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ABSTRACT

The use and study of networks has become more and more relevant in the recent years. Their
functionality, as well as their ability to preserve it, is highly important in the world of today.
This work is an attempt to collect the research on the various methods of measuring network
robustness to malicious attempts to disconnect them, as well as the effectiveness of such
attempts. Furthermore, we compare the robustness of four different directed networks both
in name, using indices of robustness, and in practice, observing the effects of various
deconstruction attempts on them. This step is performed using the 3.4.3 version of the R
programming language on a 64-bit windows platform. Our findings agree, in general, with

previous research, but bring up a few points that require further exploration.

Chapter 1 contains the introduction. In chapter 2 we provide the necessary background
definitions on network theory. In chapter 3 we define and classify the various indices of
network robustness and present some of their properties. In chapter 4 we present the
methods of attack, as well as tables with the studies they have been tested on. In chapter 5
we present an example of network analysis on four directed networks. In chapter 6 we
present a summary of the known results in the literature that has been presented in chapters
3 and 4, and compare them with our own findings in chapter 5. In chapter 7 we draw our

conclusions and present the discussion of our work

KEY WORDS

Network robustness, Network deconstruction, Vertex ranking, Network
connectivity.
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Zovoym
Synopsis in Greek

H mapoloa SIMAwUATIKY epyacia TMPAYHATEVETAL TNV AVAAUOT TNG AVTOXNG TWV
SIKTOWV. AVTO amaltel Stepevivnon TPLWV KLVPLWGS TOPEWV. [IpWTOV, TNV HEAETN TNG Soun G TOv
EKAOTOTE SIKTVOV. AEVTEPOV, TOV OPLOUO KATAAANAWY EKTLUNTWY, OL OTIO(OL VX UTTOPOoUV va
QVTIPTIOOWTEVGOVV APLOUNTIKAE TNV avOeKTIKOTNTA VO SikTtvou. Tpitov, TNV avdAvon Twv

SL@opeTIKWV PEBOSWV e TIG 0ToleG PTTopeEl va eTiTeDEl KATIOL0G 6TO SIKTLO.

TKOTIOG TNG EpyAciag elval 1) Tapovciaon Kal TAEvoun ot TwV SL@opwV SEIKTWV OV
EKTIUOUV TNV aVOEKTIKOTNTA TwV SIKTVWV, KABWS Kal 1 Tapovsiaon Twv Sla@opwv
uebodwv emibeons oe SikTva OV €youvv PeEAETNOEl ewG TWpA. AVTO Yivetal amd TV pia
TIAEVPA UE pia EKTETAUEVT BIBALOYPAPIKT] AVAOKOTINOT KAL ATIO TNV GAAT LE v TApASELY O
VTIOAOYLOHOU TNG AVTOXTNG OPLOUEVWV KATEVOUVOUEVWY SIKTUWV, KAL OTI GUVEXELD LEAETN

Sla@opwv eMBECTEWY TAVW O€ AUTA.
H gpyacia elvat Sopunpévn o€ eMTA KEQAAXLQ, T OTIOLA TTEPLYPAPOVTAL AVAAUTIKA:
ZTO TPWTO KEPAALO TtapaTiBevTaL Ol BACIKEG EPWTNOELS TOV KELWEVOU, OL OTIOLES Elvat

1. Mwg umopolue Vo EKTIUNOOVUE TNV AVOEKTIKOTNTA, 1 TNV gvaonoia evog Siktvov
000V aPopd TIS SLapopes peBodoug emibBeong;
2. Twg ot dtaopol péBodol emibBeong emnpedlovv Eva Siktuo;

3. Twg avtamokpivovTal SLa@opeg SIKTVAKES SOUEG ATIEVAVTL GE SLAPOPES ETIOETELS;

TN oLVEXELX VAAVOVTAL 0L AGYOL TTOU QUTEG OL EPWTNOELS ElVAL ONUAVTIKES Kal opilovTal ol
oAV Baocikég évvoleg. Ev ouvtopia, ol epwToelg autég elval oNUAVTIKEG TOGO Yl TNV
KaAUTEPT TTPooTasia “KOAWV” SIKTOWV (OTIWG KOWwVIKA SikTua, SikTua NAekTpodoTNONG N
QEPOUETAPOPWV) QATEVAVTL TOGO o€ TPOPAHATA Tov pTopel va TpokUYPouv Tuyxaia
(BAGBeg, kakokalpla KATL.) 060 Kal 0€ EOKEUUEVES eTIOETELS (TpopokpaTtia, Sitadoom Pevdwv
ewldnoswv kAm). Emelta, mapouotdlovtal ol OYXETIKEG ATIOTELPEG GCUAAOYNG KL CUYKPLONG
SEIKTWV aVTOXNG TIOV €XOVV YIVEL WG TWPA KAl TEAOG, SIATUTIWVETAL T Sopun TNG LVTTOAOLTING

epyaociag.
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210 8eUTEPO KEPAANLO SLATLTIWVOVTAL OAOL OL Bacikol 0pLopol, OTIWG TL Elval YpAaog,
Sixtvo KAT. Opifovtal emiong oL SLa@opes “KAaookeg” Siktvakés Souég (Scale free, Erdos-
Renyi kAm.) kaBw¢ kat kamoles Paoikés Soukeés petpikég (assortativity, ovvtedeotg
oVUTAEENG KAT). T€A0G, SlaTLTIWVOVTAL KATIOLOL UMY AVIOUOL TTOV SLETTOVV OpLlopEvVa SiKTua,
OVUEWVA HE TI§ AVTIOTOLXEG HOVIEAOTIOU|CELS TIOU £XOUV Yivel, OTwG Suvatdotnta

EMAVAOVVSEEOTG AKUWYV, ) SevTEPEVOVOEG ECaPaVITELS KOUPBwWV.

Ito Tpito kKe@dAalo opifovtal kKol TaflvopolvTal Ol SLA@OPOL EKTIUNTEG TNG
AVOEKTIKOTNTAG TWV SIKTUWV, TTAPOVGLALOVTAL Ol GUAAOYLOUOL TTOU TOUG TIapyayayv, Kabwg
Kal KATOLEG 18L0TNTEG TouG. H tadivounon yivetat o §Yo otadia. Apxikd Staxwpilovtatl ot
EKTIUNTEG TIOU €EAPTWVTAL ATO TNV EMOEOT TOU UEAETATAL QMO TOUG EKTIUNTEG TIOU
efaptwvtal poévo amd v Soun Tou SIKTUOU. TN OULVEXELR, Ol TPWTOL Slaywpifovtal
TEPETALPW O AVTOVG TIOV EKTLLOVV TNV XEPOTEPT Suvath TepimTwon yla To Siktuo (0Twg
oLVOETIKOTNTA aKUWV/KOUBwy, integrity-akepaldtnTa, isoperimetric number, kKAT.) KoL o€
QUTOVUG IOV HEAETAVE TNV eMiSpaon Tov £xel pia omoladnmote emibeon oto SikTvo. XTNV
SevTepn TEPIMTWOTN, AVASIATUTIWVOVE KAL ETEKTEIVOVLE TN XPTION HIKG HETPLKNG TIOV EXEL
xpnowomowmBel vmd Tov Opo robustness, w¢ a-fragmentation threshold (a-katw@At
KATAKEPUATIOUOV). AVASIHHOPQWVOUUE ETIIONG TNV MEAETN TNG YEVIKNG ATOSOTIKOTNTAG
(global efficiency) touv SikTOOL OTAV AUTO UTIOKELTAL O€ KATIOlX €MIOEOT, LE TOV VA TNV
QTTAOTIOI)OOVE, LE OKOTIO VA XPNOLUEVOEL WG UETPO OVYKPLONG AVAUECSA GTNV QVTOXY)
SLopeTikwV SIKTVWV oV Bl popen emibeons. H Sevtepn xatnyopia Sektwv
StaxwplleTal 0TOUG SEIKTEG IOV TIPOKVTITOVV T’ EVBEIAG ATIO TO SIKTLO KAl 6 AUTOVG IOV
TIPOKUTITOU aTO TNV aAyERPIKN emeiepyacio ToOv Tivaka YELTVIAONG, 1) TOU AVTIOTOL(OL

AamAaclovov.

Yto tétapto ke@dAalo opilovtar ot Sd@opeg emBéoel TV SIKTUWV KAl
taglvopovvTal oL €peuveg oTLG oTtoleg £xouv pedetnBel. H tadvounon twv epguvmv yivetatl

o€ TIVaKES YLa KaOe (80 emiBeong, cVPPWVA UE:

1. Ta dixktva Tov peAeTONKAY, 0T oOTOla TApaTiBEVTAL OL £E1G TANPOPOPLES:
i. H &oun tou.

ii. HUmapdn katevbBuvopevwy akpuwv 11/xat fapwv.
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iii. = Outmeperaipw unyxaviopov mov ta Stemovv (Sopkol, 1 Stayeipnong porng).

2. Hmpoédevon tov SiktVov (av eival KATAOKEVAOUEVO ATIO KATIOLO LOVTEAO, 1) TL S{KTLO
elval, Y. Aepoypappwy, Slakiviong VOPKOTIK®WV KAT).

3. Ta pé€tpa oL YPNOLUOTOMONKAV YL VO EKTLUOOVV TNV AVTOXT] TOU SIKTUOU 1) TO
HEyeBog TG LA oL SEXTNKE aTtd TNV EMIBEOM.

4. Tnv OXETIK QVA@OPA TNG EPEVVAS TIOV EYLVE.

ZITO TMEUTITO KEPAANLO TIAPOVOLATETAL £V TTAPASELYHA AVAAVONG aVTOXNG SIKTUWV.
EmAéyovtar téooepa katevBuvopeva Swatpopka Siktva (food webs), ta omola
TapPovoLalovv oxEoElS BNpPeuTN-ONPAUATOS 0€ olKoouoTHUATa NG votag PAGpLdag.
YmoAoy(lovtal kamolol SelKTEG avOEKTIKOTNTAG OL OTO(OL TPOCAPUOCTNKAV ATO N
katevBuvopeva Siktuva. Zuykekplpuéva vmoAoyiletat to natural connectivity, To omolo
AGBape To mepeTaipw PUA VX TO ATTAOTIOMN GOV IE WOTE VA UTIOPOVIE VO GUYKP(VOUE SiKkTLX
Sta@opeTikng Taing. H Sta@opd HeTadl Twv HETPWY TG TTPWTNG KL THG Se0TEPN G IBLOTIUNG,
oTtnNpWopevoL oty Bacikn apxn TS AMOKALONG TOU SIKTUOU Ao TOV BEATIOTO XOPAKTPA
good expansion (pétpov gumabelag). KaBwg kot to assortativity coefficient tou Siktdov,
TPOG €EETAON TWV AUPLBOALOV YA TO aV UTOPEl OVTWG VO YXAPAKTNPLOTEL WG PETPO
AVOEKTIKOTNTAG, KABWG £XEL CUOXETIOTEL BETIKA KAL APVNTIKA UE TNV AVTOXT TWV SIKTVWV
o€ SLaopeTIkéG Epevves. Ta LETpa AUTAE VTTOAOYIGTNKAV TOGO YL TO GUVOAO TOU SIKTUOU,
000 KOl ylA TI§ LOYUPA OUVSEETIKEG YIYAVTINIEG OUVIOTWOEG TOUG. XE€ QUTA TA SIKTLA
TPAYLATOTOMONKAV OKTW SLPOPETIKEG €MIOETELS. TUYKEKPLUEVAH Ol KOpBoL Toug

TagvounOnkav Kot a@alpednkav pe @Bivovoa oelpd CULPWVA LE TOUG £ENG SelKTEG:

'Ecw Babudg.

'E€w Babudg.

ZUVoAKOG BaBpdg.

Evéiapeootnra.

[SlokevTpikdTTA.

YuvoAwn emmpon 2 Bnudtwv (collective influence).

ZuvoAkn emmpon 3 nudTwv.

©® N s W N

Tuyxaia (TpaypatomomBnKay TEVTE SLAPOPETIKEG TUXALES EMIBETELS KAl TapaTiBevTal

Ol LEOEG TILEG TWV ATTOTEAECUATWV).

13



H amotiunon tov amoteAéopatog e emibeong £ytve VTTOAOYI{OVTAG TO OXETIKO HEYEDOG NG
aoBevwG Kol NG LOYUPA OUVSETIKNG YLYOVTIXIOG OUVIOTWONG KOl TNG OGUVOALKNG
amodotikotnTag (global efficiency), kavovikomompévng cOp@wva pe v apyikn Taén tov
Swktvov. [TapatiBevtal emiong ot THES TOU PBadol AVTWV TWV KAUTUA®Y, KABWGS Kol Ta a-
Katw@Ala Katakeppatiopol, y a = 0.25,0.50 kot 0.75, yia tnVv woxvpn kat tnv acBevi
Ylyavtiaila ouviotwoa KaBe SIKTUov, TToU AVTITTPOCWTEVOLVY TO TAN00G KOUBWV TTOU TIPETEL
va a@apebel yla va pelwBel ) EKAOTOTE CLVICTWOA OTO AVTIOTOLYO0 T0G00TO ({00 pE @) Tov
apxwkol TG peyéBoug. Tédog, Sivovtal ta ocvumepacpata tov mapadelypatos. To o
evlla@épov €& autwv elvatl 0Tl To natural connectivity mpofAémel oxedov akplBwg v

SLatadn Twv SIKTVWV WG TIPOG TNV UEIWOT) TNG ATTOSOTIKOTNTAS TOUG Yl KGOe emiBeon.

Y10 éKTO KEPAAALO, TTAPOVCLATOVTL TA OUAVTIKOTEPA CUUTEPACUATH TIOU €£XOUV
efaxOel amd v BLBALOYpa@ia, EVE OTN CUVEXELX CUYKPIVOVTAL HE TA ATTOTEAECUATA TIOV
€8¢18€ TO TAPASELY LA TOV TIEPTITOV KEPAAALOV. AvaQEPOVTAL EVSEIKTIKA KATIOLX ATTO TA TILO

ONUAVTIKA 1) evla@EépovTal cupumepaopata s BLBAoypagiag.

e Ta Sixtva eykAnuatiwv ggouvv SexBel OTL elval e§alpeTikd avOEKTIKA, €OIKA oV
OUVUTIOAOYLOTOUV SUVATOTNTEG EMAVAGVUVOEOT|G AKUWV.

e Ta agpomopikd SIKTLA EVAL EVAAWTA O PLEYAANG KAILAKAG (PUOIKEG KATAOTTPOPES.

e Ta Siktua ov €yovv egeAdiyBel PUOIKE, Epavifouv TOAD To cuxVa xapakTipa good
expander amo QUTA OV £XOVV KATAOKEVAOTEL KABOALKA aTtd TOV AvOpwTToO.

o Ald@opa pETPA AVOEKTIKOTNTAG TAEWVOHOUV PaolkéG SIKTUAKEG SOUEG UE TIOAV

SLaopeTIKoVG TPOTOUG.

Kata v olykplon Twv QAMOTEAEOUATWV TOU TAPASEYHATOG HE TA YVWOTA
ovumepacpata s BiBAoypa@iag Bpnkape eAAXIOTES SLAPOPES, KUPLwG OGOV APOPA TNV
ATOSOTIKOTNTA TWV HETPWV GLVOALKNG eTmpot ¢ (collective influence), Ta omola Ty TOAY

ALyOTEPO ATOSOTIKA ATIO TO AVAUEVOUEVO.

1o ¢BSopo KEPAANLO TAPATIBEVTAL TA CUUTEPACUATA TIOU EXOVHE EEAYEL ATIO TO
oLVoAo NG BLBALOYpAPIKNG avadpouns, KaBwe Kal amo TNV cUYKPLoT TOU Tapadelylatog
nag pe avtnv. Tovidetal n EAAeWn EKTETAUEVG EPEVVAG OTOVG TIEPLOCOTEPOVS SEIKTES, KL

™G Slepelivnong TOU TL AVTIUETWTI(EL 0 KABE SelKNG WG avOeKTIKOTNTA, KABWG oL

14



TIEPLOGOTEPEG EPEVVEG YIVOVTUL OE OXETIKA Alyeg SIKTLaKEG Sopeg (TTOAAG Siktua, Alya €(dn
Hovtédwv). Epunvedovtal emiong KATOLEG OVTUPACELS TOU €XOUV EUPAVIOTEL, OTN
BBAoypapia yevikd, aAAG& KoL o€ ox€oT UE TO TAPASELYIA TOU Ke@aAaiov mévte. 'Emelta,
TAPOVOLAJOVTAL YEVIKOTEPH TA KEVA TOU eU@avilovtal o6To oVUVOAO TG £PEVVAG TG
avOekTIKOTNTAG TWV SikTVWV. TapatiBevtal emiong oL KAVOTOUES LEEEG KaL 1) CUUPBOAN TNG
epyaciag. TEAOG, TapovoLAleTAL EVA GUVOAO LOEWV YIX TIEPETAIPW EPEVUVA GTOV TOUEX TNG

AVATITUEN G SEIKTWV AVOEKTIKOTNTAG KL BEATIOTOTIOMUEVWYV ETOECEWV.
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1. Introduction

1.1. Questions-Research Subject

There are three questions addressed in this thesis.

Question 1: How can we measure the robustness or the fragility of a network with respect to

different kinds of attacks.
Question 2: How do different methods of attack affect a network?

Question 3: How do different network structures respond to various attacks.

1.2. Why are these questions important?

Today’s world is a highly networked one, and as such, we can find a lot of important
reasons to study network robustness. The very structure of every organization, including
society, is a network. Design of the structure of a corporation requires consideration of
random failures, such as people falling ill or having accidents. Flow networks, such as public
transport (Wilkinson etal. 2011, Zhang et al. 2011, Dunn and Wilkinson 2015, Yin etal. 2016,
Zhang et al. 2018), water and electricity distribution (Motter and Lai 2002, Albert et al. 2004,
Schneider et al. 2010, Schieber et al. 2015), are a cornerstone of modern life, and as such
should be, and are, protected by optimizing their robustness to the most common dangers
they face. For the sake of comprehension, we give some working definitions for the

robustness and the vulnerability of networks.

Definition 1.2.1: Robustness

Robustness is the ability of a network to continue fulfilling its objectives adequately,

when subjected to failures or attacks.
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Definition 1.2.2: Fragility/Vulnerability

Fragility or vulnerability is the sensitivity of a network to failures or attacks (The

opposite of robustness).

Equally important are the reasons to study how to more effectively damage, or
completely deconstruct a network. For example, in law enforcement (Baker and Faulkner
1993, Krebs 2002, Raab and Milward 2003, Duijn et al. 2014), operations such as common
fraud, drug trafficking, arms trafficking and terrorist groups such as Al Qaeda, constitute
“dark” social networks. “Dark” networks also exist as parts of larger networks in the political

level via connections to other networks, such as each other, or even legitimate ones.

Definition 1.2.3: Attack on a network

Attack on a network is any modification of the network resulting in degradation of its
performance. For example, adding a node with negative edges or with false beliefs, or
removing a node with the intent to disconnect parts of the network.

This thesis is concerned with the removal of nodes or edges with the intent to
disconnect a network. Therefore, when the term “attack on a network” is used, it refers to

node or link removals.

Definition 1.2.4: Random removals

Random removals on a network are removals of a set of nodes or links, realized by a
random distribution. Usually, this distribution is chosen to be the uniform distribution.

Random removals are simulated by random number generators.
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Definition 1.2.5: 7argeted attacks

Targeted attacks on a network are removals of a set of nodes or links, resulting from a
specific strategy. For example, removals of Nodes with high Centrality, articulations

points or bridges.

Definition 1.2.6: Repeated/Simultaneous/Salvo attacks.

Attacks are distinguished in two categories. Repeated attacks, where nodes or links are
removed one by one until a certain number of attacks or a certain result is reached.

Simultaneous or salvo attacks, where the set of nodes or links is removed once.

Due to the nature of the process of an attack or failure, as well as the way most of the

studies are conducted, we will refer to both intended attacks and failures as attacks.

Numerous proposals have been made to assess network robustness. From the simplest
ones, such as vertex or edge connectivity, to the more complex ones such as the scattering
number of a graph. Such measures vary highly in many regards. Some are computational
such as their complexity, others mathematical such as monotonicity, while others differ on
their intent. Variables like the order of the network and the expected methods of attack
against it, are paramount in considering a method of measuring its ability to withstand such

attacks.

1.3. Relevant studies

Research on network robustness and network deconstruction has been carried out by

several groups from various fields. As a result, many approaches have been proposed.
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The presently available reviews are mainly focused on comparing few selected
measures such as effective resistance with a few others (Ellens 2011, Ellens and Kooij 2013),
or proposing a new, possible improved, measure (Wu et al. 2008, Wu et al. 2010, Schieber et

al. 2015).

1.4. Methodology of the research

The methodology proposed and used in this paper, is an extensive review of all relative
literature, and the classification of the methods to study network robustness as well as the
methods of attack. We define and present some properties for the indices of robustness, and
the various methods of measuring the impact of an attack on a network. Subsequently, we
present the methods of attack that have been studied, and order them according to the types
of networks they have been inflicted upon, as well as by the methods of estimating the
robustness, or the impact of the attacks on these networks. Finally, we present an example
of network robustness analysis in directed networks, and we compare our results to the

known results of the literature.

The example was performed using the 3.4.3 version of the R programming language, in

the R-studio software suite, version 1.1.423, and the following packages: igraph, Matrix and

ggplot2.

1.5. Thesis outline

Chapter 1 contains the introduction. In chapter 2 we provide the necessary background
definitions on network theory. In chapter 3 we define and classify the various indices of
network robustness and present some of their properties. In chapter 4 we present the
methods of attack, as well as tables with the studies they have been tested on. In chapter 5

we present an example of network analysis on four directed networks. In chapter 6 we
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present a summary of the known results in the literature that has been presented in chapters
3 and 4, and compare them with our own findings in chapter 5. In chapter 7 we draw our
conclusions and present the discussion of our work, as well as its original aspects and draw

the next steps to be taken.
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2. Networks

2.1. Introduction

In this chapter we will define the various network structures that have been used and
studied in the literature, as well as the relevant limitations and properties that the networks

in these studies have.

2.2. Basic concepts

Definition 2.2.1: Graph, Node/Vertex, Edge, Directed, Undirected, Weighted, Unweighted,
Simple graph, Size and Order of a graph

e An undirected, unweighted graph is an ordered pair G = (V, E) comprising a set V of
vertices or nodes or points together with a set E of edges or arcs or lines or links, which
are 2-element subsets of V (i.e. an edge is associated with two vertices, and that

association takes the form of the unordered pair comprising those two vertices).
o I[fthe set of edges E is comprised of ordered pairs, then the graph is a directed graph.

e [f each element of the set of edges E has a real number associated to it, then the graph

along with these values is called a weighted graph.

e Ifeachedge (u,v) € EisuniqueinEandA v € V : (v,v) € E, then the graph is a simple
graph.

e The size of the graph is the number of its edges.

e The order of the graph is the number of its nodes
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Definition 2.2.2: Adjacency matrix, Weighted adjacency matrix

e LetG = (V,E) be asimple graph and with V = v;, v,, ... v,. Then it can be represented
by a binary matrix 4;; with elements a;; = 1 if there is an edge between v; and v; or

a;; = 0 if there isn’t. This matrix is the adjacency matrix of the graph.

e If the graph is weighted, we can replace each a;; that equals 1 with the corresponding

edge weight, thus creating the weighted adjacency matrix.

Definition 2.2.3: Network

A network is a representation of relations between discrete objects as a graph. If such
relations are symmetric, then the network is undirected and if they are asymmetric,

the network is directed.

Definition 2.2.4: Walk, Trail, Path, Length of a path, Distance between nodes, Diameter of a
graph, Geodesic

e Awalkis an alternating sequence of vertices and edges, starting and ending at a vertex,
in which each edge is adjacent in the sequence to its two endpoints. In a directed graph
the ordering of the endpoints of each edge in the sequence must be consistent with the

direction of the edge.
e Atrail is a walk with no repeated edges.
e A pathis a trail in which all vertices (except possibly the first and last) are distinct.
e The length of a path is the number of edges it contains.

e The distance between two nodes of a graph is the length of the shortest path between

them.
e Diameter of the graph is the largest distance between two of its nodes inside it.

e Geodesic between two nodes is the distance of the shortest path between them.
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Definition 2.2.5: Connected, Weakly/Strongly connected

e Let G = (V,E) be an undirected graph. If for every pair v;, v; € V there exists a path

connecting those vertices, then the network is connected.

e If G is directed and there exists a path from v; to v; or from v; to v; for every v;, v; €V,

then the network is weakly connected.

e If G is directed and there exists a path from v; to v; and from v; to v; for every v;, v; €

V, then the network is strongly connected.

Definition 2.2.6: Tree

An undirected graph is called a tree if there is only one path connecting each pair of

nodes.

Definition 2.2.7: Density

The density of a network is the number of existing edges on it, divided by the number
of possible edges. Alternatively, it is the probability that a possible edge of the network

exists.

25



Definition 2.2.8: Giant component, Giant bicomponent/biconnected component, Strong giant

component, Weak giant component

e The giant component of a network is the largest of its connected components. In the
cases when there are multiple components of the same order of magnitude as the
largest one, we can say that the network has more than one giant components.

e The giant biconnected component or giant bicomponent of the network is the largest
subgraph where for every pair of nodes i,j there are at least two distinct paths
connecting them.

¢ In the case of directed networks, we can distinguish the strong and the weak giant
components, as the largest strongly connected and weakly connected components of

the network.

Definition 2.2.9: Nearest neighbor graph

The nearest neighbor graph for a set of objects P in a metric space is a directed graph
with P being its vertex set and with a directed edge from p to q where q,p € P,

whenever q is a nearest neighbor of p.

Sometimes the graph is considered as undirected, but it is important to note that the

property of the nearest neighbor is not a symmetric one.

2.3. Network structure

Here we will define the various notions around a network’s structure. Ordinarily, the
categorization of networks focuses on their degree distribution and on occasion on other

elements.
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Definition 2.3.1: Path/Linear graph, Cycle graph, Star graph, Wheel graph, Gear graph,
Bipartite Wheel graph, Complete graph

e A path graph or linear graph is a graph whose vertices can be listed in the order

V4, V3, ..., Uy such that all the edges are of the form (v;, v;,4).
e A cycle graph is a path graph with the addition of the edge (v;, v,).
e A star graph is a tree with one central node and all other nodes connected to it.
e A wheel graph is a cycle graph with the addition of one node connected to all others.

e A gear graph, or bipartite wheel graph, is a wheel graph with a node added between

each pair of adjacent graph vertices of the outer cycle.

e A complete graph is a graph in which every pair of distinct vertices is connected by an

edge.

Definition 2.3.2: Assortativity coefficient, Assortative/Non-Assortative/Disassortative

network

The assortativity coefficient r is the Pearson correlation coefficient of the degree
between pairs of linked nodes (in this calculation, the link of the nodal pair is not
included). Positive values of r indicate a correlation between nodes of similar degree,
while negative values indicate relationships between nodes of different degree. When
r = 1, the network is said to have perfect assortative mixing patterns, when r = 0 the

network is non-assortative, while at r = —1 the network is completely disassortative.

. ik (e — q:4;)
2lk?qr — (kqp)?]

(2.3.1)
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Where j, k are the degrees of the adjacent vertices associated with an edge, ¢;; is the

joint probability distribution of the residual degrees at either of the ends of a randomly

chosen edge, and gy, is the normalized degree distribution

_(k+DP(k+1)
T = 5 kP ()

(2.3.2)

Where P (k) is the probability a node has degree k.

Definition 2.3.3: Clustering coefticient

Clustering coefficient of a network is the number of closed nodal triplets in the network
divided by the number of all nodal triplets (a triplet being a set of three nodes with at

least two edges between them). Alternatively:

_ 3+ {number of triangles}

2.3.
{number of triplets} (2.3.3)

Definition 2.3.4: Erdos-Renyi model

The Erdos-Renyi modelrefers to one of two methods of constructing graphs. In the first
case, originally proposed by Erdos and Renyi 1959, one graph from all possible graphs
with a fixed number of nodes (N) and edges (E) is picked uniformly at random. While

in the second case, proposed by Gilbert 1959, N nodes are placed, and every edge exists

with a probability p, defined in practice asp = D'

Definition 2.3.5: Scale free/Scale invariant, Clustered scale free

e A scale free or scale invariant network is a network whose degree distribution follows
a power law, at least asymptotically. That is, the fraction P(d,,) of nodes in the network
having d,, connections to other nodes goes for large values of d,, as P(d,,)~d," where

y is a parameter whose value is usually, but not necessarily, in the range 2 < y < 3.
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e A clustered scale free network is a scale free network modelled with increased
clustering coefficient. This is achieved by reserving some edges for each node to be

connected to neighbors of neighbors (Holme and Kim 2002).

Definition 2.3.6: Small world

A small-world network is a type network in which most nodes are not neighbors of one
another, but the neighbors of any given node are likely to be neighbors of each other
and most nodes can be reached from every other node by a small number of steps.
Specifically, a small-world network is defined to be a network where the average path
length L between two randomly chosen nodes grows proportionally to the logarithm

of the number of nodes N in the network, thatis: L « log(N).

Definition 2.3.7: Hierarchical network

A hierarchical network is a subclass of scale-free networks distinguished by the
behavior of the clustering coefficients: decreasing as the degree increases, and
remaining invariant as the order of the network. We remind the reader that in most

scale free networks, the clustering coefficients decrease as the order increases.

Dodds et al. 2003 developed a model that takes as input a “pure hierarchy”, that is, a
tree with a single node as a root that is connected to b (branching ratio) other nodes, who,
in turn, are connected to b more nodes. There are L levels (including the root node in the 1st
level). Afterwards, each edge, between every pair of nodes not already connected with an

edge, appears with a suitably designed probability.
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Definition 2.3.8: Bipartite

A bipartite graph is a graph whose vertices can be divided into two disjoint and
independent sets U and V such that every edge connects a vertex in U to one in V.
Vertex sets U and V are usually called the parts of the graph. Equivalently, a bipartite

graph is a graph that does not contain any odd-length cycles.

Definition 2.3.9: L-Expansion (Costa 2004)

The L-expansion of a given network G(V,E) (directed or not) is a graph where
connections from node i to node j are established whenever there exists a self-avoiding

path (i.e. never passing by the same node twice) of length L connectingi tojinG.

Definition 2.3.10: Q-Augmentation (Costa 2004)

The Q-augmentation of a network G(V,E) (directed or not) is the union of every L-

expansion of G,V L < Q.
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2.4. Network functionality

There are several real-world evolutions modeled by networks. For example, a public
transport network could have values for the number of passengers that go from place to
place, as well as the maximum number of passengers able to, or a food web might require

that each species has access to some other species that it feeds upon.

Real networks usually involve structural and/or processability requirements. The
structural limitations refer to conditions on the nodes and/or edges. For example, the nodes
which if disconnected, certain functions will stop. For example, food webs (Allesina and
Pascual 2009, Dunne et al. 2002) and plant-pollinator networks (Memmott et al. 2004,
Kaiser-Bundury et al. 2010, Santamaria et al. 2014, Dominguez-Garcia and Munoz 2015 and

Garcia-Algarra et al. 2017.)

Examples of processability conditions are: In flow networks, there is a limit to how
much flow a node or an edge can handle. For example, there is finite space in a train and thus,
a finite number of people can travel at any given time, another example is the electrical
current that a power line can hold before it fails due to overloading. In some cases, like the
train example, the edge continues functioning, but only up to its capacity. Such cases have
been studied by Dodds et al. 2003, Wilkinson et al. 2011, Wagner 2015, Dunn and Wilkinson
2015. While in other cases, like the power line example, the node or edge stops functioning
entirely, and the respective flow might be lost or redistributed in the network, causing other
edges or nodes to fail. Such cases have been studied by Motter and Lai 2002, Moreno et al.

2003

Examples of networks involving both processability and structural limitations are:
electricity or water distribution networks. There are certain nodes that any node must be
connected to at least one of them, such as power distribution stations or water tanks, and
there is always an upper limit on flow between nodes. Such a case has been studied by Albert

etal. 2004.

There are also networks with the ability to rewire the edges whose start or end node

has failed. For example, air traffic networks, where a plane can land on a different airport
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than the one it started in. We call such networks self-rewiring networks. Such networks have
been studied by Kaiser-Bundury et al. 2010, Wilkinson et al. 2011, Duijn et al. 2014 and Dunn
and Wilkinson 2015.
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3. Indices for robustness and vulnerability

3.1. Introduction

In this chapter, we will analyze the methods to measure the robustness or the fragility

of a network. We shall divide these into two categories, with a subcategory each.

e Measures defined according to an attack. This means picking a strategy to remove
nodes, and defining the mechanics of the network, and then measuring the impact the

specific attack strategy has according to these mechanics.

o Worst scenario measures. Derived by measuring the most effective attack possible
on a network, according to the mechanics of the network and the variables we are

interested in.

Quoting Li et al. 2005: /n an analysis of the vulnerability of networks to disruption,
three important quantities [...] are (1) the number of elements that are not functioning, (2)
the number of remaining connected subnetworks and (3) the order of a largest remaining

group within which mutual communication can still occur.

e Measures derived from the networks structure. These measures are dependent only on
the network itself, and perhaps its mechanics, and are independent of any attack
method. Such measures are usually obtained by making compromises on their
accuracy, since the impact of an attack can vary greatly, but are expected to have their

highest values for complete networks (networks that are the hardest to disconnect).

o Spectral graph measures. This subcategory includes measures derived from the
eigenvalues and eigenvectors of the adjacency or the Laplacian matrix, their

weighted variants, or other matrices derived by them.

There can be cases of overlapping in these subcategories, as many network measures
can be calculated both by calculations on the network and by spectral methods. Such cases

are listed among the spectral measures, since they are usually easier to calculate this way.
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3.2.Worst case scenario - attack dependent measures

Counterintuitively, the simplest, and historically the first, methods of measuring a
network’s robustness, are worst case scenario attack dependent measures. Such measures
are unique for each network and procure a quantitative estimate for the damage a network
can take while maintaining a specified condition. As such, they have been widely studied for
a lot of basic graph structures. However, they frequently demand the calculation of every
possible attack, and they cannot always be adjusted easily for changes in the network.
Because they are computationally taxing they are not generally used in real world network
studies. A point to be made, is that most of the following measures can be used to measure
the course of the impact of a specific, repeated, attack on a network. However, this would not

necessarily be a decreasing function of removed nodes.

Connectivity indices

Definition 3.2.1: Vertex connectivity, Edge connectivity

e The vertex connectivity of an undirected and unweighted graph is defined as the
smallest cardinality of a set of vertices S c V(G), such that G — S is a disconnected

graph. The vertex connectivity is usually denoted by k,,.

e The edge connectivity of an undirected, unweighted graph is defined as the smallest
cardinality of a set ofedges S ¢ E(G), suchthat G — S is a disconnected graph. The edge

connectivity is usually denoted by k..

As the removal of a node, entails the removal of all the edges connected to it, the

following is self-evident.
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Corollary 3.2.1

For any undirected, unweighted graph, graph G, where C;(v) is the degree of node v, it

follows that

< < [
Ky S Ke < min Cy(v) (3.2.1)

Definition 3.2.2: Conditional connectivity (Harary 1983)

Conditional connectivity of any graph G, with respect to some specific property P is
defined as the smallest cardinality of a set of vertices S ¢ V(G), such that every
componentin G — S has the property P. The conditional connectivity is usually denoted

by kF.

The same definition can be applied for a conditional edge connectivity. It is obvious that both
edge and vertex connectivity are specific instances of their respective conditional

connectivity, with the property of being connected to the rest of the nodes in the graph.

The vertex and edge connectivity of the network give answer to the question of how
many nodes or edges must be removed to create a disconnection. However, it does not
address the issue of how severe that disconnection is. For example, a complete network Ky
with an extra node connected with only one other, will have the exact same edge and vertex

connectivity as any tree.

[soperimetric number

Expanding on the idea of connectivity, the isoperimetric number is defined, based on
the notion that smaller graphs will inevitably have small values for their connectivity, yet

larger graphs with similar values are flawed.
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Definition 3.2.3: [soperimetric number/Cheeger constant (Mohar 1989)
Let G(V, E) be a finite graph. If X € V then dX denotes the edge-border, that is the set
of edges of G that have one end in X and the other end in V\X. The quantity

i(G) = min—— (3.2.2)

Where the minimum is taken over all non-empty X < V satisfying |X| < % |V], is called

the isoperimetric number of G, also called the Cheeger constant of G.

Fault diameter

Fault diameter of a network is the greatest damage to its ability to communicate, when

subjected to an intentional removal of nodes that is not enough to disconnect it.

Definition 3.2.4: Fault diameter (Krishnamoorthy and Krishnamurthy 1987)

Fault diameter of a graph G with vertex connectivity k, is defined as the largest

obtainable diameter of that graph, after the removal of k,, — 1 vertices. It is symbolized

as fg.

Definition 3.2.5: Strongly resilient, Weakly resilient (Krishnamoorthy and Krishnamurthy
1987)

e A graph, or a class of graphs is strongly resilient if there exists a constant t such that
fe <o+t (3.2.3)
e A graph, or a class of graphs is weakly resilient if there exists a constant ¢ such that

fo<t-§ (3.2.4)
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Toughness

Definition 3.2.6: Toughness (Chvatal 1973)

Toughness of an undirected graph G is the maximum real number ¢, such that deletion
of |S| nodes (can also be defined for edges) from G results in a connected graph, or one

that has at most s/t components.

. |S]

Where S denotes the set of deleted vertices and ¢(G) the number of components of G.

Theorem 3.2.1
The toughness of a graph has the following properties
¢ Increases (not purely) with edge addition

e [f G is not complete, then

1
t(6) < 5x,(6) (3.2.6)
e [f G is not complete, then
t(G) < v — MiS| (3.2.7)
= |MIS| -

where MIS denotes the maximal independent set.

Proof- Chvatal 1973

The toughness of a graph has been studied for gear graphs by Kirlangic 2009 and for
nearest neighbor graphs by Dunkum and Lanphier 2014.
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Scattering Number

Definition 3.2.7: Scattering number (Jung 1978)
Scattering number of a finite graph G (V, E) is defined as

sc(G) = \rfr;g)é{c(G —8)—|S]:c(G=9S) # 1} (3.2.8)

Where c(G) denotes the number of components in G.

Definition 3.2.8: Edge scattering number (Aslan 2014)
Scattering number of a finite graph G (V, E) is defined as

sc.(G) = \Er;g)é{c(G —S5)—|S]:c(G—=S) # 1} (3.2.9)

Where c(G) denotes the number of components in G.

“The scattering number is in a certain sense the ‘additive dual’ for the concept of

toughness” (Jung 1978).

[ts basic properties, along with some parallelisms with toughness have been studied by
Kirlangic 2002. Some of its properties in Hamiltonian graphs have been observed by Zhang
and Wang 2001. It has also been studied for split graphs by Li et al. 2008 and nearest
neighbor graphs by Dunkum and Lanphier 2014.
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Integrity

Definition 3.2.9: Integrity (Barefoot et al. 1987, as presented by Goddard and Sward 1990)
The integrity of a graph G(V, E) is defined as such

1(G) = rsnci‘r/l{ISI +m(G —S)} (3.2.10)

Where m(G) is the order (number of vertices) of the largest component of G.

Definition 3.2.10: Edge integrity (Bagga etal. 1992)
The integrity of a graph G (V, E) is defined as such

o(6) = min{IS| + m(G — 5)} (3.2.11)

Where m(G) is the order (number of vertices) of the largest component of G.

Integrity is based on the idea that an attacker wants to disconnect a network as much
as possible, with the least amount of attacks (Bagga et al. 1992). It has the advantage of not
being oversensitive in local weakness (Goddard and Sward 1990), as for example having a
relatively small number of isolated nodes connected in a single other node being an obvious

liability to some of the aforementioned measures.

Theorem 3.2.2
. 1(G) SVC(G) +1 (3.2.12)
where VC(G) is the vertex cover number of G.

. 1<I(G)<p (3.2.13)
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where p is the order of the network.

. 1(6) = min(d(G)) + 1 (3.2.14)
o If G is connected and not trivial, then
1(G) =1+ vrer]lfl(rfl;)l(G —v) (3.2.15)

Proof: Goddard and Sward 1990.

Definition 3.2.11: /ntegrity family (Goddard 1994)
The integrity family of measures is the class of measures of the form

P(6) =, min (X + (G - X)) (3.2.16)

Where Y (G) is a network parameter.

For example, for 1 being the order of the largest component we get integrity and for y

being the number of components we get toughness.

A more general class of measures was also proposed as
f — 1 —_
o/ (6) Xg},l(ré)f(IXI,t/J(G S)) (3.2.17)

Where f is a given function.

The integrity has further been studied for cubic graphs by Vince 2004, for nearest
neighbor graphs by Dunkum and Lanphier 2014, for split graphs by Li et al. 2008, for Harary
graphs by Li et al. 2009 and in general terms by Goddard and Sward 1990, Beineke et al.
1991, Bagga et al. 1992, Drange et al. 1996 and by Aslan and Bacak-Turan 2016. While the
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edge-integrity has been studied by Bagga et al. 1992, Laskar et al. 1993, Bagga et al. 1994

and Moazzami 2011.

Theorem 3.2.3
. 2<1(6) <1L,(G)<p (3.2.18)
. L6 = [2yp] -1 (3.2.19)

If G is connected

. If k, = 2, then

1,(G) > min{[w/Zp : K,,(G)]+,p} (3.2.20)

Where p is the order of the graph.

Proof: Bagga et al. 1994.

There are a lot of measures based around the idea of integrity, but most of them have
not been thoroughly studied, since other, more informative measures have appeared.

Nevertheless, they are mentioned here in order to complete the list.

Definition 3.2.12: Hub-integrity (Mahde et al. 2010)
The hub-integrity of a graph is defined as

1(G) = chr{,i(%){IXl +m(G —X)} (3.2.21)

Where X is taken such that Vx,y € V(G) 3 X — path in G between x and y.
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Definition 3.2.13: Mean integrity (Bagga etal. 1992)

The mean integrity of a graph is defined as

J(6) = min {IX] +m(G - X)) (3.2.22)

Where m the average component order m(G) := %Zv ev(6) P»(G), where p,, denotes the

number of vertices of v-th component and p the number of vertices in the graph.

Mean integrity has also been recently studied by Aslan and Bacak-Turan 2016.

Tenacity

Integrity, toughness and scattering number, all take into account the number of nodes
deleted in an optimal attack on the network. In addition, integrity considers the order of the
largest component after the attack, where scattering number and toughness consider the

number of the components remaining. Combining these ideas, we get the next two measures.

Definition 3.2.14: Tenacity (Cozzens et al. 1995, as presented by Li et al. 2008)

For a noncomplete graph G, tenacity is defined as

sl mG - )
T6) = min G -5

) (3.2.23)

Such that w(G — S) = 1. Where m(G) denotes the order (number of vertices) of the

largest component in G, and ¢(G) the number of components in G.

Definition 3.2.15: Mix-tenacity (Moazzami and Salehian 2008)

For a noncomplete graph G, mix-tenacity is defined as
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S| + m.(G —5)
c(G-Y5)

T,.(G) = Slg}lai(rcl;)

{ } (3.2.24)

Such that w(G — S) = 1. Where m(G) denotes the order (number of vertices) of the

largest component in G, and ¢(G) the number of components in G.

Definition 3.2.16: Edge tenacity

For a noncomplete graph G, edge tenacity is defined as

(G = min {|5| +m(G - S)

ScE(G)"  c(G —S) } (3.2.25)

Such that w(G — S) = 1. Where m(G) denotes the size (number of edges) of the largest

component in G, and ¢(G) the number of components in G.

It has been shown (Moazzami 1999) that in some cases of graphs, tenacity is more able
to measure the differences in the vulnerability of graphs than toughness or integrity,

“between graphs that intuitively should have different levels of vulnerability”.

The various instances of tenacity have further been studied by Li et al. 2008 for split
graphs, by Moazzami 2010 for n-connected graphs with minimal edges and by Dunkum and

Lanphier 2014 for nearest neighbor graphs.

Rupture Degree

Following the relationship of scattering number and toughness, rupture degree, the

additive dual of toughness, is introduced.
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Definition 3.2.17: Rupture degree (Li et al. 2005)
The rupture degree of an incomplete connected graph G is defined as

r(G) = Srcn\%){c((; -85 —|S| —m(G - S)} (3.2.26)

Such that w(G — S) = 1. Where m(G) denotes the order (number of vertices) of the

largest component in G, and ¢(G) the number of components in G.

The rupture degree has further been studied by Dunkum and Lanphier for nearest
neighbor graphs, by Li et al. 2008 for split graphs and by Kirlangic 2009 for gear graphs.
Finally, by Li and Zhang 2010 the graphs with maximal rupture degree for a given number
of edges and vertices are calculated, as well as the graphs with maximal number of edges for
a given number of vertices and rupture degree, but the problem of finding the graph with

minimal number of edges in the latter case, remains open due to its complexity.

Definition 3.2.18: Mean rupture degree (Aslan and Bacak-Turan 2016)
The mean rupture degree of an incomplete connected graph G is defined by

7(G) = Srcnva&(;){c(G —-8) =S| —=m(G - S)} (3.2.27)

Such that w(G —S) > 1. Where m is the average component order (rTl(G) =

%Zv ev(G) Py (G)), where p,, denotes the number of vertices of the v-th component and

p the number of vertices in G and c(G) the number of components.

Elasticity of MGG-Robustness

Let f;; denote the interaction, or flow, between each pair of nodes i and j, let also 2

indicate the total node interaction in the network, expressed as
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n= Z z fij (3.2.28)
iev(G) jev(G)

and let 2y indicate the total node interaction inhibited by removing X c E(G) from G,

expressed as

Ny = Z z fiiZi; (3.2.29)

iev(G) jev(G)

Where Zi’j- = (0, if a path from i to j exists in G — X, and 1 otherwise.

Definition 3.2.19: MGG-robustness (Matisziw et al. 2012)

The MGG-robustness of a network, under an attack of magnitude k, is defined as the

lowest value for the uninhibited total nodal interactions, expressed as

rk=g— ( max (QX)) (3.2.30)

XCE, |X|=k

Originally called simply robustness, we call it MGG-robustness for clarification purposes,

after the initials of the authors of the article.

Definition 3.2.20: MGG-elasticity/FElasticity of MGG-robustness (Matisziw et al. 2012)

The elasticity of MGG-robustness or MGG-elasticity is defined as the percentage of
change in the robustness of the network over the percentage of change in the number

of deleted edges.

%AT'*
%Ap

(3.2.31)

rk =

The MGG-elasticity was originally defined in a dynamic environment for each epoch. This has
been omitted since it only served the purposes of comparing the network at different

timeframes (essentially comparing different networks) and does not atfect the definition.
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“A large value in MGG-elasticity indicates greater potential for a mechanism to
efficiently degrade network performance. Conversely, robustness elasticity less than 1.0
indicates decreasing returns to scale, where changes in network robustness are less sensitive

to changes in the magnitude of arc deletion” (Matisziw et al. 2012).

The MGG-elasticity was demonstrated as a measure on the Internet2 backbone

network.

3.3. General attack dependent measures

In this section, the various measures quantify the impact of a specific attack strategy
on the network. These types of measures have the advantage of being able to compare the
resilience of two different networks to a specific attack, as well as the impact of two different

attacks on a specific network.

The worst-scenario measures that take into account the values that Li et al. 2005
proposed (integrity, toughness, rupture degree, scattering number, tenacity and their
variants), can be adapted to compare any attack pattern, or to find the optimal points in
them. For example, one can compute and compare the impact of a few attack strategies by
calculating the values of the tenacity formula,

|S| + m(G - S)

o5 (3.3.1)

without minimizing it over the possible attack, but rather calculating it for a specific attack.
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Critical Threshold

The study of the order of the change in the network’s components leads to the idea of
considering the specific instance when an attack disintegrates the network into a lot of small,

disconnected components.

Definition 3.3.1: Critical threshold (Cohen et al. 2000)

The critical threshold of a graph subjected to an attack is the critical value p. of the
probability of removal existence of each node, below which the graph contains a
connected cluster (its giant component) that spans the entire graph (its order is

proportional to that of the entire graph); while beyond it, there is no such component.

Other definitions require the giant component to be of the same order of magnitude as the

whole graph above criticality.

In simple terms this means that if the nodes that are removed are below this
percentage, then the network resembles one large network, possibly with a few isolated
clusters. If more nodes than this percentage are removed, then the network is consisted of

many small clusters.
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Figure 3.3.1: (from left to right) Above the critical threshold. At critical threshold. Below the critical threshold.

(Albert et al. 2000)
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This idea was first shown by Albert et al. 2000 for scale free and Erdos-Renyi networks,
for random and degree-based attacks. It was further studied and used by Albert et al. 2000,
Paul et al. 2004, Cohen et al. 2000, Valente et al. 2004, Tanizawa et al. 2005, Wu et al. 2007.
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Figure 3.3.2: Network fragmentation under random failures and attacks on the nodes with the highest degree.
Left panel is an Erdos-Renyi network, right panel is a Scale-Free. The relative order of the largest connected
component S (open symbols) and the average order of the isolated components (s) (filled symbols) as a
function of the fraction of removed nodes f. f. denotes the instance where the network has no single distinct
larger component.

(Albert et al. 2000)

As the definition is dependent on a variable order of a network model, which real

networks may lack, we propose the following measure.

a-Fragmentation threshold
Definition 3.3.2: a-Fragmentation threshold

a-Fragmentation threshold, 0 < a < 1, of a network G (V, E) is the minimal percentage

of nodes or links to be removed in order to split the giant component into components
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with maximal order not greater than aNgy;4,;, where Ngiqp, is the order of the giant

component. a is the percentage of the reduction of the giant component.

For example, a = 0.5 means that the resulting giant component contains at most half
of the nodes of the original giant component, a = 0 means that all the nodes or links of the

network have been removed, a = 1 means that no removals have occured.

This percentage can be calculated exactly in case of a deterministic method of attack,

or approximated as an expected value in case of probabilistic attacks.

The amount of damage usually is a percentage of the disconnected, or cascaded nodes
(Dunne et al. 2002, Buhl et al. 2004, Santamaria et al. 2014) or the time of appearance of

many small clusters (Xu and Chen 2008).

Effect of the attack on the network’s functionality

There is a variety of measures that can be important for a network, but not directly
related to robustness. For example, a low value of the average path length can indicate a well-
connected and efficient network. However, the average path length of a finite star graph is
strictly less than 2, showing us that no message has to travel a long distance to reach its
destination, but a single targeted node removal can shatter the network. It is also important
to note that the star graph is very robust to edge removals and random node removals.
Similarly, the wheel graph’s average path length is also strictly lower than 2, but after

removing the central node it rises to that of a cycle graph.

The previous examples indicate two things. Firstly, different methods of attack can have
very different effects on a network and secondly, it can be important to consider the changes
a network measure undergoes when the network is subject to a specific attack. This can be

done by plotting the said measure over the number, of nodes or edges removed in the
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network. The information of this plot can also be further compressed in a single value, by
studying the area under this curve (AUC), but this is only useful if the measure studied is
decreasing, not necessarily purely, as nodes or edges are removed. While also taking care to

fulfill one of the following:
e Chose an attack that keeps the network connected.
e Chose a measure that can be defined for disconnected networks.
e Atevery disconnection chose only one component of the network to be studied.

Finally, when studying the area under the curve of a measure, it is more functional if both

axes of the graph are normalized, so it can be used comparatively with greater ease.

Definition 3.3.3: Area under curve

Let k be a network measure defined for a network G (V, E') according to its properties
(directions, weights, etc.). We define the Area Under the Curve of the metric k, when
the network is under n distinct node or edge attacks as such

2Xk=0ki — ko — ky

- (3.3.2)

AUC,(G) =

Where n < |V]| in the case of node attacks, or n < |E| in the case of edge attacks.

This is essentially the normalized average of the measure over the attack.

Change in the diameter or the average distance - Distance vulnerability

It has been noted (Albert et al. 2000, Ellens 2011) that the diameter of a network, and
its ability to remain unchanged during an attack, is an important indicator for the effect an
attack has on a network. Similarly, the average distance between nodes in a connected
network shows us how well connected it is, and is less affected, as a measure, by long tails

that might exist in the network. These measures are useful for comparing various sequences
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of attacks, but only for small proportions of large networks, and only in cases where the
network does not split in two large disconnected components. They do, however, give rise
to various other measures based on the idea that disconnection is not the only danger a
network faces when subjected to an attack, but also the increased difficulty on
communications. Furthermore, the existence of frequently used long paths is a sign of
vulnerability, because they are harder to protect against intentional attacks, and are more
probable, to suffer random failures as they contain more nodes and edges. Therefore, a
measure has been proposed (Ellens 2011) for flow networks whose flow is transferred by

the shortest available path.

Definition 3.3.4: Distance vulnerability (Ellens 2011)

The distance vulnerability for a network G that has a traffic matrix T with entries ¢;;
and d;; denoting the distance between nodes i and j, is defined as the average distance

weighted by traffic.

n n
ar = 1 z z teod:: (3.3.3)
?=1Z;'l=i+1ti' Uy -

Ti=1 j=it1

The problem of such a measure is that it does not take into account alternative paths, or

different ways of distributing the traffic of the network.

Change in the order of the giant component

The fundamental concept of networks is interconnectedness. However, simply
disconnecting one, or even a few nodes, cannot be considered as significant damage for a
network with a few thousand of them. So, it follows, that the decline the largest component
of the network undergoes, is an important index in the attempt to understand the impact an
attack has on it, either by studying the order of the giant component relative to its original

order, S'/S (Albert et al. 2000, Sole and Montoya 2001, Holme et al. 2002, Buhl et al. 2004,
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Costa 2004, Estrada 2006, Xu and Chen 2008, Zhang et al. 2011, Iyer et al. 2013) or by
studying the proportion of nodes still connected in the largest component, S’/N’ (Deng and
Wu 2015, Deng and Wu 2016), while another approach was to measure the percentage of
nodes disconnected from the giant component (Albert et al. 2004). For the same network,
the efficiency of different deconstruction strategies can be compared by examining the area
under the curve of the relative order of the largest component and the percentage of
removed nodes (Kasthrinathna and Mahendra 2013, Wagner 2015. This idea was also
implemented by Schneider et al. 2010, who measured the average giant component order at

every instance of the attack.

The order, normalized with respect to the order of the initial giant component, could
also be used to compare the impact of a specific deconstruction strategy on different

networks.

Another view of considering the interconnectedness, is considering the availability on
alternative paths. Newman and Ghosal 2007 studied the change in the order of the largest
biconnected component both as it appears in various network models, and as it declines
when subjected to an attack. It was shown that in most network creation models (Newman
and Ghosal 2007), the probability of a node to belong in a small bicomponent goes to zero as
the network increases in order. It is also found that the same phenomenon arises in some

real-world networks as well.

Dodds et al. 2003 studied the propagation of failures due to congestion and suggested
another point of view of the change in the order of the giant component of a network under
attack, attempting to bridge the simplicity of studying the order of the largest component

and the importance of the magnitude of the attack.

Definition 3.3.5: Connectivity robustness (Dodds et al. 2003)

The connectivity robustness of a network is defined as

C, = (3.3.4)




Where S is the order of the giant component after the removal of N, nodes.

The opposite approach has been taken by Dunne et al. 2002 and by Memmot et al. 2004
for bipartite graphs, where they measured the cumulative indirect removals (caused by the
mechanics of the network) over the direct removals (caused by the attacker). After taking
into consideration the percentage of vertices removed to achieve these secondary
extinctions, this measure contains the same information as the percentage of vertices still in

the network.

Definition 3.3.6: Extinction area (Allesina and Pascual 2009), Bipartite extinction area

(Kaiser-Bunbury et al. 2010), Weighted extinction area (Kaiser-Bunbury et al 2010)

e In networks with mechanics that cause nodes to fail as a result to an attack, extinction
area is the area under the curve of the normalized cumulative number of indirectly
removed nodes (nodes that failed due to the mechanics of the network, also called
secondary extinctions) over the normalized number of directly removed nodes (nodes
removed during the attack, also called primary extinctions). Extinction area is equal to
1 if all nodes fail after the first removal and equal to 0.5 if no secondary extinctions

occur.

e The bipartite extinction area is defined for attacks only on one group of nodes, where

only the indirect removals of the other group are calculated.

e I[f a value is attached to each node, for example, if the nodes represent species with
different populations, then then instead of using the normalized number of nodes, one
could use the normalized population. This is the weighted extinction area or the

weighted bipartite extinction area, and the same limits apply for its values.

The extinction area was defined and used by Allesina and Pascual 2009.
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The bipartite extinction area was defined and used by Kaiser-Bunbury et al. 2010, it

was also used by Dominguez-Garcia and Munoz 2014.

The weighted variant was defined by Kaiser-Bunbury et al. 2010

SSSK-Elasticity

For the specific case of flow networks, the SSSK-elasticity of a network has been proposed

Definition 3.3.7: SSSK-Elasticity (Sydney et al. 2008)

The SSSK-elasticity of an undirected, unweighted network in respect to an attack is

defined as the area under the curve (AUC) of

1
Th(@) =7 > Ty (33.5)
max jk

over the percentage of the remaining nodes in the network, denoted as EI(G), where

Tiyx =0 for j =k and Ty, =1 for j # k and f,, denoting the maximum number of

flows through a bottlenecked link.

Originally called elasticity, we refer to it as SSSK-elasticity, for clarification purposes, after

the initials of the authors of the article.

SSSK-elasticity can be used to compare various methods of distributing traffic in a network
as well as comparing the ability of networks to withstand attacks. It has been shown, on
various networks (Sydney et al. 2008) subjected to highest degree attacks, to be correlated

positively with assortativity.
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Change in the efficiency of the network

Following closely the idea that the distance information must travel in the network is
important, a measure is defined (Latora and Marchiori 2001 called it global efficiency, the
same measure was called average inverse geodesic length by Holme et al. 2002) that

encompasses the distance between every set of nodes in a single value.

Definition 3.3.8: Efficiency/Global efficiency

The efficiency or global efficiency of network is defined as the average inverse geodesic.

In other words
E(G) = 1 . (3.3.6)
NN -1) d(i, ) -
izjevV

Where d (i, j) is the distance between the nodes i and j, and N is the number of vertices
of G.

The definition may apply for weighted networks, after exchanging each weight defined in a

sense of similarity with another, defined in a sense of distance.

Bocaletti et al. 2006 considered efficiency as an alternative, measure to the average path length.

Definition 3.3.9: Local efficiency

The local efficiency of a network is defined as

1
Eoe(6) == ) E(G) (33.7)
Where G; is the subnetwork of G containing all the neighbours of node i but not i itself.
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Bocaletti et al. 2006 considered local efficiency as an alternative, measure to the clustering

coefficient.

The efficiency is not a measure of robustness. On the contrary it has been shown to be

negatively correlated to it (Figure 3.3.2, Peng et al. 2016). However, studying the way the

efficiency changes during an attack can help us understand the effect it has on a network.

The disadvantages of the distance vulnerability carry on, meaning that the efficiency does

not considered alternate paths unless we study its AUC during an attack.
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Figure 3.3.3: The change of the natural connectivity A (left), and the efficiency E (right), versus iteration of a
degree-preserving rewiring algorithm optimized to maximize either A or E, on scale free networks (up) and
Erdos-Renyi networks (down).

(Peng et al. 2016)
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An exceptional advantage of network efficiency as a measure is that instead of the
geodesic length, it can accept as input the distance travelled, and thus be used to study
different methods of distributing the network’s traffic, other than the shortest possible path
(Puetal. 2012).

Efficiency has been used by Holme et al. 2002 to compare the impact of various attacks
on various networks, by Krebs 2002 to detect important actors on the internet and on
terrorist networks, by Crucciti et al. 2003 to compare actors in criminal and terrorist
networks, by Buhl et al. 2004 to study ant galleries, by Zhang et al. 2011 to compare attacks
on the Shanghai subway network, by Yin et al. 2016 to compare attacks on the Beijing
subway network and by Zhang et al. 2018 to study the subway networks of Beijing, Shanghai

and Guanzhou when subjected to attacks.

Local efficiency has not been the subject of much research. It has been studied by

Crucciti et al. 2003 and by Yin et al. 2016.

The efficiency is not necessarily decreasing as nodes are removed. If an isolated node
is removed, then the efficiency of the network increases. However, the removal of a node is
expected to decrease the efficiency. We propose the approach of treating each removed node,
as having all his edges removed, but still existing completely isolated in the network, thus,
normalizing the efficiency after a number of attacks by the number of nodes in the original
network. This value is strictly decreasing if a non-isolated node is removed even if he belongs

to an isolated cluster and remains constant on the removals of isolated nodes.

Theorem 3.3.1

The expected change for the global efficiency of a network if a node is removed is a

decrease.
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Proof:

LetA = X4 ﬁ}) be the sum of the inverse geodesic lengths of all the network, let also

G be a network with N > 3 nodes and G’ the same network with an arbitrary node k

removed. Then

A=Y

Eglobal(G) = (N-1(N-2)

and Eglobal(G,) =

A
NN —1)

Where Y is the sum of the inverse geodesics to and from the node removed plus a value
for the change of the length of every geodesic k was a part of.
Let X be the sum of the inverse geodesics to and from the node removed. Then the

expected value of X is
EX) = E(Xfrom + Xi0) =

= E(Xfrom) + E(Xto) =

- E(Zd(;,i)>+E Zd(jl,k) -

=2

+

= >
= >
= >

So
E(X) = Zéc)
N
SEX)N=24¢&
o E(X)N —AN =2A—- AN &
& AN —E(X)N = AN - 24 &

©(A-EX)N=AN-2) &

N -2 N

A—EX) A
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CWN-DW-2 NON-D

However, X =Y iffthe removal of node k does not affect the length of any geodesic

d(i,j) with i,j # k, that does not pass through k. This, E(X) < E(Y). Therefore,

A—E(Y) A-EX) A
N-DWN-2 “WWN—DWN-2 NN-D*

SE (Eglobal(G’)) < Eglobal(G)

The change in the efficiency of a network when under attack can be seen in the

following example. Note that any form of successful attack is expected to be better (and thus

create greater drops in the efficiency) than the presented random attacks.

Global Efficiency

Change in the efficiency for series of random attacks
on an Erdos-Renyi network
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Figure 3.3.4: The drop in the global efficiency in an Erdos-Renyi network with 100 nodes and 400 edges, when
subjected to a sequence of random node removals.
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In order to study the efficiency as a decreasing value over the attack, we propose to consider
an attack that removes a node as an attack that removes only the adjacent edges. This way the value
of the efficiency constantly decreases (unless an isolated node is removed, when it remains
constant) as seen in the following example.

Change in the efficiency according to the initial network order
for series of random attacks on an Erdos-Renyi network
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Figure 3.3.5:The drop in the global efficiency according to the initial network order on the same network as in
figure 3.3.4 when subjected to the same sequence of random node removals.

]JS-robustness

“Quantification of network robustness could be thought as the distance that a given

topology is apart from itself after a failure” (Schieber et al. 2015).

Definition 3.3.10: Shannon entropy, Jensen-Shannon divergence

e The Shannon entropy of a probability distribution is defined as
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H(P) = =) pilog(p) (33.8)

e The Jensen-Shannon divergence between two probability distributions is defined as

(3.3.9)

P+ Q) _HP)+H(Q)

JP,Q) = H(— -

The Jensen-Shannon divergence is the square of a distance between probability distributions

(Lin 1991).

The Jensen-Shannon divergence makes it possible to use the Jensen-Shannon
divergence to compare the difference in the probability distribution of any measure in the

nodes or edges of the network, for any given sequence of n failures.

Definition 3.3.11: /S-robustness (Schieber et al. 2015)

The info-theoretic robustness of a network is defined as

Ro(6 | @eernzm) = | [[1-77(P@D.PG)] =] [Ro(GealG)  (33.10)
t=1 t=1

Where P is a probability distribution of a network measure, G is the original network

and G; is the network after t failures.

Originally called simply “robustness’, we will call it JS-robustness for clarification purposes.

It is worthy of note that this measure can be used along any probability distribution,
whether it is from a nodal measure such as degree, or an edge measure such as edge-
betweenness. It can even be used with other types of distributions, as is demonstrated by

Schieber et al. 2015, where the distance distribution is also used along with the degree.
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Resilience Factor

We can consider the capability of a network to remain connected when vertices or
edges fail in a combinatorial way, by looking at the number of possible connected networks

as a result of a number of attacks over the number of all possible resulted networks.

Definition 3.3.12: Resilience factor (Salles and Marino 2011)

The resilience factor of a network G is defined as the average of all the fractions of
connected subgraphs of G, where 1 up to N — 1 vertices have been removed, over the
number of all possible subgraphs after removal. Specifically

DXig 0]

Ry = ES [0,1] (3.3.11)

|connected subgraphs after i attacks|

Where k(i) =

(i) = =

all subgraphs after Lattacks] " the denominator of which is equal to

The resilience factor can be used as a measure independent of the attack but has also
been demonstrated (Salles and Marino 2011) to be a workable measure to detect changes
on a network over an attack and has been compared alongside the average shortest path
length and the diameter in such a case. However, this comparison has been implemented
only in small networks and only for attacks that don’t disconnect them, and thus, some more
thorough examination is required to verify its usefulness, perhaps alongside other, more

sophisticated measures.
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3.4. Robustness measures dependent only on the network

Density

The density of the network (called connectance in the article) has been shown to be
highly correlated with the number of nodes needed to be removed in a food web to achieve

a 50% nodal cascade by Dunne et al. 2002.

Bounding network measures

A very simple and intuitive, yet sometimes effective way, to judge the robustness of a
network, is to check the extremes of some of its key measures. We have already seen the
minimal degree bounding various measures of robustness. Another example can be the
nodes with high betweenness centrality being crucial to distributing information. In fact, it
is around such ideas that the deconstruction strategies are based on. The maximal

congestion centrality has been used as a measure of robustness by Dodds et al. 2003.

Definition 3.4.1: Congestion centrality

The congestion centrality of a node i is defined as the probability that any message sent

between a pair of nodes (a, b) will pass through node i.

The congestion centrality depends on the method of distributing traffic in a network, and can

be used to rank such methods for a specific network.

Assortativity coefficient

Newman 2002 showed that the assortativity of a network is negatively correlated to

its robustness against random attacks, but positively correlated to its robustness against
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targeted attacks. On the contrary, Vazquez and Moreno 2003 showed that power law
networks are more robust when they are assortative even to random failures. Sydney et al.
2008 showed a positive correlation between assortativity and sssk-elasticity. Finally, Iyer et

al. 2013 found assortative networks to be more vulnerable to degree attacks.

Reliability polynomial

In order to create more robust to random failure communications, the following

measure has been proposed.

Definition 3.4.2: Reliability polynomial (Moore and Shannon 1956, as presented by Ellens
2011)

The reliability polynomial Rel(G) of a graph G is equal to the probability that the graph
is connected when each edge is (independently of the others) present with probability

p = 1 — g, in other words
m
Rel(G) = Z F(1—p)p™™ (3.4.1)
i=0

Where F; denotes the number of sets of i edges whose removal leaves G connected.

Theorem 3.4.1 (Kelmans et al. 1981, as presented by Ellens 2011)

For a graph with given size and order, there is no guarantee that a uniformly (for all p)

optimal graph exists.

Proof- Kelmans 1981
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The reliability polynomial has been used (Page and Perry 1994) to compare the
criticality of two edges, by considering the inequalities Rel(G — e;) = Rel(G — e,) and
Rel(G * e;) < Rel(G * e,), where Rel(G * e) is the reliability polynomial given edge e has not
failed and Rel(G — e) is the reliability polynomial given edge e has failed. If the above
inequations stand for all p, then it is safe to assume that edge e, is more critical than edge e;.
Such inequalities do not always stand, and in fact, reliability polynomials can cross each
other more than once (Colbourn et al. 1993), or they might have the same direction (Page

and Perry 1994).

Theorem 3.4.2 (Moore and Shannon 1956)

The relation between the reliability polynomial Rel(G) of a graph and the edge

connectivity k,(G) satisfies the following two properties
1. Ifx.(G,) < k.(G,) then, for p close enough to one Rel(G,) < Rel(G,).

2. Letds(G) be the number of subsets of k., (G) edges whose removal disconnects
G. If k. (G,) = k.(G,) and ds(G;) < ds(G,) then for p close to one Rel(G,) <
Rel(G,).

Proof: Moore and Shannon 1956. Another proof given by Ellens 201 1.

Graph diversity

For any pair of vertices in a graph, all different paths can be calculated and quantify the

extent to which they diverge from the shortest path and each other.

Definition 3.4.3: Path diversity Effective path diversity, Total graph diversity, Compensated
total graph diversity (Rohrer and Sterbenz 2011)

e The path diversity between paths a and b is defined as
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|PanPb|

D(Pap) =1- R TAREY) (3.4.2)
Where |Py| = 20 + 1, where [ is the length of the path y.
e The effective path diversity between nodes i and j is defined as
EPDyj = 1 — e2Ziz Dmin(P) (3.4.3)

Where A is an experimentally determined constant that scales the impact of the

diversity between paths a and b based on its utility.
e The total graph diversity is defined as the average of all effective path diversities.

e The compensated total graph diversity, (TGD) is defined in order to compensate for

various path lengths as
cTGD = eTCP~1 x h=@ (3.4.4)

Where h is the average hop-count and a is an experimentally tuned parameter. (In
Rohrer and Sterbenz 2011 it is suggested that a = 1.125 gives the best correlation to

the simulation results).

Rohrer and Sterbenz 2011 ordered various networks by their TGD and cTGD along

with other simpler measures.

3.5. Spectral Measures of Robustness

A network can be studied either directly, as we have seen until now, or through the

matrices associated with it. Specifically, its adjacency matrix and its Laplacian.
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Definition 3.5.1: Laplacian matrix, Weighted Laplacian matrix

e The Laplacian L is the difference 4 — A of the degree matrix 4 (4;; = d(v;),4;; = 0,i #

j) and the adjacency matrix 4, i.e.

d(vy), [=]
Lij = -1, if (i,j) € E(G) (3.5.1)
0, otherwise

e The weighted Laplacian LY, for a weighted graph G with non-negative weights w; j» 1s

defined similarly as

( .
|S(vi)=zwij; L=]
J

—Wij, if (i,j) € E(G)
0, otherwise

LY = (3.5.2)

From the eigenvalues of the Laplacian of a graph, it is possible to determine the number

of connected components it has.

Theorem 3.5.1

For the Laplacian of a graph G(V,E), the multiplicity of the eigenvalue zero

corresponds to the number of connected components of G.

Proof- Ellens 2011.

Theorem 3.5.2: Weyl’s Theorem (as presented by Ellens 2011)

Let a weighted graph G be given and let G’ be obtained by increasing the weight of an

edge, the Laplacian eigenvalues of the new graph satisfy
(G =2 (6) (3.5.3)

This means that the algebraic connectivity increases (not purely) with edge addition.
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Proof: Ellens 2011.

Algebraic Connectivity

Definition 3.5.2: Algebraic connectivity (Fiedler 1972)

The second smallest eigenvalue A, of the Laplacian is called the algebraic connectivity.

Corollary 3.5.1: (to theorem 8)

The algebraic connectivity is equal to zero iffthe graph is unconnected.

Lemma 3.5.1 (Fiedler 1973)

Removing k vertices, reduces the algebraic connectivity by at most k. More formally,

let G be a graph and G, a graph obtained by deleting k vertices from G, then

A2(G) = 2,(G) — k (3.5.4)

Proof Fiedler 1973.

Lemma 3.5.2 (Fiedler 1973)

The algebraic connectivity is bound by its vertex and edge connectivity.

A3 < Ky < ko < min(d(G)) (3.5.5)

Proof Fiedler 1973.
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Theorem 3.5.3 (Fiedler 1973)
The algebraic connectivity can be bound using the independent sets of G(V, E).
Ay, < V| = |MIS| (3.5.6)
Where MIS is a maximal independent set of G.

Proof Fiedler 1973.

Definition 3.5.3: Fiedler vector

The Fiedler vector of a graph G is the eigenvector corresponding to the second smallest

eigenvalue (i.e the algebraic connectivity).

Theorem 3.5.4 (Maas 1987 as presented by Wang and Van Mighem 2008)

Let G be a graph and G, be the same graph after the addition of an edge e between

nodes i and j. The upper and lower bounds of the algebraic connectivity A, (G,) are

2

min {/12(6) +— L6 - e} <1,(G.) < minfa® + 1,(6), 1,(G)}  (3.5.7)

(2—a?)

Where a = |u; — u;|, u; being the i-th element of the Fiedler vector.

In the lower bound the first term increases with increasing €, whereas the second one

decreases.

The highest lower bound can be achieved by a choice of € that makes both terms equal:

1

+ B2 - a)2>2 >0 (3.5.8)

p—2  ((B—2)?
2 +< 4
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Where 8 = A5(G) — A,(G) = 0.

The higher a is, the higher is & and the higher the highest lower bound is. Higher a also

contributes possible to a higher upper bound. Hence 1,(G,) tends to be large if a is large.

Proof: Maas 1987.

The lower bound for vertex and edge connectivity that the algebraic connectivity
presents, has been shown on various graph models, especially by Watts-Strogatz small world
graphs (Figures 3.5.1 & 3.5.2), to be rather loose and their difference increases as the order

of the network increases (Figure 3.5.3, Jamakovic and Uhlig 2007).

N =500
1[:' 1 I 1 1 I I 1 1 1 I
gl -f== smallword graph | |
m— random graph
gl = =—=—scale-freegraph [ .. ]

algebraic connectivity

1 2 3 4 5 6 7 g 9 10
node and hink copnectivity

Figure 3.5.1: The mean as well as the standard deviation (error bars) of the algebraic connectivity as a function
of the node and the link connectivity in the random graph of Erdos-Renyi, the small-world of Watts-Strogatz
and scale-free graph of Barabdsi-Albert. All graphs have N = 500 nodes.
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(Jamakovic and Uhlig 2007)

random graph small-world graph

algebraic connectivity
algebraic connectivity

node and link connectivity

9 T T T T T T T T

reseses W =30
Sh 2

algehmic cor

node and link connectivity

Figure 3.5.2: The mean as well as the standard deviation (error bars) of the algebraic connectivity as a function
of the node and the link connectivity in the Erdos-Renyi random graphs, Watts-Strogatz small world graphs
and Barabasi-Albert scale-free graphs with N = 50,100 and 500 nodes.

(Jamakovic and Uhlig 2007)

73



random graph small-world eraph
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Figure 3.5.3: The mean over 10”3 graphs of the node connectivity ky, the link (edge) connectivity k;, and the
algebraic connectivity yuy_, as a function of the number of nodes. Left for The Erdos-Renyi random graph with

a given link density q = L= p. v Is the critical value where the giant component appears. Right for the

Lmax

Watts-Strogatz small world model, with a given link density q = 0.04.

(Jamakovic and Uhlig 2007)

Nevertheless, the algebraic connectivity serves as a stepping stone and a baseline to
compare other measures. Ghosh and Boyd 2006 showed that optimizing the algebraic
connectivity requires relatively few edge additions, and a greedy algorithm is presented for
such optimization. Wang and Van Mighem 2008 discussed two edge addition strategies,
simpler to compute, but close to optimal values, for increasing the algebraic connectivity of
a graph. Specifically, they study the increase in the algebraic connectivity in two cases. After
connecting the lowest degree nodes, and after connecting the nodes with the highest value
fora = |ui - uj| (u; being the i-th element of the Fiedler vector), in Erdos-Renyi, Scale-Free
and k-ary tree networks. The effectiveness of this increase is proved algebraically, but it is

not tested with the network under attack.

Theorem 3.5.5
Adding an edge does not necessarily affect the first n — 2 Laplacian eigenvalues.

Proof: Ellens 2011 via example of a star graph.
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(a) (b)

Figure 3.5.4: Two graphs with identical algebraic connectivity equal to 0.7369.
(Wu etal 2008)

Under this light, an interesting topic of research would be to study how the rest of the
eigenvalues of the Laplacian project the robustness of the network.

In Wu 2005, the properties of the algebraic connectivity on directed, weighted and
singed graphs are explored, showing that most properties still stand for directed graphs, and
some of them stand for weighted and even singed ones. This is the only attempt so far to
obtain a robustness measure in a signed graph, without altering the weights to positive
values.

Theorem 3.5.6: (Wu 2005)
Let G be a directed graph

e If G has two vertices with 0 out-degree, then a(G) < 0.
e IfG isunconnected a(G) < 0.

e If G has non-negative weights, a(G) = 0, if it is also connected a(G) > 0.
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e If G has non-negative weights a(G) < k,(G) < k.(G).

Proof: Wu 2005.

However, while adding undirected edges cannot decrease the algebraic connectivity of
a graph, adding directed edges might, as shown in the following example by Wu 2005.

Figure 3.5.5: The empty graph has an algebraic connectivity of 0, However, the graph in this image has an
algebraic connectivity of -0.0774.
Wu 2005.

Theorem 3.5.7: Relating isoperimetric number and algebraic connectivity (Wu 2005)
V]
a(G) — =

4]
2

i(G) = (3.5.9)

Proof: Wu 2005.

Theorem 3.5.8: (Wu 2005)

Let H be a set of vertices with zero in-degree in a graph ¢ with non-negative weights.
Then a(G — H) = a(G).

Proof- Wu 2005.
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Natural Connectivity

Based on the principle that the number of alternate paths between each pair of nodes
in a network plays a critical role in its robustness, but also on the notion that identifying the
number of all alternative paths of different lengths between each node, the natural
connectivity is proposed as a measure based on closed walks. To avoid repeated back-and-
forths on an edge, the cycles are weighted by the factorial of their length. Let N = |V| and

S =Yr=0o %, where n; is the number of closed walks in the network with length k. From

matrix theory, we know that for symmetric matrices

ny, = trace(4¥) = ZA{‘ (3.5.10)

Therefore,

oon oo le N ooﬂk N
Zk_=zz_l|=zzk_l'=zeﬂi (3.5.11)
L, iy .

Where S is equal to the sum of the subgraph centralities (see Estrada 2006).

Finally, noting that S increases with N it is scaled, and the natural connectivity is derived.

Definition 3.5.4: Natural connectivity/Natural eigenvalue (Wu et al. 2008)

The natural connectivity or natural eigenvalue of an undirected network is defined as
the scaled sum of all closed walks in the network.

A

i=1In (%) - ln< Iivj\l]e i) (3.5.12)

We note that there is another approach to defining the natural connectivity applicable
to asymmetric matrices (and thus to directed graphs). Let a denote the elements of A*
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N

ny, = trace(A¥) = Z ak (3.5.13)
i=1
00 00 N oo N N oo
n 1 ak ak
s=Y =Y (e et > Y E Y ey @sas
k=0 k=0 \ i=1 k=0i=1  i=1k=0

Theorem 3.5.9 (Wu et al. 2008)
. A increases purely with edge addition
. A<N-InN (3.5.15)

Proof- Wu et al. 2008.

The natural connectivity has been shown to produce better judgement than other
measures, namely, edge connectivity, algebraic connectivity and critical threshold, on four
different edge attack strategies (random, rich-rich, rich-poor, poor-poor (see chapter 4) on
a scale free network (Wu et al. 2008, Wu et al. 2010, Wu et al. 2011) and on the Chinese
internet (Wu et al. 2011). It has also been used to show that the efficiency as a single value
is not a measure of robustness (Peng et al. 2016).

Number of spanning trees

Definition 3.5.5: Spanning tree

Spanning tree of a connected undirected graph, is a tree subgraph that contains (spans
through) all vertices. In other words, for an undirected graph G, a spanning tree is a
connected subgraph that contains N vertices and N — 1 edges.

This definition is not exclusive. A graph can have multiple different spanning trees indicating
alternate pathways in the network, and thus their number can be considered as a measure
of robustness.

Although the number of spanning trees in a graph is a structural element, we consider
it in this section as it is possible to determine it by the eigenvalues of the Laplacian.
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Theorem 3.5.10 (Van Mieghem 2010, as presented by Ellens 2011)

The number of spanning trees in a simple graph G with Laplacian L and Laplacian
eigenvalues 4;,i = 1,2, ...,nis

1 n
£(G) = ;l—[ai (3.5.16)

Proof: Van Mieghem 2010.

Theorem 3.5.11 (Ellens 2011)

The reliability polynomial of a simple graph G, satisfies
Rel(G) =&()p™ T +o(p™?), p-0 (3.5.17)

Proof- Ellens 2011.

According to Ellens 2011, this indicates that the number of spanning trees is not a good
measure of robustness to failure for real world networks, since, in such networks, random
failures are generally scarce. In these cases, it is reasonable to assume that p will be close to
one rather than zero.

An algorithm has been proposed (Tsen et al. 1994) that identifies the most important
edge to be deleted according to the number of spanning trees with complexity O(N237¢). The
reversal of this algorithm can indicate edges to be added to strengthen the network. Another
algorithm for optimizing the number of spanning trees by edge addition has been proposed
by Baras and Hovareshti 2009.

Theorem 3.5.12 (Baras and Hovareshti 2009)

In a simple graph, the optimal edge to be added in order to maximize the number of
spanning trees is between two nodes with maximal effective resistance distance (see
below).

Proof- Baras and Hovareshti 20089.
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Effective Resistance

Definition 3.5.6: Effective resistance/Resistance distance

By considering an undirected graph G as an electrical circuit, we can treat each edge
(i,j) as a resistor of r;; = 1 Ohm for unweighted graphs, or r;; = Wi;-l for weighted
ones, effectively treating the weight of an edge as its conductance. The resistance
between a pair of nodes in the graph is called resistance distance, or effective
resistance.

Theorem 3.5.13 (Klein and Randic 1993)

The effective resistance between two nodes of a simple graph i, j is a metric.

Proof- Klein and Randic 1993.

Theorem 3.5.14 (Klein and Randic 1993)

The effective resistance between two nodes of a simple graph i, j is non-increasing with
edge addition.

Proof- Klein and Randic 1993.

This alone suggests that it can be used instead of the geodesic length in the various
measures that depend on it. In addition, as we have already seen, minimizing the effective
resistance is the best way to increase the number of spanning trees.

The effective resistance also agrees with some very basic intuitive ideas about the
robustness of communications between two nodes. Specifically:

e Long paths offer greater resistance (n resistors in series give R;; =1 + 1, + - +13,)

e Alternate paths decrease the resistance (n resistors in parallel give R;; =

)

¢ Increasing the number of alternate paths has diminishing returns (similarly with b, e.g.

1
ety eyt

for one, two and three 1-ohm resistors we get effective resistance of R; = 1,R, =
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%,R3 = 1/3. Essentially, to halve the effective resistance we must double the

conductivity.)

This way we can study both basic ideas of network robustness. Namely, the idea that
shorter paths are more reliable since they are less prone to failure, and the idea that having
alternative paths can keep a network connected even after certain parts of it have failed.

Although the effective resistance does not initially appear to be a spectral measure of
the graph, it has been shown that it can be calculated from the Laplacian.

Theorem 3.5.15 (Klein and Randic 1993)

For a [weighted] undirected graph G(V,E) with edge weights w;;, the effective
resistance between vertices i and j is

Ry =(ei—¢) L*(e;— ) = Lf; - 2LF + Lj; (3.5.18)

Where L;rj is the (i, j) element in the Laplacian pseudoinverse matrix and e; is the vector with
1 on the i-th element and 0 on all others.

Proof- Klein and Randic 1993.

Definition 3.5.7: Effective graph resistance/Total effective resistance

The effective graph resistance or total effective resistance of an undirected graph G
with N vertices is the sum of the effective resistances over all pairs of vertices.

R(G) =ZN: ZN: R (3.5.19)

i=1 j=i+1

The total effective resistance is also called Kirchhoff index.

Theorem 3.5.16 (Klein and Randic 1993)

The total effective resistance of a connected weighted undirected graph G, satisfies
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N
R(G) = NZ%W (3.5.20)
i=2 ¢

Proof- Klein and Randic 1993.

Corollary 3.5.2 (Ellens 2011)

The total effective resistance of an undirected, unweighted graph can be bounded by
functions of 2¥ in the following way

N(N - 1)

<R(G) <~
2

W= (3.5.21)

Theorem 3.5.17 (Ellens 2011)

The total effective resistance of an undirected graph strictly decreases when edges are
added, or weights are increased.
Let D(i,j) be the ordinary (shortest path) distance between nodes i and j.

Then R;; < D(i, j), with the equality holding iff there is only one path between i and j.

ij =

Proof: Ellens et al 2011

The effective resistant can also be defined via a random walk on an undirected graph

with transition probabilities p;; = %, where s; stands for the strength of node i.
14

Theorem 3.5.18 (Chandra et al. 1989, as presented by Ellens 2011)

Let G be a weighted, undirected graph. First, we define an electrical circuit by setting

Tij = W— Second, we define a random walk on G with transition probabilities p;; = 2y
ij
and the expected travel time between nodes i and j denoted by E(Tl-j). [t holds that
1
Rij =<N (E(TU) + E( )) (3.5.22)

i=15
Foralli,j € V(G).
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Proof: Ellens 2011.

Corollary 3.5.3

N N

R(G) = N1 Z Z E(T;) (3.5.23)

=171 =1

Following the approach of a random walk, and by studying the expected number of
visits on every node, network criticality was defined by Tizghadam and Leon-Garcia 2008 in
a way that it equals twice the total effective resistance, and thus we did not consider it as a
separate measure.

Definition 3.5.8: Normalized total eftective resistance (Ellens 2011)

The normalized effective resistance of an undirected graph is defined as

N-1_ N-1

RMOT™m(G) = e [0,1] (3.5.24)

i=27,

The benefits of such a measure are twofold. First it’'s a measure of robustness instead of
vulnerability, and second, its values lie in [0,1] thus making it easier to handle and to be used
comparatively.

Corollary 3.5.4

1 N—-1
NA‘Q’ < R"™™M(G) < T/l‘z” (3.5.25)

With this modification, the algebraic connectivity can be used to approximate the robustness
of a network better than by itself alone.

Theorem 3.5.19 (Ellens 2011)

Let G be an undirected and unweighted graph with a given maximum degree and
number of nodes. Then its normalized effective resistance is bound by that achieved
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within the class of clique chain graphs G(n, = 1,n,,...,n4,__ ,Ng__ 41 = 1) with

dmax+1 i

Proof: Ellens 2011.

Corollary 3.5.5

If the number of isolated nodes of a graph is known, it can be used to further bound its
normalized effective resistance by lowering the maximal one possible in its
corresponding clique chain family.
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Figure 3.5.6 Bounds for the R™°™™ ofthe clique chains over their number of nodes, by their maximum degree.

(Ellens 2011)

Young et al. 2016a and Young et al. 2016b generalized the effective resistance for
directed graphs. This attempt aims for uses in control theory and does not care for
algorithms to calculate the total effective resistance, or any comparisons with other

robustness measures, but it opens a large field for further research.
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Deviation from the ideal good expansion character

Definition 3.5.9: Good expander

A network is a good expander or is said to have good expansion properties if every
subset of nodes S (up to 50% of the nodes) has a neighborhood that is larger than some
“expansion factor” @ multiplied by the number of nodes in S. In other words, a network

is a good expander if it has a sufficiently large vertex isoperimetric number.

Note: In general, a graph is considered to be a good expander if it has a sufficiently large

vertex isoperimetric number and relatively low degree centralities.

Estrada 2006 noted that a necessary condition for a network to be a good expander is
that the gap between the first and second eigenvalues of the adjacency matrix 41 = 1; — 4,
is sufficiently large. The problem of determining how large is “sufficiently large” is solved by
assessing the degree of correlation between the largest eigenvector of the adjacency matrix
(the eigencentralities) and the weighted sum of all odd-length walks that start and end at

each node.
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Spectral Scaling
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Figure 3.5.7: [llustration of the differences between entworks with and without good expansion properties.

(Estrada 2006)

Definition 3.5.10: Subgraph centrality, Odd subgraph centrality, Even subgaph centrality
(Estrada and Rodriguez-Velazquez 2005)

e Subgraph centrality is defined as the weighted by their length number of closed circles

leading to a node

ny (1)
k!

Cs(i) =
k=0

(3.5.26)
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Where ny (i) is the number of closed walks of length k beginning and ending at vertex
It
e We can similarly define the odd-subgraph centrality and even-subgraph centrality as

the number of closed walks of odd or even length.

_ N e @) )
“oia = L@kt Seven T £, 2k (8:5.27)

Theorem 3.5.20 (Estrada and Rodriguez-Velazquez 2005)

Let G be a simple undirected graph of order N. Let vy, v,, ..., vy be an orthonormal basis
of RN composed by eigenvectors of the adjacency matrix A, associated to the eigenvalues
A, Ay, o Ay Let vj" denote the i-th component of v;. For all i € V the subgraph centrality may

be expressed as follows:
N
Cs(i) = ) vieh (3.5.28)
j=1

Proof: Estrada and Rodrigues-Velazquez 2005.

Theorem 3.5.21 (Rodriquez et al. 2007)

Let G be a simple undirected graph of order N. Let vy, v,, ..., vy be an orthonormal basis
of RN composed by eigenvectors of the adjacency matrix A, associated to the eigenvalues
A, Ay, o Ay Let vji denote the i-th component of v;. For all i € V the odd and even subgraph

centrality may be expressed as follows:

N N
Cooaa = ). (1) SNh(E)  Cr,pp = ) (4])” cosh(2) (35.29)
j=1 j=1

Proof: Rodriquez et al. 2007.

Definition 3.5.11: Deviation from the good expansion character (Estrada 2006)

Deviation from the good expansion character of a simple undirected graph is defined
in such a way that perfect good expander networks will have £(G) = 0, specifically
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N
£6) = [ oglvs (] ~ 0g(@) + 1 10glSCaga (DI (35.30)
i=1

Where a ~ [sinh(1;)]7%% 1 ~ 0.5 and v, is the eigenvector for the largest eigenvalue
A

The above values are derived from the properties of good expander graphs by Estrada 2006.

The deviation from the good expansion character is shown to be a measure of
vulnerability of a network by Estrada 2006 and Estrada 2007.

3.6. Combined Robustness

The idea of measuring a networks robustness in general has been studied by Van
Mieghem et al. 2010, where a linear model for defining robustness is proposed as such

Definition 3.6.1: Combined robustness (Van Mieghem et al. 2010)

The combined robustness of a network is defined as

m
R = szRk (36 1)
k=1

Where R, are measures of robustness, or other network topological measures,
preferably normalized, and s, is a variable defining the importance of the
corresponding measure of each measure of robustness or topological measure.

It is also noted, that such measures are frequently correlated and should be chosen in
such a way that they are as independent as possible, but such a choice depends on the
network being studied.

“The dependence between metrics in a graph seems a hard, inherent challenge of the
robustness problem” (Van Mieghem et al. 2010).

It would, therefore, be an interesting point of research to study the correlation of the
various measures according to the topology of a graph. Such correlations have, only partly,
been explored by Kasthurinathna et al. 2013.
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4. Network deconstruction

4.1. Introduction

In this chapter we will define the various methods of attack that have been used. We will

present selected methods of attack with respect to robustness according to:

e The networks that have been studied, providing:
o Structural information
o Information on direction and/or weights
o Network functionalities
e The origin of the network
e The measure used to assess the impact of each attack

e The relative reference

In this chapter some of the strategies of removing nodes from a network, are defined
and presented according to the networks they have been tested on, the indices of robustness

that have been used and finally the reference on where each study can be found.

Definition 4.1.1: /nstantaneous/Salvo attacks, Repeated attacks, Cascading attacks

¢ Instantaneous or salvo attack on a network is multiple modifications performed at the
same time in the network with no difference taking place in the network in-between
them.

e Repeated attack on a network is any sequence of modifications where the mechanisms
of the network, such as its limitations any self-rewiring capabilities, occur in-between
the attacks.

e (ascading attack on a network is a special case of repeated attacks, or repeated salvos

that start on a node or link and radiate from it. For example, the removal of a node
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causes its neighbors to be removed as well in the next instance, either one by one or all

together.

It is important to note that in the case of no limitations, self-rewiring capabilities or

other such mechanics existing in a network, and in the case of a single node or link attack,

there is no difference in the effects of repeated or instantaneous removals.

4.2. Random removals

We have already defined the notion of random removals of nodes or links in a network

(definition 1.2.4). They have been widely studied, since almost any network is designed with

the possibility of parts of it failing randomly, because such mishaps are present in any

undertaking, e.g. transport networks and harsh weather, road networks and traffic

accidents, power grids and distribution station malfunctions etc. In general, random

removals are studied as a method of attack, either to check the ability of a network to cope

with accidents, or as a baseline for other methods of attack on a network.

Table 4.2.1: Repeated, random node removals ordered by network structure, measure used and network type.

Network Structure

Network Origin

Measure of assessment

Reference

Single value degree
distribution (all degrees
equal to 3)

Undirected and
unweighted

Processability
limitations

Artificial

Change in the order of
the giant component

Motter and Lai 2002
Removal of a single node

2-Peak and 3-Peak
degree distribution

Undirected and
unweighted

Artificial

Critical Threshold

Valente et al. 2004

Exponential degree
distribution

Artificial

Change in the order of
the giant component

Newman and Ghosal
2007
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Change in the order of

Newman and Ghosal

Undirected and the giant bicomponent 2007

unweighted

Exponential degree North American Power Percentage of nodes Albert et al. 2004

distribution Grid disconnected from the
giant component

Undirected and US power grid Change in the order of Motter and Lai 2002

unweighted the giant component Removal of a single node

Processability

limitations

Erdos-Renyi Artificial Critical Threshold Albert et al. 2000
Change in the diameter | Albertetal. 2000

Undirected and Change in the efficiency | Crucitti etal. 2003

unweighted Change in the local Crucitti et al. 2003
efficiency
Change in the order of Albert et al. 2000
the giant component

Erdos Renyi Artificial Change in the order of Motter and Lai 2002
the giant component Removal of a single node

Undirected and

unweighted

Processability

limitations

Erdos Renyi Artificial AUC of the order of the Wagner 2015

Directed and
unweighted

giant component

2-dimentional Ant Galleries, their Fragmentation Buhl et al. 2004
exponential degree minimal spanning trees | Threshold
distribution and their triangulated (a =0.5)
graphs Change in the efficiency | Buhl et al. 2004
Change in the order of Buhl et al. 2004
Undirected and the giant component
unweighted

2-dimentional Ant Galleries, their Fragmentation Buhl et al. 2004
exponential degree minimal spanning trees | Threshold
distribution and their triangulated (a =0.5)
graphs Change in the efficiency | Buhl etal. 2004
Undirected and Change in the order of Buhl et al. 2004
weighted the giant component
Poisson degree Artificial Change in the order of Newman and Ghosal
distribution the giant component 2007
Change in the order of Newman and Ghosal
Undirected and the giant bicomponent 2007
unweighted
Scale Free Artificial Critical Threshold Albert et al. 2000
Cohen et al. 2000
Undirected and Change in the order of Albert et al. 2000
unweighted the giant component Cohen et al. 2000

Change in the diameter

Albert et al. 2000

Change in the efficiency

Crucitti et al. 2003
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Change in the local
efficiency

Crucitti et al. 2003

Scale Free

Undirected and
unweighted

Processability
limitations

Artificial

Change in the order of
the giant component

Motter and Lai 2002
Removal of a single node

Scale Free

Undirected and
unweighted

Self-rewiring

Cannabis distribution
network

Change in the efficiency

Duijn et al. 2014

Change in the network
density

Duijn et al. 2014

Scale Free Artificial AUC of the order of the Wagner 2015
giant component

Directed and

unweighted

Small World Artificial AUC of the order of the Wagner 2015
giant component

Directed and

unweighted

Unspecified structure Shanghai Subway Change in the efficiency | Zhangetal. 2011

Undirected and
unweighted

Functionality loss

Zhangetal. 2011

Change in the order of
the giant component

Zhang et al. 2011

Various real-world
networks

Change in the order of
the giant bicomponent

Newman and Ghosal
2007

Western Power Grid of
the US

JS-robustness and its
change over the attack

Schieber et al. 2015

Various artificial and
real

Compensated total
graph diversity

Rohrer and Sterbenz
2011

Unspecified structure

Undirected and
weighted

Beijing Subway

Change in the efficiency

Yin et al. 2016

Change in the local
efficiency

Yin et al. 2016

Dolphin Social Network

JS-robustness and its
change over the attack

Schieber et al. 2015

Unspecified structure Food Webs Fragmentation Dunne et al. 2002
Threshold
Directed and (a =0.5)
unweighted Secondary extinctions Dunne et al. 2002
and extinction area
Structural limitations Network density Dunne et al. 2002
Unspecified structure Food Webs Change in the order of Sole and Montoya 2001

Directed and weighted

the giant component




Bipartite with
unspecified structure

Undirected and
unweighted

Structural limitations

Pollinator networks

Fragmentation
Threshold
(a = 0.5)

Santamaria et al. 2014

Bipartite with
unspecified structure

Undirected and
unweighted

Structural limitations

Pollinator networks

% of nodes of the
opposite type remaining

Kaiser-Bundury et al.
2010

Table 4.2.2: Repeated random edge removals ordered by network structure, measure used and network type.

Network Structure Network Origin Measure of assessment Reference
Erdos Renyi Artificial AUC of the order of the Wagner 2015
giant component
Directed and
unweighted
Scale Free Artificial Natural Connectivity Wu etal. 2010
Wu etal. 2011
Undirected and Change in the order of Wu etal. 2010
unweighted the giant component Wuetal. 2011
Chinese Internet Natural Connectivity Wu etal. 2011
Change in the order of Wu etal. 2011
the giant component
Scale Free Artificial Change in the Moreno et al. 2003
probability the largest Removal of a single edge
Undirected and component has an order
unweighted of the network’s order of
magnitude
Processability
limitations
Scale Free Artificial AUC of the order of the Wagner 2015
giant component
Directed and
unweighted
Small World Artificial AUC of the order of the Wagner 2015

Directed and
unweighted

giant component

Unspecified structure

Undirected and
unweighted

Western Power Grid of
the US

JS-robustness and its
change over the attack

Schieber et al. 2015

Various artificial and
real

Compensated total
graph diversity

Rohrer and Sterbenz
2011

Unspecified structure

Beijing Subway

Change in the efficiency

Yin et al. 2016

Change in the local
efficiency

Yin et al. 2016




Undirected and Dolphin Social Network | JS-robustness and its Schieber et al. 2015
weighted change over the attack

Table 4.2.3: Repeated random mixed node and link removals ordered by network structure, measure used and
network type.

Network Structure Network Origin Measure of assessment Reference
Unspecified structure Various artificial and Compensated total Rohrer and Sterbenz
real graph diversity 2011
Undirected and
unweighted
4.3. Ranking

By ranking all the nodes or links in a network according to some measure that indicates
their importance to the structure, we can get a sequence of nodes or links to remove that
should be more effective according to the assumption that more important nodes play a

larger role on the structure of a network.

A very important factor in such attack methods is whether these measures are
calculated only on the initial network, or on every instance of a repeated removal attack (i.e.
after the removal of each node). Calculating each instance separately can be more
informative, as each removal targets the most important node or link, according to the
selected ranking. However, it can also be very taxing to re-estimate such values in larger
networks for every instance, and sometimes inefficient, as for example, the degree
distribution of the network does not change significantly after each attack, although it has
been shown to be more efficient (Holme et al. 2002, Chen et al. 2008, Morone and Makse

2015, Morone et al. 2016).

Definition 4.3.1: /nitial measure attacks, adaptive attacks

An attack that targets edges or nodes according to a network measure such as the

degree, can be formed either according to the initial values of the network, or to the
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ones adapted to the new network created after the previous attacks. We call attacks
that target nodes or edges according to the original ranking initial measure attacks (for
example initial degree attacks) and attacks that target the recalculated values adaptive

measure attacks.

Targeted attacks will be referred to in a format following the order, measure and target
of the attack. For example, high degree node attacks target the nodes of the network in
according to their degree in decreasing order. Furthermore, when a removal strategy is

based on the measure re-estimated at every step, this will be noted.

For clarification purposes, let it be noted that when referring to a measure (e.g. the
degree) that has a corresponding centrality, the centrality is considered to be the measure
divided by the largest possible value for a node or edge in a graph of the same order (as

defined in Freeman 1979)

Degree based node attacks

The most common, and perhaps most intuitive method studied in this regard is the

degree centrality of each node.

Definition 4.3.2: Degree, In-degree, Out-degree

The degree of a node is defined as the number of neighbors it is connected to. In
directed graphs this can be further analyzed to the in-degree and out-degree that are

defined as the number of incoming and outgoing links respectively.

Removing the most connected node of the network should logically correspond to the largest

possible disconnection.
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Table 4.3.1: Repeated attacks on the nodes with the highest degree, by network structure, measure used and

network type.
Network Structure Network Origin Measure of assessment Reference
Exponential degree Artificial Change in the order of Motter and Lai 2002
distribution the giant component Removal of a single node
Undirected and
unweighted
Processability
limitations
2-Peak and 3-Peak Artificial Critical Threshold Valente et al. 2004
Undirected and
unweighted
Uniform Artificial and various Change in the order of Estrada 2006
real-world the giant component
Undirected and Food Webs Change in the order of Estrada 2007
Unweighted the giant component
Erdos Renyi Artificial Critical Threshold Albert et al. 2000
Change in the efficiency | Holme et al. 2002
Undirected and Initial and adaptive
unweighted
Crucitti et al. 2003
Average order of the Schneider et al. 2010
giant component Adaptive only
Change in the diameter | Albert et al. 2000
Change in the local Crucitti et al. 2003
efficiency
Change in the order of Albert et al. 2000
the giant component
Holme et al. 2002
Initial and adaptive
Chen et al. 2008
Morone and Makse 2015
Initial and adaptive
Morone et al. 2016
Adaptive only
Erdos Renyi Artificial Change in the order of Costa 2004
(Q-augmented) the giant component
Undirected and
unweighted
Erdos Renyi Artificial AUC of the order of the Wagner 2015
giant component
Directed and weighted
Random Regular Artificial Change in the order of Chen etal. 2008

the giant component

Initial and adaptive
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Undirected and
unweighted

AUC of the order of the
giant component

Morone et al. 2016
Adaptive only

Random with
exponential degree

Artificial

Change in the order of
the giant component

Iyer etal. 2013
Initial and adaptive

distribution AUC of the order of the Iyer et al. 2013
giant component Initial and adaptive
Undirected and
unweighted
Exponential degree Artificial and various Change in the order of Estrada 2006
distribution real-world the giant component
Food Webs Change in the order of Estrada 2007
Undirected and the giant component
Unweighted
Exponential degree US power grid Change in the order of Motter and Lai 2002
distribution the giant component Removal of a single node
North American Power % of disconnected nodes | Albert etal. 2004
Undirected and Grid
unweighted
Processability
limitations

2-dimentional with
exponential degree
distribution

Undirected and
unweighted

Ant Galleries, their
minimal spanning trees
and their triangulated
graphs

Change in the order of
the giant component

Buhl et al. 2004

Fragmentation
Threshold
(a=10.5)

Buhl et al. 2004

Change in the efficiency

Buhl et al. 2004

2-dimentional with
exponential degree

Ant Galleries, their
minimal spanning trees

Change in the order of
the giant component

Buhl et al. 2004

distribution and their triangulated Fragmentation Buhl et al. 2004
graphs Threshold

Undirected and (a =0.5)

weighted Change in the efficiency | Buhl et al. 2004

Scale Free Artificial Critical Threshold Albert et al. 2000

Undirected and Cohen et al. 2001

unweighted Average order of the Schneider etal. 2010

giant component

Adaptive only

Change in the efficiency

Holme et al. 2002
Initial and adaptive

Crucitti et al. 2003

Change in the diameter

Albert et al. 2000

Change in the local
efficiency

Crucitti et al. 2003

Change in the order of
the giant component

Albert et al. 2000
Cohen et al. 2000

Holme et al. 2002
Initial and adaptive

Chen et al. 2008
Initial and adaptive
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Iyer etal. 2013
Initial and adaptive

Morone and Makse 2015
Initial and adaptive

AUC of the order of the
giant component

Iyer etal. 2013
Initial and adaptive

SSSK-elasticity

Sydney et al. 2008

European Electricity
system (power grid)

Average order of the
giant component

Schneider et al. 2010
Adaptive only

Internet
Scale Free Artificial Change in the order of Costa 2004
(Q-augmented) the giant component
Undirected and
unweighted
Scale Free Artificial Change in the order of Motter and Lai 2002
the giant component Removal of a single node
Undirected and
unweighted
Processability
limitations
Scale Free Cannabis distribution Change in the efficiency | Duijn et al. 2014
network Change in the network Duijn et al. 2014
Undirected and density
unweighted

Self-rewiring

Scale Free Artificial AUC of the order of the Wagner 2015

giant component
Directed and Kasthrinathna and
unweighted Mahendra 2013
Scale Free Food Webs Change in the order of Estrada 2007

the giant component
Undirected and Artificial and various Change in the order of Estrada 2006
unweighted real-world the giant component
Clustered Scale Free Artificial Change in the efficiency | Holme etal. 2002

Initial and adaptive

Undirected and Change in the order of Holme et al. 2002
unweighted the giant component Initial and adaptive
Scale-Free (power law Food Webs Change in the order of Estrada 2007
with exponential tail the giant component
degree distribution) Artificial and various Change in the order of Estrada 2006

real-world the giant component
Undirected and
unweighted
Small World Artificial Change in the efficiency | Holme etal. 2002
Initial and adaptive
Undirected and Change in the order of Holme et al. 2002
unweighted the giant component Initial and adaptive
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Small World

Directed and
unweighted

Artificial

AUC of the order of the
giant component

Wagner 2015

Unspecified structure Mexican Change in the order of Morone and Makse 2015

telecommunications the giant component Initial and adaptive
Undirected and network
unweighted

Twitter network
Bipartite with Networks from the web | Fragmentation Garcia-Algarra et al.
unspecified structure of life collection Threshold 2017

(a =0.5)

Undirected and AUC of the order of the Garcia-Algarra et al.
unweighted giant component 2017

Extinction area of the
second nodal group

Garcia-Algarra et al.
2017

Unspecified structure

Undirected and
weighted

Metro networks
(Beijing, Shanghai,
Guangzhou)

Change in the efficiency

Zhangetal. 2018

Functionality loss

Zhang et al. 2018

Shanghai Subway

Connectivity of a line

Zhang et al. 2011

Change in the efficiency

Zhang et al. 2011

Functionality loss

Zhang et al. 2011

Change in the order of
the giant component

Zhang et al. 2011

Colaboration Network

Computer Network from

Change in the efficiency

Holme et al. 2002
Initial and adaptive

Change in the order of

Holme et al. 2002

internet traffic the giant component Initial and adaptive

Beijing Subway Change in the efficiency | Yinetal. 2016
Change in the local Yin et al. 2016
efficiency

Global Salafi Jihad Change in the order of Xu and Chen 2008

terrorist network the giant component

(provided by third Critical Threshold Xu and Chen 2008

party)

Meth World,

Gang-related criminals

(Xu and Chen 2003)

Terrorist web site
network (created by the
authors, government
data sources)

Various Real-World

Change in the order of
the giant component

Iyeretal. 2013
Initial and adaptive

AUC of the order of the
giant component

Iyeretal. 2013
Initial and adaptive

Workplace network

Internet (Autonomous
System)

Change in the order of
the giant component

Chen et al. 2008
Initial and adaptive
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High energy particle
physics station network

Metabolic network

Unspecified structure Food Webs Change in the order of Sole and Montoya 2001
the giant component

Directed and

Unweighted

Unspecified structure Food Webs Extinction Area Allesina and Pascual

Directed and weighted

Structural limitations

2009

Fragmentation
Threshold
(a=0.5)

Dunne et al. 2002*

Secondary extinctions
and extinction area

Dunne et al. 2002*

Network density Dunne et al. 2002*
Bipartite with Networks from the web | Fragmentation Garcia-Algarra et al.
unspecified structure of life collection Threshold 2017

(a=0.5)
Undirected and AUC of the order of the Garcia-Algarra et al.
weighted giant component 2017

Extinction area of the Garcia-Algarra et al.

second nodal group 2017
Bipartite with Pollinator networks Fragmentation Santamaria et al. 2014
unspecified structure Threshold

(a=0.5)

Undirected and
unweighted

Structural limitations

Secondary extinctions
and extinction area

Memmott et al. 2004

Various real world and
artificial

Extinction area of the
second nodal group

Dominguez-Garcia and
Munoz 2015

Bipartite with
unspecified structure

Undirected and
unweighted

Structural limitations

Self-rewiring

Pollinator networks

Percentage of nodes of
the opposite group
remaining

Kaiser-Bundury et al.
2010

HOT for SSSK-elasticity
(Heuristically Optimal

Topology)
(Sydney et al. 2008)

Undirected and
unweighted

Artificial

SSSK-elasticity

Sydney et al. 2008

*In the study by Dunne et al. 2002, the attack was run twice. The second time, basal species

(species with predators but no prey) were not included in the ranking.
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Table 4.3.2: Repeated attacks on the nodes with the lowest degree, by network structure, measure used and

network type.

Network Class

Network Origin

Robustness Index

Reference

Bipartite with
unspecified structure

Undirected and
unweighted

Structural limitations

Pollinator networks

Fragmentation
Threshold
(a=0.5)

Santamaria et al. 2014

Secondary extinctions
and extinction area

Memmott et al. 2004

Bipartite with
unspecified structure

Pollinator networks

Percentage of nodes of
the opposite type

Kaiser-Bundury et al.
2010

remaining
Undirected and
unweighted

Structural limitations
Self-rewiring

Edge attacks based on the degrees of the neighboring vertices

Holme et al.2002 ranked both vertex and edge attacks under similar terms. The
measure for edge ranking corresponding to the vertex degree that was proposed is the edge-

degree.

Definition 4.3.3: Edge-degree (Holme et al. 2002)

The edge-degree of an edge is defined as the product of the vertex degree of the vertices

it connects.

Additionaly, Wu et al. 2010 and Wu et al. 2011 studied the edge attacks based on the
possible combinations of the vertices they connect. Specifically, three such attacks were

studied;

¢ Rich-Rich, meaning edges that connect high degree nodes with high degree nodes are

removed first, equating to descending edge degree.
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¢ Rich-Poor, meaning edges that connect high degree nodes with low degree nodes are
removed first, edges in descending order of the difference of the degrees of the nodes
they connect |d(v) — d(u)|.

e Poor-Poor, meaning edges that connect low degree nodes with low degree nodes are

removed first, equating to ascending edge degree.

Table 4.3.3: Repeated attacks on the edges with the highest edge-degree, by network structure, measure used
and network type.

Network Structure Network Origin Measure of assessment Reference

Scale Free Artificial Change in the efficiency | Holme etal. 2002
Initial and adaptive

Undirected and Natural Connectivity Wuetal. 2010

unweighted Unspecified

Wuetal. 2011

Unspecified
Chinese internet Natural Connectivity Wuetal. 2011

Unspecified

Erdos Renyi Artificial Change in the efficiency | Holme et al. 2002
Initial and adaptive

Undirected and

unweighted

Small World Artificial Change in the efficiency | Holme et al. 2002
Initial and adaptive

Undirected and

unweighted

Clustered Scale Free Artificial Change in the efficiency | Holme etal. 2002

Initial and adaptive
Undirected and

unweighted

Unspecified structure Colaboration Network Change in the efficiency | Holme et al. 2002
Initial and adaptive

Undirected and Computer Network from

unweighted Internet traffic
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Table 4.3.4: Repeated attacks on the edges connecting rich to poor or poor to poor nodes, by network structure,
measure used and network type.

Network Structure Network Origin Measure of Reference
assessment

Scale Free Artificial Natural Connectivity | Wuetal. 2010
Unspecified

Undirected and

unweighted Wuetal. 2011
Unspecified

Chinese internet Natural Connectivity | Wuetal. 2011

Unspecified

Betweenness based vertex and edge attacks

A notion for the importance of a vertex can be the amount of information that flows
through it, and a very good index for it is the number of shortest paths that flow through it,

since that’s the most logical way for information routing.

Definition 4.3.4: Betweenness

The betweenness of a vertex or an edge is defined as the number of shortest paths in

the network that it is included in.

It is a rational thought that removing the most well-traversed vertex or edge in a
network will cause a large perturbation in its information flow. Intuitively, one only has to
think of the traffic jams occurring when a central rode in a city closes down. This thought
becomes even more appealing when we consider that a bottleneck (a small set of nodes
connecting to large parts of the network) will always have high betweenness, and thus will

be found faster via this method, increasing the chance to create large disconnections.
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Table 4.3.5: Repeated attacks on the nodes with the highest betweenness, by network structure, measure used

and network type.
Network Structure Network Origin Measure of assessment Reference
Erdos Renyi Artificial Change in the order of Holme et al. 2002
the giant component Initial and adaptive
Undirected and
unweighted Chen et al. 2008
Morone and Makse 2015
Change in the efficiency | Holme et al. 2002
Initial and adaptive
Erdos Renyi Artificial AUC of the order of the Wagner 2015
giant component
Directed and
unweighted
Random Regular Artificial Change in the order of Chen et al. 2008

the giant component

Undirected and
unweighted
Exponential Artificial and various Change in the order of Estrada 2006
real-world the giant component
Undirected and Artificial Change in the order of Iyeretal. 2013
unweighted the giant component Initial and adaptive
AUC of the order of the Iyer etal. 2013
giant component Initial and adaptive
Scale Free Artificial Change in the order of Holme et al. 2002
the giant component Initial and adaptive
Undirected and
unweighted Chen et al. 2008
Iyer etal. 2013
Morone and Makse 2015
AUC of the order of the Iyeretal. 2013
giant component Initial and adaptive
Change in the efficiency | Holme etal. 2002
Initial and adaptive
Scale Free Cannabis distribution Change in the efficiency | Duijn etal. 2014
network Change in the network Duijn et al. 2014
Undirected and density
Unweighted
Self-rewiring
Scale Free Artificial AUC of the order of the Wagner 2015
giant component
Directed and
unweighted
Clustered Scale Free Artificial Change in the order of Holme et al. 2002

Undirected and
unweighted

the giant component

Initial and adaptive

Change in the efficiency

Holme et al. 2002
Initial and adaptive

Scale-Free (power law
with exponential tail
degree distribution)

Artificial and various
real-world

Change in the order of
the giant component

Estrada 2006
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Undirected and

Unweigted
Small World Artificial Change in the order of Holme et al. 2002
the giant component Initial and adaptive
Undirected and Change in the efficiency | Holme etal. 2002
unweighted Initial and adaptive
Small World Artificial AUC of the order of the Wagner 2015
giant component
Directed and
unweighted
Uniform degree Artificial and various Change in the order of Estrada 2006
distribution real-world the giant component
Undirected and
unweighted

Unspecified structure

Undirected and
unweighted

Colaboration Network

Computer Network from
Internet traffic

Change in the efficiency

Holme et al. 2002
Initial and adaptive

Change in the order of
the giant component

Holme et al. 2002
Initial and adaptive

Shanghai Subway

Change in the efficiency

Zhang et al. 2011

Functionality loss

Zhang et al. 2011

Change in the order of
the giant component

Zhang et al. 2011

Metro networks
(Beijing, Shanghai,

Change in the efficiency

Zhangetal. 2018

Guangzhou) Functionality loss Zhang et al. 2018
Mexican Change in the order of Morone and Makse 2015
telecommunications the giant component

network

Twitter network

Workplace network

Internet (Autonomous
System)

High energy particle
physics station network

Metabolic network

Change in the order of
the giant component

Chen et al. 2008

Various real world

Change in the order of
the giant component

Iyeretal. 2013
Initial and adaptive

AUC of the order of the
giant component

Iyeretal. 2013
Initial and adaptive

Unspecified structure Beijing Subway Change in the efficiency | Yinetal. 2016
Change in the local Yin et al. 2016

Undirected and efficiency

weighted

Unspecified structure Food Webs Extinction Area Allesina and Pascual

Directed and weighted

2009
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Structural limitations

Bipartite with
unspecified structure

Undirected and
unweighted

Structural limitations

Various real world and
artificial

Extinction area of the
second nodal group

Dominguez-Garcia and
Munoz 2015

Table 4.3.6: Repeated attacks on the edges with the highest betweenness, by network structure, measure used

and network type.
Network Structure Network Origin Measure of assessment Reference
Erdos Renyi Artificial Change in the order of Holme et al. 2002
the giant component Initial and adaptive
Undirected and Change in the efficiency | Holme etal. 2002
unweighted Initial and adaptive
Erdos Renyi Artificial AUC of the order of the Wagner 2015
giant component
Directed and
unweighted
Scale Free Artificial Change in the order of Holme et al. 2002
the giant component Initial and adaptive
Undirected and Change in the efficiency | Holme etal. 2002
unweighted Initial and adaptive
Scale Free Artificial AUC of the order of the Wagner 2015
giant component
Directed and
unweighted
Clustered Scale Free Artificial Change in the order of Holme et al. 2002
the giant component Initial and adaptive
Undirected and Change in the efficiency | Holme etal. 2002
unweighted Initial and adaptive
Small World Artificial Change in the order of Holme et al. 2002
the giant component Initial and adaptive
Undirected and Change in the efficiency | Holme etal. 2002
unweighted Initial and adaptive
Small World Artificial AUC of the order of the Wagner 2015

Directed and
unweighted

giant component

Unspecified structure

Colaboration Network

Change in the efficiency

Holme et al. 2002
Initial and adaptive

Undirected and Computer Network from | Change in the order of Holme et al. 2002
unweighted Internet traffic the giant component Initial and adaptive
Unspecified structure Beijing Subway Change in the efficiency | Yinetal. 2016

Undirected and
weighted

Change in the local
efficiency

Yin et al. 2016
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Eigencentrality (and other similar measures) based vertex attacks

Eigencentrality as a centrality measure has evolved as a more elaborate measure to
assess the importance of a node not only by how many neighbors he has but by how

importantits neighbors are.

Definition 4.3.5: Eigenvector centrality/Eigencentrality (Bonacich 1987)

For a given graph, with an adjacency matrix A = (a;;) the eigencentrality or

eigenvector centrality is defined as

Ceig(v) = % Z

JEV(G)

Ay, jXj (43 1)
In general, there will be many different eigenvalues A for which a non-zero eigenvector
solution exists. However, the additional requirement that all the entries in the
eigenvector be non-negative implies (by the Perron-Frobenius theorem) that only the

greatest eigenvalue results in the desired centrality measure.

Table 4.3.7: Repeated attacks on the nodes with the highest eigencentrality, by network structure, measure

used and network type.

Network Class Network Origin Robustness Index Reference

Erdos Renyi Artificial Change in the order of Morone and Makse
the giant component 2015

Undirected and

unweighted

Exponential Artificial Change in the order of Iyer etal. 2013
the giant component

Undirected and AUC of the order of the Iyeretal. 2013

unweighted giant component

Scale Free Artificial Change in the order of Iyer etal. 2013
the giant component Morone and Makse

Undirected and 2015

unweighted AUC of the order of the Iyeretal. 2013
giant component

Unspecified structure Mexican Change in the order of Morone and Makse

telecommunications the giant component 2015
Undirected and network
unweighted
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Twitter network

Various real world

Change in the order of
the giant component

Iyer etal. 2013

AUC of the order of the
giant component

Iyer etal. 2013

Bipartite

Various real world and

Extinction area of the

Dominguez-Garcia and

Structural limitations

artificial second nodal group Munoz 2015
Unspecified structure Networks from the web | Fragmentation Garcia-Algarra et al.
of life collection Threshold 2017
Undirected and (a=0.5)
unweighted AUC of the order of the | Garcia-Algarra et al.
giant component 2017
Structural limitations Extinction area of the Garcia-Algarra et al.
second nodal group 2017
Bipartite Networks from the web Fragmentation Garcia-Algarra et al.
of life collection Threshold 2017
Unspecified structure (a =0.5)
AUC of the order of the Garcia-Algarra et al.
Undirected and giant component 2017
weighted Extinction area of the Garcia-Algarra et al.
second nodal group 2017

Definition 4.3.6: PageRank

d
+dz

PR(i)

N (D) Eout(l)

(4.3.2)

Where 0 < d < 1 is a dampening factor, N is the number of nodes, N;, (i) are the nodes that
point to i and E,,; (i) is the number of outgoing edges of node i.

Table 4.3.8: Repeated attacks on the nodes with the highest PageRank, by network structure, measure used and

network type.

Network Class Network Origin Robustness Index Reference

Erdos Renyi Artificial Change in the order of Morone and Makse 2015
the giant component

Undirected and

unweighted

Scale Free Artificial Change in the order of Morone and Makse 2015
the giant component

Undirected and

unweighted
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Unspecified structure

Undirected and
unweighted

Mexican
telecommunications
network

Twitter network

Change in the order of
the giant component

Morone and Makse 2015

Unspecified structure
Directed and weighted

Structural limitations

Food Webs

Extinction Area

Allesina and Pascual
2009
(out-pagerank)

Bipartite with
unspecified structure

Undirected and
unweighted

Structural limitations

Various real world and
artificial

Extinction area of the
second nodal group

Dominguez-Garcia and
Munoz 2015

*Note that in the study by Allesina and Pascual 2009, the PageRank algorithm was modified

to consider important the outgoing instead of the incoming connections, meaning that N,

and E,,,; are replaced with N, and Ej,.

Highest collective influence vertex attacks

The collective influence of a node is a measure designed to find important actors in fake

news spreading. These models usually account for probabilistic transitions and do not

generally study complete disconnections, thus they are not directly relevant to this work.

Nevertheless, there have been some simulations related to our work that seem to imply that

the collective influence might be an excellent ranking method for our purposes.

Definition 4.3.7: Collective influence

Collective influence of a node v at [l steps is defined as follows.

CH@) = (Ca®) = 1) Y (CaC) - 1),

UES

Where d(v, u) is the distance between v and u
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Table 4.3.9: Repeated attacks on the nodes with the highest collective influence, by network structure, measure

used and network type.
Network Class Network Origin Robustness Index Reference
Erdos Renyi Artificial Change in the order of Morone and Makse
the giant component 2015
Undirected and Adaptive only
unweighted
Morone et al. 2016
Adaptive only
Random Regular Artificial AUC of the order of the Morone et al. 2016
giant component Adaptive only
Undirected and
Unweighted
Scale Free Artificial Change in the order of Morone and Makse
the giant component 2015
Undirected and Adaptive only
unweighted
Unspecified structure Mexican Change in the order of Morone and Makse
telecommunications the giant component 2015
Undirected and network Adaptive only
unweighted
Twitter network

Highest MusRank vertex attacks

Dominguez-Garcia and Munoz 2015 proposed a method of measuring and ranking the
complexity of products and the fitness of countries to produce them, proposed by Tacchella
et al. 2012, was adapted for biological bipartite networks by considering plants, seeds and
anemones as products and pollinators, dispersers and fishes. The algorithm was also tested

by reversing those roles.

Definition 4.3.8: MusRank (Tacchella et al. 2012, modified by Dominguez-Garcia and Munoz
2015)

Let A, be the binary country-product matrix with elements 1 if country ¢ produces
product p and 0 otherwise. Let also F, symbolize the fitness of a country and @, the

complexity of a product. The iterative method of calculating these values starts by

assigning them values of I:";(O) = ~,§°) = 1, and then calculating the complexity of each

product by the inverse of the sum of the number of countries exporting said product
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weighted by their fitness, and the fitness of each country by the number of products

they export weighted by their complexity.

~(n) _
E™ = Aq08
14

| ) _ 1
p 1
| YcAcp W

(4.3.4)

We call MusRank (Mutualistic Species Rank) the application of this complexity index
to mutualistic passive-active ecosystem networks. For example, plant-pollinator

networks.

Products are replaced by plants, seeds, anemones etc. (passive) while countries are replaced
by pollinators, birds, fish etc. (active), although research has been done with these roles

(passive-active) reversed as well.

Table 4.3.10: Repeated attacks on the nodes with the highest MusRank, by network structure, measure used

and network type.

Undirected and
unweighted

Structural limitations

Network Class Network Origin Robustness Index Reference
Bipartite with Various real world Extinction area of the | Dominguez-Garcia
unspecified structure | and artificial second nodal group and Munoz 2015

Networks from the
web of life collection

the giant component

Fragmentation Garcia-Algarra et al.
Threshold 2017

(a =0.5)

AUC of the order of Garcia-Algarra et al.

2017

Extinction area of the
second nodal group

Garcia-Algarra et al.
2017

Bipartite with
unspecified structure

Undirected and
weighted

Structural limitations

Networks from the
web of life collection

the giant component

Fragmentation Garcia-Algarra et al.
Threshold 2017

(a=0.5)

AUC of the order of Garcia-Algarra et al.

2017

Extinction area of the
second nodal group

Garcia-Algarra et al.
2017

It is noteworthy, that the MusRank ranking, provides a near-optimal attack strategy in

such networks.
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Figure 4.3.1: Extinction areas for three different mutualistic networks as obtained employing the different
ranking schemes. The upper dashed line shows the optimal performance according to a genetic algorithm, the
lower dashed line shows the null-expectation, that is the averaged area obtained when targeting nodes in
random order. The different algorithms are respectively: Closeness, Eigencentrality, Betweenness, Degree,
Nestedness, PageRank, MusRank and reversed MusRank (meaning the active-passive indexing is reversed).

(Domingues-Garcia and Munoz 2015)

Highest closeness centrality attacks

Definition 4.3.9: Closeness centrality

In a connected graph, closeness centrality or closeness of a node is defined as the
inverse of the sum of the length of the shortest paths between the node and all other

nodes, multiplied by the number of nodes in order to be defined in [0,1].

V@)l
C.(v) = S A5 (4.3.5)

Removing the nodes with the highest closeness centrality leads to larger travel times
for information in the network, since in theory it is the optimal spreading point. These nodes
are considered very important in news and disease spreading models, but this is out of the
scope of this work. Nevertheless, some studies concerning the capacity of an attack method

to disconnect the network have been conducting and are presented below.

112



Table 4.3.11: Repeated attacks on the nodes with the highest closeness centrality, by network structure,
measure used and network type.

Network Class Network Origin Robustness Index Reference
Exponential degree Artificial Change in the order of Iyer etal. 2013
distribution the giant component Initial and adaptive
AUC of the order of the Iyer etal. 2013
Undirected and giant component Initial and adaptive
unweighted
Erdos Renyi Artificial Change in the order of Morone and Makse 2015
the giant component
Undirected and
unweighted
Scale Free Artificial Change in the order of Iyeretal. 2013
the giant component Initial and adaptive
Undirected and
unweighted Morone and Makse 2015

AUC of the order of the
giant component

Iyeretal. 2013
Initial and adaptive

Unspecified structure

Undirected and
unweighted

Various real world

Change in the order of
the giant component

Iyer etal. 2013
Initial and adaptive

AUC of the order of the
giant component

Iyer etal. 2013
Initial and adaptive

Unspecified structure
Directed and weighted

Structural limitations

Food Webs

Extinction Area

Allesina and Pascual
2009

Bipartite with
unspecified structure

Undirected and
unweighted

Structural limitations

Various real world and
artificial

Extinction area of the
second nodal group

Dominguez-Garcia and
Munoz 2015

Attacks based on number of dominations

Definition 4.3.10: Food web

A food web is a network created by ordaining creatures or sets of creatures from an

environment as nodes and connecting them with directed edges representing the

relationship A is eaten or consumed by B as A — B.
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Definition 4.3.11: Root of a food web (Allesina and Pascual 2009)

The root in a food web is an artificially induced node that represents the environment
and has outgoing links towards all primary producers. Also, every species has an

intrinsic loss of matter which is represented as an edge connecting it to the root.

Definition 4.3.12: Dominating node (Allesina and Pascual 2009)

A node x is said to dominate node y (x is a dominating node of y) if all the paths from

the root towards y pass through x.

Allesina and Pascual 2009 also studied the removal of the node that dominates the

most nodes in food webs.

Table 4.3.12: Repeated attacks on the nodes that dominate the highest number of nodes, by network structure,
measure used and network type.

Network Class Network Origin Robustness Index Reference
Unspecified structure Food Webs Extinction Area Allesina and Pascual
2009

Directed and weighted

Structural limitations

Lowest nestedness vertex attacks

A bipartite network is said to be nested when the nodes of group A that are connected
to a few nodes of group B (locations with few species, species with few interactions) have a

subset of the group A nodes with more connections to group B.

Definition 4.3.13: Nestedness (Bastolla et al. 2009)
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(A measure of) Nestedness of a network is defined locally for each nodal pair as

Ay
LFTOYIN)

With A being the adjacency matrix, and d(v) the degree of node v.
The same measure is defined per node as a centrality measure
) 1
n() = N Z Nij
iev(G)
And globally as the average

1
U(G)=m Z nij
1,jeV(G)

(4.3.6)

(4.3.7)

(4.3.8)

Table 4.3.13: Repeated attacks on the nodes with the lowest nestedness, by network structure, measure used

and network type.
Network Class Network Origin Robustness Index Reference
Bipartite with Various real world Extinction area of the | Dominguez-Garcia
unspecified structure | and artificial second nodal group and Munoz 2015

Undirected and
unweighted

Structural limitations

Attacks based on the flow that goes through each node

Albert et al. 2004 studied the removal of the nodes, in the north American power grid,

that the largest amount of electricity flow passes through, both based on the initial values,

and by recalculating the flow in the network every 10 removals. In their model, any node

above his capacity is considered to fail.
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Table 4.3.14: Repeated attacks on the nodes through which the largest amount of flow passes through, by
network structure, measure used and network type.

Network Class Network Origin Robustness Index Reference

Exponential degree North American % of disconnected Albert et al. 2004

distribution Power Grid nodes Initial and adaptive
every 10 iterations

Undirected and

unweighted

Processability and
structural limitations

Vertex removals based on the edges that connect to or from them

Highest bottleneck ratio edges

Wagner 2015 proposed bottleneck ratio as a measure to assess the importance of an
edge in a flow network by the traffic that flows through it. Two different attacks were then
proposed, the first was ranking the nodes by the average bottleneck ratio of their edges, and

the second was ranking the nodes by the sum of their edges’ bottleneck ratio.

Definition 4.3.14: Minimum (edge) cut set between a source-destination pair

Minimum (edge) cut set between a source-destination pair i, is defined as a set of
nodes that if removed disconnects the pair i,j and has the minimum sum of capacity

over all such edges.

Definition 4.3.15: Bottleneck ratio (Wagner 2015)

If we identify the flow and minimum edge cut set for every possible nodal pair i, j in the
network, the bottleneck ratio of an edge is defined as the sum of the fraction of flow

that was routed across it over the total amount of flow between every pair i, j. Formally,
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BR(e) =

f(e)

£ T FOMO)

(4.3.9)

Table 4.3.15: Repeated attacks on the nodes with the highest initial average or sum of bottleneck ratios, by

network structure, measure used and network type.

Directed and weighted

Processability
limitations

the giant component

Network Class Network Origin Robustness Index Reference

Erdos Renyi Artificial Change in the order of Wagner 2015
the giant component

Directed and weighted

Processability

limitations

Scale free Artificial Change in the order of Wagner 2015
the giant component

Directed and weighted

Processability

limitations

Small World Artificial Change in the order of Wagner 2015

k-shell decomposition

Definition 4.3.16: k-core

The k-core of a network is a maximal connected sub-network of degree greater or equal

than k. that means that each node in the subnetwork is tied to at least k other nodes in the

same subnetwork. The k-shell of a network is the set of nodes that belong to the k-core but

do not belong to the (k+1)-core.
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Figure 4.3.2 k-core decomposition of a fictional network. Green nodes are removed during the first iteration,
orange during the second and blue during the last one.

(Garcia-Algarra et al. 2017)

The simplest algorithm for the k-shell decomposition is by recursively removing all nodes of
degree equal to or less thank, starting with k = 1 and increasing it. The remaining nodes for each k

compose each k-core.

Table 4.3.16: Repeated attacks on the vertices of a network in decreasing k-shell order, by network structure,
measure used and network type.

Network Class Network Origin Robustness Index Reference
Unspecified Mexican Change in the order of | Morone and Makse
telecommunications the giant component | 2015
Undirected and network
unweighted
Twitter network

Garcia-Algarra et al. 2017 proposed two measures for ranking vertices in bipartite

graphs, namely, the k-degree and k-risk.
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Definition 4.3.17: k-radius, k-degree, k-risk (Garcia-Algarra et al. 2017)

In a bipartite network, the k-radius of a vertex is defined as the average distance of

node j (group A) towards each of the species of the innermost k-shell of group B nodes.

1
k2 g () = O] d(v,j),v € VA(G) (4.3.10)
jevB(6)
The k-degree of a vertex is defined as
kg(v) = z (4.3.11)
kradLus
Where a,; are the elements of the binary adjacency matrix.
The k-risk of a vertex is defined as
ks (V) = z ( hen (@) = knen (f)) + ekfhen (V) (4.3.12)

J

The last part of the equation is meant to solve ties and € equals a very small value.

Table 4.3.17: Repeated attacks on the nodes with the highest k-degree and k-risk, by network structure,

measure used and network type.

Network Class

Network Origin

Robustness Index

Reference

Bipartite with
unspecified structure

Undirected and
unweighted

Structural limitations

Networks from the web
of life collection

Fragmentation Garcia-Algarra et al.
Threshold 2017
(a=10.5)

AUC of the order of the
giant component

Garcia-Algarra et al.
2017

Extinction area of the
second nodal group

Garcia-Algarra et al.
2017

Bipartite with
unspecified structure

Undirected and
weighted

Structural limitations

Networks from the web
of life collection

Fragmentation Garcia-Algarra et al.
Threshold 2017
(a=0.5)

AUC of the order of the
giant component

Garcia-Algarra et al.
2017

Extinction area of the
second nodal group

Garcia-Algarra et al.
2017
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4.4. Optimized attack methods

Few studies have calculated the absolutely optimal attack strategy for some specified
concept. Latora and Marchiori 2004 studied the reduction of the efficiency in the network
caused by the deletion of each node. It would also be interesting to see the efficiency
reduction caused by the removal of sets of nodes and compare the results. Matisziw et al.
2012 studied the removal of nodes that causes the maximal flow disruption. Schieber et al.
2015 attacked the network by targeting the nodes and edges whose removal causes the

largest disturbance in the JS-robustness are chosen for deletion.

Another attempt for a heuristic algorithm to create the most damaging attack in the
network has been proposed by Arulselvan et al. 2008. Their approach is to find a maximal
independent set of nodes in the network and start recreating the network by adding nodes,

until the nodes remaining to be added are equal to the order of the attack we intended to

O'h(O'h—l)
2

make. Nodes are added whilst minimizing ZheMj , where o3 is the number of

connected nodes and M; is the set of all maximal connected components in the subgraph that

has been recreated to this point.

An interesting approach was taken by Chen et al. 2008, where they modified a nested
dissection algorithm and created the equal graph partitioning algorithm. The nested
dissection algorithm separates the network into two components of equal order with a
minimum number of nodes removed. The equal graph partitioning algorithm is designed to
separate the network into two components of arbitrary relative orders, thus one can use it
to separate the network into many small components by applying the algorithm iteratively.
This approach has been shown to be less effective for heterogenous networks by Morone

and Makse 2015.
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Table 4.4.1: Repeated optimized attacks on the nodes of a network, by attack method network structure,
measure used and network type.

Attack target Network Class Network Origin Robustness Index | Reference
Maximal efficiency | Unspecified Infonet internet Change in the Latora and
reduction if structure backbone (US) efficiency Marchiori 2004
removed from the
original network Undirected and Infonet internet
weighted backbone (EU)
9/11 terrorist
network
Maximal total flow | Unspecified US Internet Traffic | Elasticity of MGG- | Matisziw et al.
disruption structure Robustness 2012
Undirected and
weighted
Maximal criticality | Unspecified Western Power JS-robustness and | Schieber etal.
according to the JS- | structure Grid of the US its change over the | 2015
robustness attack
Undirected and
unweighted
Unspecified Dolphin Social JS-robustness and | Schieber et al.
structure Network its change over the | 2015
attack
Undirected and
weighted
Maximal Unspecified Terrorist network | JS-robustness and | Arulselvan etal.
Independent Set structure its change over the | 2008
optimization attack
Undirected and
weighted
Equal Graph Erdos Renyi Artificial Change in the Chen et al. 2008
Partitioning order of the giant
Undirected and component
unweighted
Scale Free Artificial Change in the Chen et al. 2008
order of the giant Morone and Makse
Undirected and component 2015
unweighted
Random Regular Artificial Change in the Chen et al. 2008
order of the giant Morone and Makse
Undirected and component 2015
unweighted
Unspecified Workplace Change in the Chen et al. 2008
structure network order of the giant
component
Undirected and Internet
unweighted (Autonomous
System)
High energy
particle physics

station network
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Metabolic network
Optimization via Unspecified Food Webs Extinction Area Allesina and
genetic algorithm structure Pascual 2009

Directed and
weighted

Structural
limitations

Table 4.4.2: Repeated optimized attacks on the links of a network, by attack method network structure,
measure used and network type.

Attack target Network Class Network Origin Robustness Index | Reference
Maximal Unspecified Western Power | JS-robustness Schieber et al.
criticality structure Grid of the US and its change 2015
according to the over the attack
JS-robustness Undirected and

unweighted

Unspecified Dolphin Social JS-robustness Schieber et al.

structure Network and its change 2015

over the attack
Undirected and
weighted

4.5. Mixed attack strategies

In this category belongs any type of attack that combines in some way two other (e.g.
removing some of the highest degree nodes first, then targeting the ones with the highest

betweenness).

Tanizawa et al. 2005 studied the behavior of scale free networks when subjected to
both highest degree and random attacks. A 2-value degree distribution was proposed as the

most robust when subjected to both types of attacks.

Wu et al. 2007 took a different approach, with the idea that the attacker will not know
perfectly the structure of the network, but he will remove the highest degree nodes of the
known structure and then follow with random attacks. Results were given for the various

level of knowledge of the attacker.
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Table 4.5.1: Repeated mixed-strategy attacks on the nodes of a network, by attack combination, network
structure and origin, and measure used.

Attack target Network Class Network Origin | Robustness Reference
Index
Degree then Scale Free Artificial Critical Tanizawa et al.
random Threshold 2005
Undirected and
weighted
Bimodal degree | Artificial Critical Tanizawa et al.
distribution Threshold 2005
Undirected and
weighted
Degree then Scale Free Artificial Change in the Wu etal. 2007
random based on order of the giant
incomplete Undirected and component
information on weighted Critical Wu etal. 2007
the network Threshold

4.6. Probabilistic models with limited cost

Instead of comparing the damage inflicted on a network against the removals made on
it, it might be more realistic to consider the inequality on the level of difficulty for each attack.
Deng and Wu 2015 and Deng and Wu 2016 proposed a method to adjust the cost of removing

a node by a network measure (in their examples they used the degree of each node).

Simultaneously, they proposed a probabilistic method of attack. Specifically, an attack
strategy where they determine the nodes to be removed by turning it into an unequal
probability sampling problem without replacement. The selection probability that a node v;
is sampled to attack in each sample is defined as

tan(Zs
pic B pi (2 )

Lapf o tan(ze)]
i=1P;

v, = 5 €[-1,1] (4.6.1)

With p; being a certain property of the node v; (e.g. degree).

For § = 1 the nodes are removed with descending property value while for § = —1

with descending and for § = 0 they are removed uniformly at random.

In their results, in a limited cost model for various exponents to the cost of removal, it

was shown that in scale free networks with varying exponents, the optimal values for § are
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usually close to the extremes. Specifically, as the exponent of the scale free model drops and

as the cost of removal rises, optimal § drops to —1.

Table 4.6.1: Repeated probabilistic node attacks with limited cost based on the degree, by network structure
and origin, and measure used.

Network Class Network Origin Robustness Index Reference
Scale Free Artificial Proportion of nodes in Deng and Wu 2015
the largest component Deng and Wu 2016

Undirected and
unweighted

4.7. Attacks unrelated to the network structure

Another very important factor to be considered when studying network functionality
is the context of the network’s existence. Bad weather may be considered as random failures
of edges or vertices for transportation networks, but there is always the question of scale.
For example, the explosion of Eyjafjallajokull in 2010 caused great perturbations in the
European air traffic network, and it has been shown (Wilkinson et al. 2011, Dunn and

Wilkinson 2015) that this network is vulnerable when subjected to spatial hazards.

This type of attack can be modelled by a different variable, unrelated to the network
structure, such as geographical location or ranking in an organization. It is reasonable to
assume that an interloper will not be able to acquire access to every one of his targets in the
network, at least not with the same ease. It is thus a promising idea, although case specific,
to consider weighing the removal cost in limited cost models, in respect to geographical, or

hierarchical data as well.

Another concept that might not be related immediately to the network, is the
interconnection of the roles that the actors (vertices) have. Duijn et al. 2014 recreated not
only the network with the actors as nodes, but the hierarchical structure of the cannabis
distribution network as well. Then they attempt, among others, two attacks based on the
second structure. The first is attacking the role that needs the highest/rarest expertise, while

the second is attacking actors based on their degree in the role network
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Table 4.7.1: Repeated attacks on the nodes of a network, unrelated to the structure.

Method of attack | Network Class Network Origin Robustness Reference
Index
Specific role Scale Free Cannabis Change in the Duijn et al. 2014
distribution efficiency
Undirected and network Change in the Duijn etal. 2014
Unweighted network density
Self-rewiring
Highest degree in | Scale Free Cannabis Change in the Duijn et al. 2014
role network distribution efficiency
Undirected and network Change in the Duijn et al. 2014
Unweighted network density

Self-rewiring

Spatial Hazard

Truncated power

European air

Percentage of

Wilkinson et al.

law degree traffic and destroyed air- 2011
distribution similar artificial | routes Dunn and
Wilkinson 2015
Undirected and
Unweighted Change in the Wilkinson et al.
order of the giant | 2011
Structural component Dunn and
limitations Wilkinson 2015
Self-rewiring
Top-down on the | Hierarchy Artificial Connectivity Dodds et al. 2003
hierarchy Robustness
ranking Undirected and Maximal Dodds et al. 2003
unweighted congestion
centrality
Structural
limitations?
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5. Example

5.1. Methods

In this chapter we will measure the robustness of four different directed networks, and
subsequently we shall test these measurements by attacking these networks in various ways

and comparing the results of these attacks.

The networks we have used are four different food webs, specifically the dry season of:
the Florida bay ecosystem (Ulanowicz et al. 1998), the Cypress wetland ecosystem
(Ulanowicz et al. 1997), the Mangrove ecosystem (Ulanowicz et al. 1999) and the Graminoid
ecosystem (Ulanowicz et al. 2000). The data was obtained by Batagelj and Mrvar 2006 and
they are licensed under a Creative Commons-NonCommercial-ShareAlike 2.5 License

https://creativecommons.org/licenses/by-nc-sa/2.5/.

We are interested only in the network properties; therefore, we did not account for the
weights or other properties (such as the biomass of the various species) of the network as
they represent elements irrelevant to our binary approach of the components of the network

being connected or not.

Furthermore, we have arbitrarily considered the networks without self-loops (we have
removed five self-loops from the Mangrove ecosystem). This is done because the existence
of such edges does not affect any of our evaluation methods, but can affect both the methods

of attack and the measures of robustness.

We use three different measures of robustness:

e The normalized natural connectivity of the network (definition 3.5.4). As the natural
connectivity strictly increases as edges are added, we can normalize it by dividing the
natural connectivity of a network with that of a complete network without self-loops

of equal order.
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e The difference between the absolute value of the first two largest eigenvalues. We wish
to check if the principle behind the deviation from the ideal good expander (definition
3.5.9), holds for directed networks. Specifically, that if the gap between the first two
eigenvalues is sufficiently large the network has good expansion properties and is,
thus, more robust.

e The assortativity coefficient (definition 2.3.2) based on the degrees of the network, as
defined by Newman 2003. We wish to check if in these networks the assortativity

coefficient is positively or negatively correlated with the robustness to disconnection.

All three of the robustness measures are calculated both for the whole network and for its
largest strongly connected component. However, the difference of the eigenvalues was the

same for both components across all three networks.

We measure eight different methods of attack.

¢ Random attacks: We create five different random enumerations of the vertices of the
network and we remove them sequentially. In the end we take the average of all 5
measurements and treat it as the result of a single attack. This is done in order to avoid
one lucky hit, or a large series of unlucky ones, producing skewed results. This method
should be used as a baseline in order to judge the effectiveness of the rest of the attacks,
as for any method of attack to be successful it should perform better than random.

e Degree attacks: We remove the nodes of the network in descending order of degree. In
case of ties the order is determined randomly. This method is performed in three
different ways:

o Total degree: Where the number of all edges starting from and ending to each
node is used.
o In-degree: Where the number of all edges ending to each node is used.
o Out-degree: Where the number of all edges starting from each node is used.
e Betweenness attacks: We remove the nodes of the network in descending order of

betweenness. In case of ties the order is determined randomly.
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¢ Collective influence attacks: We remove the nodes of the network in descending order
of collective influence. In case of ties the order is determined randomly. This method is
performed in two different ways:
o 2-step collective influence
o 3-step collective influence
e Eigencentrality: We remove the nodes of the network in descending order of

eigencentrality. In case of ties the order is determined randomly.

The evaluation of the attacks is performed by their ability to disconnect the network.
This can be seen in the change of the order of the giant component (both the weakly and the
strongly connected) over the attack and further quantified by the area under the curve of
these plots. It can also be observed as the a-fragmentation threshold (definition 3.3.2) of the
network both for the weakly and strongly connected giant components, for the various
values of a and the different attacks. We present the values for the .75, .50 and .25-
fragmentation thresholds of the networks. The thresholds of the giant strongly connected
component are in proportion of the whole network. In presenting these a-fragmentation
thresholds, we have reduced the values exceeding 1 — a due to not being divisible by 100, to
be equal to 1 — a. However, there is an interesting case, for the .75-fragmentation threshold
on the 2-steps collective influence attack in the Mangrove food web, where more than 25%
of the nodes have to be removed to reduce the giant strongly connected component bellow
75% of its original size, this is unexpected, due to the fact that a targeted attack is expected
to destroy the network faster, and thus, one would expect it should destroy both the strongly

and the weakly connected giant component faster.

We make a further evaluation of the ability of the attacks to break down the
communicability in the network by measuring the change of the global efficiency
(normalized by the initial order of the network (definition 3.3.8, theorem 3.3.1.) over the

attack and its area under the curve.
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5.2. Results

Robustness indices

Table 5.2.1: Measures of robustness for the four different networks. Weak and strong indicate if the

measurement is for the giant weakly or strongly connected component. Highlighted in grey are the largest
values in every category, and the smallest ones in the assortativity coefficient as its positive or negative
correlation to robustness is under evaluation.

Density | Density Assortativit | Assortativity | Natural Natural Spectral
(weak) | (strong) | y coefficient | coefficient connectivit | connectivity | gap
(weak) (strong) y normalized
normalized | (strong)
(weak)
Florida bay -0.234 -0.300 0.050 0.066 3.644
Cypress 0.162 -0.334 -0.339 0.043 0.065 3.107
wetlands
Everglades | 0.194 0.203 -0.408 -0.421 0.107 0.127 5.049
graminoids
Mangrove | 0.160 0.171 -0.311 -0.227 0.105 0.120 5.952
estuary

Table 5.2.1 shows that the graminoids food web should be most robust according to
density, while the Cypress wetlands should be the least robust according to the density of its
weak giant component (with Florida bay being a very close second), and the Florida bay
according to the density of the strong giant component. The Natural connectivity suggests,
both for the weak and the strong giant components, that the Cypress is the least robust
network, again with the Florida bay being a very close second, while the most robust seems
to be the Graminoids network with the Mangrove being close. According to the natural
connectivity there should be a distinct difference between these two pairs of networks. The
gap between the first and second eigenvalues of the adjacency suggests that the Cypress
network should be the least robust and the Mangrove should be the most. The assortativity
coefficient points on the one hand to the graminoids ecosystem (both its weak and strong

giant components) and to the other hand the weak giant component of the Florida bay
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network and the strong giant component of the Mangrove network, to be most and least

robust.

In summary, the robustness indices point in general towards the Cypress wetlands and
the Florida bay to be the least robust of the four networks and to the Everglades graminoids

or the Mangrove estuary to be the most robust.

Weak giant component

Florida bay dry season food web
Weakly connected giant component order

1.00-

N

colour

2-Collective influence
— 3-Collective influence
— Betweenness
— Eigencentrality
— In-degree
= Qut-degree

Random (mean of 5)

= Total degree
0.25-

Normalized giant component order (weakly connected)

0.00-

0.00 0.25 0.50 0.75 1.00
Percentage of removed nodes

Figure 5.2.1: Giant weakly connected component order of the Florida bay food web when subjected to eight
different attacks. The attacks are made on the nodes of the network descending on the ranking provided by 2
and 3 steps collective influence, betweenness, eigencentrality, total, in and out degree. We also present the
average impact of five random attacks.
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Figure 5.2.2: Giant weakly connected component order of the Cypress wetlands food web when subjected to
eight different attacks, as in Figure 5.2.1.

Everglades graminoids dry season food web
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Figure 5.2.3: Giant weakly connected component order of the Everglades graminoids food web when subjected
to eight different attacks, as in Figure 5.2.1.
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Mangrove estuary dry season food web
Weakly connected giant component order
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Figure 5.2.4: Giant weakly connected component order of the Mangrove estuary food web when subjected to
eight different attacks, as in Figure 5.2.1.

¢ In Figure 5.2.1. we can see that all methods of attack have a low impact on the weak
giant component of the Florida bay food web, with the total degree attack and the
eigencentrality attack showing a better performance towards the end.

e In Figure 5.2.2 we can see that the weak giant component of the Cypress wetlands is
far more vulnerable to total degree attacks than the other kinds, with eigencentrality
and in-degree being second and third, unclear on the order.

¢ In Figure 5.2.3 we can see that the weak giant component of the Everglades graminoids
is also far more vulnerable to total degree attacks than the other kinds, but they stop
being effective towards the end of the attack (when almost three quarters of the
network have been removed).

e In Figure 5.2.4 we can see that the weak giant component of the Mangrove estuary is

more vulnerable to total degree attacks and eigencentrality attacks than the other

kinds.
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These results can be further explored in table 5.2.2 where we can see that the weak

giant component of the Florida bay food web is robust to all attacks (has area under the

curve close to 0.5) and all other networks have their minimal area occur when the network

is subjected to total degree attacks.

Table 5.2.2: Area under the curve of the normalized giant weakly connected component (rounded to three
decimal digits) of four networks when subjected to eight different attacks. Networks are food webs during the
dry season of the Florida bay, the Cypress wetlands, the Everglades graminoids and the Mangrove estuary.
Attacks are as in Figure 1. Highlighted in grey are the highest areas for each attack. Highlighted in black with
white letters are the lowest areas for each attack.

Weak GC Degree attacks Betweenness | Collective Eigenvector Random
AUC attacks influence attacks centrality attacks
attacks
Total | In Out 2- 3-steps Mean of 5
steps
Florida bay 0 49 0 49 | 0.491 0.497 0.491 NUETE 0.486 0.497
Cypress O 36 0 45 | 0.483 0.490
Wetlands
Everglades 0 44 0 49 | 0.493 0.493 0.500 [EUEEE] 0.492 0.498
graminoid
S
Mangrove | 0.46 | 0.49 | 0.498 0.497 0.500 | 0.500 0.471 0.499
estuary 6 7

We can see that the Cypress wetlands is the most vulnerable network to damage to its

weak giant component in every instance, while the Mangrove estuary and the Florida bay

are the most robust with the Everglades graminoids being close in terms of robustness.
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Table 5.2.3: a-fragmentation threshold (rounded to the second decimal digit) of the weakly connected giant
component of four networks when subjected to eight different attacks. Networks and attacks are as in Figure

5.2.1. Highlighted in grey are the cases where the threshold is equal to a (no disconnections occur).
Highlighted in black and written in white are the lowest values for each attack, unless all are equal.

Weak GC Degree attacks Betweenness | Collective Eigenvector | Random
.75 attacks influence attacks centrality attacks
Threshold attacks

Total | In Out 2-steps 3-steps Mean of 5
Floridabay | 0.25 | 0.25 | 0.25 0.25 0.24 0.25 0.25 0.25
Cypress 0.25 0.25 0.25 0.25 0 0.25
Everglades | 0.25 | 0.25 | 0.25 0.25 0.25 0.25 0.25 0.25
graminoids
Mangrove 0.25 | 0.25 | 0.25 0.25 0.25 0.25 0.24 0.25
estuary
Weak GC Degree attacks Betweenness | Collective Eigenvector | Random
.50 attacks influence attacks centrality attacks
Threshold attacks

2-steps Mean of 5

Florida bay 0.48 0.50

Cypress 0.50

Wetlands
Everglades 0.50 0.50 0.50 0.50
graminoids
Mangrove 0.50 | 0.50 0.50 0.50 0.50 0.48 0.50
estuary
Weak GC Degree attacks Betweenness | Collective Eigenvector | Random
25 attacks influence attacks centrality attacks
Threshold attacks

Total | In Out 2-steps 3-steps Mean of 5
Floridabay | 0.73 | 0.74 | 0.73 0.74 0.74 0.75 0.73 0.75
Cypress 0.44 0.68 0.70 0 0.75 0.75 0.6 0
Wetlands
Everglades | 0.62 | 0.74 | 0.74 0.74 0.75 0.75 0.74 0.75
graminoids
Mangrove 0.64 | 0.75 | 0.75 0.75 0.75 0.75 0.71 0.75
estuary

The a-fragmentation thresholds of the weak giant component indicate that the actual
damage done to the network with most methods of attack is menial before more than 70%
of its nodes have been removed. Apart from the Cypress wetlands network, which as
indicated by the robustness indices was the least robust, all other networks’ weak giant
components had very few, if any, secondary disconnections. The only exception in this is
that the Everglades graminoids and the Mangrove estuary networks sustained some
disconnections (a little more than a tenth of their nodes) were disconnected from the weak

giant component) when the 62 and 64 percent of their nodes being removed.
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In summary, the only deviation from the expectations provided by the robustness
indices, is the Florida bay network, which was expected to be vulnerable, but was very
robust to the disconnection of its weak giant component. The Cypress wetlands network
was indeed the least robust in almost every case, while in general the Mangrove estuary

was more robust than the everglades graminoids in terms of their weak giant component.

Strong giant component
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Figure 5.2.5: Giant strongly connected component order of the Florida bay food web when subjected to eight
different attacks, as in figure 5.2.1.
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Cypress wetlands dry season food web
Strongly connected giant component order
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Figure 5.2.6: Giant strongly connected component order of the Cypress wetlands food web when subjected to
eight different attacks, as in figure 5.2.1.
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Figure 5.2.7: Giant strongly connected component order of the Everglades graminoids food web when
subjected to eight different attacks, as in figure 5.2.1.
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Mangrove estuary dry season food web
Strongly connected giant component order
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Figure 5.2.8: Giant strongly connected component order of the Mangrove estuary food web when subjected to
eight different attacks, as in figure 5.2.1.

e In figure 5.2.5 we can see that the giant strongly connected component of the Florida
bay network is very vulnerable to total degree, in-degree, eigencentrality and
betweenness attacks, as it breaks down to less than 10% of the network’s order with
less than 10% of the nodes in the network being removed. 2-steps collective influence
is also a relatively successful attack that breaks it down to less than half its order with
less than 10% nodes removed and at less than 10% of the network’s order at a bit less
than 25% of the nodes being removed.

e In figure 5.2.6 we can see that the giant strongly connected component of the Cypress
wetlands network breaks down even faster under eigencentrality and betweenness
attacks, but to a lesser extent, also more methods of attack seem to be effective
against it, even though some of them are less effective than in the Florida bay

network.
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¢ In figure 5.2.7 we can see that the giant strongly connected component of the

Everglades graminoids network also breaks down very fast, specifically, less than

12.5% of the network needs to be removed to achieve a less than 12.5% participation

in the strong giant component for total degree, in-degree, eigencentrality,

betweenness and 2-steps collective influence. Also, out-degree and random attacks

seem to be effective as well.

¢ In figure 5.2.8 we can see that the giant strongly connected component of the

Mangrove estuary network we can see a similar great effectiveness for total degree,

in-degree and betweenness, and an only slightly less effectiveness for eigencentrality

and out-degree attacks.

These results can be further explored in table 5.2.4 where we can see that total degree,

in-degree and betweenness attacks are the best methods to shatter the strong giant

component of most of the networks, with eigencentrality being followed by the rest, while

performing very well on the Florida bay network. We note that neither of the two collective

influence measures show promising results, especially in the Mangrove estuary network. We

believe the cause of this to be the size of the networks.

Table 5.2.4: Area under the curve of the normalized giant weakly connected component (rounded to three
decimal digits) of four networks when subjected to eight different attacks. Networks and attacks are as in
figure 5.2.1. Highlighted in grey are the highest areas for each attack. Highlighted in black with white letters
are the lowest areas for each attack.

Strong GC Degree attacks Betweenness | Collective Eigenvector Random
AUC attacks influence attacks centrality attacks
attacks
Total | In Out 2- 3-steps Mean of
5

Florida bay 0.049 | 0.043 | 0.277 0.354 0.066
Cypress 0.050 | 0.052 | 0.198 0.046 0.314
Wetlands
Everglades 0.054 | 0.073 | 0.211 0.112 0.133 | 0.418 0.118 0.283
graminoids
Mangrove 0.036 0.037 | 0.129 QK3 0.427 | 0.432 0.116 0.338
estuary
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We can see that, surprisingly, the strong giant component of the Mangrove estuary
network is the most vulnerable to degree attacks, but the most robust to collective
influence and random attacks. Also surprising is the fact that the strong giant component of
the Cypress wetlands network is slightly more robust than most other networks (except
the Everglades graminoids) in almost all efficient methods of attack. Finally, the Everglades

graminoids network is shown to be the most, or second most, robust under all attacks.
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Table 5.2.5: a-fragmentation threshold (rounded to the second decimal digit) of the strongly connected giant
component of four networks when subjected to eight different attacks. Networks and attacks are as in figure

5.2.1. Highlighted in grey are the cases where the threshold is equal to a (no disconnections occur).
Highlighted in black and written in white are the lowest values for each attack, unless all are equal.

Highlighted in light grey are the largest values for each attack. Highlighted in orange is the only case where

more than 1-a is smaller than the a-fragmentation threshold.

Weak GC Degree attacks Betweennes | Collective Eigenvector | Random
.75 Threshold s attacks influence attacks | centrality attacks
attacks
Total | In Out 2-steps | 3-steps Mean of
5
Florida bay 0.0 0.0 0.21 0.0 0.0 0.0 0.0 0.16
Cypress 0.03 | 0.03 0.03 0.0 0.08 0.23 0.21 0
Wetlands
Everglades 0.03 0.04 0.0 0.0 0.12 0.25 0.09 0.23
graminoids
Mangrove 0.03 | 0.03 0.13 0.03 0.27 0.25 0.12 0.22
estuary
Weak GC Degree attacks Betweennes | Collective Eigenvector | Random
.50 Threshold s attacks influence attacks | centrality attacks
attacks
Total | In Out 2-steps | 3-steps Mean of
5
Florida bay 0.0 0.0 0.34 0.0 0.0 0.4 0.0 0.34
Cypress 0.03 | 0.03 0.31 0.0 0.08 0.4 0.21 0
Wetlands
Everglades 0.03 | 0.04 0.24 0.10 0.12 0.48 0.09 0.28
graminoids
Mangrove 0.03 | 0.03 0.13 0.03 0.46 0.49 0.12 0.34
estuary
Weak GC Degree attacks Betweennes | Collective Eigenvector | Random
.25 Threshold s attacks influence attacks | centrality attacks
attacks
Total | In Out 2-steps | 3-steps Mean of
5
Florida bay 0.23 0.70
Cypress
Wetlands
Everglades
egraminoids
Mangrove 0.03 0.71 0.72 0.12 0.57
estuary

Table 5.2.5 agrees with our previous observations, namely that degree attacks are

extremely effective and that most attacks (excluding collective influence and random) are

very effective against all strong giant components. However, 2-steps collective influence is

a very effective method on the Florida bay and Cypress wetlands networks. Furthermore,
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we observe that most of the damage on the strong giant components is achieved early on,
as in many cases the a-fragmentation threshold is equal, or almost equal for a = 0.75,0.50
and 0.25. This shows that there are a few key nodes holding the strong giant component

together, and most attack methods disconnect them very efficiently.

Another thing to point out, is that the .25-threshold, in most cases of attack, agrees
with our expectations of the Cypress wetlands being the least robust network followed by
the Florida bay, and that the Everglades graminods and the Mangrove estuary are the most
robust networks (excluding out-degree and eigencentrality). The .50 and .75 thresholds
also somewhat agree, although the Florida bay is shown to be less robust than the Cypress

wetlands, the differences are very small in most cases.

In summary, according to the a-fragmentation thresholds there are small deviations
to the effect the various attacks have on the networks, from the expected effects provided
by the robustness indices, but the ordering seems to be following the same patterns, the
two networks shown to be less robust, are less robust and the two networks shown to be
more robust, are indeed more robust. These results disagree somewhat with the AUC of the
graphs, but the differences in the areas under the curves are very small; small enough to be
affected by very small strongly connected clusters surviving for a long period of time in the

network and biasing the results.
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Figure 5.2.9: Global efficiency normalized by the initial network order of the Florida bay food web when
subjected to eight different attacks, as in figure 5.2.1.
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Figure 5.2.10: Global efficiency normalized by the initial network order of the Cypress wetlands food web
when subjected to eight different attacks, as in figure 5.2.1.

143



Everglades graminoids dry season food web
Global efficiency (initial order)
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Figure 5.2.11: Global efficiency normalized by the initial network order of the Everglades graminoids food
web when subjected to eight different attacks, as in figure 5.2.1.
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Figure 5.2.12: Global efficiency normalized by the initial network order of the Mangrove estuary food web
when subjected to eight different attacks, as in figure 5.2.1.
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e In figure 5.2.9 we can see that the global efficiency of the Florida bay network is most
vulnerable to total degree attacks, but all of the methods of attack perform in a similar
way.

¢ In figure 5.2.10we can see that the global efficiency of the Cypress wetlands
ndetowork is most vulnerable to total degree attacks, followed by in-degree and
eigencentrality attacks. Furthermore, they seem to be more effective than in the rest
of the networks.

e In figure 5.2.11 we can see that the global efficiency of the Everglades graminoids
network is most vulnerable to total degree and in-degree attacks.

e In figure 5.2.12 we can see that the global efficiency of the Mangrove estuary network

is most vulnerable to total degree and eigencentrality attacks.

Table 5.2.6: Area under the curve of the global efficiency normalized by the initial network order (rounded to
three decimal digits) of four networks when subjected to eight different attacks. Networks and attacks are as
in table 5.2.1. Highlighted in grey are the highest areas for each attack. Highlighted in black with white letters
are the lowest areas for each attack.

Global Degree attacks Betweenness | Collective Eigenvector Random
efficiency attacks influence attacks | centrality attacks
(normalized) attacks
AUC

Total In Out 2- 3-steps Mean of

steps 5

Florida bay 0.178 0.191 | 0.192 | 0.201 0.208 IWAIE] 0.201 0.206
Cypress 0.178
Wetlands
Everglades | 0172 0.193 | 0.217 | 0.217 0.230 | 0.236 0.215 0.226
graminoids
Mangrove 0.178 0.191 | 0.204 | 0.210 0.221 | 0.229 0.200 0.219
estuary

Table 5.2.6 confirms the observations from the plots. In summary, all networks seem
more vulnerable to total degree, in-degree and eigencentrality attacks, with the Cypress
wetlands seemingly losing efficiency faster than the others. Furthermore, we see that it
agrees almost entirely with the robustness indices. Specifically, the Cypress wetlands
network seems to be the most vulnerable in every attack except one, the Florida bay

network is in most cases the second or first least robust network, the mangrove estuary is
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in most cases the second most robust, and the Everglades graminoids is in all cases except

one the most robust network.

5.3. Conclusions

We note that neither of the two collective influence measures show promising results,

especially in the Mangrove estuary network.

The anomalies in the ranking of the networks according to their robustness compared
to the rankings provided by the impact on the attacks on their strong giant components,
lead us to assume that the robustness indices, whether they are calculated for the strong
giant component or the weak, do not necessarily encompass the robustness of the strong
giant component to attacks on the whole of the network. On the one hand, a more thorough
research is required to verify if this is true in general and not for only a few networks, and
on the other, research is also required to explore the degree that the property of strong

connection affects such indices.

The very low values for the AUCs of the strong giant component for all networks
under most attacks, suggest that there are a few key nodes holding the strong giant
components together, and most attack methods detect them very efficiently, breaking the
network very early on. Furthermore, the ranking of the AUCs and the a-fragmentation
thresholds disagree somewhat, but the differences in the areas under the curves are very
small; small enough to be affected by tiny strongly connected clusters surviving for a long
period of time in the network and biasing the results. Because of this, we find the more
direct approach of the a-fragmentation threshold to be a better criterion than the change in
the size of the giant component. Our belief is enhanced by the fact that it agrees with the

selected indices of robustness.

Moreover, the fact that the strong giant component of the Cypress wetlands network
is slightly more robust than most other networks (except the Everglades graminoids) in
almost all efficient methods of attack, leads us to assume that the robustness indices,

whether they are calculated for the strong giant component or the weak, do not necessarily
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encompass the robustness of the strong giant component to attacks on the whole of the
network. On the one hand, a more thorough research is required to verify if this is true in
general and not for only a few networks, and on the other, research is also required to

explore the degree that the property of strong connection affects such indices.

Finally, the fact that the AUC of the global efficiency shows a near perfect agreement
on the ranking of the networks according to their robustness. This leads us to assume that
the robustness indices we have studied are correlated more with the ability of the network
to maintain efficient communications, rather than with its ability to remain strongly, or

weakly connected when subjected to a variety of attacks.

Concerning the methods of attack, we have seen that the total degree method is
consistently the most efficient, followed by the in-degree, eigencentrality and sometimes
betweenness attacks. This is in general expected, as attacks based on the initial degree have
been shown to be more effective than those based on the initial betweenness on undirected

networks.

Surprisingly, the collective influence methods were heavily outperformed by the rest.
This might have to do with one of two things. One possibility is that they perform better on
larger networks, as they have been demonstrated to work to networks of with nodes
numbering in the order of 107. Or it might have to do that it is related as a measure by
definition to the out-degree, which in these networks has been shown to not be an efficient

method of attack. This requires further investigation.
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6. Results

6.1. Introduction

In this chapter we will present the most important of the known results, as well as compare

them to our findings in chapter 5.

6.2. Summary of known results

In this chapter we will present a summary of the known results in the literature, as well as

point out the issues that have been observed in the literature.

Network structure

Intuitively, star graphs or similar structures are the most robust networks against
random removals of edges or nodes, because a very small proportion (in a pure star graph,
only one) of its nodes is vital, and thus, for any removal, the probability of it being picked is

1/N'.

Scale free networks have similar structure to star graphs. They have a few central
(core) nodes, and many peripheral nodes. Scale free networks have been shown to be
robust to random attacks (Albert et al. 2000, Cohen et al. 2000, Cruciti et al. 2003), to the
point that the changes in their global and local efficiency are barely detectable for a few
removals (Cruciti et al. 2003). However, they are vulnerable to targeted degree attacks

(Albert et al. 2000, Cohen et al. 2001, Cruciti et al. 2003).

Furthermore, for attacks with incomplete information on the network, very small
increases in the knowledge of the network can increase the effectiveness of the attack a lot
(Wu et al. 2007). However, hiding just a small fraction of nodes can prevent the network to
break down under an intentional attack to the hubs. This is a surprising result, as randomly

hiding a fraction of nodes in a scale-free network, should correspond to hiding
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preferentially low-degree nodes, and thus, one should expect an attack targeting the hubs
to still be able to detect most of them. It can be explained that for scale-free networks with
inhomogeneous degree distributions, there are few highly connected hubs which dominate

a network, so even hiding a few of them can protect the whole network (Wu et al. 2007).

Core-periphery hierarchies and multiscale (high connectivity both at local and at
global scale) hierarchies are more robust to congestion, but as the size of the network
grows, layered hierarchies (the layers are well connected communities and the

communities form a hierarchical network) get more robust (Dodds et al. 2003).

Erdos-Renyi networks have been shown to be among the most robust models as they
have no structural bias (Holme et al. 2002). This agrees with Albert et al. 2000, who
showed that random attacks and degree targeting attacks have similar effects on these
networks, as well as Wagner 2015 who showed that they are more robust than scale free or

small world networks against targeted attacks.

Networks with homogeneous degree distributions, are very robust against cascades
caused by a single attack in networks with processability limitations (Motter and Lai
2002). They are also more robust against combinations of degree and random attacks, as
according to Valente et al. 2004, the configurations that maximize the percolation threshold
under such combined attacks have at most three distinct node degrees (d4, d, and d*, with
d” being the largest degree a node may have after a fraction f, of the most connected nodes
in the network has been removed). This agrees with Tanizawa et al. 2005, who showed that

a 2-value degree distribution is the most robust to combined degree and random attacks.

2-peak and 3-peak degree distribution networks get the robustness similar to scale-
free networks against random attacks, while lacking large structural biases against random
attacks. However, they have not been tested under other methods of attack, especially

recalculated measures.
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Estrada et al. 2006 pointed out that networks with good expansion properties are
more robust as they have less bottlenecks. Later, Estrada 2007, ranked networks having

and lacking either a good expansion or a non-skewed degree distribution as follows:

Uniform
GENs

Uniform Skewed
non-GENs GENs

Skewed non-GENs

Figure 6.2.1: A simplified representation of the robustness in undirected food webs. At the bottom are the
networks with power law or exponential degree distributions which lack good expansion property, they are
the most vulnerable of the networks. In the middle, the networks are either skewed good expanders, or non-
skewed non-good expanders. At the top are the networks with both non-skewed degree distribution and good
expansion properties, these are the most robust.

Estrada et al. 2007.

Real world networks come from all backgrounds, but they are usually shown to be
robust. Buhl et al. 2004 showed ant galleries to be robust to random failures. Estrada 2006
showed that naturally evolving networks have good expansion properties more frequently
than technological networks. Newman and Goshal 2007 observed that real world networks
appear to have large, and usually exceptionally robust giant bicomponents. Memmott et al.
2004 showed that bipartite plant-pollinator networks are generally robust, but Santamaria

et al. 2014 showed that they span a wide range of robustness and are not all robust.
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Criminal networks have been shown to be vulnerable to the removal of links that
connect communities (attacks that target betweenness) (Xu and Chen 2008). Duijn et al.
2014 also studied such networks, with the addition of self-rewiring properties. In this
study, criminal networks were shown to be more robust than expected, and even got more

efficient when subjected to attacks that left their value chain (role structure) intact.

Air traffic networks, studied with structural limitations and rewiring properties, have
been shown to be vulnerable to natural hazards due to many hub airports being close
together in the geographical center, thus making them vulnerable to disproportionately
small spatial hazards (they are technically core-periphery networks, not on their
connectivity, but on the geography of the physical world) (Wilkinson et al. 2012). The
possibility of a re-wiring algorithm is suggested as a solution as most structural changes
are unrealistic due to the nature of the networks, as countries both need and want hub
airports (Wilkinson et al. 2012). However, a well-designed network with the same
limitations can be more robust than a network with a good rewiring mechanism (Dunn and

Wilkinson 2015).

Subway networks have been shown to be robust to random failures and most
vulnerable to betweenness and degree attacks (Zhang et al. 2011, Yin et al. 2016, Zhang et
al. 2018). This is expected as they generally are sets of path and cycle graphs with a few
common nodes spread around. This turns them to low-connectivity bimodal-like
structures, where betweenness and degree attacks target exactly these common nodes, or

their bridge neighbors.

Finally, two very interesting results for real world networks are that they do not
behave very similarly to modelled networks (Holme et al. 2002), and that, in weighted
networks, taking the weights into account when attacking the network, might reduce the

effectiveness of the attack (Kaiser-Bunbury et al. 2010).
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Robustness indices

Change in the efficiency and change in the giant component give similar results in

ranking attacks in most cases (Holme et al. 2002).

Vertex and edge connectivity are very loos bounds to algebraic connectivity,
especially for large networks, as can be seen from (figures 3.5.1, 3.5.2 and 3.5.3, Jamakovic
and Uhlig 2007). This is generally expected, as the addition of a node with equal to or
slightly larger than average vertex and edge connectivity, does not reduce these values but

might reduce the total average robustness of the network.

Although [undirected] algebraic connectivity is unable to consistently capture the
robustness of networks, it provides an avenue to easily capture the robustness of networks
with non-aparent elements utilizing key components of the Laplacian spectrum (Sydney et

al. 2008).
Natural connectivity is negatively correlated with efficiency (Peng et al. 2016).

Schieber et al. 2015 noted that although ]JS-robustness can be used with any
probability distribution, the use of distances has shown to be more consistent in capturing
structural deviations. In addition, the distance probability distribution is able to
acknowledge disconnected pairs of nodes. Heuristic algorithms are proposed, but the
errors of these algorithms can be important as for N = 107 the changes in the info-

theoretic robustness are of the order of 10715 (Schieber et al. 2015).

SSSK-elasticity and degree assortativity are positively correlated (Sydney et al. 2008).
Newman 2002 pointed out that degree assortativity is negatively corelated with network
robustness against random attacks, but positively correlated against degree attacks. This
agrees with Iyer et al. 2013 who showed that high values of negative degree assortativity
seem to indicate vulnerability to degree attacks. This comes in contrast to Vazquez and

Moreno 2003, who found assortative power law networks to be more robust than non-
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assortative even at random failures. It also comes in contrast with Zhou et al. 2012 who

found degree assortativity to be negatively correlated with robustness overall.

Another important remark, although not directly relevant to this work is by Scala and
D’Agostino 2012, who claimed that disassortative networks are more robust since they
have a higher failure threshold, but in assortative networks there is more time for

intervention before total breakdown.

There is disagreement on whether degree assortativity is positively or negatively
correlated with the robustness of networks. This requires further extensive research.

Further research is also called to examine other forms of degree assortativity.

Ellens 2011 showed that a variety of measures (vertex/edge/algebraic connectivity,
reliability polynomial, clustering coefficient and number of spanning trees) do not detect
all edge additions/deletions. Furthermore, maximum betweenness may increase with edge
addition, thus making the network seem more vulnerable. This final observation can be

extended to congestion centrality and other flow measures.

Ellens 2011 and Ellens et al. 2011 showed that normalized effective resistance gives
the same information as ER, but is a measure of robustness instead of vulnerability. Also, as

its values are in [0,1], it can be used comparatively between networks.

Finally, Van der Meer 2012 showed that many robustness indices will order various
graph structures differently in terms of how robust they are (edge connectivity, average
distance, efficiency, clustering coefficient, algebraic connectivity, number of spanning trees,
effective resistance, natural connectivity, percolation limit, resilience factor, graph

diversity).
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Methods of attack

Random attacks are very ineffective against scale free networks (Albert et al. 2000,
Cohen et al. 2000). They have also been found to be less effective than degree attacks in
many real-world networks (Sole and Montoya 2001, Buhl et al. 2004).

Attacks targeting the highest degree nodes are very effective against scale free
networks (Albert et al. 2000). In real networks (NA power grid, targeting specific nodes)

they are very effective for relatively large (larger than 8% of the nodes) attacks.

However, some cases of plant-pollinator bipartite networks, with structural
limitations, have been found to be more vulnerable to attacks that target degree in
ascending order, as such nodes are more specialized and can cause secondary extinctions.
Nevertheless, they found high degree attacks to also be very effective (Memmott et al.
2004, Santamaria et al. 2014). Similar results have been shown by Dunne et al. 2002 in
food webs, where they ranked node attacks generally as such: high degree > random > low

degree, with the low degree strategy sometimes being very effective.

Allesina and Pascual 2009 found eigencentrality attacks to be better than degree

attacks in various food webs.

Attacks targeting the highest betweenness nodes have been shown to be effective
against Criminal networks (Xu and Chen 2008). They are less effective (on scale free,
exponential degree distribution and some real-world networks) than degree attacks,
although in assortative networks, for the first part of the attack (approximately 25%
nodes) betweenness is better than degree (Iyer et al. 2013). Also, (in scale free and
exponential degree distribution networks) re-estimated betweenness is similar to re-
estimated closeness attacks and slightly better than re-estimated degree or eigenvector
attacks, and in real world networks it is significantly better. This agrees with Holme et al
2002, who ranked the effectiveness of nodal attacks as such: re-estimated betweenness >

re-estimated degree > initial degree > initial betweenness.

Attacks targeting the highest betweenness edges, are in most cases more effective
over those targeting the highest edge-degree edges, both for their initial and recalculated
values (Holme et al. 2002).
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Albert et al. 2004 showed that removing transmission stations (nodes, detected by
high voltage transferring) in the NA power grid, in descending order of the load that passes
through them is more effective than degree initially (<8% nodes removed). But it is by far
the most effective method when the measures are recalculated (every 10 steps). Load
attacks where also found to be very effective in causing cascades in scale free,

homogeneous and some real-world networks (Motter and Lai 2002).

Garcia-Algarra et al. 2017 showed in plant-pollinator, bipartite networks that the k-
risk and k-degree attacks are better than other traditionally used ranking methods (degree,
betweenness eigenvector). Furthermore, K-degree is exceptionally good at destroying the

giant component of the network.

Dominguez-Garcia and Munoz 2015 showed in mutualistic species bipartite networks
that MusRank attacks approach near optimality (compared to attacks generated via genetic
algorithm) and far better than closeness, eigenvector, betweenness, degree, nestedness and
pagerank. It also has the smallest variance in its effectiveness. This aggrees with Garcia-
Algarra et al. 2017 who showed it to be the most effective method at ranking pollinators to

cause secondary extinctions to plants.

Morone and Makse 2015 found that the best results for collective influence are found
at 3 and 4 steps. Targeting high collective influence nodes appears to be a more efficient
than re-estimated degree in the Mexican telecommunications network (scale free) and

twitter network (unspecified structure).

Chen et al. 2008 showed the equal graph partitioning attack strategy to be better than high

degree attacks (both initial and re-estimated) in scale free and Erdos-Renyi networks.

6.3. Comparison with our findings

In our own example, we have found food webs to be vulnerable to degree attacks.

More specifically, as we studied them as directed networks, they were vulnerable to total

156



degree and in-degree attacks. Our results agree with Dunne et al. 2002, in that high degree
attacks are better than random. However, they disagree with Allesina and Pascual 2009, as
we found two out of the three degree-based attacks to be more effective than the

eigencentrality attacks, although eigencentrality attacks are, in general, effective as well.

We also found the principles suggested by Estrada 2006 and Estrada 2007 to hold
true; networks with a larger difference between their first two larger eigenvalues were
indeed more robust in general. In addition, the natural connectivity proposed by Wu et al
2008 to provide a near-identical ranking of the networks according to their robustness

when the impact of the attacks was measured on their global efficiency.

Attacks based on collective influence where not as effective as was expected,
especially in the fourth network tested, given their effectiveness shown in Morone and

Makse 2015.
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7. Conclusions

A lot of effort has been invested in researching methods to measure a networks

robustness, and every approach has advantages and disadvantages.

Studying measures derived only from the network is a general approach that can give
a direct insight for a networks robustness, as well as being able to compare different
networks. On the other hand, different methods of attack can have extremely different
effects on a network. Thus, such a measure will always be a generalization, containing less
information than any study that actually tests the impact of various attack methods on the

network.

The disadvantages of studying attack-dependent measures outline the advantages of
studying network-based measures. The tradeoff comes firstly from the computational
complexity of attack dependent measures, as a lot of instances of the network have to be
measured, while network-dependent measures only need to be computed once. Secondly,
attacks on a network can be unpredictable. There are many efficient ways to disconnect a
network, and many of them are very different to one another, it is nigh impossible to

predict all the possibilities.

The advantages and disadvantages of attack-dependent measures are amplified in the
class of worst case scenario measures (excluding simplistic measures as the vertex and
edge connectivity). On one hand, they give a very informative estimate of the impact an
attack can have on the network, but on the other, calculating all possible attacks that create
disconnections is a very difficult task for large networks. Moreover, they omit an aspect of
the problem; how many different worst-case (or near-worst case) attacks are there, as
finding a close to perfect attack when there are very few good ones can be a very difficult

task, while finding it among a much greater set heuristically may not be as hard.

The computational complexity is not a problem only in this kind of measure. Total

graph diversity for example, requires the calculation of every possible path between every
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pair of nodes in the network, and the proportion of non-overlapping paths. Something

which would yield a probably ideal measure, but is extremely taxing computationally.

An important problem is the lack of consistent testing. The ability of a lot of measures
to portray the robustness of networks, have been tested only in specific sets of networks,
and under specific attacks. For example, the result that hiding a small part of a scale free
network can protect it very effectively (Wu et al. 2007), might be biased by the existence of
a few low degree nodes linking a lot of high degree ones, which is not necessarily a
property for scale free networks. Furthermore, some indices of robustness, such as
effective resistance, or results concerning such indices, are not tested at all. For example,
Ghosh and Boyd 2006 showed that optimizing the algebraic connectivity requires relatively
few edge additions, but never showed if these edge additions affect the rate that the

network degrades under attack.

Peng et al. 2016, showed that natural connectivity is negatively correlated with
efficiency. We consider the cause of this to be that the most efficient structures are star-like
or core-periphery like networks, while natural connectivity is a measure based on the

closed walks of all nodes, thus preferring more homogeneous networks.

The findings of Van der Meer 2012 show that different robustness indices measure
different aspects of the networks. This shows that there is a lot of research needed in order
to identify what are the different elements these indices measure. The results in chapter 5
agree with this, as we found some variation in the rankings of the networks according to
the effects of the attacks, but the natural connectivity seemed to predict almost exactly the

ranking of the effect on the efficiency of the network of almost all methods of attack.

Finally, concerning the rankings of collective influence as an attack method, our
findings were greatly contrasted by those of Morone and Makse 2015. We believe the cause
of this to be either the order of the networks, as collective influence was shown to be
extremely effective by Morone and Makse 2015, but in networks with a number of vertices
in the order of 107, or the structure of the networks, as they were shown to be that effective

mostly in scale free networks. This is another point that require further research.
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7.1. Discussion

We would like to draw attention to the lack of attack-independent indices of network
robustness. In fact, algebraic connectivity seems to be the only directly available measure,
and it has issues with networks that are not strongly connected. The other measures that
were available were the natural connectivity, after we modified its method of calculation and
assortativity, which requires further research before it can be used individually as a measure
of robustness. Total effective resistance has not been tested in undirected networks,
although theoretically it shows promise, the work done by Young et al. 2016a and Young et

al. 2016b, opens another field of research here.

Another critical issue is that the results on network robustness lack coherence.
Findings that are widely accepted are sometimes disregarded, while a variety of avenues
remains unexplored due to most of the research being specifically targeted on other projects,
or because of conflicting findings. Most studies refer to few real networks and to a handful
of models. This may lead to bias. For this reason, we believe the creation of a large enough
database of networks, with various combinations of properties, is required, in order for most

of the knowledge in the robustness of networks to be thoroughly tested.

Beside the lack of testing in networks of various structures, there is a lack of
consideration in the choosing of most methods of attack. Ranking correlations (such as
centrality correlations) are an important aspect that has been widely ignored in the planning
of network attacks. We believe that in order to find an efficient method of attack, one needs
to know how similar the methods of attack are. It would, therefore, be an interesting point
of research to study the correlation of the various measures according to the topology of a

graph. Such correlations have, only partly, been explored by Kasthurinathna et al. 2013.

In conclusion, the answer that can be given to our original questions, is that further
research is required, and that, currently, it seems more informative to examine the impact

various attacks have on a network, than to attempt to quantify its robustness.
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Originality

There have been some overviews of network robustness indices before, but they
usually focus to specific measures, or groups of measures. Our work is the most complete
collection of indices of robustness and methods of attack. Furthermore, it contains one of the
very few attempts to study a robustness measure for directed networks, as well as to
understand which aspect of robustness of the network it represents. Our study of the global
efficiency normalized by the order of the initial network, allows us to compare networks of
different orders, and mitigates the increasing impact of node removals on the network as the

attack progresses.

Further research

This work is a survey of robustness indices and methods of attack, with respect to
network structure. A logical next step is to create a thorough database, containing many
networks that have as many combinations of properties as possible, in order to create a set

of samples big and diverse enough to enable more thorough network studies.

In terms of methods of attack, the next steps would be (a) to examine the correlations
in the various methods of vertex and edge rankings. (b) To investigate probabilistic attacks
and attacks with incomplete information individually and more thoroughly, following the
work of Wu et al. 2007. (c) Double down on the research of combined attacks, especially by

studying the correlations previously mentioned.

In terms of indices of robustness, the next steps would likely be (a) a thorough
sensitivity analysis of the existing ones in undirected networks. (b) Exploring the
correlations of the various robustness indices further in an attempt to understand the type
of structures and resistance to attacks they represent, especially in comparison with the
various methods of attacks. (c) The generalization of those indices to directed, weighted and

eventually signed networks, both in and out of the various possible contexts.
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Finally, the transition of everything contained in this research, as well as the further
research proposed, in belief propagation, knowledge transferring, or disease spreading
networks, generalizing the ideas of robustness to true disconnection, to robustness to real-

world changes.
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