ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΓΡΑΦΙΑΣ

ΣΑΛΤΣΟΓΛΟΥ ΑΘΑΝΑΣΙΟΣ

ΙΖΗΜΑΤΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΤΟΥ ΤΡΙΠΟΤΑΜΟΥ ΠΟΤΑΜΟΥ, ΝΟΜΟΥ ΗΜΑΘΙΑΣ

Διπλωματική εργασία

ΘΕΣΣΑΛΟΝΙΚΗ 2019

ΣΑΛΤΣΟΓΛΟΥ ΑΘΑΝΑΣΙΟΣ

ΙΖΗΜΑΤΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΤΟΥ ΤΡΙΠΟΤΑΜΟΥ ΠΟΤΑΜΟΥ, ΝΟΜΟΥ ΗΜΑΘΙΑΣ

Υποβλήθηκε στο Τμήμα Γεωλογίας Εργαστήριο Φυσικής και Περιβαλλοντικής Γεωγραφίας

Επιβλέπων καθηγητής:

ΑΛΜΠΑΝΑΚΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ Τμ. Γεωλογίας Α.Π.Θ.

Συνεπιβλέπουσα:

Δρ. ΚΟΛΙΑΔΗΜΟΥ ΚΑΛΛΙΟΠΗ,

ΕΔΙΠ Τμ. Γεωλογίας Α.Π.Θ.

© Σαλτσόγλου Αθανάσιος, Εργ. Φυσικής και Περιβαλλοντικής Γεωγραφίας, 2019 Με επιφύλαξη παντός δικαιώματος. Allrightreserved.

IZHMATOЛОГІКН МЕЛЕТН ТОУ ТРІПОТАМОУ ПОТАМОУ, NOMOY HMA
ΘIAS

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευτεί ότι εκφράζουν τις επίσημες θέσεις του Α.Π.Θ.

Πρόλογος - Ευχαριστίες

Η παρούσα διπλωματική εργασία πραγματοποιήθηκε στο πλαίσιο των προπτυχιακών μου σπουδών στο Τμήμα Γεωλογίας του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης.

Η εργασία μου ανατέθηκε από τον Αναπληρωτή Καθηγητή του Τμήματος Γεωλογίας, Α.Π.Θ., κ. Αλμπανάκη Κωνσταντίνο, Διευθυντή του Τομέα Φυσικής και Περιβαλλοντικής Γεωγραφίας, τον οποίο και ευχαριστώ θερμά για την καθοδήγηση του.

Αναμφίβολα ένα μεγάλο ευχαριστώ οφείλω στην Δρ. Κολιαδήμου Καλλιόπη(Ε.ΔΙ.Π) που κατά την διάρκεια εκπόνησης της εργασίας με συμβούλευε ώστε να επιτευχθεί το καλύτερο αποτέλεσμα. Θερμά ευχαριστώ την υποψήφια διδάκτορα κ. Δοάνη Σοφία για τη βοήθεια της στην ύπαιθρο και τις εποικοδομητικές παρατηρήσεις της κατά τη διάρκεια των ιζηματολογικών αναλύσεων.

Περιεχόμενα

1.	ΕΙΣΑΓΩΓΗ6
	1.1 Σκοπός της εργασίας6
	1.2 Περιοχή μελέτης και γεωμορφολογία του Τριπόταμου6
	1.3 Γεωλογία12
	1.4 Κλίμα Νομού Ημαθίας16
2.	Μεθοδολογία
	2.1 Εργασία στην ύπαιθρο και υλικά24
	2.2 Εργασία στο εργαστήριο25
3.	ΑΠΟΤΕΛΕΣΜΑΤΑ
	Θέση 1
	Θέση 3
	Θέση 4
	Θέση 5
	Θέση 6
	Θέση 7
	Θέση 8
4.	ΣΥΖΗΤΗΣΗ-ΣΥΜΠΕΡΑΣΜΑΤΑ
5.	ΒΙΒΛΙΟΓΡΑΦΙΑ
	5.1.ΙΣΤΟΤΟΠΟΙ
6.	ПАРАРТНМА

1. ΕΙΣΑΓΩΓΗ

1.1Σκοπός της εργασίας

Σκοπός της εργασίας είναι η ιζηματολογική μελέτη του ποταμού Τριπόταμου του Νομού Ημαθίας. Η έρευνα πεδίου και οι επιστημονικές αναλύσεις στο εργαστήριο αποτέλεσαν αναπόσπαστο τμήμα αυτής της εργασίας. Πιο συγκεκριμένα λήφθηκαν δείγματα συνολικά από 8 θέσεις του ποταμού, μελετήθηκαν και αναλύθηκαν στο εργαστήριο με τις κατάλληλες μεθόδους ιζηματολογικής ανάλυσης. Αφού έγιναν οι κατάλληλοι υπολογισμοί των δεδομένων, τα αποτελέσματα των ιζηματολογικών αναλύσεων σε συνδυασμό με τις γεωμορφολογικές παρατηρήσεις στο πεδίο, επέτρεψαν την εξαγωγή συμπερασμάτων για την κατανομή των ιζημάτων κατά μήκος του ποταμού.

1.2 Περιοχή μελέτης και γεωμορφολογία του Τριπόταμου

Ηυδρογεωλογική λεκάνη του Τριπόταμου τοποθετείται στο Νομό Ημαθίας της κεντρικής Μακεδονίας,του Δήμου Βέροιας. Εκτείνεται προς τα Β-Δ του Αλιάκμονα ποταμού, της Δυτικής Μακεδονίας.Από υδρογεωλογική άποψη εντάσσεται στη λεκάνη του Αλιάκμονακαι συγκεκριμένα στο υδρολογικό σύστημα της Τάφρου (Ν.1739/87).Διοικητικά 66(ΤάφροςΜπέλιτσας) τοποθετείται στην περιφέρεια Κεντρικής Μακεδονίας στο Δήμο Βέροιας του Νομού Ημαθίας (Ν.3852/210).Οι πηγές τουΤριπόταμου βρίσκονται στους ανατολικούς πρόποδες του όρους Βέρμιο, του Νομού Ημαθίας, ενώ εκβάλλειπλέον στην Τάφρο 66. Η τάφρος αυτή τοποθετείται στην υδρολογική λεκάνη του Αλιάκμονα, του οποίου ο Τριπόταμος ήταν παραπόταμος (Κωνσταντινίδης 1989,Κωτούλας 1980,Αθανασιάδου 2017).

Εικόνα 1.2.1 Μέσα στο κόκκινο πλαίσιο παρατηρείται ο κύριος κλάδος του Τριπόταμου(URL4.τροποποιημένο).

Τα υδατικά Διαμερίσματα της Ελλάδας είναι 14 (URL1). Η υδρολογική λεκάνη του Τριπόταμου ανήκει στο 9° υδατικό διαμέρισμα (Δυτική Μακεδονία) της Ελλάδας (Ν.1739/87).

Εικόνα 1.2.2 Υδατικά διαμερίσματα της Ελλάδας (URL1. Τροποποιημένο).

Εικόνα 1.2.3 Με μπλε σκούρο στο κέντρο της εικόνας είναι το υδατικό διαμέρισμα της Δυτικής Μακεδονίας (URL1. Τροποποιημένο).

Ο Δήμος Βέροιας τοποθετείται στο Νότιο Δυτικό τμήμα του νομού Ημαθίας. Η έκταση που καταλαμβάνει ο Δήμος είναι στα 791,43 km² και ο πληθυσμός του εκτιμάται στους 66.547 κατοίκους με την απογραφή του 2011.

Εικόνα 1.2.4Ο Δήμος Βέροιας με κόκκινη γραμμοσκίαση στα αριστερά (Χάρτης κεντρικής Μακεδονίας, URL2) και Τοπογραφικός χάρτης του Δήμου Βέροιαςεντός της κόκκινης γραμμής στα δεξιά (URL3).

Ο Δήμος Βέροιας χωρίζεται σε πέντε «δημοτικές ενότητες», οι δημοτικές ενότητες αυτές συσχετίζονται με πέντε δήμους που συγχωνεύονται στο δήμο Βέροιας. Κάθε δημοτική ενότητα διαιρείται σε «κοινότητες». Οι ενότητες αυτές είναι η Αποστόλου Παύλου ΒΑ της Βέροιας, η ενότητα Βέροιας, η ενότητα Βεργίνας στα ΝΑ της Βέροιας, Μακεδονίδος στα Ν της Βέροιας και Δοβρά στα ΒΔ της Βέροιας.Η Βέροια είναι πρωτεύουσα του νομού Ημαθίας, βρίσκεται σε υψόμετρο 128 μέτρα.

Ο δήμος Βέροιας σύμφωνα με την απογραφή του 2011 και πληθυσμό 66.547 μόνιμους κατοίκους σύμφωνα με την απογραφή του 2011 (URL6). Από τη Θεσσαλονίκη απέχει 63.93 χλμ. και από την Αθήνα 311.26χλμ. (URL2, URL5,URL6,URL7,URL8)

Οι γεωγραφικές συντεταγμένες της περιοχής της Βέροιας είναι (URL2) :

40°31′16.84′′B

22°12'19.76''A

Ο Τριπόταμοςδιαρρέειστηδημοτική ενότητα Βέροιας. Συγκεκριμένα διασχίζει το νότιο – δυτικό άκρο της πόλης ενώ βρίσκεται βόρειο ανατολικά από το ομώνυμο χωριό και απέχει 500 μέτρα.

Η έκταση της λεκάνης απορροής του Τριπόταμουείναι201 km². Η λεκάνη απορροής χαρακτηρίζεται από ένα μέσο υψόμετρο 893 m, με ανώτατο υψόμετρο τα 1874 mκαι κατώτατο υψόμετρο τα 20 m. (Αθανασιάδου 2017, Εικ.1.2)

Εικόνα 1.2.5 Λεκάνη απορροής του Τριπόταμου (Αθανασιάδου 2017).

Το υδρογραφικό δίκτυο του Τριπόταμουαποτελείταιαπό τρεις κύριους υδρολογικούς κλάδους και από έναν τέταρτο κλάδο στον οποίο δεν παροχετεύεται αρκετό νερό. Οι κλάδοι αυτοί απορρέουνστον κύριοκλάδο κοντά στο χωριό Τριπόταμος (Εικ.1.2)

Εικόνα 1.2.6Διακρίνονται οι κλάδοι του Τριπόταμου με γαλάζιαγραμμή και ο τέταρτος κλάδος μειωμένης παροχής ανάμεσα στο κλάδο Ασπρονέρι και Μαυρονέρι.

Οι κλάδοι του Τριπόταμου τροφοδοτούνται από τους ασβεστολιθικούς ορίζοντες του Βερμίου, μεκαρστικές πηγές που έχουν σημαντική παροχή (Αθανασιάδου 2017).

Ο κλάδος του Μαυρονερίου (Α κλάδος) υδροδοτείται από σημεία που βρίσκονται μεταξύ των οικιστικών συγκροτημάτων Γεωργιανών και Καστανιάς, στα Ανατολικά του όρους Βερμίου. Ο κλάδος του Μαυρονερίου διαιρείται σε δυο υποκλάδους. Ο ένας διασχίζει το οικιστικό συγκρότημα των Γεωργιανών και υδροδοτείται από πηγές που δεν έχουν ικανοποιητική παροχή και βρίσκονται 1,5km έξω από τη περιοχή των Γεωργιανών, καθώς και από πηγές που βρίσκονται κοντά στο χωριό και παρέχουν νερό με σταθερή ροή καθ' όλη τη διάρκεια του έτους. Ο Β κλάδος του Τριπόταμου ξεκινάει από το οικιστικό συγκρότημα της Τορμάνης διασχίζει τα Δ-ΝΔ τμήματα του οικιστικού συγκροτήματος του Τριπόταμου και στα Β-ΒΔ του χωριού ενώνεται με το κλάδο του Μαυρονερίου. Ο κλάδος αυτός δεν έχει ικανοποιητική παροχή. Ο Γ κλάδος του Τριπόταμου, το Ασπρονέρι, απαρτίζεται από τον κλάδο του Ξερόλακκου και τον κλάδο της Μεγάλης Ρεματιάς. Ο χείμαρρος της Μεγάλης Ρεματιάς δημιουργείται από τη συγκέντρωση ατμοσφαιρικών κατακρημνισμάτων στα ΒΔ του συγκροτήματος της Κουμαριάς. Στη συνέχεια με κατεύθυνση ΝΑ προς τα κατώτερα υψόμετρα περνάει από το χωριό του Βρωμοπήγαδου, κάτω από αυτό το χωριό προς ακόμα χαμηλότερα υψόμετρα συνεχίζει ως Ασπρονέρι. Στη περιοχή Ασπρονερίου υπάρχουν ανθρακικά πετρώματα τα οποία είναι καρστικοποιημένακαι εμφανίζουν πηγές οι οποίες χαρακτηρίζονται ως πηγές Ασπρονερίου. Οι πηγές είναι πολυάριθμες και παίζουν σημαντικό ρόλο στην οικονομία και τη βιολογία των οργανισμών της περιοχής. Οι πηγές αυτές υδρεύουν τη Βέροια, την Πατρίδα και άλλα γύρω χωριά. Το ρέμα Ασπρονερίου κατευθυνόμενο προς τα κατάντη από τη περιοχή Ασπρονερίου κάμπτεται προς τα A-BA και στα 2km από τη περιοχή Ασπρονερίου συνδέεται με τον κυρίως ρου του Τριπόταμου. Η κύρια παροχή του Τριπόταμου απαρτίζεται από το άθροισμα των παροχών των ρεμάτων του Ασπρονερίου και τουΜαυρονερίου. Ο Τριπόταμος διαρρέοντας το οικιστικό συγκρότημα της Βέροιας, κυλάει ως εγκυβωτισμένος μαίανδρος και ονομάζεται τοπικά Μπαρμπούτα. Ο κλάδος Λιανοβρόχι ενώνεται με τονΤριπόταμο(Μπαρμπούτα) στο βόρειο τμήμα της πόλης. Ο Τριπόταμος διασχίζει τη Βέροια προς τα κατώτερα υψόμετρα με κατεύθυνση Β-ΒΑ και εκβάλει τα νερά του στη Τάφρο 66 σε σημείο το οποίο βρίσκεται ΒΔ του χωριού Μακροχώρι. Η τάφρος Τάφρος 66 συμβάλει με τον ποταμό Αλιάκμονα νότια του χωριού Κουλούρα. Το μήκος του Τριπόταμου από τα σημεία που βρίσκονται οι πηγές Μαυρονερίου έως το σημείο που εκβάλει στη Τάφρο 66 είναι 25km. Ο πυθμένας του Τριπόταμου χαρακτηρίζεται από μεγάλες κλίσεις (JF>2.00%). Οι κλίσεις αυτές έχουν ως αποτέλεσμα την αύξηση της ταχύτητας του νερού σε συγκεκριμένα σημεία . Κατά την θερινή περίοδο έχει παρατηρηθεί μείωση της παροχής του Τριπόταμου, επειδή αυξάνονται οι υδρευτικές και αρδευτικές ανάγκες. (Κωτούλας 1980, Κωνσταντινίδης 1989,Αθανασιάδου 2014, Αθανασιάδου, 2017).

Ο Τριπόταμος ως προς τη γεωμορφολογία του χωρίζεται σε τρία επίπεδα. Τον άνω ρου, τον μέσο ρου και τον κάτω ρου. Ο άνω ρους είναι το κομμάτι του ποταμού που είναι ορεινά της περιοχής. Τα νερά του ποταμού διαρρέουν με μεγάλες ταχύτητες την ορεινή περιοχή του ανάγλυφου και ευνοούν τις διεργασίες της διάβρωσης και της μεταφοράς. Ο άνω ρους σταματάει πριν εισέλθει ο Τριπόταμος μέσα στη πόλη της Βέροιας. Το μήκος του Τριπόταμου στο τμήμα του άνω ρου είναι 18kmκαι το μέσο υψόμετρο του είναι στα 1050m. Ο μέσος ρους του ποταμού είναι ένας εγκυβωτισμένος μαίανδρος και αντιστοιχεί στο τμήμα του ποταμού που διαρρέει το εσωτερικό τμήμα της πόλης Βέροιας. Οι διεργασίες της μεταφοράς και της διάβρωσης είναι σε κατάσταση ισορροπίας. Το τμήμα του μέσου ρου έχει μέσο υψόμετρο 160 m μήκος 5,6 km και εκτείνεται έως την έξοδο του από την πόλη στα B-BA. Ο κάτω ρους είναι το τμήμα της λεκάνης που αντιστοιχεί στο πεδινό ανάγλυφο. Το τμήμα του Τριπόταμου στον κάτω ρου χαρακτηρίζεται από ένα μέσο υψόμετρο που φτάνει τα 50 m και ένα μήκος 7,4 km. Η ταχύτητα ροής του ποταμού είναι τέτοια που ευνοεί τις διεργασίες απόθεσης των φερτών υλικών Ο κάτω ρους τελειώνει στο σημείο εκβολής του ποταμού στη τάφρο 66 (Μπέλιτσας) (Αθανασιάδου 2017, URL 9).

Εικόνα 1.2.7 Διακρίνεται με μπλε χρώμα ο άνω ρους με κίτρινο ο μέσος ρους και με κόκκινο ο κάτω ρους(Αθανασιάδου 2017).

1.3 Γεωλογία

Η υδρολογική λεκάνη του Τριπόταμου γεωλογικά τοποθετείται στη Πελαγονική ζώνη.Η Πελαγονική ζώνη χαρακτηρίζεται από ένα κρυσταλοσχιστώδες υπόβαθρο παλαιοζωικής ηλικίας, του οποίου υπέρκειταιμια ηφαιστειοκλαστική σειρά (bimodalηφαιστειότητα) κάτω Τριαδικής ηλικίας. Το ανθρακικό κάλυμμα Τριαδικής- Ιουρασικής ηλικίας επίκειται των προηγούμενων πετρωμάτων. Η bimodalηφαιστειότητα οφείλει τη δημιουργία της στη διάρρηξη της Gondwana(Mountrakisetal. 1983, Mountrakis 1986, Kiliasetal 2010). Ακολουθούν κροκαλοπαγή ιζήματα του Μέσου Κρητιδικού. Επί του κροκαλοπαγούς τοποθετείται μια ανθρακική σειρά και στη συνέχεια φλύσχης που χρονολογείται στο Άνω Μαστρίχτιο με Κάτω Παλαιόκαινο (Σχ.1.3.1)(Μουντράκης 2010).

Το Κάτω Παλαιοζωικής ηλικίας κρυσταλλοσχιστώδες υπόβαθρο της Πελαγονικής χαρακτηρίζεται από επιδοτιτικούς, μαρμαρυγιακούς, χλωριτικούς σχιστόλιθους, ταινιωτούς σχιστόλιθους, οφθαλμοειδείςγνεύσιους καθώς και αμφιβολίτες, χαλαζίτες (Μουντράκης 1976).

Η Πελαγονική ζώνη χαρακτηρίζεται από ιζήματα νηριτικής φάσης, χαρακτηριστικά μεσοωκεάνιας ράχης. Κατά τη διάρκεια του Τριαδικού-Ιουρασικού, επάνω στο κρυσταλλοσχιστώδες υπόβαθρο (ύβωμα) τοποθετήθηκε τεκτονικά μια παχιά ανθρακική ακολουθία ιζημάτων (νηριτική). Αυτή η ανθρακική σειρά υπέστη μεταμόρφωση με αποτέλεσμα σήμερα να εμφανίζεταιως μάρμαρα, κρυσταλλικοί

ασβεστόλιθο καθώς και δολομίτες. Η ανάδυση της πελαγονικής ζώνης κατά το Άνω Ιουρασικό σηματοδότησε το τέλος της ιζηματογένεσης των ανθρακικών πετρωμάτων (Μουντράκης 1976).

Πάνω από τα ανθρακικά πετρώματα έχουν επωθηθείοφιόλιθοι οι οποίοι έχουν σύσταση υπερβασική και αποτελούνται από κυρίως από γαββρικά και δολεριτικά πετρώματα. Πάνω από τους οφιόλιθουςαποτίθενται κροκαλοπαγή-λατυποπαγή ιζήματα του Μέσου Κρητιδικού, στη συνέχεια ανθρακικά ηλικίας Μέσου Κρητιδικού – Μαστριχτίου και επάνω από τα ανθρακικά ο φλύσχης ηλικίας Άνω Μαστριχτίου-Κάτω Παλαιοκαίνου. Ο φλύσχης αυτός σηματοδοτεί το τέλος της ιζηματογένεσης στις εσωτερικές Ελληνίδες. Έπειτα ακολουθεί ανάδυση της ζώνης και απόθεση σε αυτήν τεταρτογενών και νεογενών χερσαίων ιζημάτων (Μουντράκης 1976).

Εικόνα 1.3.1 Συνοπτική στρωματογραφική στήλη της Πελαγονικής (Μουντράκης 2010).

Η Πελαγονική ζώνη βρίσκεται κεντρικά της Ελλάδας και επεκτείνεται προς το Βορρά με διεύθυνση ΒΒΔ-ΝΝΔ στη FYROM και τη Σερβία. Εκτιμάται ότι το Πελαγονικό κάλυμμα είναι το υπόλοιπο του Αυστρο-Αλπικού καλύμματος των Άλπεων στα ΝΑ της Ευρώπηςκαι προέρχεται από την Αφρική (Gondwana) (FrischandMeschede 2007, Gawlicketal. 2008).

Η Πελαγονική χαρακτηρίζεται από μια τεκτονική αναδίπλωσης σε ένα ανώτερο και σε ένα κατώτερο Πελαγονικό κάλυμμα. Στο όρος Βόρας βρίσκεται ένα κομμάτι του Πελαγονικού καλύμματος που θεωρείται ως το κατώτερο Πελαγονικό κάλυμμα και ανατολικά και δυτικά αυτού βρίσκεται το ανώτερο Πελαγονικό κάλυμμα (Medwenitsch 1956, Kiliasetal 2010).

Παράλληλα με τη τοποθέτηση των οφειολίθων πάνω στο ηπειρωτικό περιθώριο με το D1 τεκτονικό γεγονός (Άνω Ιουρασικό) έγινε η λεπίωση και η πτύχωση του Πελαγονικού καλύμματος. Οιοφειόλιθοι κινήθηκαν από τα Ανατολικά προς τα Δυτικά(Kiliasetal. 2010, Katrivanosetal. 2013, Schenkeretal. 2014, Bortolotietal. 2013, Gawlicketal. 2008).

Στη συνέχεια ακολούθησε εκ νέου λεπίωση των τεκτονικών καλυμμάτων του Άνω Ιουρασικού-Κάτω Κρητιδικού με πτυχές ασύμμετρες που επηρεάζουν τις ισοκλινείς κατά το Άνω με Κάτω Κρητιδικό (D2 τεκτονικό γεγονός)(Katrivanosetal. 2013, Kiliasetal. 2010).

Από το Καινομάνιο και πέρα γίνεται η επίκληση των Άνω ΚρητιδικώνΑνθρακικών οριζόντων (νηριτικών). Η ιζηματογένεση αυτή τελειώνει σε έναν φλύσχη των Εσωτερικών Ελληνίδων ηλικίαςΜαστρίχτιου-Παλαιόκαινου. Η ιζηματογένεση αυτή συνδέεται με εκτατική τεκτονική Άνω κρητιδικής ηλικίας και είναι συνδεδεμένη με το D3 τεκτονικό γεγονός(Kiliasetal. 2010).

Έπειτα ακολουθεί η D4 (συμπιεστική τεκτονική) δημιουργώντας τεκτονικά λέπια και πτυχές κατά το Παλαιόκαινο με Ηώκαινο. Η τεκτονική αυτή επηρεάζει τα Παλαιοκαινικά ιζήματα και τα τεκτονικά καλύμματα της Πελαγονικής και κυρίως τα τεκτονικά καλύμματα στο όρος Βόρα(Kiliasetal. 2010).

Εικόνα 1.3.2 Γεωλογική τομή του Πελαγονικού καλύμματος με τα τεκτονικά γεγονότα από το Ιουρασικό μέχρι σήμερα (Kiliasetal. 2010).

Εικόνα 1.3.3 Υπόμνημα της παραπάνω τομής (Kiliasetal. 2010).

Η υψηλή πίεση στη Πελαγονική είναι συνδεδεμένη με τη τοποθέτηση και τη συμπίεση των οφειολίθων επάνω στο ηπειρωτικό τέμαχος και το ντουμπλάρισμα της Πελαγονικής. Μετά έχουμε ανάδρομη μεταμόρφωση (500°C) στο υπερκείμενο Πελαγονικό κάλυμμα και στο υποκείμενο κάτω από 600°C. Το υπερκείμενο συνδέεται με πράσινο-σχιστολιθική μεταμόρφωση και το υποκείμενο με αμφιβολιτική(150-130Ma)(Kiliasetal. 2010).

Παρατηρείται ότι η λεκάνη απορροής του Τριπόταμου ανήκει στην ανατολική Πελαγονική. Με βάση το παρακάτω γεωλογικό χάρτη της Ανατολικής Πελαγονικής παρατηρείται ότι τα πετρώματα γύρω από τη λεκάνη απορροής του Τριπόταμου, είναι οφειολιθικά πετρώματακαι κρυσταλλικά πετρώματα υποβάθρου, στη συνέχεια εντοπίζονται μάρμαρα ηλικίας Τριαδικού-Ιουρασικούκαι ανθρακικά πετρώματα Άνω Κρητιδικού. Μεγάλο τμήμα της λεκάνης απορροής του Τριπόταμου καλύπτεται από Νεογενή και Τεταρτογενή ιζήματα.Μεγάλη έκταση, ιδιαίτερα στην περιοχή του άνω ρου του Τριπόταμου, μεταξύ των κλάδων Μαυρονερίου και Ασπρονερίου καλύπτουν τραβερτινικά ιζήματα σημαντικού πάχους. (Εικ.1.3.4).

Εικόνα 1.3.4 Γεωλογικός χάρτης της Ανατολικής Πελαγονικής (Kiliasetal. 2016).

1.4 Κλίμα Νομού Ημαθίας

Γενικά ο νομός Ημαθίας όσο αφορά το κλίμα του, χαρακτηρίζεταιαπό έντονους χειμώνες και θερμά καλοκαίρια. Ομοίως και η περιοχή της λεκάνης του Τριπόταμου. Το έδαφος του νομού είναι κατά το ήμισυ ορεινό και κατά το ήμισυ πεδινό. Τα κλιματικά στοιχεία του νομού παρουσιάζουν έντονες διακυμάνσεις μεταξύ ορεινών και πεδινών περιοχών. Κατά τη διάρκεια της χρονιάς η θερμοκρασία στο νομό Ημαθίας κυμαίνεται από -11 ⁰C έως και 30 ⁰C, ενώ συχνή είναι η πτώση της θερμοκρασίας κάτω από 0 ⁰C, τους χειμερινούς μήνες. Τη περίοδο του χειμώνα και ιδιαίτερα τους μήνες Δεκέμβριο, Ιανουάριο, Φεβρουάριο, παρατηρούνται οι υψηλότερες τιμές της μέσης σχετικής υγρασίας με ποσοστό μέσου όρου 77%. Το ύψος της ετήσιας βροχόπτωσης παρουσιάζει τιμές μεταξύ 400-600mm στις πεδινές περιοχές, ενώ αυξάνεται προς τις υψηλές πεδινές περιοχές με τιμές πάνω από 1200mm(Αθανασιάδου 2017).

2.Μεθοδολογία

Για τη μελέτη των ιζημάτων του Τριπόταμου έγινε επιλογή 8 αντιπροσωπευτικών σταθμών σε όλο το μήκος του. Οι σταθμοί επιλέχθηκαν με βάση τη δυνατότητα πρόσβασης σε αυτούς,την κάλυψη του μεγαλύτερου μήκους του ποταμού και τη λήψη αντιπροσωπευτικών δειγμάτων των ιζημάτων του. Κατόπιν ακολούθησε η λήψη των συντεταγμένων των θέσεων έρευνας του ποταμού με τη βοήθεια συστήματος πλοήγησης GPS σε κινητή συσκευή τηλεφώνου. Το γεωδαιτικό σύστημα που χρησιμοποιήθηκε ήταν το ΕΓΣΑ' 87 (πίνακας 2.1). Η αποτύπωση των συντεταγμένων των σημείων έρευνας έγινε στο χάρτη με τη βοήθεια του Googleearth. Οι συντεταγμένες των θέσεων έρευνας φαίνονται στο παρακάτω πίνακα.

Θέσεις Δειγμάτων Έρευνας	Γεωγραφικό μήκος	Γεωγραφικό πλάτος	Υψόμετρο
Θέση 1	22°18'45.83"A	40°48′47.58″B	387 m
Θέση 2	22°15'62.81"A	40°49'62.81"B	420 m
Θέση 3	22°16'52.90"A	40°49'52.90"B	410 m
Θέση 4	22°19'17.66"A	40°52′17.66″B	151 m
Θέση 5	22°19'23.54"A	40°53′23.54″B	107 m
Θέση 6	22°19'31.41"A	40°53'31.41"B	103 m
Θέση 7	22°22'78.91"A	40°54′78.91″B	62 m
Θέση 8	22°25′65.68″A	40°57'65.68"B	23 m

Πίνακας 2.1 Προσδιορισμός γεωγραφικών συντεταγμένων των θέσεων μελέτης με βάση το ΕΓΣΑ'87

Εικόνα 2.2 Αποτύπωση των σταθμών δειγματοληψίας επάνω στο υδρογραφικό δίκτυο του Τριπόταμου.

Η θέση 1 βρίσκεται στοΜαυρονέρι σε υψόμετρο 387m, στον1° κλάδο του Τριπόταμου (Εικ 2.3). Το Μαυρονέρι χαρακτηρίζεται από έντονη θαμνώδη βλάστηση η οποία σχηματίζει θόλους. Οι καρστικέςπηγές του Μαυρονερίουέχουν μεγάλη παροχή και τροφοδοτούν τα υδραγωγεία της Βέροιας και του οικιστικού συγκροτήματος Ράχης.Από τη θέση 1 αυτή λήφθηκαν δυο δείγματα, το δείγμα TRI-1Α από την δυτικήόχθη και το δείγμα TRI-1B από κεντρικό σημείο της κοίτης του ποταμού.

Εικόνα 2.3Η Θέση 1 στον κλάδο Μαυρονερίου.

Η θέση 2 τοποθετείται στις πηγέςΑσπρονερίου σε υψόμετρο 420m. Σε αυτό το ύψος πηγάζει το νερό από τις πηγές Ασπρονερίου. Οι πηγές αυτές είναι πολυάριθμες και εκτείνονται σε μια περιοχή 1km. Η βλάστηση που επικρατεί αποτελείται από φυλλοβόλα δάση, πλατάνια καθώς και θάμνους εκατέρωθεν του Ρέματος που τροφοδοτείται από τις πηγές (Εικ 2.4). Κατά μήκος του ρέματος έντονη είναι η παρουσία ευμεγεθών κροκαλών.Λόγω του μεγέθους των κροκαλώντο δείγμα 2 προσδιορίστηκε οπτικά.

Εικόνα 2.4Η Θέση 2 στις πηγές του Ασπρονερίου. Διακρίνονται οι ευμεγέθεις κροκάλες εντός της κοίτης.

Εικόνα 2.5 Κροκάλες στο πυθμένα της κοίτης του ρέματος Ασπρονερίουκοντά στις πηγές.

Η Θέση 3 τοποθετείται στο ρέμα Ασπρονερίου σε υψόμετρο 410m. Ο πυθμένας του ρέματος χαρακτηρίζεται από ήπια κλίσηενώ η ευρύτερη περιοχή από ομαλό ανάγλυφο (Εικ2.6). Από αυτή τη θέση έγινε η λήψη δυο δειγμάτων. Ειδικότερα, λήφθηκε ένα δείγμα TRI-3B από σημείο που βρίσκεται στο κέντρο της κοίτης του ρέματος και ένα δεύτερο δείγμαTRI-3Ααπό σημείο στο βόρειο μέρος της κοίτης.

Οι Θέσεις 1, 2 και 3 βρίσκονται στον άνω ρου του Τριπόταμου.

Εικόνα 2.6Η Θέση 3 στο ρέμαΑσπρονερίου.

Η θέση 4 τοποθετείται εντός της πόλης της Βέροιας, σε σημείο που βρίσκεται στο τμήμα του Τριπόταμου που καλείται Μπαρμπούτα, σε υψόμετρο 151m. Ο ποταμός ρέεισε ένα βαθύ φαράγγι ως εγκυβωτισμένος μαίανδρος (Εικ.2.7). Σε αυτή τη θέση λήφθηκε το δείγμα TRI-4 από σημείο κεντρικό της κοίτης.

Η θέση 4 απέχει από τη Θέση-1 7km και από τις Θέση-2 και Θέση-3 θέση απέχει σχεδόν5,9kmκαι βρίσκεται στο μέσο ρου του ποταμού (Αθανασιάδου, 2017).

Εικόνα 2.7 διακρίνεται τμήμα του Τριπόταμου εντός της Βέροιας(Μπαρμπούτα), κοντά στη θέση 4.

Η θέση 5 βρίσκεται στο κλάδο 4 του Τριπόταμου στο ύψος των 107m. Λόγωυδρομάστευσης που έχει πραγματοποιηθεί στον κλάδο αυτό, η παροχή του κλάδου αυτού δεν είναι ικανοποιητική. Από αυτή τη θέση έγινε λήψη των δειγμάτωνTRI-5A καιTRI-5B από το βόρειο τμήμα της όχθης καθώς το νότιο τμήμα δεν ήταν προσβάσιμο(Εικ2.8).

Εικόνα 2.8Η περιοχή της θέσης 5 στον 4ο κλάδο του Τριπόταμου.

Η θέση 6 τοποθετείται στη συμβολήτου κλάδου Λιανοβρόχι με τον Τριπόταμο(Μπαρμπούτα). Η θέση αυτή είναι σε υψόμετρο 103m. Από τη θέση αυτή έγινε δειγματοληψία ενός του δείγματοςTRI-6(Εικ 2.9).

Εικόνα 2.9Η θέση 6 στο σημείο συμβολής του ρέματος Λιανοβρόχι και Τριπόταμου (Μπαρμπούτας).

Η θέση 7 τοποθετείταισε υψόμετρο 62m. Σύμφωνα με την Αθανασιάδου (2017) απέχει από την 6η θέση 3,2km.Στην απόσταση αυτή των 3,2km(Θέση 7και Θέση 6) παρατηρείται εμφανής ρύπανση και μόλυνση των υδάτων από βιομηχανίες μαρμάρου και κονσερβοποιίες φρούτων καθώς και από τη διαδρομή του Τριπόταμου εντός του αστικού ιστού της Βέροιας. Από τη θέση αυτή λήφθηκε το δείγμα TRI-7B,από το βόρειο τμήμα της όχθης του Τριπόταμουκαι το TRI-7A από το κέντρο της κοίτης του(Εικ. 2.10).

Εικόνα 2.10Η θέση 7 στο τμήμα του Τριπόταμου, λίγο έξω από την πόλη της Βέροιας.

Η θέση 8 τοποθετείταιλίγο πριν την εκβολή του Τριπόταμου στη Τάφρο 66 (βλ. πίνακα 2.1) και σε υψόμετρο 23m. Σύμφωνα με την Αθανασιάδου η απόσταση μεταξύ των θέσεων 8 και 7 είναι 4,5km. Από τη θέση αυτή έγινε η λήψη ενός δείγματος TRI-8A από σημείο στο κέντρο της κοίτης και ενός δεύτερου του TRI-8B από ένα σημείο της νότιας όχθης.

Εικόνα 2.11 Μακρινή άποψη της Θέσης 8 στην Τάφρο 66.

2.1 Εργασία στην ύπαιθρο και υλικά.

Για κάθε θέση δειγματοληψίας στονΤριπόταμομετρήθηκε το υψόμετρο της κάθε θέσης με τη βοήθεια του προγράμματος γραφικής απεικόνισης της Γης Googleearth και οι γεωγραφικές συντεταγμένες κάθε θέσης (πίν.2.1). Στη συνέχεια έγινε η συλλογή δειγμάτων μέσα σε πλαστικά σακουλάκια και ακολούθησε η εργαστηριακή μελέτη τους για την εύρεση της σύστασης των ιζημάτων του ποταμού. Εν συνεχεία από τα δείγματα που συλλέχτηκαν έγινε τοποθέτηση των ιζημάτων τους πάνω σε καθαρά χαρτιά μέσα στο εργαστήριο ιζηματολογίας του Τμήματος Γεωλογίας της Σχολής Θετικών Επιστημών του Α.Π.Θ. για να στεγνώσουν πλήρως. Έπειτα έγιναν οι κοκκομετρικές αναλύσεις τους με τη μέθοδο κόσκινων και με τη μέθοδο του σιφωνίου και στο τέλος προσδιορίστηκαν τα αποτελέσματα με τη βοήθεια του προγράμματος GradistatVersion 8.0. και της εφαρμογής Excelκατά Αλμπανάκη (2011), αντίστοιχα.

Τα υλικά που χρησιμοποιήθηκαν ήταν:

- Πυξίδα, GPS (σε συσκευή κινητού τηλεφώνου), γεωλογικό σφυρί, φτυαράκι, χαρτιά για την αναγραφή των στοιχείων του κάθε δείγματος, κοπίδι, πλαστικά σακουλάκια
- Μολύβια, μπλοκ και φωτογραφική μηχανή (σε συσκευή κινητού τηλεφώνου)
- Ακόντια τοπογραφίας και μετροταινία
- Σακίδιο
- Τοπογραφικός και γεωλογικός χάρτης της περιοχής

2.2 Εργασία στο εργαστήριο.

Όπως αναφέρθηκε παραπάνω έγινε αρχικά η τοποθέτηση των ιζημάτων από τα δείγματα που λήφθηκαν σε χαρτιά για να στεγνώσουν σε ίδια θερμοκρασία με αυτή του δωματίου. Κατόπιν απομακρύνθηκαν με μηχανικό τρόποδιάφορα οργανικά υλικά που υπήρχαν μέσα στα δείγματα (κλαδάκια, φύλλα κλπ). Στη συνέχεια το κάθε δείγμα χωρίστηκε με τη μέθοδο του σταυρού σε τέσσερα τμήματα. Τα αρχικά δείγματα είχαν σημαντικό βάρος κάτι που επέβαλε τη διαδικασία διαχωρισμού τους. Έπειτα, τα δύο μικρότερα όμοια δείγματα που επιλέχθηκαν με τη μέθοδο του σταυρού ζυγίστηκαν σε ζυγαριά ακριβείας και το καθαρό βάρος του γράφτηκε πάνω στο φυλάδιοιζηματολογικής ανάλυσης. Αρχικά όλα τα δείγματα, εκτός από τα TRI-5A και TRI-5B, τοποθετήθηκαν στα κόσκινα γιατί περιείχαν χονδρόκκοκα υλικά πέρα απτά λεπτόκκοκα. Τα κόσκινα ήταν στοιβαγμένα με διάμετρο βροχίδων από -6φ έως και 0,5φ με βήμα 0,5. Αφού ρίφθηκαν τα ιζήματα του κάθε δείγματος μέσα στα κόσκινα, ύστερα τα κόσκινα τοποθετήθηκαν σε έναν αναδευτήρα όπου ανάδευε τα κόσκινα για 10 λεπτά(Εικ.2.2.1). Στη συνέχεια ρίφθηκε το υλικό από το κάθε κόσκινο (-6φ, -5φ ,..., κλπ) και

ζυγίστηκε ξεχωριστά στη ζυγαριά ακριβείας. Το βάρος του υλικού από το κάθε κόσκινο γράφθηκε στο φυλλάδιο ιζηματολογικής ανάλυσης. Το περιεχόμενο του κόσκινου με διάμετρο βροχίδων 0.0φ κρατήθηκε για τη μελέτη του στο στερεοσκόπιο. Το υλικό που απέμεινε στο μεταλλικό δίσκο κάτω από το κόσκινο 0,5φ τοποθετήθηκε σε μια άλλη σειρά κοσκίνων με διάμετρο από 1φ έως 4φ και κάτω από το κόσκινο 4φ μπήκε ο δίσκος βάσης. Στη συνέχεια η σειρά αυτή κοσκίνων τοποθετήθηκε στον αναδευτήρα όπου αναδεύτηκε για 15 λεπτά. Έπειτα ζυγίστηκε το υλικό του κάθε κόσκινου ξεχωριστά (1φ,1,5φ ,...,κλπ) και καταγράφηκε στο φυλλάδιο ιζηματολογικής ανάλυσης.

Εικόνα 2.2.1 παρατηρούνται τα κόσκινα στο μηχάνημα ανάδευσης.

Κατόπιν έγινε η μελέτη όλων των δειγμάτων της άμμου με μέγεθος κόκκων Οφ στο στερεοσκόπιο. Εκεί προσδιορίστηκε ο βαθμός στρογγυλότητας και σφαιρικότητας του κάθε κόκκου με βάση το διάγραμμα Krumbein&Sloss 1963. Στη συνέχεια έγινε μελέτη των δειγμάτων 5Α Και 8Α με τη μέθοδο του σιφωνίου, διότι κατά το κοσκίνισμά τους ο δίσκος βάσης περιείχε λεπτόκοκκα υλικά πάνω από 5% σε ένα βάρος των 20gr. Η μέθοδος του σιφωνίου έγινε ως εξής. Στο δείγμα των 20γρ προστέθηκε απιονισμένο νερό και 20mlcalgon (εξαμεταφωσφορικό νάτριο) μέσα στο δοχείο. Στη συνέχεια κλείστηκε το δοχείο και τοποθετήθηκε στο μηχάνημα δόνησης. Το calgonδρα ως παράγοντας διασποράς και έχει σκοπό να διατηρεί τους κόκκους του υλικού αργιλικής σύστασης διεσπαρμένους μέσα στο νερό και να μη τους αφήνει να συσσωματωθούν. Στη συνέχεια πάρθηκε ένας ογκομετρικός σωλήνας των 1000ml και μέσα σε αυτόν προστέθηκε το μίγμα του υλικού (υλικό 20grµε απιονισµένο νερό και calgon). Μέσα στον σωλήνα των 1000mlπροστέθηκε απιονισµένο νερό μέχρι αυτός να γεµίσει εντελώς. Με το ένα χέρι κλίστηκε το στόµιο του και με το άλλο πιάστηκε το κάτω τµήµα του όπου και ανακινήθηκε ο σωλήνας έως τα ιζήµατα µέσα του να αιωρηθούν πλήρως. Στη συνέχεια αφού το υλικό αιωρούνταν τοποθετήθηκε ο κύλινδρος στο πάγκο , µπήκε σε λειτουργία το χρονόµετρο και στη κατάλληλη χρονική στιγµή έγινε η δειγµατοληψία των µεγεθών 4φ και 8φ των δειγµάτων TRI-8A και TRI-5A με το σιφώνιο. Το σιφώνιο µπήκε σε βάθος 10cmµέσα στον κύλινδρο και αφού υπολογίστηκαν οι χρόνοι καθίζησης τα δυο δείγµατα µπήκαν στο φούρνο σε θερµοκρασία 108°C. Έπειτα ακολούθησε η κλασική υπολογιστική µέθοδος (µε το χέρι) για τα ποσοστά της άµµου, ιλύος και αργίλου.

Εικόνα 2.2.2Παρατηρείται ο ογκομετρικός κύλινδρος των 1000ml και δίπλα το χρονόμετρο.

3.ΑΠΟΤΕΛΕΣΜΑΤΑ

Σε αυτή την ενότητα προβάλλονται τα αποτελέσματα τωνκοκκομετρικών αναλύσεων που έγιναν στα δείγματαπου λήφθηκαν από τα επιλεγμένα σημεία του Τριπόταμουτα αποτελέσματα των οποίων έχουν προκύψει από την επεξεργασία τους στο GradistatVersion8.0.

Θέση 1

Από τα δυο δείγματα που λήφθηκαν, το TRI-1B ήταν απότο σημείο που βρίσκεται στο κέντρο της κοίτης του Τριπόταμουκαι το TRI-1A ήταν από τα δυτικά όχθης του. Τα αποτελέσματα των δύο δειγμάτων παρουσιάζονται παρακάτω.

Το δείγμα TRI-1Α παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0.

Πίνακας 3.1.1

TRI-1A		
Κροκάλες	Άμμοι	Πηλοί
9,4%	89,2%	1,4%

Το δείγμα TRI-1A με βάση τα ποσοστά του Πίνακα 3.1.1 και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμαμε τα ποσοστά κροκάλων, μπορεί να χαρακτηριστεί ως <u>χάλικο-αμμώδες</u>.

Εικόνα 3.1.1. Τριγωνικό σύστημα ταξινόμησης κατά Folk. Με κόκκινη κουκίδα η προβολή του δείγματος TRI-1A

Το δείγμα TRI-1A με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή<u>μεσόκκοκη άμμος</u>, ως προς τη γραφική σταθερή απόκλιση, από <u>κακή</u> <u>ταξινόμηση</u>, ως προς τη γραφική λοξότητα από<u>συμμετρική κατανομή</u>και ως προς τη γραφική κύρτωση από<u>μεσόκυρτη καμπύλη</u>.

Το δείγμα TRI-1B παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0.

Πίνακας 3.1.2

TRI-1B		
Κροκάλες	Άμμος	Πηλός
77,9%	21,9	0,2

Εικόνα 3.1.3παρατηρείται το τριγωνικό διάγραμμα ταξινόμησης κατά Folk. Με κόκκινη κουκκίδα σημειώνεται η θέση του δείγματος TRI-1B στο διάγραμμα κροκαλλών, πηλών και άμμων.

Το δείγμα TRI-1B με βάση τα ποσοστά του Πίνακα και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα με τα ποσοστά κροκάλων, μπορεί να χαρακτηριστεί ως <u>άμμο- χαλικώδες</u>.

Το δείγμα TRI-1B με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή<u>χαλικώδες</u>, ως προς τη γραφική σταθερή απόκλιση (ταξινόμηση)από <u>κακή ταξινόμηση</u>,ως προς τη γραφική λοξότητα από veryfineskewed και ως προς τη γραφική κύρτωση χαρακτηρίζεται από μεσόκυρτη καμπύλη.

Εικόνα 3.1.4παρατηρείται το διάγραμμα κατανομής μεγέθους των κόκκων του δείγματος TRI-1B.

Θέση 3

Από τη θέση 3 λήφθηκαν δυο δείγματα το TRI-3A από σημείο που βρίσκεται στο αριστερό τμήμα της όχθης και το TRI-3B από σημείο που βρίσκεται στο κεντρικό τμήμα της κοίτης.

Το δείγμα TRI-3Α παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0.

Πίνακας 3.1.3

TRI-3A		
Κροκάλες	Άμμος	Ιλλύς
77,4%	22,2%	0,4%

Το δείγμα TRI-3A με βάση τα ποσοστά του Πίνακα και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα με τα ποσοστά κροκάλων, μπορεί να χαρακτηριστεί ως <u>άμμοχαλικώδες</u>.

Εικόνα 3.1.5 Με κόκκινη κουκίδα παρατηρείται η προβολή του δείγματος TRI-3Απάνω στο τριγωνικό διάγραμμα κατά Folk, κροκάλων, άμμων, πηλών.

Το δείγμα TRI-3A με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή <u>χαλικώδες</u>, ως προς τη γραφική σταθερή απόκλιση (ταξινόμηση) από <u>κακή ταξινόμηση</u>, ως προς τη γραφική λοξότητα και τη κύρτωση χαρακτηρίζεται από **veryfineskewed** και μεσόκυρτη καμπύλη αντίστοιχα.

Εικόνα 3.1.6 Διάγραμμα κατανομής των κόκκων του δείγματος TRI-3A, με βάση το πρόγραμμα GradistatVersion 8.0.

Το δείγμα TRI-3B παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0.

Πίνακας 3.1.4

TRI-3B		
Κροκάλες	Άμμοι	Πηλοί
97,2%	2,6%	0,2%

Το δείγμα TRI-3B με βάση τα ποσοστά του Πίνακα και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα με τα ποσοστά κροκάλων, μπορεί να χαρακτηριστεί ως <u>χαλικώδες</u>.

Εικόνα 3.1.7 Με κόκκινη κουκίδα παρατηρείται η θέση του δείγματος TRI-3B πάνω στο τριγωνικό διάγραμμα κατά Folk με τα ποσοστά κροκάλων.

Το δείγμα TRI-3B με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή, <u>κροκαλώδες</u>(coarsegravel), ως προς τη γραφική σταθερή απόκλιση (ταξινόμηση) από <u>αρκετά καλή ταξινόμηση</u>, ως προς τη γραφική λοξότητα από (veryfineskewed) και ως προς τη γραφική κύρτωση από<u>πολύλεπτόκυρτη καμπύλη.</u>

Εικόνα 3.1.8Παρατηρείται το διάγραμμα κατανομής μεγέθους των κόκκων του δείγματος TRI-3B.

Θέση 4

Από τη θέση 4 λήφθηκε ένα δείγμα. Το ένα δείγμα ήταν ένα από σημείο το οποίο βρίσκεται στο κέντρο της κοίτης του Τριπόταμου (TRI-4).

Το δείγμα TRI-4 παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0:

Πίνακας 3.1.5

TRI-4		
Κροκάλες	Άμμοι	Πηλοί
70,0%	29,2%	0,8%

Το δείγμα TRI-4 με βάση τα ποσοστά του Πίνακα και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα με τα ποσοστά κροκάλων, μπορεί να χαρακτηριστεί ως <u>άμμο-χαλικώδες</u>.

Εικόνα 3.1.9Με κόκκινη κουκίδα παρατηρείται η προβολή του δείγματος TRI-4 πάνω στο τριγωνικό διάγραμμα κατάFolk με τα ποσοστά κροκάλων.

Το δείγμα TRI-4 με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή, <u>χαλικώδες</u>, ως προς τη γραφική σταθερή απόκλιση (ταξινόμηση) από <u>πολύ κακή</u>, ως προς τη γραφική λοξότητα από <u>veryfineskewed</u>και ως προς τη γραφική κύρτωση από <u>πλατύκυρτη καμπύλη</u>.

Εικόνα 3.1.10 παρατηρείται το διάγραμμα κατανομής των κόκκων του δείγματος TRI-4.

Θέση 5

Από τη θέση 5 λήφθηκαν δύο δείγματα. Το ένα δείγμα ήταν τοTRI-5A και πάρθηκε από το κεντρικό σημείο της κοίτης και το δεύτερο ήταν τοTRI-5B και πάρθηκε από τοδυτικό σημείο της όχθης.

Το δείγμα TRI-5A ήταν από λεπτόκκοκο υλικό και αναλύθηκε με τη μέθοδο του σιφωνίου. Για το δείγμα TRI-5A προέκυψαν τα παρακάτω ποσοστά της άμμου, ιλύος, αργίλου με τη βοήθεια του προγράμματος excelκατά Αλμπανάκη (2011), τα οποία έχουν ως εξής.

Πίνακας 3.1.6

TRI-5A		
Άμμος	Ιλύς	Άργιλος
75,2%	16,3%	8,4%

Το δείγμα TRI-5A με βάση το τριγωνικό διάγραμμα άμμων ιλύων και αργίλων μπορεί να χαρακτηριστεί <u>πηλούχος άμμος</u>(Εικ 3.1.11).

Εικόνα 3.1.11 παρατηρείται το δείγμα TRI-5A με κόκκινη κουκίδα πάνω στο τριγωνικό διάγραμμα κατά Folk με τα ποσοστά άμμου.

Το δείγμα TRI-5B παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0.

Πίνακας 3.1.7

TRI-5B		
Κροκάλες	Άμμος	Πηλός
81,0%	18,6%	0,3%

Το δείγμα TRI-5B με βάση τα ποσοστά του Πίνακα και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα με τα ποσοστά κροκάλων, μπορεί να χαρακτηριστεί ως <u>άμμο-χαλικώδες</u>.

Εικόνα 3.1.12 παρατηρείται το δείγμα TRI-5B με κόκκινη κουκίδα πάνω στο τριγωνικό σύστημα ταξινόμησης κατά Folk.

Το δείγμα TRI-5B με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή, <u>χαλικώδες</u>, ως προς τη γραφική σταθερή απόκλιση (ταξινόμηση) από <u>κακή ταξινόμηση</u>, ως προς τη γραφική λοξότητα από <u>veryfineskewed</u>και ως προς τη γραφική κύρτωση από μεσόκυρτη καμπύλη.

Εικόνα 3.1.13 διάγραμμα κατανομής των κόκκων μεγέθους φ.

Θέση 6

Από τη θέση 6 λήφθηκε μόνο ένα δείγμα. Το δείγμα αυτό ήταν το TRI-6 και λήφθηκε από κεντρικό σημείο της κοίτης του ποταμού.

Το δείγμα TRI-6 παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0.

Πίνακας 3.1.8

TRI-6		
Κροκάλες	Άμμοι	Πηλοί
73,5%	26,2%	0,2%

Το δείγμα TRI-6 με βάση τα ποσοστά του Πίνακα και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα με τα ποσοστά κροκάλων, μπορεί να χαρακτηριστείως <u>άμμο-χαλικώδες</u>.

Εικόνα 3.1.14Παρατηρείται με κόκκινη τελείαη θέση του δείγματος TRI-6 πάνω στο τριγωνικό σύστημα ταξινόμησης κατά Folk.

Το δείγμα TRI-6 με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή <u>χαλικώδες</u>(finegravel), ως προς τη γραφική σταθερή απόκλιση (ταξινόμηση) από <u>κακή ταξινόμηση</u>, ως προς τη γραφική λοξότητα από **veryfineskewed**και ως προς τη γραφική κύρτωση από <u>πλατύκυρτη</u> καμπύλη.

Εικόνα 3.1.15 διάγραμμα κατανομής των κόκκων μεγέθους φ.

Θέση 7

Από τη θέση 7 λήφθηκαν δυο δείγματα. Το δείγμα TRI-7A λήφθηκε από τη κεντρική κοίτη του ποταμού και το δείγμα TRI-7B λήφθηκε από τη δυτική πλευρά της όχθης.

Το δείγμαTRI-7Α παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0.

Πίνακας 3.1.9

TRI-7A			
Κροκάλες	Άμμοι	Πηλοί	
78%	21,5%	0,5%	

Το δείγμα TRI-7A με βάση τα ποσοστά του Πίνακα και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα με τα ποσοστά κροκάλων, μπορεί να χαρακτηριστεί ως<u>άμμο-χαλικώδες</u>.

Εικόνα 3.1.16Τριγωνικά διαγράμματα κατά Folk

Το δείγμα TRI-7A με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή <u>χαλικώδες</u>, ως προς τη γραφική σταθερή απόκλιση (ταξινόμηση) από <u>κακή ταξινόμηση</u>, ως προς τη γραφική λοξότητα από **veryfineskewed**και ως προς τη γραφική κύρτωση από μεσόκυρτη καμπύλη.

Εικόνα 3.1.17 Διάγραμμα κατανομής μεγέθους των κόκκων.

Το δείγμα TRI-7B παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών, τα οποία προέκυψαν από το πρόγραμμα Gradistatversion 8.0.

Πίνακας 3.1.10.

TRI-7B		
Κροκάλες	Άμμοι	Πηλοί
28.4%	71.4%	0.2%

Το δείγμα TRI-7B με βάση τα ποσοστά του Πίνακα 3.1.10 και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα με τα ποσοστά κροκάλων, μπορεί να χαρακτηριστεί ως <u>χάλικο-αμμώδες</u>.

Εικόνα 3.1.18Διαγράμματα ταξινόμησης κατά Folk.

Το δείγμα TRI-7B με βάση τη μέθοδο Folk και Wardχαρακτηρίζεται ως προς τη μέση τιμή <u>πολύ χονδρόκκοκο αμμώδες</u>, ως προς τη γραφική σταθερήαπόκλιση (ταξινόμηση) από κακή ταξινόμηση, ως προς τη γραφική λοξότητα <u>Verycoarseskewed</u> και ως προς τη γραφική κύρτωση από μεσόκυρτη καμπύλη.

Εικόνα 3.1.19 Διάγραμμα κατανομής μεγέθους των κόκκων.

Θέση 8

Από τη θέση 8 λήφθηκαν δύο δείγματα. Το ένα ήταν το TRI-8A από το κέντρο της κοίτης του ποταμού και το δεύτερο ήταν το TRI-8B από την αριστερή όχθη του ποταμού.

Το δείγμα TRI-8A ήταν λεπτόκκοκο και αναλύθηκε με τη μέθοδο του σιφωνίου. Για το δείγμα TRI-8A προέκυψαν τα παρακάτω ποσοστά άμμων ιλύων και αργίλων με τη βοήθεια εφαρμογής του προγράμματος excel κατά Αλμπανάκη.

Πίνακας 3.1.11

TRI-8A		
Αμμοι	Ιλύες	Άργιλοι
44,5%	44,1%	11,4%

Το δείγμα TRI-8A με βάση τη προβολή του στο τριγωνικό διάγραμμα άμμων ιλύων και αργίλων μπορεί να χαρακτηριστεί ως **αμούχος ιλύς**.

Εικόνα 3.1.20 Τριγωνικό διάγραμμα ταξινόμησης κατά Folk.

Το δείγμα TRI-8B παρουσιάζει τα παρακάτω ποσοστά κροκάλων άμμων και πηλών.

Πίνακας 3.1.12

TRI-8B		
Κροκάλες	Άμμοι	Πηλοί
61,9%	35,4%	2,6%

Το δείγμα TRI-8B με βάση τα ποσοστά του Πίνακα 3.1.12 και τη προβολή του στο αντίστοιχο τριγωνικό διάγραμμα, μπορεί να χαρακτηριστεί ως άμμο-χαλικώδες.

Εικόνα 3.1.21 Τριγωνικό σύστημα ταξινόμησης κατά Folk. Με κόκκινη βούλα η προβολή του δείγματος TRI-8B.

Το δείγμα TRI-8B με βάση τη μέθοδο των Folk και Ward χαρακτηρίζεται ως προς τη μέση τιμή από <u>ψηφίδες</u>, ως προς τη γραφική σταθερή απόκλιση (ταξινόμηση) από <u>πολύ κακή ταξινόμηση</u>, ως προς τη γραφική λοξότητα από **veryfineskewed**και ως προς τη γραφική κύρτωση από πολύ<u>πλατύκυρτη καμπύλη</u>.

Εικόνα 3.1.22 Κατανομή των κόκκων μεγέθους φ.

Πιν.3.1.13. Συγκεντρωτικός πίνακας αποτελεσμάτων κοκκομετρικών αναλύσεων.						
ΚΩΔΙΚΟΣ	ΜΕΣΟΣ ΟΡΟΣ	ТҮПІКН	ΛΟΞΟΤΗΤΑ	ΚΥΡΤΩΣΗ	ΧΑΡΑΚΤΗΡΙΣΜΟΣ	ΧΑΡΑΚΤΗΡΙΣΜΟΣ
ΔΕΙΓΜΑΤΟΣ	ΜΕΓΕΘΟΥΣ Μ	ΑΠΟΚΛΙΣΗ	Sk	ku	GRADISTAT	ΔΕΙΓΜΑΤΟΣ
		σ				
TRI-1A	1,068	1,572	0,059	0,970	Χαλικο-Άμμώδες	χονδρόκοκκηΆμμος
	Ινιεσοκοκκη	κακη	Συμμετρικη	ινιεσοκυρτη		με χαλικια
	Αμμος					
TRI-1B	-2 468	1 626	0 519	0 903	Άιμιο-Χαλικώδες	Λεπτόκοκκα
110 10	Ζ,400 Χαλίκια	1,020 Κακή	Verv Fine	Μεσόκυρτη	πμρο παπικώσες	Χαλίκια με Άμμο
			Skewed			
TPI-3A	-2.552	1,936	0.526	0.899	Άμμο-Χαλικώδες	Λεπτόκκοκα
	χαλίκια	Κακή	Very fine	Πλατύκυρτη		Χαλίκια με Άμμο
			skewed			
T DL 3D	4.252	0.000	0.000	4.542		N 5 1
TPI-3B	-4,260	0,803	0,609 Varus Fina	1.543	Κροκαλωδες	Χονδροκοκκα
	χονόρο χαλικί	Αρκειά	Skowod	ΠΟΛΟ	(Graver)	λάλικιά
		KuAIJ	Skeweu	πεπιοκοριη		
TRI-4	-2 561	2 357	0.885	0 780	Άμμο-	Λεπτόκοκκα
	<u>Σ,301</u> Χαλίκια	2.337 Πολύ	Very Fine	Πλατύκυστη	Χαλικώδες	Χαλίκια με
	Λαλικία	Κακή	Skowod	Indicokoptij	λαλικώθες	Άμμο
		κακη	Skeweu			Αμμυ
TRI-5B	-2,468	1,480	0.569	1.015		Λεπτόκοκκα
	Χαλίκια	Κακή	very fine	Μεσόκυρτη	Άμμο-	χαλίκια με Άμμο
			skewed		Χαλικώδες	
	1 1 2 2	1 720	0.645	0.706	<u> </u>	Δοπτάμμομα
I KI-O	-2,232 Valikia	1,720 Kawé	0,045 Vorv		Αμμο-	Λελιοκκοκά Χαλίκια με Άμμο
	λαλικία	κακη	Fino	πλατοκορτη	λαλικώθες	λαλικία με Αμμο
			Skowed			
	-2 380	1 796	0.601	1 004	<u>′⁄лшио-</u>	Δεπτόκοκκα
	-2.380 Xalíkia	1,790 Kavń	0,001 Vorv	1.004 Μεσόκυστη	Αμμυ-	Χαλίκια με Άμμο
	λαλικία	κακη	Fine	Ινιευοκορτη	λαλικώθες	λαλικία με Αμμο
			Skowed			
	-0.625	1 464	-0.369	0.935	Χάλικο-	Χονδοόκκοκη
	0,023 Πολύ	Ι,τΟτ Κακή	Verv	0.555 Μεσόκμοτη	Αμιώδες	
	Χονδοόκκοκη	Rang	Coarse	Meeokopuij	πμωσες	Χαλίκια με
	άιμος		Skewed			λαλικία
	Λμμος		JACWCU			
TRI-8B	-1,486	2,549	0.651	0.640	Άμμο-	Λεπτόκοκκα
	Ψηφίδες	Πολύ	Very	Πολύ	Χαλικώδες	Χαλίκια με Άμμο
	,	κακκή	Fine	πλατύκυρτη	- ,	1
			Skewed			

TRI-5A	Άμμος	Ιλύς	Άργιλος	Πηλούχος
	75,2%	16,3%	8,4%	Άμμος
TRI-8A	Αμμοι 44,5%	Ιλύες 44,1%	Άργιλοι 11,4%	Αμμούχος Ιλύς

4. ΣΥΖΗΤΗΣΗ-ΣΥΜΠΕΡΑΣΜΑΤΑ

Τα νερά του Τριπόταμου προέρχονται κυρίως από τις καρστικές πηγές του Μαυρονερίου και Ασπρονερίου και από την επιφανειακή απορροή των κατακρημνισμάτων κατά τις περιόδους έντονων βροχοπτώσεων. Λόγω της γειτονίας με το μεγάλο πολεοδομικό συγκρότημα της Βέροιας και ενός ιδιαίτερα παραγωγικού κάμπου τα νερά του Τριπόταμου χρησιμοποιούνται τόσο για την ύδρευση της πόλης και των γύρω χωριών όσο επίσης για άρδευση και για άλλες παραγωγικές δραστηριότητες. Για τον λόγο αυτόν ένα μεγάλο ποσοστό της παροχής του ποταμού είναι δεσμευμένο με υδρομαστευτικά έργα ήδη από τις πηγές του. Στη ροή του παρεμβάλλονται επίσης μικροί και μεγαλύτεροι υδατοφράκτες, αρδευτικά κανάλια και μικρά υδροηλεκτρικά φράγματα. Όλες αυτές οι παρεμβάσεις έχουν αντίκτυπο στην παροχή του ποταμού όσο και στην εποχιακή διακύμανση της παροχής που σχετίζεται κυρίως με τις αυξημένες αρδευτικές ανάγκες της θερινής περιόδου. Η ανομοιόμορφη κατανομή της παροχής του Τριπόταμου εντός της κοίτης του κατά τη διάρκεια ενός έτους, λόγω ανθρωπογενών παρεμβάσεων, είναι ένας αστάθμητος παράγοντας και επηρεάζει καταλυτικά τόσο τη διαβρωτική και την αποθετική του ικανότητα όσο και την ποιότητα των νερών του.

Οι ιζηματολογικές αναλύσεις που πραγματοποιήθηκαν στα δείγματα ιζημάτων από την κοίτη και τις όχθες του άνω ρου του Τριπόταμου έδειξαν ότι πραγματοποιείται απόθεση κυρίως χονδρόκοκκου υλικού, κροκαλών, χαλικιών εντός της κοίτης και κροκαλών, χαλικιών και πολύ χονδρόκοκκης άμμου στις όχθες. Το γεγονός αυτό οφείλεται τόσο στην κλίση της κοίτης όσο και στην ελεύθερη ροή του ποταμού. Στο μέσο ρου, που διασχίζει την πόλη της Βέροιας, ο Τριπόταμος ρέει ως εγκυβωτισμένος μαίανδρος σε ένα στενό φαράγγι, όπου συγκεντρώνεται το σύνολο των νερών του, με αποτέλεσμα να αυξάνεται η ταχύτητα και η διαβρωτική του ικανότητα. Τα δείγματα που συλλέχθηκαν είναι κυρίως αμμοχάλικα αλλά εντός της κοίτης εντοπίζονται κροκάλες και μεγαλύτεροι ογκόλιθοι. Στον κάτω ρου του ο Τριπόταμος είναι τεχνητά εγκυβωτισμένος και ήδη λόγω των υδατοφραγμάτων έχει πραγματοποιηθεί στα ανάντι κατακράτηση των περισσότερων χονδρόκοκκων φερτών υλικών του. Έτσι στην αρχή του κάτω ρου τα ιζήματα αποτελούνται από αμμοχάλικα εντός της κοίτης και άμμους στις όχθες ενώ κοντά στην έξοδό του προς την Τάφρο 66 τα ιζήματα που αποτίθενται είναι ιλυώδεις άμμοι.

Η διέλευση του Τριπόταμου από την πόλη της Βέροιας και τη βιομηχανική περιοχή της πραγματοποιείται μέσω ενός φαραγγιού, της Μπαρμπούτας, που θα μπορούσε να είναι ένας καθημερινός τόπος αναψυχής για τους κατοίκους και μοναδικό αξιοθέατο για τους επισκέπτες της ιστορικής πόλης καθώς αποτελεί μνημείο της φύσης. Δυστυχώς όμως μάλλον αντιμετωπίζεται ως «ουλή» που διακόπτει τη συνέχεια της πόλης και γίνεται αποδέκτης πάσης φύσεως στερεών και υγρών αποβλήτων. Η εικόνα της κοίτης του ποταμού είναι αποκαρδιωτική λόγω των σκουπιδιών και των υγρών λυμάτων που εκφορτίζονται από πάσης φύσεως οικιακές δραστηριότητες, βιομηχανικές και βιοτεχνικές μονάδες. Όλο αυτό το φορτίο ρύπων επηρεάζει αρνητικά την ποιότητα των υδάτων και συσσωρεύεται αυξητικά καθώς αυτός ρέει προς τις τεχνητές «εκβολές» του στην Τάφρο 66. Τα τεχνητά υδατοφράγματα που κατασκευάστηκαν για αντιπλημμυρική προστασία και για να συγκρατούν τα ιζήματα ώστε να μην προσχωθεί η τεχνητή Τάφρος 66 λειτουργούν και ως «φράγματα» αυτών των σκουπιδιών.

5.ΒΙΒΛΙΟΓΡΑΦΙΑ

Blott J. S. (2008): GRADISTAT Version 6.0 A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments by Sieving or Laser Granulometer.

Bortolotti V., Chiari M., Marroni M., Pandolfi L., Principi G., Saccani E. 2013. Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins?. International Journal of Earth Sciences, 102(3), 783-811.

Frisch W., Meschede M. 2007.Plattentektonik, Kontinentvers-chiebung und Gebirgsbildung.2. überarb. Auflage, Primus Verlag u. Wiss. Buchges, Darmstadt, 196 p.

Gawlick H.J., Frisch W., Hoxha L., Dumitrica P., Krystyn L., Lain R., Missoni S. and Schlagintweit F., 2008. Mirdita zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin. International Journal of Earth Sciences, 84, 865-881.

Katrivanos E., Kilias A. and Mountrakis D., 2013. Kinematics of deformation and structural evolution of the Paikon Massif (Central Macedonia, Greece): A Pelagonian tectonic window? NeuesJahrbuchfuerMineralogischeAbhandlungen, 269, 149-171.

Kilias A., Frisch W., Avgerinas A., Dunkl I., Falalakis G. and Gawlick H.J., 2010. Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides. Austrian Journal of Earth Sciences, 103/1, 4-28.

Kilias, A.A., Tranos, M.D., Georgiadis, G.A., Mountrakis, D.M. (2016): The emplacement of the Vermion nappe in the area of KatoSeli (Mt Vermion, Central Macedonia, Greece). Bulletin of the Geological Society of Greece; Vol 50, No 1 (2016): 14th International Conference of the G.S.G.; 24-33 (EN)

Medwenitsch W. 1956.ZurGeologieVardarisch-Makedoniens (Jugoslawien), zum Problem der Pelagoniden. OestereichischeAkademie der Wissenschaften, Sitzung- sberichte der Mathematische-NaturwissensehaftlichenKlasse, Abteilung 1, 165, 397-473.

Mountrakis D., 1986. The Pelagonian Zone in Greece: a polyphasedeformed fragment of the Cimmerian continent and its role in the geotectonic evolution of the eastern Mediterranean. Journal of Geology, 94, 335-347.

Mountrakis D., Sapountzis E., Kilias A., Eleftheriadis G. and Christofides G., 1983.Paleogeographic conditions in the western Pelagonian margin in Greece during the initial rifting of the continental area. Canadian Journal of Earth Sciences, 20, 1673-1681.

Schenker F L., Burg J. P., Kostopoulos D., Moulas E., Larionov A., Quadt A. 2014. From Mesoproterozoic magmatism to collisional Cretaceous anatexis: Tectonomagmatic history of the Pelagonian Zone, Greece. Tectonics, 33(8), 1552-1576.

Αθανασιάδου Ε. (2014). Περιβαλλοντική διευθέτηση της κεντρικής κοίτης του χείμαρρου Τριπόταμου Ημαθίας, Πτυχιακή διατριβή Α.Π.Θ., Θεσσαλονίκη.

Αθανασιάδου Ε. (2017). Υδρομορφολογικά χαρακτηριστικά του ποταμού Τριπόταμου Ημαθίας, προβλήματα και προτάσεις μέτρων αποκατάστασης, Μεταπτυχιακή διατριβή, Α.Π.Θ., Θεσσαλονίκη, σελ. 98.

Αλμπανάκης, Κ. (2011): Πρόταση δημιουργίας πρωτοκόλλου κοκκομετρικής ανάλυσης με τη μέθοδο του σιφωνίου (πιπέτας) με υποδεκαπλάσιο χρόνο ανάλυσης. Δελτίο Ελληνικής Γεωλογικής Εταιρίας τομ.ΧLIV, σελ.19-28.

Κωνσταντινίδης Κ. 1989: «Τα εγγειοβελτιωτικά έργα στην πεδιάδα Θεσσαλονίκης», Έκδοση Γεωτεχνικού Επιμελητηρίου Ελλάδας, Θεσ/νίκη.

Κωτούλας Δ. 1980: «Το πλημμυρικό πρόβλημα της Ελλάδος υπό το πρίσμα των πλημυρικών καταστροφών της Κ. Μακεδονία», Εργαστήριο Διευθέτησης Ορεινών Υδάτων, Α.Π.Θ., ανακ. αριθμ 4, Θεσ/νίκη

Μουντράκης Δ., 1976. Συμβολή εις την γνώσιν της γεωλογίας του βορείου ορίου των ζωνών Αξιού και Πελαγονικής εις την περιοχή Κ. Λουτρακίου – Όρμας (Αλμωπίας). Διδακτορική Διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, σελ. 164.

Ψιλοβίκος, Α &Ψιλοβίκος, Α. (2010): Ιζηματολογία, Εκδόσεις Τζιόλα, σελ. 358.

5.1.ΙΣΤΟΤΟΠΟΙ

URL1. http://www.igme.gr/geoportal/ (ΙΓΜΕ, Σεπτέμβριος, 2018)

URL2. Google Earth (http://www.google.com)

URL3.<u>https://www.openstreetmap.org/search?query=%CE%94%CE%AE</u> %CE%BC%CE%BF%CF%82%20%CE%92%CE%AD%CF%81%CE%BF%CE%B9 %CE%B1%CF%82#map=10/40.6103/22.1704 (open street map, Σεπτέμβριος, 2018).

URL4.<u>http://wfdgis.ypeka.gr/</u> (Υπουργείο Περιβάλλοντος και Ενέργειας, Ελληνική Γραμματεία Υδάτων).

URL5.<u>http://web.archive.org/web/20100705024807/www.kedke.gr/upl</u> oads/N38522010 KALLIKRATIS FEKA87 07062010.pdf(Πρόγραμμα Καλλικράτης ΦΕΚ Α87 της 07/06/2010

URL6.<u>http://www.statistics.gr/el/statistics/-/publication/SAM03/2011</u> (Ελληνική Στατιστική Αρχή).

URL7.<u>https://www.google.gr/search?rlz=1C1CHZL_elGR752GR765&q=veroia+el</u> evation&stick=H4sIAAAAAAAAAAONgFuLUz9U3MCxPyzNUQjC1-Jzzc3Pz84IzU1LLEyuLFzHKZydb6efkJyeWZObnwRlWqTmpZWAWAKA0cRdKAAA A&sa=X&ved=2ahUKEwjXtIDvscPeAhXMFSwKHTikAwEQMSgAMAN6BAgLEAk (Google, Veroia Elevation).

URL8.<u>https://www.distancefromto.net/</u>

URL9.<u>http://www.env-edu.gr/Chapters.aspx?id=139</u> (Επιφανειακά Νερά, Υγρότοποι, Ποτάμια,Λίμνες).

6.0. ПАРАРТНМА

Στις παρακάτω σελίδες που ακολουθούν αναφέρονται όλα τα πρωτότυπα δεδομένα της μελέτης του Τριπόταμου τα οποία προέκυψαν από το GradistatVersion 8.0.

Παράρτημα Ι

Πίνακες 6.1 & 6.2 Στους παρακάτω πίνακες αναφέρονται τα βάρη τωνδειγμάτωνTRI-1A&TRI-1B, για κάθε κοκκομετρικό μέγεθος φ σε microns αντίστοιχα, τα οποία προέκυψαν μέσο της μεθόδουκοσκινίσματος με τη χρήση του GradistatVersion 8.0.

Sample Identity:	TRI-1A	Sample Identity:	TRI-1B
Analyst:		Analyst:	
Date:		Date:	
Initial Sample Weight:	166,65	Initial Sample Weight:	919,53
Aperture	Class Weight	Aperture	Class Weight
(microns)	Retained (g or %)	(microns)	Retained (g or %
90000		90000	
63000		63000	
45000		45000	
31500		31500	
22400		22400	
16000		16000	100,83
11200		11200	163,19
8000		8000	210,52
5600	3,62	5600	69,6
4000	1,46	4000	57,64
2800	3,7	2800	55,93
2000	6,72	2000	58,95
1400	11,49	1400	59,39
1000	15,36	1000	42,13
710	19,7	710	32,19
500	23,86	500	25,27
355	21,15	355	17,17
250	15,43	250	11,06
180	12,71	180	8,04
125	6,85	125	3,63
90	18	90	1,53
63	3,19	63	1,4
	2,41		1,06

Πίνακες 6.3& 6.4 Στους παρακάτω πίνακες αναφέρονται τα βάρη των δειγμάτων TRI- 3A & TRI-3B, για κάθε κοκκομετρικό μέγεθος φ σε microns αντίστοιχα, τα οποία προέκυψαν μέσο της μεθόδου κοσκινίσματος με τη χρήση του GradistatVersion 8.0.

Sample Identity:	TRI-3A
Analyst:	
Date:	
Initial Sample Weight:	1157

TRI-3B	
3465,42	(optional)
	TRI-3B 3465,42

Aperture	Class Weight
(microns)	Retained (g or %)
90000	
63000	
45000	
31500	
22400	
16000	398,9
11200	91,46
8000	134,41
5600	67,825
4000	67,825
2800	94,69
2000	39,95
1400	54,44
1000	40,44
710	32,97
500	34,5
355	29,48
250	26,62
180	16,6
125	10,91
90	6,36
63	4,17
	4,39

Aperture	Class Weight
(microns)	Retained (g or %)
90000	
63000	
45000	
31500	
22400	1737
16000	801
11200	365,68
8000	215,14
5600	75,8
4000	75,8
2800	71,46
2000	24,65
1400	30,82
1000	17,23
710	10,39
500	8,03
355	5,07
250	4,3
180	3,23
125	4,02
90	4,78
63	3,69
	5,79

Πίνακας 6.5. Στον παρακάτω πίνακα αναφέρονται τα βάρη του δείγματος TRI- 4 για κάθε κοκκομετρικό μέγεθος φ σε microns αντίστοιχα, τα οποία προέκυψαν μέσο της μεθόδου κοσκινίσματος με τη χρήση του προγράμματος GradistatVersion 8.0.

Sample Identity:	TRI-4
Analyst:	
Date:	
Initial Sample Weight:	965,67

Aperture (microns)	Class Weight Retained (g or %)
90000	
63000	
45000	
31500	
22400	
16000	528
11200	19,62
8000	25,93
5600	18,21
4000	18,21
2800	39,71
2000	25,51
1400	46,35
1000	42,74
710	33,96
500	28,73
355	20,11
250	16,44
180	14,88
125	63,24
90	8,31
63	6,46
	8,06

Πίνακας 6.6. Στον παρακάτω πίνακα αναφέρονται τα βάρη του δείγματοςTRI-5B, για κάθε κοκκομετρικό μέγεθος φ σε microns αντίστοιχα, τα οποία προέκυψαν μέσο της μεθόδου κοσκινίσματος με τη χρήση του GradistatVersion 8.0.

Sample Identity:	TRI-5B
Analyst:	
Date:	
Initial Sample Weight:	579,77

Aperture (microne)	Class Weight					
(microns)	Retained (g or %)					
90000						
63000						
45000						
31500						
22400						
16000						
11200	163,46					
8000	124,93					
5600	51,71					
4000	51,71					
2800	55					
2000	22,53					
1400	30,13					
1000	21,7					
710	17,29					
500	14,52					
355	9,29					
250	5,97					
180	3,53					
125	2,66					
90	1,49					
63	1,41					
	1,85					

Πίνακας 6.7. Στον παρακάτω πίνακα αναφέρονται τα βάρη του δείγματος TRI-6, για κάθε κοκκομετρικό μέγεθος φ σε microns αντίστοιχα, τα οποία προέκυψαν μέσο της μεθόδου κοσκινίσματος με τη χρήση του GradistatVersion 8.0.

Sample Identity:	TRI-6
Analyst:	
Date:	
Initial Sample Weight:	603,45

Aperture (microns)	Class Weight Retained (g or %)					
90000						
63000						
45000						
31500						
22400						
16000						
11200	166,58					
8000	139,17					
5600	36,8					
4000	36,8					
2800	43,92					
2000	19,54					
1400	31,7					
1000	30,11					
710	28,92					
500	27,64					
355	18,11					
250	10,3					
180	5					
125	3,88					
90	1,34					
63	1,01					
	1,4					

Πίνακες 6.8& 6.9. Στους παρακάτω πίνακες αναφέρονται τα βάρη των δειγμάτων TRI- 7A & TRI-7B, για κάθε κοκκομετρικό μέγεθος φ σε microns αντίστοιχα, τα οποία προέκυψαν μέσο της μεθόδου κοσκινίσματος με τη χρήση του GradistatVersion 8.0.

Sample Identity: TRI-7A Analyst: Date: Initial Sample Weight: 1842,94

(

TRI-7A
1842,94

Aperture	Class Weight
(microns)	Retained (g or %)
90000	
63000	
45000	
31500	
22400	
16000	172,52
11200	469,07
8000	359,64
5600	156,31
4000	109,21
2800	90,83
2000	78,85
1400	71,32
1000	60,08
710	60,67
500	65,21
355	54,31
250	34,16
180	23,55
125	12,4
90	6,7
63	8,18
	8,96

Aperture	Class Weight					
(microns)	Retained (g or %)					
90000						
63000						
45000						
31500						
22400						
16000	172,52					
11200	469,07					
8000	359,64					
5600	156,31					
4000	109,21					
2800	90,83					
2000	78,85					
1400	71,32					
1000	60,08					
710	60,67					
500	65,21					
355	54,31					
250	34,16					
180	23,55					
125	12,4					
90	6,7					
63	8,18					
	8,96					

Πίνακας 6.10. Στον παρακάτω πίνακα αναφέρονται τα βάρη του δείγματος TRI-8B, για κάθε κοκκομετρικό μέγεθος φ σε microns αντίστοιχα, τα οποία προέκυψαν μέσο της μεθόδου κοσκινίσματος με τη χρήση του GradistatVersion 8.0.

Sample Identity:	TRI-8B
Analyst:	
Date:	
Initial Sample Weight:	343,25

Aperture (microns)	Class Weight Retained (g or %)
90000	
63000	
45000	
31500	
22400	
16000	
11200	114,34
8000	47,41
5600	15,79
4000	11,51
2800	12,12
2000	10,51
1400	10,6
1000	8,82
710	9,25
500	13,37
355	16,18
250	17,24
180	19,04
125	12,71
90	6,68
63	7,09
	9,07

Πίνακας 6.11. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-1A μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERROR: 0,6% SAMPLE STATISTICS										
SAMPLE IDENTITY: TRI-1A				ANALYST & DATE: ,						
SAMPLE TYPE: Bimodal, Poorly Sorted				ly Sorted		٦	EXTUR/	AL G	ROUP: Gravel	ly Sand
SEDIMENT NAME: Very Fine Gravelly Coarse Sand										
	μm φ				GRAIN SIZE DISTRIBUTION					
MODE 1:	60	05,0	0,74	7		G	RAVEL:	9,49	6 COAR	RSE SAND: 26,3%
MODE 2:	10	07,5	3,23	7			SAND:	89,2	2% MEDI	IUM SAND: 22,1%
MODE 3:							MUD:	1,59	6 F	INE SAND: 11,8%
D ₁₀ :	10	09,9	-0,95	2					VF	INE SAND: 12,8%
MEDIAN or D ₅₀ :	- 52	23,2	0,93	5	V COARS	EG	RAVEL:	0,09	6 V COA	ARSE SILT: 0,2%
D ₉₀ :	19	35,0	3,18	5	COARS	EG	RAVEL:	0,09	6 COA	ARSE SILT: 0,2%
(D ₉₀ / D ₁₀):	17	7,60	-3,34	5	MEDIU	MG	RAVEL:	0,09	6 ME	DIUM SILT: 0,2%
(D ₉₀ - D ₁₀):	18	25,0	4,13	8	FIN	E G	RAVEL:	3,19	6	FINE SILT: 0,2%
(D ₇₅ / D ₂₅):	4,	272	-69,7	03	V FIN	E G	RAVEL:	6,39	6 V	FINE SILT: 0,2%
(D ₇₅ - D ₂₅):	78	81,8	2,09	5	V COA	RSE	SAND:	16,2	2%	CLAY: 0,2%
			METH	IOD OF MON	IENTS				FOLK & WAR	D METHOD
		Arith	nmetic	Geometric	Logarithn	nic	Geome	tric	Logarithmic	Description
		ļ	ım	μm	φ		μm		φ	
MEAN	(X):	90	01,4	491,1	1,026		476,	9	1,068	Medium Sand
SORTING	(σ):	11	85,0	3,132	1,647		2,97	4	1,572	Poorly Sorted
SKEWNESS (3	S&):	3,	230	-0,441	0,441		-0,05	9	0,059	Symmetrical
KURTOSIS ((<i>K</i>):	15	5,06	4,266	4,266		0,97	0	0,970	Mesokurtic

Εικόνα 6.1.Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-1A μέσο του προγράμματος Gradistat.

Πίνακας 6.12. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-1B μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERROR	t: 0,0%	SAM	PLE STAT	STICS			
SAMPLE IDENTITY	: TRI-1B		ANALYST & DATE: ,				
SAMPLE TYPE	: Bimodal, Po	orly Sorted	TE	EXTURAL GR	OUP: Sandy	Gravel	
SEDIMENT NAME	: Sandy Mediu	im Gravel					
	um ø		GRAIN SIZE DISTRIBUTION				
MODE 1: 9	9600,0 -3,24	13	G	RAVEL: 77,9	% COAR	SE SAND: 6,2%	
MODE 2:	2400,0 -1,24	13		SAND: 21,9	% MEDI	JM SAND: 3,1%	
MODE 3:				MUD: 0,19	% FI	NE SAND: 1,3%	
D ₁₀ :	904,9 -4,04	13			V FI	NE SAND: 0,3%	
MEDIAN or D ₅₀ :	8191,2 -3,03	34 1	V COARSE GI	RAVEL: 0,09	% V COA	RSE SILT: 0,0%	
D ₉₀ : 1	6481,1 0,14	4	COARSE G	RAVEL: 11,0)% COA	RSE SILT: 0,0%	
(D ₉₀ / D ₁₀):	18,21 -0,03	36	MEDIUM G	RAVEL: 40,6	5% MED	DIUM SILT: 0,0%	
(D ₉₀ - D ₁₀): 1	5576,2 4,18	7	FINE G	RAVEL: 13,8	3%	FINE SILT: 0,0%	
(D ₇₅ / D ₂₅):	5,172 0,34	0	V FINE G	RAVEL: 12,5	5% VI	FINE SILT: 0,0%	
(D ₇₅ - D ₂₅):	9734,2 2,37	'1	V COARSE	SAND: 11,0)%	CLAY: 0,0%	
	1						
	METE		VIENTS		FULK & WAR		
	Arithmetic	Geometric	Logarithmic	Geometric	Logarithmic	Description	
	μm	μm 5050.4	φ 0.240	μm 5524.2	2 469	Fine Cravel	
	5004.2	2 2 2 1 7	-2,342	2 096	-2,400	Pine Graver Dearly Sorted	
	0.382	J,Z17	1,000	3,000	0.519	Von Eine Skowed	
	2 071	4 103	1,127	0.903	0,019	Mesokurtic	
NURTUSIS (A)	2,071	4,105	4,105	0,303	0,303	wesokuttic	

Εικόνα 6.2. Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-1B μέσο του προγράμματος Gradistat.

Πίνακας 6.13. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-3A μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERR	OR:	0,1%		SAM	PLE STAT	ISTICS			
SAMPLE IDENTI	TRI-3A			ŀ	ANALYST &	DATE: ,			
SAMPLE TY	Trimod	al, Poo	rly Sorted	Т	EXTURAL G	ROUP: Sandy	/ Gravel		
SEDIMENT NAI	ME:	Sandy	Coarse	Gravel					
		μm	¢			GRAIN S	SIZE DISTRIBL	JTION	
MODE 1:	193	200,0	-4,24	3	G	RAVEL: 77	,4% COAF	RSE SAND: 5,8%	
MODE 2:	96	00,0	-3,24	3		SAND: 22	,2% MED	IUM SAND: 4,9%	
MODE 3:	- 34	00,0	-1,74	3		MUD: 0,4	1% F	INE SAND: 2,4%	
D ₁₀ :	- 59	94,7	-4,34	5			VF	INE SAND: 0,9%	
MEDIAN or D ₅₀ :	89	94,4	-3,16	9 '	V COARSE G	RAVEL: 0,0	0% V COA	ARSE SILT: 0,1%	
D ₉₀ :	203	319,0	0,750)	COARSE G	RAVEL: 34	,5% COA	ARSE SILT: 0,1%	
(D ₉₀ / D ₁₀):	34	4,17 -0,173		3	MEDIUM GRAVEL: 19,5% MEDIUM SILT: 0,1%				
(D ₉₀ - D ₁₀):	19	724,3	5,095	5	FINE G	RAVEL: 11	,7%	FINE SILT: 0,1%	
(D ₇₅ / D ₂₅):	6,	927	0,325	5	V FINE GRAVEL: 11,6% V FINE SILT: 0,1%				
(D ₇₅ - D ₂₅):	15	020,2	2,792	2	V COARSE	E SAND: 8,2	2%	CLAY: 0,1%	
			METH	OD OF MON	MENTS	1	FOLK & WA	RD METHOD	
		Arithr	metic	Geometric	Logarithmic	Geometric	: Logarithmic	Description	
		μ	m	μm	¢	μm	¢		
MEAN	(\overline{x})	1004	48,0	5433,3	-2,442	5865,6	-2,552	Fine Gravel	
SORTING	(σ) :	755	2,4	4,147	2,052	3,826	1,936	Poorly Sorted	
SKEWNESS (Sk):	0,0	92	-1,245	1,245	-0,526	0,526	Very Fine Skewed	
KURTOSIS	(K):	1,3	60	4,304	4,304	0,899	0,899	Platykurtic	

Εικόνα 6.3. Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-3A μέσο του προγράμματος GradistatVersion 8.0.

Πίνακας 6.14. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-3B μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERROR: 0,0% SAMPLE STATISTICS									
SAMPLE IDENT	ITY:	TRI-3B			,	ANALYST & I	DATE: ,		
SAMPLE TYPE: Unimodal, Moderately Sorted TEXTURAL GROUP: Gravel									
SEDIMENT NAME: Coarse Gravel									
μm							TION		
MODE 1:	26	950,0	-4,731		G	RAVEL: 97,2	2% COAR	SE SAND: 0,5%	
MODE 2:						SAND: 2,69	% MEDI	JM SAND: 0,3%	
MODE 3:						MUD: 0,29	% FI	NE SAND: 0,2%	
D ₁₀ :	80	16,6	-4,879				V FI	NE SAND: 0,2%	
MEDIAN or D ₅₀ :	224	422,3	-4,487	١	/ COARSE G	RAVEL: 0,09	% V COA	RSE SILT: 0,0%	
D ₉₀ :	294	429,6	-3,003		COARSE G	RAVEL: 73,3	3% COA	RSE SILT: 0,0%	
(D ₉₀ / D ₁₀):	3,	,671	0,615		MEDIUM G	RAVEL: 16,8	3% MED	DIUM SILT: 0,0%	
(D ₉₀ - D ₁₀):	214	413,0	1,876		FINE G	RAVEL: 4,49	%	FINE SILT: 0,0%	
(D ₇₅ / D ₂₅):	1,	,761	0,827		V FINE G	RAVEL: 2,89	% VI	FINE SILT: 0,0%	
(D ₇₅ - D ₂₅):	114	484,5	0,816		V COARSE	E SAND: 1,49	%	CLAY: 0,0%	
		N	IETHO	D OF MON	IENTS		Folk & War	D METHOD	
		Arithm	etic G	Geometric	Logarithmic	Geometric	Logarithmic	Description	
		μm	1	μm	¢	μm	¢		
MEAN	(<u>x)</u> :	20354	1,0	16912,9	-4,080	19155,9	-4,260	Coarse Gravel	
SORTING	(σ) :	7890	,1	2,243	1,166	1,745	0,803	Moderately Sorted	
SKEWNESS (Sk):	-0,91	18	-3,801	3,801	-0,609	0,609	Very Fine Skewed	
KURTOSIS	(K):	2,70	2	24,74	24,74	1,543	1,543	Very Leptokurtic	

Εικόνα 6.4. Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-3B μέσο του προγράμματος GradistatVersion 8.0.

Πίνακας 6.15. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-4 μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERROR: 0,1% SAMPLE STATISTICS									
SAMPLE IDENTI	TY:	TRI-4			ŀ	ANALYST & I	DATE: ,		
SAMPLE TYPE: Unimodal, Very Poorly Sorted TEXTURAL GROUP: Sandy Gravel								Gravel	
SEDIMENT NAME: Sandy Coarse Gravel									
		μm	¢			GRAIN SI	ZE DISTRIBU	TION	
MODE 1:	19	200,0 -	4,243		G	RAVEL: 70,0	0% COAR	SE SAND: 6,5%	
MODE 2:						SAND: 29,2	2% MEDI	UM SAND: 3,8%	
MODE 3:						MUD: 0,89	% FI	NE SAND: 8,1%	
D ₁₀ :	2	26,3 -	4,397				V FI	NE SAND: 1,5%	
MEDIAN or D ₅₀ :	164	473,5 -	4,042	١	/ COARSE G	RAVEL: 0,09	% V COA	RSE SILT: 0,1%	
D ₉₀ :	21	064,7	2,143		COARSE G	RAVEL: 54,	7% COA	RSE SILT: 0,1%	
(D ₉₀ / D ₁₀):	93	3,07 -	0,488		MEDIUM G	RAVEL: 4,79	% MED	DIUM SILT: 0,1%	
(D ₉₀ - D ₁₀):	20	838,4 (6,540		FINE GRAVEL: 3,8% FINE SILT: 0,19				
(D ₇₅ / D ₂₅):	1	3,92	0,109	V FINE GRAVEL: 6,8% V FINE SILT: 0,1%					
(D ₇₅ - D ₂₅):	17	829,4 :	3,799		V COARSE	E SAND: 9,29	%	CLAY: 0,1%	
		M	ETHOD	O OF MON	IENTS	, I	Folk & War	RD METHOD	
		Arithme	tic G	Seometric	Logarithmic	Geometric	Logarithmic	Description	
		μm		μm	ф	μm	¢		
MEAN	(<u>x)</u> :	11680,	4	4990,4	-2,319	5899,4	-2,561	Fine Gravel	
SORTING	(σ):	8591,	0	6,046	2,596	5,124	2,357	Very Poorly Sorted	
SKEWNESS (S	Sk):	-0,346	6	-1,134	1,134	-0,885	0,885	Very Fine Skewed	
KURTOSIS ((K):	1,214		3,314	3,314	0,780	0,780	Platykurtic	

Εικόνα 6.5.Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-4 μέσο του προγράμματος GradistatVersion 8.0.

Πίνακας 6.16. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-5B μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERRO	OR:	0,1%		SAM	PLE STAT	ISTICS				
SAMPLE IDENTI	TRI-5B			ŀ	ANALYST 8	ADATE: ,				
SAMPLE TY	PE: ME:	Trimodal Medium	, Poorly Gravel	/ Sorted	т	EXTURAL O	GROUP: Grave			
	ļ	um	ф			GRAIN SIZE DISTRIBUTION				
MODE 1:	13	500,0	-3,743		G	RAVEL: 81	,0% COAF	SE SAND: 5,5%		
MODE 2:	34	00,0	-1,743			SAND: 18	6% MED	UM SAND: 2,6%		
MODE 3:	17	00,0	-0,743			MUD: 0,	3% F	INE SAND: 1,1%		
D ₁₀ :	99	98,2	-3,818				VF	INE SAND: 0,5%		
MEDIAN or D ₅₀ :	79	34,1	-2,988	١	V COARSE G	RAVEL: 0,	0% V COA	RSE SILT: 0,1%		
D ₉₀ :	141	100,5	0,003		COARSE G	RAVEL: 0,	0% COA	RSE SILT: 0,1%		
(D ₉₀ / D ₁₀):	14	4,13	-0,001		MEDIUM G	RAVEL: 49),8% ME	DIUM SILT: 0,1%		
(D ₉₀ - D ₁₀):	13	102,3	3,820		FINE G	RAVEL: 17	7,9%	FINE SILT: 0,1%		
(D ₇₅ / D ₂₅):	3,	844	0,452		V FINE G	RAVEL: 13	3,4% V	FINE SILT: 0,1%		
(D ₇₅ - D ₂₅):	86	30,6	1,943		V COARSE	SAND: 8,	9%	CLAY: 0,1%		
	METHOD OF MOI						FOLK & WA	RD METHOD		
		Arithm	etic G	Geometric	Logarithmic	Geometrie	c Logarithmic	Description		
		μm		μm	¢	μm	¢			
MEAN	(<u>x)</u> :	7547,	,5	5036,3	-2,332	5531,6	-2,468	Fine Gravel		
SORTING	(σ) :	4781,	,3	3,081	1,624	2,789	1,480	Poorly Sorted		
SKEWNESS (3	Sk):	-0,03	9	-1,659	1,659	-0,569	0,569	Very Fine Skewed		
KURTOSIS ((K):	1,549	9	6,774	6,774	1,015	1,015	Mesokurtic		

Εικόνα 6.6.Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-5B μέσο του προγράμματος GradistatVersion 8.0.

Πίνακας 6.17. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-6 μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERROR: 0,2% SAMPLE STATISTICS										
SAMPLE IDENT	ITY:	TRI-6			ANALYST & DATE: ,					
SAMPLE TY	PE:	Trimoda	al, Poo	rly Sorted	T	EXTURAL	GRO	UP: Sandy	Gravel	
SEDIMENT NAI	ME:	Sandy	Mediur	n Gravel						
	ļ	μm	¢			GRAIN	SIZE	DISTRIBU	ITION	
MODE 1:	130	600,0	-3,74	3	G	RAVEL: 1	73,5%	COAR	SE SAND: 9,4%	
MODE 2:	34	0,00	-1,74	3		SAND: 2	26,2%	MEDI	UM SAND: 4,7%	
MODE 3:	12	200,0	-0,243	3		MUD: (0,2%	FI	NE SAND: 1,5%	
D ₁₀ :	63	37,8	-3,814	4				V FI	NE SAND: 0,4%	
VEDIAN or D ₅₀ :	80	90,3	-3,01	6 '	V COARSE G	RAVEL: (0,0%	V COA	RSE SILT: 0,0%	
D ₉₀ :	14(064,4	0,649)	COARSE G	RAVEL: (0,0%	COA	RSE SILT: 0,0%	
(D ₉₀ / D ₁₀):	22	2,05	-0,17)	MEDIUM G	RAVEL: {	50,8%	ME	DIUM SILT: 0,0%	
(D ₉₀ - D ₁₀):	134	426,6	4,463	}	FINE GRAVEL: 12,2%				FINE SILT: 0,0%	
(D ₇₅ / D ₂₅):	6,	,403	0,242	2	V FINE GRAVEL: 10,5%				FINE SILT: 0,0%	
(D ₇₅ - D ₂₅):	97	780,6	2,679)	V COARSE	E SAND: 1	10,3%		CLAY: 0,0%	
			METH	DD OF MON	MENTS		FO	LK & WAF	RD METHOD	
		Arithr	netic	Geometric	Logarithmic	Geomet	ric Lo	garithmic	Description	
		μr	n	μm	¢	μm		¢		
MEAN	(<u>x</u>):	725	4,6	4372,6	-2,128	4699,2	2	-2,232	Fine Gravel	
SORTING	(σ) :	503	7,5	3,471	1,795	3,293		1,720	Poorly Sorted	
SKEWNESS (Sk):	-0,0	33	-1,170	1,170	-0,645	5	0,645	Very Fine Skewed	
KURTOSIS	(K):	1,4	57	4,051	4,051	0,796	i	0,796	Platykurtic	

Εικόνα 6.7.Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-6 μέσο του προγράμματος GradistatVersion 8.0.

Πίνακας 6.18. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-7A μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERROR: 0,1% SAMPLE STATISTICS								
SAMPLE IDENTIT	TY:	TRI-7A			A	NALYST & I	DATE: ,	
SAMPLE TYP	PE:	Unimod	lal, Poo	orly Sorted	TE	extural gr	ROUP: Sandy	Gravel
SEDIMENT NAME. Sandy Medium Graver								
		μm	¢			GRAIN SI	ZE DISTRIBU	ΠΟΝ
MODE 1:	13	600,0	-3,743	3	G	RAVEL: 78,0	0% COAR	SE SAND: 6,8%
MODE 2:						SAND: 21,5	5% MEDIU	JM SAND: 4,8%
MODE 3:						MUD: 0,59	% FI	NE SAND: 2,0%
D ₁₀ :	6	06,6	-3,987	7			V FI	NE SAND: 0,8%
MEDIAN or D ₅₀ :	86	523,7	-3,108	3 1	/ COARSE G	RAVEL: 0,09	% V COA	RSE SILT: 0,1%
D ₉₀ :	15	858,6	0,721		COARSE G	RAVEL: 9,49	% COA	RSE SILT: 0,1%
(D ₉₀ / D ₁₀):	2	6,14	-0,181	1	MEDIUM GRAVEL: 45,0% MEDIUM SILT: 0,1%			
(D ₉₀ - D ₁₀):	15	252,0	4,708		FINE GRAVEL: 14,4% FINE SILT: 0,1%			
(D ₇₅ / D ₂₅):	5	,083	0,363		V FINE G	RAVEL: 9,29	% VF	INE SILT: 0,1%
(D ₇₅ - D ₂₅):	10	325,0	2,346		V COARSE	SAND: 7,19	%	CLAY: 0,1%
			метно		IENTS		FOLK & WAR	
		Arithr	netic	Geometric	Logarithmic	Geometric	Logarithmic	Description
		μι	n	μm	\$	μm	¢	
MEAN ((<u>x)</u> :	844	5,4	4965,7	-2,312	5206,0	-2,380	Fine Gravel
SORTING	(σ):	588	2,8	3,803	1,927	3,472	1,796	Poorly Sorted
SKEWNESS (S	sk):	0,1	63	-1,487	1,487	-0,601	0,601	Very Fine Skewed
KURTOSIS (.	K) :	1,9	24	5,323	5,323	1,004	1,004	Mesokurtic

Εικόνα 6.8.Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-7A μέσο του προγράμματος GradistatVersion 8.0.

Πίνακας 6.19. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-7B μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERRO	OR:	0,2%		STICS					
SAMPLE IDENTI	TY:	TRI-7	В		ANALYST & DATE: ,				
SAMPLE TY	PE:	Bimod	lal, Poo	rly Sorted	TE	EXTURAL GR	ROUP: Grave	lly Sand	
SEDIMENT NAM	ME:	Fine C	Gravelly	Coarse San	d				
		μm	ф		GRAIN SIZE DISTRIBUTION				
MODE 1:	8	55,0	0,247	7	G	RAVEL: 28,4	1% COAF	RSE SAND: 36,6%	
MODE 2:	68	300,0	-2,74	3		SAND: 71,4	4% MEDI	UM SAND: 8,0%	
MODE 3:						MUD: 0,29	% F	INE SAND: 0,6%	
D ₁₀ :	5	09,6	-2,70	8			VF	INE SAND: 0,2%	
MEDIAN or D ₅₀ :	11	104,2	-0,14	3 1	V COARSE G	RAVEL: 0,09	% V COA	ARSE SILT: 0,0%	
D ₉₀ :	65	535, 8	0,973	3	COARSE G	RAVEL: 0,09	% COA	ARSE SILT: 0,0%	
(D ₉₀ / D ₁₀):	12	2,83	-0,35	9	MEDIUM GI	RAVEL: 0,09	% ME	DIUM SILT: 0,0%	
(D ₉₀ - D ₁₀):	60	026,3	3,681	1	FINE G	RAVEL: 19,6	5%	FINE SILT: 0,0%	
(D ₇₅ / D ₂₅):	3	,539	-0,42	3	V FINE G	RAVEL: 8,79	% V	FINE SILT: 0,0%	
(D ₇₅ - D ₂₅):	17	743,9	1,823	3	V COARSE	SAND: 26,0)%	CLAY: 0,0%	
			METH	OD OF MON	/IENTS		Folk & Wai	RD METHOD	
		Arith	metic	Geometric	Logarithmic	Geometric	Logarithmic	Description	
		Ļ	ւտ	μm	¢	μm	ф		
MEAN	(<u>x)</u> :	22	05,0	1365,2	-0,449	1542,6	-0,625	Very Coarse Sand	
SORTING	(σ):	22	76,5	2,593	1,375	2,759	1,464	Poorly Sorted	
SKEWNESS (3	Sk):	1,	323	0,158	-0,158	0,369	-0,369	Very Coarse Skewed	
KURTOSIS ((K):	3,	076	3,769	3,769	0,935	0,935	Mesokurtic	

Εικόνα 6.9. Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-7B μέσο του προγράμματος GradistatVersion 8.0.

Πίνακας 6.20. Αναγραφή των αποτελεσμάτων της κοκκομετρικής ανάλυσης του δείγματος TRI-8B μέσο του προγράμματος GradistatVersion 8.0.

SIEVING ERROR: 0,4% SAMPLE STATISTICS									
SAMPLE IDENTI	TRI-8B		ANALYST & DATE: ,						
SAMPLE TYP	PE:	Bimodal, '	Very P	oorly Sor	ted T	EXTURAL G	ROUP: Sandy	Gravel	
SEDIMENT NAME: Sandy Medium Gravel									
	ļ	um	¢	GRAIN SIZE DISTRIBUTION					
MODE 1:	13	600,0 -3	3,743		(RAVEL: 61	,9% COAR	SE SAND: 6,6%	
MODE 2:	2	15,0 2	,237			SAND: 35,	4% MEDI	UM SAND: 9,8%	
MODE 3:						MUD: 2,6	5% FI	NE SAND: 9,3%	
D ₁₀ :	17	73,0 -3	,846				V FI	NE SAND: 4,0%	
MEDIAN or D ₅₀ :	65	11,3 -2	2,703	1	V COARSE (GRAVEL: 0,0	% V COA	RSE SILT: 0,4%	
D ₉₀ :	143	382,2 2	,531		COARSE (GRAVEL: 0,0	% COA	RSE SILT: 0,4%	
(D ₉₀ / D ₁₀):	83	3,12 -0	,658	MEDIUM GRAVEL: 47,3% MEDIUM SILT: 0,4%					
(D ₉₀ - D ₁₀):	142	209,1 6	,377	FINE GRAVEL: 8,0% FINE SILT: 0,4				FINE SILT: 0,4%	
(D ₇₅ / D ₂₅):	25	5,89 -0	,298		V FINE GRAVEL: 6,6% V FINE SILT: 0,4%				
(D ₇₅ - D ₂₅):	117	783,4 4	,694		V COARS	E SAND: 5,7	'%	CLAY: 0,4%	
		ME	THOD	OF MON	MENTS		FOLK & WAR	RD METHOD	
		Arithmet	ic G	eometric	Logarithmic	Geometric	Logarithmic	Description	
		μm		μm	φ	μm	ф		
MEAN ((x):	6740,8		2458,7	-1,298	2802,0	-1,486	Very Fine Gravel	
SORTING	(σ) :	5736,9		6,889	2,784	5,851	2,549	Very Poorly Sorted	
SKEWNESS (S	5 k) :	0,068		-0,977	0,977	-0,651	0,651	Very Fine Skewed	
KURTOSIS (K) :	1,259		3,110	3,110	0,640	0,640	Very Platykurtic	

Εικόνα 6.10. Ραβδόγραμμα συχνοτήτων της κατανομής των κόκκων του δείγματος TRI-8B μέσο του προγράμματος GradistatVersion 8.0.

Στατιστικά διαγράμματα δειγμάτων.

Δείγμα TRI-1B

Δείγμα TRI-3Α

Δείγμα TRI-3B

Δείγμα TRI-4

Δείγμα TRI-5B

Δείγμα TRI-6

Δείγμα TRI-7A

Δείγμα TRI-7Β

Δείγμα TRI-8Β

Η εξέταση των δειγμάτων Οφ που αναλύθηκαν με τη μέθοδο κοσκινίσματος έγινε στο στερεοσκόπιο. Τα δείγματα αυτά που

εξετάστηκαν ήταν από χαλαζία και έδωσαν τα παρακάτω στατιστικά αποτελέσματα.

Σχήμα 6.1. Κυκλικό διάγραμμα αθροιστικών συχνοτήτων σε ποσοστό % των τιμών στρογγυλότητας των κόκκων.

Σχήμα 6.2. Κυκλικό διάγραμμα αθροιστικών συχνοτήτων σε ποσοστό % των τιμών σφαιρικότητας των κόκκων.

Παράρτημα ΙΙ

Σχήμα 6.3 Τριγωνικό σύστημα ταξινόμησης κατά Folk (1954, 1980).

Σχήμα 6.4 Τριγωνικό σύστημα ταξινόμησης κατά Folk.

Σχήμα 6.5 Διάγραμμα ταξινόμησης σφαιρικότητας και στρογγυλότητας των κόκκων (Krumbein&Sloss, 1963).

Πίνακας 6.21.Ταξινόμηση των κλαστικών ιζημάτων με βάση τη τυπική απόκλιση σ, (Ψιλοβίκος, 2010).		
Τυπική Απόκλιση (σ)	Ταξινόμηση	
<0,35	πολύ καλή	
0,35 - 0,50	καλή	
0,50 - 0,71	μέτρια καλή	
0,71 - 1,00	μέτρια	
1,00 - 2,00	κακή	
2,00 - 4,00	πολύ κακή	
>4,00	εξαιρετικά κακή	

Πίνακας 6.22. Χαρακτηρισμός της λοξότητας των κλαστικών ιζημάτων (Ψιλοβίκος, 2010).		
Λοξότητα (Sk)	Χαρακτηρισμός	
+1,00 έως +0,30	πολύ θετική	
+0,30 έως +0,10	θετική	
+0,10 έως -0,10	συμμετρική	
-0,10 έως -0,30	αρνητική	
-0,30 έως -1,00	πολύ αρνητική	

Πίνακας 6.23. Χαρακτηρισμός της κύρτωσης (Ku) των κλαστικών ιζημάτων (Ψιλοβίκος, 2010).		
Κύρτωση (Ku)	Χαρακτηρισμός	
<0,67	πολύ πλατύκυρτη	
0,67 - 0,90	πλατύκυρτη	
0,90 - 1,11	μεσόκυρτη	
1,11 - 1,50	λεπτόκυρτη	
1,50 - 3,00	πολύ λεπτόκυρτη	
>3,00	εξαιρετικά λεπτόκυρτη	

Εικόνα 6.11. Πυθμένας τμήματος του Τριπόταμου.

Εικόνα 6.12. Πυθμένας τμήματος του Τριπόταμου, στο κέντρο της εικόνας παρατηρείτε μια ευμεγέθης κροκάλα.

Εικόνα 6.13 πυθμένας του Τριπόταμου στις πηγές Ασπρονερίου. Παρατηρείτε το χονδρόκοκκο υλικό.

Εικόνα 6.14. Άλλες απόψεις του πυθμένα του Τριπόταμου στις Πηγές Απρονερίου.

Εικόνα 6.15 Πυθμένας του Τριπόταμου στις πηγές Αασπρονερίου.