
Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

INTER-FACULTY MASTER PROGRAM on

COMPLEX SYSTEMS and NETWORKS

SCHOOL of MATHEMATICS

SCHOOL of BIOLOGY

SCHOOL of GEOLOGY

SCHOOL of ECONOMICS

ARISTOTLE UNIVERSITY of THESSALONIKI

Master Thesis

Machine learning algorithms for big data

Αλγόριθμοι Μάθησης για μεγάλης κλίμακας δεδομένα

Elisavet Tsolakidou

SUPERVISOR: Charalampos Bratsas, Laboratory Teaching Staff, AUTH

CO-SUPERVISOR: Nikolaos Farmakis, Associate Professor, AUTH

Thessaloniki, December 2018

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ στα

ΠΟΛΥΠΛΟΚΑ ΣΥΣΤΗΜΑΤΑ και ΔΙΚΤΥΑ

ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ

ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αλγόριθμοι Μάθησης για μεγάλης κλίμακας δεδομένα

Ελισάβετ Τσολακίδου

ΕΠΙΒΛΕΠΩΝ: Χαράλαμπος Μπράτσας, ΕΔΙΠ Α.Π.Θ.

ΣΥΝΕΠΙΒΛΕΠΩΝ: Νικόλαος Φαρμάκης, Α. Καθηγητής Α.Π.Θ.

Εγκρίθηκε από την Τριμελή Εξεταστική Επιτροπή την 21η Δεκεμβρίου 2018.

………………………… ………………………… …………………………

Ν. Φαρμάκης

Α. Καθηγητής
Α.Π.Θ..

Χ. Μπράτσας

ΕΔΙΠ Α.Π.Θ.

Ι. Αντωνίου

Καθηγητής Α.Π.Θ

Θεσσαλονίκη , Δεκέμβριος 2018

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

…………………………………………..

Ελισάβετ Τσολακίδου

Διπλωματούχος Μαθηματικός Α.Π.Θ.

Copyright © Ελισάβετ Τσολακίδου, 2018

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ
ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,
αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής
φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το
παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό
σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον
συγγραφέα και δεν πρέπει να ερμηνευτεί ότι εκφράζουν τις επίσημες θέσεις του
Α.Π.Θ.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Abstract

The purpose of this thesis is to present both a comprehensive study and a practical
example of methods and tools used for word and document embeddings. Embeddings or
vector representations are the necessary first step before natural language data are fed
into any neural network for processing. Having vectors whose parameters capture real
world properties of the corresponding words or documents has been known to be pivotal
for the success of natural language processing tasks such as classification,
summarization and translation amongst others. Following the detailed presentation of
the most popular methods; experiments and their implementations are conducted using
Python programming language in the Greek language and their results are discussed.

Keywords

Machine Learning, Deep Learning, Word Embeddings, Document Embeddings, Python,
Gensim, Greek Language

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Περίληψη

Σκοπός της παρούσας διπλωματικής εργασίας είναι να παρουσιαστούν οι μέθοδοι και
τα εργαλεία που χρησιμοποιούνται για τη διανυσματική αναπαράσταση λέξεων και
εγγράφων. Η διανυσματική αναπαράσταση των λέξεων αποτελεί απαραίτητο πρώτο
βήμα για την τροφοδότηση δεδομένων φυσικής γλώσσας σε οποιοδήποτε νευρωνικό
δίκτυο με σκοπό την επεξεργασία των λέξεων και την εξαγωγή μοντέλων. Η
αναπαράσταση των λέξεων ως διανύσματα των οποίων οι παράμετροι σκιαγραφούν την
πληθώρα των ιδιοτήτων τους έχει παρατηρηθεί ότι είναι καθοριστική για την επιτυχία
διεργασιών επεξεργασίας φυσικής γλώσσας όπως είναι η κατηγοριοποίηση
(classification), περίληψη (summarization) και μετάφραση (translation) κειμένων,
μεταξύ άλλων. Αρχικά παρουσιάζονται οι πιο γνωστές τεχνικές που χρησιμοποιούνται
για την αναπαράσταση λέξεων και εγγράφων και στην συνέχεια μέσω της γλώσσας
προγραμματισμού Python μελετάται η αναπαράσταση λέξεων και εγγράφων στην
ελληνική γλώσσα.

Λέξεις-Κλειδιά

Μηχανική μάθηση, διανυσματική αναπαράσταση λέξεων, διανυσματική
αναπαράσταση εγγράφων, Python, Gensim, Ελληνική γλώσσα

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

9

Synopsis

Πέρα από τη μηχανική μάθηση, η οποία έχει εδραιωθεί και χρησιμοποιείται σε πάρα

πολλούς τομείς, τα τελευταία χρόνια το ερευνητικό ενδιαφέρον έχει επικεντρωθεί στις

τεχνικές βαθιάς μάθησης (deep learning) οι οποίες υπόσχονται λύσεις σε προβλήματα

μάθησης χωρίς επίβλεψη κατά κύριο λόγο, ανάλογες με αυτές που παρέχει ο

ανθρώπινος εγκέφαλος. Παρατηρείται ακόμη, ο συνδυασμός τεχνικών μηχανικής

μάθησης και βαθιάς μάθησης.

 Η παρούσα εργασία επικεντρώνεται σε τεχνικές μάθησης που αφορούν σε

προβλήματα επεξεργασίας φυσικής γλώσσας και πιο συγκεκριμένα στη διανυσματική

αναπαράσταση λέξεων και εγγράφων. Η διανυσματική αναπαράσταση λέξεων και

εγγράφων θέτει νέες βάσεις για την πραγματοποίηση τεχνικών ανάλυσης

συναισθημάτων, όπου γίνεται αντιληπτός ο θετικός ή αρνητικός χαρακτήρας ενός

κειμένου, μηχανικής μετάφρασης όπου είναι δυνατή η αυτόματη μετάφραση κειμένου,

της αναγνώρισης φωνής, κατανόησης κειμένου φυσικής γλώσσας και παραγωγής

φυσικής γλώσσας.

 Μια λέξη (ή ένα έγγραφο) μπορεί να αναπαρασταθεί με τον πιο απλό τρόπο από

ένα διάνυσμα με βάση την παρουσία της σε ένα κείμενο (ή την παρουσία του σε μια

συλλογή εγγράφων αντίστοιχα). Για παράδειγμα αν το κείμενο αποτελείται μόνο από

την πρόταση “Η μηχανική μάθηση αποσκοπεί στην πρόβλεψη.” κάθε λέξη θα μπορούσε

να αναπαρασταθεί ως εξής:

Η=(1,0,0,0,0,0)

μηχανική= (0,1,0,0,0,0)

μάθηση = (0,0,1,0,0,0)

αποσκοπεί = (0,0,0,1,0,0)

στην = (0,0,0,0,1,0)

πρόβλεψη = (0,0,0,0,0,1)

όπου η ύπαρξη της λέξης στην πρόταση υποδηλώνεται από την ύπαρξη μονάδας στο

διάνυσμα και η θέση της μονάδας είναι αντίστοιχη της θέσης της λέξης στην πρόταση.

Η αναπαράσταση αυτή της λέξης ωστόσο παρότι δίνει στον ερευνητή την δυνατότητα

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

10

να την εισάγει στον υπολογιστή και εν συνεχεία να την χρησιμοποιήσει σε διάφορους

αλγορίθμους, υστερεί στο να αποτυπώσει τις σημασιολογικές σχέσεις που υπάρχουν

μεταξύ των λέξεων και που ο ανθρώπινος εγκέφαλος μπορεί εύκολα να αναγνωρίσει.

Για τον λόγο αυτό, διάφοροι τρόποι έχουν προταθεί στην προσπάθεια για βελτίωση

της αναπαράστασης των λέξεων και κατ’ επέκταση των εγγράφων. Οι ανωτέρω

αλγόριθμοι χωρίζονται σε δύο βασικές κατηγορίες:

1. Αλγόριθμοι συχνότητας που αφορούν την συχνότητα με την οποία εντοπίζεται

μια λέξη με τις γειτονικές της σε ένα κείμενο.

2. Αλγόριθμοι πρόβλεψης που προσπαθούν να προβλέψουν μία λέξη γνωρίζοντας

τις γειτονικές λέξεις.

Ένας αλγόριθμος που αντιπροσωπεύει την πρώτη κατηγορία είναι ο Tf-Idf (Term

Frequency-Inverse Document Frequency) ο οποίος χρησιμοποιεί έναν συνδυασμό της

συχνότητας με την οποία μία λέξη εμφανίζεται σε ένα κείμενο και της συχνότητας με

την οποία η λέξη εμφανίζεται σε ένα σύνολο εγγράφων και εκτιμά πόσο σημαντικές

είναι οι λέξεις σε κάθε κείμενο. Έτσι πολύ συχνές λέξεις σε ένα κείμενο που

εμφανίζουν εξίσου μεγάλη συχνότητα σε ένα σύνολο εγγράφων αποκλείονται μέσου

του αλγορίθμου όπως για παράδειγμα τα άρθρα καθώς λέξεις οι οποίες εμφανίζονται σε

μεγάλη συχνότητα σε ένα κείμενο αλλά με μικρή συχνότητα σε ένα σύνολο εγγράφων

εκτιμούνται ως σημαντικές και λαμβάνουν μεγαλύτερη τιμή.

Αξίζει να σημειωθεί ότι έχουν προταθεί διάφορες τροποποιήσεις του

συγκεκριμένου αλγορίθμου, οι οποίες παρουσιάζονται αναλυτικά στο 2o κεφάλαιο της

εργασίας αυτής.

Η δεύτερη κατηγορία αλγορίθμων αποτέλεσε μεγάλη εξέλιξη της πρώτης και

βασίζεται στην παραδοχή ότι λέξεις που εμφανίζονται κοντά βρίσκονται κοντά

σημασιολογικά. Ο αλγόριθμος που εισήγαγε την κατηγορία αυτή ονομάζεται word2vec

και χρησιμοποιεί ένα νευρωνικό δίκτυο για την παραγωγή διανυσμάτων λέξεων. Ο

αλγόριθμος αυτός αποτελείται από δύο τεχνικές:

 bag of words, όπου υπολογίζεται η πιθανότητα μιας λέξης δοσμένων των

γειτονικών της λέξεων

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

11

 skip gram, όπου υπολογίζονται οι πιθανότητες των γειτονικών λέξεων

δοσμένης μία λέξης.

 Έτσι, οι διανυσματικές παραστάσεις των λέξεων μας επιτρέπουν να συγκρίνουμε

διάφορες λέξεις σημασιολογικά. Για παράδειγμα, η εύρεση αναλογιών ανάμεσα σε

λέξεις είναι μία λειτουργία που παρουσιάζει ιδιαίτερο ενδιαφέρον. Ο τρόπος με τον

οποίο επιτυγχάνεται, περιλαμβάνει τον υπολογισμό αλγεβρικών πράξεων ανάμεσα στα

διανύσματα των λέξεων. Με δεδομένες τρεις λέξεις και την εκτέλεση αλγεβρικών

πράξεων ανάμεσα στα διανύσματα τους παράγεται ένα νέο διάνυσμα και με βάση αυτό

ο αλγόριθμος υπολογίζει την πιο κοντινή λέξη. Ακόμη, μέσα από τη σύγκριση των

διανυσμάτων, υπάρχει η δυνατότητα να εντοπιστεί η λιγότερο όμοια λέξη δεδομένης

μιας λίστας λέξεων. Επέκταση των ανωτέρω αποτελούν οι αλγόριθμοι για διανυσματική

αναπαράσταση εγγράφων. Με την βοήθεια των αλγορίθμων αυτών μπορούμε πλέον να

υπολογίσουμε την ομοιότητα εγγράφων καθώς και να προχωρήσουμε σε

κατηγοριοποίηση αυτών με βάση τη σημασιολογική αναπαράστασή τους.

 Στα κεφάλαια που ακολουθούν, αρχικά γίνεται μια παρουσίαση της ιστορίας και

των βασικών τεχνικών μηχανικής μάθησης και βαθιάς μάθησης και παρατίθεται το

υπόβαθρο που απαιτείται να έχει ο αναγνώστης για τη συνέχεια (Κεφάλαιο 1 & 2).

Κατόπιν παρουσιάζονται οι σύγχρονες μέθοδοι για τον υπολογισμό διανυσματικών

αναπαραστάσεων, αρχικά λέξεων και κατόπιν ολόκληρων εγγράφων (Κεφάλαιο 3 & 4).

Στη συνέχεια, γίνεται μια εκτενής αναφορά στη γλώσσα προγραμματισμού Python η

οποία περιέχει υλοποιήσεις για όλες αυτές τις μεθόδους, με έμφαση στο πακέτο Gensim

που συγκεντρώνει τις περισσότερες (Κεφάλαιο 5). Τέλος, δίνεται ένα πρακτικό

παράδειγμα εφαρμογής των μεθόδων στο κείμενο της Ελληνικής ελεύθερης

εγκυκλοπαίδειας Wikipedia, αρχικά για την εύρεση διανυσμάτων λέξεων και στη

συνέχεια για τη σύγκριση άρθρων μεταξύ τους (Κεφάλαιο 6).

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

13

Αcknowledgements

I would like to express my gratitude to my supervisor Charalampos Bratsas, co-
supervisor Nikolaos Farmakis and professor Ioannis Antoniou for the useful
comments, remarks and engagement through the learning process of my master’s
degree and this master thesis. Finally, I must express my very profound gratitude to my
family, friends and classmates for providing me with unfailing support and continuous
encouragement throughout my years of study and through the process of researching
and writing this thesis. This accomplishment would not have been possible without
them. Thank you.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

15

1. Machine Learning & Deep Learning Background

Machine learning

What if a problem could be solved not by listing the required commands and procedures

but by instructing a computer to learn how to solve it? Is this even feasible and if so, is

this artificial intelligence? These are some of the questions posed when one attempts to

define machine learning.

As the term suggests, this scientific field is related to machines (i.e., computers)

progressively improving their performance by learning without being explicitly told

how (i.e. programmed) but by observing shifts in their performance (i.e., by gaining

experience). This very broad description has been defined more formally by Tom M.

Mitchell, a professor at the Carnegie Mellon University, in his book entitled “Machine

Learning” where he stated the following:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.”

This formal definition cites the key components/ concepts of machine learning

which are:

 There is a set of tasks T that the computer/ software must perform.

 The outcome of the software execution can be evaluated (measurable

performance – P). E.g. if the software reaches a decision, it could be right or

wrong.

 There is a dataset with potential for teaching/ learning (E).

In a practical example, a machine learning application could be requested to

identify if a particular animal is found inside a set of pictures (T). In contrast to a more

procedural approach where the software will be given the features of the animal as

input, in a machine learning approach, the input (E) could be a set of pictures where the

animal is found. After the software makes each decision (found/ not found) it can be

informed of its success rate (P) and thereby use this information in future decisions.

The following sections are an overview of the history and the evolution of

machine learning, its practical applications, the types of problems it can solve and its

relation to deep learning. This high-level introduction of basic concepts, without

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

16

mathematics will serve as a theoretical basis for the more technical sections that will

follow.

A brief history of machine learning

The term machine learning was coined in 1959 by Arthur Samuel, a pioneer in the field

of computer gaming and artificial intelligence in his paper entitled “Some studies in

machine learning using the game of checkers” [33] where he discussed an application of

such techniques in the context of a popular board game. In this seminal paper, Samuel

essentially attempts to get the computer to improve in checkers by learning in a way that

is similar to the way humans learn (i.e. not only from the data at hand). This constitutes

his work a more literal machine learning application in which a machine learns using

both the rules of the game and the feedback on its performance, much like we do in real

life. Indeed, in its first steps and up until machine learning was nearly abandoned in

favor of expert systems and other relevant tools, it was thought of as being very closely

related to the computer science field of artificial intelligence.

Machine learning resurfaced in the 1990s when its goals shifted from the more or

less theoretical pursuit of artificial intelligence to providing solutions for practical

problems whose complexity did not allow for satisfactory procedural/ conventional

solutions. A decisive contributing factor for this paradigm shift was the abundance of

digital data, easily circulated via the newly born Internet. In the new context, machine

learning is more closely related to data mining than artificial intelligence and borrows

concepts from statistics and probability theory with prediction being a key aspect. The

main difference between the two fields lies in the kind of knowledge that is utilized. In

machine learning, the goal is to utilize previously acquired knowledge for problem

solving where as in data mining the goal is to discover new knowledge hidden in the

data.

Key concepts & Types of learning

In this section, the broadest categorization of machine learning tasks is presented,

focusing on the way the actual learning takes place. Before presenting the various

learning modes, we will take a look at some basic terminology that will be used

throughout this thesis.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

17

As it was mentioned previously machine learning in each current format is

essentially a set of computational methods that solve problems/ improve performance

based on experience. Therefore, we are dealing with data driven tasks and use statistics,

probability theory and optimization to learn from them. In a machine learning

algorithm/ application, an example is an instance of the available data, also referred to

as an item. This item has a set of features/ attributes which are of interest to the given

problem. A vector format is often selected for the representation of these features as it is

suitable for high speed computations. Items are also assigned labels which are either

indicative of categories or of actual data values.

Labeled data (i.e. data whose value or categorization is known) are typically used

for training whereas data whose labels are known but hidden are used as test data to

check the machine performance. The set of training data may become available to the

learner in batches or one at a time (on-line). Queries on the data labels (output) can be

either active (the learner can explicit request the label for a given point) or passive

where the learner receives a set of labeled points. In all cases, the learner is required to

provide predictions for point labels. The fundamental distinction between the types of

learning is based on the availability/ use of labeled or unlabeled data.

In supervised learning, much like in a classroom, there is a teacher entity that

feeds the computer with sample inputs and their desired outputs. The computer needs to

come up with a general rule that maps inputs to outputs as fast and as accurately as

possible. In this mode of learning labeled data are utilized to come up with predictions

on unseen points.

In unsupervised learning, no labeled data is available, i.e., the learner cannot

utilize examples of correct outputs to infer rules. Therefore, the machine is typically

requested to uncover (hidden) relations in its input data or discover patterns in the input

data structure.

Semi-supervised learning falls between the two types mentioned above. In this

scenario, both labeled and unlabeled data are available and are used as a basis for

predictions on unseen points. The volume of unlabeled data is typically significantly

larger. Active learning is a special case of semi supervised learning in which the

labeled data used for training can be selected by the machine itself. By optimizing the

selection of objects whose labels are unveiled the machine can acquire more usable

labels while sticking to a prespecified budget.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

18

Lastly, reinforcement learning is based on the notions of rewards and

punishments provided as feedback by the environment in response to machine actions.

Unlike supervised learning which has a set of current input/ output pairs and rules to be

discovered, the machine is required to discover new knowledge (explore the

environment) while exploiting existing knowledge.

Machine learning tasks categorization

In broad terms, machine learning tasks or problems suitable for machine learning

solutions can be classified in the following categories:

Classification: input items are thought of as belonging to a specific set of classes/

categories (often but not always to two classes) and the machine learning application is

asked to assign a category to each item. Each item can belong to a single class or

multiple classes. A popular example is classifying an e-mail as spam or not spam.

Regression: in this type of tasks the algorithm needs to predict the actual values

of items as accurately as possible. A real-life example is predicting the values of stocks

based on past data.

Ranking: in such applications items need to be order based on a given criterion.

For example, on an e-commerce site, related products need to be presented to the visitor

browsing a particular product in an order that maximizes the likelihood of additional

purchases.

Clustering: in this category of tasks the machine is requested to partition data into

similar or homogenous regions based on prespecified criteria. Typically, this involves

large data sets that would be very difficult to manipulate without some form of

grouping.

Dimensionality reduction: in such applications, complex data are reduced to

simpler representations by preserving only some of their properties (dimensions). This

lower-dimensional space is easier to navigate.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

19

Machine learning popular applications

In this section, popular applications of machine learning are presented in general

categories. The applications related to natural language processing will be presented in

more detail following the chapter on deep learning.

Text: this category refers to applications related to the analysis of text-based input.

Popular examples include document classification and spam detection.

Language: this typically involves natural language processing tasks in which a

computer is required to analyze natural language inputs. Early and popular examples

include machine translation, parsing and morphological analysis.

Speech: this class of applications is related to parsing speech inputs. Popular examples

include speech recognition and automatic synthesis.

Image: machine learning applications have long been used for image tagging/

annotation, face recognition/ pattern matching, character recognition (in print or

handwritten) and others.

Gaming: this can refer both to improving gaming tactics/ performance in classical

board games but also to more advanced computer games.

Automation: this refers generally to unassisted control of machines typically in a

dynamic environment. A popular example is self-driving cars that are becoming more

and more independent, but it could also refer to the control of unmanned aerial vehicles

such as drones or robots.

Other types of more specialized application focus on inferring knowledge for medical

diagnoses or assessing the probability of intrusion in a network.

Machine learning challenges and limitations

Most limitations related to machine learning are primarily linked with the quality and

quantity of training data. When the volume of data available for training (and therefore

also testing) is small, it may be difficult or even impossible for the algorithm to find

patterns and infer a relationship between the input and output. In this direction,

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

20

incorrectly posed goals/ questions or unsuitable algorithms may also prove detrimental

to the accuracy of the solution.

Apart from lack of data, another very serious issue that degrades the outcome is

bias inherent in the data that the algorithm will almost certainly pick up on and

perpetuate to unseen cases output. In order to get accurate output predictions for specific

inputs, these have to be present in the training data. In a highly publicized example of

image recognition software failure, Google’s image tagging software would tag black

people as gorillas. This was reportedly due to the lack of good quality training photos

with people of color and it was not the only mix between species that would occur.

What is interesting is the way the company opted to “fix” the issue which was by

removing all pictures of gorillas from the training set, thus preferring no categorization

to offensive mis-categorization [38].

Accidents involving self-driving vehicles are also a very unfortunate example of

failure with devastating consequences.

Machine learning algorithms

The number of machine learning algorithms available is so large that it does not make

much sense to present specific algorithms. Instead, an overview of the algorithm

categories will be presented where categorization is based on the way the algorithm

tackles the problem and represents data. It must be noted that an algorithm may belong

to more than one categories and that not all identified categories will be included in this

thesis.

Statistics-based algorithms/ Regression Algorithms: algorithms of this category

seek to model the relationship between input and output using statistical tools such as

regression (linear/ stepwise/ logistic).

Decision Tree Algorithms: this type of algorithms construct a decision model

that predicts the value of the output variable based on the actual values/ attributes of

multiple inputs. The input data is organized in the branches of the tree and the output

values are represented by the leaves. Speed and accuracy are often observed in this

category of methods, thus making them a popular choice.

Bayesian algorithms: algorithms in this category apply Bayes’ theorem to infer

the probabilities of output values. Data is typically mapped using a direct acyclic graph

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

21

in which the presence of an edge connecting two nodes represents a conditional

dependency.

Clustering algorithms: clustering based machine learning algorithms, like the

category of problems with the same name, aim at grouping the data in sets with the

maximum features in common.

Rule-based learning algorithms: instead of identifying a model that will make

an accurate prediction of the output for a given input, algorithms in this category aim at

constructing a set of rules that describe the entire knowledge of the system. A popular

subgroup in this category are association rule learning algorithms.

Artificial neural networks: artificial neural networks are data structures inspired

by neurons found in human and animal brains and algorithms using such structures

attempt to solve problems like a human brain would. In an artificial neural network

connections between neurons function like the synapses of the brain, i.e. they receive

and transmit signals from/ to other connected neurons. Using such tools, complex

relationships between inputs and outputs can be modeled, patterns in data can be

discovered, and unknown joint probability distributions between inputs can be

observed.

Deep learning: deep learning methods and algorithms are an evolution of

artificial neural networks made feasible by the size of the available data and the cheap

price of processing power. In such methods, the algorithm focuses on learning data

representations rather than a specific task. More complex neural networks are

constructed, with each level offering a slightly more abstract and composite

representation of the data.

Deep learning techniques and algorithms essentially form a separate discipline

and are the topic of this thesis. As such, they are discussed separately in the following

chapter.

Deep learning

As discussed in the previous section, deep learning is a subsector of machine learning.

This section presents the history and main techniques/ applications of the field.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

22

The main feature that distinguishes deep learning methods from traditional

machine learning methods is the focus on data representations which are now the

learning goal rather than specific tasks. By using multiple levels of non-linear abstract

information processing, deep learning algorithms facilitate feature learning,

representation, classification and pattern recognition [1807.08169.pdf]. Each processing

and extraction layer uses the output from the previous layer as input.

History

The term Deep Learning (DL) first appears on a conference paper by Rita Dechter in

1986 [Learning_While_Searching_in_Constraint] and around 2000 it was first used in

the context of artificial neural networks. Since then, the popularity of deep learning has

exploded along with the number of applications in various industry sectors and

associated research. Advances in hardware and in particular in the processing power of

graphical processing units (GPUs) have improved the speed/ performance of DL

networks by many factors thus enabling their use in a variety of popular applications.

More recent developments and demonstrations of effective use of DL techniques in

areas such as image recognition and bioinformatics are thought of as paving the way for

a deep learning revolution [7].

Evolution of architectures

Artificial neural networks

As it was previously mentioned, artificial neural networks (ANN) draw terminology and

inspiration from the biological neural networks found in animal brains and can process

complex data inputs without necessarily being task driven. While the first generation of

ANNs used simple neural layers that were limited to simple computations, the advent of

the mechanism of backpropagation enabled a much powerful second generation.

Backpropagation allows the weights of neurons to be recalculated according to

error rates (gradient of the loss function), thus allowing for multiple hidden layers that

use feedback (backwards propagated correction information) to readjust their output.

Backpropagation, along with other techniques that surpassed its limitations significantly

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

23

improved ANNs and enabled them to be designed in various ways and for various

purposes.

Deep learning networks

Deep Learning (DL) networks are neural networks characterized by a significant

number of hidden layers which are used for input feature extraction and calculations.

Variations of methods/ tools/ data structures in this category include auto-encoders,

convolutional deep neural networks and recurrent neural networks, among others.

In DL networks, learning can be supervised, unsupervised or semi-supervised and

even reinforcement learning is applicable.

Autoencoders

An autoencoder is a special type of artificial neural network that can be used for

learning efficient encodings by reconstructing its own inputs instead of predicting some

target value Y given inputs X.

Figure 1: Basic process of an autoencoder [14]

Figure 1 illustrates the operation of an autoencoder where the corresponding code

is the learned feature and optimization is minimizing the input reconstruction error. A

single layer is generally not able to effectively capture the features of raw data, hence,

in deep learning networks the principle of autoencoders is extended to enable deep

autoencoders. In an autoencoder, a compressed form of the input (dimensionality

reduction) is decoded to reconstruct the input. In a deep autoencoder, lower hidden

layers are used for encoding and higher ones for decoding, with error back-propagation

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

24

is used for training and multiple hidden layers connecting input and output. This is a

form of unsupervised learning network with a multilayer feed forward artificial neural

network whose purpose is to reconstruct its own inputs.

Convolutional deep neural networks

Convolutional neural networks (CNNs) are based on four pillars:

 Connections are local between neurons of adjacent layers.

 There are pooling layers, i.e. layers in which outputs from multiple neurons are

combined to a single one.

 Weights of features are shared across all neurons of the same layer.

 Multiple hidden layers exist between input and output layers.

In a CNN, there are four separate types of layers: convolutional layers, pooling layers,

fully connected layers and normalization layers. Convolutional layers detect local

conjunctions from features use convolutions instead of matrix multiplications.

Convolutional neural networks were designed to be suitable for vision related

applications such as image recognition and video analysis.

Figure 2: Layer-by-layer architecture of a convolutional neural network (practical application: image classification)
[Guo et al., 2016]

Figure 2 depicts the layer-by-layer architecture of a convolutional neural network,

designed for image classification. The network is trained in two stages, a forward and a

backward one [14]. In each layer of the forward stage, the input image is represented

with the current weight and bias parameters. Based on the loss cost computed with the

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

25

ground truth labels, the backward stages computes the gradients of each parameter and

the results are then used to update the parameters and feed them to the next forward

computation. Learning continues after a sufficient number of iterations of the forward

and backward stages is complete.

Recurrent neural networks

Recurrent Neural Networks (RNNs) are better suited for applications involving

sequential inputs such as speech and text because they are designed to process

sequences of inputs by using the internal memory. Their main distinguishing feature are

recurrent hidden units that are can be considered as very deep feedforward network with

same weights when unfolded in time [1807.08169].

Deep Belief Networks

A deep belief network (DBN) is a probabilistic generative model which provides a joint

probability distribution over observable data and labels [14]. DBNs are formed by

“stacking” Restricted Boltzmann Machines, i.e. neural networks that can learn a

probability distribution over their inputs. In a DBN, the deep network is first initialized

with an efficient layer-by-layer greedy learning strategy. The computed weights are then

fine-tuned jointly with the desired outputs. This approach resolves the issue with

selecting initial parameters which potentially lead to poor local optima and does not

require labeled data for training. This, however, is a computationally expensive task that

may involve training several Restricted Boltzmann Machines.

Main applications of deep learning networks

Deep learning network applications can be summarized in the phrase signal processing

where both the terms signal and processing are properly extended [8]. In DL

applications, a signal can be audio/ speech, image/ video, but also text/ language and

document/ information. Accordingly, processing is not only limited to traditional

applications such as coding, analysis, and recognition but also includes interpretation/

understanding, retrieval/ mining, and user interface/ recreation.

The main groups of applications for deep learning networks are as follows:

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

26

1. Speech & audio: includes applications such as speech recognition (e.g.,

speaker and language) and speech synthesis, music signal processing and

music information retrieval.

2. Image & video: includes applications such as image classification (discovery/

labelling of main theme for each image and determining a set of additional

labels based on probabilities), object detection (detecting the presence of a

given class and estimating the position of the instance), image retrieval

(discovery of visually similar images or images containing the same object),

human pose estimation (recognizing people in images, detecting and

describing human body parts and their spatial configuration) and many others.

3. Natural language processing: includes applications such as text recognition

and semantic parsing, machine translation, automatic text summarization,

automatic paraphrasing, information retrieval, sentiment analysis and many

more. These applications will be presented in more detail in the following

chapter.

4. Bioinformatics: the power of deep learning networks has been harvested in

many diverse fields related to bioinformatics such as protein structure

prediction, gene patterns associations with functions, biomolecular target

prediction in drug design and synthesis and others.

Challenges of deep learning networks

The previous paragraphs focused on the incredible properties and applications of deep

learning networks. This paragraph will highlight, in brief, some challenges faced by

deep learning networks that either limit their applicability or have delayed their advent.

Computation time/ hardware requirements: deep learning network based solutions

were only made feasible following dramatically increased chip processing abilities and

particularly Graphics Processing Units (GPUs) improvements and significantly lowered

cost, as these units are the most suitable ones for matrix and vector computations.

Initial parameterization: refers to the difficulty in determining optimal values of initial

training parameters, e.g., size (number of layers and number of units per layer), learning

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

27

rate, and weights. Exhaustive search solutions for optimal solutions may not be feasible

due to the computational cost which results in unrealistic durations.

Overfitting/ underfitting: the overfitting problem, which is often observed in models

with millions of parameters such as deep belief networks refers to the discovery of rare

and weak dependencies in training data. This issue can be effectively addressed by

generative pretraining steps such as regularization or data augmentation [34].

Lack of theoretical explanation/ convergence proof: this criticism concerns some

more complex deep learning architectures where the exact nature of learning and the

probability of convergence and the time it will occur are unclear and the networks more

closely resemble empirical solutions or black boxes.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

29

2. Natural Language Processing – Background

The term refers to any task of automated processing of natural language (written and

spoken) such as machine translation, automatic summarization, paraphrasing and many

others. Natural language processing (NLP) techniques can, for instance, be used for

practical applications such as opinion mining and trend detection based on information

available of the web. The entire World Wide Web can be thought of as a large

collection of linguistic information that can be search, processed and classified. This

approach referred to as the “Web as Corpus” has inherent caveats such as the limited or

non-existent semantic structure and metadata. Over the last decade, deep learning has

become the core of modern NLP and has practically replaced rule based and statistical

methods, especially for language understanding.

Main applications

This section summarizes key tasks in natural language processing, emphasizing those

related to machine learning/ deep learning techniques.

Text & Document classification

As the number of documents available online and the size of each document constantly

increase, properly classifying them becomes more difficult but also more imperative.

Text classification is the process of identifying the category in which a document

belongs (selected from a specified set of categories). Very often, text classification is

seen as a supervised learning task in which labeled documents are given as input to the

classifier in order for it to accurately identify the categories of new documents. It is

obvious that the volume of training data impacts the precision of the process. Typically,

the classification problem assumes categorical values for the labels, though it is also

possible to use continuous values as labels [1].

The problem of text classification finds applications in a wide variety of domains

and such algorithms are at the heart of many software systems that process text data at

scale. It is commonly used in areas as follows:

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

30

 Email classification and spam filtering: email software uses text

classification to determine whether incoming mail will be put in the user

inbox or filtered into the spam folder. Similarly, discussion forums use

text classification to spot comments that need to be flagged as

inappropriate, abusive, or commercial.

 News filtering: online news services deal with a large volume of articles

created daily. The sheer volume makes manual organization very hard.

Therefore, automated classification methods can be very useful for news

categorization in web portals.

 Opinion Mining/ Sentiment Analysis: Customer reviews or opinions are

often short text documents which can be mined to determine useful

information such as whether the reviewer is positively or negatively

inclined and even his emotional state.

 Document Organization and Retrieval: This refers to large digital libraries

of documents, web collections, scientific literature, or even social feeds.

Techniques for classification that have been proposed in literature include

decision trees, rule-based classifiers, state vector machines, neural networks, Bayesian

and others. An important issue in text classification is feature selection. This refers to

determining the features which are most relevant to the classification process which is

very important because some of the words are much more likely to be correlated to the

class distribution than others.

Machine translation

Machine translation as an NLP application refers to finding the most probable target

language sentence for the source language sentence, i.e., the sentence that shares the

most similar meaning. Essentially, machine translation is a sequence-to-sequence

prediction task [43]. Statistical models dominate the machine translation community but

they face severe difficulties in obtaining accurate word alignments, in determining the

optimum translation for a given source phrase because a source phrase can have many

translations, and different contexts lead to different translations, and in predicting the

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

31

translation derivation structure because phrase partition and phrase reordering for a

source sentence can be arbitrary.

Overall, with statistical machine translation, it is difficult to learn a good language

model and this is where deep learning models and networks come into play.

Native Language Identification

When someone speaks in a given language it is easy for the listeners to identify whether

he is a native speaker of that language or even identify the speaker’s native language

based on the accent. Native Language Identification (NLI) is the task of identifying the

native language of authors of texts written in a (potentially) foreign language. NLI is

modeled as a text classification task with labels corresponding to native languages. The

basis of NLI is the assumption that one’s mother tongue influences the way they acquire

and produce second languages (Second Language Acquisition – SLA) and that traits

easily identifiable in speech production should be identifiable in written texts as well.

The motivation for NLI is twofold. First, there is a linguistic motivation related to

the interference between languages learnt and the degree of difficulty based on their

similarities and secondly the task has a practical relevance and can be integrated to a

number of computational applications. Interesting practical applications include forensic

linguistics and in particular authorship profiling which is the process of discovering and

asserting information about the writer of a given text, such as age, gender and native

language.

The authors of [11] design and develop an NLI system based on linear classifiers

which uses TF-IDF weighting for terms. They split the task in three stages. In the first

stage, the exact mode in which training and development data will be used is

determined. In the second stage, the features that will be extracted are selected and in

the third stage the machine learning algorithms that will be applied are chosen along

with their parameters considering the time and memory restrictions.

The dataset selected for training and testing consisted of around 12000 essays

(300-400 words) written by authors of 11 different native languages whose English was

evaluated (by humans) in 3 different levels. Several options were considered for

features such as word unigrams, bigrams or n-grams present in essays, part-of-speech

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

32

tags, character n-grams and spelling errors. All features, were mapped into normalized

numbers using TF-IDF and features that occurred in less than 5% or more than 50% of

the essays were removed. For Term Frequency, a logarithmic relationship was chosen

(sublinear TF scaling). Differences in essay lengths, were counterbalanced by

normalizing each feature vector. After normalization, the resulting essay feature vectors

were fed into classifiers. Three types of linear classifiers were used, i.e., linear support

vector machines, logistic regression and perceptrons.

It was noted that for several languages, the features that were most active and

separated native languages included names of countries or languages. These were

labeled stop-words and removed from the corpus using TF-IDF. Authors reported a

success rate ranging between 95% and 72% with the confusion matrix suggesting that

languages of geographically closer languages were more often mistaken for one another.

Text similarity

Estimating the similarity between two texts of arbitrary length (not necessarily of

similar lengths, e.g., a search query and a document) is defined as computing a metric of

the semantic distance between the two texts that reflects their actual relatedness.

Although it can be thought of as a standalone natural language processing application it

is most commonly considered part of other application such as paraphrasing, plagiarism

detection, summarization, translation and, of course, indexing & classification, among

others.

Determining similarity is a complex and fundamental issue as evidenced by issues

in trying to match queries with documents (e.g., in search engines results retrieval).

Users want to retrieve conceptually similar content even when they do not use the exact

words as the documents and the words they use may not even exist in relevant

document. Conversely, because words have multiple meanings, the match of a term in a

document does not guarantee that it is of interest to the user.

Latent Semantic Analysis (LSA) [Deerwester et al., 1990] was proposed in an

effort to overcome these problems by mapping documents and terms into a

representation in the space referred to latent semantic space. This is accomplished by

starting with the vector space representations of documents based on term frequencies

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

33

(typically a high dimensional vector) and applying a mapping based on a Singular Value

Decomposition (SVD) of the corresponding term/document matrix resulting in a

reduced space representation. The underlying premise is that document with terms that

frequently co-occur will be represented similarly in this space even if the terms are not

in the exact same words. This is a form of noise reduction and LSA can detect

synonyms as well as words that refer. The corresponding similarity measure is referred

to as Latent Semantic Index (LSI).

In [Hoffmann, 2017] a novel approach to LSA and factor analysis is presented

that unlike the original LSA has a solid statistical foundation since it applies standard

techniques from statistics for questions like model fitting, model combination.

Probabilistic Latent Semantic Analysis (PLSA) defines a proper generative model of the

data and can deal with polysemous words and distinguish between different meanings/

usages of the same words.

Foundation/ Key concepts

This section briefly covers the foundations needed in order for the rest of the work to

follow. Basic notions of natural language processing are presented and terminology

used throughout the thesis.

Preprocessing and parsing

This paragraph summarizes a set of processing tasks that need to be performed before

the “native text” is handed over for computational handling as they transform the

original sequence of characters to a cleaner form. Preprocessing typically encompasses

the following tasks:

 Tokenization: this is typically the first step in a natural language processing

solution and it refers to splitting the text into meaningful character sequences/

self-contained semantic units, e.g. words or sentences. A naïve tokenization

solution involves removing punctuation and splitting the text by blank spaces.

 Normalization: this involves removing morphological variations from words

such as capitalization, plural number or tenses, in order to grasp similarities

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

34

between them (e.g., the same word in singular and plural), obviously with a loss

of information. Two types of techniques are used, stemming and lemmatization.

In the former, language specific patterns are recognized, using for example the

rules for converting words from singular to plural or verb tenses. This technique

is simple, fast and applicable for large volumes of text. Lemmatization involves

using a dictionary (such as WordNet that is both a dictionary and a thesaurus) to

extract the roots of common words. This approach can be more accurate

compared to stemming, but it is more resource intensive and dictionaries may be

incomplete for certain languages. The two methods can complement each other

and they are often used in conjunction.

 Parsing: this involves a group of functions that are used after term isolation and

document cleanup, i.e., after normalization and parsing, which facilitate working

in higher abstraction layers. Typically, parsing includes morphological and

syntactical analysis of tokens in order to identify their role within sentences (e.g.

noun, verb, adjective or object-verb-subject), which is referred to as Part-of-

Speech (POS) tagging.

Word senses

A word sense is the meaning of a word. As several words have multiple meanings when

used in different contexts (polysemy) and words can often have the same meaning

(synonyms), there is not a 1-to-1 mapping between words and senses. Word-sense

disambiguation is the process of identifying the particular meaning of a word based on

the way it is used in a sentence and its context. Part of speech tagging is the first step in

the disambiguation process. A more advanced task is Named Entity Recognition (NER)

which involves identifying and tagging among others, people’s names, organizations

and geographical locations within the text.

Word embeddings

Word embedding is the collective name for a set of language modeling and feature

learning techniques in natural language processing (NLP) where words or phrases from

the vocabulary are mapped to vectors of real numbers. Conceptually it involves a

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

35

mathematical embedding from a space with one dimension per word to a continuous

vector space with a much lower dimension.

Word and phrase embeddings, when used as the underlying input representation,

have been shown to boost the performance in NLP tasks such as syntactic parsing and

sentiment analysis.

Word representations in vector space

As it was previously mentioned, machine learning algorithms cannot work with raw text

directly but can work with vectors of numbers. If these vectors are derived from textual

data in a mode that captures various linguistic properties of the text, the process is

called feature extraction or feature encoding. The following sections present popular

approaches. It must be noted that all these approaches are in line with the distributional

hypothesis as portrayed by Harris in 1954 “Words that occur in similar contexts tend to

have similar meanings” [16] and later on by J.R. Firth in 1957 “You shall know a word

by the company it keeps” [10].

Bag-of-words

A popular and simple method of feature extraction with text data is the bag-of-words

(BoW) model of text. As the name suggests, this model treats documents like bags of

words, i.e. as containers where the order of items does not matter. Bags are essentially

sets that are allowed to have more than one instances of the same item, meaning that a

word may be found in the bag (document) multiple times. This is referred to as

multiplicity and it is maintained in this model. The idea behind BoW is that documents

are similar if they have similar content and that we can learn something about the

meaning of the document from its content. A bag-of-words implementation can be

simple or complex depending on decisions regarding the design of the vocabulary of

known words (tokens) and the scoring system for known words [5].

The mode in which this model represents individual documents and the entire

corpus is best illustrated via an example [9]. Let’s consider the following corpus where

each sentence represents a separate document:

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

36

It was the best of times

It was the worst of times

It was the age of wisdom

It was the age of foolishness

The distinct words that appear in the corpus are:

‘It’, ‘was’, ‘the’, ‘best’, ‘of’, ‘times’, ‘worst’, ‘age’, ‘wisdom’, ‘foolishness’

In order to map documents to vectors, we count the frequencies for all terms (even

those that are not present). These vectors can then be fed into machine learning

algorithms. For instance, the first document (“It was the best of times”) has the

following frequencies for each of the 10 unique words.

“it” = 1

“was” = 1

“the” = 1

“best” = 1

“of” = 1

“times” = 1

“worst” = 0

“age” = 0

“wisdom” = 0

“foolishness” = 0

Therefore, the vector corresponding to this document is [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

Similarly, the remaining documents will be:

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

37

“It was the worst of times” = [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

“It was the age of wisdom” = [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]

 “It was the age of foolishness” = [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

The process of converting natural language text into numbers is called

vectorization in machine learning and different ways to convert text into vectors have

been proposed (presented in detail in the sections that follow). Indicative approaches

include:

 Considering the number of times each word appears in a document.

 Considering the frequency that each word appears in a document relative to

all the words in the document.

As the vocabulary size increases, so does the vector representation of documents

since the length of the document vector is equal to the number of known words. For a

large corpus this could amount to thousands or millions of words whose positions must

be tracked. If certain words are relatively rare (i.e. few documents contain them), this

results in a vector with lots of frequencies equal to 0, namely a sparse vector. Sparse

vectors take up memory and computational resources when modeling while not actually

containing useful information. The size of the vocabulary is a serious challenge for

modeling algorithms and text cleaning techniques need to be applied to reduce it in a

bag-of-words model.

Simple text cleaning techniques that can be used to reduce the size of the

vocabulary include:

 Case-insensitivity (case is ignored)

 Ignoring punctuation

 Removing stop words (i.e. too frequent words that don’t contain actual

information, like articles)

 Correcting spelling errors

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

38

 Reducing/ replacing words to/ with their stem (e.g. “play” from “playing”)

with suitable stemming algorithms.

n-grams and skip-grams

In the bag-of-words model, each word or token is referred to as a “gram” and the model

can be extended to consider more than single words. For example, creating a vocabulary

of two-word pairs (consecutive words) would result in the following pairs for the first

document “It was the best of times”:

“it was”

“was the”

“the best”

“best of”

“of times”

These tokens are called bigrams and the concept can be extended to trigrams and

generally n-grams. Using multiple consecutive words as tokens both changes the size of

the vocabulary and allows the bag-of-words to capture a little bit more meaning from

the document. N-gram models can be used to calculate probabilities for words based on

the words already encountered. When using n-grams for language modeling, it is

assumed that each word depends only on the last n-1 words which means that the model

is considered a good approximation of the true underlying language. This principal is

summed up in the phrase “language is its own best model” by some scientists [15] and it

implies that sufficient data can be gathered to depict typical (or atypical) language use

accurately. In the effort to solve the data sparsity problem presented in the previous

section, researchers have proposed the concept of skip-grams.

Skip-grams [15] are a technique in which n-grams are formed (for various values

of n) but in addition to tracking adjacent sequences of words, tokens are allowed to be

“skipped”. Skip-grams for a certain skip distance k allow a total of k or fewer words to

be omitted when constructing the n-gram which means that, for example, a 4-skip-n-

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

39

gram includes 4 skips, 3 skips, 2 skips, 1 skip, and 0 skips (typical n-grams with

adjacent words). For instance, for the sentence

“Insurgents killed in ongoing fighting.”

the following sets of skip-grams can be constructed for k=2:

2-skip-bi-grams = {insurgents killed, insurgents in, insurgents ongoing, killed in, killed

ongoing, killed fighting, in ongoing, in fighting, ongoing fighting}

2-skip-tri-grams = {insurgents killed in, insurgents killed ongoing, insurgents killed

fighting, insurgents in ongoing, insurgents in fighting, insurgents ongoing fighting,

killed in ongoing, killed in fighting, killed ongoing fighting, in ongoing fighting}.

The importance and versatility of n-gram models is illustrated by the fact that

Google has created a tool that allows users to track the use of a particular phrase in

books through time. The corpus is large and contains books scanned from public

libraries in several languages (Greek unfortunately is not included). Google Books

Ngram Viewer, which is available in https://books.google.com/ngrams will output a

graph that represents the use of a particular phrase in books through time. An example

for the phrases machine learning, deep learning and natural language processing for a

date range from 1978-2008 (the latest available year) is shown in Figure 3. Case

insensitivity and smoothing options are also available.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

40

Figure 3: Output of Google’s Ngram viewer for the phrases machine learning, deep learning, natural language
processing

Information retrieval with TF-IDF

Information retrieval techniques described in this section are primarily used for

document representation and classification. The goal is to provide a simplified

representation of documents while preserving their features.

Term Frequency-Inverse Document Frequency or TF-IDF is a numerical statistic

used very often in information retrieval applications to estimate the importance of a

term in a document, a collection or an entire corpus. The idea behind TF-IDF is simple

and straightforward and relies on the two factors included in its name. The combination

of these two factors tends to correspond to the way human minds tend to evaluate search

relevance [os connections bm25]. Term Frequency (TF) is a value that represents how

often a given word appears in a document. Words appearing many times are considered

important for the document. However, a very high frequency of the word in the entire

corpus means that it is a common word for the given topic therefore its score should be

penalized. It must be noted that a word can be rare in general but frequent in a collection

of documents for a given topic. For instance, the word “atom” is relatively rare

generally but very common in a corpus discussing physics. In TF-IDF, this is adjusted

using the second component, i.e. Inverse Document Frequency (IDF). Document

Frequency is obtained by counting the number of documents that contain a term and

computing a ratio of the total number of documents divided by this value. Inverting this

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

41

score yields the IDF. A high TF-IDF score/ weight is reached by a high term frequency

and a low document frequency of the term in the entire corpus. Hence, common terms

tend to have low weights and are filtered out. In this direction, TF-IDF is often used for

stop-words filtering in various subject fields and for various applications such as text

summarization and classification.

TF-IDF measures the relative concentration of a term in a given set of documents/

articles. If a word is common in a given item but relatively rare elsewhere then the score

should and will be high, i.e. the document is very relevant to the search term. Inversely,

if a word occurs few times in one document and many times in other documents the TF-

IDF score will be relatively low.

Document length is an additional measure that should be taken into account. A

term occurring twice in a 400 page book does not mean that the book is about the term

while a word contained twice in a short post implies that the post is indeed about the

word. This additional bias is “fieldNorms” and favors significantly shorter documents

matching a term over longer ones. Term concentration in the shorter document is

thought to be an important weighing factor on the relevance of the document with the

term and thus should be scored higher.

In the simplest implementation of TF-IDF the weight of a term that occurs in a

document is simply proportional to the term frequency, i.e. the number of occurrences

of the term in the document. The IDF component is a bit more tricky. The requirement

is not to overestimate the importance of documents containing the common words more

frequently and downplay the weight of terms with very high frequencies. Karen Spärck

Jones in her 1972 paper entitled “A statistical interpretation of term specificity and its

application in retrieval” [36] elaborated on the concepts of specificity and exhaustivity

and introduced the key concept of Inverse Document Frequency which is now pivotal in

term weighting. Spärck Jones argued that specificity should be interpreted as a

statistical and not a semantic property of index terms. Then, the exhaustivity of a

document description is the number of terms it contains, and the specificity of a term is

the number of documents to which it pertains. Thus, the specificity of a term can be

quantified as an inverse function of the number of documents in which it occurs. In the

simplest implementation, the IDF for a given term is computed by diving the total

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

42

number of documents by the number of documents containing the term and then scaling

it logarithmically. Finally TF-IDF is the product of the two statistics.

�� − ��� = �� × ���

Various formulae have been proposed both for computing the TF and the IDF

component. These are summarized in the tables that follow:

Frequency Weighting Scheme Term Frequency Values
Binary, i.e. term found or not in the
document

0, 1

Raw count, i.e. number of times term t
found in document d

��,�

Term frequency, i.e. document length D
taken into account

��,�

�
 or

��,�

∑ ��΄,��΄∈�

Log normalization ��� �1 + ��,��

Double normalization with factor Κ. This
scheme is a remedy for the bias against
longer documents.

� + (1 − �)
��,�

��� {�� ∈ �}��΄,�

Table 1: Variants of Term Frequency (TF) computation

Weighting Scheme IDF formula
Basic formula (number of documents that
contain the term over the total number of
documents – logarithmically scaled)

��� �
|�|

�{� ∈ �│� ∈ �}�
�

Unary 1(���ℎ������������)

Inverse document frequency (problematic
if term not found in any documents)

��� �
|�|

��
� = −���

Inverse document frequency (smooth) ��� �1 +
|�|

��
�

Inverse document frequency (max) ��� �
��� {�� ∈ �}��΄

1 + ��
�

Table 2: Variants of Inverse Document Frequency (IDF) computation

Applications of TF-IDF

In [39] the authors propose a document classification scheme using TF-IDF and a naive

Bayes classifier to tag unstructured data either as true or false, where the two Boolean

values may correspond to safe/ dangerous, spam/ not spam, etc. The authors emphasize

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

43

the fact that the classifier must be able to work fast with a large volume of data

collected at a tremendous rate. The proposed classifier works in two phases (training

and testing) with the training phase split further in stages. The first stage is the

morphological analysis of the input document during which linguistic units are

identified while the second one consists of using TF-IDF to extract features used as

input in the Bayes classifier which progressively computes conditional probabilities of

the document belonging to each class. The classifier which is implemented using

Python libraries is trained with two sets of sample data (one for each category) in a

supervised learning mode

Additional variations of TF-IDF

Variations of the basic idea of TF-IDF focus on addressing shortcomings related to how

the values/scores it provides relate to human intuition of relevance. For instance, a term

occurring two times more in a document does not mean that this document is twice

more relevant to this term or a term appearing in two times more documents does not

mean that its importance is half the importance of another term found half the times.

Apache Lucene, the free and open-source information retrieval software library

supported by the Apache foundation (http://lucene.apache.org/) addressed these issues

by modifying the basic scoring formula both in terms of the term frequency and the

inverse document frequency components. Specifically, instead of the actual term

frequency, its square root is used in the formula. This means that, for example, a

document with 16 matches is roughly twice as relevant as a document with 4. The IDF

component is also modified to reflect the fact that the score of a term appearing in 100

documents should not be 10 times more than the score of one appearing in 1000. The

new formula for the IDF is [37]:

��� = ��� �
�������

������� + 1
+ 1�

In this formula numDocs is the total number of documents in the corpus. The

logarithmic weighing means that the IDF component grows more slowly, for instance a

term found in only 4 documents is roughly twice as special as a term found in 64.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

44

In order to take document length into account in the scoring, the inverse of its

square root is included in the final formula as fieldNorms, i.e. the final score is

��� �
�������

������� + 1
+ 1� × √�� ×

1

���������ℎ

BM 25

BM 25, with BM standing for Best Matching is a variation/ improvement on TF-IDF

which focuses on assessing the relevance of a document to a query and is widely used

for results ranking in search engines. It is often referred to as Okapi BM 25 as it was

developed in the context of the Okapi information retrieval system at London's City

University in the 1980s and 1990s [31]. BM 25 combined previous variants BM 11 and

BM 15 into a single weighting function. In this function, the IDF component is

preserved while the TF component is redefined and based on two new parameters (k1

and b). The formula for the relevance (score) of a document D for a query Q (that

contains n keywords, labeled qi with i ranging from 1 to n) is as follows:

�����(�, �) = � ���(��)

�

���

∙
�(��, �) ∙ (�� + 1)

�(��, �) + �� ∙ �1 − � + � ∙
|�|

�����

Where IDF(qi) is equal to

���
� − �(��) + 0.5

�(��) + 0.5

where �(��) is the number of documents that contain the term qi.

Suggested values for k1 range between 1.2 and 2.0 and for b is equal to 0.75.

Additional extensions of BM25 focus on addressing specific deficiencies or

enhancing semantics. BM25+ was proposed to resolve an issue with the lower bound on

the term frequency component [22]. Authors observed and proved that the process of

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

45

normalization by document length is not properly lower-bounded and as a result, very

long documents tend to be overly penalized. They proposed a solution based on an

additional parameter δ whose value must satisfy the following formula:

� ≥
��

�� + 2

The new parameter δ is added in the TF component in the scoring formula which

becomes:

�����(�, �) = � ���(��)

�

���

∙ �
�(��, �) ∙ (�� + 1)

�(��, �) + �� ∙ �1 − � + � ∙
|�|

�����
+ ��

BM25F differs from other approaches in the sense that it does not consider the

document as a single body of text, unstructured and undifferentiated. The lack of

structure is not compatible with most search systems which assume at least some

minimal structure in documents [42]. BM25F considers a single flat stream structure,

common to all documents, i.e., that the text of each document is split between a global

set of labelled streams, for example, a title-abstract-body structure. The ranking function

is then applied separately to each stream, and the results are linearly combined (with

stream weights) to yield the final document score [32]. Intuitively, the presence of a

keyword in the document title will be given a higher weight and will thus contribute to a

higher score and the document that contains the keyword in its title will be considered

more important.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

47

3. Word embedding algorithms

This section presents algorithms that given a text of variable length as input, provide

vector representations for the words it contains.

Word2vec

Word2vec is a tool for computing continuous distributed representations of words that

was created by a team of researchers led by Tomas Mikolov at Google in 2013 [26] and

is distributed as open source software with an Apache License(https://www.apache.org).

Word2vec is essentially a group of related models that provides an efficient

implementation of the continuous bag-of-words and skip-gram model architectures to

compute distributed vector representations of words from very large data sets.

Following this transformation, the vector representations can be fed into many natural

language processing applications such as text classification or machine translation.

The input of word2vec is a large corpus of text (in the range of more than 1 billion

words with millions of distinct words) and produces a vector space with each word

corresponding to a vector positioned in such a way that words that share common

contexts in the corpus are close to one another.

In their seminal 2013 paper the researchers from Google report that their models

result in high quality vector representations. The quality is tested by feeding the output

into a word similarity task, and the results are compared to previously best performing

techniques based on different types of neural networks. Significant improvements are

observed both in accuracy and computational cost with a state-of-the-art performance

on a test set used for measuring syntactic and semantic word similarities.

This section presents the motivation and rationale behind word2vec, its mode of

operation and its output. Furthermore, example applications and variations that have

been proposed in literature are also included.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

48

Motivation / Rationale for word2vec

The main assumption that word2Vec is based on is that words with similar contexts

have similar meaning. Up to then, most NLP systems and techniques treated words as

atomic units disregarding the notion of similarity between them. This approach was

justified

since simple models trained on large volumes of data outperformed complex systems

trained on smaller data sets. The researchers behind word2vec initially observed that in

the vector representations, similar words not only tend to be close to each other, but also

words can have multiple degrees of similarity but were then surprised to discover that

similarity of word representations goes beyond simple syntactic regularities. In a well-

known example of simple algebraic operations on word vectors, they showed that

vector(“King”) - vector(“Man”) + vector(“Woman”)

results in a vector that is closest to vector(“Queen”).

The learned vectors explicitly encode many linguistic regularities and patterns and

many of these patterns can be represented as linear translations, something that

originally surprised researchers. In fact, using word2vec, both syntactic and semantic

regularities can be learned with high accuracy that depends on the dimensionality of

word vectors and on the volume of training data. It must be noted that although many

different models for estimating continuous representations of words had been proposed,

such as Latent Semantic Analysis and Latent Dirichlet Allocation, the creators of

word2vec focused on distributed representations of words learned by neural networks,

as they were superior in preserving linear regularities among words and computationally

affordable for large data sets.

Nevertheless, the question of why it works has baffled researchers and several

efforts have focused on making the intuition more precise [13].

Word2vec Operation

The tool first constructs a vocabulary from the training text data and then learns vector

representation of words. The simplest way to explore the learned representations is to

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

49

use the distance tool to find the closest words for a given one. For example, the closest,

i.e., most similar words to france are shown in the following table along with their

distances (https://code.google.com/archive/p/word2vec/).

Word Cosine distance

Spain 0.678515

Belgium 0.665923

netherlands 0.652428

Italy 0.633130

switzerland 0.622323

luxembourg 0.610033

Portugal 0.577154

Russia 0.571507

germany 0.563291

catalonia 0.534176

Architecture

For all the models investigated in the context of word2vec, the complexity was defined

as the number of parameters that had to be computed in order to complete its training

according to the following formula:

� = � × � × �

where E is number of the training epochs (passes), T is the number of the words in

the training set and Q depends on the particular model architecture. Common choices

for E include values between 3 and 50 and for T values approaching one billion.

Previously proposed model architectures that were considered in word2vec were

the probabilistic feedforward neural network language model (NNLM) which consists

of input, projection, hidden and output layers and the Recurrent Neural Network

Language Model (RNNLM) which had been proposed to overcome certain limitations

of NNLM and only has input, hidden and output layer. In NNLM, the hidden layer (of

size H) is used to compute probability distribution over all the words in the vocabulary,

resulting in an output layer with dimensionality V. The complexity is dominated by the

dimensionality of the projection layer (typically between 500 and 2000) and that of the

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

50

hidden layer. The complexity in RNNLM is dominated by the square of the size of the

hidden layer.

The new log-linear models that were proposed in the context of word2vec in order

to reduce computational complexity by partly sacrificing precision of data

representation could be trained on much more data efficiently. These were:

Continuous Bag-of-Words (CBOW) Model: this is essentially a feedforward

NNLM, where the non-linear hidden layer has been removed and the projection layer is

shared for all words (whereas previously only the projection matrix was shared). This

architecture is a type of bag-of-words model as the order of words in the history does

not influence the projection. Not only words from recent history but also from the future

are used. For example, a log-linear classifier for a given word could consider the four

previous and the 4 next words. The computational complexity Q of the model is:

� = � × � + � × �����,

where V is the size of the vocabulary, N is the size of the context window and

� × � is the size of the projection layer.

Unlike standard bag-of-words model, this model uses continuous distributed

representation of the context, hence its name. CBOW predicts the current word based on

the context and its architecture is shown in Figure 4.

Figure 4: CBOW model architecture [20]

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

51

Continuous Skip-gram Model: this is a similar architecture to CBOW but

instead of predicting the current word based on the context, it tries to predict

surrounding words given the current word. Each word encountered is fed as input to a

log-linear classifier with a continuous projection layer, and words within a certain range

before and after the current word are predicted. The size of the range is a tradeoff

between the quality of the resulting vectors and the computational complexity. Distant

words are typically assigned lowered weights and are sampled less often given that they

are generally less related to the current one.

The training complexity of this architecture is:

� = � × (� + � × �����),

where C is the maximum distance of the words considered. For example, for C=5,

for each training word, a random number R between 1 and 5 is selected and R past and

R future words are used as correct labels. This results in 2 × � classifications and

outputs. A typical value for C is 10. The architecture for the continuous skip-gram

model is shown in Figure 5 where it is evident that it predicts surrounding words based

on the current word.

Figure 5: Continuous skip-gram model architecture in word2vec (Mikolov et al., 2013)

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

52

Word2Vec example applications

Machine translation

The models proposed in the context of word2vec can be used to automate the process of

generating dictionaries and phrase tables which are fundamental in machine translation,

thus complementing mainstream techniques that rely primarily on raw word counts used

in statistical machine translation. The authors of [24] propose achieving this by learning

a linear projection between vector spaces that represent the two languages.

Figure 6 illustrates the basic principle behind the idea. Vectors for two groups of

related words (numbers and animals) are visualized for the two languages that will be

translated (English and Spanish). As it is evident in the figure, concepts have similar

geometric arrangements in both languages due to the fact that they are grounded in the

real world. This similarity is the key reason why the proposed method works well.

Typically, morphological features such as edit distance between word spellings are used

to improve performance in translations between related languages (such as the two in

the example, English and Spanish). The method based on word2vec can be used for

translation between languages that are substantially different (for example, English and

Chinese).

Figure 6: Distributed word representations of numbers and animals in English and Spanish [21]

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

53

To obtain the representations as they are shown in Figure 6, the vectors in each

language are projected down to two dimensions using principal component analysis,

and then manually rotated to accentuate similarities. The similar geometric

arrangements suggest that is it is possible to learn an accurate linear mapping from one

space to another. To put this to action, first, monolingual models of languages are built

using large amounts of text. Next, a small bilingual dictionary is used to learn a linear

projection between the languages. During the test phase, any word present in the single

language corpora can be translated by projecting its vector representation from the

source language space to the target language space. The translated word is selected as

the most similar word vector in the target language space.

Text classification

Word2vec brings extra semantic features that can help in text classification which is

becoming more difficult as the volume of online documents increases [21].

Classification is traditionally based on document representation using information

retrieval techniques, for example continuous bag-of-words or tf-idf, that provide a

simplified representation of documents through various features. CBOW disregards

grammar and word order but keeps multiplicity while tf-idf reflects the importance of a

word to a particular document in a collection of documents or corpus.

On the contrary, word2vec is unable to distinguish the importance of each word

within the document being classified and treats each word equally. This makes it

difficult to extract which words hold higher value over others. The authors of [21]

combined word2vec with tf-idf to get the best of both methods in a classification task.

Mathematically speaking, the first step was getting a vector representation using

word2vec. Following that, they applied weights using tf-idf weighting with word2vec

and then concatenated tf-idf with word2vec weighted by tf-idf. The concatenation

operation was in fact vector merging. By adding weights to each word corresponding to

its frequency within the document in word2vec, they created weighted sums of word

vectors. Stop words were omitted to improve accuracy and skip-gram was used for

higher semantic accuracy (at the cost of time efficiency).

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

54

Reported results show that the combination of word2vec weighted by tf-idf

without stop words and tf-idf without stop words can outperform either word2vec

weighted by tf-idf without stop words or tf-idf with or without stop words. Although,

the difference in performance is relatively marginal, the performance is consistent (i.e.,

the combination is reliable) and as the number of different categories increases, the

difference in scores becomes even smaller which means that the addition of categories

does not offer new information.

Extensions/ Variations of word2vec

The research team behind word2vec published a later paper where they presented

several extensions (particularly to the continuous skip-gram model) that improve both

the quality of the vectors and the training speed [24]. The first two extensions are

essentially additional parameters that are related to subsampling and rare-word pruning.

Words appearing fewer than min-count times are not taken into account neither as

words nor as contexts. Conversely, words appearing more frequently than sample times

are down-sampled and removed from the text before generating the contexts. This

increases the effective window size for some words as more distant words are actually

considered and these words are indeed meaningful and not, for example, stop words.

This subsampling not only improves the accuracy of representations of less frequent

words but also speeds up the process by several orders of magnitude.

Another important extension is a simplified variant of Noise Contrastive

Estimation (NCE) for training the Skip-gram model that results in faster training and

better vector representations for frequent words, compared to more complex

hierarchical Softmax that was used in the original proposal.

Paragraph vector

This extension was proposed by the creator of the original word2vec and another

researcher in a 2014 paper [20] in order to counteract drawbacks of bag-of-words

methods such as their disregard for word order and their little sense of semantics.

Paragraph vector provides continuous distributed vector representations for variable-

length pieces of texts (such as sentences and paragraphs). Since it was proposed,

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

55

however, its potential to provide vector representations for entire documents has

received a lot of attention and it is mostly referred to as doc2vec. Doc2vec is presented

in detail in the following chapter entitled Document embedding algorithms.

GloVe

GloVe is an acronym that stands for Global Vectors for Word Representation. Glove is

a model for obtaining vector representations for words that features a different take on

the task compared to word2vec. It is developed as an open-source project at Stanford

University [29].

The creators of GloVe distinguish between two model families for learning word

vectors: global matrix factorization methods, such as latent semantic analysis and local

(shallow) context window methods, such as the skip-gram model proposed in the

context of word2vec. Global matrix factorization methods utilize low-rank

approximations to decompose large matrices that capture statistical information

(varying by application) about a corpus. For example, matrices of type “term-term”

could be used where the rows and columns correspond to words and the entries

correspond to the number of times a given word occurs in the context of another word.

The main problem with such methods is that the most frequent words contribute a

disproportionate amount to the similarity measure because of their frequent co-

occurrence despite the fact that this does not necessarily mean much about their

semantic relatedness. As a result, methods of this category perform relatively poorly on

word analogy tasks, indicating a sub-optimal vector space structure, despite the fact that

they efficiently leverage statistical information.

Shallow window-based methods are another approach in which representation

learning is accomplished by making predictions within local context windows. Methods

like skip-gram and continuous bag-of-words have the capacity to learn linguistic

patterns as linear relationships between the word vectors and this is demonstrated

through evaluation on a word analogy task. Scanning local context windows across the

entire corpus fails to take advantage of the vast amount of repetition in the data and

these methods do not operate directly on the co-occurrence statistics of the entire

corpus.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

56

The statistics of word occurrences in a corpus is the primary source of information

available to all unsupervised methods for learning word representations and these

methods try to generate word vectors that represent the meaning of these statistics. The

GloVe model directly captures the global corpus statistics.

GloVe uses a matrix X of word-word co-occurrence counts, whose elements Xij

tabulate the number of times word j occurs in the context of word i. The sum of the

elements in a row i is noted by Xi and is equal to the number of times any word appears

in the context of word i. The ratio Xij/Xi denoted by Pij is the probability that word j

appears in the context of word i. In GloVe, the starting point for word vector learning is

computing the ratios of co-occurrence probabilities rather than the probabilities

themselves. This is better illustrated with an example.

Consider two words i and j that exhibit a particular aspect of interest, e.g., take i =

ice and j = steam in a corpus related to physics. The relationship of these words can be

examined by studying the ratio of their co-occurrence probabilities with various probe

words, k. For words related to ice but not steam (for example the word solid), the ratio

Pik/Pjk is expected to be large while for words related to steam but not ice (say k = gas)

the ratio should be small. Similarly, for words either related to both ice and steam (e.g.,

water) or to neither of them (e.g., fashion) the ratio will be close to one. Compared to

the raw probabilities, the ratio is better able to distinguish relevant words (solid and gas)

from irrelevant words (water and fashion). The target optimization problem in GloVe is

formalized with the following equation:

����, ��, �~�� =
���

���

where w are word vectors and �~ are separate context word vectors.

The function F should be applied to the word vectors and its output should

approximate the probability ratio. Analysis of the properties of the optimization

function and the characteristics of the vector space formulate the end equation. The

result is a new global logbilinear regression model.

��
��~� + �� + �~� = ��� (1 + ���)

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

57

The weighting function is pivotal in the equation and should not overweight rare

co-occurrences and very frequent ones. The selected function was:

�(�) = �
(� ����⁄)���� < ����

1 ��ℎ������
�

Optimal values for parameters were set to xmax = 100 and a=3/4.

Results from experiments [29] indicate that GloVe and word2vec perform

similarly and this is justified by the fact that they are essentially optimizing the same

objective, i.e., they share a common base assumption that words with similar contexts

have similar meanings. Despite the fact that word2vec does not explicitly utilize global

statistics, its mode of operation by sequentially scanning the corpus does implicitly

capture them. Regarding the computational complexity, GloVe scales on vocabulary

size V because training is based on the co-occurrence matrix with contains all word

pairs. Therefore, a simple upper bound to complexity would be O(V2). This is very

practical as the vocabulary size does not grow with the size of the corpus.

FastText

FastText is an open-source, free, lightweight library for learning text representations

created and maintained by researchers in Facebook’s AI Research (FAIR) lab [3]. The

inspiration for fastText was the observation that previous techniques represent each

word by a distinct vector without parameter sharing which is a serious limitation for

morphologically rich languages, such as Finnish which has, for example, fifteen

inflected cases for nouns. This means that many word forms may occur rarely or not at

all in the training corpus and thus learning good word representations is hard. FastText

uses character level information to improve vector representations which is beneficial

for morphologically rich languages as many word formation follow rules.

The original paper on fastText [4] proposed an extension of the continuous skip

gram model in which character n-grams are used and words are represented as the sum

of n-gram vectors. This approach with subword information is shown to have good

performance for nine languages of different morphologies. fastText differs from

previous efforts on morphological word representations as it does not rely on the

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

58

morphological decomposition of words. Specifically, fastText tries to take into account

the internal structure of words which the continuous skip gram model ignores by using a

different scoring function s. Each word w is now represented as a bag of character n-

gram. Special boundary symbols < and > indicate the beginning and end of words, thus

allowing the distinction between prefixes and suffixes and other character sequences.

For example, if we consider the word “where” and n=3, the resulting character trigrams

will be:

< whe, her, ere>

and the special sequence (entire word) will be

<where>

In practice, all the n-grams for n greater or equal to 3 and smaller or equal to 6

(word length) are extracted. It must be noted that the sequence <her> as found in the

word “where” is considered different from the sequence <her> as found in the word

“her”.

Given a word w and a dictionary of n-grams with size G, the set of n-grams

appearing in w is denoted by:

��∁{1, … , �}

Each n-gram g is associated with a vector representation zg.and each word is

represented by the sum of the vector representation of its n-grams. Thus, the scoring

function becomes:

�(�, �) = � ��
���

�∈��

In this simple model, representations can be shared across words, thus allowing to

learn reliable representations for rare words. Model memory requirements are upper

bound using a hashing function that maps n-grams to integers in the range 1 to K.

Ultimately, a word is represented by its index in the word dictionary and the set of

hashed n-grams it contains.

Regarding the performance of fastText, in several tasks, it is on par with methods

inspired by deep learning, while being much faster. For classification problems in

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

59

particular, fastText can be trained on more than one billion words in less than ten

minutes using a standard multicore CPU, and it can classify half a million sentences

among 312K classes in less than a minute [18].

The computational complexity of FastText is effectively the same as the

complexity of the skip-gram variant of word2vec as the learning procedure is effectively

the same. The added cost of fastText is the cost of splitting each word into its

components, fetching their corresponding embedding vectors and compose them into

the final word embedding. This is only a linear increase in cost so the complexity class

remains the same. Regarding the memory complexity of fastText which is expected to

be quite high, extensions to the library have been published that specifically address the

issue for classifiers [19]. This is achieved by applying discriminative pruning which

aims to keep only important features in the trained model, and by performing

quantization of the weight matrices and hashing of the dictionary.

WordRank

The researchers behind WordRank [18] take a different approach compared to the

methods described in the previous sections, in the sense that they do not consider word-

context co-occurrence counts as the basis for word embeddings. In WordRank the word

embedding task is approached from a different perspective by formulating it as a

ranking problem. That is, given a word w, the aim is to output an ordered list of context

words such that words that co-occur with w appear at the top of the list. In other words,

the importance does not lie in the particular scores but rather in the order between the

context words.

Casting word embedding as ranking has two distinctive advantages. First, the

method is discriminative rather than generative, so, instead of modeling the (potentially

normalized) co-occurrence count directly, the aim is to only model the relative order of

its values in each row. This fits naturally to popular word embedding tasks such as word

similarity and analogy since instead of the likelihood of each word, we are interested in

finding the most relevant words in a given context. The second advantage is the inherent

robustness of the method to noise.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

60

Both issues are very critical in the domain of word embeddings since the co-

occurrence matrix might be noisy due to grammatical errors or unconventional use of

language. This is particularly important in smaller document corpora collected from

diverse sources. Additionally, WordRank enables sorting out the few most relevant

words from very large vocabularies and thus works like a kind of attention mechanism.

Experiments show that with 17 million tokens WordRank performs almost as well as

existing methods using 7.2 billion tokens on a popular word similarity benchmark [17].

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

61

4. Document embedding algorithms

Extending on the notion of word embeddings, document embeddings provide numerical

vector representations for texts of variable length, even entire documents. These

representations are then fed as input in methods/ algorithms for classification, similarity

queries and other natural language processing tasks. This section presents the extension

of word2vec for documents, appropriately named doc2ve.

Doc2vec

Despite their popularity, bag-of-words features have two major weaknesses: they

disregard the order of words and thus different sentences can have exactly the same

representation, as long as they contain the same words. Furthermore, they have very

little sense about the semantics of words or more formally the distances between words.

As a result, for example, the words “powerful,” “strong” and “Paris” are equally distant

despite the fact that semantically, “powerful” should be closer to “strong” than “Paris.”

Following the success of word embedding methods such as word2vec, researchers

have pursued extensions to go beyond word level to phrase-level or sentence-level

representations. Example of simple approaches were using a weighted average of all the

words in a document or combining the word vectors in an order given by a sentence

parse tree using matrix-vector operations. Both simple approaches mentioned have

weaknesses. The first one loses the word order much like the standard bag-of-words

models do while the second one that relies on parsing works only for sentences.

To counteract these drawbacks, the authors of [20] propose Paragraph Vector, an

unsupervised framework that learns continuous distributed vector representations for

variable-length pieces of texts (from single phrase/sentences to entire documents). The

original name they suggested (Paragraph Vector) illustrates the variability in text length.

However, the method has since become known as Doc2vec, in the sense that it can

provide vector embeddings for entire documents. Unlike some of the previous

approaches, it is general, applicable to texts of any length and does not require task-

specific tuning of the word weighting function or parse trees. Two separate models are

proposed, in a mode analogous to word2vec, Distributed Memory Model of Paragraph

Vectors (PV-DM) and Paragraph Vector with Distributed Bag of Words (PV-DBOW).

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

62

Paragraph Vector: A Distributed Memory model (PV-DM)

This approach for learning paragraph vector is based on the one for learning word

vectors. More specifically, much like word vectors are asked to contribute to a

prediction task about the next word in a sentence, the paragraph vectors are asked to

contribute to the prediction task of the next word given many contexts sampled from the

paragraph. The prediction learning task is the reason why word vectors eventually

capture semantics despite the fact that they are randomly initialized. Accordingly,

paragraphs and words are mapped to unique vectors (columns in matrix D and in matrix

W, respectively).

Figure 7: The operation of PV-DM. The word vectors along with the paragraph vector are used to predict the
following word [Le & Mikolov, 2014].

The resulting paragraph vector representation is trained to be useful for predicting

the following words in a paragraph by concatenating it with several word vectors from

the same paragraph (Figure 7). Both word vectors and paragraph vectors are trained

using stochastic gradient descent and backpropagation. Paragraph vectors are unique for

each paragraph but shared across all contexts generated from the same paragraph while

word vectors are shared, i.e., the vector for “powerful” is the same for all paragraphs.

Contexts are fixed-length and sampled from a sliding window over the paragraph.

The operation of the algorithm that generates the vectors can be summed up in

two stages: the first is training to get word vectors W, softmax weights and parameters

and paragraph vectors D on already seen paragraphs and the second one is the inference

stage where vectors for unseen paragraphs are computed by adding more columns to the

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

63

matrix D while holding all else fixed. For this purpose, a standard classifier is used

(e.g., logistic regression).

Paragraph Vector without word ordering: Distributed bag of words (PV-DBOW)

PV-DM concatenates the paragraph vector with the word vectors in order to predict the

next word in a text window. In contrast, Distributed Bag of Words (DBOW) ignores the

context words in the input, but forces the model to predict words randomly sampled

from the paragraph in the output. The operation of the model is illustrated in Figure 8.

At each iteration of stochastic gradient descent, a random word is sampled from the also

randomly selected text window and a classification task is formed given the Paragraph

Vector.

Figure 8: The operation of PV-DBOW. The paragraph vector is trained to predict the words in a small window [Le
& Mikolov, 2014]

This model is conceptually simple and similar to the Skip-gram model in word

vectors. Compared to PV-DM it stores less data and while it can work well alone, the

combination of both paragraph vectors (one learned with PV-DM and one with PV-

DBOW) is usually more consistent across many tasks.

Paragraph vectors generated with the methods described in the previous two

sections have several advantages. Firstly, they do not require labeled data and thus can

work well for tasks that do not have enough such data. Most importantly, they address

the weaknesses of bag-of-words models. Paragraph vectors retain the semantics of the

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

64

words (i.e., in this space, “powerful” is closer to “strong” than to “Paris”) and they

consider the order of words (albeit in a small context) in the same way that an n-gram

model with a large n would do. Compared to a theoretical bag-of-n-grams model, Le

and Mikolov [20] note that their paragraph vectors are superior in the sense that a bag of

n-grams model would create a very high-dimensional representation that tends to

generalize poorly.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

65

5. Python toolkits and libraries for natural language processing

Python is a very popular programming language and natural language processing is one

of the primary ways it is used. This section provides an overview of several well-known

and used toolkits and libraries written in Python that relate to natural language

processing.

Natural Language Toolkit (NLTK)

The Natural Language Toolkit [27], also referred to as NLTK is a platform for building

programs that work with human language data, written in Python. NLTK is a suite of

libraries for symbolic and statistical natural language processing that was developed by

Steven Bird and Edward Loper in the Department of Computer and Information Science

at the University of Pennsylvania. It is free and open source software distributed under

the Apache License and hosted on Github. NLTK is suitable for students and

professionals alike and is available for Windows, Mac OS X, and Linux. It is also

accompanied by a free book written by NLTK creators [2], which introduces new

comers to natural language processing with Python.

According to the creators of NTLT, they chose Python as the programming

language for implementation because of its simplicity, its syntax transparency and its

abilities in string handling. Python combines multiple programming paradigms and has

a shallow learning curve. Its standard library is very extensive and includes powerful

tools for graphical programming, numerical processing, and web connectivity. NLTK

contains the following components:

1. Code: libraries/ modules for all functions required in natural language

processing (50,000 lines of code). Popular functions include corpus

readers, tokenizers, stemmers, taggers, parsers, semantic interpretation,

clusterers, evaluation metrics, etc.

2. Corpora: more than 30 annotated data sets widely used in NLP.

3. Documentation: a 400-page book, articles, reviews, API documentation.

Basic functions of NLTK include:

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

66

 nltk.word_tokenize(): outputs a list of strings/ tokens appearing in the

argument text.

 nltk.pos_tag(): outputs a list of word/ part of speech tuples.

 nltk.corpus.stopwords.words(‘english’): outputs a list of stop words for the

English language.

NLTK also includes dictionaries and a thesaurus, directly accessible via the

command line and can output word definitions, synonyms, antonyms and sample

usages. It also includes functions that estimate if two words are related.

Apart from working with words, NLTK can analyze and visualize sentence

structure. With the corresponding modules, NLTK provides answers to the following

questions:

1. How can we use a formal grammar to describe the structure of an

unlimited set of sentences?

2. How do we represent the structure of sentences using syntax trees?

3. How do parsers analyze a sentence and automatically build a syntax tree?

Indeed, systematic aspects of meaning are much easier to capture once the

structure of sentences has been identified. Parse trees automatically generated by NLTK

are an excellent tool for sentence structure visualization and ambiguity management. A

well-known example is the analysis of the sentence:

While hunting in Africa, I shot an elephant in my pajamas.

By using NLTK and defining a simple grammar, the sentence can be analyzed in

its parts.

Based on this grammar, the sentence can be analyzed in one of two ways, depending on

whether the prepositional phrase “in my pajamas” describes the elephant or the shooting

event.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

67

The corresponding parse trees are shown in Figure 9 as they are generated by NLTK.

Figure 9: Parse trees generated by NLTK for the two interpretations of the sentence [Bird et al.,

2009]

Pattern for Python

Pattern is a Python package for web mining, natural language processing, machine

learning and network analysis which offers a collection of tools commonly used in

applications that harness the Web. Pattern is free and open source software licensed

under BSD and is organized in separate modules/ packages that can be chained. Pattern

is written in pure Python, mainly for readability. The main packages in Pattern are [35]:

 pattern.web: this package includes tools for web data mining, i.e. tools for

downloading content and using web services such as the ones offered by

search engines and Wikipedia. It also includes an HTML parser, a parser for

PDF documents, a web crawler, and a webmail interface.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

68

 pattern.en: this package is essentially a fast, regular expressions-based

shallow parser for English that can identify sentence constituents such as

verbs, nouns and adjectives. The original implementation included a parser

for the Dutch language and developers can add support for other languages.

 pattern.search: this module includes an N-gram pattern matching algorithm

for objects of the Sentence class. Search queries can include a mixture of

words, phrases, part-of-speech-tags, taxonomy terms (e.g., pet = dog, cat or

goldfish) and operators (such as +, *, ()) to extract relevant information.

 pattern.vector: this module includes the tools that compute TF-IDF, distance

metrics and perform dimension reduction. It also includes a hierarchical and

a k-means clustering algorithm, some simple classifiers and tools for feature

selection and K-fold cross validation.

 pattern.graph: this module supports graph data structures useful for example

for modeling semantic networks. The module has algorithms for shortest

path computation, subgraph partitioning, eigenvector centrality and

betweenness centrality.

 pattern.metrics: this module supports descriptive statistics functions, such as

functions for accuracy, precision and recall.

 pattern.db: this module includes the tools for working with CSV files and

SQLITE/ MYSQL databases.

LibShortText

Short texts include titles, questions, sentences and short messages. The approaches to

classification and analysis must consider the special properties related to their small

length for instance the fact that words in them are most likely distinct. Existing

procedures may need to be altered to apply in shorter texts which are generally easier

for investigation and experimentation. The authors of [39] developed an open source

tool licensed under BSD called LibShortText whose main features are:

1. It is optimized for short texts i.e. it is more efficient for large-scale short-text

classification compared to traditional tools.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

69

2. The default options are selected to guarantee the best performance for user

applications.

3. Error analysis is performed via an interactive tool at each text level detail.

LibShortText is written in Python for simplicity and extensibility with portions in

C/C++ for speed/efficiency. The workflow in a LibShortText application follows three

steps, each corresponding to an included library.

1. libshorttext.converter: the bag-of-word model is used to generate features. Short

texts can be pre-processed by tokenization and optionally by stemming and

removing stop-word. The library both unigram and bigram features.

2. libshorttext.classifier: after the user chooses how features will be represented

(options include binary, word count or TF-IDF), the library generates sparse

feature vectors and calls a linear-classification package for training/testing.

Multi-class classification is also supported.

3. libshorttext.analyser: this is the interactive tool used to conduct error analysis in

both the overall performance level and the level of analysis of each feature of a

short text.

Gensim

Gensim [30] is a free and open source vector space modeling and topic modeling toolkit

implemented in Python. It was created in 2009 and it is distributed under the GNU

LGPLv2.1 license. Since its creation, it has become a reference point both for

researchers in related fields and for companies and is also used in commercial products.

It is supported by the company RaRe Technologies and it is hosted on GitHub.

In the words of its creator, Radim Řehůřek, Gensim is “the most robust, efficient

and hassle-free piece of software to realize unsupervised semantic modeling from plain

text”. The algorithms in Gensim, such as Word2Vec, FastText, Latent Semantic

Analysis, Latent Dirichlet Allocation, etc, automatically discover the semantic structure

of documents by examining statistical co-occurrence patterns within a corpus of training

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

70

documents. These algorithms are unsupervised, which means no human input is

necessary only a corpus of plain text documents is required. After these statistical

patterns have been discovered, any plain text document of any length can be succinctly

expressed in the new, semantic representation and queried for topical similarity against

words, phrases or documents [30].

The basic features of Gensim are:

 Memory independence: the entire corpus used in training does not need to

reside in the computer’s RAM all at any one time. Therefore, large corpora

(such as web-like ones) are an option for training.

 Memory sharing: models that have completed their training can be saved

to disk and loaded back for experiments and multiple processes can share

the same data.

 Efficient implementations for several popular vector space algorithms.

 Input/ output wrappers and readers from several popular data formats.

 Fast similarity queries for documents in their semantic representation.

Gensim was designed to be straightforward to use and easy to learn for

developers, with an impressive API that is great for prototyping. Additionally, because

Gensim operates in a streaming fashion, one document at a time, the size of the corpus

is not a hindering factor.

Core concepts in Gensim

This section summarizes some of the core concepts in Gensim which are required to

follow the details of code implementation presented in the next chapter.

Corpus

A corpus in Gensim is a collection of digital documents. Corpora serve as input for

model training and models utilize the training corpus to initialize their internal

parameters. No human intervention is required (e.g. annotations or tagging by hand

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

71

which are very costly and cannot be performed in bulk in reasonable time frames).

Indeed, Gensim focuses solely on unsupervised models.

Corpora in Gensim also serve as documents to organize. After training, a topic

model can be used to extract topics from new documents (not already contained in the

training corpus).

Vector space model

As it was discussed in previous sections, in a Vector Space Model, each document is

represented by an array of features. For example, a single feature may be thought of as a

question-answer pair:

How many times does a specific word appear in the document? Zero.

How many paragraphs does the document consist of? Two.

How many fonts does the document use? Five.

The question is usually represented only by its integer id (such as 1, 2 and 3 here),

so that the representation of this document becomes a series of pairs like (1, 0.0), (2,

2.0), (3, 5.0).

This sequence of answers can be thought of as a vector (in this case a 3-

dimensional dense vector) and are the same for all documents. As a result, vector

similarity can be interpreted as document similarity. The selection of questions and the

degree to which they correlate with real world similarity is therefore critical.

Gensim sparse vector

For space saving reasons, Gensim does not store vector elements that are equal to zero.

Each vector element is 2-tuple of (feature_id, feature_value) and all missing values are

resolved to zero so documents are potentially represented by sparse vectors.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

72

Gensim streamed corpus

Gensim does not prescribe any specific corpus format. A corpus is simply a sequence of

sparse vectors, as described above and any object that when iterated over, successively

yields such sparse bag-of-word vectors is acceptable in Gensim. This flexibility enables

users to create their own corpus classes that stream vectors directly from disk even on

the fly.

Model, Transformation

In Gensim the term model is used to refer to the code and associated data (parameters)

required to transform one document representation to another. As discussed above,

documents in Gensim correspond to vectors so a model is essentially a transformation

from one vector space to another. The parameters of this transformation are learned

from the training corpus and data computed based on these parameters (i.e., the trained

model) can be written to disk and then reloaded and reused either for further training or

new transformations.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

73

6. A practical application of Gensim doc2vec for similarity estimation

between Wikipedia articles

Application goals and Problem definition

This section describes a practical example of using the word2vec and doc2vec

implementation in order to model data, produce analogy when given a set of words and

find the less relevant one between a bunch of words. The objective is also to be able to

execute similarity queries among the articles of Greek Wikipedia and obtain a list of

article rankings based on similarity indices.

Stakeholders

This functionality can help scientists or interested parties in word/document similarities

in the Greek language. Word and document embeddings, as discussed in previous

chapters, can be also used as input in various machine learning algorithms for automatic

summarization, machine translation, sentiment analysis, speech recognition etc. This

functionality, consequently, can help scientists or interested parties in exploring the

methods mentioned above in the Greek language.

Methodology

To ensure project application goals are met the following methodology shown by the

diagram below was utilized. The first step is to identify user requirements, and the second

step is to identify the appropriate machine learning algorithms. The following step is to

implement the algorithms chosen and finally to present and evaluate the results. This

framework allows us to select the right algorithms to accomplish goals set (please see

below).

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

74

Figure 1. Methodology diagram

Requirements

This section describes the requirements of the system. The ecosystem should consist of

two concrete applications.

1. The first application should be able to identify:

 Semantic similarities between words.

o A less semantically relevant word between a bunch of words.

o Analogies between one word and a tuple (two words semantically

connected).

2. The second application should be able to identify:

 Semantic similarities between documents.

o The closest semantically related documents within a collection

(corpus) given one document as input.

Design

In the section to follow we discuss the method in which the requirements can be met.

Initially, the methodology is decided upon, followed by the structure of the proposed

solution. Depicted in the following diagram is the overall structure of the application

code.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

75

Figure 2: Python application code building blocks

Our initial step is to create the corpus of this application. For this purpose obtaining

the source documents and then converting these documents into sentences gives us the

opportunity to construct a dictionary. Secondly, preprocessing methods are needed to be

applied as they transform the original sequence of characters to a cleaner form. For this

purpose we will convert all characters to lowercase. One of the major forms of pre-

processing is to filter out useless data. In natural language processing, useless words are

referred to as stop words. Therefore, we will remove all stop words and terms that appear

only once in each document.

Moving on, we are going to divide our application into two sub applications which

both use different algorithms and compute different tasks. The first sub application should

utilize the wordToVec algorithm in order to transform a word into a vector. The second

application should utilize the docToVec algorithm with the intention of assigning vectors

to documents. Both the selected algorithms contain two different architectures which will

be applied in each case. We then are going to test them for development/ code checking

with a limited number of items.

Our last step is to evaluate the accuracy of our models and present our results

revealing similarities between words and documents.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

76

Implementation

In order to meet the requirements some appropriate machine learning algorithms should

be selected and implemented as discussed previously. For the purpose of this thesis,

Word2vec and Doc2vec algorithms were selected. We initially executed commands

directly on the command line interpreter and then aggregated them into files for batch

execution which, in turn allowed for us to observe the results.

Next, we ran all experiments in Python 3.7 (64 bit version) on a Windows 10

machine. Initially we experimented on applying simpler algorithms such as tf-idf and

word2vec to the data at hand, to observe the capabilities of Gensim and to incorporate

them into our code further on.

The resulting Python code is modular and reusable, in the sense that blocks of code

generate intermediate results that can be used for other experiments of the same type or

slightly different processing of the article texts.

Obtaining the source documents

As in many natural language processing applications, we utilized the latest dump of

Wikipedia articles. Wikipedia offers a wide variety of downloadable files including

articles, list of all articles titles, media metadata, article to article links etc. all widely used

in various research projects.

The latest dump of Greek Wikipedia articles can be found in the link below:

https://dumps.wikimedia.org/elwiki/latest/

Wikipedia dumps, by definition, are the most recent Wikipedia’s platform updates.

Therefore this dataset is consistently updated. In this thesis we conducted experiments

using the full texts in two concrete dates.

The size of the download file (~310MB) and the number of articles (~145,000) is

convenient for experimentation. Gensim can process the compressed bz2 file directly,

therefore no deflating is required.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

77

Applying word2vec in the articles of Greek Wikipedia/ Word analogy queries

As a first step of all python implementations specific packages need to be imported. These

mainly are:

 Multiprocessing that allows the programmer to fully leverage multiple processors

on a given machine.

 wikicorpus that constructs a corpus from a Wikipedia (or other MediaWiki-based)

database dump. Wikicorpus uses multiprocessing internally to parallelize the

work and process the dump more quickly.

 Word2vec that implements the word2vec family of algorithms, using highly

optimized C routines, data streaming and Pythonic interfaces.

One of the first things, as mentioned in Chapter 2, required for natural language

processing (NLP) tasks is a corpus. In linguistics and NLP, corpus refers to a collection

of texts. So next we are going to create the corpus.

#WikiCorpus (wiki = WikiCorpus("D:\ code\data\elwiki-latest-pages-articles.xml.bz2",

lemmatize=False, dictionary={}))

Main parameters [30]:

 fname (str): Path to where the Wikipedia dump file is stored.

 processes (int, optional): Number of processes to run, defaults to max(1, number

of cpu – 1).

 lemmatize (boolean): If the parameter lemmatization is set to True, it uses

lemmatization instead of simple regexp tokenization. Defaults to True if you

have the pattern package installed.

 dictionary (Dictionary, optional): If a dictionary is not provided, Gensim scans

the corpus once, to determine its vocabulary, which takes a long time.

 article_min_tokens (int, optional):Minimum tokens in article. Article will be

ignored if number of tokens is less.

 token_min_len (int, optional): Minimal token length.

 token_max_len (int, optional): Maximal token length.

 lower (boolean, optional): It converts all text to lower case, if it is set to True.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

78

 As the corpus was created we then used get_texts() that iterates over the dump,

yielding a list of tokens for each article that passed the length and namespace filtering

parameters (if any – not used in this example). The length parameter can be used, for

example, to exclude short articles (with fewer than 50 words) and the namespace

filtering to exclude, e.g. the discussion pages. This function uses multiprocessing

internally to parallelize the work and process the dump more quickly. In our

experiments, this command took about 5 minutes to execute for a dump with close to

144,000 articles.

 The results of the command are shown in Figure 3 where each item in the

sentences list is a list of tokens (words) from the given Wikipedia article. The length of

the list (i.e. the number of elements) is also shown (144328).

Figure 3: Results of token extraction from Wikipedia articles

#Word2Vec

We first need to set the parameters for the word2vec modeling (params = {'size': 200,

'window': 10, 'min_count': 10,'workers': max(1, multiprocessing.cpu_count() -1),

'sample': 1E-3,}) and then train the word2vec model (Word2Vec(sentences, **params)).

Gensim’s implementation of word2vec takes many parameters. The main ones are [26]:

 size (int, optional): Dimensionality of the word vectors.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

79

 window (int, optional): Maximum distance between the current and predicted

word within a sentence.

 min_count (int, optional): Ignores all words with total frequency lower than this.

 workers (int, optional): Use these many worker threads to train the model. This is

typically set equal to the number of available cores.

 sg ({0, 1}, optional): Training algorithm: 1 for skip-gram; otherwise CBOW.

 hs ({0, 1}, optional): If 1, hierarchical softmax will be used for model training. If

0, and negative is non-zero, negative sampling will be used.

 negative (int, optional): If > 0, negative sampling will be used, the int for negative

specifies how many “noise words” should be drawn (usually between 5-20). If set

to 0, no negative sampling is used.

 max_vocab_size (int, optional): Limits the RAM during vocabulary building; if

there are more unique words than this, then the infrequent ones are pruned.

 sample (float, optional): The threshold for configuring which higher-frequency

words are randomly down-sampled, useful range is (0, 1e-5).

 iter (int, optional): Number of iterations (epochs) over the corpus.

Modeling with doc2vec and performing document similarity queries

In this experiment, we created a corpus of Wikipedia articles and used Gensim’s doc2vec

implementation to model them and perform similarity queries based on search terms or

between documents within the corpus.

 Same as in the previous example, the first step is to generate a corpus from

Wikipedia articles. For this example, we first used the entire dump of Wikipedia articles

and then included a subset of them in our corpus for the similarity tests in order for the

model training to be quick. The results are directly applicable to the entire list of articles,

with appropriate training time. The most important commands are as follows:

#join(sentences[])

In order for the training tasks to be completed in a logical amount of time we used a

subset of our original data by connecting the first 6 documents contained into the

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

80

Wikipedia dump (data = [' '.join(sentences[0]), ' '.join(sentences[1]),'

'.join(sentences[2]),' '.join(sentences[3]),' '.join(sentences[4]),' '.join(sentences[5])]).

As a result data consists of the text of the first six articles (in Greek). Their titles translate

to Sport (Αθλητισμός), Occitan language (Οξιτανική γλώσσα), Eleftherios Venizelos

(Ελευθέριος Βενιζέλος), Cyprus (Κύπρος), Geography (Γεωγραφία) and Nicosia

(Λευκωσία).

#Preprocessing

 Pre-processing can be referred to as the process of converting data to something

a computer can comprehend. One of the major forms of pre-processing is to filter out

useless data. In natural language processing, as discussed in Chapter 2, useless words

(data) are referred to as stop words. We can remove them easily, by storing a list of words

considered to be stop words. NLTK (Natural Language Toolkit) in python has a list of

stop words stored in 16 different languages. Unfortunately, it does not contain yet a list

in the Greek language. For the purpose of this thesis our stop word list will be created by

the user in the Greek language (manual user implementation of list) (stoplist = set('από

με στη στο στα το τα της που του τη για'.split())).

 Continuing, we will convert all characters to lowercase and we will remove words

that appear only once (texts = [[word for word in document.lower().split() if word not in

stoplist]).

#Doc2vec

Doc2vec consists of two models that use different architectures. Gensim’s Doc2vec

implementation [26] takes many parameters. These mainly are:

 dm ({1,0}, optional) – This parameter defines the training algorithm to be

implemented. In the case of dm=1, distributed memory (PV-DM) is used.

Otherwise, distributed bag of words (PV-DBOW) is employed.

 vector_size (int, optional) – This corresponds to the dimensionality of the

feature vectors.

 window (int, optional) – The maximum distance between the current and

predicted word within a sentence.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

81

 min_count (int, optional) – Ignores all words with total frequency lower than

this.

 workers (int, optional) – Use these many worker threads to train the model

(=faster training with multicore machines).

 epochs (int, optional) – Number of iterations over the corpus.

 dm_mean ({1,0}, optional) – If 0 , use the sum of the context word vectors. If

1, use the mean. Only applies when dm is used in non-concatenative mode.

 dbow_words ({1,0}, optional) – If set to 1 trains word-vectors (in skip-gram

fashion) simultaneous with DBOW doc-vector training; If 0, only trains doc-

vectors (faster).

For the purposes of this thesis both architectures were implemented with the

following values selected as optimal.

 PV-DBOW (Doc2Vec(dm=0, dbow_words=1, vector_size=200, window=8,

min_count=19, epochs=10, workers=cores))

 PV-DM (Doc2Vec(dm=1, dm_mean=1, vector_size=200, window=8,

min_count=19, epochs =10, workers=cores))

Results-Evaluation of models

This section briefly discusses the evaluation techniques performed and the results

obtained from the implementation of the two algorithms.

Results-Evaluation of Word2vec algorithm

In order to test the trained model, we first ran some classic similarity queries and

subsequently used an analogy test, which is a commonly used automated way to evaluate

models, or compare algorithms. We set a list of analogy tasks by hand and computed the

accuracy of our model (63.9%). To do so, a method that computes cosine similarity

between a simple mean of the projection weight vectors of the given words and the vectors

for each word in the model and finds the top n most similar words was used. Positive

words contribute positively towards the similarity, whereas negative words contribute

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

82

negatively. This accuracy level is considered satisfactory given the volume of our input

data. Some of the results on analogy tasks are depicted below:

1. model.most_similar(positive=['γυναίκα', 'βασιλιάς'], negative=['άντρας'])

βασιλιά ≈ 0.609

βασίλισσα ≈ 0.596

σύζυγο ≈ 0.533

στέψη ≈ 0.520

δυναστεία ≈ 0.511

The words reference Result 1 translate from Greek to English as follows: γυναίκα

(woman), βασιλιάς (king), άντρας (man), βασίλισσα (queen), σύζυγο (wife), στέψη

(coronation), δυναστεία (dynasty). It must be mentioned that due to declination the form

of the word may change in greek as in the case of βασιλιά which also means king.

2. model.most_similar(positive=['αγόρι', 'μπαμπάς'], negative=['μαμά'])

 κορίτσι ≈ 0.703

 παιδάκι ≈0.698

 μωρό ≈ 0.694

 κοριτσάκι ≈ 0.689

 αγοράκι ≈ 0.647

The words reference Result 2 translate from Greek to English as follows: αγόρι (boy),

μπαμπάς (father), μαμά (mother), κορίτσι (girl), παιδάκι (child), μωρό(baby), κοριτσάκι

(little girl), αγοράκι (little boy).

Continuing, another common method (doesnt_match) was used. This function determines

which word doesn’t match the context of the others. The results are shown below:

 model.doesnt_match('κάπνισμα περπάτημα κολύμπι ποδήλατο'.split())

“κάπνισμα”

The words reference Result 1 translate from Greek to English as follows:

κάπνισμα (smoking), περπάτημα (walking), κολύμπι (swimming), ποδήλατο

(riding). As a resut smoking was returned.

 model.doesnt_match('πρωινό βραδινό δημητριακά μεσημεριανό'.split())

“δημητριακά”

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

83

The words reference Result 2 translate from Greek to English as follows: πρωινό

(breakfast), βραδινό (dinner), δημητριακά (cereal), μεσημεριανό (lunch). As a

resut cereal was returned.

1. model.doesnt_match('πορτοκάλια μήλα φράουλες φασκόμηλο'.split())

“φασκόμηλο”

The words reference Result 3 translate from Greek to English as follows:

πορτοκάλια (oranges), μήλα (apples), φράουλες (strawberries), φασκόμηλο

(sage). As a resut sage was returned.

Results of Doc2vec- Document similarity queries

In Doc2vec’s original paper[16] experiments on several benchmark datasets were

presented in order to evaluate the algorithm and so as to demonstrate the advantages of

Paragraph Vector. These mainly were sentiment analysis tasks and text classification

tasks where Doc2vec has proved to outperform previous related algorithms.

Implementing this, however, exceeds the scope of this thesis and can be left for future

work.

In the experiments conducted in its original paper, each paragraph vector was a

combination of two vectors: one learned by the standard paragraph vector with distributed

memory (PV-DM) and one learned by the paragraph vector with distributed bag of words

(PVDBOW). It is discussed that PV-DM alone works well for most tasks (with state-of-

art performances), but its combination with PV-DBOW is usually more consistent across

many tasks [20].

In our experiment, as discussed in the previous chapter, we conducted both the

Distributed Bag of Words version of Paragraph Vector (PV-DBOW) and the Distributed

Memory Model of Paragraph Vectors (PV-DM). Both these models produced similar

results with some examples shown below. A method (most_similar) that computes cosine

similarity between a simple mean of the projection weight vectors of the given documents

was used. Documents may be specified as vectors, integer indexes of trained document

vectorss, or if the documents were originally presented with string tags, by the

corresponding tags:

1. As a first example using the PV-DM model, we executed the following query:

model.docvecs.most_similar(positive=[‘Τεχνητή νοημοσύνη’])) with the

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

84

intention to find the most similar articles to Artificial intelligence within

Wikipedia.

('Θεωρητική Πληροφορική', 0.7000911235809326),

 ('Έμπειρα συστήματα', 0.6822481751441956),

 ('Ταυτοχρονισμός', 0.6772329211235046),

 ('Μηχανική όραση', 0.6662312746047974),

 ('Νευρωνικό δίκτυο', 0.6657699346542358),

 ('Μηχατρονική', 0.6579104661941528),

 ('Έλεγχος μοντέλων', 0.6565818786621094),

 ('CrypTool', 0.6496784090995789),

 ('Γλώσσα περιγραφής υλικού', 0.648236870765686),

 ('Μηχανική μάθηση', 0.6471858024597168)]

The words reference Result 1 translate from Greek to English as follows: ”Τεχνητή

νοημοσύνη” (Artificial Intelligence), Θεωρητική Πληροφορική (Theoretical computer

science), Έμπειρα συστήματα (Expert system), Ταυτοχρονισμός (Concurrency), Μηχανική

όραση (Computer vision), Νευρωνικό δίκτυο (Neural Network), Μηχατρονική

(Mechatronics), Έλεγχος μοντέλων (Model checking), CrypTool (CrypTool), Γλώσσα

περιγραφής υλικού (Hardware description language), Μηχανική μάθηση (Machine

Learning) .

Executing the same query using the PV-DBOW model we obtained similar results.

Θεωρητική Πληροφορική (Theoretical computer science), Μηχανική μάθηση (Machine

Learning), Μηχανική όραση (Computer vision) and Έμπειρα συστήματα (Expert system)

were some of the articles obtained in both occasions.

2. As a second example we executed the following query with the intention of

finding the most similar articles to Athens in Greece

(model.docvecs.most_similar(positive=[“Ελλάδα”,"Αθήνα"])). Again PV-

DBOW and PV-DM models returned similar results with the most important

ones being the following:

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

85

('Αττική', 0.5792749524116516)

 ('Κηφισιά', 0.5288697481155396)

 ('Αρχαία Αθήνα', 0.5189750790596008)

 ('Προσφυγικό ζήτημα (Μικρασιατική Καταστροφή)', 0.5028291940689087)

 ('Βόρεια προάστια Αθηνών', 0.5021364092826843)

 ('Ελευσίνα Ιπποθοωντίδας', 0.500443696975708)

 ('Ηλιούπολη Αττικής', 0.4993937611579895)

 ('Δυτικά προάστια Αθηνών', 0.4962661862373352)

The words reference Result 2 translate from Greek to English as follows: ”Αττική”

(Attiki) which is a neighborhood of Athens, Κηφισιά (Kifissia) which is a suburb of

Athens, Αρχαία Αθήνα (Classical Athens) which corresponds to the city of Athens during

the classical period of Ancient Greece, Προσφυγικό ζήτημα (Μικρασιατική Καταστροφή)

(Greek refugees), Βόρεια προάστια Αθηνών (Athens northern suburbs), Ελευσίνα

Ιπποθοωντίδας (Elefsina), Ηλιούπολη Αττικής (Ilioupoli) which is a suburban

municipality in the southeastern part of the Athens urban area, Δυτικά προάστια Αθηνών

(Western suburbs of Athens).

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

87

7. Conclusion

This thesis has provided a comprehensive review of word and document embedding

algorithms, both from a theoretical and a practical perspective. It must be highlighted,

that the related research field is not only really active, but numerous exciting and

promising areas of application have emerged in the last few years, and will continue to

emerge, with every application being trained/ tailored for a number of languages.

The results in performing natural language processing tasks after training are

impressive and consistent. This thesis was an attempt to apply word and document

embeddings in the Greek language. However, during the length of this paper several

limitations were met as the Greek language has a vast and rich vocabulary and the volume

of available resources in the Greek language is still quite limited. From research

conducted a suggestion for future work would be a combination of word embedding

algorithms with knowledge graphs such as Wordnet (that can be found in the greek

language). This could enhance the word embeddings produced in this thesis by learning

word embeddings that incorporate the semantic information from the resource and lead

to even better results.

 As the volume of information available online increases and the hardware

performance improves and develops, further training and experiments may lead to a

variety of natural language processing tasks in the Greek language.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 Machine learning algorithms for big data

89

References

[1] Aggarwal, C. C., & Zhai, C. (2012). A survey of text classification algorithms. In

Mining text data (pp. 163-222). Springer, Boston, MA.

[2] Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python:

analyzing text with the natural language toolkit. O'Reilly Media, Inc.

[3] Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2016). fastText. URL:

https://research.fb.com/fasttext/ . Accessed on: 17/10/18.

[4] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors

with subword information. arXiv preprint arXiv:1607.04606.

[5] Brownlee, J. (2017). “A Gentle Introduction to the Bag-of-Words Model”. URL:

https://machinelearningmastery.com/gentle-introduction-bag-words-model/.

Accessed on: 17/09/18.

[6] Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent pre-trained

deep neural networks for large-vocabulary speech recognition. IEEE Transactions on

audio, speech, and language processing, 20(1), 30-42.

[7] Dechter, R. (1986). Learning while searching in constraint-satisfaction-problems.

Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, 178-

183.

[8] Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for

deep learning. APSIPA Transactions on Signal and Information Processing, 3.

[9] D'Souza, J., “An Introduction to Bag-of-Words in NLP”. URL:https://medium.com/greyatom/an-

introduction-to-bag-of-words-in-nlp-ac967d43b428. Accessed on: 9/09/18.

[10] Firth, J.R. (1957). "A synopsis of linguistic theory 1930-1955". Studies in

Linguistic Analysis. Oxford: Philologival Society: 1-32. Reprinted in F.R. Palmer, ed.

(1968). Selected Papers of J.R. Firth 1952-1959. London: Longman.

[11] Gebre, B. G., Zampieri, M., Wittenburg, P., & Heskes, T. (2013). Improving

native language identification with tf-idf weighting. In the 8th NAACL Workshop on

Innovative Use of NLP for Building Educational Applications (BEA8) (pp. 216-223).

[12] Giel, A., & Diaz, R. (2016). Document embeddings via recurrent language

models. University of Stanford, Tech. Rep.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

[13] Goldberg, Y., & Levy, O. (2014). word2vec Explained: deriving Mikolov et al.'s

negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.

[14] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep

learning for visual understanding: A review. Neurocomputing, 187, 27-48.

[15] Guthrie, D., Allison, B., Liu, W., Guthrie, L., & Wilks, Y. (2006, May). A closer

look at skip-gram modelling. In Proceedings of the 5th international Conference on

Language Resources and Evaluation (LREC-2006) (pp. 1-4).

[16] Harris, Z. (1954). "Distributional structure". Word 10 (23), 146–162.

[17] Ji, S., Yun, H., Yanardag, P., Matsushima, S., & Vishwanathan, S. V. N. (2015).

Wordrank: Learning word embeddings via robust ranking. arXiv preprint

arXiv:1506.02761.

[18] Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for

efficient text classification. arXiv preprint arXiv:1607.01759.

[19] Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T.

(2016). Fasttext.zip: Compressing text classification models. arXiv preprint

arXiv:1612.03651.

[20] Le, Q., & Mikolov, T. (2014, January). Distributed representations of sentences

and documents. In International Conference on Machine Learning (pp. 1188-1196).

[21] Lilleberg, J., Zhu, Y., & Zhang, Y. (2015, July). Support vector machines and

word2vec for text classification with semantic features. In Cognitive Informatics &

Cognitive Computing (ICCI* CC), 2015 IEEE 14th International Conference on (pp.

136-140). IEEE.

[22] Lv, Y., & Zhai, C. (2011, October). Lower-bounding term frequency

normalization. In Proceedings of the 20th ACM international conference on

Information and knowledge management (pp. 7-16). ACM.

[23] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781.

[24] Mikolov, T., Le, Q. V., & Sutskever, I. (2013). Exploiting similarities among

languages for machine translation. arXiv preprint arXiv:1309.4168.

[25] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems (pp. 3111-3119).

[26] Minar, M. R., & Naher, J. (2018). Recent Advances in Deep Learning: An

Overview. arXiv preprint arXiv:1807.08169.

90

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

[27] NLTK Project. (2019). Natural Language Toolkit. URL: https://www.nltk.org/ .

Accessed on: 13/09/18.

[28] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

& Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of

machine learning research, 12(Oct), 2825-2830.

[29] Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP) (pp. 1532-1543).

[30] Řehůřek, R. (2018). Gensim: Topic Modelling for Humans. URL:

https://radimrehurek.com/gensim/. Accessed on: 18/09/18.

[31] Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., & Gatford, M.

(1995). Okapi at TREC-3. Nist Special Publication Sp, 109.

[32] Robertson, S., & Zaragoza, H. (2009). The probabilistic relevance framework:

BM25 and beyond. Foundations and Trends® in Information Retrieval, 3(4), 333-

389.

[33] Samuel, A. L. (1959). Some studies in machine learning using the game of

checkers. IBM Journal of research and development, 3(3), 210-229.

[34] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

networks, 61, 85-117.

[35] Smedt, T. D., & Daelemans, W. (2012). Pattern for python. Journal of Machine

Learning Research, 13(Jun), 2063-2067.

[36] Spärck Jones, K. (1972). A statistical interpretation of term specificity and its

application in retrieval. Journal of documentation, 28(1), 11-21.

[37] Turnbull, D. (2015). BM25 The Next Generation of Lucene Relevance. URL:

https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-

lucene-relevation/. Accessed on: 21/09/18.

[38] Vincent, J. (2018). Google 'fixed' its racist algorithm by removing gorillas from its image-labeling tech.

URL:https://www.theverge.com/2018/1/12/16882408/google-racist-gorillas-photo-recognition-

algorithm-ai. Accessed on: 14/09/18.

[39] Yoo, J. Y., & Yang, D. (2015). Classification scheme of unstructured text

document using TF-IDF and naive Bayes classifier. Advanced Science and

Technology Letters, 111(50), 263-266.

91

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Machine learning algorithms for big data

[40] Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep

learning based natural language processing. IEEE Computational Intelligence

magazine, 13(3), 55-75.

[41] Yu, H., Ho, C., Juan, Y., & Lin, C. (2013). Libshorttext: A library for short-text

classification and analysis. Rapport interne, Department of Computer Science,

National Taiwan University. Software available at http://www. csie. ntu. edu.

tw/cjlin/libshorttext.

[42] Zaragoza, H., Craswell, N., Taylor, M. J., Saria, S., & Robertson, S. E. (2004,

November). Microsoft Cambridge at TREC 13: Web and Hard Tracks. In TREC (Vol.

4, pp. 1-1).

[43] Zhang, J., & Zong, C. (2015). Deep neural networks in machine translation: An

overview. IEEE Intelligent Systems, 30(5), 16-25.

92

	Κενή σελίδα
	Κενή σελίδα
	Κενή σελίδα
	Κενή σελίδα
	Κενή σελίδα
	Κενή σελίδα
	Κενή σελίδα
	Κενή σελίδα
	Κενή σελίδα
	Κενή σελίδα

