Βαθμολόγηση Αναλογικών Μετρήσεων Του Σεισμολογικού Σταθμού Μετσόβου

Τέζα Ελένη Α.Ε.Μ. 3779

Επιβλέπων Καθηγητής : Εμμανουήλ Σκορδύλης

Θεσσαλονίκη 2007

➡ ΚΕΦΑΛΑΙΟ 1º - ΕΙΣΑΓΩΓΗ

$\mathbf{+}$	1.1	Πρόλογος	4
$\mathbf{+}$	1.2	Εισαγωγικά στοιχεία για το Μέτσοβο	5
$\mathbf{\Phi}$	1.3	Γεωτεκτονική διαίρεση της Ηπείρου	5
$\mathbf{+}$	1.4	Αίτια γένεσης των σεισμών στην Ελλάδα	10
$\mathbf{\Phi}$	1.5	Συμπιεστική τεκτονική κατά μήκος των ακτών της Αλβανίας και της	
		Βορειοδυτικής Ελλάδας	11
$\mathbf{+}$	1.6	Ιστορικοί σεισμοί της περιφέρειας Ηπείρου	12

➡ ΚΕΦΑΛΑΙΟ 2º – ΣΕΙΣΜΟΛΟΓΙΚΟ ΔΙΚΤΥΟ Α.Π.Θ

÷	2.1	Όργανα αναγραφής σεισμών	.14
÷	2.2	Δίκτυο σεισμογράφων του Α.Π.Θ.	.14
÷	2.3	Σεισμολογικός σταθμός Μετσόβου	.17

✤ ΚΕΦΑΛΑΙΟ 3º - ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ

$\mathbf{\Phi}$	3.1	Σεισμικά κύματα	19
$\mathbf{\Phi}$	3.2	Μέγεθος σεισμού	20
$\mathbf{+}$	3.3	Κλίμακες Μεγεθών	20
$\mathbf{\Phi}$	3.4	Ένταση σεισμού	24
$\mathbf{\Phi}$	3.5	Μέθοδος υπολογισμού των μεγεθών των σεισμών στην Ελλάδα	27

➡ ΚΕΦΑΛΑΙΟ 4º – ΔΕΔΟΜΕΝΑ ΠΑΡΑΤΗΡΗΣΗΣ

🔹 4.1 Συλλογη στοιχείων – δεδομενων	
-------------------------------------	--

ΚΕΦΑΛΑΙΟ 5° – ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΣΧΕΣΕΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΜΕΓΕΘΩΝ

$\mathbf{+}$	5.1 Σχέση περιόδου με το μέγεθος και την επικεντρική απόσταση	40
$\mathbf{\Phi}$	5.2 Υπολογισμός σταθερών $c_{\alpha 1}$, $c_{\alpha 2}$ και $c_{d 1}$, $c_{d 2}$.43
$\mathbf{\Phi}$	5.2.1 Υπολογισμός των $c_{\alpha 1}$, $c_{\alpha 2}$.43
$\mathbf{\Phi}$	5.2.2 Υπολογισμός των c_{d1} , c_{d2}	.48

✤ ΚΕΦΑΛΑΙΟ 6º – ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

$\mathbf{\Phi}$	6.1 Αξιολόγηση των μεγεθών M_{a} M_{d} & M_{F}	53
$\mathbf{\Phi}$	6.1.1 Αξιολόγηση M_{α} , M_{d} & M_{F} με βάση τα διαγράμματα line – scatter	60
$\mathbf{\Phi}$	6.1.2 Αξιολόγηση M_{α} , M_{d} & M_{F} με βάση τα ιστογράμματα των	
	$\Delta M_{\alpha}, \Delta M_{d} \& \Delta M_{F}$	63

✤ ΚΕΦΑΛΑΙΟ 7º - ΣΥΜΠΕΡΑΣΜΑΤΑ

$\mathbf{\Phi}$	7.1	Γενικά	συμπεράσματα					66
-----------------	-----	--------	--------------	--	--	--	--	----

➡ ΚΕΦΑΛΑΙΟ 8º – ΒΙΒΛΙΟΓΡΑΦΙΑ & ΙΣΤΟΣΕΛΙΔΕΣ

$\mathbf{\Phi}$	8.1	Βιβλιογραφία	.67
$\mathbf{\Phi}$	8.2	Ιστοσελίδες	69
$\mathbf{\Phi}$	8.3	Μηχανές αναζήτησης	69

<mark>ΕΙΣΑΓΩΓΗ</mark>

1.1 Πρόλογος

Στην εργασία αυτή θα ασχοληθούμε με την βαθμολόγηση των αναλογικών μετρήσεων του σεισμολογικού σταθμού του Μετσόβου (MEV). Σκοπός μας είναι ο υπολογισμός μεγεθών διαφόρων σεισμών με βάση τις καταγραφές που μας παρέχονται από τα σεισμόμετρα που υπάρχουν στο σεισμολογικό σταθμό του Μετσόβου και στη συνέχεια η σύγκριση αυτών των μεγεθών με ήδη υπάρχουσες μετρήσεις για τα αντίστοιχα σεισμικά γεγονότα από άλλους σεισμολογικούς σταθμούς στην υπόλοιπη Ελλάδα.

Η γενική δομή της εργασίας χαρακτηρίζεται ουσιαστικά από τρία κύρια τμήματα:

- από ένα γενικό εισαγωγικό-κατατοπιστικό τμήμα που περιλαμβάνει γενικές πληροφορίες σχετικά με το Μέτσοβο αλλά και θεωρητικά στοιχεία που αναφέρονται στο τρόπο λειτουργίας των σεισμομέτρων, στον τρόπο υπολογισμού των μεγεθών σεισμών και στις σχέσεις που χρησιμοποιούνται για τον υπολογισμό των μεγεθών στην Ελλάδα
- από το κύριο μέρος της εργασίας στο οποίο παρατίθενται τα δεδομένα και τα προγράμματα που χρησιμοποιήθηκαν, τα στοιχεία που συλλέχθηκαν, οι σχέσεις και τα διαγράμματα που προέκυψαν, η ανάλυση των μεθόδων και των βημάτων που γενικότερα ακολουθήθηκαν στην πορεία της εργασίας
- και τέλος από το τελευταίο τμήμα της εργασίας στο οποίο γίνεται η αξιολόγηση των αποτελεσμάτων που προέκυψαν καθώς επίσης η εξαγωγή συμπερασμάτων

Θα ήθελα να εκφράσω τις θερμές μου ευχαριστίες στον επιβλέποντα καθηγητή κ. Μανώλη Σκορδύλη για την πολύτιμη βοήθεια και καθοδήγηση που μου προσέφερε σε όλη την διάρκεια της διπλωματικής αυτής εργασίας αλλά και για την παροχή λογισμικού με το οποίο η εργασία ολοκληρώθηκε γρηγορότερα και με περισσότερη ευκολία.

1.2 Εισαγωγικά στοιχεία για το Μέτσοβο

Σχήμα 1.1 - Γεωγραφικός χάρτης Μετσόβου.

Το Μέτσοβο (σχήμα 1.1) βρίσκεται ανάμεσα στα βουνά της μεγαλύτερης οροσειράς της Ελλάδας, της Πίνδου, ανάμεσα στα Ιωάννινα (βόρεια) και στα Μετέωρα (νότια). Είναι μια γραφική κωμόπολη της Ηπείρου και έδρα του δήμου ομώνυμης επαρχίας στο ανατολικό τμήμα του νομού Ιωαννίνων με πληθυσμό 6.000 κατοίκους. Είναι μία κατεξοχήν ορεινή περιοχή αφού βρίσκεται στο βουνό Κίτιο της Πίνδου σε υψόμετρο 1.160 m με έκταση 267 km² και συνορεύει με τους νομούς Γρεβενών (βόρεια), Τρικάλων (ανατολικά και νοτιοανατολικά) και την επαρχία Δωδώνης (δυτικά).

1.3 Γεωτεκτονική διαίρεση της Ηπείρου

Η Ήπειρος γεωτεκτονικά ανήκει στις εξής « Ελληνίδες Ζώνες» (σχήμα 1.4) : Αδριατικοϊόνιος ζώνη, Ζώνη Γαβρόβου-Τρίπολης και Ζώνη Πίνδου-Ωλονού (σχήμα 1.2). Οι τρεις αυτές γεωτεκτονικές ζώνες ανήκουν στην κατηγορία των Εξωτερικών Ελληνίδων οι οποίες σε αντίθεση με τις Εσωτερικές Ελληνίδες έχουν επηρεαστεί μόνο από την τελική ορογένεση του Τριτογενούς και όχι και από την πρώιμη ορογενετική δράση του Άνω Ιουρασικού – Κάτω Κρητιδικού.

Σχήμα 1.2- Χάρτης που παρουσιάζει την γεωτεκτονική κατάταξη του Μετσόβου αλλά και της ευρύτερης περιοχής της Ηπείρου.

Αναλυτικά οι ζώνες αυτές παρουσιάζουν τα παρακάτω χαρακτηριστικά:

- Αδριατικοϊόνιος ζώνη : Εκτείνεται κατά μήκος της δυτικής παραλίας της Ηπειρωτικής Ελλάδας με διεύθυνση Β-Ν και περιλαμβάνει το μεγαλύτερο τμήμα της Ηπείρου, την Ακαρνανία, τμήματα από τα Ιόνια νησιά και την Βορειοδυτική Πελοπόννησο. Παλαιογεωγραφικά διαιρέθηκε σε τρεις υποζώνες και σήμερα χαρακτηρίζεται σαν μια ηπειρωτική λεκάνη με ημιπελαγική-πελαγική ιζηματογένεση.
- Ζώνη Γαβρόβου-Τρίπολης : Βρίσκεται δυτικά της ζώνης Πίνδου και προεκτείνεται με διεύθυνση BBΔ-NNA από την Ήπειρο προς την Πελοπόννησο όπου εμφανίζεται να περιβάλλεται τεκτονικά από τη ζώνη Πίνδου-Ωλονού. Στο γεωγραφικό χώρο Ηπείρου-Στερεάς Ελλάδας η ζώνη κατέχει λωρίδα μήκους 250 km και μέσου πλάτους 10 km με μέγιστο πλάτος εμφανίσεων 20 km περίπου. Η ζώνη Γαβρόβου-Τρίπολης καθορίστηκε σαν ύβωμα που είχε συνεχή νηριτική ιζηματογένεση και χώριζε το ευγεωσύγκλινο της ζώνης Πίνδου-Ωλονού από το μειογεωσύγκλινο της Αδριατικοϊονίου ζώνης. Σήμερα η ζώνη Γαβρόβου-Τρίπολης θεωρείται ότι αντιπροσωπεύει παλιά αλπική ηπειρωτική πλατφόρμα με νηριτική ανθρακική ιζηματογένεση.
- Ζώνη Πίνδου-Ωλονού : Ξεκινά από τα Ελληνοαλβανικά σύνορα και κατεβαίνει προς τον κορμό της ηπειρωτικής Ελλάδας στα βουνά Πίνδος, Άγραφα, Αιτωλικό, Βαρδούσια και μετά στην Πελοπόννησο και στα βουνά Παναχαϊκό και Ωλονό. Θεωρήθηκε σαν η πιο βαθιά ελληνική αύλακα ανάμεσα στα υβώματα Πελαγονικής προς τα ανατολικά και Γαβρόβου προς τα δυτικά και συνήθως αναφέρεται σαν το «ελληνικό ευγεωσύγκλινο» κατά τη διάρκεια του Μεσοζωικού. Αποτελεί ένα τεκτονικό κάλυμμα που έχει επωθηθεί προς τα δυτικά πάνω στη ζώνη Γαβρόβου-Τρίπολης και σε ορισμένες θέσεις η επώθηση αυτή υπολογίζεται ότι ξεπέρασε τα

100 km. Σε αυτή την επώθηση, που στη συνέχεια αποκαλύφθηκε ενδιάμεσα υπό μορφή πολλών τεκτονικών παράθυρων μικρής ή μεγάλης έκτασης (το σπουδαιότερο των οποίων είναι στην περιοχή της Τρίπολης), οφείλεται η σημερινή θέση της ζώνης.

Η ζώνη Πίνδου-Ωλονού διαιρέθηκε από τον Aubouin (1959) σε τρεις παλαιογεωγραφικές υποζώνες (σχήμα 1.3):

α) την ανατολική πλευρά της αύλακας που ονομάσθηκε « Υπερπινδική υποζώνη» με ιζήματα μεταβατικά μεταξύ της ζώνης Πίνδου και της Υποπελαγονικής ζώνης. Η υποζώνη αυτή συγκροτείται από δύο ενότητες πετρωμάτων, του βουνού Κόζιακας και των Θυμιανών.

β) την αξονική υποζώνη με ιζήματα της πιο βαθιάς θάλασσας.

γ) τη δυτική πλευρά, μεταβατική προς το ύβωμα Γαβρόβου-Τρίπολης που λέγεται και «Εξωτερική Πίνδος» .

Το Μέτσοβο γεωτεκτονικά ανήκει στην ζώνη Πίνδου-Ωλονού και συγκεκριμένα στην υποζώνη της δυτικής πλευράς την λεγόμενη «Εξωτερική Πίνδο» . Η λιθολογία της «Εξωτερικής Πίνδου» χαρακτηρίζεται από μάργες, αργιλικούς ασβεστόλιθους, ασβεστόλιθους με Orbitoides, λατυποπαγείς ασβεστόλιθους, μικρολατυποπαγείς ασβεστόλιθους, ραδιολαρίτες και οφειολίθους.

Σχήμα 1.3 – Διαδοχικές λιθοστρωματογραφικές στήλες με τις οποίες παρουσιάζεται η παλαιογεωγραφική διαίρεση της ζώνης Πίνδου σε τρεις υποζώνες κατά Aubouin (1959).

Σχήμα 1.4 - Γεωτεκτονικό σχήμα των Ελληνίδων Ζωνών. Από ανατολικά προς τα δυτικά απεικονίζονται οι εξής ζώνες :

- i. Η μάζα της Ροδόπης (Rh)
- ii. Η Σερβομακεδονική μάζα (Sm)
- iii. Η Περιροδοπική ζώνη (CR)
- iv. Η ζώνη Παιονίας (Pe)
- ν. Η ζώνη Πάικου (Pa)
- vi. Η ζώνη Αλμωπίας (Al)
- vii. Η Πελαγονική ζώνη (Pl)
- viii. Η Αττικοκυκλαδική ζώνη (Ac)
 - ix. Η Υποπελαγονική ζώνη (Sp)
 - x. Η ζώνη Παρνασσού-Γκιώνας (Pk)
 - xi. Η ζώνη Πίνδου-Ωλονού (P)
- xii. Η ζώνη Γαβρόβου-Τρίπολης (G)
- xiii. Η Αδριατικοϊόνιος ζώνη (Ι)
- xiv. Η ζώνη Παξών ή Προαπουλία (Px)

1.4 Αίτια γένεσης των σεισμών στην Ελλάδα

Οι σεισμοί, σύμφωνα με τις αντιλήψεις που ισχύουν σήμερα, οφείλονται σε σχετικές κινήσεις των λιθοσφαιρικών πλακών. Ο ελληνικός χώρος βρίσκεται στην περιοχή σύγκλισης δύο μεγάλων λιθοσφαιρικών πλακών, της Αφρικανικής και της Ευρασιατικής. Διεξοδικές και λεπτομερείς έρευνες έδειξαν ότι οι σεισμοί στο χώρο του Αιγαίου και των γύρω περιοχών οφείλονται τόσο σε εφελκυστικές όσο και σε συμπιεστικές δυνάμεις που αναπτύσσονται στο χώρο από τις σχετικές κινήσεις τεσσάρων πλακών που υφίστανται στην περιοχή (σχήμα 1.5).

Συγκεκριμένα:

- α) Στην προς τα νότια επέκταση της πλάκας του Αιγαίου.
- β) Στην αριστερόστροφη κίνηση της πλάκας της Ανατολίας.
- γ) Στην προς τα βόρεια κίνηση της Αφρικανικής λιθόσφαιρας.
- δ) Στην αριστερόστροφη κίνηση της πλάκας της Απουλίας.

Σχήμα 1.5 - Τα βέλη αντιπροσωπεύουν τις διευθύνσεις κινήσεων των λιθοσφαιρικών πλακών που καθορίζουν την ενεργό τεκτονική στο Αιγαίο και τις γύρω περιοχές (Papazachos et al. 1998b, τροποποιημένο).

1.5 Συμπιεστική τεκτονική κατά μήκος των ακτών της Αλβανίας και της Βορειοδυτικής Ελλάδας.

Στη δυτική Αλβανία και τη βορειοδυτική Ελλάδα, ως αποτέλεσμα της ηπειρωτικής σύγκρουσης μεταξύ των τεκτονικών πλακών Απουλίας (Αδριατικής) και Ευρασίας (Ευρασιατικής) λόγω περιστροφής της πρώτης κατά φορά αντίθετη της φοράς περιστροφής των δεικτών του ρολογιού, παρατηρούνται οριζόντιες συμπιεστικές δυνάμεις κάθετες προς τις ακτές. Αποτέλεσμα αυτών των συμπιεστικών δυνάμεων είναι η δημιουργία μιας ζώνης ανάστροφων ρηγμάτων κατά μήκος των ακτών της Αλβανίας και των δυτικών ακτών της Ηπείρου (σχήμα 1.6). Από διαθέσιμες λύσεις μηχανισμών γένεσης προκύπτουν οι ακόλουθες τιμές των παραμέτρων του τυπικού (αντιπροσωπευτικού) ρήγματος της ζώνης αυτής και της οριζόντιας συνιστώσας τάσης (συμπίεσης) :

Τυπικό ρήγμα :	$\zeta = 339^{\circ}$	$\delta = 29^{\circ}$	$\lambda = 103^{\circ}$
Τυπικός άξονας Ρ :	$\xi = 234^{\circ}$	$\theta = 17^{\circ}$	

Σχήμα 1.6 - Τα κύρια ρήγματα των επιφανειακών σεισμών του Ελληνικού χώρου που έγιναν κατά τους ιστορικούς χρόνους (480 π.Χ. – 2001) στην Ελλάδα και στις γύρω περιοχές (Παπαζάχος και συνεργάτες 2001).

1.6 Ιστορικοί σεισμοί της περιφέρειας Ηπείρου

Από τις περιγραφές που έχουμε σχετικά με τους ιστορικούς σεισμούς στην Ελλάδα δεν παρουσιάζονται αναφορές σχετικά με την πόλη του Μετσόβου αλλά γενικότερα για των νομό Ιωαννίνων και για την ευρύτερη περιφέρεια της Ηπείρου. Παρακάτω παρατίθενται πληροφορίες για κάποιους από αυτούς τους ισχυρούς σεισμούς (Papazachos and Papazachou 2003).

1740, 4 Φεβρουαρίου, 39.7°N, 20.7°E, h = n, M = 6.2, Ιωάννινα (VIII)

Ο σεισμός ήταν πολύ ισχυρός και προκάλεσε μεγάλες βλάβες σε όλα τα σπίτια στα Γιάννενα (Schmidt 1867a, Αθηναγόρας 1929, Μουτίφ 1980)

1809, 7 Φεβρουαρίου, 39.7°N, 20.3°E, h = n, M = 6.3, Ήπειρος (VIII, Κονίσπολη)

Ο σεισμός προκάλεσε καταστροφές στις ακτές της Ηπείρου και ιδιαίτερα στην Κονίσπολη. Προηγήθηκε μια ασθενής δόνηση. Οι μετασεισμικές δονήσεις συνεχίστηκαν μέχρι τις 10 Αυγούστου και έγιναν αισθητές στα Ιωάννινα.

1823, 19 Ιουνίου, 39.4°N, 20.3°E, h = n, M = 6.3, Ήπειρος (VIII, Σαγιάδα)

Κατά την ημέρα της Αναλήψεως σεισμός κατέστρεψε 2.000 σπίτια στην Ήπειρο. Στις 20 Ιουλίου έγινε ένας ισχυρός μετασεισμός ο οποίος προκάλεσε την καταστροφή μερικών σπιτιών στην Ήπειρο.

1858, 5 Απριλίου, 39.8°N, 20.6°E, h = n, M = 6.0, Ιωάννινα (VIII)

Ο σεισμός ήταν καταστρεπτικός στα Ιωάννινα (Montandon 1953, Karnik 1971).

1867, 27 Ιανουαρίου , 39.6°N , 20.8°E , h = n , M = 6.2 , Ιωάννινα (VIII)

Ο σεισμός είχε επίκεντρο κοντά στα Ιωάννινα και έγινε πού δυνατά αισθητός με μακρά διάρκεια στο Αργυρόκαστρο και έντονα στην Αυλώνα (Michailovic 1951). Ο Karnik (1971) αναφέρει ότι αυτή είναι η ένατη καταστροφή των Ιωαννίνων.

1895, 14 Μαΐου, 39.42°N, 20.61°E, h = n, M = 6.3, Ήπειρος (X, Δραγουμή)

Ο σεισμός ήταν καταστρεπτικός στο χωριό Δραγουμή όπου 96 σπίτια, το σχολείο και πέντε εκκλησίες κατέρρευσαν ενώ σκοτώθηκαν 75 άνθρωποι και 46 τραυματίστηκαν. Ήταν επίσης καταστρεπτικός στο χωριό Καρβουνάρι όπου 183 σπίτια καταστράφηκαν εντελώς, τα υπόλοιπα 14 κατέστησαν ακατοίκητα και σκοτώθηκαν 7 άνθρωποι. Σε άλλα 8 γειτονικά χωριά αρκετά σπίτια σωριάστηκαν στο έδαφος, πολλοί άνθρωποι τραυματίστηκαν και ένας σκοτώθηκε. Στο Γαρδίκι κάποια σπίτια γκρεμίστηκαν. Το χωριό Κουρτέσι, κοντά στο Μαργαρίτι, υπέφερε πολλά. Προκλήθηκαν επίσης κάποιες βλάβες στους Φιλιάτες και στην πεδιάδα των Ιωαννίνων. Ο σεισμός έγινε αισθητός και ακολουθήθηκε από μετασεισμούς που συνεχίστηκαν για μακρύ διάστημα (Εφημερίδα «Φωνή της Ηπείρου» 141, 1895, ΑΟΑ 1899, Λάμπρος 1910, Michailovic 1951).

1898, 31 Ιουλίου , 39.65°N , 20.81°E , h = n , M = 6.3 , Ιωάννινα (VIII)

Στις ενθυμήσεις του Αρχιμανδρείου Ιωαννίνων αναφέρεται ότι ο σεισμός έγινε την ώρα της λειτουργίας και έπεσαν στην εκκλησία του Αρχιμανδρείου κορνίζες από τους κουμπέδες (θόλους) και τους μεσότοιχους και χτυπήθηκαν άνθρωποι. Στην εκκλησία έπεσαν τα καντήλια από τους πολυελαίους και οι πόρτες έσφιξαν και δεν μπόρεσαν να ανοίξουν για να φύγει ο κόσμος. Στην πόλη έπεσαν οικοδομές και καπνοδόχοι και επεκράτησε μεγάλη αναταραχή. Έγινε έντονα αισθητός στην Καλαμπάκα, Βόλο, Λαμία, Πάτρα, Αγρίνιο, Ναύπακτο, Αστακό, Ζάκυνθο, και σε διάφορα μέρη μέχρι τη Γαστούνη και την Αυλώνα και ελαφρότερα αισθητός στο Οτράντο της νότιας Ιταλίας. Το μεσημέρι της ίδιας ημέρας έγινε ισχυρός μετασεισμός και η μετασεισμική δραστηριότητα συνεχίστηκε μέχρι τον Οκτώβριο (AOA 1899, Λάμπρος 1913, Michailovic 1951, Karnik 1971).

<mark>ΣΕΙΣΜΟΛΟΓΙΚΟ ΔΙΚΤΥΟ Α.Π.Θ</mark>

2.1 Όργανα αναγραφής των σεισμών

Η γενική κίνηση των υλικών σημείων ενός στερεού σώματος (συνεπώς και του εδάφους) μπορεί να διακριθεί σε μετάθεση, περιστροφή και παραμόρφωση οπότε για την πλήρη αναγραφή της σεισμικής κίνησης χρειάζονται τρία αντίστοιχα είδη σεισμικών οργάνων. Τα όργανα που χρησιμοποιούνται για την παρατήρηση της εδαφικής μετάθεσης και των παραγώγων της διακρίνονται, κατά σειρά ιστορικής εξέλιξης και επιστημονικής αξίας τους σε σεισμοσκόπια και σεισμογράφους.

Σεισμοσκόπια: είναι τα όργανα που καταγράφουν ή απλά αναγράφουν τους σεισμούς. Τα περισσότερα σεισμοσκόπια αποτελούνται από μάζα που είναι σε ασταθή ισορροπία. Συνήθως ήταν εκκρεμή με γραφίδα η λεκάνες υδραργύρου ενώ υπήρχαν και σεισμοσκόπια που έγραφαν την κίνηση σε ακίνητη αιθαλωμένη πλάκα δίνοντας έτσι πληροφορίες για την ένταση της σεισμικής κίνησης.

Σεισμογράφοι: είναι ειδικές συσκευές καταγραφής των σεισμών. Η αναγραφή, η οποία λέγεται σεισμογράφημα, γίνεται με γραφίδα πάνω σε αιθαλωμένη ταινία ή θερμογραφικό χαρτί ή με φωτεινή κηλίδα πάνω σε φωτογραφική ταινία. Η λειτουργία ενός σεισμογράφου βασίζεται στην αρχή της αδράνειας της μάζας. Λόγω ελαστικότητας ισορροπεί σε κατάσταση ηρεμίας. Μπαίνει σε κίνηση με την πιο ανεπαίσθητη δόνηση και με την κατάλληλη ηλεκτρονική ενίσχυση μεγεθύνεται η καταγραφή της δόνησης. Για έναν σταθμό παρατήρησης απαιτούνται τρεις σεισμογράφοι: δύο για την καταγραφή των οριζόντιων συνιστωσών και ένας για την καταγραφή της κατακόρυφης.

Σεισμόμετρα: Τα όργανα που άμεσα αποκρίνονται στην εδαφική κίνηση ονομάζονται σεισμόμετρα. Αυτά συνδέονται με τους σεισμογράφους για την διαμόρφωση και καταγραφή των κινήσεων αυτών.

2.2 Δίκτυο σεισμογράφων του Α.Π.Θ.

Ο Σεισμολογικός Σταθμός της Θεσσαλονίκης έχει υπό την ευθύνη του τη λειτουργία ενός τηλεμετρικού σεισμολογικού δικτύου μέσω του οποίου είναι δυνατή η παρακολούθηση

όλων των σεισμικών συμβάντων σε ολόκληρο τον Ελλαδικό χώρο και τις γύρω περιοχές. Το σεισμολογικό αυτό δίκτυο σήμερα αποτελείται από 23 σεισμολογικούς σταθμούς οι οποίοι είναι εγκατεστημένοι στην Ηπειρωτική Ελλάδα αλλά και σε νησιά του Ιονίου και του Αιγαίου (σχήμα 2.1). Οι σταθμοί μεταδίδουν τα δεδομένα τους στον κεντρικό σεισμολογικό σταθμό της Θεσσαλονίκης σε πραγματικό χρόνο ενώ είναι εφοδιασμένοι κατά κύριο λόγο με σεισμόμετρα Teledyne S-13 τα οποία όμως σταδιακά αντικαθίστανται από σεισμόμετρα ευρέος φάσματος τύπου CMG - 3ESP. Για την ψηφιοποίηση του σήματος χρησιμοποιούνται ψηφιοποιητές 24-bit Nanometrics (Taurus, Janus-Trident καθώς και 5 HRD24). Η μετάδοση των δεδομένων γίνεται με τους εξής τρόπους:

i) με modem μισθωμένης γραμμής (μέσω OTE) και κατάλληλους routers της εταιρείας
 Nanometrics (RM4) για serial-IP conversion

ii) UHF modem (ασύρματη σύνδεση) σε IP-επίπεδο και

iii) με VSAT link (δορυφορική σύνδεση) σε IP επίπεδο για τους σταθμούς της Σαντορίνης, της Λευκάδας και της Χίου.

Στις αρχές του 2003 το δίκτυο υπέστη μία αναμόρφωση και μετάβαση από το παλιό αναλογικό τύπο δικτύου στο νέο ψηφιακό τύπο. Η χρήση των ψηφιακών δεδομένων επιτρέπει την καταγραφή μη κορεσμένων κυματομορφών η οποία, σε συνδυασμό με τη χρήση νέων σεισμομέτρων ευρέος φάσματος, δίνει την δυνατότητα περαιτέρω επεξεργασίας των κυματομορφών (καταγραφών). Ένα όφελος που προκύπτει από τη δυνατότητα αυτή είναι ο καθορισμός αξιόπιστων μεγεθών των σεισμών.

Παρακάτω παρουσιάζεται ένας συγκεντρωτικός πίνακας (πίνακας 1) με τα κυριότερα στοιχεία για τους σεισμολογικούς σταθμούς του Τομέα Γεωφυσικής του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης.

ΟΝΟΜΑ ΣΤΑΘΜΟΥ	ΚΩΔΙΚΟΣ	ΓΕΩΓΡΑΦΙΚΟ ΠΛΑΤΟΣ (°)	ΓΕΩΓΡΑΦΙΚΟ ΜΗΚΟΣ (°)	YΨOMETPO (m)	ΤΥΠΟΣ ΣειΣΜΟΜΕΤΡΟΥ
ΑΓΙΟΣ ΓΕΩΡΓΙΟΣ	AGG	39.0220	22.3300	540	CMG-3ESP(100s- 50Hz)
ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ	ALN	40.8850	26.0460	110	CMG-3ESP(100s- 50Hz)
ΑΛΟΝΝΗΣΟΣ	AOS	39.1700	23.8800	200	S-13
ГРІВА	GRG	40.9557	22.4029	592	S-13
ΗΓΟΥΜΕΝΙΤΣΑ	IGT	39.5314	20.3299	260	S-13
ΘΕΣΣΑΛΟΝΙΚΗ	THE	40.6319	22.9628	117	CMG-3ESP(100s- 50Hz)
KENTPIKO	KNT	41.1620	22.8980	380	S-13
ΛΕΥΚΑΔΑ	LKD	38.7075	20.6505	1171	CMG-3ESP(100s- 50Hz)
ΛΗΜΝΟΣ	LOS	39.9330	25.0810	460	S-13
ΛΙΤΟΧΩΡΟ	LIT	40.1003	22.4893	568	CMG-3ESP(100s- 50Hz)
ΜΕΤΣΟΒΟ	MEV	39.7850	21.2290	1500	S-13
ΞΟΡΥΧΤΙ	XOR	39.3660	23.1920	500	S-13
ΟΥΡΑΝΟΥΠΟΛΗ	OUR	40.3340	23.9820	60	S-13
ΠΑΛΙΟΥΡΙ	PAIG	39.9270	23.6800	140	S-13
ΣΑΝΤΟΡΙΝΗ - ΠΡΟΦ. ΗΛΙΑΣ	THR1	36.3712	25.4597	522	S-13
ΣΑΝΤΟΡΙΝΗ - ΝΕΑ KAMMENH	THR3	36.4091	25.4008	71	S-13
ΣΑΝΤΟΡΙΝΗ - ΟΙΑ	THR4	36.4600	25.3974	220	S-13
ΣΑΝΤΟΡΙΝΗ - ΚΕΡΑ	THR5	36.4172	25.3479	180	S-13
ΣΑΝΤΟΡΙΝΗ - ΑΚΡΩΤΗΡΙ	THR6	36.3562	25.3975	119	S-13
ΣΟΧΟΣ	SOH	40.8206	23.3556	729	CMG-3ESP(100s- 50Hz)
ΣΕΡΡΕΣ	SRS	41.1087	23.5846	319	S-13
ΦΛΩΡΙΝΑ	FNA	40.7840	21.3820	750	S-13
ΧΙΟΣ	CHOS	38.3868	26.0550	842	CMG-3ESP(100s- 50Hz)

Πίνακας 1 – Σεισμολογικοί σταθμοί του Τομέα Γεωφυσικής του Α.Π.Θ.

Σχήμα 2.1 - Χάρτης με το σύνολο των σεισμολογικών σταθμών που απαρτίζουν το τηλεμετρικό σεισμολογικό δίκτυο του Σεισμολογικού Σταθμού Θεσσαλονίκης.

2.3 Σεισμολογικός σταθμός Μετσόβου

Ο σεισμολογικός σταθμός του Μετσόβου με κωδικό όνομα MEV βρίσκεται σε υψόμετρο 1500 μέτρων, με συντεταγμένες 39.7850°B – 21.2290°A και ανήκει στους περιφερειακούς σταθμούς του σεισμολογικού δικτύου του Α.Π.Θ. Ο σταθμός του Μετσόβου συνδέεται ασύρματα με τον κεντρικό σταθμό της Θεσσαλονίκης μέσω ενός μονού αναλογικού RF (UHF) link. Το σεισμόμετρο που χρησιμοποιείται στον συγκεκριμένο σταθμό είναι τύπου TELEDYNE-Geotech S-13 ενώ ο ψηφιοποιητής είναι τύπου Nanometrics Trident-Janus. Παρακάτω δίνονται κάποιες πληροφορίες για τα όργανα αυτά.

Σεισμόμετρο Teledyne-Geotech S-13 : είναι ένα βραχείας περιόδου και υψηλής ανάλυσης σεισμόμετρο ικανό να ανταποκριθεί στις απαιτήσεις θορύβου και σταθερότητας. Σημαντικό πλεονέκτημα του S-13 (σχήμα 2.2) αποτελεί ο μηχανικός σχεδιασμός του που επιτρέπει επιδιορθώσεις υπαίθρου ακόμη και από άτομα που δεν έχουν την απαραίτητη

ειδίκευση. Η απλότητα της χρήσης του καθώς και η αξιόλογη παρουσία του στην ύπαιθρο τα τελευταία 30 χρόνια το κατατάσσουν ανάμεσα στα καλύτερα σεισμόμετρα βραχείας περιόδου.

Σχήμα 2.2 – Σεισμόμετρα S-13 της εταιρείας ΤΕLEDYNE – GEOTECH και τα τεχνολογικά τους χαρακτηριστικά.

<u>Ψηφιοποιητής Nanometrics Trident-Janus</u>: Είναι ένας ψηφιοποιητής ο οποίος παρέχει πραγματική απόδοση 24-bit με typical dynamic range 142 dB και είναι ικανός τόσο για σταθερές εφαρμογές όσο και για εφαρμογές υπαίθρου. Ο Trident (σχήμα 2.3) μετατρέπει ουσιαστικά το αναλογικό σήμα σε ψηφιακό και παράλληλα με χρήση λογισμικού παρέχει λειτουργίες ελέγχου του σεισμομέτρου. Μπορεί να δεχτεί ένα σεισμόμετρο τριών συνιστωσών ή τρία σεισμόμετρα μιας συνιστώσας.

Ο ψηφιοποιητής Trident σε συνδυασμό με ένα VSAT transceiver ή με ένα Janus-IP communications controller μπορεί να καλύψει την αποστολή δεδομένων με δορυφορική σύνδεση, με ασύρματη σύνδεση, με οπτικές ίνες, με IP/Internet και με modem.

Σχήμα 2.3 - Ψηφιοποιητής Nanometrics Trident-Janus

<mark>ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ</mark>

Οι σεισμοί είναι εδαφικές δονήσεις που παράγονται σε ένα σημείο (εστία) στο εσωτερικό της Γης και προκαλούνται από μετακινήσεις σε ρήγματα που ελευθερώνουν αποθηκευμένη ενέργεια. Οι μεγάλοι σεισμοί συνδέονται με κινήσεις κατά μήκος των ορίων των λιθοσφαιρικών πλακών που σχηματίζουν το φλοιό της Γης.

3.1 Σεισμικά κύματα

Στις περιπτώσεις ανατροπής της μηχανικής ισορροπίας των γήινων πετρωμάτων η δυναμική ενέργεια που απελευθερώνεται διαδίδεται μέσα στη Γη με τη μορφή ελαστικών κυμάτων τα οποία ονομάζονται σεισμικά κύματα. Επειδή όμως κατά την γένεση ενός σεισμού πραγματοποιείται μεταβολή τόσο του όγκου όσο και του σχήματος των πετρωμάτων παράγονται δύο είδη σεισμικών κυμάτων στην εστία κάθε σεισμού: τα επιμήκη και τα εγκάρσια σεισμικά κύματα (σχήμα 3.1).

α) Τα επιμήκη σεισμικά κύματα συμβολίζονται με P, διαδίδονται με μεγαλύτερη ταχύτητα από ότι τα εγκάρσια και έτσι φτάνουν πρώτα σε μια θέση. Κατά την διάδοση των P κυμάτων τα υλικά σημεία του μέσου διάδοσης ταλαντώνονται παράλληλα προς την διεύθυνση διάδοσης του κύματος.

β) Τα εγκάρσια σεισμικά κύματα συμβολίζονται με S και σε μικρές αποστάσεις (<100 km) έχουν μεγάλα πλάτη και γι' αυτό το λόγο είναι αυτά που προκαλούν κατά κύριο λόγο τις καταστροφές. Κατά την διάδοση των S κυμάτων τα υλικά σημεία του μέσου διάδοσης ταλαντώνονται κάθετα προς τη διεύθυνση διάδοσης του κύματος.</p>

Εκτός από τα P και τα S κύματα που ονομάζονται κύματα χώρου, κατά τη γένεση ενός σεισμού παράγονται και άλλα είδη κυμάτων όπως είναι τα επιφανειακά κύματα. Τα κύματα αυτά έχουν μεγάλες περιόδους, διαδίδονται κοντά στην επιφάνεια της γης και διακρίνονται σε δύο είδη, τα κύματα Rayleigh και τα κύματα Love.

Σχήμα 3.1 - Σεισμόγραμμα που παρουσιάζει την άφιζη των κυμάτων P και S.

3.2 Μέγεθος σεισμού

Απαραίτητη για την μελέτη ενός σεισμού είναι η μέτρηση της σεισμικής ενέργειας που απελευθερώνεται στην εστία του κατά την γένεσή του γιατί με τη μέτρηση αυτή παρέχεται η δυνατότητα λύσης κάποιων πρακτικών και θεωρητικών προβλημάτων αλλά και για την ακριβέστερη κατηγοριοποίηση και σύγκριση των ίδιων των σεισμών. Ο συνηθισμένος τρόπος προσδιορισμού του μεγέθους ενός σεισμού βασίζεται σε μετρήσεις του πλάτους και της διάρκειας των σεισμικών κυμάτων. Για το λόγο αυτό οι σεισμολόγοι όρισαν μια φυσική ποσότητα και την ονόμασαν «μέγεθος σεισμού». Σύμφωνα με τον ορισμό μέγεθος (Μ) ενός σεισμού είναι ένα μέτρο της ολικής ενέργειας του σεισμού το οποίο προσδιορίζεται με μετρήσεις παραμέτρων (διάρκειας, πλατών, περιόδων, φασματικών τιμών) των σεισμικών κυμάτων που παράγονται κατά τη γένεση του σεισμού.

3.3 Κλίμακες μεγεθών

Λόγω του ότι στον προσδιορισμό του μεγέθους ενός σεισμού εμπλέκονται αρκετοί παράμετροι των σεισμικών κυμάτων έχουν προκύψει και διάφορα είδη μεγεθών που μπορεί να υπολογιστούν για ένα σεισμό. Έτσι προέκυψαν οι εξής κλίμακες :

Κλίμακα τοπικού μεγέθους Μ_L: Η κλίμακα αυτή αποτελεί χρονικά την πρώτη κλίμακα μεγέθους και επινοήθηκε από τον Richter (1935). Η παράμετρος στην οποία βασίζεται είναι το μέγιστο πλάτος αναγραφής των σεισμικών κυμάτων από σεισμογράφο Wood –

Anderson. Με βάση λοιπόν αυτή την κλίμακα το μέγεθος που θα υπολογίζεται για κάποιο σεισμό θα ονομάζεται **τοπικό μέγεθος** (σχήμα 3.2). Για τον υπολογισμό του τοπικού μεγέθους ο Richter όρισε ένα πρότυπο σεισμό μηδενικού μεγέθους με μέγιστο πλάτος $A_o = 1$ μm από σεισμόμετρο στρέψης βραχείας περιόδου ($T_o = 0.8$ sec, $V_o = 2.800$, παράγοντας απόσβεσης ζ = 0,7) που βρίσκεται σε επικεντρική απόσταση Δ=100 km. Έτσι, το τοπικό μέγεθος, M_L , ενός σεισμού που καταγράφεται με μέγιστο πλάτος A_o σε ένα σταθμό που βρίσκεται σε επικεντρική απόσταση Δ=100 km Δ =100 km $M_L = \log A_o$. Συνεπώς μπορούμε να πούμε ότι **τοπικό μέγεθος M**_L σεισμού λέγεται δεκαδικός λογάριθμος του μέγιστου πλάτους αναγραφής αυτού από πρότυπο βραχείας περιόδου σεισμόμετρο στρέψης που βρίσκεται σε επικεντρική απόσταση 100 km.

Γενικά για κάθε επικεντρική απόσταση, το M_L υπολογίζεται με βάση τον εξής τύπο (Richter 1935):

$$\mathbf{M}_{\mathrm{L}} = \log \mathbf{A} - \log \mathbf{A}' \tag{3.1}$$

όπου Α ο μέσος όρος των μέγιστων πλατών αναγραφής του σεισμού από τα δύο οριζόντια σεισμόμετρα Wood – Anderson ενός σταθμού σε επικεντρική απόσταση Δ και Α' το αντίστοιχο πλάτος αναγραφής του πρότυπου σεισμού (μηδενικού μεγέθους) στην ίδια απόσταση.

Σχήμα 3.2 - Σχήμα που δίνει τον ορισμό του τοπικού μεγέθους

Βιβλιοθήκη "Θεόφραστο^{2,1} Τμήμα Γεωλογίας - Α.Π.Θ.

Κλίμακα επιφανειακού μεγέθους M_S: Η κλίμακα αυτή ορίστηκε από τον Gutenberg (1945) και χρησιμοποιείται για τον υπολογισμό μεγέθους των επιφανειακών σεισμών. Βασίζεται στο εδαφικό πλάτος των επιφανειακών κυμάτων με περίοδο ~ 20 sec σε επικεντρικές αποστάσεις 15° - 130°. Με βάση λοιπόν αυτή την κλίμακα το μέγεθος που θα υπολογίσουμε για έναν επιφανειακό σεισμό θα λέγεται επιφανειακό μέγεθος M_S. Σήμερα το επιφανειακό μέγεθος σεισμού δίνεται από την παρακάτω σχέση που είναι γνωστή ως «σχέση της Πράγας» (Vanek et al 1962):

$$M_{\rm S} = \log (a/T) + 1,66 \log \Delta + 3,3 \tag{3.2}$$

όπου a το μέγιστο εδαφικό πλάτος των επιφανειακών κυμάτων (σε μm) περιόδου 20 \pm 3 sec, T η αντίστοιχη περίοδος και Δ η επικεντρική απόσταση (σε μοίρες).

Παρόλο που δεν υπάρχει ακριβής σχέση μεταξύ των μεγεθών M_L & M_S έχουν προταθεί διάφοροι τύποι που να παρουσιάζουν μια συσχέτιση. Ένας από αυτούς τους τύπους ο οποίος ισχύει και για την Ελλάδα είναι ο εξής (Kiratzi 1989):

$$M_{\rm S} = 0.95 \ M_{\rm L} + 0.72 \tag{3.3}$$

όπου M_L είναι το τοπικό μέγεθος όπως αυτό υπολογίζεται από τις καταγραφές του σεισμογράφου Wood – Anderson που λειτουργεί στο Γεωδυναμικό Ινστιτούτο του Εθνικού Αστεροσκοπείου Αθηνών.

Κλίμακα χωρικού μεγέθους, m_B: Η κλίμακα αυτή, η οποία προτάθηκε από τους Gutenberg (1945) και Gutenberg and Richter (1956) βασίζεται στις καταγραφές Ρκυμάτων περιόδου ~ 10 sec από μέσης – μακράς περιόδου σεισμόμετρα. Δίνεται από τη σχέση :

$$\mathbf{m}_{\mathrm{B}} = \log \left(\mathrm{A}/\mathrm{T} \right) + \mathbf{q} \left(\Delta, \mathbf{h} \right) \tag{3.4}$$

όπου, Α και Τ είναι το μέγιστο παρατηρημένο πλάτος και η αντίστοιχη περίοδος και q (Δ, h) συνάρτηση βαθμολόγησης που δίνεται από πίνακες.

Το ενιαίο μέγεθος, m_b , που χρησιμοποιείται σήμερα από τα διεθνή κέντρα, στηρίζεται σε καταγραφές των πρώτων 5 sec κυμάτων χώρου με περίοδο ~ 1 sec από σεισμόμετρα

βραχείας περιόδου που βρίσκονται σε επικεντρικές αποστάσεις 21° - 100° σύμφωνα με τη μέθοδο που προτάθηκε από τους Gutenberg and Richter (1956) και δίνεται από σχέση αντίστοιχη με την (3.4).

Παρακάτω δίνεται μία σχέση η οποία συνδέει σήμερα στατιστικά το μέγεθος m_b με το μέγεθος M_s (Gutenberg 1956)

$$m_b = 0.56 M_s + 2.9$$
 (3.5)

Κλίμακα μεγέθους ροπής Μ_w: Γνωρίζουμε ότι η ενέργεια που απελευθερώνεται στην εστία ενός σεισμού ακτινοβολείται με μορφή σεισμικών κυμάτων τα οποία καλύπτουν ένα ευρύ φάσμα. Οι κλίμακες μεγεθών όμως στις οποίες προαναφερθήκαμε (M_L, M_S, m_b) βασίζονται σε σεισμικά κύματα με συχνότητες περιορισμένου μέρους αυτού του φάσματος. Έτσι τα αντίστοιχα μεγέθη αυτών των κλιμάκων αποτελούν μέτρα της ενέργειας που ακτινοβολείται στα αντίστοιχα αυτά μέρη συχνοτήτων και όχι της ολικής ενέργειας σεισμού. Συνέπεια αυτού είναι η, σε πολλές περιπτώσεις ισχυρών σεισμών, υποεκτίμηση του πραγματικού μεγέθους του σεισμού κάτι που κατέστησε επιτακτική την ανάγκη εύρεσης μιας κλίμακας μεγέθους που να μην βασίζεται σε κύματα περιορισμένου φάσματος συχνοτήτων. Προτάθηκε λοιπόν από τους Hanks και Kanamori (1979) μια κλίμακα η οποία βασίζεται στην έννοια της σεισμικής ροπής M_o που πρότεινε ο Aki (1966).

Σύμφωνα με τον ορισμό η σεισμική ροπή M_0 μετριέται με βάση το φάσμα των σεισμικών κυμάτων που προκύπτει από την φασματική ανάλυση των σεισμογραμμάτων και ορίζεται από τον παρακάτω τύπο:

$$\mathbf{M}_0 = \boldsymbol{\mu} \mathbf{L} \mathbf{w} \mathbf{u} \tag{3.6}$$

όπου μ το μέτρο δυσκαμψίας του υλικού στην εστία του σεισμού, L το μήκος του σεισμογόνου ρήγματος, w το πλάτος του σεισμογόνου ρήγματος και u η μέση μετάθεση στην επιφάνεια του ρήγματος κατά τη γένεση του σεισμού.

Σύμφωνα με τους Kanamori (1977) και Hanks and Kanamori (1979) το μέγεθος σεισμικής ροπής, M_w, δίνεται από τη σχέση:

$$M_{\rm W} = (2/3) \log M_{\rm o} - 10,7 \tag{3.7}$$

ópou, M_{o} h seismikh roph se dyn \cdot cm .

Κλίμακα μεγέθους διάρκειας σήματος Μ_τ: Η κλίμακα αυτή προτάθηκε από τον Bosztricsany (1958) και ήρθε να δώσει λύση στο πρόβλημα μέτρησης πλατών σεισμικών αναγραφών που προέρχονταν από σύγχρονα όργανα με μεγάλες μεγεθύνσεις και πολύ μεγάλα πλάτη τα οποία υπερέβαιναν τα περιθώρια αναγραφής τους.

Η κλίμακα αυτή εφαρμόζεται κυρίως για τον υπολογισμό του μεγέθους από τοπικά σεισμολογικά δίκτυα και δίνεται από την παρακάτω σχέση:

$$\mathbf{M}_{\tau} = \alpha_1 + \alpha_2 \log \tau + \alpha_3 \left(\log \tau\right)^2 + \alpha_4 \Delta$$
 (3.8)

όπου τ η διάρκεια του σήματος σε δευτερόλεπτα, Δ η επικεντρική απόσταση σε km, και α_1 , α_2 , α_3 , α_4 σταθερές.

3. 4 Ένταση σεισμού

Αναφερθήκαμε προηγούμενα στα μεγέθη σεισμών και στον τρόπο μέτρησης του μεγέθους με βάση διάφορες κλίμακες. Εκτός όμως από το μέγεθος του σεισμού υπάρχει ανάγκη να μπορούμε να εκτιμάμε και τα μακροσεισμικά αποτελέσματα ενός σεισμού σε έναν τόπο. Η εκτίμηση λοιπόν των αποτελεσμάτων αυτών γίνεται με την χρήση μιας εμπειρικής ποσότητας (η οποία μπορούμε να πούμε ότι με κάποιο τρόπο κωδικοποιεί τα αποτελέσματα αυτά) που ονομάζεται ένταση σεισμού Ι. Συνεπώς με τον όρο ένταση σεισμού εννοούμε ένα μέτρο μακροσεισμικών αποτελεσμάτων και, κατά κύριο λόγο, ένα μέτρο των αποτελεσμάτων του σεισμού στους ανθρώπους και στις τεχνικές κατασκευές. Η ένταση, γενικά, παρουσιάζει μεγάλες τιμές κοντά στην εστία του σεισμού και ελαττώνεται με την απόσταση.

Οι βλάβες εξαρτώνται από διάφορα στοιχεία της σεισμικής κίνησης (εδαφική επιτάχυνση, ταχύτητα, μετάθεση, περίοδος, διάρκεια) αλλά και της τεχνικής κατασκευής (ιδιοπερίοδος, παράγοντας απόσβεσης, πλαστικότητα). Αποτέλεσμα της εξάρτησης των βλαβών από πλήθος παραγόντων είναι να καθίσταται αδύνατος ο καθορισμός ενός και μόνου φυσικού μεγέθους ως μέτρου των σεισμικών βλαβών. Έτσι αντί της ακριβούς μέτρησης των σεισμικών βλαβών. Έτσι αντί της ακριβούς μέτρησης των βλαβων από βαθμολόγηση των εντάσεων των σεισμών στην Ελλάδα, προτάθηκε από τους Mercalli – Sieberg (πίνακας 2).

Για να παραστήσουμε γεωγραφικά την κατανομή των μακροσεισμικών αποτελεσμάτων των σεισμών σε μια περιοχή χαράζουμε τις λεγόμενες ισόσειστες καμπύλες. Οι καμπύλες αυτές χωρίζουν ουσιαστικά την περιοχή σε τμήματα ίσης έντασης.

Παρακάτω (σχήμα 3.3) δίνεται ένας χάρτης που παρουσιάζει τις μέγιστες αναμενόμενες εντάσεις και αποτελεί τη βάση του Εθνικού Αντισεισμικού Κανονισμού.

Σχήμα 3.3 – Ο νέος χάρτης σεισμικής επικινδυνότητας της Ελλάδας που εκπονήθηκε από τους σεισμολογικούς φορείς της χώρας υπό την εποπτεία του ΟΑΣΠ. Ορίζονται τρεις ζώνες με τιμές ενεργών επιταχύνσεων σχεδιασμού 0,16g, 0,24g και 0,36g.

<u>Baomoi</u>	Μακροσεισμικά αποτελεσματά
Ι	Γράφεται μόνο από τα σεισμικά όργανα.
п	Αισθητός σε μερικούς σε ησυχία στους ψηλότερους ορόφους.
III	Αισθητός σε λίγους στα σπίτια.
IV	Αισθητός από πολλούς στα σπίτια, από μερικούς στο ύπαιθρο. Ξύπνημα λίγων. Φυγή λίγων στο ύπαιθρο. Κρότος παραθύρων, χτύπος στις πόρτες.
V	Αισθητός από όλους στα σπίτια και στο ύπαιθρο. Ξύπνημα πολυάριθμων. Φυγή πολυάριθμων στο ύπαιθρο. Αιώρηση ελεύθερα κρεμασμένων αντικειμένων. Ήχηση κουδουνιών, ρολογιών. Ανατροπή μερικών μικρών αντικειμένων.
VI	Ήχηση μικρών καμπάνων. Ανατροπή πολυάριθμων μεγάλων αντικειμένων. Πτώση λίγων κεραμιδιών, καπνοδόχων. Βλάβες λίγες, ελαφρές.
VII	Ήχηση μεγάλων καμπάνων. Πτώση πολυάριθμων κεραμιδιών, καπνοδόχων. Βλάβες μέτριες, πολλές. Μερική καταστροφή λίγων οικοδομών.
VIII	Μερική καταστροφή σε ποσοστό μεγαλύτερο του 25% του ολικού αριθμού των κανονικών οικοδομών. Ολική καταστροφή λίγων κτιρίων.
IX	Μερική καταστροφή σε ποσοστό μεγαλύτερο του 50% του ολικού αριθμού των κανονικών οικοδομών. Ολική καταστροφή σε ποσοστό μεγαλύτερο του 25% του ολικού αριθμού των κτιρίων.
X	Μερική καταστροφή όλων των κανονικών οικοδομών . Ολική καταστροφή σε ποσοστό μεγαλύτερο του 50% του ολικού αριθμού των κτιρίων.
XI	Ολική καταστροφή όλων των κτιρίων .
XII	Κατάρρευση όλων των οικοδομών μέχρι τα θεμέλια.

Πίνακας 2 - Μακροσεισμική κλίμακα των Mercalli – Sieberg.

3.5 Μέθοδος υπολογισμού των μεγεθών των σεισμών στην Ελλάδα

Διάφορες σχέσεις έχουν καθοριστεί για τον υπολογισμό μεγεθών σεισμών του ελληνικού χώρου που χρησιμοποιούν τις καταγραφές των σεισμών σε διάφορους τύπους σεισμογράφων που λειτουργούν στην Ελλάδα.

Για τον υπολογισμό του επιφανειακού μεγέθους των σεισμών με h < 60 km στον ελληνικό χώρο χρησιμοποιείται ο εξής τύπος :

$$M_{\rm S} = \log \alpha + 1,42 \log \Delta + 0,20 \tag{3.9}$$

όπου α το μέσο εδαφικό πλάτος (σε μm) το οποίο υπολογίζεται από τις αναγραφές των δύο οριζοντίων συνιστωσών των σεισμομέτρων Wiechert ή Mainka του σεισμολογικού σταθμού της Αθήνας (Παπαζάχος και Βασιλικού 1966).

Για τον υπολογισμό του τοπικού μεγέθους των σεισμών του ελληνικού χώρου, όταν οι αποστάσεις είναι μεγαλύτερες των 100 km, χρησιμοποιούνται οι ακόλουθες σχέσεις :

$$M_{\rm L} = \log A + 2 \log (R/100), \ \gamma \iota \alpha \ M_{\rm L} > 3.7$$
(3.10)

$$M_{\rm L} = \log A + 1,58 \log (R/100), \ \gamma \iota \alpha \ M_{\rm L} \le 3,7 \tag{3.11}$$

όπου Α ο μέσος όρος των πλατών αναγραφής (σε μm) στις δύο οριζόντιες συνιστώσες του σεισμομέτρου Wood – Anderson του σταθμού της Αθήνας και R η υποκεντρική απόσταση (Κυρατζή και Παπαζάχος 1984).

Από τις καταγραφές των σταθμών που απαρτίζουν το τηλεμετρικό σεισμολογικό δίκτυο του σεισμολογικού σταθμού της Θεσσαλονίκης και ύστερα από μελέτες (Κυρατζή 1984 και Σκορδύλη 1985) προέκυψαν για τον υπολογισμό του τοπικού μεγέθους οι ακόλουθες σχέσεις :

$$\mathbf{M}_{\alpha} = \log \alpha + 2,32 \log \Delta - 1,07 + \mathbf{c}_{\alpha 1}, \, \gamma \iota \alpha \, \Delta > 100 \, \mathrm{km} \tag{3.12}$$

$$\mathbf{M}_{\alpha} = \log \alpha + 1,199 \log \Delta + 1,268 + c_{\alpha 2}, \gamma \iota \alpha \Delta \le 100 \text{ km}$$
(3.13)

όπου M_{α} το μέγεθος του σεισμού (συνεπές ως προς το M_L της Αθήνας), α το εδαφικό πλάτος που αντιστοιχεί στο μέγιστο πλάτος καταγραφής στις κατακόρυφες συνιστώσες των σταθμών, Δ η επικεντρική απόσταση σε km και $c_{\alpha 1}$, $c_{\alpha 2}$ σταθερές των σταθμών.

$$M_{d} = 1,97 \log Dur + 0,0012 \Delta + c_{d1}$$
, για $\Delta > 100 \text{ km}$ (3.14)

$$M_d = 2,14 \log Dur + 0,0038 \Delta + c_{d2},$$
για $\Delta \le 100$ km (3.15)

όπου M_d το μέγεθος του σεισμού (συνεπές ως προς το M_L της Αθήνας), Dur η διάρκεια καταγραφής από την αρχή του σεισμού μέχρι το σημείο όπου το μέγιστο πλάτος καταγραφής είναι 2m, p-p (peak to peak), Δ η επικεντρική απόσταση σε km και c_{d1} , c_{d2} σταθερές των σταθμών.

<mark>ΔΕΔΟΜΕΝΑ ΠΑΡΑΤΗΡΗΣΗΣ</mark>

Το κεφάλαιο αυτό αναφέρεται στον τρόπο συλλογής των απαραίτητων για την εργασία αυτή δεδομένων και στοιχείων.

4.1 Συλλογή στοιχείων – δεδομένων

Όπως γνωρίζουμε σκοπός της εργασίας αυτής είναι η βαθμολόγηση των αναλογικών μετρήσεων του σεισμολογικού σταθμού του Μετσόβου, δηλαδή στόχος μας είναι να αποδείξουμε ότι οι μετρήσεις που δίνει με τα όργανα που διαθέτει ο σταθμός του Μετσόβου μπορούν να οδηγήσουν σε αξιόπιστο υπολογισμό των μεγεθών διαφόρων σεισμικών γεγονότων.

Βασική λοιπόν προϋπόθεση για την εξέλιξη της εργασίας είναι η συλλογή καταγεγραμμένων μετρήσεων σεισμών. Τέτοιες μετρήσεις, που να παρουσιάζουν μεγέθη σεισμών αλλά και κάποια άλλα απαραίτητα στοιχεία που σχετίζονται με αυτούς, υπάρχουν από τον ίδιο τον σταθμό του Μετσόβου για το χρονικό διάστημα από τον Δεκέμβριο του 2005. Σε αυτές τις καταγραφές – μετρήσεις δίνονται τα εξής στοιχεία:

- Έτος μήνας ημέρα (Year Month Day) του σεισμού.
- Ωρα λεπτά δευτερόλεπτα (Hour Minutes Seconds) του χρόνου γένεσης του σεισμού.
- Οι συντεταγμένες (Latitude = γεωγραφικό πλάτος, Longitude = γεωγραφικό μήκος) του επίκεντρου του σεισμού.
- Το εστιακό βάθος (Depth) του σεισμού σε km.
- **Γ** Το μέγεθος (M ή M_L) του σεισμού.
- Η επικεντρική απόσταση (Distance), δηλαδή η απόσταση μεταξύ του επίκεντρου του σεισμού και του σταθμού του Μετσόβου.
- Το μέγιστο πλάτος (Amplitude) καταγραφής της εδαφικής κίνησης από το σεισμογράφο του MEV (σε mm).
- Η περίοδος (Τ) σε sec.
- Η διάρκεια καταγραφής (Duration) σε sec.

Καθένας, βέβαια, από τους σεισμούς του παραπάνω αρχείου δεν είναι απαραίτητο να περιέχει όλες τις πληροφορίες που αναφέρθηκαν προηγούμενα. Για την επεξεργασία όμως των δεδομένων αυτών έτσι ώστε να μπορέσουμε μετέπειτα να υπολογίσουμε τα μεγέθη M_α και M_d (με βάση τους τύπους που αναφέραμε στο προηγούμενο κεφάλαιο) είναι αναγκαίο να έχουμε είτε το μέγιστο πλάτος, είτε την διάρκεια καταγραφής. Συνεπώς το πλήθος των καταγραφών που θα χρησιμοποιήσουμε περιορίζεται σε αυτές που θα έχουν κάποιο από αυτά τα στοιχεία.

Οι καταγραφές σεισμών που υπάρχουν από τον σεισμολογικό σταθμό του Μετσόβου και οι οποίες πληρούν τις παραπάνω προϋποθέσεις φτάνουν τις 579 και δίνονται παρακάτω :

Yr	Мо	Da	Hr Mn Secs	Lat	Lon	Dep	М	Dist	Amp	Т	Dur
0.2	T 7 N T	0.5	01.44.01 74	27 0001	00 1575	1 2 2 77	мт 4 Г	260 0			252 0
03	JAN	05	21.44.31.74	40 060N	23.157E 21 275F	155KIII 1Km	ML=4.5 ML=3.4	209.0			255.0
03	JAN	05	21:44:31.74	37.882N	23.157E	133Km	ML=4.5	269.0			253.0
28	APR	05	14:16:00.02	38.737N	22.526E	10Km	ML=2.8	161.0	2.0	-	33.0
28	APR	05	22:30:18.14	39.210N	21.226E	10Km	ML=3.0	64.0	16.0	-	51.0
29	APR	05	08:13:47.93	39.736N	20.405E	10Km	ML=3.1	71.0			76.0
30	APR	05	04:54:22.75	37.605N	22.018E	25Km	ML=3.8	252.0	10.0	-	16.0
30	APR	05	11:12:46.11	40.391N	20.973E	10Km	ML=2.4	71.0	1.0	-	18.0
01	MAY	05	03:44:29.64	38.797N	21.294E	2Km	ML=3.	110.0	1 0		142.0
01	MAY	05	20.34.04.28	35.904N	22.109E 25 173F	20Km	ML=3.9 ML=4 1	431.0 634 0	4.0		122.0
02	MAY	05	02:29:58.52	39.389N	20.822E	10Km	ML=2.1	56.0	5.0		28.0
02	MAY	05	08:47:52.30	38.987N	23.318E	4Km	ML=2.9	201.0	5.0		60.0
02	MAY	05	21:30:50.29	35.810N	25.528E	11Km	ML=4.3	582.0	2.0		160.0
03	MAY	05	00:52:35.89	34.398N	24.989E	62Km	ML=4.5	685.0	4.0		138.0
03	MAY	05	11:55:02.08	38.548N	21.867E	17Km	ML=3.3	148.0	15.0		83.0
03	MAY	05	16:30:35.95	39.053N	21.817E	17Km	ML=2.9	96.0	7.0		41.0
03	MAY	05	16:41:26.69	39.698N	20.649E	10Km	ML=3.2	51.0	35.0		65.0
05	MAY	05	21:13:43.25	40.795N	19.633E	32Km	ML=3.3	176.0	8.5	0.2	62.0
08	MAY	05	21:20:01.13	40.888N	20.100E	10Km	ML=3.8	156.0	E 7	0.2	100.0
10	MAY	05	21·24·52.34 11·10·22 72	39.512N	20.207E 21 416F	1 OKIII	ML=2.7 MT=2.9	93.0	5./	0.2	23.0
10	MAY	05	20:36:10 71	39.323N	20 503E	10Km	ML=3 1	95 0	188	04	52 0
11	MAY	05	10:05:02.41	39.340N	20.503E	10Km	ML=3.9	71.0	10.0	0.1	48.0
11	MAY	05	10:20:28.27	39.407N	20.659E	10Km	ML=3.1	64.0			142.0
12	MAY	05	10:11:38.99	39.950N	19.713E	5Km	ML=	131.0	2.7	0.2	28.0
13	MAY	05	06:40:05.02	38.635N	20.638E	10Km	ML=3.1	137.0	6.7	0.3	48.0
13	MAY	05	22:29:52.05	38.829N	22.052E	10Km	ML=2.6	128.0	2.7	0.1	23.0
14	MAY	05	11:28:53.28	40.387N	21.813E	1Km	ML=2.4	83.0	2.4	0.2	21.0
15	MAY	05	03:09:56.52	38.006N	22.490E	94Km	ML=3.7	226.0			81.0
16	MAY	05	02:35:55.48	39.345N	21.601E	6Km	ML=3.0	58.0	13.0		42.0
17	MAY	05	22:24:16.60	36.623N	21.656E	20Km	ML=3.9	353.0	5.0		144.0
10	MAY	05	23.20.00.18	42.521N	10.902E	23Kill 14Km	ML=4.2 MT=4.2	301.0	5.5 11 0		140 0
19 21	MAT	05	19:55:25 60	42.012N 41 187N	14 993F	10Km	ML=3 9	552.0	2 5		22 0
21	MAY	05	22:59:39.67	39.241N	22.958E	6Km	ML=2.8	160.0	2.0		22.0
23	MAY	05	21:41:40.96	39.345N	21.815E	21Km	ML=2.5	70.0	3.5		33.0
28	MAY	05	00:36:17.09	42.287N	18.943E	22Km	ML=4.1	338.0	1.8		84.0
28	MAY	05	17:17:24.91	38.262N	21.836E	1Km	ML=3.6	177.0	15.0		99.0
31	MAY	05	11:34:23.05	39.322N	20.358E	12Km	ML=3.1	91.0	11.0		27.0
31	MAY	05	17:08:55.25	39.159N	21.661E	21Km	ML=3.2	79.0	26.0		46.0
03	JUN	05	01:19:11.36	39.039N	21.723E	20Km	ML=3.6	93.0	53.0		80.0
03	JUN	05	02:56:17.10	38.158N	22.053E	1Km	ML=3.4	194.0	2.0	0 0	51.0
07	JUN	05	08.40.40.41	39.649N	22.092E	7Kill 20Km	ML=2.0 MT=2.0	162 0	2.3	0.2	25.0
07	TIIN	05	06:04:54 79	36 772N	21 851E	20Km	ML=3.8	239 0	20.1 4 7	0.1	118 0
08	JUN	05	23:33:44.96	39.773N	20.592E	3Km	ML=2.9	55.0	15.8	0.1	37.0
09	JUN	05	18:24:21.00	40.057N	20.896E	2Km	ML=2.7	41.0	7.0	0.2	13.0
11	JUN	05	02:02:25.79	40.700N	19.196E	20Km	ML=3.4	201.0	3.8	0.3	44.0
11	JUN	05	03:38:52.62	40.721N	19.064E	20Km	ML=4.3	211.0	53.0	0.1	135.0
12	JUN	05	05:02:19.15	40.750N	19.081E	20Km	ML=	212.0	2.3	0.3	25.0
12	JUN	05	07:34:54.39	36.952N	23.653E	20Km	ML=4.1	379.0	9.4	0.3	80.0
13	JUN	05	14:27:53.88	39.237N	20.977E	4Km	ML=	64.0	4.0		14.0
13	JUN	05	18:11:22.98	37.665N	22.107E	20Km	ML=3.2	247.0	2.5		45.0
17	JUN	05	07:31:49.33	35.033N	24.041E	20Km	ML=4.8 MT=2.0	583.0	9.0		180.0
15	TTIN	05	13:38:32 13	36 036N	21 705F	20Km	ML=3.9 ML=3.8	285.0 418 0	3 0		55 0
17	JUN	05	20:39:14.41	40.549N	21.825E	3Km	ML=2.6	99.0	3.0		55.0
18	JUN	05	01:22:24.14	38.952N	21.593E	1Km	ML=2.7	98.0	6.0		25.0
18	JUN	05	15:16:08.98	39.376N	20.698E	10Km	ML=3.3	64.0			70.0
18	JUN	05	15:17:06.20	43.996N	25.755E	20Km	ML=4.9	600.0	5.0		220.0
18	JUN	05	17:35:44.70	38.800N	21.263E	10Km	ML=3.2	109.0	11.0		45.0
18	JUN	05	18:08:42.08	38.823N	21.245E	10Km	ML=3.4	107.0	14.0		45.0
06	JUL	05	07:30:28.80	38.918N	20.881E	6Km	ML=2.4	101.0	3.2		30.0
06	JUL	05	11:38:02.42	40.724N	21.479E	20Km	ML=3.2	106.0	26.0		46.0
10 10	JUL	05	20:00:45.63	40.574N	21.576E	5Km	ML=2.8	92.0	6.8 1 C	0 7	28.0
⊥∠ 1 ว	⊔∪∪ тттт,	05	UZ·ZO·41./3 03·22·25 60	אפטס.ט י ערפח 10	∠⊥.0∪∠E 21 Q∩≤⊡	JUKM JWm	тт=∠.∠ Мт2 0	90.U 50 0	1.0	0.3	EQ O
12 12	UUU TITL	05	07:52:16 65	38 330M	22 703F	⊿⊼ 1 ∩.K.m	MT.= 2 7	214 0	21 0		91 N
14	JUL	05	10:13:01.08	38.668N	21.710F	12Km	ML=3.1	131.0	9.8	0.8	49.0
15	JUL	05	12:11:23.75	37.968N	21.452E	10Km	ML=3.5	203.0	8.4	0.5	79.0
15	JUL	05	14:01:57.44	39.190N	22.366E	20Km	ML=2.9	118.0	14.5	0.4	27.0
15	JUL	05	23:09:02.92	40.102N	19.750E	10Km	ML=2.2	131.0	1.5	0.2	
19	JUL	05	15:39:13.66	40.086N	21.836E	4Km	ML=2.7	62.0	8.1		31.0
19	JUL	05	22:36:17.02	40.346N	21.242E	4Km	ML=3.1	62.0	17.5	0.4	51.0

Yr	Мо	Da	Hr Mn Sec	s Lat	Lon	Dep	М	Dist	Amp	т	Dur
20	JUL	05	08:18:48.	41 38.820N	23.406E	10Km	ML=3.4	216.0	5.0	0.4	50.0
22	JUL	05	21:32:51.	57 38.860N	21.163E	15Km	ML=2.7	103.0	5.0	0.2	30.0
23	JUL	05	01:33:21.	50 34.911N	22.175E	31Km	ML=4.2	547.0	8.2	0.7	121.0
23	JUL	05	03:50:10.	54 38.779N	23.453E	10Km	ML=3.2	222.0	3.0	0.5	40.0
24	JUL	05	22:25:19.	31 40.459N	23.660E	11Km	ML=3.3	220.0	3.6	0.3	52.0
23	AUG	05	16:53:27.	52 39.797N	21.182E	9Km	ML=	4.0			25.0
29	AUG	05	11:44:51.	83 40.432N	21.856E	10Km	ML=3.0	90.0	2.0		46.0
30	AUG	05	11:49:09.	10 39.540N	23.116E	5Km	ML=3.0	164.0	4.7		50.0
30	AUG	05	13:39:56.	55 38.930N	21.589E	3Km	ML=3.1	100.0	18.2		59.0
02	SEP	05	07:42:37.	53 34.589N	25.402E	19Km	ML=4.5	686.0	13.0		152.0
07	SEP	05	08:48:52.	85 34.799N	24.309E	20Km	ML=4.3	617.0	4.8		115.0
80	SEP	05	01:47:13.	21 39.657N	20.736E	10Km	ML=3.4	45.0			76.0
10	SEP	05	02:48:47.	80 39.340N	21.558E	10Km	ML=2.9	57.0			50.0
10	SEP	05	09:58:36.	76 41.363N	21.036E	5Km	ML=2.9	176.0	6.5		40.0
11	SEP	05	08:17:17.	41 37.685N	21.722E	109Km	ML=4.0	237.0			141.0
12	SEP	05	19:08:30.	20 40.695N	23.362E	1Km	ML=4.3	208.0			170.0
22	SEP	05	08:23:20.	06 40.102N	21.733E	4Km	ML=3.0	56.0	24.0		55.0
28	SEP	05	01:47:10.	50 35.301N	27.036E	20Km	ML=4.3	715.0	3.6		123.0
28	SEP	05	02:33:17.	68 38.708N	21.886E	12Km	ML=2.9	132.0	7.8		33.0
02	OCT	05	15:56:22.	31 39.679N	19.457E	3Km	ML=	152.0	3.5		30.0
03	OCT	05	16:00:22.	12 39.764N	21.817E	11Km	ML=3.1	50.0	61.0		82.0
03	OCT	05	21:55:03.	19 40.445N	21.146E	10Km	ML=3.4	74.0	40.0		95.0
13	OCT	05	21:37:14.	87 38.268N	22.037E	15Km	ML=3.1	182.0	4.5		52.0
20	DEC	05	10:06:37.	36 39.181N	20.928E	10Km	ML=3.0	72.0	4.5		33.0
20	DEC	05	12:04:58.	79 40.655N	21.594E	14Km	ML=2.5	101.0	2.2		34.0
21	DEC	05	01:57:59.	79 39.177N	20.977E	10Km	ML=3.0	71.0	5.5		31.0
21	DEC	05	02:27:16.	74 38.251N	20.353E	10Km	ML=3.3	186.0	2.5		55.0
21	DEC	05	10:31:42.	14 38.285N	22.443E	5Km	ML=2.9	197.0	4.0		45.0
21	DEC	05	13:58:51.	39 40.435N	21.866E	10Km	ML=2.4	90.0	3.0		52.0
22	DEC	05	11:27:24.	98 38.275N	21.872E	10Km	ML=3.4	177.0	22.0		87.0
23	DEC	05	01:26:53.	81 38.279N	21.819E	1Km	ML=3.4	175.0	15.0		92.0
23	DEC	05	07:09:59.	59 35.540N	23.312E	96Km	ML=4.5	506.0	46.0		167.0
24	DEC	05	00:14:25.	25 39.020N	23.272E	12Km	ML=4.0	195.0	41.0		
24	DEC	05	03:56:05.	51 38.783N	28.136E	4Km	ML=4.5	607.0			150.0
24	DEC	05	20:00:31.	98 39.115N	21.666E	11Km	ML=3.0	83.0	17.5		61.0
25	DEC	05	19:11:07.	52 37.727N	20.799E	10Km	ML=3.5	231.0			62.0
28	DEC	05	22:42:28	31 40.704N	20.373E	10Km	ML=2.9	125.0	6.5		46.0
01	JAN	04	00:32	37.760N	21.070E	5Km	ML=3.4		3.1	0.4	52.0
01	JAN	04	09:07:44	76 38 192N	22.042E	10Km	ML=3.0	190.0	4.0	0.5	36.0
01	JAN	04	15:47	36.630N	22.270E	11Km	ML=3.3	20010	2.9	0.2	50.0
04	JAN	04	09:25:32	71 40.687N	20.774E	10Km	ML=3.0	107.0	5.0	0.2	45.0
04	JAN	04	11:21	35.720N	21.460E	2.8Km	ML=3.7		4.7	0.5	65.0
04	JAN	04	23:32	38 260N	20 480E	5Km	ML=3 2		2 0	0.5	00.0
05	JAN	04	00:34:13	58 38 630N	20.100E	10Km	ML=3 2	150 0	12 0	0 2	51 0
05	TAN	04	12:57	37 640N	21 8105	3Km	ML=3.5	100.0	2 5	0.2	58 0
13	JAN	04	12:25:48	26 38 141N	21.010E	20Km	ML=3.4	183 6	2.5	0.7	68 0
01	FER	04	15:25:10	22 39 900N	22 883E	10Km	ML=2 9	142 0	4 5		44 0
02	FFB	04	19:53:00	78 38 034N	22.009E	10Km	ML=2.9	207 0	4 0		40 0
03	FFB	04	09:20:31	82 40 396N	21.030E	5Km	ML=3 2	72 0	1.0		58 0
04	FEB	04	05:36:12	54 40 087N	19 596E	10Km	ML=4 2	144 0			50.0
01	FFB	01	11:32:59	33 40 178N	21 828F	14Km	MT.=2 1	67 0	2 0		17 0
05	FFB	04	01:19:21	37 38 599N	20 3905	1 Km	ML=3 3	150 0	2.0		55 0
05		04	02.51.42	70 40 079N	10 633F	10Km	ML-3 9	140 0			12 0
05		04	02.31.42.	10 40.079N	21 906F	10Km	ML-2 2	97 0	2 4		21 0
00		04	02.42.08	58 37 208N	21.900E	20Km	ML-3 5	342 0	4 4		64 0
00	T ED	01	20.20.42	24 20 062M	23.500E	10Km	MI = 2 7	142.0	1.1		25 0
11		04	05.50.14	04 30 841M	22.391E 20 631F	10Km	ML-2.7	52 0			46 0
17	r ld r r d	04	15.56.51	71 20 267M	20.031E	11Km	ML-2.0 ML-4.2	211 0	0 0	06	110 0
10	FED	04	13.30.51.	71 30.207N	10 F70E		ML-4.2	211.0	9.0	0.0	20.0
10	FEB	04	03.20.51.	98 40.025N	19.5/9E	3K.III 1 0 Km	ML=4.0	144.0			30.0
10	FEB	04	04.53.58.	79 38.400N	21.020E	1 OKIII	ML=4.1	107.0	10 0	0 2	140.0
19	FEB	04	04.00.08.	38 38.823N	21.322E	LOKII	ML=3.2	107.0	10.2	0.3	44.0
19	FEB	04	21.53.34.	00 38.120N	19.942E	20Km	ML=3.4	216.0	4.0	0.3	50.0
∠U 21	F.E.B	04	22:3/:05.	42 37.594N	21.558E	LUKM	ML=3.5	245.U	1.2	0.3	05.0
21 00	FEB	04	10:15:44.	29 40.406N	19.286E	∠UKm	мц=	1/9.0	4.0		49.0
22	FEB	04	07:39:47.	U5 40.169N	19.623E	8Km	ML=3.2	144.0	4.2		50.0
22	FEB	04	08:09:08.	45 39.411N	20.531E	⊥UKm	ML=2.4	73.0	11.0		35.0
22	FEB	04	11:13:41.	78 38.607N	20.772E	⊥4Km	ML=2.9	137.0	3.6		30.0
22	FEB	04	12:03:18.	90 39.748N	20.385E	⊥OKm	ML=3.0	72.0	16.0		48.0
06	MAR	04	04:34:46.	10 38.262N	22.235E	0Km	ML=3.3	190.0	14.6		64.0
11	MAR	04	05:36:27.	93 39.040N	23.735E	⊥0Km	ML=3.0	231.0	2.5		
12	MAR	04	11:22:42.	74 40.800N	21.149E	8Km	ML=2.8	113.0	5.0		39.0
13	MAR	04	00:07:10.	59 37.950N	22.164E	10Km	ML=3.6	219.0	15.0		78.0
14	MAR	04	05:00:20.	71 41.935N	20.353E	10Km	ML=4.3	250.0			161.0
17	MAR	04	05:21:04.	74 34.779N	23.397E	20Km	ML=5.8	588.0	-		627.0
17	MAR	04	15:54:56.	69 38.763N	20.450E	9Km	ML=3.2	132.0	8.0		47.0
17	MAR	04	21:47:27.	47 38.750N	20.459E	8Km	ML=3.1	133.0	8.5		42.0
17	MAR	04	23:22:37.	38 38.663N	21.043E	10Km	ML=3.1	126.0	9.0		56.0

Yr	Мо	Da	Hr Mn Se	cs Lat	Lon	Dep	М	Dist	Amp	Т	Dur
18	MAR	04	01:13:01	.20 41.001	N 22.107E	10Km	ML=4.0	154.0			109.0
18	MAR	04	01:26:37	.99 40.433	N 19.831E	10Km	ML=3.1	139.0	5.0		42.0
10	MAR	04	01:57:12	.43 41.01/	N 22.085E	10Km	ML=3.9	155.0	2 0		110.0
10	MAR	04	10.455.22	.25 34.533	N 23.312E	10Km	ML=3.9 MT=2.2	612.0	3.0		97.0
10	MAR	04	19.45.42	28 38 956	N 20.921E N 21 541F	11Km	ML=3.2 ML=3.1	96.0	7 0		21.0
10	MAR	04	10:02:00	.20 30.930 AF AO 600	N 21.941E	21/11	ML=3.1 MT=2.1	102 0	7.0		61 0
10	MAR	04	17.25.12	10 20 046	N 21.357E N 22.557E	5Kill EVm	ML=3.1 MT=2 E	142.0			01.0
20	MAK	04	17.35.13	08 37 580	N 22.387E	1 2 Km	ML-3.5	253 0	10 0		117 0
20	MAV	04	17:15:27	08 40 969	N 19 333F	21Km	ML=3.8	208 0	20.0		90 0
21	MAY	04	00:15:38	47 39 002	N 20 359E	10Km	ML=3 3	115 0	20.0		73 0
21	MAY	04	02:26:37	19 37 746	N 20.555E	10Km	ML=4.4	234 0	20.0		220 0
21	MAY	04	03:34:05	.50 40.238	N 19.726E	10Km	ML=3.1	138.0	9.0	0.4	68.0
24	MAY	04	00:03:04	21 38.445	N 22.436E	5Km	ML=3.8	182.0	38.0	0.2	112.0
2.4	MAY	04	23:54:56	.65 39.347	N 20.531E	10Km	ML=4.1	77.0	50.0	0.2	112.0
25	MAY	04	00:22:30	.00 41.208	N 20.243E	10Km	ML=3.4	179.0	8.5	0.6	54.0
19	JUN	04	21:27:29	.49 39.890	N 24.506E	16Km	ML=3.8	281.0	4.2		72.0
19	JUN	04	21:44:53	.85 41.200	N 20.242E	10Km	ML=4.0	178.0			112.0
21	JUN	04	07:43:36	.64 41.111	N 20.650E	1Km	ML=3.4	155.0	11.3		67.0
21	JUN	04	11:56:49	.48 39.057	N 20.487E	20Km	ML=3.0	103.0	8.0		50.0
23	JUN	04	03:20:40	.56 39.718	N 20.312E	10Km	ML=	79.0	3.5		23.0
23	JUN	04	05:58:34	.35 39.137	N 21.639E	3Km	ML=2.5	80.0	2.1		31.0
24	JUN	04	16:31:16	.81 39.686	N 20.899E	10Km	ML=3.4	30.0			109.0
24	JUN	04	16:36:03	.26 39.679	N 20.973E	10Km	ML=2.9	25.0			64.0
24	JUN	04	19:26:03	.03 36.027	N 21.550E	20Km	ML=4.2	418.0	4.5		106.0
24	JUN	04	21:53:53	.23 38.730	N 20.461E	4Km	ML=3.3	134.0	11.5		60.0
25	JUN	04	00:19:43	.79 38.415	N 21.911E	10Km	ML=3.1	163.0	3.3		47.0
25	JUN	04	04:30:47	.18 39.711	N 21.052E	10Km	ML=3.6	17.0			153.0
25	JUN	04	05:02:06	.85 39.938	N 20.456E	10Km	ML	68.0	21.0		40.0
25	JUN	04	05:54:31	.74 39.720	N 20.911E	10Km	ML=	28.0			36.0
25	JUN	04	06:05:03	.08 39.735	N 20.902E	10Km	ML=2.9	29.0	37.0		53.0
25	JUN	04	07:45:17	.88 38.270	N 23.192E	10Km	ML=3.0	239.0	3.2		54.0
25	JUN	04	09:00:16	.04 39.699	N 20.922E	10Km	ML=3.7	28.0			120.0
25	JUN	04	09:24:25	.02 39.809	N 20.825E	бKm	ML=	35.0	11.7		30.0
25	JUN	04	16:54:56	.40 39.745	N 20.216E	10Km	ML=3.1	87.0	14.3		58.0
27	JUN	04	11:54:11	.21 41.864	N 23.415E	7Km	ML=3.9	295.0	4.0		22.0
28	JUN	04	17:44:36	.51 40.454	N 19.984E	10Km	ML=4.0	129.0			163.0
30	JUN	04	15:05:20	.81 38.053	N 20.767E	2Km	ML=3.3	196.0	7.5		75.0
30	JUN	04	15:09:36	.95 38.126	N 21.988E	10Km	ML=3.1	195.0	4.3		47.0
30	JUN	04	16:16:28	.19 41.380	N 20.350E	10Km	ML=3.1	192.0	3.6	0.7	48.0
30	JUN	04	19:08:19	.20 37.813	N 21.039E	10Km	ML=3.6	219.0	9.8	0.7	100.0
01	JUL	04	05:02:09	.07 39.257	N 22.356E	13Km	ML=2.6	113.0	3.5		25.0
01	JUL	04	12:50:00	.03 40.090	N 21.004E	10Km	ML=2.4	39.0	14.2		34.0
01	JUL	04	12:56:17	.68 40.118	N 21.016E	9Km	ML=2.3	41.0	10.0		29.0
01	JUL	04	18:44:44	.67 39.415	N 21.012E	2Km	ML=	45.0	10.0	0 5	30.0
02	JUL	04	08:05:37	.30 37.870	N 21.239E	1 1 Km	ML=3.0	212.0	2.8	0.7	47.0
02	10L	04	10:11:23	.13 39.824	N 20.786E	10Km	ML=	38.0	9.2	0.3	30.0
02	JUL	04	13:35:36	.47 39.684	N 20.769E	10Km	ML=2.2	41.0	4.5	0 6	40.0
02	JUL	04	19:36:07	.58 38.585	N 20.486E	10Km	ML=	148.0	2.3	0.6	24.0
02	JUL	04	20.32.02	.41 41./2/ 10 /1 E10	N 20.229E	10Kill 2Km	ML=3.0	232.0	2.2	0.0	40.0
03		04	12.46.07	-19 41.519 E0 20 760	N 20.311E	2 Alli 1 O.V.m	ML=3.1	200.0	2.9	0.2	40.0
03		04	16.11.41	.50 39.709	N 20.322E	1 E V m	ML= ML-2 2	70.U	4.0	0.5	10.0
03		04	16.22.20	20 29 610	N 21.929E	10Km	ML=2.3	146 0	5.4		142 0
03	JUUU.	04	17.43.15	16 37 969	N 20.470E	21Km	ML=3.9	229 0	23	05	45 0
03	TIT	04	11.40.41	28 39 731	N 24 210F	1.2 Km	ML-2 1	256 0	2.5	0.5	40 0
04	JULI	04	22:48:15	06 39 742	N 29.210E N 20.614F	10Km	ML=2.7	53 0	8 1	0.0	31 0
07	JULI	04	01:14:22	28 40 157	N 20.014E	7Km	ML=2.7	90.0	3 0		20 0
07	TIT	04	02.10.35	87 38 715	N 20.200E	10Km	ML = 3 0	181 0	3.0		48 0
07	TIT	04	03.16.36	45 30 738	N 20.336F	10Km	ML-2 8	77 0	7 2		32 0
00	JULI	04	03:44:32	15 39 701	N 20.330E N 20.874F	10Km	ML=2.0	32 0	18 0		42 0
00	JULI	04	12:40:32	48 36 164	N 20.074E	3Km	ML=3 9	425 0	2 5		12.0
08	JUIT.	04	17:40:28	22 40 347	N 19 916E	10Km	ML=3.5	128.0	93		76 0
09	JUIT.	04	01:54:53	25 39 000	N 21 980E	2Km	ML=2.8	108 0	4 5		35 0
09	JUT,	04	13:41:16	.61 35 918	N 21.893E	5Km	ML=3.8	433.0	6.8		100.0
09	JUIT,	04	14:18:51	.43 39 628	N 22.430E	17Km	ML=2.4	104.0	3.3		25.0
09	JUL	04	23:32:15	.38 38.622	N 20.452E	10Km	ML=3.3	146.0	12.0		65.0
10	JUL	04	15:09:19	.55 39.246	N 22.812E	2Km	ML=3.3	149.0	9.5		57.0
11	JUL	04	08:25:04	.49 39.845	N 20.776E	10Km	ML=	39.0	12.0		31.0
12	JUL	04	01:23:56	.00 39.484	N 21.107E	6Km	ML=2.7	35.0	30.0		45.0
12	JUL	04	11:26:28	.36 39.273	N 20.202E	1Km	ML=4.0	105.0			153.0
14	JUL	04	20:01:24	.46 39.234	N 22.573E	19Km	ML=2.7	131.0	3.8	0.4	32.0
15	JUL	04	01:26:57	.90 39.245	N 21.393E	10Km	ML=2.7	62.0	9.8	0.6	35.0
15	JUL	04	06:09:54	.77 40.295	N 21.805E	14Km	ML=2.3	75.0	2.5	0.4	
15	JUL	04	12:44:50	.15 38.944	N 21.944E	8Km	ML=2.2	112.0	2.1	0.4	
16	JUL	04	15:39:42	.16 40.424	N 21.895E	10Km	ML=2.2	91.0	1.9	0.5	
17	JUL	04	04:09:04	.12 39.858	N 21.543E	20Km	ML=2.1	28.0	4.5	0.2	14.0

Yr	Мо	Da	Hr Mn	Secs	Lat	Lon	Dep	м	Dist	Amp	т	Dur
17	JUL	04	11:12:	:03.62	39.104N	21.966E	10Km	ML=2.5	99.0	3.2	0.2	21.0
17	JUL	04	11:20:	40.27	39.755N	20.719E	1.0Km	ML=2.4	44.0	2 2		28.0
10	JUL	04	10:36:	14 60	39.438N	20./4/E	10Km	ML=	56.0	2.2	0 1	40.0
70	JUL	04	10.51	·14.09	38.2/IN	22.2/1E	10Km	ML=3.0	191.0	3./	0.4	40.0
22	JUL.	04	13.37.	· 05 13	38.300N	21.955E 21 570F	2 Km	ML=3.0	115 0	2.0		54 0
22	ттт	04	13.37.	· 05.15	20./00N	21.3/9E	5KIII 6Km	ML=3.3	E2 0	24 0		54.0 40 0
24	ТТТТ	04	12.40	· 25.47	40 100N	20.793E	20Km	ML=2.7	53.0	24.0		40.0
24		04	15.20	. 30. 50	24 701N	21.703E	Z O Kill E O Km	ML = 4 0	609.0	2.2		70 0
24	JULI	01	19:00:	:57 46	35 353N	23.013E 23.666F	10Km	ML=4.0 ML=4.7	537 0	16 2	06	210 0
24	JULI	01	20:51:	:10 59	37 183N	23.000E 21 610F	7Km	ML=3 7	291 0	4 5	0.0	83 0
24	JUIT.	04	21:28:	:36 56	39 572N	23 675E	1 Km	ML=3.5	211.0	11 2	0.5	05.0
24	TTTT.	04	21:59:	:14 83	39 599N	23 688E	10Km	ML=3 2	212 0	3 8	0 9	58 0
2.4	JUL	04	22:23:	:41.85	39.612N	23.581E	10Km	ML=3.4	203.0	5.4	0.4	68.0
25	JUL	04	01:48:	:37.60	38.772N	21.577E	10Km	ML=2.5	116.0	3.6	0.1	22.0
25	JUL	04	22:33:	:59.49	39.550N	23.651E	12Km	ML=2.9	209.0	2.2		46.0
25	JUL	04	22:35:	:42.39	39.557N	23.657E	13Km	ML=3.9	210.0	15.3	0.8	112.0
26	JUL	04	23:42:	:31.26	39.254N	22.230E	10Km	ML=3.4	104.0	9.8	0.1	38.0
27	JUL	04	12:42:	:07.19	37.521N	21.294E	20Km	ML=4.0	251.0	17.0	0.3	104.0
28	JUL	04	04:05:	:54.57	35.311N	23.355E	9Km	ML=4.2	531.0	4.7	0.4	148.0
28	JUL	04	07:24:	:20.56	40.084N	20.491E	14Km	ML=3.0	71.0	6.8	0.3	27.0
29	JUL	04	05:35:	:05.85	36.580N	28.040E	20Km	ML=4.0	695.0	2.4	0.3	85.0
29	JUL	04	20:45:	:32.36	40.153N	21.744E	7Km	ML=2.5	60.0	5.5	0.2	25.0
30	JUL	04	03:27:	:16.44	40.152N	21.774E	10Km	ML=3.1	62.0	20.0	0.1	59.0
30	JUL	04	16:16:	:43.59	39.209N	21.513E	10Km	ML=2.7	68.0	8.4	0.2	25.0
30	JUL	04	20:19:	:25.74	38.370N	21.948E	3Km	ML=3.3	169.0	6.2	0.4	52.0
31	JUL	04	00:12:	:22.01	38.757N	25.722E	2Km	ML=3.7	404.0	1.8	0.5	
01	AUG	04	08:51:	:24.72	37.182N	22.001E	20Km	ML=3.9	297.0	8.8	0.2	114.0
01	AUG	04	14:58:	:39.21	38.883N	20.603E	10Km	ML=3.7	114.0	31.0	0.1	104.0
02	AUG	04	03:53:	:58.50	37.886N	21.249E	17Km	ML=3.8	211.0	15.3		98.0
02	AUG	04	03:57:	:50.56	37.704N	21.200E	10Km	ML=3.8	231.0	14.4		85.0
03	AUG	04	05:06:	:26.00	39.721N	19.425E	8Km	ML=	155.0	6.5		
03	AUG	04	10:58:	:45.25	41.311N	20.009E	2Km	ML=2.6	198.0	4.1		41.0
03	AUG	04	23:57:	:52.78	38.941N	20.603E	10Km	ML=3.2	108.0	8.7		47.0
04	AUG	04	03:01:	:08.12	36.902N	27.772E	10Km	ML=5.4	656.0	42.0		400.0
04	AUG	04	04:19:	:50.48	36.850N	27.776E	13Km	ML=5.1	659.0	7.4		260.0
04	AUG	04	14:18:	:52.01	36.861N	27.715E	7Km	ML=5.2	654.0	18.0		330.0
07	AUG	04	03:51:	:46.66	39.394N	20.406E	3Km	ML=3.5	83.0			70.0
07	AUG	04	22:08:	:22.61	42.315N	22.212E	10Km	ML=3.4	293.0	11.3		68.0
08	AUG	04	01:14:	:54.30	41.037N	20.282E	10Km	ML=3.3	161.0	12.1		67.0
08	AUG	04	02:33:	:21.81	41.151N	20.368E	10Km	ML=3.2	168.0	8.8		60.0
08	AUG	04	21:03:	:11.13	38.597N	20.483E	10Km	ML=2.7	147.0	5.7		32.0
09	AUG	04	04:39:	:32.89	34.813N	25.943E	46Km	ML=4.4	692.0	13.0	0.2	112.0
09	AUG	04	21:43	35.37	38.813N	20.379E	19Km	ML=	130.0	2.2	0.3	F0 0
09	AUG	04	22:09:	18.90	39.441N	20.691E	10Km	ML=3.1	60.0	23.5	0.2	50.0
09	AUG	04	22:15:	. 41 50	38.900N	20.610E	LUKM	ML=2.9	112.0	7.4	0.2	53.0
10	AUG	04	22.35.	·41.52	38.893N	21.796E	9KIII 10Km	ML=3.1	110.0	7.0	0.2	48.0
10	AUG	04	04.30.	· UU. / 6	38.032N	20.390E	14Km	ML=3.5	208.0	10.9	0.7	82.0
11	AUG	04	21.30.	·U3.01	39.904IN	20.050E	L4KIII EVm	ML=2.1	212 0	12.0	0.1	29.0
12	AUG	04	23.55.	· I / . 9I	20 256N	20.444E	20Km	ML=3.0	104 0	3.Z	0.6	40.0
12	AUG	04	14.28	· 20 40	38.230N	22.324E 21 107F	20Kiii 10Km	ML-3.0	112 0	20 0	0.5	40.0 Q1 0
12	AUG	04	14.20.	· 20.40	40 420N	21.19/E 21 902F	10Km	ML-3.4 MI-2 5	112.0	29.0	0.2	40 0
14	AUG	04	04.57	· 4 2 20	30 333M	21.093E	11Km	ML-2.5	54 0	6.6	0.5	26 0
14	AUG	01	01:37:	:25 16	40 179N	21.105E	10Km	ML=3 2	58.0	24 0	0.1	65 0
14	AUG	04	07:07:	:02 47	38 922N	21.001E	9Km	ML=3 1	110 0	5 7	0.2	41 0
14	AUG	04	21:58:	:15.30	38.150N	22.329E	10Km	ML=3.6	205.0	15.0	0.5	85.0
15	AUG	04	09:04:	:38.82	38.982N	21.927E	10Km	ML=3.1	107.0	7.6	0.1	55.0
15	AUG	04	10:06:	:16.15	39.003N	21.929E	10Km	ML=3.1	106.0	5.5	0.1	42.0
15	AUG	04	12:18:	:00.53	39.209N	21.892E	2Km	ML=2.6	86.0	6.4	0.1	23.0
15	AUG	04	23:23:	:51.32	38.399N	22.035E	10Km	ML=3.5	169.0	17.0	0.1	59.0
16	AUG	04	23:42:	:51.97	38.996N	21.903E	10Km	ML=2.4	105.0	2.9	0.1	24.0
17	AUG	04	02:32:	:41.27	39.132N	20.544E	10Km	ML=3.0	93.0	10.2	0.1	49.0
18	AUG	04	14:35:	:58.55	38.507N	21.965E	8Km	ML=3.8	155.0			130.0
18	AUG	04	14:39:	:02.29	38.540N	21.932E	9Km	ML=3.8	151.0			121.0
19	AUG	04	12:42:	:41.21	40.465N	21.527E	13Km	ML=2.8	80.0	15.3	0.1	27.0
19	AUG	04	17:53:	:27.21	36.637N	21.569E	20Km	ML=3.6	351.0	4.3	0.1	58.0
20	AUG	04	03:00:	:26.23	38.381N	22.696E	10Km	ML=2.8	201.0	2.9	0.1	37.0
20	AUG	04	11:12:	:20.96	36.512N	27.837E	28Km	ML=4.7	684.0	9.5	0.4	123.0
20	AUG	04	21:06:	:33.78	41.288N	20.176E	10Km	ML=3.3	189.0	4.3	0.1	38.0
21	AUG	04	12:54:	:06.21	40.748N	21.081E	9Km	ML=4.0	108.0			135.0
21	AUG	04	12:57:	:05.13	40.681N	21.044E	10Km	ML=2.8	101.0	10.7	0.2	41.0
21	AUG	04	18:46:	:00.67	40.001N	20.464E	2Km	ML=	70.0	5.4	0.2	21.0
22	AUG	04	03:36:	:51.15	39.240N	21.654E	11Km	ML=2.6	71.0			24.0
24	AUG	04	09:38:	:22.30	39.174N	21.599E	13Km	ML=3.4	75.0			95.0
24	AUG	04	12:42:	:58.54	38.713N	23.508E	9Km	ML=3.7	230.0	7.0	0.5	
25	AUG	04	01:17:	:26.98	39.277N	21.038E	10Km	ML=2.6	59.0	7.8		26.0

Yr	Мо	Da	Hr Mn S	Secs	Lat	Lon	Dep	М	Dist	Amp	Т	Dur
25	AUG	04	11:51:5	54.07	38.857N	21.702E	LOKm	ML=2.7	111.0	3.5	0.4	29.0
25	AUG	04	14:33:5	56.17	39.353N	20.824E	10Km	ML=2.4	59.0	7.2	0 0	26.0
25	AUG	04	21:34:3	32.16	40.123N	21.590E	10Km	ML=2.6	49.0	6.0	0.3	20.0
25	AUG	04	22:41:1	16.82	41.446N	19.625E	10Km	ML=3.5	229.0	5.0	0.5	120 0
20	AUG	04	10.41.5	10.85	38.700N	22.300E	1 2 Km	ML=4.0	152.0	7 5	0 1	130.0
20	AUG	04	11.25.5	21 20	20.722N	22.313E	11Km	ML=3.0	140 0	1.5	0.4	45.0
20	AUG	04	15.44.4	31.39	38.723N	22.28/E	11Km	ML=2.8	149.0			41 0
20	AUG	04	15.44.4	13.00	30.900N 41 541N	21.000E	10Km	ML=2.0 ML=2.5	224 0	5.5	0 2	41.0
27	AUG	04	10.00.1	17 17	41.341N 40 167N	19.703E 21 417F	10Km	ML-3.5	45 0	4.0	0.5	44 0
20	AUG	04	10:47:5	50 20	39 425N	21.417E 20 548F	10Km	ML=3.1	71 0	18 7		45 0
20	AUG	04	22:16:4	19 29	41 341N	19 499F	21Km	MI.=4 2	227 0	10.7		140 0
29	AUG	01	10:30:4	44 58	41 362N	19 566F	20Km	MI.= 3 1	227.0	36	05	49 0
29	AUG	04	17:48:0	10 23	40 813N	20 739E	3Km	ML=3.4	121 0	20 5	0.3	72 0
30	AUG	04	04:25:3	35 63	36 174N	20.799 <u>E</u> 21 698E	14Km	ML=3.9	403 0	5 0	0.3	97 0
30	AUG	04	12:38:0	18.29	36.516N	23.201E	1 Km	ML=3.3	402.0	1.0	0.5	27.0
30	AUG	04	14:06:0	07.69	39.319N	20.862E	3Km	ML=3.3	61.0	1.0		66.0
30	AUG	04	19:06:4	42.29	38.825N	21.160E	10Km	ML=3.8	107.0			110.0
31	AUG	04	09:51:4	49.03	38.920N	22.161E	6Km	ML=3.4	125.0	31.0		70.0
01	SEP	04	03:24:	56.65	40.772N	20.824E	10Km	ML=3.0	115.0	14.3	0.2	58.0
02	SEP	04	00:18:4	44.20	38.863N	21.139E	2Km	ML=2.1	103.0	1.0	0.2	0.0
02	SEP	04	03:20:1	15.58	40.788N	21.772E	5Km	ML=2.8	121.0	8.0	0.3	50.0
02	SEP	04	23:02:3	32.13	36.561N	22.244E	10Km	ML=3.4	369.0	1.5	0.4	0.0
03	SEP	04	12:10:5	59.63	36.386N	23.831E	20Km	ML=3.2	441.0	3.0	0.3	0.0
03	SEP	04	15:50:5	55.64	39.945N	23.388E	7Km	ML=2.7	186.0	1.8	0.5	0.0
03	SEP	04	22:15:3	35.44	39.107N	22.029E	10Km	ML=3.0	102.0	17.0	0.3	52.0
04	SEP	04	01:42:4	40.82	38.383N	21.611E	4Km	ML=3.1	159.0	5.0	0.5	45.0
04	SEP	04	09:53:5	58.04	39.303N	23.147E	9Km	ML=2.6	173.0	0.9		0.0
05	SEP	04	09:00:2	22.86	40.989N	20.429E	10Km	ML=2.7	150.0	2.6	0.3	0.0
06	SEP	04	07:47:2	26.00	38.819N	23.294E	11Km	ML=3.1	208.0	4.0	0.2	48.0
06	SEP	04	18:24:5	51.38	40.351N	19.983E	4Km	ML=2.9	123.0	4.3	0.2	43.0
07	SEP	04	02:23:2	25.67	38.078N	22.755E	20Km	ML=3.3	231.0	5.2	0.3	63.0
09	SEP	04	09:33:2	23.30	41.661N	20.329E	1Km	ML=3.7	222.0	11.4	0.4	97.0
09	SEP	04	14:52:2	25.76	38.631N	22.022E	20Km	ML=3.3	145.0	8.8	0.4	42.0
10	SEP	04	17:46:0	06.91	42.074N	24.837E	10Km	ML=4.1	396.0	4.0	0.4	121.0
10	SEP	04	20:34:2	24.60	38.498N	25.718E	10Km	ML=3.9	414.0	2.1	0.6	0.0
10	SEP	04	22:40:0	02.14	36.241N	21.585E	24Km	ML=3.5	395.0	2.8	0.5	82.0
11	SEP	04	05:16:4	49.95	38.869N	23.269E	4Km	ML=3.3	203.0	3.5	0.4	51.0
11	SEP	04	18:43:2	28.77	38.075N	22.298E	10Km	ML=3.1	211.0	4.2	0.4	54.0
12	SEP	04	09:16:2	25.10	38.133N	22.160E	20Km	ML=3.7	200.0	32.0	0.2	102.0
12	SEP	04	09:57:4	44.11	38.236N	22.382E	11Km	ML=3.5	199.0	14.2	0.3	72.0
12	SEP	04	10:42:4	43.86	39.148N	20.821E	10Km	ML=3.5	79.0			97.0
12	SEP	04	13:56:0	02.41	38.139N	22.115E	2Km	ML=3.1	198.0	7.0	0.4	60.0
12	SEP	04	16:41:2	20.66	39.163N	20.616E	2Km	ML=4.1	87.0			190.0
13	SEP	04	01:46:0	01.52	36.011N	22.081E	20Km	ML=3.6	425.0	2.0		46.0
13	SEP	04	22:40:5	54.09	39.159N	20.499E	10Km	ML=3.0	94.0	5.9		54.0
14	SEP	04	08:05:3	34.65	40.403N	21.903E	2Km	ML=2.8	89.0	3.3		34.0
14	SEP	04	21:23:1	12.74	38.499N	21.503E	бKm	ML=3.4	145.0	3.9		64.0
14	SEP	04	21:37:2	21.81	39.531N	20.379E	10Km	ML=3.7	78.0			125.0
16	SEP	04	00:01:0	05.52	39.768N	20.758E	11Km	ML=2.9	40.0	11.5		34.0
17	SEP	04	01:59:2	23.71	39.803N	20.690E	9Km	ML=	46.0	3.6		24.0
17	SEP	04	10:53:0	0.82	38.819N	21.611E	7Km	ML=2.9	112.0	4.2		47.0
17	SEP	04	16:45:0	09.54	39.502N	24.104E	8Km	ML=3.7	249.0	4.9		118.0
18	SEP	04	07:43:0	04.20	39.393N	21.941E	12Km	ML=2.9	75.0	5.0		37.0
19	SEP	04	09:25:2	21.25	38.916N	20.388E	12Km	ML=2.9	121.0	3.1		44.0
21	SEP	04	02:30:5	57.64	40.639N	20.764E	7Km	ML=3.1	103.0	6.		50.0
21	SEP	04	04:32:3	33.20	40.909N	20.179E	LOKM	ML=2.6	153.0	2.5		27.0
21	SEP	04	04:46:1	12.69	42.844N	18.154E	1Km	ML=4.0	426.0	3.		105.0
21	SEP	04	13:21:0	J9.12	40.004N	22.392E	8Km	ML=2.5	102.0	2.6		22.0
21	SEP	04	14:15:0	16.23	35.13UN	27.809E	20Km	ML=5.0	779.0	4.5		162.0
22	SEP	04	03:51:0	J2.00	40.480N	23.480E	2Km	ML=3.5	207.0	8.5		70.0
22	SEP	04	07:43:0	14.53	42.505N	21.6/9E	8KM	ML=3.8	304.0	з. эг		60.0
22	SEP	04	23.15.2	21.60	33.509N	24.05/E	10Km	ML=4.1	/35.0	3.5		88.0
23	SEP	04	21.31.0		39.23/N	20.00UE	10Kill	ML=2.7	226.0	0.5		32.0
∠4 24	SFL	04	00.28:0	JI.ZZ	42.224N	⊥0.0/4E 01 01/m	∠UKM 21/m	мт —	0.066	4.5 E 0		10.0
⊿4 2⊑	0 T T T T T T	04 07	11.11.1	14 EN	37.441N 35 410M	⊿⊥.3⊥4些 22 66⊑⊡	2012m	MT - 2 0	59.U 502 0	ວ.ປ ຈຳ		10.U 75 0
40 26	ਪਾਜ਼ਨ ਪਾਜ਼ਨ	04	U3·UE·U TT·T#·1	15 EN	28 270M	22.000E 24 107m	201.111 2012m	MT_4 2	202.0	35 0		195.0
20 26	SED	04	05:00.0	26 72	20 323M	21.19/E 21 610F	201\lli 7⊮m	MT.=2 1	505.0 50 A	55.0		10J.U 56 A
20 28	SED	04	01:50.2	28 22	42 4201	21 0205	10Km	MT.=2 9	294 0	95	0 5	50.0 67 0
20 20	SED	04	21:28.7	40 20	30 80em	21 9845	5Km	MT.= 2 /	2J1.0 65 0	2.5 4 5	0.5	20 0
20 20	SED	04	05:40.4	24 75	40 446M	21.904B 21 465F	16Km	MT.= 2 0	76 0	±.5 4 ∩	0 5	20.0 15 ∩
20	SED	04	16:16.0	16 23	40 1941	19 72 <i>4</i> m	5Km	MT.=	125 0	34 0	0.5	13.U 28 A
01	OCT OCT	04	02:13:3	36 66	40 167M	21 794F	10Km	MT.=2 8	±35.0 64 0	51.0	0.5	20.0 30 ∩
01	001 007	04	04:39.1	22.42	40 187M	21 8455	2 0 K m	MT.= 2.0	69.0	9 N	04	20 0
01	00T	04	20:52.4	49 79	39 417M	20 2425	10Km	MT.= 2 Q	94 0	9.5	0.5	34 0
03	OCT	04	00:47:2	25.33	39.787N	21.369E	9Km	ML=2.3	12.0	30.0	0.4	27.0
		~ -			• • • • • • •				-2.0		· · ·	0

Yr	Mo	Da	Hr Mn Secs	Lat	Lon	Dep	м	Dist	Amp	Т	Dur
				10 00000	~	4 5					
03	OCT	04	14:58:53.13	40.026N	21.447E	17Km	ML=2.4	33.0	10.5	0.5	19.0
03	OCT	04	17:15:35.34	41.203N	20.872E	10Km	ML=3.3	160.0	6.5	0.5	60.0
03	OCT	04	17:23:47.34	41.236N	20.978E	LOKM	ML=3.0	163.0	3.0		34.0
06	0CT	04	1/:39:36.//	39.051N	21.968E	6KM	ML=3.1	103.0	14.0		57.0
08	001	04	$01 \cdot 47 \cdot 29.59$	41.248N	21.204E	11Km	ML=2.9	162.0	3.5		42.0
12	001	04	10.11.06 67	41.240N	21.204E	1 0 Km	ML=2.9 ML=2.1	102.0	3.5	0 2	42.0
10	OCI	04	10.11.00.07	12 091N	20.702E	20Km	ML=3.1 MT=2.7	205 0	11.0	0.3	37.0
10 10	OCI	04	16.02.47 52	42.001N	19.4/2E	20Kill 9Km	ML=3.7	295.0	9.0	0.4	25 0
20	OCI	04	10.02.47.52	20 170N	20.508E	1 OKm	ML=2.7	86.0	10.0 2 F	0.3	22.0
20	001	04	02.14.05 62	20 572N	20.012E	10Km	ML-2.6	50.0	2.5	0.3	10 0
20	OCT	04	03.25.53 14	39.973N	20.019E	2 Km	ML-2.0	52 0	10 0	0.1	28 0
25	001	04	03:45:39 30	35 077N	20.020E	20Km	ML-4 1	523.0	11 6	0.5	60.0
25	OCT	04	01.09.43.07	39 686N	21.303E	201(iii 10Km	ML-3 0	78 0	15 0		45 0
26	OCT	01	01:11:09 84	39 636N	20.324E 20 414F	2Km	ML=3.3	72.0	35 0		95 0
26	OCT	04	02:33:38 57	39 680N	20.111E	10Km	ML=3 9	72.0	48 0		120 0
26	OCT	04	03:42:36.02	39.672N	20.384E	10Km	ML=3.2	73.0	11.8		0.0
26	OCT	04	04:37:10.36	39.712N	20.352E	10Km	ML=3.2	76.0	26.0		72.0
26	OCT	04	06:03:46.19	39.729N	20.249E	10Km	ML=3.0	84.0	23.0		65.0
26	OCT	04	10:01:46.24	39.630N	20.458E	10Km	ML=3.4	68.0	24.0		86.0
26	OCT	04	10:10:04.60	39.659N	20.417E	10Km	ML=3.4	71.0	26.0		80.0
26	OCT	04	20:39:18.28	39.674N	20.410E	1 K m	ML=3.3	71.0	17.0		95.0
27	OCT	04	22:49:26.34	40.168N	21.807E	10Km	ML=	65.0	6.1		42.0
2.8	OCT	04	19:12:47.65	39.815N	20.680E	1Km	ML=2.4	47.0	12.0		40.0
29	OCT	04	03:00:31.01	36.602N	21.802E	2.0Km	ML=3.8	357.0	4.5		130.0
2.9	OCT	04	15:58:38.79	37.682N	22.768E	2.2Km	ML=3.6	269.0	4.0		65.0
30	OCT	04	07:32:42.95	39.732N	20.740E	10Km	ML=3.0	42.0	20.7		0.0
01	NOV	04	00:52:45.99	40.419N	19.328E	10Km	ML=3.2	177.0	8.2	0.3	46.0
01	NOV	04	03:31:02.64	38.942N	21.322E	10Km	ML=2.8	94.0	5.7	0.3	30.0
09	NOV	04	11:16:53.65	39.887N	21.702E	7Km	ML=2.5	42.0	12.0		30.0
09	NOV	04	12:51:19.53	39.884N	21.678E	12Km	ML=2.9	40.0			32.0
10	NOV	04	11:12:42.35	40.146N	21.832E	13Km	ML=2.5	65.0	5.0		
11	NOV	04	10:29:06.11	39.411N	22.853E	10Km	ML=3.0	146.0	2.0		
11	NOV	04	13:32:04.49	39.002N	21.885E	10Km	ML=2.8	104.0	4.0		33.0
11	NOV	04	14:20:10.13	38.888N	21.878E	9Km	ML=2.6	114.0	3.0		
12	NOV	04	13:19:00.77	40.541N	21.465E	10Km	ML=2.6	86.0	4.0		
24	NOV	04	23:55:27.31	35.518N	22.673E	1Km	ML=4.1	490.0	14.0		116.0
26	NOV	04	20:04:43.14	35.535N	22.337E	20Km	ML=3.5	482.0	3.5		73.0
29	NOV	04	01:08:11.56	42.952N	15.568E	6Km	ML=4.7	590.0	6.0		160.0
29	NOV	04	02:46:33.67	40.427N	20.223E	1Km	ML=	111.0	5.0		50.0
29	NOV	04	06:23:55.78	37.018N	21.476E	20Km	ML=4.5	308.0			180.0
03	DEC	04	20:55:31.74	39.297N	21.409E	10Km	ML=2.9	56.0			40.0
04	DEC	04	19:36:22.45	39.983N	19.786E	10Km	ML=3.5	125.0			65.0
05	DEC	04	23:29:51.28	38.304N	21.841E	10Km	ML=3.4	173.0			80.0
06	DEC	04	02:01:18.83	38.416N	21.664E	1Km	ML=2.9	157.0	9.0		32.0
06	DEC	04	03:33:05.24	39.542N	20.589E	12Km	ML=2.4	61.0	4.1		20.0
06	DEC	04	05:23:58.28	39.292N	22.060E	бKm	ML=2.6	90.0	8.2		26.0
06	DEC	04	08:55:55.39	39.234N	22.035E	9Km	ML=2.6	92.0	4.8		26.0
06	DEC	04	10:43:25.76	39.207N	21.990E	14Km	ML=2.4	92.0	3.8		20.0
07	DEC	04	15:20:31.85	39.934N	19.519E	10Km	ML=2.6	147.0	56.0		31.0
07	DEC	04	22:37:28.08	38.178N	21.894E	10Km	ML=2.8	187.0	4.0		
11	DEC	04	17:51:47.42	39.485N	21.840E	10Km	ML=2.3	62.0	5.0		18.0
13	DEC	04	21:01:00.07	39.321N	20.531E	15Km	ML=3.2	79.0	17.0	0.4	50.0
14	DEC	04	04:48:14.18	40.051N	19.931E	10Km	ML=2.6	115.0	3.2	0.5	
14	DEC	04	09:52:38.12	42.085N	20.244E	14Km	ML=3.6	269.0	6.0	0.3	64.0
14	DEC	04	15:34:57.12	39.187N	23.627E	10Km	ML=3.3	217.0	5.4	0.5	65.0
14	DEC	04	21:35:30.53	40.233N	20.762E	10Km	ML=3.4	64.0			80.0
15	DEC	04	16:32:15.26	39.689N	20.359E	10Km	ML=3.3	75.0			72.0
15	DEC	04	16:35:29.41	39.714N	20.318E	10Km	ML=3.3	78.0			64.0
25	JAN	03	14:30:23.51	38.433N	21.610E	10Km	ML=2.9	154.0	14.0	0.5	83.0
01	FEB	03	01:58	38.350N	20.540E	24Km	ML=3.4		8.5	0.6	75.0
01	FEB	03	03:26	38.330N	22.000E	23Km	ML=3.2		9.5	0.5	56.0
01	FEB	03	11:08:54.93	37.770N	21.193E	5Km	ML=3.6	224.0	34.8	0.9	153.0
01	FEB	03	16:46:55.81	40.178N	21.707E	10km	ML=2.9	60.0	16.0	0.4	47.0
02	FEB	03	12:25:55.10	34.534N	26.234E	90Km	ML=4.3	730.0	19.1	0.3	145.0
02	FEB	03	13:11	38.450N	20.570E	3Km	ML=3.4		8.5	1.0	57.0
02	FEB	03	13:57	38.420N	20.490E	бKm	ML=3.1		4.0	-	40.0
02	FEB	03	22:23	39.020N	20.560E	5Km	ML=3.3		5.0	0.5	52.0
02	FEB	03	22:58	39.000N	20.430E	бKm	ML=3.1		3.5	-	27.0
03	FEB	03	06:41	38.280N	22.140E	5Km	ML=3.2		5.5	0.7	54.0
03	FEB	03	12:19:51.00	39.220N	21.740E	25Km	ML=3.3		45.0	0.2	95.0
05	FEB	03	00:13	38.370N	22.030E	13Km	ML=3.3		20.0	0.6	76.0
06	FEB	03	11:57	38.330N	22.350E	21Km	ML=3.0		4.5	0.6	47.0
06	FEB	03	13:44	36.730N	21.980E	31Km	ML=3.4		3.0	0.6	82.0
07	FEB	03	13:07	38.720N	22.790E	10Km	ML=3.2		7.5		44.0
07	FEB	03	15:03	37.170N	22.130E	4Km	ML=3.4		3.5		77.0
07	FEB	03	15:51:31.79	37.122N	22.380E	10km	ML=3.6	312.0	11.8	1.4	125.0

Yr	Мо	Da	Hr Mn Secs	Lat	Lon	Dep	М	Dist	Amp	Т	Dur
			1 - 00 11 11								
0.7	FEB	03	17:03:41.14	37.014N	22.354E	19Km	ML=3.9	340.0	21.0	0.8	166.0
08	FEB	03	05:48	40.110N	21.1/08	30Km	ML=3.2	270 0	6U.U	0 0	5/.0
09	FEB	03	19.00.20 12	30.393N	21.75UE	1 0 Km	ML=4.3	379.0	32.8	0.2	120 0
09	r LD r rd	03	22.12.56 90	41 027N	24.30/E 20 212F	1 Olem	ML=3.0 MI=2.2	270.0	9.0 10 E	0.5	120.0
10	FFB	03	00:00:30 73	39 203N	20.313E 26 220F	10Km	ML-3.2 ML-3.7	434 0	2 8	0.4	93.0
10		03	00:00:30.73	38 480M	20.2205	1 0 Km	ML-3 5	131.0	2.0 0 5	0.5	41 0
10	FFB	03	02:12	39 842N	20.710E 20.695F	10km	ML=3.5 ML=3.1	46 0	9.5	-	93 0
10	FFB	03	17:14	35 600N	26.670F	17Km	MT.=4 1	10.0	3 8	0 8	53.0
11	FEB	03	00:59:27 06	39 721N	20.070E	20Km	ML=3 0	56 0	44 0	-	65 0
12	FEB	03	14:27:04.83	39.152N	21.756E	2.0Km	ML=3.1	84.0	-	_	90.0
13	FEB	03	20:19	40.340N	21.070E	3Km	ML=3.1	0110	11.0	0.3	40.0
14	FEB	03	01:11	39.520N	20.680E	5Km	ML=3.1		6.0	_	24.0
14	FEB	03	15:29	38.190N	20.280E	5Km	ML=3.5		7.5	0.4	72.0
15	FEB	03	14:04:03.57	37.435N	21.700E	10km	ML=3.3	264.0	13.5	0.2	92.0
15	FEB	03	19:49:27.60	40.099N	21.331E	10Km	ML=2.7	36.0	-	-	69.0
18	FEB	03	08:02:34.17	41.147N	20.259E	3Km	ML=3.2	172.0	19.0	-	89.0
19	FEB	03	02:20:01.31	41.012N	20.280E	10km	ML=3.1		15.0	0.3	80.0
20	FEB	03	00:35:59.14	40.274N	20.621E	10km	ML=2.6	75.0	28.5	0.2	41.0
20	FEB	03	08:41:03.61	39.478N	23.559E	8Km	ML=3.1	203.0	7.0	-	76.0
20	FEB	03	08:51:58.11	39.489N	23.568E	10Km	ML=3.6	203.0	34.5	-	140.0
20	FEB	03	17:33:16.30	40.935N	19.963E	5Km	ML=3.3	167.0	56.0	-	115.0
21	FEB	03	22:18	40.030N	21.280E	17Km	ML=3.1		54.0	0.3	43.0
21	FEB	03	22:20	40.020N	21.290E	18Km	ML=3.1		61.0	0.3	43.0
24	FEB	03	02:59	38.570N	21.940E	17Km	ML=3.1		3.0	0.2	31.0
24	FEB	03	04:52:10.02	39.228N	22.237E	81Km	ML=3.1	106.0	48.0		62.0
24	FEB	03	15:13	38.670N	20.580E	8Km	ML=3.6		36.0	0.3	80.0
26	FEB	03	10:35	37.640N	21.740E	13Km	ML=3.4		5.0	0.2	65.0
28	FEB	03	00:44	38.400N	21.870E	16Km	ML=3.1		7.0	0.2	45.0
01	MAR	03	04:07	35.020N	23.790E	19Km	ML=4.5		11.6	0.7	218.0
03	MAR	03	22:49:18.91	39.329N	20.333E	10km	ML=3.2	78.0	17.0	0.1	78.0
05	MAR	03	02:12	38.860N	20.550E	30Km	ML=3.2	== 0	11.0	0.1	81.0
07	MAR	03	08:03:29.38	40.448N	21.043E	18Km	ML=3.5	75.0			125.0
07	MAR	03	08:07:28.97	40.428N	20.979E	17Km	ML=3.4	74.0		1 0	117.0
07	MAR	03	17:28:18.26	39.001N	23.376E	14Km	ML=3.2	110 0	8.2	1.0	67.0
09	MAR	03	02:28:17.44	38.923N	20.588E	10km	ML=2.8	110.0	6.0	0.1	55.0
09	MAR	03	04:40:18.57	40.392N	21.206E	10Km	ML=2.7	67.0	19.0	0.1	52.0
09	MAR	03	06:41:37.35	40.3/8N	21.085E	101mm	ML=3.2	67.0	7 0	0 1	97.0
09	MAR	03	10.52.46 07	40.372N	21.125E 22 040E	21/m	ML=2.4 MI=2.5	00.0	12 5	0.1	41.0
10	MAR	03	19.55.40.07	27 760N	22.040E	1 Olem	ML=2.5 MT=2.4	220 0	13.5	0.1	41.0
10	MAR	03	09.10.03.01	20 910M	21.000E	L U KIII	ML-3.4 MI-2.2	220.0	52 0	0.4	102.0
10	MAR	03	22:47	39.810N	21.000E 24 051F	21 Km	ML-3.2 ML-2.9		4 5	0.1	46 0
11	MAR	03	04:17:23 20	39 270N	24.001E	1.2Km	ML=2.5	57 0	12 0	0.5	34 0
21	ADR	03	19:21:20 39	39 254N	20 539E	10Km	ML=2.7	84 0	95		56.0
23	APR	03	09:28	37.130N	22.160E	10Km	ML=3.4	0110	2.5		74.0
2.4	APR	03	23:44:01.07	38.700N	22.687E	10Km	ML=3.7	174.0	61.0		151.0
2.6	APR	03	01:11:38.92	41.638N	20.070E	5Km	ML=	228.0	3.0		50.0
27	APR	03	10:36	37.880N	20.980E	5Km	ML=3.4	22010	4.2		53.0
28	APR	03	21:31:49.69	38.373N	22.576E	10Km	ML=3.2	195.0	18.0		93.0
29	APR	03	01:51:24.71	37.047N	22.049E	20Km	ML=4.6	312.0			332.0
11	MAY	03	06:18:37.89	39.532N	20.464E	3Km	ML=2.9	71.0	46.0		65.0
11	MAY	03	16:04:46.47	39.072N	21.776E	17Km	ML=3.0	92.0			86.0
13	MAY	03	19:46:58.60	39.914N	22.484E	12Km	ML=2.6		11.5		44.0
14	MAY	03	18:55:33.32	38.403N	21.903E	5Km	ML=3.0		9.0		56.0
21	MAY	03	04:53:28.69	40.869N	19.666E	21Km	ML=3.0	179.0	10.0	0.3	57.0
21	MAY	03	05:00:00.74	39.362N	20.555E	10Km	ML=2.7		15.0	0.3	57.0
24	MAY	03	10:17:52.22	38.999N	22.383E	12Km	ML=2.9		22.0	0.3	70.0
28	MAY	03	00:21:02.35	38.774N	22.589E	15Km	ML=2.6		6.0	0.2	44.0
28	MAY	03	04:57:36.85	36.340N	23.170E	80Km	ML=4.0	418.0	0.0	0.0	136.0
29	MAY	03	11:38:10.22	39.426N	20.441E	3Km	ML=3.9	78.0	0.0	0.0	225.0
29	MAY	03	15:12:59.25	39.463N	20.446E	10Km	ML=2.7	76.0	18.0	0.3	56.0
29	MAY	03	20:16:17.01	39.739N	20.435E	4Km	ML=3.6	68.0	0.0	0.0	170.0
30	MAY	03	22:02:55.52	39.214N	21.473E	12Km	ML=2.7	67.0	30.0	0.2	50.0
01	JUN	03	15:45:21.72	41.832N	14.913E	134Km	ML=4.5		14.3	0.5	178.0
04	JUN	03	05:01:25.39	38.862N	22.663E	20Km	ML=2.4		6.5	0.6	45.0
06	JUN	03	10:05:25.50	40.166N	21.679E	⊥0Km	ML=2.4		8.2	0.3	40.0
08	JUN	03	17:27:30.96	40.745N	21.617E	⊥0Km	ML=2.6	112.0	31.0	0.3	59.0
09	JUN	03	07:06:42.25	39.941N	22.416E	16Km	ML=4.6	85.0	0 F	0 0	410.0
09	JUN	03	07:19:47.16	39.915N	22.429E	8KM	ML=2.5	100.0	9.5	0.3	37.0
09	JUN	03	07:28:00.09	39.954N	22.431E	11Km	MT 2 5	105.0	10.3	0.3	51.0
09	UUN	03 07	07:30:21.70	39.943N	22.429E	∠K.M	ML=2.5	T00.0			49.0
09	UUN	03 07	00.14.44 72	39.958N	∠∠.449E	6KM	MT - 2 С	95.0	c -	0 7	04.0
09		03	UD·14·44./3	30 0EJM	∠3.392E 22 274戸	∠UKIII 1112m	0.6=цім мт – С	00 0	5.5	0./	01.U 27 0
10	TITT.	03	11:54.38 00	40 1932N	22.3/HE 21 6065	10Km	MT2.3	52.U 60 0	0.0	0.5	81 O
10	TIIN	03	15:40:25 62	38 551M	20 4505	10Km	MT.=2 9	160.0	7 0	06	68 0
τU	0.014	0.0	TO. TO. 20.02	11. C . D C IN	20.1000			100.0	1.4	0.0	00.0

Yr	Mo	Da	Hr Mn Secs	Lat	Lon	Dep	М	Dist	Amp	Т	Dur
16	JUN	03	08:27:57.24	37.813N	20.030E	20Km	ML=4.3	242.0	58.		240.0
21	JUN	03	03:29:22.88	38.744N	23.616E	14Km	ML=3.2	236.0	7.5	0.5	87.0
22	JUN	03	14:04:38.59	38.403N	21.909E	5Km	ML=2.8	164.0	8.0	-	50.0
22	JUN	03	21:27:42.42	39.380N	20.721E	47Km	ML=3.1	63.0	65.0	-	72.0
22	JUN	03	23:46:17.48	38.900N	28.317E	10Km	ML=4.3	618.0	4.2	-	172.0
26	JUN	03	13:46:00.07	38.682N	23.682E	15Km	ML=4.1	244.0	56.0	-	206.0
26	JUN	03	13:51:46.34	38.723N	23.654E	20Km	ML=3.2	240.0	8.5	-	80.0
26	JUN	03	14:23:38.14	38.666N	23.726E	20Km	ML=2.6	249.0	2.6	-	43.0
26	JUN	03	18:31:37.62	39.856N	20.618E	1Km	ML=2.5	53.0	18.0	-	44.0
30	JUN	03	19:28:33.66	38.537N	20.393E	20Km	ML=3.0	156.0	10.5	0.6	83.0
01	JUL	03	01:28	39.330N	20.850E	10Km	ML=2.8		3.1	0.0	22.0
01	JUL	03	06:22:53.58	38.755N	23.664E	17Km	ML=3.8	239.0	-	-	178.0
03	JUL	03	01:02:57.81	40.083N	21.796E	10Km	ML=2.6	59.0	31.0	-	59.0
03	JUL	03	11:22:41.27	39.629N	20.349E	10Km	ML=2.7		25.0	-	45.0
04	JUL	03	03:24:40.17	38.725N	23.628E	17Km	ML=3.5		12.1	-	120.0
04	JUL	03	09:07:42.67	39.990N	19.777E	10Km	ML=3.6	126.0	-	-	121.0
06	JUL	03	17:07:51.15	39.371N	21.481E	10Km	ML=2.3		9.0	-	23.0
06	JUL	03	19:10:27.61	40.376N	26.254E	20Km	ML=5.0		-	-	478.0
06	JUL	03	22:42:08.75	40.357N	26.124E	20Km	ML=4.2		11.0	-	185.0
08	JUL	03	17:47:33.60	39.230N	22.416E	12Km	ML=2.8		39.0	-	75.0
08	JUL	03	18:27	38.240N	21.560E	18Km	ML=3.3		7.6	-	45.0
09	JUL	03	22:01:58.34	40.411N	25.899E	13Km	ML=3.8		6.8	-	124.0
09	JUL	03	22:08:49.41	40.344N	26.074E	20Km	ML=3.6		2.5	-	90.0
09	JUL	03	22:31:41.22	40.354N	25.930E	18Km	ML=4.5		31.0	0.8	243.0
10	JUL	03	01:26:17.94	40.334N	26.034E	20Km	ML=4.1		6.6	0.6	157.0
10	JUL	03	06:58:47.90	41.112N	20.332E	12Km	ML=3.2		34.0	-	90.0
10	JUL	03	08:53:20.37	38.709N	22.529E	1Km	ML=2.4		5.0	-	32.0
18	JUL	03	01:43:23.09	39.713N	20.375E	10Km	ML=3.1	74.0			90.0
23	JUL	03	09:53:29.25	41.140N	20.256E	10Km	ML=3.0		18.0		72.0
24	JUL	03	10:31:24.21	38.117N	22.422E	13Km	ML=3.2		15.0		107.0
25	JUL	03	02:07:31.17	38.948N	21.208E	10Km	ML=2.7		15.0		56.0
25	JUL	03	02:10:51.53	38.940N	21.230E	10Km	ML=2.6		12.0		52.0
09	NOV	03	21:24:38.80	38.926N	22.437E	10Km	ML=2.7	141.0			57.0
25	DEC	03	15:50	37.740N	21.620E	14Km	ML=3.2		5.5	0.1	70.0
25	DEC	03	16:04	37.660N	21.510E	10Km	ML=3.1		18.0	0.2	35.0
26	DEC	03	14:22	37.770N	21.680E	5Km	ML=3.3		7.0	0.2	75.0
26	DEC	03	19:29	38.300N	20.520E	16Km	ML=3.6		4.0	0.2	75.0
27	DEC	03	07:36	37.320N	20.380E	10Km	ML=3.7		6.5	0.1	30.0
27	DEC	03	10:45	38.490N	20.560E	4Km	ML=3.5		13.6	0.2	52.0
29	DEC	03	19:29	36.050N	22.000E	5Km	ML=3.7		2.0		
30	DEC	03	07:11	39.660N	20.840E	5Km	ML=3.0		16.4	0.1	35.0
31	DEC	03	21:35	38.360N	21.700E	38Km	ML=3.2		3.2	0.1	40.0

Τα δεδομένα αυτά στη συνέχεια για την καλύτερη και ευκολότερη χρήση τους για τον υπολογισμό των μεγεθών M_a και M_d χωρίστηκαν στα ακόλουθα 4 ζεύγη δεδομένων :

- i. Ένα ζεύγος δεδομένων για επικεντρικές αποστάσεις (Distance) Δ > 100 km που περιελάμβανε τιμές πλατών καταγραφής (A) και επικεντρικών αποστάσεων.
- ii. Ένα ζεύγος δεδομένων για επικεντρικές αποστάσεις (Distance) $\Delta \leq 100$ km που περιελάμβανε επίσης τιμές πλατών καταγραφής (A) και επικεντρικών αποστάσεων.
- iii. Ένα ζεύγος δεδομένων για επικεντρικές αποστάσεις (Distance) Δ > 100 km που περιελάμβανε τιμές διάρκειας καταγραφής (Duration) και επικεντρικών αποστάσεων.
- iv. Ένα ζεύγος δεδομένων για επικεντρικές αποστάσεις (Distance) $\Delta \leq 100$ km που περιελάμβανε επίσης τιμές διάρκειας καταγραφής (Duration) και επικεντρικών αποστάσεων.

Ο διαχωρισμός αυτός έγινε για να βαθμολογηθούν οι σχέσεις καθορισμού μεγέθους από τις καταγραφές του σταθμού του Μετσόβου ακολουθώντας τη διάκριση των σχέσεων (και επομένως των αποσβέσεων των κυμάτων) όπως αυτή έγινε σε προηγούμενες εργασίες (Κυρατζή 1984, Σκορδύλης 1985).

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΣΧΕΣΕΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΜΕΓΕΘΩΝ

Στο κεφάλαιο αυτό γίνεται επεξεργασία των δεδομένων. Μετά την επιλογή του κατάλληλου μοντέλου καθορίζονται οι συντελεστές και οι σταθερές των σχέσεων για τον υπολογισμό μεγεθών από τις καταγραφές του σταθμού MEV.

5.1 Σχέση περιόδου με το μέγεθος και την επικεντρική απόσταση

Ύστερα από την συλλογή των δεδομένων έγινε προσπάθεια για την εύρεση πιθανής συσχέτισης της περιόδου T με το μέγεθος σεισμού M_L αλλά και με την επικεντρική απόσταση Δ για δύο διαφορετικές περιπτώσεις :

1) Για επικεντρικές αποστάσεις $\Delta > 100 \text{ km}$

2) Για επικεντρικές αποστάσεις $\Delta \leq 100 \; \rm km$

Προέκυψαν τα διαγράμματα που δίνονται στα σχήματα 5.1, 5.2, 5.3 & 5.4. Από τα διαγράμματα αυτά δεν προκύπτει σαφής συσχέτιση μεταξύ Τ και Δ ή Τ και Μ γεγονός που μάλλον οφείλεται και στην έλλειψη ακρίβειας κατά την μέτρηση των περιόδων. Κάτι τέτοιο ήταν εξάλλου αναμενόμενο δεδομένου ότι ακριβείς μετρήσεις περιόδων της τάξης των μερικών δεκάτων του δευτερολέπτου από αναλογικές καταγραφές δεν είναι δυνατόν να επιτευχθούν. Ενδεικτικές σχέσεις θα μπορούσαν ίσως να προκύψουν από πολύ μεγάλο πλήθος παρατηρήσεων που όμως δεν διαθέταμε. Για το λόγο αυτό υιοθετήσαμε τις σχέσεις εξάρτησης Τ, M_L από προηγούμενες εργασίες (Κυρατζή 1984, Σκορδύλης 1985) που δίνονται από τις σχέσεις (5.1) και (5.2).

$$T = 0.186 \cdot M_{\rm L} - 0.08, \gamma ι α \Delta > 100 \text{ km}$$
(5.1)

$$T = 0.02 \cdot M_L + 0.23$$
, για Δ ≤ 100 km (5.2)

Σχήμα 5.1 - Γραφική παράσταση που παρουσιάζει την μεταβολή της περιόδου σε συνάρτηση με το μέγεθος για Δ > 100 km.

Σχήμα 5.2 - Γραφική παράσταση που παρουσιάζει την μεταβολή της περιόδου σε συνάρτηση με το μέγεθος για Δ ≤ 100 km.

Βιβλιοθήκη "Θεόφραστο τη Τμήμα Γεωλογίας - Α.Π.Θ.

Σχήμα 5.3 - Γραφική παράσταση που παρουσιάζει την μεταβολή της περιόδου σε συνάρτηση με την επικεντρική απόσταση για Δ > 100 km.

Σχήμα 5.4 - Γραφική παράσταση που παρουσιάζει την μεταβολή της περιόδου σε συνάρτηση με την επικεντρική απόσταση για $\Delta \leq 100$ km.

Βιβλιοθήκη "Θεόφραστο 4^2 Τμήμα Γεωλογίας - Α.Π.Θ.

5.2 Υπολογισμός των σταθερών $c_{\alpha 1}$, $c_{\alpha 2}$ και $c_{d 1}$, $c_{d 2}$

Όπως είχαμε αναφέρει και στο κεφάλαιο 3, στις σχέσεις (3.12, 3.13, 3.14, 3.15) που ισχύουν για τον υπολογισμό του τοπικού μεγέθους που προέκυψαν από τις καταγραφές των σταθμών του τηλεμετρικού σεισμολογικού δικτύου του Α.Π.Θ, εμφανίζονται και οι σταθερές των σταθμών και σχετίζονται με τη δομή της γης κάτω από τον κάθε σταθμό. Στην παρούσα εργασία θεωρούμε ότι ισχύει ο ίδιος συντελεστής απόσβεσης για το εγγύς και το μακρινό πεδίο που ισχύει και για τις θέσεις των υπολοίπων σταθμών του δικτύου. Μετά την παραδοχή αυτή απομένει να καθορίσουμε τις τιμές των σταθερών $c_{\alpha 1}$, $c_{\alpha 2}$, $c_{d 1}$, και $c_{d 2}$ που ισχύουν για το σταθμό του MEV.

Για τον υπολογισμό αυτών των σταθερών χρησιμοποιήθηκε ένα πρόγραμμα Fortran το οποίο με τις κατάλληλες θεωρητικές σχέσεις που ήδη γνωρίζουμε επεξεργάζεται τα δεδομένα παρατήρησης και καταλήγει στις τιμές των σταθερών. Στο πρόγραμμα αυτό ουσιαστικά γίνεται «εισαγωγή» ενός αρχείου δεδομένων και αφού το επεξεργαστεί καταλήγει στο να «εξάγει» ένα άλλο αρχείο. Έτσι για την καλύτερη και γρηγορότερη επεξεργασία του «εισαγόμενου» αρχείου χωρίσαμε τα δεδομένα παρατήρησής μας, δηλαδή τις καταγραφές των σεισμών που παραθέσαμε στις προηγούμενες σελίδες, σε καταγραφές που έχουν τιμές των πλατών, των διαρκειών καταγραφής αλλά και των επικεντρικών αποστάσεων τόσο για $\Delta > 100$ km όσο και για $\Delta \le 100$ km.

Παρακάτω θα αναπτύξουμε αναλυτικά τον τρόπο υπολογισμού των σταθερών αυτών ξεχωριστά για την κάθε μία.

5.2.1 Υπολογισμός των $c_{\alpha 1}$, $c_{\alpha 2}$

Οι σχέσεις που χρησιμοποιούνται για τον καθορισμό των σταθερών από τις καταγραφές κάθε ενός σεισμού είναι οι εξής:

$$c_{\alpha 1} = M_{\alpha} - \log \alpha - 2,32 \log \Delta + 1,07$$

T = 0,186 · M_L - 0,08

$$c_{\alpha 2} = M_{\alpha} - \log \alpha - 1,199 \log \Delta - 1,268$$
(5.5)

$$T = 0,02 \cdot M_{L} + 0,23$$
(5.6)

όπου, α το εδαφικό πλάτος σε μ
m και Δ η επικεντρική απόσταση σε km.

$$V=1548817 \cdot (T^{0.72}) / \text{al}, \gamma \iota \alpha T \leq 0.1$$

$$V=38726 \cdot (T^{(-0.83)}) / \text{al}, \gamma \iota \alpha 0.1 \leq T < 1$$

$$V=38019 \cdot (T^{(-3.32)}) / \text{al}, \gamma \iota \alpha 1 \leq T \leq 5$$

$$a=A \cdot 1000 / V, \text{ ópicu A to plattice}$$

$$(5.7)$$

$$(5.8)$$

$$T \text{ observed a constraint of the second second$$

όπου, V η πραγματική μεγέθυνση, T η περίοδος που αντιστοιχεί στο μέγιστο πλάτος αναγραφής και al σταθερά που ανάγει τη μεγέθυνση στα db του κάθε σταθμού.

Έτσι λοιπόν μετά από το τέλος της επεξεργασίας προέκυψαν τα ακόλουθα ιστογράμματα :

Fit 1: Normal Number of data points used = 263 Average X = 0.437882 Standard Deviation = 0.356155

Σχήμα 5.5 – Ιστόγραμμα των τιμών c_{α} και θεωρητική καμπύλη Gauss για $\Delta > 100$ km.

Fit Results

Σχήμα 5.6 – Ιστόγραμμα των τιμών c_{α} και θεωρητική καμπύλη Gauss για $\Delta \leq 100$ km.

Από τα ιστογράμματα αυτά (σχήματα 5.5&5.6) προέκυψαν οι μέσες τιμές των σταθερών καθώς και οι αντίστοιχες τυπικές αποκλίσεις (SD) που είναι οι εξής:

$$c_{a1} = 0,437882$$

 $SD = 0,356155$
(5.11)
 $c_{a2} = 0,674983$
 $SD = 0,278524$

Ως γνωστόν για να ορίσουμε διάστημα εμπιστοσύνης 95% πρέπει να περιορίσουμε τις τιμές του στατιστικού δείγματος κατά ± 1,96 · SD γύρω από τη μέση τιμή. Έτσι, θεωρήσαμε ως νέα όρια τιμών (~ ± 2,0 · SD) τα εξής:

$$c_{a1} - (2*SD) = -0,274428$$

$$c_{a1} + (2*SD) = 1,150192$$

$$c_{a2} - (2*SD) = 0,117935$$

$$c_{a2} + (2*SD) = 1,232031$$
(5.12)

Κατασκευάστηκαν έτσι νέα ιστογράμματα (σχήματα 5.7&5.8) για τα παραπάνω διαστήματα τιμών και υπολογίστηκαν και πάλι οι μέσες τιμές και οι αντίστοιχες τυπικές αποκλίσεις.

Fit 1: Normal Number of data points used = 251 Average X = 0.433299 Standard Deviation = 0.298155

Σχήμα 5.7 - Ιστόγραμμα των τιμών c_a και θεωρητική καμπύλη Gauss μετά την εφαρμογή διαστήματος εμπιστοσύνης 95% για Δ > 100 km.

Σχήμα 5.8 – Ιστόγραμμα των τιμών c_a και θεωρητική καμπύλη Gauss μετά την εφαρμογή διαστήματος εμπιστοσύνης 95% για $\Delta \leq 100$ km.

Από τα ιστογράμματα αυτά προέκυψε ότι :

Για Δ > 100 km
 Mέση τιμή
$$c_{\alpha 1} = 0,433299$$
 (5.13)

 SD = 0,298155
 Γ ια Δ ≤ 100 km
 (5.14)

 Μέση τιμή $c_{\alpha 2} = 0,673821$
 (5.14)

Συνεπώς οι σχέσεις που προκύπτουν για τον υπολογισμό τοπικού μεγέθους με τη χρήση εδαφικού πλάτους για επικεντρικές αποστάσεις $\Delta > 100$ km και $\Delta \le 100$ km είναι οι εξής :

$$M_{\alpha} = \log \alpha + 2,32 \log \Delta - 1,07 + 0,433, \gamma \iota \alpha \Delta > 100 \text{ km}$$

$$M_{\alpha} = \log \alpha + 1,199 \log \Delta + 1,268 + 0,674, \gamma \iota \alpha \Delta \le 100 \text{ km}$$
(5.16)

5.2.2 Υπολογισμός των c_{d1} , c_{d2}

Όπως και για τον υπολογισμό των σταθερών $c_{\alpha 1}$, $c_{\alpha 2}$ έτσι και για τον υπολογισμό των $c_{d 1}$, $c_{d 2}$ χρησιμοποιήθηκαν κάποιες σχέσεις (5.4, 5.6, 5.7, 5.8, 5.9, 5.10) που μας είναι ήδη γνωστές και έχουν αναφερθεί στην παράγραφο 5.2.1. Οι τύποι λοιπόν που χρησιμοποιήθηκαν για τον υπολογισμό των σταθερών με βάση την διάρκεια καταγραφής σήματος είναι οι εξής :

$$\mathbf{c}_{d1} = \mathbf{M}_{d} - 1,97 \cdot \log (\mathrm{Dur}) - 0,0012 \cdot \mathrm{Dist}$$

$$\left\{ \begin{array}{l} \Gamma\iota\alpha \ \Delta > 100 \ \mathrm{km} \\ (\kappa\alpha\iota \ \Delta \neq 0) \end{array} \right.$$

$$\mathbf{c}_{d2} = \mathbf{M}_{d} - 2,14 \cdot \log (\mathrm{Dur}) - 0,0038 \cdot \mathrm{Dist}$$

$$\left\{ \begin{array}{l} \Gamma\iota\alpha \ \Delta \le 100 \ \mathrm{km} \\ (\kappa\alpha\iota \ \Delta \neq 0) \end{array} \right.$$

$$\left. \begin{array}{l} (5.17) \\ (\kappa\alpha\iota \ \Delta \neq 0) \end{array} \right.$$

Έτσι λοιπόν μετά τον υπολογισμό των σταθερών με βάση τους παραπάνω τύπους προέκυψαν τα ιστογράμματα που παρατίθενται ακολούθως :

Σχήμα 5.9 – Ιστόγραμμα των τιμών c_d και θεωρητική καμπύλη Gauss για $\Delta > 100$ km.

Σχήμα 5.10 - Ιστόγραμμα των τιμών c_d και θεωρητική καμπύλη Gauss για $\Delta \leq 100$ km.

Από τα ιστογράμματα αυτά (σχήματα 5.9&5.10) προέκυψαν οι μέσες τιμές των σταθερών καθώς και οι αντίστοιχες τυπικές αποκλίσεις (SD) που είναι οι εξής:

$$c_{d1} = -0,469963$$

SD = 0,226916
$$c_{d2} = -0,870161$$

SD = 0,275742
(5.19)

Όπως αναφέρθηκε και παραπάνω για να ορίσουμε διάστημα εμπιστοσύνης 95% πρέπει να περιορίσουμε τις τιμές του στατιστικού δείγματος κατά \pm 1,96 · SD γύρω από τη μέση τιμή.

Έτσι λοιπόν θεωρήσαμε ως νέα όρια τιμών (~ \pm 2,0 \cdot SD) τα εξής:

$$c_{d1} - (2*SD) = -0.923795$$

$$c_{d1} + (2*SD) = 0.016131$$

$$c_{d2} - (2*SD) = -1.421645$$

$$c_{d2} + (2*SD) = -0.318677$$
(5.20)

Κατασκευάστηκαν νέα ιστογράμματα (σχήματα 5.11&5.12) για τα παραπάνω διαστήματα τιμών και υπολογίστηκαν και πάλι οι μέσες τιμές και οι αντίστοιχες τυπικές αποκλίσεις.

Σχήμα 5.11 – Ιστόγραμμα των τιμών c_d και θεωρητική καμπύλη Gauss μετά την εφαρμογή διαστήματος εμπιστοσύνης 95% για Δ > 100 km.

Σχήμα 5.12 – Ιστόγραμμα των τιμών c_d και θεωρητική καμπύλη Gauss μετά την εφαρμογή διαστήματος εμπιστοσύνης 95% για $\Delta \leq 100$ km.

Από τα ιστογράμματα αυτά προέκυψαν τα εξής :

Για
$$\Delta > 100 \text{ km}$$

Μέση τιμή c_{d1} = -0,467996
SD = 0,199157
(5.21)

$$\begin{aligned}
 Γτα Δ ≤ 100 km \\
 Μέση τιμή cd2 = -0,875202
 SD = 0,255378
 (5.22)
 SD = 0,255378
 SD = 0,25578
 SD = 0,25578
 SD = 0,25578$$

Συνεπώς οι σχέσεις που προκύπτουν για τον υπολογισμό τοπικού μεγέθους από την διάρκεια καταγραφής (Duration) για επικεντρικές αποστάσεις $\Delta > 100$ km και $\Delta \le 100$ km είναι οι εξής :

$$M_{d} = 1,97 \cdot \log (Dur) + 0,0012 \cdot (Dist) - 0,468, \gamma \iota \alpha \Delta > 100 \text{ km}$$
(5.23)

$$M_d = 2,14 \cdot \log (Dur) + 0,0038 \cdot (Dist) - 0,875$$
, για Δ ≤ 100 km (5.24)

ΑΞΙΟΛΟΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Αντικείμενο αυτού του κεφαλαίου είναι ο έλεγχος της αξιοπιστίας των αποτελεσμάτων που προκύπτουν για τα μεγέθη σεισμών από την αποκλειστική χρήση των καταγραφών του MEV και η σύγκρισή τους με τιμές μεγεθών που ήδη έχουν μετρηθεί από άλλους σεισμολογικούς σταθμούς εκτός του Μετσόβου. Συνεπώς σε αυτό το κεφάλαιο θα εξετάσουμε αν ο σεισμολογικός σταθμός του Μετσόβου, με την εφαρμογή των σχέσεων που καθορίστηκαν στην παρούσα εργασία, δίνει ακριβείς μετρήσεις για τα μεγέθη σεισμών.

6.1 Αξιολόγηση των μεγεθών M_{α} , M_{d} & $M_{F.}$

Για την αξιολόγηση των μεγεθών που προκύπτουν από τις καταγραφές του σταθμού του MEV θα χρησιμοποιήσουμε τόσο τα M_a και M_d που προκύπτουν από την αποκλειστική χρήση των πλατών και διαρκειών καταγραφής στο σταθμό αυτό όσο και το M_F που αποτελεί το μέσο όρο των δύο παραπάνω μεγεθών.

Ενδεικτικό της αξιοπιστίας των μεγεθών αυτών είναι και η συχνότητα κατανομής των διαφορών ΔM_{α} , ΔM_{d} και ΔM_{F} των μεγεθών M_{α} , M_{d} και M_{F} από τα μεγέθη M_{L} τα οποία προκύπτουν από τις μετρήσεις όλων των άλλων διαθέσιμων σεισμολογικών σταθμών (πλην του MEV).

Ο έλεγχος θα γίνει με 2 τρόπους :

- Με την κατασκευή διαγραμμάτων (line scatter), τόσο για Δ >100 km όσο και για Δ≤100 km, που θα παρουσιάζουν την σχέση που έχουν τα μεγέθη M_α, M_d, M_F, σε συνάρτηση με τα μεγέθη M_L που ήδη μας είναι γνωστά από άλλους σεισμολογικούς σταθμούς.
- $Mε την κατασκευή ιστογραμμάτων <math>\Delta M_{\alpha}$, ΔM_{d} , ΔM_{F} , τόσο για $\Delta > 100$ km όσο και για $\Delta \leq 100$ km.

Παρακάτω παρατίθενται αυτά τα διαγράμματα και ιστογράμματα που θα μας οδηγήσουν στην αξιολόγηση των μεγεθών σεισμών που προέκυψαν από τις μετρήσεις αναγραφών του σεισμολογικού σταθμού του Μετσόβου (MEV).

Σχήμα 6.1 - Γραφική παράσταση που παρουσιάζει την συσχέτιση των μεγεθών όπως υπολογίστηκαν από τις καταγραφές του σταθμού του Μετσόβου με βάση το πλάτος, σε συνάρτηση με τα μεγέθη όπως αυτά έχουν υπολογιστεί από τις καταγραφές άλλων σταθμών, για Δ > 100 km.

Σχήμα 6.2 - Γραφική παράσταση που παρουσιάζει την συσχέτιση των μεγεθών όπως υπολογίστηκαν από τις καταγραφές του σταθμού του Μετσόβου με βάση το πλάτος, σε συνάρτηση με τα μεγέθη όπως αυτά έχουν υπολογιστεί από τις καταγραφές άλλων σταθμών, για Δ ≤ 100 km.

Σχήμα 6.3 - Γραφική παράσταση που παρουσιάζει την συσχέτιση των μεγεθών όπως υπολογίστηκαν από τις καταγραφές του σταθμού του Μετσόβου με βάση την διάρκεια καταγραφής, σε συνάρτηση με τα μεγέθη που έχουν υπολογιστεί από τις καταγραφές άλλων σταθμών, για Δ > 100 km.

Σχήμα 6.4 - Γραφική παράσταση που παρουσιάζει την συσχέτιση των μεγεθών όπως υπολογίστηκαν από τις καταγραφές του σταθμού του Μετσόβου με βάση την διάρκεια καταγραφής, σε συνάρτηση με τα μεγέθη που έχουν υπολογιστεί από τις καταγραφές άλλων σταθμών, για Δ ≤ 100 km.

Σχήμα 6.5 - Γραφική παράσταση που παρουσιάζει την συσχέτιση των μεγεθών όπως υπολογίστηκαν από τις καταγραφές του σταθμού του Μετσόβου με βάση το μέσο όρο των μεγεθών M_{α} & M_{d} , σε συνάρτηση με τα μεγέθη όπως αυτά έχουν υπολογιστεί από τις καταγραφές άλλων σταθμών, για $\Delta > 100$ km.

Σχήμα 6.6 - Γραφική παράσταση που παρουσιάζει την συσχέτιση των μεγεθών όπως υπολογίστηκαν από τις καταγραφές του σταθμού του Μετσόβου με βάση το μέσο όρο των μεγεθών M_{α} & M_{d} , σε συνάρτηση με τα μεγέθη όπως αυτά έχουν υπολογιστεί από τις καταγραφές άλλων σταθμών, για $\Delta \leq 100$ km.

Fit 1: Normal Number of data points used = 250 Average X = -0.003244 Standard Deviation = 0.366059

Σχήμα 6.7 – Ιστόγραμμα των τιμών ΔM_{α} και θεωρητική καμπύλη Gauss για $\Delta > 100$ km.

Fit Results

Σχήμα 6.8 – Ιστόγραμμα των τιμών ΔM_{α} και θεωρητική καμπύλη Gauss για $\Delta \leq 100$ km.

Βιβλιοθήκη "Θεόφραστοξ⁵⁷ Τμήμα Γεωλογίας - Α.Π.Θ.

Σχήμα 6.9 - Ιστόγραμμα των τιμών ΔM_d και θεωρητική καμπύλη Gauss για $\Delta > 100$ km.

Σχήμα 6.10 - Ιστόγραμμα των τιμών ΔM_d και θεωρητική καμπύλη Gauss για $\Delta \leq 100$ km.

Βιβλιοθήκη "Θεόφραστο 5⁸ Τμήμα Γεωλογίας - Α.Π.Θ.

Σχήμα 6.11 – Ιστόγραμμα των τιμών ΔM_f και θεωρητική καμπύλη Gauss για $\Delta > 100$ km.

Fit Results

Fit 1: Normal Number of data points used = 117 Average X = -0.011265 Standard Deviation = 0.261764

Σχήμα 6.12 – Ιστόγραμμα των τιμών ΔM_f και θεωρητική καμπύλη Gauss για $\Delta \leq 100$ km.

6.1.1 Αξιολόγηση M_{α} , M_{d} & M_{F} με βάση τα διαγράμματα (line – scatter)

Στα διαγράμματα που παρατέθηκαν παραπάνω (σχήματα 6.1, 6.2, 6.3, 6.4, 6.5&6.6) είδαμε ότι στον άξονα των x βρίσκονται οι τιμές M_L οι οποίες προέρχονται από μετρήσεις διάφορων σεισμολογικών σταθμών ενώ στον άξονα των y βρίσκονται οι τιμές μεγεθών M_a , M_d και M_F οι οποίες προέρχονται από το σεισμολογικό σταθμό του Μετσόβου. Έτσι λοιπόν στηριζόμενοι στα διαγράμματα αυτά και παρατηρώντας τις σχέσεις που προέκυψαν θα μπορέσουμε να συμπεράνουμε αν οι τιμές των μεγεθών σεισμών που προέρχονται από το σταθμό του Μετσόβου είναι αξιόπιστες.

Παρακάτω αναφέρονται οι σχέσεις που προέκυψαν από τα διαγράμματα αυτά καθώς και τα συμπεράσματα που προκύπτουν.

<u>Για το διάγραμμα M_L - M_a για Δ > 100 km πρόεκυψαν τα εξής :</u>

$$Y = x+a$$

a = 0,003243293246
R² = 0,724527
οπότε προκύπτει
M_g = M_L + 0,0032

(6.1)

Παρατηρούμε ότι ο συντελεστής a έχει τιμή πολύ μικρή (σχεδόν μηδενική) η οποία θεωρείται αμελητέα. Έτσι, εφόσον ο συντελεστής a θεωρείται αμελητέος, η παραπάνω σχέση παίρνει τη μορφή:

$$\mathbf{M}_{\boldsymbol{\alpha}} \approx \mathbf{M}_{\mathbf{L}} \tag{6.2}$$

Επομένως με βάση πλέον την σχέση που καταλήξαμε πιστοποιείται ότι τα μεγέθη σεισμών για $\Delta > 100$ km που μετρήθηκαν από τον σταθμό του Μετσόβου με βάση τα πλάτη είναι ισοδύναμα με τα μεγέθη σεισμών που είχαν μετρηθεί από άλλους σεισμολογικούς σταθμούς.

Βιβλιοθήκη "Θεόφραστο O Τμήμα Γεωλογίας - Α.Π.Θ.

Παρατηρούμε και σε αυτή την περίπτωση ότι ο συντελεστής a έχει τιμή πολύ κοντά στο μηδέν οπότε θα θεωρηθεί και πάλι αμελητέος. Έτσι θα έχουμε :

$$\mathbf{M}_{\boldsymbol{\alpha}} \approx \mathbf{M}_{\mathbf{L}} \tag{6.4}$$

Επομένως προκύπτει ότι τα μεγέθη σεισμών που μετρήθηκαν από τον σταθμό του Μετσόβου με βάση τα πλάτη είναι ισοδύναμα με τα μεγέθη σεισμών που είχαν μετρηθεί από άλλους σεισμολογικούς σταθμούς και για $\Delta \leq 100$ km. Άρα γενικά τα μεγέθη που υπολογίζονται από τα εδαφικά πλάτη που προκύπτουν από τα μέγιστα πλάτη καταγραφής στο σταθμό MEV είναι αξιόπιστα.

<u>Για το διάγραμμα $M_L - M_d$ για Δ > 100 km πρόεκυψαν τα εξής :</u>

$$Y = x+a$$

$$a = -0,009227497411$$

$$R^{2} = 0,812075$$

$$0\pi \acute{0}\tau \epsilon \pi \rho 0 \kappa \acute{0}\pi \tau \epsilon i$$

$$M_{d} = M_{L} - 0,0092$$
(6.5)

Για ακόμα μια φορά ο συντελεστής a είναι σχεδόν μηδενικός οπότε και δεν θα τον λάβουμε υπόψη μας και έτσι θα έχουμε:

$$\mathbf{M}_{\mathbf{d}} \approx \mathbf{M}_{\mathbf{L}} \tag{6.6}$$

Επομένως προκύπτει το συμπέρασμα ότι τα μεγέθη σεισμών που μετρήθηκαν από τον σταθμό του Μετσόβου με βάση άλλους διάρκειες καταγραφής είναι ισοδύναμα με τα μεγέθη σεισμών που είχαν μετρηθεί από άλλους σεισμολογικούς σταθμούς για $\Delta > 100$ km.

$$Y = x+a$$

a = -0,004233859998
R² = 0,621961 (6.7)
οπότε προκύπτει
M_d = M_L - 0,0042

Και σε αυτή την περίπτωση ο συντελεστής a έχει πολύ μικρή τιμή επομένως θα έχουμε:

$$Y = x+a$$

$$a = -0,001627416259$$

$$R^{2} = 0,809182$$

$$o\pi \acute{o}\tau \epsilon \pi \rho o \kappa \acute{o} \pi \tau \epsilon i$$

$$M_{\rm F} = M_{\rm L} - 0,0016$$
(6.9)

Και εδώ ο συντελεστής a έχει πολύ μικρή τιμή (σχεδόν μηδενική) επομένως θα έχουμε:

$$M_{\rm F} \approx M_{\rm L}$$
 (6.10)

<u>Για το διάγραμμα $M_L - M_F$ για $\Delta \leq 100$ km πρόεκυψαν τα εξής :</u>

$$Y = x+a$$

a = 0,01126250303
R² = 0,65531 (6.11)
οπότε προκύπτει
 $M_F = M_L + 0,0113$

Και εδώ ο συντελεστής a έχει πολύ μικρή τιμή επομένως θα έχουμε:

$$M_{\rm F} \approx M_{\rm L} \tag{6.12}$$

Επομένως προκύπτει το συμπέρασμα ότι τα μεγέθη των σεισμών που μετρήθηκαν από τον σταθμό του Μετσόβου με βάση τους μέσους όρους των μεγεθών M_{a} & M_{d} είναι ισοδύναμα με τα μεγέθη των σεισμών που είχαν μετρηθεί από άλλους σεισμολογικούς σταθμούς τόσο για $\Delta > 100$ km όσο και για $\Delta \le 100$ km.

Συνολικά λοιπόν μπορούμε να πούμε ότι οι σχέσεις που προέκυψαν από όλα τα διαγράμματα line – scatter μας δείχνουν ότι τα μεγέθη σεισμών που υπολογίστηκαν από το σταθμό του Μετσόβου είναι ισοδύναμα με αυτά που είχαν ήδη υπολογιστεί από άλλες πηγές. Συμπεραίνουμε λοιπόν ότι με αυτή την μέθοδο αξιολόγησης ο σταθμός του Μετσόβου είναι αξιόπιστος.

6.1.2 Αξιολόγηση M_{α} , M_{d} & M_{F} με βάση τα ιστογράμματα των ΔM_{α} , ΔM_{d} & ΔM_{F}

Στα ιστογράμματα που παραθέσαμε παραπάνω (σχήματα 6.7, 6.8, 6.9, 6.10, 6.11&6.12) παρουσιάζονται οι τιμές ΔM_a , $\Delta M_d \& \Delta M_F$ οι οποίες αποτελούν την διαφορά των μεγεθών που μετρήθηκαν από το σεισμολογικό σταθμό του Μετσόβου από τα ήδη μετρημένα μεγέθη από άλλους σταθμούς. Θα πρέπει λοιπόν αυτά τα διαγράμματα συχνοτήτων να έχουν μια κανονική κατανομή με τη μέγιστη συγκέντρωση κοντά στην τιμή μηδέν. Στα ίδια ιστογράμματα είναι χαραγμένες και οι θεωρητικές καμπύλες Gauss (πράσινο χρώμα) που προσαρμόζονται στις κατανομές. Φαίνεται ότι, σε γενικές γραμμές, τα ιστογράμματα ακολουθούν κατανομές Gauss γεγονός που μας δίνει το δικαίωμα να θεωρήσουμε ότι οι μέσες τιμές είναι σε κάθε περίπτωση αντιπροσωπευτικές του δείγματος που χρησιμοποιήθηκε.

Παρακάτω αναφέρονται οι σχέσεις και τα συμπεράσματα που προέκυψαν για κάθε ένα από αυτά τα ιστογράμματα ξεχωριστά.

<u>Για το ιστόγραμμα ΔM_a για $\Delta \ge 100$ km πρόεκυψαν τα εξής :</u>

$$\overline{\Delta M}_{a} = -0,0032$$
SD = 0,3661
(6.13)

Παρατηρούμε ότι ο μέσος όρος του ΔM_{α} , έχει πολύ μικρή τιμή, σχεδόν μηδενική. Αυτό αποδεικνύει ότι τα εδαφικά πλάτη που προκύπτουν από τις καταγραφές σεισμών στο σταθμό του MEV με επικεντρικές αποστάσεις Δ>100 km δίνουν αξιόπιστες τιμές για το M_L .

<u>Για το ιστόγραμμα ΔM_a για $\Delta \leq 100$ km πρόεκυψαν τα εξής :</u>

$$\overline{\Delta M}_a = -0,0097$$

SD = 0,2890 (6.14)

Παρατηρούμε ότι και για $\Delta \leq 100$ km ο μέσος όρος του ΔM_{α} , έχει τιμή σχεδόν μηδενική οπότε και εδώ αποδεικνύεται ότι ο υπολογισμός μεγεθών από τα εδαφικά πλάτη του σταθμού του MEV για αυτές τις επικεντρικές αποστάσεις είναι αξιόπιστος.

<u>Για το ιστόγραμμα ΔM_d για $\Delta \ge 100$ km πρόεκυψαν τα εξής :</u>

$$\Delta \overline{M}_{d} = -0,0073$$
(6.15)
SD = 0,2168

Παρατηρούμε ότι ο μέσος όρος του ΔM_d , έχει πολύ μικρή τιμή σχεδόν μηδενική γεγονός που αποδεικνύει ότι τα μεγέθη που προκύπτουν από τις διάρκειες καταγραφής στο σταθμό του MEV για επικεντρικές αποστάσεις Δ >100 km είναι αξιόπιστα.

<u>Για το ιστόγραμμα ΔM_d για $\Delta \leq 100$ km πρόεκυψαν τα εξής :</u>

$$\Delta \overline{M}_{d} = 0,0042$$

SD = 0,2979 (6.16)

Και αυτός ο μέσος όρος ΔM_d , έχει πολύ μικρή τιμή σχεδόν μηδενική. Άρα και για $\Delta \leq 100$ km οι διάρκειες καταγραφής στο σταθμό του MEV μπορούν να δώσουν αξιόπιστα μεγέθη.

<u>Για το ιστόγραμμα ΔM_F για $\Delta \ge 100$ km πρόεκυψαν τα εξής :</u>

$$\Delta \overline{M}_{\rm F} = 0,0016$$

SD = 0,2759 (6.17)

Παρατηρούμε ότι ο μέσος όρος του ΔM_F , έχει πολύ μικρή τιμή σχεδόν μηδενική γεγονός που αποδεικνύει ότι τα μεγέθη που προκύπτουν από τους μέσους όρους των εδαφικών πλατών και διαρκειών καταγραφής στο σταθμό του MEV για επικεντρικές αποστάσεις Δ >100 km είναι αξιόπιστα.

<u>Για το ιστόγραμμα $\Delta M_{\rm F}$ για $\Delta \leq 100$ km πρόεκυψαν τα εξής :</u>

$$\Delta \overline{M}_{\rm F} = -0.0113$$

SD = 0.2618 (6.18)

Και αυτός ο μέσος όρος ΔM_F , έχει πολύ μικρή τιμή σχεδόν μηδενική. Άρα και για $\Delta \leq 100$ km οι μέσοι όροι των εδαφικών πλατών και των διαρκειών καταγραφής στο σταθμό MEV μπορούν να δώσουν αξιόπιστα μεγέθη.

Συνολικά λοιπόν μπορούμε να πούμε ότι οι σχέσεις που προέκυψαν από όλα τα ιστογράμματα μας δείχνουν ότι οι διαφορές ΔM_{α} , ΔM_{d} & ΔM_{F} έχουν τόσο για Δ >100 km όσο και για Δ <100 km πολύ μικρές τιμές σχεδόν μηδενικές γεγονός που αποδεικνύει ότι τα μεγέθη που υπολογίζονται με τις νέες σχέσεις από τις καταγραφές του σταθμού του MEV είναι αξιόπιστα και συνεπή με τα M_{L} που υπολογίζονται από τους υπόλοιπους σταθμούς του δικτύου.

<mark>ΣΥΜΠΕΡΑΣΜΑΤΑ</mark>

7.1 Γενικά συμπεράσματα

Με την εργασία αυτή πραγματοποιήθηκε η βαθμολόγηση των αναλογικών καταγραφών του σεισμολογικού σταθμού του Μετσόβου με σκοπό τον καθορισμό σχέσεων που θα επιτρέπουν τον αξιόπιστο υπολογισμό μεγεθών.

Αρχικά έγινε μια προσπάθεια συσχέτισης της περιόδου Τ με την επικεντρική απόσταση και τα μεγέθη σεισμών. Τα διαγράμματα όμως που προέκυψαν δεν παρουσίασαν κάποια συστηματική συσχέτιση αυτών των παραμέτρων και συνεπώς στην πορεία της εργασίας χρησιμοποιήθηκαν οι σχέσεις που ίσχυαν από προϋπάρχουσες μελέτες (σχέσεις 5.1, 5.2) και όχι αυτές οι οποίες προέκυψαν.

Στη συνέχεια υιοθετώντας τους συντελεστές απόσβεσης από προηγούμενες μελέτες, προσδιορίστηκαν οι σταθερές του σεισμολογικού σταθμού του Μετσόβου (σχέσεις 5.13, 5.14, 5.21, 5.22) που μετέχουν στις σχέσεις υπολογισμού μεγεθών.

Ακολούθως προσδιορίστηκαν τα τοπικά μεγέθη σεισμών με βάση τα μέγιστα εδαφικά πλάτη και τις διάρκειες καταγραφής του σταθμού MEV (σχέσεις 5.15, 5.16, 5.23, 5.24).

Τέλος έγινε αξιολόγηση των τιμών που προέκυψαν για τα μεγέθη σεισμών από τους παραπάνω τύπους και επιβεβαιώθηκε η αξιοπιστία των σχέσεων καθορισμού μεγεθών από τις καταγραφές του σταθμού του Μετσόβου, όπως αυτές καθορίστηκαν στην παρούσα εργασία.

<mark>ΒΙΒΛΙΟΓΡΑΦΙΑ ΚΑΙ ΙΣΤΟΣΕΛΙΔΕΣ</mark>

8.1 Βιβλιογραφία

- 🧕 Αθηναγόρας, 1929. Νέος Κουβαράς, Ιωάννινα, σελ 35.
- Aki, K., 1966. Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. , Bull. Earthq. Res. Inst. Tokyo Univ., 44, 23-88.
- Aubouin, J., (1959). Contribution a l'etude geologique de la Grece septentrional: les confins de l'Empire et de la Thessalie. *Ann. Geol. Pays Hell.* 10, p. 1-525.
- Bisztricsany, E., 1958. A new method for the determination of the magnitude of earthquakes. «Geof. Kozl. », 1, 69-96.
- Gutenberg, B., 1945a. Amplitudes of surface waves and magnitudes of shallow earthquakes, *Bull. Seism. Soc. Am.*, 35, 3-12.
- Gutenberg, B., 1945b, Amplitude of P, PP, and S and magnitudes of shallow earthquakes, *Bull. Seism. Soc. Am.*, **35**, 57-69.
- Gutenberg, B., 1945c. Magnitude determination for deep-focus earthquakes, Bull. Seism. Soc. Am., 35, 117-130.
- Gutenberg, B., and Richter, C.F., 1956. Magnitude and energy of earthquakes, *Ann. Geofis.* 9, 1-15.
- Hanks, T. and Kanamori, H., 1979. A moment magnitude scale, J. Geophys. Res., 84, 2348-2350.
- Karnik, V., 1971. Seismicity of the European Area, Part II, 1801-1900. D. Reidel Pupl. Comp. Dordrecht, Netherlands, p. 218.
- Kiratzi, A. A. and Langston, Ch.A., 1989. Estimation of earthquake source parameters of the May 4, 1972 event of the Hellenic arc by the inversion of waveform data., *Physics Earth and Planet. Inter.*, 57, 225-232.
- Κυρατζή, Α. Α., 1984. Κλίμακες μεγεθών σεισμών στον ευρύτερο χώρο του Αιγαίου., Διδακτορική Διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, σελ 189.
- Λάμπρος, Σ. Π., 1910. Ενθυμήσεων, ήτοι χρονικών σημειωμάτων συλλογή πρώτη. Νέος Ελληνομνήμων, Τομ. 7.
- Δάμπρος, Σ. Π., 1913. Ενθυμήσεις εν τοις εντύποις μηνιαίοις του Αρχιμανδρείου Ιωαννίνων. Νέος Ελληνομνήμων, Τομ. 10.

- Michailovic, D. J., Zagreb, 1951. Catalogue des tremblements de terre Epiro-Albanais, p. 73.
- Montandon, F., Geneve, 1953. Les tremblements de terre destructive en Europe. *Catalogue par territoires sismiques de l'ans 1000 a 1940*, p. 195.
- 🧕 Μουντράκης, Δ. Μ., «Γεωλογία της Ελλάδας» , σελ 207, Θεσσαλονίκη 1985.
- Μουτίφ Αχμέτ., Ιωάννινα, 1980. Αλή Πασάς ο Τεπελενλής (1744-1822), Εκδ. Εταιρείας Ηπειρωτικών Μελετών.
- Παπαζάχος, Β., Θεσσαλονίκη 1997. «Εισαγωγή στη Σεισμολογία», σελ 382.
- Παπαζάχος, Β. Κ., Μουντράκης, Δ. Μ., Παπαζάχος, Κ. Β., Τρανός, Μ. Δ., Καρακαϊσης, Γ. Φ., και Σαββαϊδης, Α. Σ., Θεσσαλονίκη 28-30 Νοεμβρίου 2001. Τα ρήγματα που προκάλεσαν τους γνωστούς ισχυρούς σεισμούς στην Ελλάδα από τον 5° αιώνα π.Χ. μέχρι σήμερα., Πρακτ. 2° Συνέδριο Αντισεισμικής Μηχανικής και Τεχνικής Σεισμολογίας, , 2, 17-26, 2001.
- Παπαζάχος, Β., Παπαζάχου, Κ., Θεσσαλονίκη 2002. «Οι Σεισμοί της Ελλάδας», σελ 317.
- Παπαζάχος, Β. Κ., Δρακόπουλος, Ι. Κ., Θεσσαλονίκη 1992. «Σεισμοί και μέτρα προστασίας», σελ 109.
- Papazachos, B. C., Papadimitriou, E. E., Kiratzi, A. A., Papazachos, C. B. and Louvari, E. K., 1998b. Fault plane solutions in the Aegean sea and the surrounding area and their tectonic implication., *Boll. Geof. Teorica Applicata*, **39**, 199-218.
- Papazachos, B.C. and Vasilicou, 1966. Studies on the magnitudes of earthquakes.
 «Progress Report in Seismology and Physics of the Earth's Interior, 1964-1966», 17-18.
- 🧾 Παυλίδης, Σ. Β., Θεσσαλονίκη 2003, «Γεωλογία των Σεισμών» , σελ 308.
- Richter, C., 1935. An instrumental earthquake magnitude scale., *Bull. Seism. Soc. Am.*, 25, 1-32.
- Σκορδύλης, Ε.Μ., 1985. «Μικροσεισμική Μελέτη της Σερβομακεδονικής Ζώνης και των γύρω περιοχών», Διδακτορική διατριβή, Πανεπιστήμιο Θεσσαλονίκης, σελ 250.
- Schmidt, J., 1867a. Πραγματεία περί του γενομένου το 1861 Δεκεμβρίου 26 σεισμού του Αιγαίου, Εθνικό Τυπογραφείο, Αθήναι, σελ 52.
- Vanek, J., Zatopek, A., Karnik, V., Kondorskaya, N.V., Riznichenko, Y.V., Savarensky, E.F., Soloviev, S.L. and Shebalin, N.V., 1962. Standardization of magnitude scales, *Bull. Acad. Sci. USSR Geophys. Ser.* 108-111.

8.2 Ιστοσελίδες

- www.metsovo.gr
- www.greecebyclick.com
- www.geo.auth.gr
- www.igme.gr
- <u>http://lemnos.geo.auth.gr</u>
- http://en.wikipedia.com

8.3 Μηχανές αναζήτησης

- www.google.com
- @ www.yahoo.com