 0 3
Xy - X3 9 0 21
X3 - X1 0 0 2
X=X, |1 2 6
X.—=X, |0 0 2
X;->Xs |6 0 4
XS = X1 0 g | 3
X,—=>X; |20 7 76
X;:—-X, |13 3 56
X, =X, |1 2 17
Xs—=X, |0 1 10
Xz = Xs 0 1 2
XS - Xz 1 g | 3
X3 = X4 17 4 a4
Xg = X3 20 4 86
X3 - Xs 0 0 0
Xs = X3 13 5 84
Xy = Xg 1 0 1
Xs—=X, |23 7 86
Specificity | 1 1 0.89
Sensitivity [ 0 0 0.83




Table 9.5. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=3 and N=4000
using all three ways of defining the conditioning variables.

K=5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X=X, 100 44 99
X, = Xy 7 1 51
X, = X; [92 3 49
X3 —> X1 0 2 4
X=X, |0 38 48
Xy 2 Xy 0 2 1
X,-Xs |7 3 4
XS -2 X1 15 5 2
X, = X3 87 43 98
X3 = Xz 86 4 85
X, =2 X, 0 2 23
X4 - Xz 0 2 8
Xz - Xs 0 0 q .
XS o i X2 2z 1

X3 =X, 91 14 87
X3 -2 X3 87 35 99
X3 - Xs 5 2 1
XS - X3 94 32 99
X4 = Xs 8 2 37
Xs =X, |100 4 99
Specificity | 0.94 1 0.79
Sensitivity | 1 0 1

Table 9.6. The FDR rejections and accuracy measures for Partial Transfer Entropy for m=3 and N=12000
using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, - X, |10 10 10
X, =X 10 0 10
Xy = X5 10 0 10
X3 - X1 0 0 1 |
Xy - X, 0 10 10
X.—>X |0 0 0
X1 . Xs 5 2 0
Xs - X]_ 5 1 | 0
X, = X; 10 10 10
X3 = Xz 10 1 10
Xz -2 X4 0 S 3
Xy -2 X, 0 4 3
Xz -2 XS 0 0 0
XS -2 Xz 0 0 0
X3 - X4 10 6 10
X3 - X3 10 3 10
X3 =) Xs 0 3 2
Xs—=X3 |10 4 10
X4 b X5 5 2 10
Specificity | 0.79 0.84 0.73
Sensitivity | 1 0.67 1




Partial Transfer Entropy on Ranked Vectors

On the contrary, PTERV is applied to both stationary and non-stationary data. Below we
present the result tables first for the stationary and then for the non-stationary time
series.

Table 9.7. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors for
m=2 and N=1000 using all three ways of defining the conditioning variables.

K ='5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, =X, |35 4 27
Xz = X1 0 10
X1 - X3 0 0 1
X3 - X1 1 | 6
X = X, 1 B
Xy =Xy 10 2 16
Xy -2 X5 1] 2
Xs - X1 1 0
Xz - X3 29 4 22
X3 - Xz 24 0 8
X,-> X, |9 0 1
X4 -2 Xz 8 0 3
Xz — Xs 5 0 4
XS - Xz 3 0 2
X3 - X4 19 2 5
Xy = X3 28 1 25
X3 - Xs 5 j | 1
XS -3 X3 2 2 10
X4 = Xs & 0 4
Xs > X, |35 4 27
Specificity | 0.89 1 |
Sensitivity | 1 0 0
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Table 9.8. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors for

m=2 and N=4000 using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, > X, |98 61 92
X, =X, |82 0 54
Xy - X3 7 20 30
X3 =X 51 43 60
X, =X, |6 12 20
X,—=X, |51 36 47
X1 = Xs 7 3 5
Xs =Xy 9 4 6
X, = X3 86 52 81
X3 =X, 86 0 39
X, > X, |56 11 15
X, =X, |50 9 11
X, > X5 |43 8 10
X5 = Xz 4 1 y
X3 =X, 93 27 23
Xy > X3 86 24 82
X3 -3 Xs 48 21 6
Xs = X3 26 34 75
X, > X |69 0 60
Specificity | 0.79 | 0.73
Sensitivity | 1 0 0.67

Table 9.9. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors for

m=2 and N=12000 using all three ways of defining the conditioning variables.

K=25 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, > X, |100 100 100
X, =X, |[100 0 99
Xy = X3 98 95 97
X3 =X 100 97 99
X, =X, |25 84 67
X,—X, |98 96 78
Xy = Xg 13 S 12
XS - X1 14 4 i
Xz - X3 100 86 99
X; =X, |100 0 89
X, =X, |95 56 82
X.—>X, |96 52 86
Xz => Xs 94 g 23
Xs =X, 20 2 10
X; > X, | 100 38 81
Xy = X3 100 48 100
X3 = Xg 100 42 46
Xs = X3 99 98 100
Xs—-Xs |99 0 96
Specificity | 0.47 0.68 0.52
Sensitivity | 1 0.67 1
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Table 9.10. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors

for m=3 and N=1000 using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, =X, |5 77 86
X, =X, |99 0 10
Xy = X3 100 44 59
X3 ->X [100 29 40
X, > X, |100 23 50
X, —> X, |100 7 27
Xy = Xs 100 4 S
Xs =X 100 S 2y
X,—=X; |99 63 42
X3 =X, 100 0 16
X, - X, 100 68 76
X,— X, [100 70 71
X, = Xs 100 28 38
Xs =X, 100 53 71
X3 =X, 100 31 20
Xy = X3 99 26 14
X; > Xs |[100 9 37
Xs = X3 100 42 35
X4 - Xs 100 0 2
Xs == X4 7 78 84
Specificity | 0.26 0.79 0.84
Sensitivity [ 0.66 0.67 0.5

Table 9.11. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors

for m=3 and N=4000 using all three ways of defining the conditioning variables.

K=5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X - X, |1 84 100
X, > X, |100 0 90
Xy = X3 | 100 70 54
X3 =X 100 58 22
X, = X, | 100 12 42
X, —> X, |100 4 27
Xy - Xs 100 S5 11
Xs =2 X1 100 5 14
X, = X3 100 84 88
X3 -2 X, 100 0 78
X, > X, |100 1 14
X=X, |100 2 10
X, = Xg 100 10 17
Xs = X, | 100 35 48
X3 2 X, 100 42 74
X3 = X5 100 42 91
X;—>Xs | 100 29 15
Xs = X; [ 100 77 77
Xy = Xs 100 0 89
Xs Xy [2 86 100
Specificity | 0.26 0.89 0.89
Sensitivity | 0.66 0.67 1




Table 9.12. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked

Vectors for m=3 and N=12000 using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, = X, | 100 99 100
X, =X, |100 0 98
X; = X; | 100 98 100
X3 =X 100 100 98
X, = X, |[100 100 57
X, > X, |100 95 50
X; = Xs | 100 1 12
Xs =Xy 100 2 6
X, —>X; |98 97 100
X3 - X2 100 0 99
X, =X, |100 64 82
X=X, 100 59 82
X, = Xg 100 4 9
Xs =X, 100 8 21
X3 =X, 100 42 97
Xy = X3 100 53 98
X3 = Xg 100 43 9
Xs = X3 100 100 98
Xy = Xs 100 0 100
Xs =2 X4 100 99 100
Specificity | 0.26 0.63 0.47
Sensitivity | 1 0.67 1

Table 9.13. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors

for m=2 and N=1000 using all three ways of defining the conditioning variables.

K=5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, = X, |26 6 43
X, =X, |6 0 5
Xy = X5 1 1 6
X; o X, |4 0 10
X=X, |3 0 2
X.=X, |4 0 9
X1 - Xs 0 1 4
X5 = X1 0 v | 6
X, = X5 22 5 28
X3 =X, 17 3 21
X, =X, |5 6 23
X.,—>X, |6 5 23
Xz o . Xs 3 2 9
XS =3 Xz 3 0 3
X3 - X4 13 3 20
X3 = X5 20 5 28
X3 = Xg 6 1 10
X5 - X3 0 0 S5
X4 -3 Xs 6 0 4
Xs = X, 26 4 43
Specificity | 0.84 1 0.89
Sensitivity | 1 0 0.83
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Table 9.14. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors
for m=2 and N=4000 using all three ways of defining the conditioning variables.

K =S Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, =X, |97 61 99
X, =X, |65 23 30
Xy = X3 16 35 54
X, =X, |4 4 10
Xy -2 Xy 30 5 27
X1 o Xs 6 4 2
XS - X1 4 2 4
X, > X; |80 47 81
X3 -2 X, 82 33 72
X, > X, |51 40 71
X, =X, |47 23 75
X, > Xs |28 11 33
XS =3 Xz 1 2 7
X; =X, |86 29 74
X, > X; |84 35 81
X; - Xs |27 9 a4
Xs—2X; |25 25 29
X4 - Xs 58 2 25
Xs = X, 97 49 99
Specificity | 0.89 1 0.73
Sensitivity | 1 0 0.83

Table 9.15. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors

for m=2 and N=12000 using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X1 -2 X, 100 97 100
Xy = X3 97 92 98
X3 = X1 84 21 60
Xy - X, 26 22 37
X=X, |79 25 49
X1 - Xs 7 2 5
Xs—=Xy |7 ) 8
X, > X; |[100 70 100
X; =X, |[100 47 91
X, =X, |95 64 97
X,—>X, |95 60 96
X2 X; |82 16 48
Xs =X, 22 13 38
X3 =2 X3 100 69 96
X3 = Xg 90 24 66
XS =3 X3 94 69 97
Xy = Xg 99 12 72
X: =X, |[100 77 100
Specificity | 0.47 0.78 0.57
Sensitivity | 1 0.83 1
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Table 9.16. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors

for m=3 and N=1000 using all three ways of defining the conditioning variables.

K=5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, =X, |6 53 66
X, =X, |[100 0 2
X, > X3 | 100 23 24
X3 =X, 100 12 19
X, = X, |100 29 42
X, - X, |100 11 17
Xy = X5 100 2 7
Xs = Xy 98 2 Fi
X, = X5 100 22 29
X3 =X, 100 17 25
X, =X, |100 35 28
Xy =X, 100 37 22
X, 2 Xg 100 14 21
Xs =X, 100 22 50
X, —=X; |100 32 27
X; - X | 100 38 24
Xs = X3 100 23 26
X4 -3 Xs 99 1 6
Xs—>X, |4 a5 67
Specificity | 0.26 0.84 0.78
Sensitivity | 0.66 0.67 0.5

Table 9.17. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors

for m=3 and N=4000 using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, =X, |6 91 99
X, =X, |100 50 88
Xy = X3 100 78 76
X3 =X 100 12 18
X, —> X, |100 5 16
X; = Xs | 100 4 15
Xs =Xy 100 2 18
X, > X; |100 64 93
X3 =X, 100 58 87
X, > X, |100 52 81
Xy - X, |100 38 83
X, > Xs | 100 7 10
Xs =X, [100 9 42
X3 - X, |100 47 90
Xy = X3 100 55 91
X3 =2 Xs | 100 14 22
Xs o X3 100 66 77
X=X | 100 17 84
XS - X4 4 73 97
Specificity | 0.26 1 0.52
Sensitivity | 0.66 0 1




Table 9.18. The FDR rejections and accuracy measures for Partial Transfer Entropy on Ranked Vectors

for m=3 and N=12000 using all three ways of defining the conditioning variables.

K =5 Normal Conditioning | Conditioning with MI | Conditioning with PCA
X, - X, 100 99 100
X, =X, |100 71 99
Xy - X3 100 98 99
X;—>X; |100 31 33
Xy = X, 100 33 58
Xy =2 Xq 100 20 20
X, > X | 100 3 11
Xs =Xy 100 5 15
X,—>X; |98 79 100
X3 2 X; | 100 57 99
X, - X, | 100 66 98
Xy - X, |100 65 97
X, = Xg 100 22 23
X=X, |100 23 66
X3 =X, 100 45 98
X;—X; | 100 74 98
X; = Xs | 100 27 39
Xs = X3 100 77 99
X,;—>Xs | 100 20 98
Xs = X, 100 77 100
Specificity | 0.26 0.73 0.57
Sensitivity | 1 0.83 1
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9.5 Summary

For the Partial Transfer Entropy applied to stationary data, the best results based on the
accuracy measures used are for an embedding dimension of m = 2 and a sample
length of 1000 (sensitivity =1, specificity =1). In the same metric settings, also the
method using PCA produces very decent results with a value of sensitivity equal to 0.89
and specificity =1. For the different conditioning methods separately, the best results for
full conditioning were obtained for the setup mentioned above. For the method using
PCA the maximum values of the accuracy measures were obtained form=2 and N =
1000, 4000 (sensitivity = 0.89, specificity =1). By conditioning to the most informative
variable to the driver, we obtain the best results for m = 2 and N = 4000 (sensitivity =
0.89 and specificity = 0.67). For PTE applied in all these different parameter value
combinations, we can observe that superior results to the full conditioning are given by
the PCA method for m = 3 and N = 1000 and almost the same values were observed
between the PCA conditioning and the full conditioning for m = 3 and N = 12000.

When Partial Transfer Entropy on Ranked Vectors is applied to stationary data, the best
results are obtained for the full conditioning for m = 2 and N = 1000 (sensitivity = 0.89,
specificity = 1) and for the method using PCA for m = 3 and N = 4000 with the same
accuracy measure values. When the information based method is used, it produces the
biggest values of the accuracy metrics for m = 3 and N = 4000 (sensitivity = 0.89,
specificity = 0.67). In these simulations, the PCA based method gives superior results to
the full conditioning for m = 2, N = 12000 and for an embedding dimension of 3 for
every sample length.

Moving to the non-stationary time series in which PTERV is applied, the most accurate
results are given for the full conditioning in a sample length of 4000 and m = 2
(sensitivity = 0.89, specificity = 1). We can observe that in the non-stationary data
simulations, the method based on mutual information is dominating in 3 of the 6
different parameter value sets. Specifically, this method has superior results to the
others form = 2 and N = 12000 (0.78, 0.83) and for m = 3 and N = 1000 and 12000
while it comes second to the PCA based method for N = 4000, with a perfect sensitivity
of 1 but with a zero specificity.

The superiority of the partial conditioning methods in a higher embedding dimension

(m = 3) and in long time series lengths (N = 12000) can be well explained. As the
dimension of the entropy terms in the equations of PTERV and PTE increases both with
time series length N and the embedding dimension m [18], we can conclude that
reducing the dimension of the system by keeping a smaller number of variables in the
conditioning terms can lead us to more accurate results.

Concluding the simulations chapter, we must also mention another advantage of partial
conditioning. Both methods outperformed the full conditioning one in the time needed
for the simulations to run. Because all simulations were implemented in the same
computer, we are able to compare the computational cost of each method. The faster

59



method is the one using the most informative variable to the driver, that needed for its
completion about the 40% of the time that the full conditioning method took to complete.
The PCA method comes second with approximately 70%. This leads us to the
conclusion that partial conditioning reduces greatly the computational costs while
simultaneously maintaining a decent level of accuracy and actually overpowering the full
conditioning in some cases.

All simulations were implemented using MATLAB 2016a on a HP 15-ac126nv laptop
with a RAM of 8GB and an Intel Core i7-4510U CPU of 2.0 GHz while MATLAB being
the only active application at the moment.
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Chapter 10. Application in Financial time series

10.1 Data description

The dataset is the Morgan Stanley Capital International’s (MSCI) market capitalization
weighted index of 23 developed markets in North America, Europe, and the Asia/Pacific
Region. It is calculated with the help of the equities values of companies representative
of the market structure. The dataset comprises 1300 daily values for each market in the
period 5 of March 2004- 5 for March 2009, excluding weekends and holidays.

The list of countries included in this dataset is given below: Australia, New Zealand,
Japan, Hong Kong, Singapore, Austria, Belgium, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, UK,
Canada and USA.

10.2 Methodology

As mentioned above, the time series length is N = 1300. The 23 time series of the
dataset are Non-stationary according to the Augmented Dickey-Fuller test. To transform
them to stationary, in order to compare the measure performance, we take their first
differences.

The original non-stationary system of 23 time series and the system derived from their
first differences, are shown in the figures below:

12000 T T T T
10000 -
8000
6000
4000

2000 -

0 200 400 600 800 1000 1200 1400

Figure 10.1. The original system of the 23 variables of the MSCI index
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Figure 10.2. The system of the 23 variables of the MSCI index, after taking
the first differences.

The 2 measures, are set in the same way as described in the simulations chapter
above, with the exception that the embedding dimensions m,, m,,, m, are set in the

interval from 2 to 6.

The time lag parameters 7,, 7, and 7, are set to 1 for both the measures. The time steps
ahead for the future response sample vector y! of PTE and the future response rank
vector y,” of PTERV is set to T = 1. Finally, the number of nearest neighbors for the
computation of the entropy terms in PTE is set to 10

10.3 Results

In this section, we present the networks constructed from the adjacency matrices that
were produced following the method described above. First we have to comment here,
that Partial Transfer Entropy failed to deliver any statistically significant causality
relationships in all different combinations of conditioning methods and metric parameter
settings and thus, networks couldn’t be constructed.

On the other hand, Partial Transfer Entropy on Ranked Vectors was able to identify
significant connections both in stationary and non-stationary data in almost every
combination of parameter values. The networks constructed using PTERYV differ in their
number of connections across the different embedding dimensions and different
conditioning sets.

Below these networks will be presented and some comments will be made in the
following section.
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Starting with the original non-stationary time series, we will compare the networks
constructed using the three different methods of selecting the subset of variables that
will be used in the conditioning term of PTERV.

For an embedding dimension of m = 2 the following networks are constructed.

Figure 10.3. The network constructed using PTERV for m=2 and conditioning
to all the remaining K — 2 variables in the original non-stationary data.
Number of connections = 495.

Figure 10.4. The network constructed using PTERV for m=2 and conditioning
using PCA in non-stationary data. Number of connections = 231
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Figure 10.5. The network constructed using PTERV for m=2 and conditioning using the most
informative variable to the driver in non-stationary data. Number of connections = 338

For an embedding dimension of m = 3 the networks are the following.

A
‘l
i UnitedKingdom

Figure 10.6. The network constructed using PTERV for m=3 and conditioning to all
the remaining K — 2 variables in the original non-stationary data. Number of
connections = 362



1 1 1 1 1 1

Figure 10.7. The network constructed using PTERV for m=3 and conditioning
using PCA in non-stationary data. Number of connections = 259

Figure 10.8. The network constructed using PTERV for m=3 and conditioning using the most
informative variable to the driver in non-stationary data. Number of connections = 237



- Ne'S(t, the networks constructed by applying PTERV in the stationary data are presented.

For m = 2 we have extracted the following networks.

Figure 10.9. The network constructed using PTERV for m=2 and conditioning
to all the remaining K — 2 variables in stationary data. Number of
connections = 463

Figure 10.10. The network constructed using PTERV for m=2 and conditioning
using PCA in stationary data. Number of connections = 336
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Figure 10.11. The network constructed using PTERV for m=2 and conditioning using the most
informative variable to the driver in stationary data. Number of connections = 235

For m = 3 we have extracted the following networks.

L /® Switzerand

Figure 10.12. The network constructed using PTERV for m=3 and conditioning to all
the remaining K — 2 variables in stationary data. Number of connections = 343
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Figure 10.13. The network constructed using PTERV for m=3 and conditioning using PCA in
stationary data. Number of connections = 150
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Figure 10.14. The network constructed using PTERV for m=3 and conditioning using the most
informative variable to the driver in stationary data. Number of connections = 529



10.4 Summary

To evaluate the networks constructed from the methodology described in a previous
section, we have to look into the simulations of the previous chapter for guidance.

The most relevant simulations based on the parameter values are these for a sample
length of N=1000 which is relevantly close to the N=1300 of the financial time series
used in this application.

For this sample length, the optimal results in the simulations were obtained when full
conditioning was applied together with a small embedding dimension (m = 2), giving
almost identical values of sensitivity and specificity. In the application, we can observe
that using these parameter settings the number of connections is similar for the non-
stationary and the stationary data, 495 and 463 respectively.

This fact leads us to the conclusion that there is a high probability that these parameter
settings are the optimal for the detection of causal relationships in this real world
system.
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Chapter 11. Conclusions

In this work we have studied the effect of partial conditioning to a limited subset of the
confounding variables while estimating casual connectivity between the variables of a
system, as an alternative of full conditioning which can sometimes lead to computational
and conceptional issues. By conducting our analysis in a simulated system and in a
real world financial dataset, we have shown that conditioning on a small number of
variables, chosen either as the most informative ones for the driving variable or as a
linear combination between our systems’ confounding variables with the coefficients of
the PC1, can lead to results very close and in some cases even better to those obtained
using full conditioning.

The superiority of the results given by partial conditioning in the cases that the
embedding dimension or the sample length are higher, is explained by the dimension
reduction that these methods offer. As mentioned in a previous chapter, the dimension
of the entropy terms in the equations of PTE and PTERV increases both with the time
series length and the embedding dimension. The partial conditioning methods come to
reduce this dimension, thus leading to more accurate results.

Another advantage of partial conditioning is the reduction of the computational cost.
Having a smaller conditioning subset, reduces substantially the time that is needed to
complete a set of simulations.

We can conclude that partial conditioning using the above methods is a powerful tool
that produces trustworthy results with an accuracy level very close to the one obtained
by full conditioning while substantially reducing the computational cost.
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