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ABSTRACT 
 

Criteria for selecting quantum probability models versus Kolmogorov 

probability models are usually expressed in terms of inequalities formulated from the 

original Bell inequality. If the inequality is violated, Kolmogorov probability should be 

replaced by quantum probability. We discuss these criteria and the maximal violations 

and we illustrate the applicability with data sets. We explore the possibility to apply 

quantum probability models and related statistical algorithms in three selected 

applications, namely: 1) violation of Wigner-d’Espagnat inequality by a simple data set, 

2) k-Means clustering versus quantum clustering, 3) Multiple linear regression versus 

quantum regression.   
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ΣΥΝΟΨΗ  
 

Τα κριτήρια για την επιλογή μοντέλων κβαντικής πιθανότητας έναντι μοντέλων 

πιθανότητας Kolmogorov εκφράζονται συνήθως με βάση τις ανισότητες που 

διαμορφώνονται από την αρχική ανισότητα Bell. Αν η ανισότητα παραβιάζεται, τότε η 

πιθανότητα Kolmogorov πρέπει να αντικατασταθεί από την κβαντική πιθανότητα. 

Συζητούνται αυτά τα κριτήρια και οι μέγιστες παραβιάσεις τους και παρουσιάζεται η 

εφαρμογή τους στα σύνολα δεδομένων. Ερευνάται η δυνατότητα εφαρμογής μοντέλων 

κβαντικής πιθανότητας και συναφών στατιστικών αλγορίθμων σε τρεις επιλεγμένες 

εφαρμογές, δηλαδή: 1) παραβίαση της ανισότητας των Wigner-d’Espagnat από ένα 

απλό σύνολο δεδομένων, 2) k-Means μέθοδος clustering εναντίον κβαντικής μεθόδου 

clustering, 3) Πολλαπλή γραμμική παλινδρόμηση εναντίον κβαντικής παλινδρόμησης.     
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ΠΕΡΙΛΗΨΗ 
 

 

Η κβαντομηχανική προβλέπει ότι μπορεί να υπάρχουν "μη τοπικές" σχέσεις 

μεταξύ σωματιδίων. Το 1969 όμως ο Ιρλανδός φυσικός John Bell απέδειξε ότι οι θεωρίες 

κρυφών μεταβλητών που διατηρούν τις παραδοχές της τοπικότητας και του 

ντετερμινισμού δεν μπορούν να πετύχουν τις προβλέψεις της κβαντικής φυσικής. Ο Bell 

χρησιμοποίησε μια ανισότητα που αν παραβιαζόταν, τότε δεν μπορεί να ισχύει καμιά 

θεωρία κρυφών μεταβλητών που διατηρούν την τοπικότητα. Το θεώρημα του Bell, που 

διατυπώθηκε το 1964, θεωρείται μία από τις πιο θεμελιώδεις επιστημονικές ανακαλύψεις 

του 20ου αιώνα, διότι κατέδειξε νέους πόρους στο μαθηματικό πλαίσιο της κβαντικής 

πιθανότητας με απρόσμενες δυνατότητες εφαρμογών, οι οποίες υλοποιούνται σήμερα. 

Βασισμένο στο νοητικό πείραμα των Einstein, Podolsky και Rosen (EPR), μετατόπισε τα 

επιχειρήματα σχετικά με τη φυσική πραγματικότητα των κβαντικών συστημάτων από το 

χώρο της φιλοσοφίας σε εκείνο της πειραματικής φυσικής. Ο Bell και άλλοι έδειξαν ότι 

είναι δυνατόν να διακρίνουμε μεταξύ κβαντομηχανικής και αυτών των θεωριών με τις 

κρυμμένες μεταβλητές χρησιμοποιώντας ένα συγκεκριμένο τύπο πειράματος, το οποίο 

μετράει μια παράμετρο γνωστή ως S παράμετρο. Οι τοπικές θεωρίες προβλέπουν ότι η S 

θα έχει πάντα τιμή μικρότερη του 2, ενώ η κβαντική πρόβλεψη δίνει S = 2√2. Όταν η S 

είναι μεγαλύτερη από 2, λέμε ότι παραβιάζεται η ανισότητα του Bell. Κρυφές μεταβλητές 

είναι οι προκαθορισμένες ιδιότητες των πραγμάτων, άγνωστες και στην προκειμένη 

περίπτωση, τοπικές διότι αλληλεπιδρούν με το φράγμα της ταχύτητας του φωτός (Massen, 

2019). 

Η ανισότητα του Bell είναι η εξής: 

 

1 + C(b,c) ≥ |C(a,b) - C(a,c)| 

                         

Η ανισότητα Bell σημαίνει ότι σε μια στατιστική συλλογή, αν μια ομάδα έχει την ιδιότητα 

Α και δεν έχει την ιδιότητα Β, μία άλλη ομάδα έχει την ιδιότητα Β και όχι την ιδιότητα C, 

τότε το πλήθος των δύο ομάδων θα είναι μεγαλύτερο ή ίσο από το πλήθος μίας τρίτης 

ομάδας που έχει την ιδιότητα Α και όχι την C (Massen, 2019). Με λίγα λόγια 

συμπεραίνουμε ότι αν υπάρχει κβαντική συσχέτιση (κβαντική διεμπλοκή), τότε η 

παραπάνω ανισότητα δεν ικανοποιείται.  
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Με αφετηρία την ανισότητα του Bell, συνοψίζουμε τα κριτήρια που διακρίνουν 

την κβαντική πιθανότητα από την πιθανότητα Kolmogorov. Στο πρώτο κεφάλαιο 

παρουσιάζουμε τα κριτήρια αυτά με βάση τη χρονολογική σειρά εμφάνισής τους. 

Παρουσιάζουμε επίσης τις γενικεύσεις τους ως προς το πλήθος των qubits και το πλήθος 

των διαστάσεών τους, καθώς και τις μέγιστες δυνατές παραβιάσεις τους. Στο δεύτερο 

κεφάλαιο, αναδιατυπώνουμε τα κριτήρια αυτά, ώστε να χρησιμοποιηθούν στη στατιστική 

ανάλυση συνόλων δεδομένων. Στόχος μας είναι να παρουσιάσουμε κριτήρια, των οποίων 

η παραβίαση συνεπάγεται την ύπαρξη κβαντικής συσχέτισης (διεμπλοκής) μεταξύ των 

μεταβλητών, άρα της κβαντικής πιθανότητας. Επιπλέον, παρουσιάζουμε καινοτόμες και 

πρωτότυπες εφαρμογές των κριτηρίων αυτών πάνω σε πραγματικά σύνολα δεδομένων. 

Παρουσιάζουμε το κριτήριο Wigner-d’Espagnat, το οποίο αναφέρει ότι αν θεωρήσουμε 3 

γεγονότα Α, Β, Γ του δειγματοχώρου Ω, τότε ισχύει η ανισότητα:  

 

𝑃(𝐴 ∩ 𝛣) + 𝑃(𝛣
𝑐 ∩ 𝛤) ≥ 𝑃(𝛢 ∩ 𝛤).  

 

Με βασικές γνώσεις της Θεωρίας Πιθανοτήτων παρουσιάζουμε την απόδειξη της 

παραπάνω ανισότητας. Η σημασία της ανισότητας των Wigner-d’Espagnat έγκειται 

στο γεγονός ότι η παραβίασή της από ένα παρατηρούμενο φαινόμενο, αποτελεί ένδειξη 

ότι το παρατηρούμενο φαινόμενο δεν μπορεί να μοντελοποιηθεί μέσω της πιθανότητας 

Kolmogorov και μοντελοποιείται μέσω κβαντικής πιθανότητας. 

 Τα κβαντικά συστήματα μπορεί να παρουσιάζουν συσχετίσεις που δεν έχουν 

ανάλογο στης κλασσικές θεωρίες. Παρουσιάζουμε ένα απλό και σαφές παράδειγμα 

εφαρμογής του κριτηρίου Wigner-d’Espagnat σε ένα σύνολο δεδομένων. Ελέγχουμε 

την ανισότητα των Wigner-d’Espagnat από δεδομένα 5226 παρατηρήσεων 3 δυαδικών 

μεταβλητών, R, S και E που αντιστοιχούν σε επιβεβαίωση χρήσης ουσίας (R) , ύπαρξη 

φαινοτυπικoύ χαρακτηριστικού (S) και εργασιακή σχέση (E). Ελέγχουμε τυχόν 

συσχετίσεις μεταξύ των τριών μεταβλητών ανά δύο. Παρουσιάζουμε λοιπόν τους 

πίνακες συνάφειας και κοινής εμπειρικής πιθανότητας. Στη συνέχεια εφαρμόζουμε το 

νόμο της ολικής πιθανότητας με την εξής αντιστοιχία γεγονότων:  

 

{𝑅 = 0} = 𝐴, {𝑅 = 1} = 𝐴𝑐 , {𝑆 = 0} = 𝐵, {𝑆 = 1} = 𝐵𝑐 , {𝐸 = 0} = 𝛤, {𝛦 = 1} = 𝛤𝑐. 

 

Αποδεικνύουμε ότι ο νόμος της ολικής πιθανότητας ισχύει σε κάθε περίπτωση.  
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Ελέγχουμε αν ισχύει η ανισότητα των Wigner-d’Espagnat και προκύπτει ότι όντως 

ισχύει. Αφού η ανισότητα των Wigner-d’Espagnat δεν παραβιάζεται, δεν υπάρχει 

ένδειξη κβαντικής συσχέτισης μεταξύ των μεταβλητών R, S και E.  

 Έπειτα κατασκευάζουμε ένα νέο σύνολο δεδομένων με αυτές τις τρεις 

μεταβλητές με νέες συχνότητες. Ελέγχουμε πάλι τυχόν συσχετίσεις μεταξύ των τριών 

μεταβλητών ανά δύο. Παρουσιάζουμε τους νέους πίνακες συνάφειας και κοινής 

εμπειρικής πιθανότητας. Εφαρμόζουμε το νόμο της ολικής πιθανότητας με την ίδια 

αντιστοιχία γεγονότων όπως παραπάνω.    

Αποδεικνύουμε ότι ο νόμος της ολικής πιθανότητας ισχύει σε κάθε περίπτωση.  

Ελέγχουμε αν ισχύει η ανισότητα των Wigner-d’Espagnat. Ωστόσο, αυτή τη φορά 

προκύπτει ότι δεν ισχύει η ανισότητα των Wigner-d’Espagnat. Αφού η ανισότητα των 

Wigner-d’Espagnat παραβιάζεται για το παράδειγμα δεδομένων που κατασκευάσαμε, 

το σύστημα των τριών δυαδικών μεταβλητών R, S, E θα πρέπει να μοντελοποιηθεί 

μέσω της κβαντικής πιθανότητας.  

Ο σκοπός του δευτέρου κεφαλαίου αυτής της εργασίας είναι να προσφέρει ένα 

απλό παράδειγμα βάσης δεδομένων, η οποία επειδή παραβιάζει την ανισότητα των 

Wigner-d’Espagnat, απαιτεί κβαντική μοντελοποίηση. Δεν βρήκαμε στη βιβλιογραφία 

παρόμοιο απλό παράδειγμα. Η πρακτική αξία αυτού του παραδείγματος είναι ότι όταν 

έχουμε μία βάση δεδομένων για την ανάλυση τριών δυαδικών μεταβλητών, πριν 

προχωρήσουμε σε στατιστική ανάλυση, πρέπει να εξετάσουμε αν ισχύει η ανισότητα 

των Wigner-d’Espagnat. Εάν ικανοποιείται η ανισότητα των Wigner-d’Espagnat 

(πρώτη περίπτωση), τότε προχωρούμε στη μοντελοποίηση μέσω της θεωρίας 

πιθανοτήτων κατά Kolmogorov, ενώ αν παραβιάζεται (δεύτερη περίπτωση), τότε 

είμαστε υποχρεωμένοι να κατασκευάσουμε μοντέλο κβαντικής πιθανότητας. Όταν 

κάνουμε στατιστική ανάλυση, συλλέγουμε δεδομένα χωρίς να γνωρίζουμε την 

πραγματική προέλευσή τους ούτε τον τύπο μοντελοποίησης που πρέπει να 

ακολουθήσουμε. Γνωρίζοντας όμως το Θεώρημα των Wigner-d’Espagnat, έχουμε ένα 

κριτήριο επιλογής κλασσικής ή κβαντικής μοντελοποίησης.    

 

Στο τρίτο κεφάλαιο της έρευνάς μας εξετάζουμε τα πλεονεκτήματα και τα 

μειονεκτήματα της κβαντικής μηχανικής μάθησης. Παρουσιάζουμε μεθόδους 

κωδικοποίησης των κλασσικών δεδομένων σε κβαντικές καταστάσεις. Τίθεται το 

πρόβλημα τοποθέτησης των κλασσικών δεδομένων σε υπέρθεση και πώς μπορεί να 

αντιμετωπιστεί. Συγκρίνουμε την υπολογιστική πολυπλοκότητα των κβαντικών 
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αλγορίθμων με τους αντίστοιχους κλασσικούς αλγορίθμους. Επισημαίνουμε την κλάση 

αλγορίθμων Quantum-Assisted Machine Learning (QAML), οι οποίοι χρησιμοποιούνται 

από κβαντικές συσκευές για να αντιμετωπιστούν δεδομένα πολλών διαστάσεων συνεχών 

μεταβλητών.       

Συζητούμε για την κβαντική μνήμη τυχαίας προσπέλασης (Quantum Random 

Access Memory), η οποία είναι μια κβαντική συσκευή που μπορεί να κωδικοποιεί σε 

υπέρθεση N κλασσικά διανύσματα d-διαστάσεων σε log(N d) qubits με υπολογιστική 

πολυπλοκότητα O(log(N d)). Επιπλέον, παρουσιάζουμε τις προκλήσεις που αντιμετωπίζει 

η κβαντική μνήμη τυχαίας προσπέλασης (QRAM).     

 

Στο τέταρτο κεφάλαιο, παρουσιάζουμε από τη βιβλιογραφία ένα παράδειγμα που 

συγκρίνει τους αλγορίθμους Quantum Computing Shor’s Algorithm και την ιεραρχική 

μέθοδο clustering για ένα σύνολο δεδομένων ασθενών με καρκίνο. Παρουσιάζουμε επίσης 

τον αλγόριθμο Dynamic Quantum Clustering και ένα παράδειγμα εφαρμογής του σε 

γαλαξίες. Στη συνέχεια συγκρίνουμε τους αλγορίθμους Quantum Meila-Shi Clustering 

Algorithm και k-Means Clustering Algorithm σε ένα παράδειγμα συνόλου δεδομένων από 

είδη καβουριών. Εξηγούμε τους λόγους, για τους οποίους τα αποτελέσματα κβαντικής 

μεθόδου ταξινόμησης (quantum clustering) είναι καλύτερα σε ορισμένες περιπτώσεις σε 

σχέση με τα αντίστοιχα αποτελέσματα των κλασσικών μεθόδων ταξινόμησης (k-Means 

clustering). 

Σε επιλεγμένη εφαρμογή εφαρμόζουμε πρώτα κλασσικούς αλγορίθμους για την 

ταξινόμηση δεδομένων, δηλαδή τη μέθοδο k-Means, την ιεραρχική μέθοδο, καθώς και τη 

μέθοδο Model-based που συνδυάζει κριτήρια Bayes και εκτίμηση μέγιστης πιθανοφάνειας 

σε ένα πραγματικό σύνολο δεδομένων, όπως η απουσία των ατόμων από τη δουλειά τους. 

Στη συνέχεια στο ίδιο σύνολο δεδομένων εφαρμόζουμε τον πρωτότυπο αλγόριθμο 

κβαντικής ταξινόμησης (quantum clustering) και παρουσιάζουμε στατιστικά 

αποτελέσματα και οπτικοποίηση. Ο αλγόριθμος αυτός μπορεί να εφαρμοστεί σε κάθε 

σύνολο δεδομένων. Επιχειρούμε να συγκρίνουμε τα στατιστικά αποτελέσματα των 

κλασσικών και κβαντικών μεθόδων ταξινόμησης, ώστε να βρούμε την προτιμότερη 

μέθοδο για το συγκεκριμένο σύνολο δεδομένων.   

 

 Στο πέμπτο κεφάλαιο, παρουσιάζουμε από τη βιβλιογραφία την κλάση 

αλγορίθμων Quantum-inspired Machine Learning για παλινδρόμηση. Αυτοί οι αλγόριθμοι 

μηχανικής μάθησης βασίζονται σε κάποια κβαντικά θεωρητικά στοιχεία, αλλά δεν 
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απαιτούν μια κβαντική συσκευή για την εφαρμογή των αλγορίθμων. Παρουσιάζουμε ένα 

νέο αλγόριθμο παλινδρόμησης βασισμένο στη κβαντική μηχανική και στη θεωρητική 

σύνδεση μεταξύ κβαντικών ερμηνειών και αλγορίθμων μηχανικής μάθησης. Συγκρίνουμε 

τους αλγορίθμους κβαντικής παλινδρόμησης (Quantum-Inspired Ensemble Linear 

Regressors) και γραμμικής παλινδρόμησης (Random Ensemble Linear Regressors) με 

βάση το μέσο τετραγωνικό σφάλμα των παρατηρήσεων και τις τυπικές αποκλίσεις του και 

παρατηρούμε ότι σε ορισμένες περιπτώσεις είναι προτιμότερος ο κβαντικός αλγόριθμος 

σε σχέση με τον αντίστοιχο κλασσικό. Στη βιβλιογραφία έχει επίσης αναπτυχθεί 

αλγόριθμος κβαντικής παλινδρόμησης ελαχίστων τετραγώνων (Quantum Least Squares 

Regression algorithm). Αναλύουμε το ποσοστό σφάλματος (error rate) και την 

υπολογιστική πολυπλοκότητα του αλγορίθμου αυτού. Παρουσιάζουμε ακόμη έναν 

κβαντικό αλγόριθμο γραμμικής παλινδρόμησης (Quantum Linear Regression Algorithm) 

βασιζόμενο σε κλασσικά σύνολα δεδομένων.        

Επιπρόσθετα, παρουσιάζουμε την κβαντική μάθηση κυκλωμάτων (Quantum  

Circuit  Learning), όπου περιγράφουμε τη θεωρία και τις λεπτομέρειες του αλγορίθμου 

κβαντικής παλινδρόμησης που χρησιμοποιούμε παρακάτω για την πρωτότυπη εφαρμογή 

στην Python. Ο αλγόριθμος αυτός ενώνει δύο τομείς, Quantum Computing και Μηχανική 

Μάθηση. Παρουσιάζουμε ένα απλό παράδειγμα κβαντικής παλινδρόμησης στην Python 

από τη βιβλιογραφία. Επισημαίνουμε ακόμη τα πλεονεκτήματα και τους περιορισμούς των 

αλγορίθμων που ανήκουν στην κβαντική μάθηση κυκλωμάτων.  

Σε επιλεγμένη εφαρμογή εφαρμόζουμε πρώτα κλασσικούς αλγορίθμους για την 

παλινδρόμηση δεδομένων, δηλαδή τη μέθοδο πολλαπλής γραμμικής παλινδρόμησης και 

τη λογιστική παλινδρόμηση σε ένα πραγματικό σύνολο δεδομένων, όπως το σύστημα 

βαθμολογιών σε ένα σχολείο. Στη συνέχεια στο ίδιο σύνολο δεδομένων εφαρμόζουμε τον 

πρωτότυπο αλγόριθμο κβαντικής παλινδρόμησης (quantum regression) και 

παρουσιάζουμε στατιστικά αποτελέσματα και οπτικοποίηση. Ο αλγόριθμος αυτός μπορεί 

να εφαρμοστεί σε κάθε σύνολο δεδομένων. Επιχειρούμε να συγκρίνουμε τα στατιστικά 

αποτελέσματα των κλασσικών και κβαντικών μεθόδων παλινδρόμησης, ώστε να βρούμε 

την προτιμότερη μέθοδο για το συγκεκριμένο σύνολο δεδομένων. Σημειώνουμε ότι αυτός 

ο αλγόριθμος κβαντικής παλινδρόμησης στην Python αναπτύχθηκε από το αμερικανικό 

πανεπιστήμιο MIT, ωστόσο όταν τον εφαρμόσαμε στο σύνολο δεδομένων μας, δεν 

λειτούργησε. Μετά από συγκεκριμένες τροποποιήσεις, ο αλγόριθμος έτρεξε και απέδωσε 

τα στατιστικά αποτελέσματα της παλινδρόμησης. Για την οπτικοποίηση των 

αποτελεσμάτων βασιζόμαστε στον αλγόριθμο του David Horn που αναπτύχθηκε στο 
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πρόγραμμα Matlab. Σημειώνουμε ότι και ο συγκεκριμένος αλγόριθμος παρουσίασε πολλά 

προβλήματα στην εμφάνιση των αποτελεσμάτων, ωστόσο μετά από συγκεκριμένες 

τροποποιήσεις, ο αλγόριθμος έτρεξε και απέδωσε τις ζητούμενες γραφικές παραστάσεις. 

 

Για τις εφαρμογές της έρευνάς μας χρησιμοποιούνται οι γλώσσες 

προγραμματισμού R και Python, καθώς και το στατιστικό πρόγραμμα Matlab.   

 

Στόχος μας είναι να συγκρίνουμε, αν είναι δυνατόν, τα αποτελέσματα κβαντικής 

μηχανικής μάθησης με τα αντίστοιχα της κλασσικής μηχανικής μάθησης. Ωστόσο αυτό 

δεν είναι πάντα εύκολο. Αλλά είναι ένα πρώτο βήμα στην κβαντική μηχανική μάθηση και 

στη σύνδεσή της με τις παραβιάσεις των ανισοτήτων του Bell. Είμαστε αισιόδοξοι ότι 

μπορούμε να βρούμε πραγματικά σύνολα δεδομένων, τα οποία παρουσιάζουν κβαντικές 

συσχετίσεις (διεμπλοκή) και για τα οποία μπορεί να αποδειχθεί στο εγγύς μέλλον ότι η 

εφαρμογή μεθόδων κβαντικής μηχανικής μάθησης είναι προτιμότερη από την εφαρμογή 

μεθόδων κλασσικής μηχανικής μάθησης.   
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PROLOGUE 
 

The goal of this work is to examine if there are criteria which we could 

implement in order to select and apply quantum statistical analysis instead of classical 

statistical analysis on a given data set. Data sets become larger and more complex. The 

analysis of Big Data has been recently appreciated as the fourth scientific paradigm 

(Hey, Tansley, Tolle, 2009). We consider quantum statistical analysis as a way to deal 

with Big Data. We shall investigate whether employing quantum computers we could 

handle better the information, which comes from a data set. With Quantum Machine 

Learning we could get results for a large data set by using new methods and graphical 

representations in the fields of Medicine, Physics, Chemistry and Cosmology. Our 

analysis indicates that the quantum method is more useful for certain data sets from the 

perspective of computational complexity, huge amount of data, data visualization, 

correlations which could not come from the classical methods such as regression and 

clustering.    

Bell’s inequalities are the first criterion to check if the classical representation 

is violated and so we have to use the quantum statistics. Criteria based on Bell’s 

inequalities are presented in Chapter 1. The fundamental Bell’s inequality (CHSH) is 

referred to 2 qubits and if it is violated, then there is quantum entanglement.   

The knowledge so far is not satisfactory, because Bell’s inequalities are referred 

to 2 qubits. However, a large data set contains many variables, so the need arises to 

search and investigate new criteria. Classical models may not fit well to data, so we 

search for new quantum models. For example, we could implement linear or logistic 

regression for a data set. However, it may exist a corresponding quantum regression 

method under certain circumstances, which could be better than the other methods for 

the specific data set. New quantum methods of information processing include 

Quantum Machine Learning.   

In Chapter 2 we present selected applications on Bell inequality criteria for real 

data sets. Starting from the Bell’s inequality for 2 qubits (CHSH), we find out new 

inequalities – criteria and generalizations with respect to the number of qubits and the 

dimensions of qudits. We find out the bounds of maximal violation between classical – 

quantum statistics for the above criteria – inequalities. We present calculation examples 

of the above criteria and their purpose of existence. Moreover, we simulate our own 
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example for a data set for different number of qubits and different dimensions of qudits. 

We use Python for the quantum regression implementation. We use R for the quantum 

clustering implementation. We use Matlab for the visualization of the quantum 

clustering results. Finally, we make comparisons between classical and quantum 

statistical methods in terms of the results and conclusions. The methodology is one 

from the first times it is applied and especially my own implementations, because we 

try to figure out if there are criteria which motivate us to select and apply quantum 

statistics instead of classical statistics in a data set.  For the implementation of the above 

methodology we need a large data set with many variables and many observations for 

the cases of 2-qubits, 3-qubits, 2-qutrits and qudits.  

In Chapter 3, we present the benefits and caveats of Quantum Machine 

Learning.  

In Chapter 4 and 5, we present novel applications on Quantum Clustering and 

Quantum Regression. Data has to be suitable for the classical algorithms, such as 

multiple linear regression and clustering, so that the corresponding quantum methods 

of regression and clustering could be also implemented later to compare the results.  

There are available data sets suitable for my implementations. The data sets are 

downloaded from the UCI library (https://archive.ics.uci.edu/ml/data sets.php , 21-03-

2019). We have permission to process them, according to the directions of the above 

library. The data sets seem to be sufficient for the above methodology. The data is 

expected to be as large as the number of dimensions of the data sets we use in our 

implementations. However, not all the data sets are in workable form, since some 

variables contain data types as characters and for that reason I have to transform them 

into arithmetic characters to process them. We note the code of quantum regression in 

Python firstly introduced by MIT university and the code in Matlab by David Horn. 

However, when we implemented them in our data sets, these codes were not working. 

Therefore, we processed and developed these codes and finally we get our results.     

                  

  

https://archive.ics.uci.edu/ml/datasets.php
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CHAPTER 1: QUANTUM PROBABILITY AND BELL’S 

INEQUALITY  
 

1.1: BRIEF PRESENTATION OF BELL’S INEQUALITY:  
 

 A “local” theory is defined as a one where the outcomes of an experiment on 

a system are independent of the actions performed on a different system which has no 

causal connection with the first. For example, the temperature of this room is 

independent on whether we choose to wear purple socks today (Bell, 1987).   

A “realistic” theory is defined as one whose experiments reveal pre-existing 

properties. In other words, in a realistic theory the position, momentum and spin of an 

electron exist and we simply measure them. (Wheeler, Zurek, 1983).    

 

Local correlations:  

 

We can now form an idea of what locality means. A hidden variables theory 

usually assumes that there exist some other variables, λ, on which the outcomes a and 

b depend. This hidden factors can account for the correlations between Alice’s and 

Bob’s experiments by having a joint causal influence on the two. The probability to 

obtain values a, b  given the measurement contexts 𝑀𝐴 , 𝑀𝐵 for Alice and Bob 

correspondingly and the hidden variables  λ, is   p(ab|𝑀𝐴 𝑀𝐵 , λ)     (1.1)  (Brunner, 

Cavalcanti, Pironio, Scarani, Wehner, 2014).     

Locality means simply that the local measurements are independent: 

p(ab|𝑀𝐴𝑀𝐵 , λ)  =  p(a|𝑀𝐴 , λ)  p(b|𝑀𝐵 , λ).                                                                                 

 

Quantum correlations: 

 

To define quantum behaviors, we need to define a state 𝜌𝐴𝐵   shared by 

the two parties, and measurement operators, 𝛭𝐴 and  𝑀𝐵, acting on the 

Hilbert spaces where Alice’s and Bob’s part of the shared state belongs 𝐻𝐴 

and  𝐻𝐵, respectively. The conditional probability (1.1) is:   
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p(ab|𝑀𝐴𝑀𝐵) = tr(𝜌𝛢𝛣  𝛭𝛢 ⨂ 𝑀𝐵)  , where 𝑀𝐴 and 𝑀𝐵 are the projection operators on 

the subspaces corresponding to the values  a, b of the Hilbert spaces 𝐻𝐴 , 𝐻𝐵 of the 

systems A , B (Mackey 2004, Nielsen & Chuang, 2010, Diósi, 2011, Wilde, 2013).                                                           

This is a rephrasing of Born’s rule. If the density operator 𝜌𝐴𝐵 is the pure state  

ψ  on the tensor product space 𝐻𝐴, 𝐻𝐵 , the conditional probability is simplified as 

follows:  

p(ab|𝑀𝐴𝑀𝐵) = 〈ψ| 𝛭𝛢  ⊗ 𝑀𝐵|ψ〉.                                                                  

 

Proof of Bell’s theorem:  

 

We will use the Bell inequality. Suppose we have two identical objects, 

namely they have the same properties. Suppose also that these properties are 

predetermined (counterfactual definiteness) and not generated by their measurement, 

and that the determination of the properties of one object will not influence any 

property of the other object (locality) (Mermin 1981, Preskill, 2018).   

We will only need three properties A, B and C that can each take two values: 

“0” and “1”. For example, if the objects are coins, then A = 0 might mean that the 

coin is gold and A = 1 that the coin is copper (property A, material), B = 0 means the 

coin is shiny and B = 1 it is dull (property B, texture), and C = 0 means the coin is 

large and C = 1 it is small (property C, size).     

Suppose we do not know the properties because the two coins are a gift in two 

wrapped boxes. We only know the gift is two identical coins, but we do not know 

whether they are two gold, shiny, small coins (A = 0, B = 0, C = 1) or two copper, 

shiny, large coins (1, 0, 0) or two gold, dull, large coins (1, 1, 0), etc. We do know 

that the properties “exist” (namely, they are counterfactual and predetermined even if 

we cannot see them directly) and they are local (namely, acting on one box will not 

change any property of the coin in the other box: the properties refer separately to 

each coin). These are quite reasonable assumptions for two coins! Our ignorance of 

the properties is expressed through probabilities that represent either our expectation 

of finding a property (Bayesian view), or the result of performing many repeated 

experiments with boxes and coins and averaging over some possibly hidden variable, 

typically indicated with the letter λ, that determines the property (frequentist view). 
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For example, we might say the gift bearer will give me two gold coins with a 20% 

probability (Mermin et al., 1981).     

Bell’s inequality refers to the correlation among measurement outcomes of the 

properties. We call 𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐵) the probability that the properties A of the first object 

and B of the second are the same: A and B are both 0 (the first coin is gold and the 

second is shiny) or they are both 1 (the first is copper and the second is dull). For 

example, 𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐵) =
1

2
  tells us that with 50% chance A = B (namely they are both 

0 or both 1). Since the two coins have equal counterfactual properties, this also 

implies that with 50% chance we get two gold shiny coins or two copper dull coins. 

Note that the fact that the two coins have the same properties means that 

𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐴) = 𝑃𝑠𝑎𝑚𝑒(𝐵, 𝐵) = 𝑃𝑠𝑎𝑚𝑒(𝐶, 𝐶) = 1 : if one is made of gold, also the 

other one will be, or if one is made of copper, also the other one will be, etc.   

Under the conditions that three arbitrary two-valued properties A, B, C satisfy 

counterfactual definiteness and locality, and that 𝑃𝑠𝑎𝑚𝑒(𝑋, 𝑋) = 1, for X = A, B, C 

(i.e. the two objects have same properties), the following inequality among 

correlations holds:   

𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐵) + 𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐶) + 𝑃𝑠𝑎𝑚𝑒(𝐵, 𝐶) ≥ 1          (1.2)  

namely, a Bell inequality. The proof of such inequality is given graphically in Figure 

1 below (Mermin et al., 1981).    
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Figure 1: Proof of Bell inequality (1.2) using areas to represent probabilities. (a) The dashed 

area represents the probability that property A of the first object and B of the second are 

equal (both 1 or both 0): Psame(A, B). The white area represents the probability that they are 

different: Pdiff (A, B). The whole circle has area 1 = Psame(A, B) + Pdiff (A, B). (b) The gray 

area represents the probability that A and C are equal, and the non-gray area represents the 

probability that A and C are different. If A of the first object is different from both B and C of 

the second (dotted area), then B and C of the second object must be the same. Hence, the 

probability that B and C are the same must be larger than (or equal to) the dotted area: since 

B is the same for the two objects, Psame(B, C) must be larger than (or equal to) the dotted 

area. (c) The quantity Psame(A, B) + Psame(A, C) + Psame(B, C) is hence larger than (or 

equal to) the sum of the dashed + gray + dotted areas, which is in turn larger than (or equal 

to) the full circle of area 1: this proves the Bell inequality (1.2). The reasoning fails if we do 

not employ counterfactual properties, for example if complementarity prevents us from 

assigning values to both properties B and C of the second object. It also fails if we employ 

non-local properties, for example if a measurement of B on an object to find its value changes 

the value of A of the other object (Mermin et al., 1981).    
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The inequality basically says that the sum of the probabilities that the two 

properties are the same if we consider respectively A and B, A and C, B and C must 

be larger than one. This is intuitively clear: since the two coins have the same 

properties, the sum of the probabilities that the coins are gold and shiny, copper and 

dull, gold and large, copper and small, shiny and small, dull and large is greater than 

one: all the combinations have been counted, possibly more than once (Mermin et al., 

1981).   

In Figure 2 the events to which the probabilities represented by the Venn 

diagrams of Figure 1 refer are made explicit. This is true, of course, only if the two 

objects have same counterfactual properties and the measurement of one does not 

affect the outcome of the other. If we lack counterfactual properties, we cannot infer 

that the first coin is shiny only because we measured the second to be shiny, even if 

we know that the two coins have the same properties: without counterfactual 

definiteness, we cannot even speak of the first coin’s texture unless we measure it. 

Moreover, if a measurement of the second coin’s texture can change the one of the 

first coin (non-locality) again we cannot infer the first coin’s texture from a 

measurement of the second: even if we know that the initial texture of the coins was 

the same, the measurement on the second may change such property of the first 

(Mermin et al., 1981).           
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Figure 2: Explicit depiction of the properties whose probabilities are represented by the 

areas of the Venn diagrams in Figure 1. The properties are represented by a triplet of 

numbers (A, B, C) that indicate the (counterfactual, local) values of the properties A, B, and 

C for both objects. Note that in the dotted area A must be different from both B and C, so that 

B and C must be equal there (B and C are equal also in the intersection between the two 

smaller sets, but that is irrelevant to the proof) (Mermin et al., 1981). 

 

To prove Bell’s theorem, we now provide as a counter example a quantum 

system that violates the above inequality. Consider two two-level systems (qubits) in 

the joint entangled state ∣Φ+⟩ = (∣00⟩+∣11⟩)/√ 2, and consider the 2 valued properties 

A, B, and C obtained by projecting the qubit on the states 

A : {
|𝑎0⟩  ≡  |0⟩

|𝑎1⟩  ≡  |1⟩
          B : {

|𝑏0⟩  ≡  
1

2
|0⟩ + 

√3

2
|1⟩ 

|𝑏1⟩  ≡   
√3

2
|0⟩ − 

1

2
|1⟩

         C : {
|𝑐0⟩  ≡  

1

2
|0⟩ − 

√3

2
|1⟩ 

|𝑐1⟩  ≡   
√3

2
|0⟩ + 

1

2
|1⟩

                    

where it is easy to check that ∣b1⟩ is orthogonal to ∣b0⟩ and ∣c1⟩ is orthogonal to ∣c0⟩. It 

is also easy to check that  

|𝛷+⟩ =  
|𝑎0𝑎0⟩ + |𝑎1𝑎1⟩  

√2
 =  

|𝑏0𝑏0⟩ + |𝑏1𝑏1⟩  

√2
  =   

|𝑐0𝑐0⟩ + |𝑐1𝑐1⟩  

√2
         

so that the two qubits have the same properties, namely 𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐴) = 𝑃𝑠𝑎𝑚𝑒(𝐵, 𝐵) =

𝑃𝑠𝑎𝑚𝑒(𝐶, 𝐶) = 1 :  the measurement of the same property on both qubits always 

yields the same outcome, both 0 or both 1.         
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We are now ready to calculate the quantity on the left of Bell’s inequality 

(1.2). We just write the state ∣Φ+⟩ in terms of the eigenstates of the properties A, B, 

and C. e.g., it is easy to find the value of  𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐵) if we write:  

|𝛷+⟩ =  
|𝑎0⟩ (|𝑏0⟩  +  √3|𝑏1⟩)  +  |𝑎1⟩ (√3|𝑏0⟩  −  |𝑏1⟩)  

2√2
 

In fact, the probability of obtaining 0 for both properties is the square modulus of the 

coefficient of |𝑎0⟩ |𝑏0⟩, namely, ∣1/2 √ 2∣2 = 1/8, while the probability of obtaining 1 

for both is the square modulus of the coefficient of |𝑎1⟩ |𝑏1⟩, again 1/8.   

Hence, 𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐵) =
1

8
+
1

8
=
1

4
  . Analogously, we find that 𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐶) =

1

4
  and 

that 𝑃𝑠𝑎𝑚𝑒(𝐵, 𝐶) =
1

4
  by expressing the state respectively as:  

|𝛷+⟩ =  
|𝑎0⟩ (|𝑐0⟩  +  √3|𝑐1⟩) − |𝑎1⟩ (√3|𝑐0⟩  − |𝑐1⟩)  

2√2
 

|𝛷+⟩ =  
 (|𝑏0⟩  +  √3|𝑏1⟩) (|𝑐0⟩  + √3|𝑐1⟩) − (√3|𝑏0⟩  −  |𝑏1⟩) (√3|𝑐0⟩  − |𝑐1⟩)  

4√2
 

 

Summarizing, we have found 

𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐵) + 𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐶) + 𝑃𝑠𝑎𝑚𝑒(𝐵, 𝐶) =  
3

4
 <  1                      

which violates Bell’s inequality (1.2).      

This proves Bell’s theorem: all local counterfactual theories must satisfy inequality 

(1.2) which is violated by quantum mechanics. Then, quantum mechanics cannot be a 

local counterfactual theory: it must either be non-counterfactual (as in the 

Copenhagen interpretation) or non-local (as in the de Broglie-Bohm interpretation) 

(Mermin et al., 1981).                                                                                            ∎ 

 

Bell’s thought experiment:  

 

Bell considered a setup in which two observers, Alice and Bob, perform 

independent measurements on a system S prepared in some fixed state. Each observer 
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has a detector with which to make measurements. On each trial, Alice and Bob can 

independently choose between various detector settings. Alice can choose a detector 

setting a to obtain a measurement 𝑀𝐴 and Bob can choose a detector setting b to 

measure 𝑀𝐵. After repeated trials Alice and Bob collect statistics on their 

measurements and correlate the results (Bell, 1987).     

There are two key assumptions in Bell's analysis: (1) each measurement 

reveals an objective physical property of the system and (2) a measurement taken by 

one observer has no effect on the measurement taken by the other. 

In the language of probability theory, repeated measurements of system 

properties can be regarded as repeated sampling of random variables. One might 

expect that measurements by Alice and Bob to be somehow correlated with each 

other: the random variables are assumed to not be independent, but linked in some 

way. Nonetheless, there is a limit to the amount of correlation one might expect to 

see. The Bell inequality expresses that maximum amount of correlation one can 

expect (Bell, 1987).            

A version of the Bell inequality appropriate for this example is given by 

Clauser, Horne, Shimony and Holt, and is called the CHSH form: 

𝐶(𝑀𝐴, 𝑀𝐵) + 𝐶(𝑀𝐴, 𝑀𝐵
′ ) + 𝐶(𝑀𝐴

′ , 𝑀𝐵) − 𝐶(𝑀𝐴
′  , 𝑀𝐵

′ ) ≤   2      (1.3)  ,   

where C denotes correlation and 𝑀𝐴 , 𝑀𝐴′ refer to measurement settings for Alice and 

𝑀𝐵, 𝑀𝐵′  refer to measurement settings for Bob (Bell, 1987).     

The CHSH inequality involves two settings for Alice and two settings for Bob. 

Now we denote by 𝐴𝑖 the measurement settings for Alice, 𝐵𝑗 the measurement 

settings for Bob, 𝑎 the outcome of the measurement setting for Alice and 𝑏 the 

outcome of the measurement setting for Bob. Let us take the eigenvalues of both 𝐴𝑖 

and 𝐵𝑗 to be  ±1, and let 𝐸𝑖𝑗 denote the expectation value for measurement settings i 

and j respectively:                                                                    

𝐸𝑖𝑗 = 〈𝐴𝑖𝐵𝑗〉 =  ∑  𝑎𝑏 ∙ 𝑝(𝑎𝑏|𝐴𝑖𝐵𝑗)𝑎,𝑏                (1.4) (Clauser, Horne, Shimony, 

Holt, 1969) 

The inequality (1.3) then reads:  

𝑆 = 𝐸00 + 𝐸01 + 𝐸10 − 𝐸11 ≤   2                        (1.5)                                                                                                                                       
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with 2 being the maximum value of S allowed by local realist theories.  

The maximum quantum value is  

𝑆 = 2 √2  >   2                           (1.6) (Clauser, Horne, Shimony, Holt, 1969)   

Equation (1.6) illustrates the content of Bell’s theorem, establishing the nonlocal 

character of quantum theory. All bipartite Bell inequalities that involve two 

dichotomic measurements on both parties are equivalent (up to permutations of inputs 

and outputs) to the CHSH (Clauser, Horne, Shimony, Holt, 1969).    

We will now prove the bounds of CHSH. To prove the local bound we assign 

values to the expectation values of the operators, maximizing S. We keep in mind 

that, for local behaviors, it holds that 〈𝐴𝑖𝐵𝑗〉 =  〈𝐴𝑖〉 〈𝐵𝑗〉.   

There are 42  possible assignments, and to find the maximum value one needs 

simply to go over them (see Table 1). But it is easy to see that the value S = 2 cannot 

be exceeded. We maximize the terms that come into S with a plus sign by assigning 

the value +1 to each 𝐴𝑖 and  𝐵𝑗 , thus maximizing each term. Since the last term, 𝐴1𝐵1 

which comes into S with a minus sign is also 1, the total value of S is 2 in this 

scenario. If we, on the contrary, minimize the negative term, by assigning opposite 

sign values to 𝐴1 and  𝐵1, the positive term is also minimized, and the total value of S 

is again 2 (Clauser, Horne, Shimony, Holt, 1969).     

 

〈𝐴0〉 〈𝐴1〉 〈𝐵0〉 〈𝐵1〉 𝐸00 𝐸01 𝐸10 𝐸11 S 

1 1 1 1 1 1 1 1 2 

1 1 1 -1 1 -1 1 -1 2 

1 1 -1 1 -1 1 -1 1 -2 

1 1 -1 -1 -1 -1 1 1 -2 

1 -1 1 1 1 1 -1 -1 2 

1 -1 1 -1 1 -1 -1 1 -2 

1 -1 -1 1 -1 1 1 -1 2 

1 -1 -1 -1 -1 -1 1 1 -2 

-1 1 1 1 -1 -1 1 1 -2 

-1 1 1 -1 -1 1 1 -1 2 

-1 1 -1 1 1 -1 -1 1 -2 

-1 1 -1 -1 -1 -1 1 1 -2 

-1 -1 1 1 -1 -1 -1 -1 2 

-1 -1 1 -1 -1 1 -1 1 -2 

-1 -1 -1 1 1 -1 1 -1 2 

-1 -1 -1 -1 1 1 1 1 2 
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Table 1: the local values of  S    

 

In quantum mechanics, we can choose a state and some operators such that, 

when plugging them in equation (1.4), we obtain a behavior that violates the CHSH 

inequality. We give an example of such a choice here (Clauser, Horne, Shimony, 

Holt, 1969).   

Let us take the state to be the singlet state of two qubits, |ψ> = (|01> + |10>) / 

√2  and Alice’s operators to be A0 = ZA and A1 = XA, where ZA and XA are the Pauli 

operators acting on Alice’s Hilbert space, in the z and x directions, respectively. We 

choose Bob’s operators to be: 

𝐵0 =
−𝑍𝐵− 𝑋𝐵

√2
                        𝐵1 =

−𝑍𝐵+ 𝑋𝐵

√2
                                                                 

where ZB and XB are the corresponding Pauli operators on Bob’s Hilbert 

space. We then have  <A0B0> = <A0B1> = <A1B0> = 1/√2  and  <A1B1> = – 1/√2 .  

 

Putting these values together in S, we get S = 2√2  > 2 , at odds 

with (1.5). We have shown that quantum mechanics allows for the value  2√2, 

thus proving Bell’s theorem (Clauser, Horne, Shimony, Holt, 1969).         

In order to prove that 2√2  is  indeed the maximum value allowed by quantum 

mechanics, we start by defining the operator: 

𝐹 = 𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 − 𝐴1𝐵1         

                                                       

Since the eigenvalues of 𝐴𝑖  (and 𝐵𝑗) are  ±1, it follows the operators are all 

involutions, i.e. they all square to the identity:  𝐴𝑖
2 = 𝐼𝐴  and  𝐵𝑗

2 = 𝐼𝐵 . Using this, 

we have:   

𝐹2 = 4𝐼𝐴𝐵 − [𝐴0, 𝐴1] [𝐵0, 𝐵1]                                                             (1.7)                               

We also need to define the norm of an operator O, as following: 

‖𝑂‖ =  √〈𝑂†𝑂〉                                                                                

or simply 

‖𝑂‖ =  √〈𝑂2〉                                                                                

since we are only concerned with Hermitian operators. Plugging the following 

norm inequalities: 
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‖[𝐴0, 𝐴1]‖ ≤ 2 ‖𝐴0‖ ‖𝐴1‖                                                         

‖[𝐵0, 𝐵1]‖ ≤ 2 ‖𝐵0‖ ‖𝐵1‖                                                         

into equation (1.7), and using the fact that  〈𝐴𝑖〉  ≤ 1  and  〈𝐵𝑖〉  ≤ 1, the 

quantum limit follows (Tsirelson, 1993).                               
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1.2: CRITERIA INDICATING THE PRESENCE OF QUANTUM 

PROBABILITY 
 

Quantum systems may exhibit correlations that go that have no analogue 

classical theories. We shall present criteria for selecting quantum probability instead 

of classical probability. The order of criteria will be presented following their 

historical appearance, starting from Bell’s theorem for locality.          

 

 

 

Figure 3: Major Differences between classical probability and quantum theory (Rau, 2009). 

  

Criterion: Bell’s theorem for locality (1964)     

  

In order to ensure non-disturbance, the most stringent physical requirement is 

to carry out measurements on systems that cannot possibly influence each other. 

According to the special theory of relativity, information (or information-bearing 

physical carriers) propagate with a speed bounded by that of light in vacuum, c. 

Hence, performing measurements on two systems separated by a sufficient distance 
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such that no signal could reach each from the other during the performance of the 

experiment seems to forestall any possibility of influence between the experiments 

(Bell, 1964).    

This is, in fact, the assumption of locality made by Bell (1964). In our setup, 

this corresponds to assuming a joint system, described by a density operator 𝜌𝛢𝛣   in 

the joint Hilbert space   ℋ𝐴𝐵 =  ℋ𝐴  ⊗ ℋ𝐵    , on which local measurements of the 

form  𝐴𝑖⨂𝟙   and  𝟙 ⨂ 𝐵𝑗  are performed. Thus, the CHSH-expression (John Clauser, 

Michael Horne, Abner Shimony, and Richard Holt) becomes:  

〈𝐶𝐶𝐻𝑆𝐻〉 =  〈𝐴1  ⊗ 𝐵1〉 + 〈𝐴1  ⊗ 𝐵2〉 + 〈𝐴2  ⊗ 𝐵1〉 − 〈𝐴2  ⊗ 𝐵2〉             (2.1)  

 

If the locality-assumption now suffices to certify non-disturbance, and if we 

are furthermore justified in assigning definite values to these quantum mechanical 

observables, then the above expression should be bounded by  2:  

〈𝐶𝐶𝐻𝑆𝐻〉  ≤   2                                                          (2.2)  

However, if we take the state:  

|𝛷+⟩ =
1

√2
 ( |00⟩ +  |11⟩ )                                    (2.3)  

together with the observables:  

Α1 = σx  ,  B1 =
1

√2
 (𝜎𝑋 + 𝜎𝛧)      

Α2 = σz  ,  B2 =
1

√2
 (𝜎𝑋 − 𝜎𝛧)                              (2.4)  

where  𝜎𝑋 and 𝜎𝑍 are the Pauli operators acting on Alice’s Hilbert space, in the x and z 

directions, respectively and 𝐵1 , 𝐵2 are the chosen Bob’s operators where 𝜎𝑋  and 𝜎𝛧  

are the corresponding Pauli operators on Bob’s Hilbert space, then a straightforward 

calculation of the expectation values:  

〈𝐴𝑖𝐵𝑗〉 = 𝑡𝑟(𝐴𝑖  ⊗ 𝐵𝑗  |𝛷
+⟩⟨𝛷+| )                        (2.5)  

shows that:    

〈𝐶𝐶𝐻𝑆𝐻〉 =  〈𝐴1  ⊗ 𝐵1〉 + 〈𝐴1  ⊗ 𝐵2〉 + 〈𝐴2  ⊗ 𝐵1〉 − 〈𝐴2  ⊗ 𝐵2〉   =  
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                 = 
1

√2
+ 

1

√2
 +  

1

√2
 − (− 

1

√2
 )    =      2 √2    >     2               (2.6)  

 

which, as can be shown, is in fact the maximum value (Tsirelson, 1993). Thus, despite 

the locality requirement, there are quantum mechanical measurements that do not 

possess a joint probability distribution.    

The impossibility to reconcile a local realistic picture with the predictions of 

quantum mechanics is the essence of Bell’s theorem. The reason for this 

irreconcilability does indeed lie with the failure of co-measurability of the 

observables:  neither  𝐴1  and   𝐴2, nor  𝐵1  and  𝐵2  are jointly measurable, since both 

[𝐴1, 𝐴2] and [𝐵1, 𝐵2] are nonzero. The necessity of this requirement can be seen easily 

by taking the square of the CHSH-operator:  

𝐶𝐶𝐻𝑆𝐻
2 = 4 ∙  𝟙 + (𝐴1𝐴2 − 𝐴2𝐴1)⨂(𝐵2𝐵1 − 𝐵1𝐵2) = 4 ∙ 𝟙 − [𝐴1 , 𝐴2]⨂[𝐵1 , 𝐵2]      

                                                                                                                      (2.7)  

where we have used that dichotomic observables square to the identity.                                       

Hence, a violation of the CHSH-inequality is only possible if both commutators are 

non-vanishing (Bell, 1964).   

Note, however, that while this is a necessary condition, it is not alone 

sufficient. For a state of the form   𝜌𝑝𝑟𝑜𝑑 = |𝜓1⟩⟨𝜓1|  ⨂ |𝜓2⟩⟨𝜓2|     , since the 

observables  𝐴𝑖  act nontrivially only on  |𝜓1⟩ , while the observables  𝐵𝑗  act only on  

|𝜓2⟩ , the correlators factorize, yielding for the expectation value of the CHSH-

operator:    

〈𝐶𝐶𝐻𝑆𝐻〉 =  〈𝐴1〉〈𝐵1〉 + 〈𝐴1〉〈𝐵2〉 + 〈𝐴2〉 〈𝐵1〉 − 〈𝐴2〉〈𝐵2〉  =     

= 〈𝐴1〉  (〈𝐵1〉 + 〈𝐵2〉) +  〈𝐴2〉  (〈𝐵1〉 − 〈𝐵2〉)   ≤    2                        (2.8)  

since  〈𝐴𝑖〉 , 〈𝐵𝑗〉 ≤   1   (Bell, 1964).  

This extends to convex combinations    𝜌𝑠𝑒𝑝 = ∑ 𝑝𝑖 𝜌𝑝𝑟𝑜𝑑
𝑖

𝑖      since each of the 

terms in the combination is bounded by 2. Thus, separable states, i.e. states that can be 

written as a convex combination of product states, cannot violate the bound 
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|〈𝐶𝐶𝐻𝑆𝐻〉| ≤ 2 .  It follows that, besides non-jointly measurable observables, 

entanglement is a critical resource for Bell inequality violation (Bell, 1964).      

 

Representation of Bell’s inequality with Venn’s diagrams 

 

In his original paper, Bell showed that under conditions of independence 

classical random variables A, B, C will satisfy:                  

|𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐵) − 𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐶)| <  𝑃𝑠𝑎𝑚𝑒(𝐵, 𝐶) + 1                                 (2.9) 

where   𝑃𝑠𝑎𝑚𝑒(𝐴, 𝐵)  is the probability that the pair of random variables A, B have 

some identical property. Bell showed that similar measurement of entangled quantum 

variables can lead to a violation of the inequality (2.9) and, therefore, such violation 

can serve as a divide between classical and quantum variables (Bell, 1964).   

However, Bell inequality is also violated in many classical situations where long-

range correlations persist (Bell, 1964).  

It is quite clear that a constraint on  n  variables will be projected as several 

constraints on subsets of these variables. Therefore, if we are only given the 

constraints on the subsets of the variables, it cannot be said if they were derived from 

the same function on all the variables. Consider (with Boole) three events A, B, and 

C. Let P(AB) = r, P(BC) = s and P(AC) = t. If a Venn diagram is drawn and we write:     

𝑃(𝐴𝐵𝐶) = 𝜆 , 𝑃(𝐴𝐵𝐶̅) = 𝜇 , 𝑃(𝐴�̅�𝐶) = 𝜈  , 𝑃(�̅�𝐵𝐶) = 𝜂   

Then λ + µ = r,  λ +η = s,  λ +ν = t 

and:  
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Figure 4: Venn diagram for three events A, B, C (Kak, 2013).   

A straightforward computation shows that the following constraints need to be 

satisfied for the data to be consistent: 

                        r > s + t – 1                                    (2.10a) 

                         s > t + r – 1                                   (2.10b)                                                                           

                          t > r + s – 1                                  (2.10c)  

These are of the form:  

                  P(AB) – P(AC) > P(BC) – 1                                                                                   

which may be written as: 

                  |P(AB) – P(AC)| < 1 – P(BC)           (2.10d).  

This is a form similar to that of the original Bell inequality (2.9).       
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Counterexample  

 

For the past 60 years, the best guide to that boundary has been a theorem 

called Bell's Inequality, but now a new paper shows that Bell's Inequality is not the 

guidepost it was believed to be, which means that as the world of quantum computing 

brings quantum strangeness closer to our daily lives, we understand the frontiers of 

that world less well than scientists have thought.   

In this new paper, published in the July 20 edition of Optica, University of 

Rochester researchers show that a classical beam of light that would be expected to 

obey Bell's Inequality can fail this test in the lab, if the beam is properly prepared to 

have a particular feature: entanglement.  

Not only does Bell's test not serve to define the boundary, the new findings 

don't push the boundary deeper into the quantum realm but do just the opposite. They 

show that some features of the real world must share a key ingredient of the quantum 

domain. This key ingredient is called entanglement, exactly the feature of quantum 

physics that Einstein labeled as spooky (Qian, Little, Howell, Eberly, 2015).  

According to Joseph Eberly, professor of physics and one of the paper's 

authors, it now appears that Bell's test only distinguishes those systems that are 

entangled from those that are not. It does not distinguish whether they are "classical" 

or quantum.  

In the forthcoming paper the Rochester researchers explain how entanglement 

can be found in something as ordinary as a beam of light. 

Eberly explained that "it takes two to tangle." For example, think about two 

hands clapping regularly. What you can be sure of is that when the right hand is 

moving to the right, the left hand is moving to the left, and vice versa. But if you were 

asked to guess without listening or looking whether at some moment the right hand 

was moving to the right, or maybe to the left, you wouldn't know. But you would still 

know that whatever the right hand was doing at that time, the left hand would be 

doing the opposite. The ability to know for sure about a common property without 

knowing anything for sure about an individual property is the essence of perfect 

entanglement (Qian, Little, Howell, Eberly, 2015).  
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Eberly added that many think of entanglement as a quantum feature because 

"Schrodinger coined the term 'entanglement' to refer to his famous cat scenario." But 

their experiment shows that some features of the "real" world must share a key 

ingredient of Schrodinger's Cat domain: entanglement. 

With this result, Eberly and his colleagues have shown experimentally "that 

the border is not where it's usually thought to be, and moreover that Bell's Inequalities 

should no longer be used to define the boundary".  

The growing recognition that entanglement is not exclusively a quantum 

property, and does not even originate with Schrodinger’s famous remark about it, 

prompts the examination of its role in marking the quantum-classical boundary. We 

have done this by subjecting correlations of classical optical fields to new Bell-

analysis experiments and report here values of the Bell parameter greater than  B = 

2.54 . (Qian, Little, Howell, Eberly, 2015)   

This is many standard deviations outside the limit  B = 2  established by the 

Clauser–Horne–Shimony–Holt Bell inequality, agreement with our theoretical 

classical prediction, and not far from the Tsirelson limit  B = 2.828….These results 

cast a new light on the standard quantum-classical boundary description, and suggest 

a reinterpretation of it (Qian, Little, Howell, Eberly, 2015).   
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Figure 5: Experimental setup consists of a source of unpolarized light and a measurement 

using a modified MZ interferometer. HWP and a QWP control the polarization of the source. 

All beam splitters are 50:50 unless marked as a PBS. Intensities needed for obtaining the 

required joint projections are measured as detector D1. Shutters S independently block the 

arms of the interferometer in order to measure light through the arms separately. A 

removable mirror (RM) directs the light to a polarization tomography setup where the 

orthogonal components of the polarization in the basis determined by the wave plate are 

measured at detectors D2 and D3 (Qian, Little, Howell, Eberly, 2015).   

 

Our theoretical sketch for the simplest case, unpolarized light, indicated that 

such fields or states are predicted to possess a range of correlation strengths equal to 

that of two-party quantum systems, that is, outside the bound B ≤ 2 of the CHSH Bell 

inequality and potentially as great as 𝐵 = 2√2 . In our experimental test, we used 

light whose statistical behavior (field second-order statistics) is indistinguishable from 

classical, viz., the light from a broadband laser diode operating below threshold (Qian, 

Little, Howell, Eberly, 2015).  
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Our detections of whole-beam intensity are free of the heralding requirements 

familiar in paired-photon CHSH experiments. Repeated tests confirmed that such a 

field can strongly violate the CHSH Bell inequality and can attain Bell-violating 

levels of correlation similar to those found in tests of maximally entangled quantum 

systems.  

One naturally asks, how are these results possible? We know that a field with 

classically random statistics is a local real field, and we also know that Bell 

inequalities prevent local physics from containing correlations as strong as what 

quantum states provide. But the experimental results directly contradict this. The 

resolution of the apparent contradiction is not complicated, but does mandate a shift in 

the conventional understanding of the role of Bell inequalities, particularly as markers 

of a classical-quantum border. Bell himself came close to addressing this point. He 

pointed out that even adding classical indeterminism would still not be enough for any 

type of hidden variable system to overcome the restriction imposed by his 

inequalities. This is correct as far as it goes, but fails to engage the point that local 

fields can be statistically classical and exhibit entanglement at the same time (Qian, 

Little, Howell, Eberly, 2015).  

For the fields under study, the entanglement is a strong correlation that is 

intrinsically present between the amplitude and polarization DOFs, and it is embedded 

in the field from the start (as it also is embedded ab initio in any quantum states that 

violate a Bell inequality). The possibility of such pre-existing structural correlation is 

bypassed in a CHSH derivation. 

Thus one sees that Bell violation is a result of entanglement due to tensor 

product structure (Qian, Little, Howell, Eberly, 2015).       

 

 

Criterion: Bell-Kochen-Specker inequality (1967)      

  

Firstly, we present the requirements of this criterion. The generalized Bell 

inequality, due to Kochen and Specker, namely, the Bell–Kochen–Specker (BKS) 

inequality, analyzes under what condition a single degree of freedom exhibits the 
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inequivalence between explanations based on classical and quantum probabilities. 

There is no need to consider entangled states, which requires at least two or more 

degrees of freedom, and neither is it necessary to have spins with space-like 

separation (so that the operators operating on the different spins commute). All that is 

needed for the BKS theorem is the existence of a certain collection of Hermitian 

operators.     

BKS inequality for a single Spin 1 System:  

The BKS inequality can be derived for a spin 1 system that is located at a 

single point. Since there is only one degree of freedom, the quantum state cannot be 

an entangled state (Kochen, Specker, 1967).     

Consider the case of 𝑃1, 𝑃2, 𝑃3 , 𝑃4, 𝑃5 , namely, five commuting and non-

commuting operators that are arranged in Figure 6. Let the operators be numbered 

periodically with 𝑃6  ≡ 𝑃1; then the commutation equations are given by the 

following: 

[𝑃𝑛, 𝑃𝑛+1] = 0  , [𝑃𝑛, 𝑃𝑛+2]  ≠ 0   , where  n = 1, 2, …, 5    

  

Figure 6 (Baaquie, 2013)  

  

 

We assume the quantum state is described by the pure density matrix  ρ given 

by:  𝜌 =  |𝜓⟩⟨𝜓|  and  𝑡𝑟(𝜌) = 1. Then the quantum expectation value of a 

(Hermitian) operator  B  is given by: 𝐸𝑞[𝐵] = 𝑡𝑟(𝜌𝛣) .   
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We assume  𝑃(𝑋 =  𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧)  yields the probability for the 

simultaneous occurrence of the sample values  x, y and z of the random variables X, 

Y and Z respectively. We consider a function  H  that depends on the random 

variables X, Y, Z. Its (average) classical expectation value is given by:  

𝐸𝑐[𝐻] =  ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝐻(𝑥, 𝑦, 𝑧) 𝑃(𝑥, 𝑦, 𝑧)  .   

 It can be shown that the BKS inequality for this case is given by classical 

probability theory and yields:   

∑ 𝐸𝑐 [𝑃𝑖]  ≤ 2𝑖     :    BKS inequality              (2.11)  

The “contextual” inequality, obtained by evaluating the expectation value of 

𝑃𝑖 in a quantum state, is given by:  

∑ 𝐸𝑞 [𝑃𝑖]  ≤ √5𝑖                                                    (2.12) 

 and violates the BKS inequality given in (2.11).       

 

BKS inequality for two Spin 1/2  System:  

Consider the case of three Hermitian operators A,B, and C such that [A,B] = 0 

= [A,C] but [B,C] ≠ 0  and constructed from the two spin 1/2 degrees of freedom. 

Since A can be simultaneously measured with other operators that commute with it, 

the joint probability distribution functions 𝑝1(𝐴, 𝐵) and 𝑝2(𝐴, 𝐶) can be measured, 

and which are theoretically also obtainable from quantum mechanics(Kochen, 

Specker, 1967).   

Although not within the framework of quantum mechanics, a classical joint 

probability distribution function does in fact exist for A,B,C considered as classical 

random variables and is given as follows: 

𝑝(𝐴, 𝐵, 𝐶) =  
𝑝1(𝐴,𝐵) 𝑝2(𝐴,𝐶) 

𝑝(𝐴)
                                      (2.13)  

where ∑ 𝑝1(𝐴, 𝐵)𝛣 = 𝑝(𝐴) =  ∑ 𝑝2(𝐴, 𝐶)𝐶  .                 

This construction reproduces the experimentally measurable marginal 

probability distribution function. One recovers, for instance, the experimentally 

observed 𝑝1(𝐴, 𝐵) by summing over the outcomes for C in p(A,B,C) and which 
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results in a cancellation of p(A) on the right-hand side of (2.13), leading to the 

required probability 𝑝1(𝐴, 𝐵) for the inequality (2.11) (Kochen, Specker, 1967).                                                                                                                               

 

Criterion: Bipartite Bell inequalities – Clauser-Horne-Shimony-Holt inequality 

(1969)      
 

We first assume two particles controlled by Alice and Bob, respectively. In the 

framework of hidden variables, the probability that Alice obtains the outcome α and 

Bob the outcome β when Alice is measuring observable A and Bob is measuring 

observables B given that the hidden variable is λ is denoted by  pλ(α, β|Α, Β). The 

expectation value of the observable AB given that the hidden variable is λ is then 

calculated according to 

〈𝐴𝐵〉𝜆 = ∑ 𝛼𝛽 𝑝𝜆(𝛼, 𝛽|𝛢, 𝛣)𝑎,𝑏                            (2.14)  

We measure the expectation value in experiment 

〈𝐴𝐵〉 =  ∫ 𝑑𝜆 𝜌(𝜆) ∑ 𝛼𝛽 𝑝𝜆(𝛼, 𝛽|𝛢, 𝛣)𝑎,𝑏               (2.15)  

where  ρ(λ)   is a probability density on the hidden variable λ (Clauser, Horne, 

Shimony, Holt, 1969).                             

Besides the existence of hidden variables, Bell theories also assume locality. 

In other words, one considers hidden-variable theories in which the expectation values 

of Equation (2.15)  can always be written in terms of probability distributions that 

factorize, i.e. which obey 

𝑝𝜆(𝛼, 𝛽|𝛢, 𝛣) =  𝑝𝜆(𝛼|𝛢) 𝑝𝜆(𝛽|𝛣)             (2.16)  

for any two observables 𝐴1 𝑎𝑛𝑑 𝐵1 and fixed λ. Hidden-variable theories that obey 

Equation (2.16) are called local hidden-variable theories (LHV theories). Note that 

locality implies that Alice’s choice of observable cannot affect Bob’s outcome 

probabilities (no-signalling), i.e., that for any two observables B and B′ that Bob 

measures (and any observable A and outcome a of Alice), the probabilities obey 

𝑝𝜆(𝛼|𝛢, 𝛣) =  𝑝𝜆(𝛼|𝛢, 𝛣′) 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

42 

where  𝑝𝜆(𝛼|𝛢, 𝛣) =  ∑ 𝑝𝜆(𝛼, 𝛽|𝛢, 𝛣) 𝑏                 (2.17)  (Clauser, Horne, Shimony, 

Holt, 1969).   

The most commonly used Bell inequality for two particles is the Clauser-

Horne-Shimony-Holt (CHSH) inequality. It states that in any LHV theory, the 

inequality 

〈𝐴𝐵〉 + 〈𝐴𝐵′〉 + 〈𝐴′𝐵〉 − 〈𝐴′𝐵′〉   ≤    2                 (2.18) 

holds for any observables A, A′ , B and B′ . In quantum mechanics, this inequality can 

be violated by choosing A = −X, A′ = −Y , B = (X − Y )/ √ 2, B′ = (X + Y )/ √ 2 and 

the singlet state of Equation  |𝜓−⟩ =
1

√2
 (|01⟩ − |10⟩)  . For these choices, the left-

hand side of Equation (2.18) equals  2√2.                                                                                            

Bell inequalities can also be used for entanglement detection, as any state that 

violates a Bell inequality must be entangled. This can be seen by noting that for any 

separable state   𝜌𝑠𝑒𝑝 =  ∑ 𝑝𝑖 𝜌𝑖
𝐴  ⨂𝜌𝑖

𝐵  𝑖    , one has                      

〈𝐴𝐵〉 =  ∑ 𝑝𝑖 𝑡𝑟(𝐴𝜌𝑖
𝐴) 𝑡𝑟(𝐵𝜌𝑖

𝐵)𝑖                      (2.19)     

This defines an LHV model, where the locality can be seen by Equation (2.19) and 

therefore, it cannot violate a Bell inequality. However, the converse is not true: There 

are some entangled states that do not violate any Bell inequality. Finally, it is worth 

mentioning that Bell inequalities are, in contrast to entanglement witnesses, tools to 

detect entanglement independent from the observables actually measured in 

experiment (Clauser, Horne, Shimony, Holt, 1969).      

 

Criterion: Kochen-Specker non-contextuality (1969)      
 

As Bell’s theorem relies on locality in order to prevent influences between 

different measurements, so does the theorem by Kochen and Specker (1969) rely on 

the notion of noncontextuality: roughly, the idea that the value of an observable A, 

measured simultaneously with observables  B  or  C  (with which it hence must be 

jointly measurable), does not depend on whether it is measured simultaneously with  

B  or  C. This is a reasonable expectation in the classical world—for instance, we do 
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not observe an object’s color changing, depending on whether we measure it 

simultaneously with its shape, or with its mass.    

It is again clear that this assumption holds whenever we have a joint 

probability distribution—as in this case, we can think of a population in which 

elements simply carry certain values for all observables within experimental interest, 

which do not mutually influence one another, and are simply revealed upon 

measurement (Kochen, Specker, 1967). 

We consider four observables {A,B,C,D} on a four-dimensional Hilbert space  

ℋ4. Among these observables, we have the following commutation (and hence, joint 

measurability) relations: 

[A, B] = 0            [C, B] = 0 

[A, D] = 0           [C, D] = 0                           (2.20) 

[A, C] ≠ 0            [B, D] ≠ 0  

Thus, in the expression: 

〈𝐶𝐶𝐻𝑆𝐻
𝐾𝑆 〉 =  〈𝐴𝐵〉 + 〈𝐵𝐶〉 + 〈𝐶𝐷〉 − 〈𝐷𝐴〉                     (2.21)  

only jointly measurable quantities enter in pairs. If we now assume that the value of 

each observable is independent of the context—that, for instance, the value of  A  

does not depend on whether it is measured simultaneously  with  B  or  D — we again 

assume the presence of a joint probability distribution for all observables, and 

consequently, again obtain the bound  |〈𝐶𝐶𝐻𝑆𝐻
𝐾𝑆 〉| ≤   2 .      

Now, with the identifications  𝐴1  ⨂ 𝟙  = 𝐶 ,  𝐴2  ⨂ 𝟙  =  𝐴 ,  𝟙 ⨂𝐵1 =  𝐷   

and  𝟙 ⨂ 𝐵2 =  𝐵 ,  the observables in Equation 1.2.4 fulfill exactly these relations. 

Consequently, we cannot assume that each of them yields its value independently of 

its context—and hence, any test of Bell’s theorem is also a test of the Kochen-Specker 

theorem.   

However, we need not appeal to entanglement, or indeed the bipartite Hilbert-

space structure in order to test the Kochen-Specker theorem. For instance, we may 

take the observables (which are related to the observables in Equation (2.4) by a 

unitary rotation):  
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𝐴 =  𝜎𝑥⨂𝜎𝑥            ,                𝐵 =
1

√2
 (

1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1

)            

  𝐶 =  𝜎𝑥⨂1            ,                𝐵 =
1

√2
 (

1 −1 0 0
−1 −1 0 0
0 0 −1 −1
0 0 −1 1

)                     (2.22) 

and the (product) state :  

|𝜓⟩ =
1

√2
 ( |00⟩ +  |10⟩ )                                   (2.23)                                                                                        

to again obtain the value  |〈𝐶𝐶𝐻𝑆𝐻
𝐾𝑆 〉| ≤   2 .  Hence, we can view the noncontextuality 

of Kochen and Specker as a relaxation of Bell’s locality: for any set of local 

observables, the commutation relations in Equation (2.20) will be automatically 

fulfilled, but not every set of observables fulfilling them consists of local observables 

on a bipartite Hilbert space (Kochen, Specker, 1967).     

 

Criterion: Roy-Singh local-realist inequalities (1979)    
 

Roy and Singh were the first to derive from the local-realist condition testable 

inequalities (RS inequalities) different from the Bell-CHSH-type inequalities. The 

Roy-Singh method provides an elegant method to derive local-realist inequalities. 

Suppose two qubits in an entangled state are intercepted by two measuring devices 

geographically separated from each other. The first device randomly measures 

property either 𝑋1, 𝑋2, …  on particle 1, and the other device either property  𝑌1, 𝑌2, … 

on particle 2. Experimentally, one measures bi-partite correlations of the type  

𝑃(𝑥𝑗 , 𝑦𝑘) , where 𝑥𝑗 = ±1 and  𝑦𝑘 = ±1 are measurement outcomes of measuring 

𝑋𝑗  𝑎𝑛𝑑  𝑌𝑘  respectively. The assumption of local-realism (LR) entails that for each 

such pair of these variables, there is a deterministic hidden variable (DHV) theory 

whereby:                                                                                 

〈𝑋𝑗𝑌𝑘〉 =  ∫ 𝑑𝜆 𝜌(𝜆)𝑋𝑗(𝜆)𝑌𝑘(𝜆)𝜆
                                                                                          (2.24) 
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where λ is a “complete” or “dispersion-free” specification of the state described by 

underlying probability distribution  ρ(λ). Roy and Singh consider quantities of the 

form:  

(𝛸1
(1)
 ± 𝛸2

(1)
 ± ⋯ ± 𝛸𝑚1

(1)
+ 𝑌1

(1)
± 𝑌2

(1)
 ± ⋯ ± 𝑌𝑛1

(1)
)
2
+ (𝛸1

(2)
 ± 𝛸2

(2)
 ± ⋯ ± 𝛸𝑚2

(2)
+

 𝑌1
(2) ± 𝑌2

(2)  ± ⋯ ± 𝑌𝑛2
(2))

2
+⋯+ (𝛸1

(𝑞)
 ± 𝛸2

(𝑞)
 ± ⋯ ± 𝛸𝑚𝑞

(𝑞)
+ 𝑌1

(𝑞)
± 𝑌2

(𝑞)
 ± ⋯ ±

 𝑌𝑛𝑞
(𝑞)
)
2
 ≥   𝑞                                                                                                                              (2.25)  

 

where  𝑚𝑗 + 𝑛𝑗 = 𝑜𝑑𝑑  and the self-correlation terms, i.e., correlations between the 

same particle, are so arranged as to cancel out. Here  𝑋𝑘
(𝑗)
∈ {𝑋1, 𝑋2, . . . , 𝑋𝑛}  and  

𝑌𝑘
(𝑗)
∈ {𝑌1, 𝑌2, … , 𝑌𝑚} , where m, n are positive integers and 𝑋𝑗, 𝑌𝑘 ∈ {±1} (Roy, 

Singh, 1979).    

As a particular example, we consider:  

(𝑋1 − 𝑌1 − 𝑌2)
2 + (𝑋2 − 𝑌1 + 𝑌2)

2 ≥ 2                                       (2.26)  

Expanding the left hand side of (2.26), and using the DHV assumption Equation 

(2.24), we obtain: 

〈𝐵〉  ≡  〈𝑋1𝑌1〉 + 〈𝑋1𝑌2〉 + 〈𝑋2𝑌1〉 − 〈𝑋2𝑌2〉  ≤  2                                                            (2.27)    

which just is the CHSH inequality (2.18) (Roy, Singh, 1979).                                     

 

Criterion: Mermin inequality (3-qubits) (1981) 
 

 

We first assume two particles controlled by Alice and Bob, respectively. In the 

framework of hidden variables, the probability that Alice obtains the outcome α and 

Bob the outcome β, when Alice is measuring observable A and Bob is measuring 

observables B given that the hidden variable λ is denoted by  𝑝𝜆(𝛼, 𝛽 | 𝛢, 𝛣). The 

expectation value of the observable AB given that the hidden variable is  λ  is then 

calculated according to:  

〈𝐴𝐵〉𝜆 = ∑ 𝛼𝛽 𝑝𝜆(𝛼, 𝛽|𝛢, 𝛣)𝑎,𝑏       (2.28)   
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Besides the existence of hidden variables, Bell theories also assume locality. So the 

expectation values of Equation (2.28) can always be written in terms of probability 

distributions that factorize, i.e. which obey:  

𝑝𝜆(𝛼, 𝛽|𝛢, 𝛣) =  𝑝𝜆(𝛼|𝛢) 𝑝𝜆(𝛽|𝛣)   

for any two observables  𝐴1 and 𝐵1  and fixed  λ. 

Analogously, we assume three particles controlled by Alice, Bob and Charlie, 

respectively. In the framework of hidden variables, the probability that Alice obtains 

the outcome α, Bob the outcome β and Charlie the outcome γ, when Alice is 

measuring observable A, Bob is measuring observables B and Charlie is measuring 

observables C given that the hidden variable λ is denoted by  𝑝𝜆(𝛼, 𝛽, 𝛾  | 𝛢, 𝛣, 𝐶).  

We consider probability distributions which factorize fully and have the form:  

𝑝𝜆(𝛼, 𝛽, 𝛾|𝐴, 𝐵, 𝐶) =  𝑝𝜆(𝛼|𝐴) 𝑝𝜆(𝛽|𝐵) 𝑝𝜆(𝛾|𝐶)                       (2.29) 

Probability distributions of this kind, which one might call “fully local”, obey the 

Mermin inequality. For three qubits, the Mermin inequality is given by 

〈𝐴𝐵𝐶〉 − 〈𝐴𝐵′𝐶′〉 − 〈𝐴′𝐵𝐶′〉  −  〈𝐴′𝐵′𝐶〉   ≤   2                (2.30) 

where A, A′ , B, B′ , C and C ′ are arbitrary observables. We will present Bell 

inequalities with the quantum mechanical observables that yield the largest violation 

already plugged in, since this allows for a more compact notation. The Mermin 

inequality (2.30) is maximally violated for the three-qubit Greenberger-Horne-

Zeilinger (GHZ) state:  

|𝐺𝐻𝑍3⟩ =
1

√2
 (|000⟩ + |111⟩)                              (2.31) 

In this case, the left-hand side of (2.30) has a value of 4, since every term has an 

absolute value of 1 with the appropriate sign. Therefore, 4 is the value of maximal 

violation of the inequality (2.30). This observation was also the basis for the argument 

by Greenberger, Horne and Zeilinger who argue that the GHZ state contradicts 

realism in the sense of Einstein, Podolsky and Rosen (Kafatos, 1989).                                

 

Criterion: Leggett-Garg macroscopic realism  (1985) 
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Finally, the third option to make the non-disturbance assumption plausible, 

after Bell locality and Kochen-Specker contextuality, is the macroscopic realism of 

Leggett and Garg. Macroscopic realism is the conjunction of two postulates:    

(i) Any macroscopic system that has available to it two or more distinguishable states, 

is at any given time in exactly one of those states. 

(ii) It is possible, in principle, to determine which of these states the system is in at a 

given time, without disturbing the system or its dynamics (Leggett, Garg, 1985).  

Let us thus imagine a system that has exactly two states available to it, as well 

as a measurement  Q  (which we again assume to be  ± 1-valued) that is capable of 

differentiating between these states. Furthermore, we measure this observable at four 

different points in time  𝑡1, 𝑡2, 𝑡3, 𝑡4 . Then, we observe the correlation between 

measurements at different points in time, and calculate the quantity:  

〈𝐶𝐶𝐻𝑆𝐻
𝐿𝐺 〉  =   〈𝑄(𝑡1) 𝑄(𝑡2)〉 + 〈𝑄(𝑡2) 𝑄(𝑡3)〉 + 〈𝑄(𝑡3) 𝑄(𝑡4)〉 − 〈𝑄(𝑡1) 𝑄(𝑡4)〉          

                                                                                                                  (2.32)    

The assumption of macroscopic realism serves to shield a measurement at a 

later time from the influence of an earlier one; thus, again, we can assume a joint 

probability distribution for the value of Q at different times, and conclude that:  

|〈𝐶𝐶𝐻𝑆𝐻
𝐿𝐺 〉| ≤   2  (Leggett, Garg, 1985).       

A difference to the previous two cases (Bell locality and Kochen-Specker non-

contextuality) is now that at first sight, there is no problem with ’joint’ measurability, 

as we just re-measure the same observable Q at different points in time. However, in 

general, there will be a non-trivial time-evolution of the system in between 

measurements.   

This time-evolution is mediated by some unitary U(t), producing the 

transformation  |𝜓(0)⟩  →  |𝜓(𝑡)⟩ = 𝑈(𝑡) |𝜓(0)⟩  (Leggett, Garg, 1985).    

To calculate the expectation value of an operator at time t, we can equally well use a 

time-evolved operator and the state at t = 0: 

〈𝐴〉𝑡  =   𝑡𝑟(𝐴 𝜌(𝑡))  =   𝑡𝑟 (𝐴 𝑈(𝑡) 𝜌(0) 𝑈
†(𝑡))  =   𝑡𝑟 (𝑈†(𝑡) 𝐴 𝑈(𝑡) 𝜌(0))  =    

=    𝑡𝑟(𝐴(𝑡) 𝜌(0))                                                         (2.33)  
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This is known as the Heisenberg picture, whereas the corresponding picture in 

which the time evolution acts on the states instead is the Schrödinger picture. Hence, 

we can keep the initial state fixed, and take      

𝑄𝑖 = 𝑈
† (𝑡𝑖 − 𝑡0) 𝑄(𝑡0) 𝑈(𝑡𝑖 − 𝑡0)    .     

However, this yields ‘too much’ incommensurability: in general 

[𝑄(𝑡𝑖), 𝑄(𝑡𝑗)] ≠ 0  for any pair of indices, and consequently, we do not know how to 

define the correlator  〈𝑄(𝑡𝑖) 𝑄(𝑡𝑗)〉 , as the simple product of both operators will 

typically fail to be Hermitian.     

Nevertheless, for projective qubit measurements, we can go back to the 

definition of the correlator:   

〈𝑄1𝑄2〉 =  ∑ 𝑞𝑘𝑞𝑙 Pr (𝑄1
𝑞𝑘  𝑄2

𝑞𝑙) 𝑞𝑘,𝑞𝑙                            (2.34)  

where 𝑞𝑘, 𝑞𝑙 ∈ {+1,−1} are the outcomes of  𝑄1 𝑎𝑛𝑑 𝑄2 , respectively. To calculate 

these probabilities, the projection postulate yields:  

Pr(𝑄1
𝑞𝑘  𝑄2

𝑞𝑙)  =   〈
1+ 𝑞𝑘𝑞1 ⋅𝜎 

2
 ⋅
1+ 𝑞𝑙 𝑞2 ⋅𝜎

2
 ⋅
1+ 𝑞𝑘 𝑞1 ⋅𝜎

2
 〉               (2.35)    

where 𝑞𝑖 is the Bloch vector associated to 𝑄𝑖  (Leggett, Garg, 1985).       

Using this to compute the correlator, one arrives at the expression (Fritz 2010): 

∑ 𝑞𝑘𝑞𝑙 Pr(𝑄1
𝑞𝑘  𝑄2

𝑞𝑙)  =   〈𝑄1 ∘ 𝑄2〉  𝑞𝑘,𝑞𝑙                                (2.36)  

for the appropriate quantum analogue to the classical correlation functions in 

Equation (2.32), where the symbol ◦ denotes the symmetric (Jordan) product:  

𝑋 ∘ 𝑌 =
𝑋𝑌+𝑌𝑋

2
                                  (2.37)  

With this framework, it can again be shown that in quantum mechanics, a maximum 

of  |〈𝐶𝐶𝐻𝑆𝐻
𝐿𝐺 〉| ≤   2√2    is achievable (Leggett, Garg, 1985).                                            

 

Criterion: Svetlichny inequality  (1987) 
 

We assume three particles controlled by Alice, Bob and Charlie, respectively. 

In the framework of hidden variables, the probability that Alice obtains the outcome 

α, Bob the outcome β and Charlie the outcome γ, when Alice is measuring observable 
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A, Bob is measuring observables B and Charlie is measuring observables C given that 

the hidden variable λ is denoted by  𝑝𝜆(𝛼, 𝛽, 𝛾  | 𝛢, 𝛣, 𝐶). As for entanglement, there 

is also a notion of genuine multipartite non-locality. For three qubits, any probability 

distribution that cannot be written as:          

𝑝𝜆(𝛼, 𝛽, 𝛾|𝐴, 𝐵, 𝐶) =  

=   𝑞1𝑝𝜆(𝛼|𝐴)𝑝𝜆(𝛽, 𝛾|𝐵, 𝐶) + 𝑞2𝑝𝜆(𝛽|𝛣)𝑝𝜆(𝛼, 𝛾|𝐴, 𝐶) + 𝑞3𝑝𝜆(𝛾|𝐶) 𝑝𝜆(𝛼, 𝛽|𝐴, 𝛣)    

                                                                                                                        (2.38)         

where  ∑ 𝑞𝑖𝑖 = 1    and   𝑞𝑖 ≥  0 , is called genuine multipartite non-local. Any 

probability distribution that is of the form of Equation (2.38) obeys the Svetlichny 

inequality: 

〈𝐴𝐵𝐶〉 + 〈𝐴𝐵′𝐶〉 + 〈𝐴𝐵𝐶′〉 − 〈𝐴𝐵′𝐶′〉 + 〈𝐴′𝐵𝐶〉 − 〈𝐴′𝐵′𝐶〉 − 〈𝐴′𝐵𝐶′〉 −

 〈𝐴′𝐵′𝐶′〉  ≤  4                            (2.39)  

where A, A′, B, B′, C and C ′ are arbitrary observables.   

The quantum mechanical violation is maximal for the GHZ state (Equation 

2.31) of three qubits and equals  4√2   for the choice A = −X, A′ = Y , B = (X + Y )/ 

√2, B′ = (X − Y )/ √2, C = −X and C ′ = Y, where X, Y are the Pauli matrices 

(Svetlichny, 1987).        

One way to prove that Equation (2.39) holds for genuinely non-local models is 

based on the realization that the inequality is a sum of two CHSH inequalities. For 

example, all expectation values containing A form a CHSH inequality on parties two 

and three and the same for all terms that include A′ . Moreover, since Equation (2.39) 

is invariant under any permutation of particles, it has this form on any two qubits. 

Also, Svetlichny’s inequality has been generalized to an arbitrary number of qubits 

(Collins, Gisin, Popescu, Roberts, Scarani, 2002).        

 

Criterion: Mermin polynomials and Mermin inequalities  (1990) 
 

Quantum probability can be discriminated from classical probability using 

Bell-type inequalities. An extension of Bell inequalities to a larger number of particles 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

50 

corresponds to the set of Mermin inequalities. Such inequalities should be maximally 

violated by GHZ-type states (Mermin, 1990).                                                                                                 

The Mermin polynomial for 3-qubits is:  

M3 = (α1 α2 α’3 + α1 α’2 α3 + α’1 α2 α3) – (α’1 α’2 α’3)                      (2.40)       

where  ai  and ai’  correspond to two different settings for the measurement of each  

qubit  i. Each measurement can take the values  {-1, 1}. Classical theories obey local 

realism (LR) which translates into a bound for the expectation value of the Mermin 

polynomial,  〈𝑀3〉
𝐿𝑅 ≤   2  (Mermin, 1990).       

In this case, the maximum possible eigenvalue, and therefore the quantum 

bound, is  〈𝑀3〉
𝑄𝑀 < 4 (Greenberger, Horne, Shimony, Zeilinger, 1990).     

The Mermin polynomial for 4-qubits is:  

𝑀4 = −(𝑎1𝑎2𝑎3𝑎4) + (𝑎1𝑎2𝑎3𝑎
′
4 + 𝑎1𝑎2𝑎

′
3𝑎4 + 𝑎1𝑎

′
2𝑎3𝑎4 + 𝑎

′
1𝑎2𝑎3𝑎4) +   

+(𝑎1𝑎2𝑎
′
3𝑎
′
4+𝑎1𝑎

′
2𝑎3𝑎

′
4 + 𝑎1𝑎

′
2𝑎
′
3𝑎4 + 𝑎

′
1𝑎2𝑎3𝑎

′
4 + 𝑎

′
1𝑎2𝑎

′
3𝑎4 +

𝑎′1𝑎
′
2𝑎3𝑎4) −  

− (𝑎1𝑎
′
2𝑎
′
3𝑎
′
4 + 𝑎

′
1𝑎2𝑎

′
3𝑎
′
4 + 𝑎

′
1𝑎
′
2𝑎3𝑎

′
4 + 𝑎

′
1𝑎
′
2𝑎
′
3𝑎4) −   

−(𝑎′1𝑎
′
2𝑎
′
3𝑎
′
4)                                                 (2.41)  

with a classical bound of  〈𝑀4〉
𝐿𝑅  ≤   4   and a quantum bound of  〈𝑀4〉

𝑄𝑀  ≤   8 √2 .  

The Mermin polynomial for 5-qubits is: 

 𝑀5 = −(𝑎1𝑎2𝑎3𝑎4𝑎5) + (𝑎1𝑎2𝑎3𝑎
′
4𝑎
′
5 + 𝑎1𝑎2𝑎

′
3𝑎4𝑎

′
5 + 𝑎1𝑎

′
2𝑎3𝑎4𝑎

′
5 +  

+𝑎′1𝑎2𝑎3𝑎4𝑎′5 + 𝑎1𝑎2𝑎′3𝑎
′
4𝑎5 + 𝑎1𝑎′2𝑎3𝑎′4𝑎5 + 𝑎′1𝑎2𝑎3𝑎′4𝑎5 +

𝑎1𝑎′2𝑎′3𝑎4𝑎5 ++ 𝑎′1𝑎′2𝑎3𝑎4𝑎5) −   

− (𝑎1𝑎
′
2𝑎
′
3𝑎
′
4𝑎′5 + 𝑎

′
1𝑎2𝑎

′
3𝑎
′
4𝑎′5 + 𝑎

′
1𝑎
′
2𝑎3𝑎

′
4𝑎′5 + 𝑎

′
1𝑎
′
2𝑎
′
3𝑎4𝑎′5 +

+ 𝑎′1𝑎
′
2𝑎
′
3𝑎
′
4𝑎′5)                                               (2.42) 

with a classical bound of  〈𝑀5〉
𝐿𝑅  ≤   4   and a quantum bound of  〈𝑀5〉

𝑄𝑀  ≤   16    

(Greenberger, Horne, Shimony, Zeilinger, 1990).                                                                                                             
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Table 2: Table of results. LR corresponds to the Local Realism bound for each Mermin 

inequality, QM to the Quantum bound and EXP is the experimental result (Alsina, Latorre, 

2016).  

  

 There exists an entire family of n-qubit inequalities first discovered by 

Mermin. We present Mermin operators. Let us change the notation of observables  

{a,b,c, . . .} ≡ {𝑎1, 𝑎2, 𝑎3, … } , which is more convenient to treat the multipartite case. 

Defining 𝑀1 ≡ 𝑎1, the Mermin polynomials are obtained recursively as:     

𝑀𝑛 =
1

2
 𝑀𝑛−1(𝑎𝑛 + 𝑎𝑛

′ ) +
1

2
 𝑀′𝑛−1 (𝑎𝑛 − 𝑎𝑛

′ )                            (2.43)  

where   𝑀𝑘′  is obtained from  𝑀𝑘  by interchanging primed and non-primed 

observables  𝑎𝑛. In particular, 𝑀3   corresponds to the three-qubit Mermin operator: 

𝑀3 = (𝑎⨂𝑏⨂𝑐
′ + 𝑎⨂𝑏′⨂𝑐 + 𝑎′⨂𝑏⨂𝑐) − (𝑎′⨂𝑏′⨂𝑐′)                 (2.44) 

where  ⨂  denotes the Kronecker product and the variables  a, a’  and  b, b’  are 

represented by Hermitian operators acting on Hilbert spaces  ℋ𝑎   and  ℋ𝑏 , 

respectively. For dichotomic variables the operators satisfy  a2 = a’ 2  =  b2  =  b’ 2  =  

𝕀 , because the measurement operators  a, a’ , b  and  b’  have eigenvalues  ± 1 . M2 

corresponds to the two-qubit Mermin operator:  

𝑀2 = (𝑎⨂𝑏 + 𝑎⨂𝑏
′ + 𝑎′⨂𝑏) − (𝑎′⨂𝑏′)                         (2.45)      (Mermin, 1990) .   

For  n  qubits, the Mermin inequality is given by:    

〈𝑋1𝑋2𝑋3𝑋4𝑋5…𝑋𝑛〉 − ∑ 〈𝑌1𝑌2𝑋3𝑋4𝑋5…𝑋𝑛〉 𝑝𝑒𝑟𝑚𝑠 +  ∑ 〈𝑌1𝑌2𝑌3𝑌4𝑋5…𝑋𝑛〉 𝑝𝑒𝑟𝑚𝑠 −

 …    ≤    

≤    {
2𝑛/2  ,   𝑓𝑜𝑟  𝑒𝑣𝑒𝑛  𝑛

2(𝑛−1)/2 ,   𝑓𝑜𝑟  𝑜𝑑𝑑  𝑛 
                                         (2.46)  
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where  ∑𝑝𝑒𝑟𝑚𝑠   indicates a sum over all permutations of all qubits that lead to 

distinct terms. This Mermin inequality holds also for an arbitrary choice of 

observables. The maximal violation is obtained for the n-qubit GHZ state:  

|𝐺𝐻𝑍𝑛⟩ =
1

√2
 (|0…0⟩ + |1…1⟩)                                  (2.47)  

for which the left-hand side of the inequality (2.46) reaches a value of  2𝑛−1 . 

Therefore,  2−1 is the maximal violation of the inequality (2.46) (Mermin, 1990).           

      

Criterion: Ardehali inequality  (1992) 
 

The Ardehali inequality holds for the same kind of non-locality. We denote 𝑋𝑖 

the Pauli matrix  𝜎𝛸  acting on the 𝑖𝑡ℎ qubit,  𝑌𝑖 the Pauli matrix 𝜎𝑌 and  𝑍𝑖 the Pauli 

matrix 𝜎𝑍 acting on the 𝑖𝑡ℎ qubit. Then, the Ardehali inequality is given by:  

[〈𝐴1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7…𝑋𝑛〉 + 〈𝐵1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7…𝑋𝑛〉    −

  ∑ (〈𝐴1𝑌2𝑋3𝑋4𝑋5𝑋6𝑋7…𝑋𝑛〉 − 〈𝐵1𝑌2𝑋3𝑋4𝑋5𝑋6𝑋7…𝑋𝑛〉) −𝑝𝑒𝑟𝑚𝑠(2,…,𝑛)

 ∑ (〈𝐴1𝑌2𝑌3𝑋4𝑋5𝑋6𝑋7…𝑋𝑛〉 + 〈𝐵1𝑌2𝑌3𝑋4𝑋5𝑋6𝑋7…𝑋𝑛〉)𝑝𝑒𝑟𝑚𝑠(2,…,𝑛)  +

 ∑ (〈𝐴1𝑌2𝑌3𝑌4𝑋5𝑋6𝑋7…𝑋𝑛〉 − 〈𝐵1𝑌2𝑌3𝑌4𝑋5𝑋6𝑋7…𝑋𝑛〉) +𝑝𝑒𝑟𝑚𝑠(2,…,𝑛)

 ∑ (〈𝐴1𝑌2𝑌3𝑌4𝑌5𝑋6𝑋7…𝑋𝑛〉 + 〈𝐵1𝑌2𝑌3𝑋4𝑌5𝑋6𝑋7…𝑋𝑛〉) −𝑝𝑒𝑟𝑚𝑠(2,…,𝑛)

 ∑ (〈𝐴1𝑌2𝑌3𝑋4𝑌5𝑌6𝑋7…𝑋𝑛〉 − 〈𝐵1𝑌2𝑌3𝑌4𝑌5𝑌6𝑋7…𝑋𝑛〉) − ⋯𝑝𝑒𝑟𝑚𝑠(2,…,𝑛)  ] / √2  ≤

 {
2𝑛/2  ,   𝑓𝑜𝑟  𝑜𝑑𝑑  𝑛

2(𝑛−1)/2 ,   𝑓𝑜𝑟  𝑒𝑣𝑒𝑛  𝑛 
                                                                          (2.48) 

where  ∑𝑝𝑒𝑟𝑚𝑠(2,….,𝑛)   denotes a sum over all permutations of qubits 2 to  n  that 

yield distinct observables. Moreover,  𝐴1 = (𝑋1 + 𝑌1) / √2  and 𝐵1 = (𝑋1 − 𝑌1) / √2 . 

The Ardehali inequality holds for arbitrary observables, but with the above 

observables and the GHZ state, the quantum mechanical violation is maximal and 

equals  2𝑛−1  
(Ardehali, 1992).           

 

 

Criterion: Bell inequality for two qutrits (2002) 
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We first assume there are two parties, A and B, are allowed to perform two 

different three-outcome measurements, 𝐴1 and 𝐴2  for  A,  and  𝐵1 𝑎𝑛𝑑 𝐵2  for B. 

Denoting by  𝑃(𝐴𝑖 = 𝐵𝑗 + 𝑘) the probability that the outcomes for parties A and B, 

measuring 𝐴𝑖 and  𝐵𝑗 , differ by  k  modulo  d  (in this  case d=3), one can consider 

the following Bell inequality:      

𝐼3 = 𝑃(𝐴1 = 𝐵1) +  𝑃(𝐵1 = 𝐴2 + 1) +  𝑃(𝐴2 = 𝐵2) +  𝑃(𝐵2 = 𝐴1) −

   −𝑃(𝐴1 = 𝐵1 − 1) −  𝑃(𝐵1 = 𝐴2) − 𝑃(𝐴2 = 𝐵2 − 1) −  𝑃(𝐵2 = 𝐴1 − 1)   ≤    2                                                                        

                                                                                                                      (2.49) 

The maximally entangled state of a bipartite system   |𝛹⟩  ∈   ∁𝑑⨂∁𝑑     reads:  

   |𝛹⟩ =  
1

√𝑑
 ∑  |𝑗𝑗⟩𝑑−1
𝑖=0                                                                    (2.50)  

where   |𝑗⟩   are the orthonormal bases in each subsystem (Acin, Durt, Gisin, Latorre, 

2002).                      

 

Criterion: Bell inequality for three qutrits (2004) 
 

We construct a Bell inequality for coincidence probabilities on a three three-

dimensional (qutrit) system. We studied above the Bell inequalities and the Clauser-

Horne-Shimony-Holt (CHSH) inequality, the latter being cast into a form more 

amenable for experimental verification, were formulated or the simplest composite 

quantum system, namely, a system of two two-dimensional particles (or two qubits). 

Since then, Bell arguments have been generalized to more complicated situations, 

either for a larger number of particles or for two particles of dimension greater than 

two. For three two-dimensional particles, Greenberger, Horne, and Zeilinger 

presented an elegant argument, also known as GHZ paradox, where the conflict 

between classical theories and quantum mechanics was shown to be qualitatively 

stronger in this case than for two qubits. For N (N > 3) two-dimensional particles, 

Mermin, Belinskii, and Klyshko separately generalized the CHSH inequality and 

proved that the quantum violation of this inequality increases exponentially with the 

number of particles (Acin, Chen, Gisin, Kaszlikowski, Kwek, Oh, Zukowski, 2004).   
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For two particles of dimension greater than two, it was found that the CHSH 

inequality can be maximally violated in higher dimensional systems and this violation 

continues to survive in the limit of infinite dimension. Moving to higher dimension, 

very little is known for N-qudit systems, with N,  d > 2. GHZ paradoxes have been 

generalized, and some numerical results have been presented for three- and four-qutrit 

systems. We present an interesting coincidence Bell inequality for three qutrits in the 

case for which each observer measures two non-commuting observables (Acin, Chen, 

Gisin, Kaszlikowski, Kwek, Oh, Zukowski, 2004).  

We consider the following Bell-type scenario: three space-separated 

observers, denoted by A, B, and C (or Alice, Bob, and Charlie), can measure two 

different local observables of three outcomes, labeled by 0, 1, and 2.We denote by  𝑋𝑖 

the observable measured by party X and by 𝑥𝑖  the outcome with X = A, B, C  (x = a, 

b, c).  If the observers decide to measure 𝐴1, 𝐵1 𝑎𝑛𝑑 𝐶2 , the result is (0, 2, 1)  with 

probability  𝑝(𝑎1 = 0, 𝑏1 = 2 , 𝑐2 = 1) (Acin, Chen, Gisin, Kaszlikowski, Kwek, Oh, 

Zukowski, 2004).    

The set of these  8 x 27  probabilities gives a complete description of any 

statistical quantity that can be observed in such Gedanken experiment. We denote by  

𝑝(𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 = 𝑟)  the coincidence probability:  

𝑝(𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 = 𝑟)  =   ∑  𝑝(𝑎𝑖 = 𝑎, 𝑏𝑗 = 𝑏, 𝑐𝑘 = 𝑟 − 𝑎 − 𝑏)𝑎,𝑏=0,1,2                           

                                                                                                             (2.51) 

where all the equalities are modulo three (Acin, Chen, Gisin, Kaszlikowski, Kwek, 

Oh, Zukowski, 2004).    

Any Local Reality description of the Gedanken experiment, must satisfy some 

constraints, known as Bell inequalities. The following condition is satisfied by all 

Local Reality theories:  

𝑝(𝑎1 + 𝑏1 + 𝑐1 = 0) +  𝑝(𝑎1 + 𝑏2 + 𝑐2 = 1) +  𝑝(𝑎2 + 𝑏1 + 𝑐2 = 1) +

                   + 𝑝(𝑎2 + 𝑏2 + 𝑐1 = 1) +  𝑝(𝑎2 + 𝑏2 + 𝑐2 = 0) −  𝑝(𝑎2 + 𝑏1 + 𝑐1 = 2) −

  𝑝(𝑎1 + 𝑏2 + 𝑐1 = 2) −  𝑝(𝑎1 + 𝑏1 + 𝑐2 = 2)   ≤    3                           (2.52)  
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These are considerations to deterministic local models. This is because any 

probabilistic model can be transformed into a deterministic one by simply adding 

some additional variables:  

𝑝(𝑎1 + 𝑏1 + 𝑐1 = 0) +  𝑝(𝑎1 + 𝑏2 + 𝑐2 = 1) +  𝑝(𝑎2 + 𝑏1 + 𝑐2 = 1) +

             + 𝑝(𝑎2 + 𝑏2 + 𝑐1 = 1) +  2𝑝(𝑎2 + 𝑏2 + 𝑐2 = 0) −  𝑝(𝑎2 + 𝑏1 + 𝑐1 = 2) −

  𝑝(𝑎1 + 𝑏2 + 𝑐1 = 2) −  𝑝(𝑎1 + 𝑏1 + 𝑐2 = 2)   ≤    3                          (2.53)  

This is the final form for our three-qutrit Bell inequality (Acin, Chen, Gisin, 

Kaszlikowski, Kwek, Oh, Zukowski, 2004).  

Taking  𝑐1 = 𝑐2 = 0  in Equation (2.53), one derives the two-qutrit inequality:  

𝑝(𝑎1 + 𝑏1 = 0) +  𝑝(𝑎1 + 𝑏2 = 1) +  𝑝(𝑎2 + 𝑏1 = 1) + 𝑝(𝑎2 + 𝑏2 =  0)  −

 − 𝑝(𝑎1 + 𝑏1 = 2) −  𝑝(𝑎2 + 𝑏1 = 2) −   𝑝(𝑎1 + 𝑏2 = 2) −  𝑝(𝑎2 + 𝑏2 = 2)    ≤    2            

(2.54)        

After deriving the Bell inequality, our next step will be to look for quantum states and 

measurements violating it. First, as initial state, we take: 

|𝜓⟩  =  
1

√3
 (|000⟩ + |111⟩ + |222⟩)                                (2.55)  

which can be regarded as a generalization of the maximally entangled state of two 

qutrits.      

For this choice of setting, and the state (2.55), all the probabilities terms with a 

positive sign are equal to  7/9, while the terms with negative sign are equal to  1/9, so 

the inequality gives  6 x 7/9 – 3 x 1/9  =  39/9  ⋍   4.33  >  3  (Acin, Chen, Gisin, 

Kaszlikowski, Kwek, Oh, Zukowski, 2004).               

 

Criterion: Bell inequality for n qutrits (2004) 
   

The Bell inequality (2.49) is also extended to arbitrary dimension. It is shown 

that the combination of joint probabilities: 
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𝐼𝑑 = ∑ (1 −
2𝑘

𝑑 − 1
)

[
𝑑
2
]−1

𝑘=0

 [𝑃(𝐴1 = 𝐵1 + 𝑘) + 𝑃(𝐵1 = 𝐴2 + 𝑘 + 1) + 𝑃(𝐴2 = 𝐵2 + 𝑘)

+ 𝑃(𝐵2 = 𝐴1 + 𝑘) − 𝑃(𝐴1 = 𝐵1 − 𝑘 − 1) − 𝑃(𝐵1 = 𝐴2 − 𝑘)

− 𝑃(𝐴2 = 𝐵2 − 𝑘 − 1) −  𝑃(𝐵2 = 𝐴1 − 𝑘 − 1)]   ≤    2   

                                                                                                                  (2.56) 

for  Local Variable Theory Models.  

Starting from Equation (2.56) we can derive the corresponding Bell operator 

and a larger violation is again found partially entangled stated of two qudits. Table 3 

summarizes these results up to  d = 8. Note that the difference between the violation 

for  |𝛹⟩  and  |𝛹𝑚𝑣⟩  increases with increase in the dimension (Acin, Durt, Gisin, 

Latorre, 2002).    

 

 

Table 3: Violation of the inequality (2.56) for two qudits, ∁𝑑⨂∁𝑑  , up to  d=8. The values 

obtained for the maximally entangled state (2.50) and the maximal violation of the inequality 

corresponding to the largest eigenvalue of the Bell operator are shown (Acin, Durt, Gisin, 

Latorre, 2002).    

 

Criterion: Bell inequality for qutrits by Acin  (2004) 
 

We consider the following Bell-type scenario. Three space-separated 

observers A, B and C can measure two different local observables of three outcomes, 

labeled by 0, 1 and 2. We denote by  𝑋𝑖 the observable measured by party X and by 𝑥𝑖 

the outcome with  X = A, B, C (x = a, b, c). For example, if the observers decide to 
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measure 𝐴1, 𝐵1 𝑎𝑛𝑑 𝐶2, the results is (0 , 2 , 1) with probability 𝑝(𝑎1 = 0,  𝑏1 = 2,

𝑐2 = 1) . Acin proposed the following three parties Bell inequality, which in the 

probability formalism it reads:   

 

𝑝(𝑎1 + 𝑏1 + 𝑐1 = 0) + 𝑝(𝑎1 + 𝑏2
 + 𝑐2

 = 1) + 𝑝( 𝑎2 + 𝑏1 + 𝑐1 = 1)

+ 𝑝(𝑎2 + 𝑏2 + 𝑐1 = 1) +  2𝑝(𝑎2 + 𝑏2 + 𝑐2 = 0)

− 𝑝(𝑎2 + 𝑏1 + 𝑐1 = 2) − 𝑝(𝑎1 + 𝑏2
 + 𝑐1 = 2)

− 𝑝(𝑎1 + 𝑏1 + 𝑐2
 = 2)   ≤   3 

                                                                                                               (2.57)  

The analysis here is very similar to the CGLMP case: the maximal violation is 

given by a quasi maximally entangled state  |𝜓⟩ = (|000⟩ +  𝛾 |111⟩ + |222⟩)/

√2 + 𝛾2    where now          𝛾 ≈ 1.186  . The quantum value is  4.37 (Acín, Chen, 

Gisin, Kaszlikowski, Kwek, Oh, Żukowski, 2004).          

 

Criterion: Multi-setting tight Bell Inequality for 2 qubits from Collins, Gisin   

(2004) 
 

Most of the inequalities mentioned above belong to the two setting Bell 

inequalities, i.e., they are based on the standard Bell experiment, in which each local 

observer is given a choice between two dichotomic observables. However, we could 

extend the number of measurement settings. Actually, multi-setting Bell inequalities 

may have many advantages in many protocols in quantum information theory 

(Collins, Gisin, 2004).         

We focus on Bell inequality for two-particle systems. The Bell-type scenario 

involves only two observers and each of them measures M different local observables 

of two outcomes  ± 1. We denote 𝐴𝑖 and 𝐵𝑗 the observables on the A and B party 

respectively, with i, j = 1, … , M.  The correlation function  𝑄(𝐴𝑖𝐵𝑗) , in the case of a 

local realistic theory, is then the average values of the products 𝐴𝑖𝐵𝑗 over many runs 

of the experiment. We also denote 𝑄(𝐴𝑖𝐵𝑗), 𝑄(𝐴𝑖)  and  𝑄(𝐵𝑗) as  𝑄𝑖𝑗 , 𝑄𝑖0 𝑎𝑛𝑑 𝑄0𝑗 , 

respectively. Then the famous CHSH inequality:   
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𝐼𝐶𝐻𝑆𝐻 = 𝑄11 + 𝑄12 + 𝑄21 − 𝑄22  <   2                                  (2.58)  

holds in any local realistic theory. The CHSH inequality is almost always the most 

efficient one to prove a quantum state to be nonlocal. The first Bell inequality relevant 

to the CHSH inequality was proposed by Collins and Gisin (2004). In the form of 

joint probability, their inequality for 3-setting Bell inequality for 2 qubits reads:  

𝐼𝐶𝐺 = 𝑃(𝑎1 = 0, 𝑏1 = 0) +  𝑃(𝑎1 = 0, 𝑏2 = 0) +  𝑃(𝑎1 = 0, 𝑏3 = 0) +

                      +𝑃(𝑎2 = 0, 𝑏1 = 0) +  𝑃(𝑎3 = 0, 𝑏1 = 0) −  𝑃(𝑏2 = 0) +

 𝑃(𝑎2 = 0, 𝑏2 = 0)    −  𝑃(𝑎2 = 0, 𝑏3 = 0) −  𝑃(𝑎3 = 0, 𝑏2 = 0) −  𝑃(𝑎1 = 0) −

2𝑃(𝑏1 = 0)  ≤   0                                                              (2.59)  

After some calculations, our new two three-setting Bell inequalities are:  

−8 ≤   𝐼3  =   𝑄21 + 𝑄12  +   𝑄31  +   𝑄13  +  𝑄32  +  𝑄23  −   𝑄11  −   𝑄22 +              

                             +  𝑄10  +  𝑄01 − 𝑄20  − 𝑄02   ≤   4                          (2.60)  

We also obtain two four-setting Bell inequalities:  

−6 ≤   𝐼4  =   𝑄11 + 𝑄22  +   𝑄12  +   𝑄21  +  𝑄14  +   𝑄41  −   𝑄24  −   𝑄42 −              

                            −  2𝑄33  + 𝑄31 + 𝑄13 + 𝑄32  +  𝑄23   ≤   6                  (2.61)   

(Collins, Gisin, 2004).    

 

Criterion: Multi-setting tight Bell Inequality for 2 qutrits  (2004) 
                         

For two-qutrit system, the CGLMP inequality reduces to:  

𝐼𝐶𝐺𝐿𝑀𝑃 = [𝑃(𝐴1 = 𝐵1) +  𝑃(𝐵1 = 𝐴2 + 1) +  𝑃(𝐴2 = 𝐵2) +  𝑃(𝐵2 = 𝐴1)] −  

−[𝑃(𝐴1 = 𝐵1 − 1) +  𝑃(𝐵1 = 𝐴2) +  𝑃(𝐴2 = 𝐵2 − 1) +  𝑃(𝐵2 = 𝐴1 − 1)]  ≤  2                 

                                                                                                                   (2.62)  

where all the equalities in the probabilities are modulo 3 (Collins, Gisin, Linden, 

Massar, Popescu, 2002).        

We can find a new three setting Bell inequality for two qutrits, which is relevant to 

the CGLMP inequality for two qutrits:  
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𝐼3 = −2𝑃(𝑎1 + 𝑏1 = 0) +  𝑃(𝑎1 + 𝑏1 = 1) +  𝑃(𝑎1 + 𝑏1 = 2) +  𝑃(𝑎1 + 𝑏2 = 0) − 

− 𝑃(𝑎1 + 𝑏2 = 2) +  𝑃(𝑎2 + 𝑏1 = 0) −  𝑃(𝑎2 + 𝑏1 = 2) +  𝑃(𝑎1 + 𝑏3 = 1) − 

− 𝑃(𝑎1 + 𝑏3 = 2) +  𝑃(𝑎3 + 𝑏1 = 1) −  𝑃(𝑎3 + 𝑏1 = 2) +  𝑃(𝑎2 + 𝑏3 = 1) − 

− 𝑃(𝑎2 + 𝑏3 = 2) +  𝑃(𝑎3 + 𝑏2 = 1) −  𝑃(𝑎3 + 𝑏2 = 2) +  𝑃(𝑎3 + 𝑏3 = 0) − 

− 𝑃(𝑎3 + 𝑏3 = 1)   ≤   4                                                                (2.63)  

where all the equalities in the probabilities are modulo 3  (Deng, Zhou, Chen, 2009).        

 

Criterion: CGLMP inequality for qudits  (2004) 
 

The CHSH inequality, which belongs to a class of mathematical formulations 

broadly termed as Bell’s inequalities, allow us to distinguish the predictions of local 

hidden variable theories (LHVs) and theories involving non-classical correlations, 

specifically quantum theory in our case. In that experiment, we worked with a 

maximally-entangled state (Equations 2.64, 2.65) with a dimensionality of d = 2, i.e. 

the number of independent outcomes of the measurements. The maximum violation of 

the CHSH inequality expected for such a bipartite, two-outcome experiment is 𝑆 =

2√2 (Collins, Gisin, Linden, Massar, Popescu, 2002).                       

Bell states:  

|𝜓−⟩ =
1

√2
 (|𝐻⟩𝛢|𝑉⟩𝐵 − |𝑉⟩𝛢|𝛨⟩𝐵)   

 |𝜓+⟩ =
1

√2
 (|𝐻⟩𝛢|𝑉⟩𝐵 + |𝑉⟩𝛢|𝛨⟩𝐵)                              (2.64) 

|𝜑−⟩ =
1

√2
 (|𝐻⟩𝛢|𝐻⟩𝐵 − |𝑉⟩𝛢|𝑉⟩𝐵)       

|𝜑+⟩ =
1

√2
 (|𝐻⟩𝛢|𝐻⟩𝐵 + |𝑉⟩𝛢|𝑉⟩𝐵)                                (2.65) 

The CHSH inequality can however be also generalized to experiments with d 

> 2 given suitable modification to correlation function E  (Equation 2.66). This 

inequality has the feature that the expected theoretical maximum violation decreases 

with the increasing d  and converges to the classical limit of S = 2  for d = ∞ . This 

feature may suggests somekind of an approach to classicality with large particle 
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counts. A violation of less than 𝑆 = 2√2  may indicate the system has d > 2 or it 

might due to the non-maximally entangled nature of the state describing the quantum 

system under test (Collins, Gisin, Linden, Massar, Popescu, 2002).      

The correlation function is given by:  

𝐸(𝑎𝑖, 𝑏𝑗)  =   𝑃(𝑎𝑖 = +1, 𝑏𝑗 = +1) −  𝑃(𝑎𝑖 = +1, 𝑏𝑗 = −1)  − 

− 𝑃(𝑎𝑖 = −1, 𝑏𝑗 = +1) +  𝑃(𝑎𝑖 = −1, 𝑏𝑗 = −1)                                (2.66)                    

In 2002, Daniel Collins, Nicolas Gisin, Noah Linden, Serge Massar, and 

Sandu Popescu came up with a set of Bell’s inequalities which came to be known 

collectively as the CGLMP inequality. The inequality is generalized for arbitrary 

high-dimensional bipartite systems with two measurement settings and d outcomes on 

each side. What this means is that the violation increases with the dimensionality d of 

the system.     

In a bipartite system, suppose that both parties, Alice (A) and Bob (B) each 

can carry out two possible measurements, 𝐴1 or 𝐴2, and 𝐵1 𝑜𝑟 𝐵2  , respectively. Each 

measurement may have d possible outcomes denoted by 0, ..., d − 1 (Figure 7). The 

expression for the CGLMP expression can then be written as: 

𝐼𝑑 ≡ ∑ (1 −
2𝑘

𝑑−1
)

[
𝑑

2
]−1

𝑘=0  {[𝑃(𝐴1 = 𝐵1 + 𝑘)  +  𝑃(𝐵1 = 𝐴2 + 𝑘 + 1)  +

 𝑃(𝐴2 = 𝐵2 + 𝑘)   +  +𝑃(𝐵2 = 𝐴1 + 𝑘)] − [𝑃(𝐴1 = 𝐵1 − 𝑘 − 1) + 𝑃(𝐵1 = 𝐴2 −

𝑘) + 𝑃(𝐴2 = 𝐵2 − 𝑘 − 1) + + 𝑃(𝐵2 = 𝐴1 − 𝑘 − 1)]}                              (2.67) 

where  d ≥ 2 . For any dimensionality d, the CGLMP inequality has the classical limit 

of     𝐼𝑑  ≤ 2  (Collins, Gisin, Linden, Massar, Popescu, 2002).                                      
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Figure 7: A d-dimensional quantum system with two measurement settings 𝐴1 and  𝐴2 or 𝐵1 

and 𝐵2, and d outcomes on each side. The four different combinations of settings give in total 

of  4𝑑2 possible outcome of coincidence patterns which can be used for calculating the 

CGLMP inequality (Shun, 2015).   

For bipartite system with two outcomes on each side, i.e. d = 2, the CGLMP 

inequality expression 𝐼2 can be written as:  

𝐼2 = [𝑃(𝐴1 = 𝐵1) +  𝑃(𝐵1 = 𝐴2 + 1) +  𝑃(𝐴2 = 𝐵2) +  𝑃(𝐵2 = 𝐴1)] −  

             −[𝑃(𝐴1 = 𝐵1 − 1) +  𝑃(𝐵1 = 𝐴2) +  𝑃(𝐴2 = 𝐵2 − 1) +  𝑃(𝐵2 = 𝐴1 − 1)]       

                                                                                                                    (2.68)      

which further expands to:  

𝐼2 =  𝑃(𝐴1 = 0, 𝐵1 = 0) +   𝑃(𝐴1 = 1, 𝐵1 = 1) +   𝑃(𝐴2 = 0, 𝐵1 = 1) +  

          + 𝑃(𝐴2 = 1, 𝐵1 = 0) +   𝑃(𝐴2 = 0, 𝐵2 = 0) +   𝑃(𝐴2 = 1, 𝐵2 = 1) +  

          +  𝑃(𝐴1 = 0, 𝐵2 = 0) +   𝑃(𝐴1 = 1, 𝐵2 = 1) −   𝑃(𝐴1 = 0, 𝐵1 = 1) −  

          −  𝑃(𝐴1 = 1, 𝐵1 = 0) −   𝑃(𝐴2 = 0, 𝐵1 = 0) −   𝑃(𝐴2 = 1, 𝐵1 = 1)  −  

          −  𝑃(𝐴2 = 0, 𝐵2 = 1) −   𝑃(𝐴2 = 1, 𝐵2 = 0) −   𝑃(𝐴1 = 0, 𝐵2 = 1) −  

          −  𝑃(𝐴1 = 1, 𝐵2 = 0)  =   

     =   𝐸(𝐴1, 𝐵1) +  𝐸(𝐴2, 𝐵2) +  𝐸(𝐴1, 𝐵2) −  𝐸(𝐴2, 𝐵1)   =    𝑆                (2.69) 
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thus recovering the original expression for the CHSH inequality for the same 

dimensionality (Collins, Gisin, Linden, Massar, Popescu, 2002).     

Maximal Violation:  

As the dimensionality of the Hilbert space increases, the maximal violation for 

a maximally-entangled state:  

|𝛷𝑑
+⟩ =

1

√𝑑
 ∑   |𝑗⟩𝐴⨂|𝑗⟩𝐵
𝑑−1
𝑗=0                                             (2.70) 

also increases.    

We mention that for d > 2, the inequality  𝐼𝑑  does not give the maximum 

violation for a maximally-entangled state. Paradoxically, a maximum violation for 𝐼𝑑  

only occurs for the case of a non-maximally entangled state (Collins, Gisin, Linden, 

Massar, Popescu, 2002).    

We assess the CGLMP inequality on the case of a bipartite system with 

dimensionality d = 4 , with two measurement settings at each party. This is the 

minimum dimensionality where the behaviors of CHSH and CGLMP inequality 

diverges. A and B can each perform two possible measurements, 𝐴1 𝑜𝑟 𝐴2  and 

𝐵1 𝑜𝑟 𝐵2, respectively. Each measurement will yield 4 possible outcomes, giving a 

total of 64 joint outcomes when all 4 possible combinations of A and B settings are 

considered.  

The CGLMP expression  𝐼𝑑  in Equation (2.67) is equivalent to the 𝐼22𝑑𝑑  expression:  

𝐼22𝑑𝑑 =
𝑑−1

2𝑑
 (𝐼𝑑 − 2)                                                               (2.71)  (Collins, Gisin, 

Linden, Massar, Popescu, 2002)  
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Table 4: The summary of different types of violation with two measurement settings and d 

outcomes. It has been shown that the maximum CGLMP violation 𝐼𝑑
𝑚𝑎𝑥(𝑄𝑀)  does not 

correspond to maximally entangled input states. 𝐼𝑑
|𝛷𝑑
+⟩

  is the maximum violation for a 

maximally entangled input state |𝛷𝑑
+⟩. 𝐼22𝑑𝑑

|𝛷𝑑
+⟩

 is the corresponding best known 

𝐼22𝑑𝑑  violation given in Equation (2.71) (Shun, 2015).   

 

 

Criterion: Bell function – Buhrman and Massar inequality – Bell operator  

(2005) 
 

We propose a generalized Bell inequality for two three-dimensional systems 

with three settings in each local measurement. It is shown that this inequality is 

maximally violated if local measurements are configured to be mutually unbiased and 

a composite state is maximally entangled. This feature is similar to Clauser-Horne-

Shimony-Holt inequality for two qubits but is in contrast with the two types of 

inequalities, Collins-Gisin-Linden-Massar-Popescu and Son-Lee-Kim, for high-

dimensional systems (Ji, Lee, Lim, Nagata, Lee, 2008).    



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

64 

Now we derive a three-setting Bell inequality for two qutrits. Alice and Bob 

now have three sets of measuring apparatus each, from which they each choose one 

and perform a measurement. The three variables whose values are determined by the 

measurements using Alice’s (Bob’s) three sets are referred to as 𝐴0, 𝐴1 𝑎𝑛𝑑 𝐴2 

(𝐵0, 𝐵1 𝑎𝑛𝑑 𝐵2), respectively. We assign three possible values of 1, ω, and 𝜔2 , where 

𝜔 = 𝑒𝑖2𝜋/3  is a primitive third root of unity, to the outcome of the measurement on 

each variable. As discussed for the CHSH inequality, the local realistic description 

implies that the values of the variables are predetermined by the local hidden 

variables λ: 𝐴𝑖 = 𝐴𝑖(𝜆)  and  𝐵𝑗 = 𝐵𝑗(𝜆) , and a statistical average of their 

correlations is given as:  

 〈𝐴𝑖𝐵𝑗〉 =  ∫ 𝑑𝜆𝜌(𝜆) 𝛢𝑖(𝜆)𝐵𝑗(𝜆)                                  

where ρ(λ) is the probability density distribution over λ:  

ρ(λ) ≥ 0 and  ∫𝑑𝜆𝜌(𝜆)  =   1.    

We consider the following Bell function:  

𝛣(𝜆) =
1

2
 ∑ ∑ ∑  𝜔𝑛𝑖𝑗 𝐴𝑖

𝑛(𝜆) 𝛣𝑗
𝑛(𝜆)  2

𝑗=0
2
𝑖=0

2
𝑛=1                             (2.72)  

where  𝐴𝑖
𝑛 , 𝐵𝑗

𝑛  is the n-th power of  𝐴𝑖 and 𝐵𝑗  respectively and  λ  are the local 

hidden variables like the CHSH inequality (Ji, Lee, Lim, Nagata, Lee, 2008).   

The constraint for the classical correlations using the above Bell function is:  

−
9

2
 ≤ 𝐵(𝜆)  ≤

9

2
                                                            (2.73)  

We examine the quantum violation of the three-setting Bell inequality for two 

qutrits. The Bell operator corresponding to the classical Bell function in Equation 

(2.72) is given as:  

�̂� =
1

2
 ∑ ∑ ∑  𝜔𝑛𝑖𝑗  �̂�𝑖

𝑛⨂�̂�𝑗
𝑛  2

𝑗=0
2
𝑖=0

2
𝑛=1                                          (2.74)  

where each operator  �̂�𝑖
   (�̂�𝑗

 )  represents a measurement for  𝐴𝑖  (𝐵𝑗) on Alice’s 

(Bob’s) qutrit. An orthogonal measurement of  M ∈ {𝐴𝑖, 𝐵𝑗}  is described by a 

complete set of orthonormal basis vectors {|𝑘⟩𝑀}.  Distinguishing the measurement 

outcomes is indicated by a set of eigenvalues. Let the set of eigenvalues be {1, ω, 

𝜔2}, as the trichotomic variable M takes an element in the set by definition. The 
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measurement operator is then represented by �̂� 
 = ∑  𝜔𝑘 |𝑘⟩𝑀 𝑀⟨𝑘|

2
𝑘=0  .  In this 

representation each trichotomic operator �̂� ∈ {�̂�𝑖  , �̂�𝑗}  is unitary, satisfying  �̂�3 = 𝟙 , 

where 𝟙 is the identity operator. We note the unitary operator �̂� and its second power 

�̂�2 have the same measurement basis just with different orderings of eigenvalues so 

that the introduction of higher powers does not alter the number of measurement 

settings in this section.        

We remark the previous work by Buhrman and Massar, in which the authors 

introduced a Bell function and determined its quantum upper bound allowed for the 

general case of d-dimensional systems and d measurements settings when local 

measurements on quantum entangled states are made. The quantum upper bound they 

determined is “non-tight” in the sense that their Bell function cannot take on a value 

greater than that, but it has not been proven that this upper bound can actually be 

attained. Applying their result to our Bell operator of Equation (2.74), the quantum 

upper bound is  3 √3   ≈   5.196 . On the other hand, it is proven that  

3 √3 cos (
𝜋

18
)  ≈   5.117 is the maximum value actually attainable (Buhrman, Massar, 

2005).   

We want to generalize the Bell function for qudits. So we generalize the Bell 

inequality for qutrits to d-dimensional systems, namely qudits, with d a prime integer. 

A measurement on a qudit produces one of d possible outcomes. For a generalized 

Bell inequality for qudits, two observers are allowed each to choose one of d  

variables.    

We consider a classical Bell function for qudits:   

𝛣(𝜆) =
1

𝑑−1
 ∑ ∑ ∑  𝜔𝑛𝑖𝑗  𝐴𝑖

𝑛(𝜆) 𝛣𝑗
𝑛(𝜆)  𝑑−1

𝑗=0
𝑑−1
𝑖=0

𝑑−1
𝑛=1                                 (2.75)         

where  ω  is now a primitive  d-th  root of unity, i.e.  𝜔 = exp (
𝑖2𝜋

𝑑
)  and  𝐴𝑖(𝜆) =

𝜔𝑎𝑖(𝜆)  and  𝐵𝑗(𝜆) = 𝜔
𝑏𝑗(𝜆)  with  𝑎𝑖(𝜆)  and  𝑏𝑗(𝜆)  integer-valued functions of 

hidden variables  λ (Ji, Lee, Lim, Nagata, Lee, 2008).   

The statistical average of the Bell function, namely 〈𝐵〉, satisfies the following 

inequality:  

−
𝑑2

𝑑−1
  ≤   〈𝐵〉  ≤   

𝑑(2𝑑−3)

𝑑−1
                                                        (2.76)   
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where  〈𝐵〉 =  ∫ 𝑑𝜆 𝜌(𝜆) 𝛣(𝜆) , with a probability density distribution  𝜌(𝜆) and λ is a 

collection of local hidden variables.  

The quantum Bell operator, corresponding to the classical Bell function, is 

given as:  

�̂� =
1

𝑑−1
 ∑ ∑ ∑  𝜔𝑛𝑖𝑗 �̂�𝑖

𝑛⨂�̂�𝑗
𝑛  𝑑−1

𝑗=0
𝑑−1
𝑖=0

𝑑−1
𝑛=1                                          (2.77)  

where  �̂�𝑖  and  �̂�𝑗   are local unitary operators with eigenvalues  {1, ω, 𝜔2, …, 𝜔𝑑−1} 

(Ji, Lee, Lim, Nagata, Lee, 2008).    

Our Bell inequalities show relatively small degrees of violations. Ratios of 

quantum to classical maxima are given for  d = 3, 5, 17  as:  

〈𝜓|�̂�|𝜓〉

〈𝛣〉
  ≈   {

1.137       ,   𝑓𝑜𝑟  𝑑 = 3
1.156        ,   𝑓𝑜𝑟  𝑑 = 5 
1.229        ,   𝑓𝑜𝑟  𝑑 = 17

 

These ratios are smaller than 1.414 and 1.436, those of CHSH inequality for qubits 

and CGLMP inequality for qutrits, respectively. However, it is interesting to observe 

that the ratios increase with respect to the dimension once the nonlocality appears (Ji, 

Lee, Lim, Nagata, Lee, 2008).     

 

Criterion: Tight Bell Inequalities for many qubits  (2006) 
 

We present a family of tight Bell inequalities involving only two measurement 

settings of each party for  N > 2  qubits. Remarkably our new inequalities are violated 

by some states which do satisfy all the standard Bell inequalities. Furthermore the 

inequalities automatically recover all the standard ones for systems with less than  N  

qubits (Chen, Albeverio, Fei, 2006).  

Their implementations are not only favorably within the reach of well-

established technology of linear optics, but also can provide stronger nonlocality tests 

and contribute significantly to the reduction of experimental efforts (Chen, Albeverio, 

Fei, 2006).  

We consider  N  parties and allow each of them to choose independently 

between two dichotomic observables  𝐴𝑗  , 𝐴𝑗′  for the j-th observer, specified by some 
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local parameters, each measurement having two possible outcomes  -1 and  1. We 

define:  

𝐵 =   𝐵𝑁−1⨂
1

2
(𝐴𝑁 + 𝐴

′
𝑁) + 𝟙𝑁−1⨂

1

2
(𝐴𝑁 − 𝐴

′
𝑁)                            (2.78)  

𝐵𝑁−1 =  

=

 
1

2𝑁−1
 ∑ 𝑆(𝑠1,…,𝑠𝑁−1=−1,1 𝑠1, … , 𝑠𝑁−1) ∑ 𝑠1

𝑘1−1…  𝑠𝑁−1
𝑘𝑁−1−1 𝐸𝑄𝑀(𝑘1, … , 𝑘𝑁−1)𝑘1,…,𝑘𝑁−1=1,2        

                                                                                                                         (2.79) 

where  𝐵𝑁−1  is the quantum mechanical (QM) Bell operator of WWZB (Werner, 

Wolf, Zukowski and Brukner) inequalities for  N–1 particles and  S(𝑠1, … , 𝑠𝑁−1)   can 

be arbitrary function taking only  ±1  as values. Here   𝐸𝑄𝑀(𝑘1, … , 𝑘𝑁−1)  ≡

  〈⊗𝑗=1
𝑁−1  𝑂𝑗(𝑘𝑗)〉     denotes the expectation value of the correlation function    

⊗𝑗=1
𝑁−1  𝑂𝑗(𝑘𝑗)  , where  𝑂𝑗(1) = 𝐴𝑗   and  𝑂𝑗(2) = 𝐴𝑗

′   with  𝑘𝑗 = 1, 2. The notation  

𝟙𝑁−1  represents an identity matrix of dimension  2𝑁−1 , with the meaning of  “not 

measuring”  the first  N-1 parties (Werner, Wolf, Żukowski, Brukner, 2002).      

The WWZB Bell operator is defined by:  

𝐵𝑁
𝑊𝑊𝑍𝐵 =

1

2𝑁
 ∑ 𝑆(𝑠1,…,𝑠𝑁=−1,1 𝑠1, … , 𝑠𝑁) ∑ 𝑠1

𝑘1 …  𝑠𝑁
𝑘𝑁   ⊗𝑗=1

𝑁  𝑂𝑗(𝑘𝑗) 𝑘1,…,𝑘𝑁=−1,1            

                                                                                                                     (2.80)   

where    𝑆(𝑠1, … , 𝑠𝑁)   is an arbitrary function of  𝑠𝑖 (= ±1) , i = 1, … , N , taking 

values  ±1 , 𝑂𝑗(1) = 𝐴𝑗   and  𝑂𝑗(2) = 𝐴𝑗
′   with  𝑘𝑗 = 1, 2. It is shown that local 

realism requires:       |〈𝐵𝑁〉|   ≤    1  (Werner, Wolf, Żukowski, Brukner, 2002).     

Noting that local realism requires  |〈𝐵𝑁−1〉𝐿𝐻𝑉|  <    1 , we obtain:  

|〈𝐵〉𝐿𝐻𝑉|  =  
1

2
 |〈𝐵𝑁−1(𝐴𝑁 + 𝐴

′
𝑁) + (𝐴𝑁 − 𝐴

′
𝑁)〉𝐿𝐻𝑉|   ≤    1                  (2.81) 

In fact  𝐴𝑁 = ± 1  and  𝐴𝑁′ = ± 1  for the observer N, one has either  

|𝐴𝑁 + 𝐴𝑁
′ | = 2   𝑎𝑛𝑑   |𝐴𝑁 − 𝐴𝑁

′ | = 0 , or vice versa. This implies that Equation 

(2.81) holds. For a given function of  𝑆(𝑠1, … , 𝑠𝑁−1)  , one can generate the full set of 

members of a family by simply permuting different locations, or the measurement 

orientations  𝐴𝑖   𝑎𝑛𝑑  𝐴𝑖′ (Werner, Wolf, Żukowski, Brukner, 2002).       
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Maximal Violation:  

We presented the first family of tight Bell inequalities with all the advantages 

above. It is shown that all the generalized GHZ entangled states, given by equation: 

 |𝜓⟩ = cos𝛼 |0, … ,0⟩ + sin 𝛼|1, … ,1⟩                                              (2.82)     

where   0 < α < π/4,  can violate the inequalities. All the Greenberger-Horne-Zeilinger 

states of  N  qubits (up to local unitary transformations) are shown to violate the 

inequalities maximally, by an amount that grows exponentially with  N. Though the 

new inequalities involve only the same setup as the standard Bell inequalities (with 

only two measurement settings per site), they can reveal the nonlocality of the states 

(2.82) with an extraordinary power. Remarkably all the GHZ states of  N  qubits (up 

to local unitary transformations) are shown to violate the inequalities maximally, with 

a violation factor that grows exponentially as  2(𝑁−2)/2   (Chen, Albeverio, Fei, 2006).    

Theorem 2.83: All generalized GHZ states of many qubits violate a Bell 

inequality, where the generalized Greenberger-Horne-Zeilinger (GHZ) states given by 

Equation (2.82) (Chen, Albeverio, Fei, 2006).    

 

Theorem 2.84: All the GHZ states violate the Bell inequality (Equation 2.81) 

maximally (Chen, Albeverio, Fei, 2006).     

 

The result of Theorem (2.83) is remarkable. Our inequalities only involve the 

same setup as the standard nonlocality testing experiment by using only two 

measurement settings per site, and are immediately feasible due to rapidly developing 

technology for generation and manipulation of multiparticle entangled states in linear 

optical, atomic or trapped ions systems (Chen, Albeverio, Fei, 2006).   

 

For N even, the corresponding Mermin inequalities presented above, are 

combinations of all the correlation functions and have a total of 2𝑁 terms. These tight 

inequalities (Equation 2.78) require only  2𝑁−1 + 2  terms, as  𝐵𝑁−1  is a combination 

of  2𝑁−2  correlation functions in this case. Therefore these tight inequalities demand 

asymptotically only half of the experimental efforts, as compared with the standard 

ones, for N even (Chen, Albeverio, Fei, 2006).    
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It is shown that these tight inequalities reveal violation of local realism for 

some class of states, while the standard Bell's inequalities fail to detect. Furthermore 

the inequalities can be maximally violated by GHZ states with an amount that grows 

exponentially as  2(𝑁−2)/2   and all the standard inequalities for less than  N  parties 

can be automatically recovered (Chen, Albeverio, Fei, 2006).       

 

Maximal Violation for two qudits:  

We investigate the maximal violation of Bell inequalities for two d-

dimensional systems by using the method of Bell operator. The maximal violation 

corresponds to the maximal eigenvalue of the Bell operator matrix (Chen, Wu, Kwek, 

Oh, Ge, 2006).   

The eigenvectors corresponding to these eigenvalues are described by 

asymmetric entangled states. We estimate the maximum value of the eigenvalue for 

large dimension. A family of elegant entangled states |𝜓⟩𝑎𝑝𝑝 that violate Bell 

inequality more strongly than the maximally entangled state but are somewhat close 

to these eigenvectors is presented (Chen, Wu, Kwek, Oh, Ge, 2006).   

These approximate states can potentially be useful for quantum cryptography 

as well as many other important fields of quantum information (Chen, Wu, Kwek, Oh, 

Ge, 2006).    
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Table 5: Bell expressions, where  Id = Tsirelson’s bound , |Ψ>eig  maximal violation = 

maximal eigenvalue of Bell operator matrix , |Ψ>app = approximate states , |Ψ>mes = 

maximally entangled state (Chen, Wu, Kwek, Oh, Ge, 2006) . 

 

Criterion: Experimentally testable state-independent quantum contextuality   

(2008) 
 

Local hidden variable theories are a special type of non-contextual hidden 

variable (NCHV) theories, defined as those where the expectation value of an 

observable A is the same whether A is measured with a compatible observable B, or 

with a compatible observable C, even though B and C are incompatible. The Kochen-

Specker (KS) theorem states that no NCHV theory can reproduce QM (Cabello, 

2008).   

These proofs apply to systems described by Hilbert spaces of dimension d > 3 

and are state-independent (i.e., valid for any state). Quantum contextuality is related 

to quantum error correction, random access codes, quantum key distribution, one-

location quantum games, and entanglement detection between internal degrees of 

freedom. There are “KS inequalities”, which are based on the assumption of 

contextuality and on some QM predictions, and therefore are not independent of QM 

(Cabello, 2008).   

A natural question is the following: Given a physical system described in QM 

by a Hilbert space of dimension d, is it possible to derive experimentally testable 
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inequalities using only the assumption of noncontextuality, such that any quantum 

state violates them (Cabello, 2008)?   

Given a physical system described in Quantum Mechanics by a Hilbert space 

of dimension d, we suppose that  𝐴𝑖𝑗  is an observable with two possible results: -1 or 

+1, and two observables  𝐴𝑖𝑗  and  𝐴𝑘𝑙  are compatible if they share a subindex (i.e. i 

= k, or  i = l , or  j = k,  or  j = l). When we prepare an ensemble of systems and 

measure  4 compatible observables  𝐴𝑖𝑗, 𝐴𝑖𝑘 , 𝐴𝑖𝑙  𝑎𝑛𝑑 𝐴𝑖𝑚  in each system,  

〈𝐴𝑖𝑗𝐴𝑖𝑘𝐴𝑖𝑙𝐴𝑖𝑚〉  denotes the average of the products of their results. In any theory of 

NCHV (Non-Contextual Hidden Variable) in which the observables  𝐴𝑖𝑗  have 

definite results, the following inequality must be satisfied:  

−〈𝐴12𝐴16𝐴17𝐴18〉 − 〈𝐴12𝐴23𝐴28𝐴29〉 − 〈𝐴23𝐴34𝐴37𝐴39〉 −  

−〈𝐴34𝐴45𝐴47𝐴48〉 − 〈𝐴45𝐴56𝐴58𝐴59〉 − 〈𝐴16𝐴56𝐴67𝐴69〉 −  

                              −〈𝐴17𝐴37𝐴47𝐴67〉 − 〈𝐴18𝐴28𝐴48𝐴58〉 − 〈𝐴29𝐴39𝐴59𝐴69〉   ≤   7        

                                                                                                                       (2.85) 

This inequality can be proven as follows. We define  𝛼 =  −𝛢12𝛢16𝛢17𝛢18 − …−

𝛢29𝛢39𝛢59𝛢69  . If we generate all the 218 possible values of α, we will find that α = 7 

is the maximum. Therefore, if we can measure α on different systems, the average 

satisfies 〈𝛼〉 ≤ 7 . We cannot measure α on a single system, because α contains 

incompatible observables. However, since we assume that each 𝐴𝑖𝑗 would give the 

same result in any context, we can measure subsets of compatible observables on 

different subensembles prepared in the same state and then inequality (2.85) is valid 

for the averages over each subensemble. This derivation is similar to a standard 

derivation of a Bell inequality. The only difference is that in a Bell inequality we 

assume that the result of a measurement of 𝐴12 is independent of spacelike separated 

measurements, while here we assume that it is independent of compatible 

measurements. 

Now consider a physical system described by a Hilbert space of dimension d = 4 (e.g., 

two qubits or a single spin-3/2 particle), and the observables represented by the 

operators:  

𝐴𝑖𝑗 = 2|𝑣𝑖𝑗⟩ ⟨𝑣𝑖𝑗| −  𝟙   
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where 𝑣𝑖𝑗 is a unit vector and 𝟙 denotes the identity. Each observable 𝐴𝑖𝑗 has two 

possible results: -1 or +1. If 𝑣𝑖𝑗 is orthogonal to 𝑣𝑖𝑘 , then 𝐴𝑖𝑗 and 𝐴𝑖𝑘 are compatible. 

Therefore, 4 orthogonal vectors define 4 compatible observables. 18 vectors 𝑣𝑖𝑗 with 

the orthogonality relations assumed in inequality (2.85) are presented in Figure 8 

below.  

 

Figure 8: Each dot represents a unit-vector 𝑣𝑖𝑗 . Each of the 6 sides of the regular hexagon 

and each of the 3 rectangles contains only orthogonal vectors. Note that, for clarity’s sake, 

most labels have no unit length (Cabello, 2008).  

     

Now we prove that for d=4 Quantum Mechanics violates (2.85) for any state. 

According to QM, if one measures on the same system 4 compatible observables 𝐴𝑖𝑗 

corresponding to 4 orthogonal vectors 𝑣𝑖𝑗 , the product of their 4 results will always 

be -1, because 𝐴𝑖𝑗𝐴𝑖𝑘𝐴𝑖𝑙𝐴𝑖𝑚 = −𝟙 . Therefore, using the vectors of Figure 8, QM 

predicts that the experimental value of the left-hand side of inequality (2.85) must be 

9 in any state, which is clearly beyond the bound for any description based on 

noncontextual hidden variables (Cabello, 2008).    

 

Suppose that  𝑃𝑖𝑗  with  i ϵ {1, 2, 3}  and  j ϵ {4, 5, 6}  is an observable with 

two possible results: -1  or  +1, and two observables  𝑃𝑖𝑗  and  𝑃𝑘𝑙  are compatible if 

they share a subindex. Using the method described before, it can be easily proved that 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

                                                                                              Quantum Statistics and Data Analysis                  
                                                                                                     

    

 

 

73 

any NCHV theory in which the observables  𝑃𝑖𝑗  have definite results satisfies the 

following inequality:   

〈𝑃14𝑃15𝑃16〉 + 〈𝑃24𝑃25𝑃26〉 + 〈𝑃34𝑃35𝑃36〉 + 〈𝑃14𝑃24𝑃34〉 +  

+ 〈𝑃15𝑃25𝑃35〉 − 〈𝑃16𝑃26𝑃36〉   ≤   4                                                     (2.86)  

However, if we consider a two-qubit system and choose the following observables:  

P14 = Z1 ,  P15 = Z2 ,  P16 = Z1 ⨂ Z2 ,  

P24 = X2 ,  P25 = X1 ,  P26 = X1 ⨂ X2 ,  

P34 = Z1 ⨂ X2 ,  P35 = X1 ⨂ Z2 ,  P36 = Y1 ⨂ Y2                                    (2.87) 

where  e.g.  𝑍1  denotes  𝜎𝛧
(1)

   , the Pauli matrix  Z  of qubit  1, then, according to 

QM, the left-hand side of Equation (2.86) must be  6, since  𝑃14𝑃15𝑃16  =

  𝑃24𝑃25𝑃26 = 𝑃34𝑃35𝑃36 = 𝑃14𝑃24𝑃34 = 𝑃15𝑃25𝑃35 = −𝑃16𝑃26𝑃36 =  𝟙   , where 𝟙 

denotes the identity. Therefore, QM violates inequality (2.86) for any two-qubit state 

(Cabello, 2008).   

Suppose that the  4+2n observables 𝐴1, … , 𝐴4, 𝐵1, … , 𝐵𝑛, 𝐶1 , … , 𝐶𝑛  with  n  (odd) ≥ 3,  

have only two possible results: -1 or  +1. Assuming that each of the following 

averages contains only compatible observables, using the method described before, it 

can be easily seen that any NCHV theory satisfies the following inequality:  

〈𝐴1𝐵1𝐵2  ∏𝐵𝑖

𝑛

𝑖=3

〉 + 〈𝐴2𝐵1𝐶2  ∏𝐶𝑖

𝑛

𝑖=3

〉 + 〈𝐴3𝐶1𝐵2  ∏𝐶𝑖

𝑛

𝑖=3

〉 + 〈𝐴4𝐶1𝐶2  ∏𝐵𝑖

𝑛

𝑖=3

〉 −  

                        − 〈𝐴1𝐴2𝐴3𝐴4〉   ≤    3                                                      (2.88)  

However, if we consider an  n-qubit  system, with  n (odd) ≥ 3, and choose the 

following observables:  

𝐴1 = 𝑍1⨂𝑍2⨂𝑍3⨂…⨂𝑍𝑛  

𝐴2 = 𝑍1⨂𝑋2⨂𝑋3⨂…⨂𝑋𝑛 

𝐴3 = 𝑋1⨂𝑍2⨂𝑋3⨂…⨂𝑋𝑛 

𝐴4 = 𝑋1⨂𝑋2⨂𝑍3⨂…⨂𝑍𝑛 

𝐵𝑖 = 𝑍𝑖 

                                                              𝐶𝑖 = 𝑋𝑖                                   (2.89) 
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then  according to  QM, the left-hand side of inequality (2.88) must be  5, since    

𝐴1𝐵1𝐵2  ∏ 𝐵𝑖
𝑛
𝑖=3  =  𝐴2𝐵1𝐶2  ∏ 𝐶𝑖

𝑛
𝑖=3  = 𝐴3𝐶1𝐵2  ∏ 𝐶𝑖

𝑛
𝑖=3  = 𝐴4𝐶1𝐶2  ∏ 𝐵𝑖

𝑛
𝑖=3  = 

− 𝐴1𝐴2𝐴3𝐴4 = 𝟙. Therefore, QM violates inequality  (2.88) for any n-qubit state with  

n (odd) ≥  3 (Cabello, 2008).    

The above 3 experimentally testable inequalities are valid for any NCHV 

theory and violated by any quantum state. They combine the most celebrated 

properties of the Bell inequalities, independence of QM and experimental testability, 

with state independence, the most celebrated property of the KS theorem. One of 

these inequalities seems particularly suitable to experimentally test the state-

independent violation predicted by QM (Cabello, 2008).      

 

Criterion: Zohren and Gill inequality for 2x2xd Bell scenario (2008) 
 

Entanglement and nonlocality in general, there have been many studies of 

generalized Bell inequalities. These include the Mermin inequality for multiple qubits 

(n > 2), the Collins-Gisin inequality for multiple measurements (m > 2), and the 

Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality for higher-dimensional 

systems known as qudits (d > 2). For  n = 2 and m = d > 2 exhibits the potential to 

reduce the requirements to close the detection loophole. Here, n denotes the number 

of parties (e.g. Alice, Bob). Each party performs one of  m  measurement choices, 

with each measurement registers one of  d  outcomes.    

The CGLMP inequality (for n = m = 2 and d > 2), which takes the form:  

𝐼𝑑 = ∑ (1 −
2𝑘

𝑑−1
)

[
𝑑

2
]−1

𝑘=0  [𝑃(𝑘) − 𝑃(−𝑘 − 1)]   ≤    2                             (2.90) 

where  𝑃(𝑘) = 𝑃(𝐴1 = 𝐵1 + 𝑘) + 𝑃(𝐵1 = 𝐴2 + 𝑘 + 1) + 𝑃(𝐴2 = 𝐵2 + 𝑘) +

𝑃(𝐵2 = 𝐴1 + 𝑘)  (2.91)  and the measurement settings are labeled by 1 and 2 for 

Alice’s (or Bob’s) choice of measurement, with outcomes 𝐴1 and 𝐴2 for Alice (and 

𝐵1 and 𝐵2 for Bob) and in a slight abuse of notation, the joint probability p(𝐴0 = 𝐵0) 

indicates the probability that Alice and Bob’s measurement outcomes are identical.   

Here the joint probabilities are defined for outcomes  𝐴𝑎 = 0, 1, …, d-1   and 

the addition is performed modulo  d. These can expressed as:  
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𝑃(𝐴𝑎 = 𝐵𝑏 + 𝑘) =  ∑ 𝑃(𝐴𝑎 = 𝑗,   𝐵𝑏 = 𝑗 + 𝑘  𝑚𝑜𝑑 𝑑)
𝑑−1
𝑗=0                  (2.92) 

It is also studied a closely related inequality proposed by Zohren and Gill:  

𝑃𝐿(𝐴2 < 𝐵2) + 𝑃𝐿(𝐵2 < 𝐴1) + 𝑃𝐿(𝐴1 < 𝐵1) + 𝑃𝐿(𝐵1 ≤ 𝐴2)   ≥    1       (2.93) 

where  𝑃𝐿(𝐴𝑎 < 𝐵𝑏) =  ∑  𝑃𝐿(𝑖, 𝑗|𝑎, 𝑏)𝑖<𝑗   and   𝑃𝐿(𝑖, 𝑗|𝑎, 𝑏) =

 ∑  𝑝(𝜆) 𝑃(𝑖|𝛼, 𝜆) 𝑃(𝑗|𝑏, 𝜆) 𝜆   (local realistic theory) (Zohren, Gill, 2008).   

These two inequalities (2.92, 2.93) have the remarkable property that the violation 

increases with increasing  d (Polozova, Strauch, 2016).          

 

 

Criterion: Bell ratio – Bell operator  (2016) 
 

We reproduce some known results in a novel way and find some multipartite 

Bell inequalities for systems having three settings and three outcomes per party. We 

construct Bell inequalities for systems composed of several subsystems composed by 

more than two levels each. In particular, we focus our attention on quantum systems 

consisting on qutrits. Inequalities for three outcomes have been written more often in 

terms of probabilities but they can also be treated with expectation values.   

We extend this formalism in order to build new inequalities for three outcomes 

and a different number of parties and find its classical and quantum bounds for qutrits 

in a semi-systematic way. We find some regular patterns for the coefficients of the 

inequalities and for the settings and states that maximally violate these inequalities. 

This mechanism is potentially generalizable to other dimensions (Alsina, Cervera, 

Goyeneche, Latorre, Zyczkowski, 2016).   

Bell Inequalities for two Outcomes and two parties:  

In the case of two parties the only relevant Bell inequality is the one of 

Clauser, Horne, Shimony and Holt. It is obtained out of the following Bell 

polynomial:  

BCHSH  =  ab + ab’ + a’b – a’b’                                          (2.94)  
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where  a, a’ = ±1  and  b, b’ = ±1   are the possible outcomes detected by observers 

Alice and Bob, respectively. Note that equation (2.94) can be factorized as:  

BCHSH  =  a(b + b’) + a’(b – b’)                                               (2.95)  

so one of the terms is  ±2, while the other one is equal to zero, which means that the 

maximum value that can be obtained with a local realistic theory is  〈𝐵𝐶𝐻𝑆𝐻〉𝐿𝑅 = 2 .  

In a more general case, this classical bound can be obtained by computing the value of 

the Bell polynomial with all possible outcomes for  a, a’, b and b’  and selecting its 

maximum (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 2016).   

In quantum mechanics, the variables  a, a’  and  b, b’  are represented by 

Hermitian operators acting on the Hilbert spaces  ℋ𝑎   and  ℋ𝑏  , respectively. For 

dichotomic variables the operators satisfy  a2 = a’2 = b2 = b’2 = 𝟙  , because the 

measurement operators  a, a’, b and  b’  have eigenvalues  ±1. The quantum Bell 

operator reads then:  

BCHSH  =  a⨂b + a⨂b’ + a’⨂b – a’⨂b’                                   (2.96)  

where  ⨂  denotes the Kronecker product. The quantum bound  〈𝐵𝐶𝐻𝑆𝐻〉𝑄𝑀   

corresponds to the maximal eigenvalue of all possible Bell operators (2.96) satisfying 

the previously stated conditions. A Bell operator  B  defines a Bell inequality if  

〈𝐵〉𝐿𝑅 < 〈𝐵〉𝑄𝑀 . In the case of CHSH inequality, it is proven by Tsirelson that the 

maximum quantum value is  〈𝐵𝐶𝐻𝑆𝐻〉𝑄𝑀 = 2 √2   (Alsina, Cervera, Goyeneche, 

Latorre, Zyczkowski, 2016).  

We study the ratio associated to a Bell polynomial:  

𝑅(𝐵) =
〈𝐵〉𝑄𝑀

〈𝐵〉𝐿𝑅
                                                                 (2.97)  

as it quantifies the strength of the inequality generated by the Bell operator  B. Note 

that a Bell inequality is characterized by the ratio  R(B) > 1. For example, for the 

CHSH inequality we have  𝑅(𝐵𝐶𝐻𝑆𝐻) =  √2   (Alsina, Cervera, Goyeneche, Latorre, 

Zyczkowski, 2016).   

Quantum states producing R(B) > 1 are non-local in the sense that those ratios 

cannot be reproduced by considering a local hidden variable theory. As consequence, 
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non-local quantum states cannot be fully separable. However, entanglement and non-

locality are different concepts. Indeed, some entangled states do not violate any Bell 

inequality. Furthermore, states producing the maximal ratio are typically highly 

entangled (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 2016).  

Three parties:  

In the case of three qubits (Alice, Bob, Charlie) the most general symmetric Bell 

operator can be written as:  

𝐵3 = 𝑧0(𝑎⨂𝑏⨂𝑐) + 𝑧3(𝑎
′⨂𝑏′⨂𝑐′) + 𝑧1(𝑎⨂𝑏⨂𝑐

′ +  𝑎⨂𝑏′⨂𝑐 + 𝑎′⨂𝑏⨂𝑐) +  

+ 𝑧2(𝑎⨂𝑏′⨂𝑐
′ +  𝑎′⨂𝑏⨂𝑐′ + 𝑎′⨂𝑏′⨂𝑐)                              (2.98) 

where  𝑧0, … , 𝑧3 ϵ ℝ . The following values for  𝑧𝑖 :  

𝑧𝑖
𝑀 = {𝑧0, 𝑧1, 𝑧2, 𝑧3}

𝑀 = {0, 1, 0, −1}                                          (2.99) 

lead us to the 3-qubit Mermin operator:  

𝑀3 = (𝑎⨂𝑏⨂𝑐
′ +  𝑎⨂𝑏′⨂𝑐 + 𝑎′⨂𝑏⨂𝑐) − (𝑎′⨂𝑏′⨂𝑐′)                 (2.100) 

having a square:  

𝑀3
2 = 4𝟙𝐴𝐵𝐶 − ([𝑎, 𝑎

′]⨂[𝑏, 𝑏′]⨂𝟙𝐶 + [𝑎, 𝑎
′]⨂𝟙𝐵⨂[𝑐, 𝑐

′] + 𝟙𝐴⨂[𝑏, 𝑏
′]⨂[𝑐, 𝑐′])             

                                                                                                                 (2.101) 

Bell inequalities generated by operators like  𝑀3  are called multipartite Bell 

inequalities (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 2016).      

 

Criterion: CGLMP inequality – Bell operator Cnsd  (2016) 
 

Two parties with hermitian operators and 3 Outcomes:  

A Bell inequality for two parties, two settings and d  outcomes is known as 

CGLMP inequality. In the case of three outcomes, as we have seen above, the 

inequality is given by: 

𝑝(𝑎 = 𝑏) + 𝑝(𝑏 = 𝑎′ + 1) + 𝑝(𝑎′ = 𝑏) + 𝑝(𝑏′ = 𝑎) − 𝑝(𝑎 = 𝑏 − 1) −  

−𝑝(𝑏 = 𝑎′) − 𝑝(𝑎′ = 𝑏′ − 1) − 𝑝(𝑏′ = 𝑎 − 1)   ≤    2                      (2.102) 
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where the possible outcomes are  {0, 1, 2}  and the sum inside probabilities is modulo  

d = 3. This Bell inequality can be associated with the following Bell operator:  

𝐶223 = 2 − 3(𝑎
2 + 𝑏′2) +

3

4
 (𝑎𝑏 + 𝑎2𝑏 − 𝑎′𝑏 − 𝑎′2𝑏 − 𝑎𝑏2 + 𝑎′𝑏2 + 𝑎𝑏′ − 𝑎2𝑏′

+ 𝑎′𝑏′ +  

                +𝑎′2𝑏′ + 𝑎𝑏′2 − 𝑎′𝑏′2) +  
9

4
 (𝑎2𝑏2 − 𝑎′2𝑏2 + 𝑎2𝑏′2 + 𝑎′2𝑏′2)     (2.103) 

where the notation  𝐶𝑛𝑠𝑑  stands for  n  parties, s  settings and  d  outcomes (Alsina, 

Cervera, Goyeneche, Latorre, Zyczkowski, 2016).   

The quantum value is given by  〈𝐶223〉𝑄𝑀 =
2(5−𝛾2)

3
 ≈ 2.9149  for the optimal state: 

|𝜓⟩ =
(|00⟩+ 𝛾|11⟩+ |22⟩)

√2+𝛾2
   

where  𝛾 =
√11− √3

2
 ≈  0.7923 . The violation rate for this quasi Bell state reads:  

𝑅(𝐶223) =
5−𝛾2

3
 ≈ 1.4547  (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 

2016).  

 

Larger number of parties:  

In the case of four parties, two settings and three outcomes we have found the 

following symmetric Bell operator:  

𝐶423 = [2(𝑎𝑏𝑐𝑑) + (𝑎
′𝑏𝑐𝑑 + 𝑎𝑏′𝑐𝑑 + 𝑎𝑏𝑐′𝑑 + 𝑎𝑏𝑐𝑑′) +  

           + 𝑤 (𝑎′𝑏′𝑐𝑑 + 𝑎′𝑏𝑐′𝑑 + 𝑎′𝑏𝑐𝑑′ + 𝑎𝑏′𝑐′𝑑 + 𝑎𝑏′𝑐𝑑′ + 𝑎𝑏𝑐′𝑑′) +  

           +(𝑎′𝑏′𝑐′𝑑 + 𝑎′𝑏𝑐′𝑑′ + 𝑎′𝑏′𝑐𝑑′ + 𝑎𝑏′𝑐′𝑑′) + 2 (𝑎′𝑏′𝑐′𝑑′)]        (2.104)   

which produces  〈𝐶423〉𝐿𝑅 = 3√3  ≈ 5.19  ,  〈𝐶423〉𝑄𝑀 ≈ 9.766  and  𝑅(𝐶423) ≈

1.879  for the optimal settings:  

A = B = C = D = X 

A’ = B’ = C’ = D’ = Z                                        (2.105)  



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

                                                                                              Quantum Statistics and Data Analysis                  
                                                                                                     

    

 

 

79 

which are again mutually unbiased settings. The optimal state has entanglement 

properties equivalent to those of the GHZ of four parties and three settings:   

|𝐺𝐻𝑍4,3⟩ = (|0000⟩ + |1111⟩ + |2222⟩)/√3   .  

It is noted  X and  Z  are the generators of the Weyl-Heisenberg group which is 

formed by the generalized unitary Pauli matrices:  

𝑋 = (
0 0 1
1 0 0
0 1 0

)    ,  𝑍 =  (
1 0 0
0 𝑤 0
0 0 𝑤2

)                                         (2.106)  

where  𝑤 = 𝑒2𝜋𝑖/3   (Alsina, Cervera, Goyeneche, Latorre, Zyczkowski, 2016).  

For  6  parties we have also found a symmetric Bell operator. To simplify the 

notation, the polynomials having terms with the same number of primes are denoted 

by its number of primes in parenthesis, for example:   

(1′)  ≡   𝑎′𝑏𝑐𝑑𝑒𝑓 + 𝑎𝑏′𝑐𝑑𝑒𝑓 + 𝑎𝑏𝑐′ def  +𝑎𝑏𝑐𝑑′𝑒𝑓 + 𝑎𝑏𝑐𝑑𝑒′𝑓 + 𝑎𝑏𝑐𝑑𝑒𝑓′   .  

In this notation, the  6  parties operator reads:  

𝐶623 = −𝑤(0
′) + (1′) − (2′) + 𝑤(3′) − (4′) + (5′) − 𝑤(6′)                  (2.107)  

For this inequality,  〈𝐶623〉𝐿𝑅 = 9√3  ≈ 15.589  ,  〈𝐶623〉𝑄𝑀 ≈ 32.817   and    

𝑅(𝐶623) ≈ 2.105 , with optimal settings. The maximal violation is given by a quasi 

GHZ state, as for the case of  2  and  3 qutrits (Alsina, Cervera, Goyeneche, Latorre, 

Zyczkowski, 2016).   

 

 

Table 7: Main results for inequalities from 2 to 6 qutrits, where it can be seen that the 

classical patterns match perfectly, while the 5-qutrit inequality appears not to follow the 
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quantum pattern. Here,  〈𝐵〉𝐿𝑅  and  〈𝐵〉𝐿𝑅
(−)

  denote the maximum and minimum classical 

value for the optimizations of anti-Hermitian or Hermitian part of the operator, respectively. 

The quantity that we take as the extremal classical bound is marked in bold, and  〈[𝐵]𝑥〉 𝑄𝑀 

stands for its corresponding quantum value, where  x = A  for an even number of qutrits and  

x = H  for an odd number of qutrits.  𝑅 = 〈𝐵〉𝑄𝑀/〈𝐵〉𝐿𝑅    and  Settings denotes the optimal 

settings.  P  denotes the purity of the  [n/2]  party reductions of the optimal state and  Num. 

means numerical approximate solution and italic font in the 5-qutrits case is written to note 

that this case does not follow the same patterns of the others. We remark that optimal values 

appearing in this table have been achieved by optimizing over qutrit systems (Alsina, 

Cervera, Goyeneche, Latorre, Zyczkowski, 2016).    

 

Criterion: 3-qubits set Bell inequalities   (2017) 
 

We consider a three-qubit system, with a qubit each with Alice, Bob and 

Charlie. In the Bell inequalities that we introduce, two of the parties will make two 

measurements, while the third party will make only one measurement. This third party 

can be either Alice, Bob, or Charlie. A general state need not have any symmetry, 

therefore we will be considering a set of Bell inequalities, rather than one inequality. 

The one measurement by one of the parties is necessary. We note that one of the two 

parties makes only one measurement. We list the set of six inequalities. In this list, the 

left-hand side should be thought of as the expectation value of the observables. In the 

first and third inequalities, Alice makes one measurement given by observable 𝐴1, 

Bob measures the observables 𝐵1 𝑎𝑛𝑑 𝐵2, and Charlie measures observables 

𝐶1 𝑎𝑛𝑑 𝐶2 .These are dichotomic observables, with values  {-1 , 1}. In the inequalities 

(2.108b) and  (2.108f), Bob measures only one observable, 𝐵1, while in the 

inequalities  (2.108d) and (2.108e), Charlie measures only one observable, 𝐶1. Other 

parties measure two observables:    

𝐴1𝐵1(𝐶1 + 𝐶2) + 𝐵2(𝐶1 − 𝐶2)   ≤    2                                 (2.108a)  

𝐴1𝐵1(𝐶1 + 𝐶2) + 𝐴2(𝐶1 − 𝐶2)   ≤    2                                 (2.108b)  

(𝐵1 + 𝐵2)𝐶1 + 𝐴1(𝐵1 − 𝐵2)𝐶2   ≤    2                                (2.108c)  

𝐴1(𝐵1 + 𝐵2) + 𝐴2(𝐵1 − 𝐵2)𝐶1   ≤    2                                (2.108d)  



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

                                                                                              Quantum Statistics and Data Analysis                  
                                                                                                     

    

 

 

81 

(𝐴1 + 𝐴2)𝐵1 + (𝐴1 − 𝐴2)𝐵2𝐶1   ≤    2                                (2.108e)  

(𝐴1 + 𝐴2)𝐶1 + (𝐴1 − 𝐴2)𝐵1𝐶2   ≤    2                                 (2.108f) 

We obtain the bound for the first inequality (2.108a) and the analysis is similar 

for the others. Let us call the corresponding Bell operator for the first inequality 

(2.108a) as:  

𝐵3 = 𝐴1𝐵1(𝐶1 + 𝐶2) + 𝐵2 (𝐶1−𝐶2)                                 (2.109) 

If we take the square of this expression we get:  

𝐵3
2  =   4𝟙 + 𝐴1[𝐶1 , 𝐶2] [𝐵1 , 𝐵2]                                         (2.110) 

Here, we have used  𝐴1
2 = 𝐵1

2 = 𝐵2
2 = 𝐶1

2 = 𝐶2
2 = 𝟙 . We know that, for two bounded 

operators  X  and  Y : 

‖[𝑋, 𝑌]‖   ≤    2 ‖𝑋‖ ‖𝑌‖                                                   (2.111) 

where  “‖  ‖”  is the sup norm of a bounded operator. Using this relation, we notice 

that the maximum value will be obtained when  𝐵3
2   is  8 𝟙  and hence  ‖𝐵3‖  ≤ 2√2   

(Das, Datta, Agrawal, 2017).   

Proposition 1: All generalized GHZ states violate all six inequalities (2.108a – 

2.108f) of this set (Das, Datta, Agrawal, 2017).  

Proposition 2: Any separable pure three-qubit state obeys all the inequalities 

within the set (Das, Datta, Agrawal, 2017).   

Proposition 3: All biseparable pure three-qubit states violate exactly two 

inequalities within the set and the amount of maximal violation are same for both 

(Das, Datta, Agrawal, 2017).   

Proposition 4: For all genuine tripartite entangled states, we have violation 

within the set (Das, Datta, Agrawal, 2017).   

It is shown that the more entangled a generalized GHZ state is, the more will 

be the violation. This establishes a relation between nonlocality and entanglement for 

this class of states (Das, Datta, Agrawal, 2017).      
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Criterion: multi-qubits set Bell inequalities   (2017) 

 

We have established that our set of inequalities are violated by any entangled 

three-qubit state. We can generalize this set of inequalities to  n-qubit states. We have 

to distinguish between two cases, odd number of qubits and even number of qubits. 

Starting from the operator, of which GHZ state is an eigenstate, one can construct 

different Bell inequalities. For even  n, there will be a set of  n  inequalities, while for 

odd  n , the number will rise to  n(n-1). The set is larger for odd number of qubits, 

because we have choice of making one measurement on any of  n  qubits, while in the 

case of even  n, two measurements are made on all qubits. Therefore, we have to 

construct different types of inequalities for even and odd number of particles. We 

have already seen that the GHZ state of three qubits is eigenstate of the operator:  

√2 (𝜎𝑥⨂𝜎𝑥⨂𝜎𝑥 + 𝜎𝑧⨂𝜎𝑧⨂𝟙)  with the highest eigenvalue  2√2 .   

This form of the operator can be generalized for any  n-qubit  GHZ state, when  

n  is odd. It is noted that  n-qubit  GHZ states is the eigenstate of the operator:  

√2 (𝜎𝑥⨂𝜎𝑥⨂𝜎𝑥⨂…⨂𝜎𝑥
𝑛 𝑡ℎ + 𝜎𝑧⨂𝜎𝑧⨂…⨂𝜎𝑧

(𝑛−1) 𝑡ℎ⨂𝟙)                   (2.112) 

with the highest eigenvalue  2√2 . So, like the three-qubit case, we have to consider 

non-correlation Bell inequalities, when  n  is odd. The first two Bell inequalities 

(2.108a) and (2.108b) can be easily generalized for  n-qubit pure states as: 

𝐴1𝐴2𝐴3𝐴4𝐴5…(𝐴𝑛 + 𝐴
′
𝑛) + 𝐴

′
2𝐴
′
3𝐴
′
4𝐴
′
5…(𝐴𝑛 − 𝐴

′
𝑛)   ≤    2       (2.113)  

and   

 𝐴2𝐴3𝐴4𝐴5…(𝐴𝑛 + 𝐴
′
𝑛) + 𝐴1𝐴

′
2𝐴
′
3𝐴
′
4𝐴
′
5…(𝐴𝑛 − 𝐴

′
𝑛)   ≤    2           (2.114)  

Here,  𝐴𝑖  𝑎𝑛𝑑  𝐴𝑖′  are two dichotomic observable for  i-th party. In these 

inequalities, one measurement has been made on first qubit. Similarly, one can make 

single measurement on  (n-2) other qubits. This will lead to  (n-1) inequalities. We 

can write  n  such (n-1) inequalities with  (𝐴𝑖  ± 𝐴𝑖′)  for i-th qubit, giving a set of total 

n(n-1) inequalities. For three qubits the number of inequalities in the set is twelve 

(Das, Datta, Agrawal, 2017).    

For finding maximal violation, we consider all allowed  𝐴𝑖  𝑎𝑛𝑑  𝐴𝑖′  therefore 

their positions in the inequalities can be interchanged. The above set of inequalities 
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can be used to characterize the entanglement of  n-qubit states for odd  n. In the case 

of generalized  n-qubit  GHZ states, any one of these generalized inequalities is 

enough. One can show that for odd number of qubits these non-correlation Bell 

inequalities are violated by all generalized GHZ states with maximum violation of  

2√2  for the conventional GHZ state. Situation changes when one considers GHZ like 

states with even number if qubits. Because now, like the Bell states, the conventional 

GHZ state of  n  qubits (n is even) is the eigenstate of the operator: 

√2 (𝜎𝑥⨂𝜎𝑥⨂𝜎𝑥⨂…⨂𝜎𝑥
𝑛 𝑡ℎ + 𝜎𝑧⨂𝜎𝑧⨂…⨂𝜎𝑧

(𝑛−1) 𝑡ℎ⨂𝜎𝑧)  with highest eigenvalue  

2√2 . This suggests that correlation Bell inequalities are required in this case. For 

example, we can generalize the first correlation Bell inequality as:  

(𝐴1 + 𝐴′1)𝐴2𝐴3𝐴4𝐴5…𝐴𝑛 + (𝐴1 − 𝐴
′
1)𝐴

′
2𝐴
′
3𝐴
′
4𝐴
′
5…𝐴

′
𝑛   ≤   2       (2.115)  

Proposition 5: Multiqubit extension of the inequalities are violated by 

multiqubit generalized GHZ states (Das, Datta, Agrawal, 2017).      

 

Criterion: Coefficient matrix for Bell inequalities  (2018) 
 

Multi-setting Tight Bel Inequality for 2 Qubits:  

We focus on Bell inequality for two-particle systems. The Bell-type scenario 

involves only two observers and each of them measures M different local observables 

of two outcomes  ± 1. For simplicity and convenience, we denote 𝑋1,1𝑘 , 𝑋2,2𝑘   as   𝐴𝑘  

and  𝐵𝑘  (k = 1, · · · ,M) respectively. The correlation function  𝑄(𝐴𝑖𝐵𝑗) , in the case 

of a local realistic theory, is then the average values of the products  𝐴𝑖𝐵𝑗  over many 

runs of the experiment. We also denote 𝑄(𝐴𝑖𝐵𝑗), 𝑄(𝐴𝑖) and  𝑄(𝐵𝑗) as  𝑄𝑖𝑗  , 𝑄𝑖0  and  

𝑄0𝑗, respectively. Then the famous CHSH inequality, as we have seem above from 

the inequality (2.59) :          

 

                                     𝐼𝐶𝐻𝑆𝐻 = 𝑄11 + 𝑄12 + 𝑄21 − 𝑄22  <   2                                                                                   

and in the form of joint probability, the inequality (2.60) reads:  

𝐼𝐶𝐺 = 𝑃(𝑎1 = 0, 𝑏1 = 0) +  𝑃(𝑎1 = 0, 𝑏2 = 0) +  𝑃(𝑎1 = 0, 𝑏3 = 0) +

                      +𝑃(𝑎2 = 0, 𝑏1 = 0) +  𝑃(𝑎3 = 0, 𝑏1 = 0) −  𝑃(𝑏2 = 0) +
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 𝑃(𝑎2 = 0, 𝑏2 = 0) −                       − 𝑃(𝑎2 = 0, 𝑏3 = 0) −  𝑃(𝑎3 = 0, 𝑏2 = 0) −

 𝑃(𝑎1 = 0) − 2𝑃(𝑏1 = 0)  ≤   0           

The four-setting Bell inequality (2.62):  

−6 ≤   𝐼4  =   𝑄11 + 𝑄22  +   𝑄12  +   𝑄21  +  𝑄14  +   𝑄41  −   𝑄24  −   𝑄42 −              

                            −  2𝑄33  + 𝑄31 + 𝑄13 + 𝑄32  +  𝑄23   ≤   6                                              

The last inequality (2.62) can be written in the following way:  

𝐼4  =   

(

 
 

 𝐴1 𝐴2 𝐴3 𝐴4
𝐵1 1 1 1 1
𝐵2 1 1 1 −1
𝐵3 1 1 −2 0
𝐵4 1 −1 0 0 )

 
 

                                                      (2.116)  

Here, the coefficient in the matrix indicate the coefficients of the 

corresponding expectation values. Using the same method, we find many six-setting 

Bell inequalities for two qubits. We present only one of them whose correlation 

coefficients are regular with respect to the CHSH inequality and inequality (2.62). In 

the matrix form, it reads:  

𝐼6  =   

(

 
 
 
 

 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6
𝐵1 1 1 1 1 1 1
𝐵2 1 1 1 1 1 −1
𝐵3 1 1 1 1 −2 0
𝐵4 1 1 1 −3 0 0
𝐵5 1 1 −2 0 0 0
𝐵6 1 −1 0 0 0 0 )

 
 
 
 

                                         (2.117) 

 Inspired by previous inequalities, it is not difficult to guess the general form of a set 

of even setting Bell inequalities:  

𝐼2𝑛  = 
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(

 
 
 
 
 
 
 
 
 
 

 𝐴1 𝐴2 𝐴3 … 𝐴𝑛 𝐴𝑛+1 𝐴𝑛+2 … 𝐴2𝑛−2 𝐴2𝑛−1 𝐴2𝑛
𝐵1 1 1 1 ⋯ 1 1 1 ⋯ 1 1 1
𝐵2 1 1 1 ⋯ 1 1 1 ⋯ 1 1 −1
𝐵3 1 1 1 ⋯ 1 1 1 ⋯ 1 −2 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋰ ⋰ ⋮
𝐵𝑛 1 1 1 ⋯ 1 1 −(𝑛 − 1) ⋯ 0 0 0
𝐵𝑛+1 1 1 1 ⋯ 1 −𝑛 0 ⋯ 0 0 0

𝐵𝑛+2 1 1 1 ⋯ −(𝑛 − 1) 0 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐵2𝑛−2 1 1 1 ⋰ 0 0 0 ⋯ 0 0 0
𝐵2𝑛−1 1 1 −2 ⋰ 0 0 0 ⋯ 0 0 0
𝐵2𝑛 1 −1 0 ⋯ 0 0 0 ⋯ 0 0 0 )

 
 
 
 
 
 
 
 
 
 

 

                                                                                                   ≤  𝑛(𝑛 + 1)             (2.118) 

More generally, if we set  A2n  and  B2n  in inequality  (2.118)  equal to  1, then most 

of, not all, the reduced inequality:   𝐼2𝑛−1
𝑟𝑒𝑑𝑢𝑐𝑒𝑑   ≤    𝑛(𝑛 + 1)   is tight (Deng, Zhou, 

Chen, 2009).                  

 

 

Comments on the criteria:  
 

The tests become more and more stringent.  

1) The fundamental test is contextuality which is applicable for any quantum system.  

There is always an appropriate collection of operators that can decide at the most 

basic level whether a system can be described by quantum or classical probability 

theory.     

2) The second test is entanglement that requires two or more couples of systems.  

3) The third test is non-locality expressed as violation of the Bell inequality which is 

a special case of the second test for many applications. Non locality and entanglement 

are more useful.  
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CHAPTER 2: SELECTED APPLICATIONS OF QUANTUM 

STATISTICS FOR THE ANALYSIS OF DATA SETS  
 

2.1 Example: 3-Qubits Wigner-d’Espagnat inequality  
 

Theorem 1 (Wigner-d’Espagnat inequality):  

We consider three events A, B, Γ (measurable subsets) of the sample space Ω and we 

denote by 𝐴𝑐 the complementary event of A, then the following inequality holds for 

the probability measure P (Wigner 1970, d’Espagnat 1979, Bell 1981, Khrennikov 

2016):   

𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐵𝑐 ∩ 𝛤) ≥ 𝑃(𝐴 ∩ 𝛤)     (1.1). 

Proof:  

𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐵𝑐 ∩ 𝛤) =  

= 𝑃((𝛢 ∩ 𝛣) ∩ 𝛺) + 𝑃((𝐵𝑐 ∩ 𝛤) ∩ 𝛺)  =  

= 𝑃((𝛢 ∩ 𝛣) ∩ (𝛤 ∪ 𝛤𝑐)) + 𝑃((𝐵𝑐 ∩ 𝛤) ∩ (𝐴 ∪ 𝐴𝑐)) =  

= 𝑃((𝛢 ∩ 𝛣 ∩ 𝛤) ∪ (𝛢 ∩ 𝛣 ∩ 𝛤𝑐)) + 𝑃((𝐵𝑐 ∩ 𝛤 ∩ 𝐴) ∪ (𝐵𝑐 ∩ 𝛤 ∩ 𝐴𝑐))= 

= 𝑃(𝛢 ∩ 𝛣 ∩ 𝛤) +  𝑃(𝛢 ∩ 𝛣 ∩ 𝛤𝑐) + 𝑃(𝐵𝑐 ∩ 𝛤 ∩ 𝛢) + 𝑃(𝐵𝑐 ∩ 𝛤 ∩ 𝛢𝑐) =  

= 𝑃((𝛢 ∩ 𝛤) ∩ 𝛣) +  𝑃(𝛢 ∩ 𝛣 ∩ 𝛤𝑐) + 𝑃((𝛢 ∩ 𝛤) ∩ 𝐵𝑐) + 𝑃(𝐵𝑐 ∩ 𝛤 ∩ 𝛢𝑐) =  

= 𝑃(𝛢 ∩ 𝛤) +  𝑃(𝛢 ∩ 𝛣 ∩ 𝛤𝑐) + 𝑃(𝐵𝑐 ∩ 𝛤 ∩ 𝛢𝑐) ≥  𝑃(𝐴 ∩ 𝛤)  

 because  𝑃(𝛢 ∩ 𝛣 ∩ 𝛤𝑐) ≥ 0 𝑎𝑛𝑑 𝑃(𝐵𝑐 ∩ 𝛤 ∩ 𝛢𝑐) ≥ 0.  ∎  

 

 

Remark 1: Importance of the Wigner-d’Espagnat inequality  

The violation of Wigner-d’Espagnat inequality indicates that the observed 

phenomenon can not be modeled by the Kolmogorov probability and it has to be 

modeled by quantum probability (Wigner 1970, d’Espagnat 1979, Bell 1981, 1987, 

Khrennikov 2016). The key point here is that quantum systems can exhibit 

correlations that are not analogous to classical theories. If Wigner-d’Espagnat 

inequality holds for a data set, we shall employ classical probability models. On the 

contrary, if for a given data set Wigner-d’Espagnat inequality fails, we have to 

employ non-Kolmogorov probability models, like quantum probability models. 
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Example 1:  

 

We shall the validity of the Wigner-d’Espagnat inequality for 5226 observations of 3 

binary variables R, S and E, which correspond to confirmation of substance use (R), 

existence of phenotypic trait (S) and employment relationship (E). We compute the 

binary correlations between (R,S), (R,E), (S,E). To simplify the notation and relate 

directly with previous notation of events, we denote the events as follows:  

{𝑅 = 0} = 𝐴, {𝑅 = 1} = 𝐴𝑐 , {𝑆 = 0} = 𝐵, {𝑆 = 1} = 𝐵𝑐 , {𝐸 = 0} = 𝛤, {𝛦 = 1} = 𝛤𝑐. 

The contingency matrices and the joint empirical probability matrices are:  

Table 8 

 Table 9 

        

 

 

 

 

 

     

 

Contingency table of 

Variables R, S 

Variable S Marginal events of R 

{𝑆 = 0} = 𝐵 {𝑆 = 1} = 𝐵𝑐 
Variable R {𝑅 = 0} = 𝐴 333 559 892 

{𝑅 = 1} = 𝐴𝑐 955 3379 4334 

Marginal events of S 1288 3938 5226 

Joint Probability Distribution 

of Variables R, S 

Variable S Marginal Probabilities of R 

{𝑆 = 0} = 𝐵 {𝑆 = 1} = 𝐵𝑐 
Variable R {𝑅 = 0} = 𝐴 0.0637 0.1070 0.1707 

{𝑅 = 1} = 𝐴𝑐 0.1827 0.6466 0.8293 

Marginal Probabilities of S 0.2464 0.7536 1 
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Table 10 

Table 11 

 

Table 12 

Table 13 

 

We check the validity of the Law of Total Probability: 

𝑃(𝐴) = 𝑃(𝐵)𝑃(𝐴|𝐵) + 𝑃(𝐵𝑐)𝑃(𝐴|𝐵𝑐) =  

= 0.2464 ∙
0.0637

0.2464
+ 0.7536 ∙

0.107

0.7536
= 0.0637 + 0.107 = 0.1707   

𝑃(𝐴) = 𝑃(𝛤)𝑃(𝐴|𝛤) + 𝑃(𝛤𝑐)𝑃(𝐴|𝛤𝑐) =  

= 0.2134 ∙
0.0668

0.2134
+ 0.7866 ∙

0.1039

0.7866
= 0.0668 + 0.1039 = 0.1707       

Contingency table of 

Variables R, E 

Variable E Marginal events of R 

{𝐸 = 0} = 𝛤 {𝛦 = 1} = 𝛤𝑐 
Variable R {𝑅 = 0} = 𝐴 349 543 892 

{𝑅 = 1} = 𝐴𝑐 766 3568 4334 

Marginal events of E 1115 4111 5226  

Joint Probability Distribution 

of Variables R, E 

Variable E Marginal Probabilities of R 

{𝐸 = 0} = 𝛤 {𝛦 = 1} = 𝛤𝑐 
Variable R {𝑅 = 0} = 𝐴 0.0668 0.1039 0.1707 

{𝑅 = 1} = 𝐴𝑐 0.1466 0.6827 0.8293 

Marginal Probabilities of E 0.2134 0.7866 1 

Contingency table of 

Variables S, E 

Variable E Marginal events of S 

{𝐸 = 0} = 𝛤 {𝛦 = 1} = 𝛤𝑐 
Variable S {𝑆 = 0} = 𝐵 377 911 1288 

{𝑆 = 1} = 𝐵𝑐 738 3200 3938 

Marginal events of E 1115 4111 5226  

Joint Probability Distribution 

of Variables S, E 

Variable E Marginal Probabilities of S 

{𝐸 = 0} = 𝛤 {𝛦 = 1} = 𝛤𝑐 
Variable S {𝑆 = 0} = 𝐵 0.0721 0.1743 0.2464 

{𝑆 = 1} = 𝐵𝑐  0.1412 0.6123 0.7535 

Marginal Probabilities of E 0.2134 0.7866 1 
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𝑃(𝐴𝑐) = 𝑃(𝐵)𝑃(𝐴𝑐|𝐵) + 𝑃(𝐵𝑐)𝑃(𝐴𝑐|𝐵𝑐) =  

= 0.2464 ∙
0.1827

0.2464
+ 0.7536 ∙

0.6466

0.7536
= 0.1827 + 0.6466 = 0.8293   

𝑃(𝐴𝑐) = 𝑃(𝛤)𝑃(𝐴𝑐|𝛤) + 𝑃(𝛤𝑐)𝑃(𝐴𝑐|𝛤𝑐) =  

= 0.2134 ∙
0.1466

0.2134
+ 0.7866 ∙

0.6827

0.7866
= 0.1466 + 0.6827 = 0.8293    

𝑃(𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) + 𝑃(𝐴𝑐)𝑃(𝐵|𝐴𝑐) =  

= 0.1707 ∙
0.0637

0.1707
+ 0.8293 ∙

0.1827

0.8293
= 0.0637 + 0.1827 = 0.2464   

𝑃(𝐵) = 𝑃(𝛤)𝑃(𝐵|𝛤) + 𝑃(𝛤𝑐)𝑃(𝐵|𝛤𝑐) =  

= 0.2134 ∙
0.0721

0.2134
+ 0.7866 ∙

0.1743

0.7866
= 0.0721 + 0.1743 = 0.2464       

𝑃(𝐵𝑐) = 𝑃(𝐴)𝑃(𝐵𝑐|𝐴) + 𝑃(𝐴𝑐)𝑃(𝐵𝑐|𝐴𝑐) =  

= 0.1707 ∙
0.107

0.1707
+ 0.8293 ∙

0.6466

0.8293
= 0.107 + 0.6466 = 0.7536   

𝑃(𝐵𝑐) = 𝑃(𝛤)𝑃(𝐵𝑐|𝛤) + 𝑃(𝛤𝑐)𝑃(𝐵𝑐|𝛤𝑐) =  

= 0.2134 ∙
0.1412

0.2134
+ 0.7866 ∙

0.6123

0.7866
= 0.1412 + 0.6123 = 0.7535       

𝑃(𝛤) = 𝑃(𝐵)𝑃(𝛤|𝐵) + 𝑃(𝐵𝑐)𝑃(𝛤|𝐵𝑐) =  

= 0.2464 ∙
0.0721

0.2464
+ 0.7535 ∙

0.1412

0.7535
= 0.0721 + 0.1412 = 0.2133   

𝑃(𝛤) = 𝑃(𝛢)𝑃(𝛤|𝛢) + 𝑃(𝛢𝑐)𝑃(𝛤|𝛢𝑐) =  

= 0.1707 ∙
0.0668

0.1707
+ 0.8293 ∙

0.1466

0.8293
= 0.0668 + 0.1466 = 0.2134   

𝑃(𝛤𝑐) = 𝑃(𝐵)𝑃(𝛤𝑐|𝐵) + 𝑃(𝐵𝑐)𝑃(𝛤𝑐|𝐵𝑐) =  

= 0.2464 ∙
0.1743

0.2464
+ 0.7535 ∙

0.6123

0.7535
= 0.1743 + 0.6123 = 0.7866   

𝑃(𝛤𝑐) = 𝑃(𝛢)𝑃(𝛤𝑐|𝛢) + 𝑃(𝛢𝑐)𝑃(𝛤𝑐|𝛢𝑐) =  

= 0.1707 ∙
0.1039

0.1707
+ 0.8293 ∙

0.6827

0.8293
= 0.1039 + 0.6827 = 0.7866       

The Law of Total Probability is valid in all cases.  ∎      

We also check the validity of  Wigner-d’Espagnat inequality:  

P(𝐴, 𝐵) + 𝑃(𝐵𝑐, 𝛤) = 6.37% + 14.12% = 20.49% ≥ 6.68% = 𝑃(𝛢, 𝛤)      
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Since the Wigner-d’Espagnat inequality is not violated, the Kolmogorov probability 

model is sufficient for this class of data.  

  



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

92 

Construction of a counterexample:  

 

We construct a data set, which violates the Wigner-d’Espagnat inequality. The 

constructed data set is given in the following tables for 3 binary variables R, S, E:     

Table 14 

Table 15 

 

Table 16 

Table 17 

 

 

 

Contingency table of 

Variables R, S 

Variable S Marginal events of R 

{𝑆 = 0} = 𝐵 {𝑆 = 1} = 𝐵𝑐 
Variable R {𝑅 = 0} = 𝐴 30   1270 1300 

{𝑅 = 1} = 𝐴𝑐 3746  180  3926 

Marginal events of S 3776 1450 5226 

Joint Probability Distribution 

of Variables R, S 

Variable S Marginal Probabilities of R 

{𝑆 = 0} = 𝐵 {𝑆 = 1} = 𝐵𝑐 
Variable R {𝑅 = 0} = 𝐴 0.0057 0.243 0.2488 

{𝑅 = 1} = 𝐴𝑐 0.7168 0.0344 0.7512 

Marginal Probabilities of S 0.7225 0.2774 1 

Contingency table of 

Variables R, E 

Variable E Marginal events of R 

{𝐸 = 0} = 𝛤 {𝛦 = 1} = 𝛤𝑐 
Variable R {𝑅 = 0} = 𝐴 1000    300    1300 

{𝑅 = 1} = 𝐴𝑐 2876   1050  3926 

Marginal events of E 3876 1350 5226  

Joint Probability Distribution 

of Variables R, E 

Variable E Marginal Probabilities of R 

{𝐸 = 0} = 𝛤 {𝛦 = 1} = 𝛤𝑐 
Variable R {𝑅 = 0} = 𝐴 0.1914 0.0574 0.2488 

{𝑅 = 1} = 𝐴𝑐 0.5503 0.2009 0.7512 

Marginal Probabilities of E 0.7417 0.2583 1 
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Table 18 

Table 19 

 

We check the validity of the Law of Total Probability:  

𝑃(𝐴) = 𝑃(𝐵)𝑃(𝐴|𝐵) + 𝑃(𝐵𝑐)𝑃(𝐴|𝐵𝑐) =  

= 0.7225 ∙
0.0057

0.7225
+ 0.2774 ∙

0.243

0.2774
= 0.0057 + 0.243 = 0.2487   

𝑃(𝐴) = 𝑃(𝛤)𝑃(𝐴|𝛤) + 𝑃(𝛤𝑐)𝑃(𝐴|𝛤𝑐) =  

= 0.7417 ∙
0.1914

0.7417
+ 0.2583 ∙

0.0574

0.2583
= 0.1914 + 0.0574 = 0.2488       

𝑃(𝐴𝑐) = 𝑃(𝐵)𝑃(𝐴𝑐|𝐵) + 𝑃(𝐵𝑐)𝑃(𝐴𝑐|𝐵𝑐) =  

= 0.7225 ∙
0.7168

0.7225
+ 0.2774 ∙

0.0344

0.2774
= 0.7168 + 0.0344 = 0.7512   

𝑃(𝐴𝑐) = 𝑃(𝛤)𝑃(𝐴𝑐|𝛤) + 𝑃(𝛤𝑐)𝑃(𝐴𝑐|𝛤𝑐) =  

= 0.7417 ∙
0.5503

0.7417
+ 0.2583 ∙

0.2009

0.2583
= 0.5503 + 0.2009 = 0.7512    

𝑃(𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) + 𝑃(𝐴𝑐)𝑃(𝐵|𝐴𝑐) =  

= 0.2488 ∙
0.0057

0.2488
+ 0.7512 ∙

0.7168

0.7512
= 0.0057 + 0.7168 = 0.7225   

𝑃(𝐵) = 𝑃(𝛤)𝑃(𝐵|𝛤) + 𝑃(𝛤𝑐)𝑃(𝐵|𝛤𝑐) =  

= 0.7417 ∙
0.6315

0.7417
+ 0.2583 ∙

0.0911

0.2583
= 0.6315 + 0.0911 = 0.7226       

𝑃(𝐵𝑐) = 𝑃(𝐴)𝑃(𝐵𝑐|𝐴) + 𝑃(𝐴𝑐)𝑃(𝐵𝑐|𝐴𝑐) =  

= 0.2488 ∙
0.243

0.2488
+ 0.7512 ∙

0.0344

0.7512
= 0.243 + 0.0344 = 0.2774   

Contingency table of 

Variables S, E 

Variable E Marginal events of S 

{𝐸 = 0} = 𝛤 {𝛦 = 1} = 𝛤𝑐 
Variable S {𝑆 = 0} = 𝐵 3300    476 3776 

{𝑆 = 1} = 𝐵𝑐 576    874   1450 

Marginal events of E 3876 1350 5226  

Joint Probability Distribution 

of Variables S, E 

Variable E Marginal Probabilities of S 

{𝐸 = 0} = 𝛤 {𝛦 = 1} = 𝛤𝑐 
Variable S {𝑆 = 0} = 𝐵 0.6315 0.0911 0.7226 

{𝑆 = 1} = 𝐵𝑐  0.1102 0.1672 0.2774 

Marginal Probabilities of E 0.7417 0.2583 1 
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𝑃(𝐵𝑐) = 𝑃(𝛤)𝑃(𝐵𝑐|𝛤) + 𝑃(𝛤𝑐)𝑃(𝐵𝑐|𝛤𝑐) =  

= 0.7417 ∙
0.1102

0.7417
+ 0.2583 ∙

0.1672

0.2583
= 0.1102 + 0.1672 = 0.2774       

𝑃(𝛤) = 𝑃(𝐵)𝑃(𝛤|𝐵) + 𝑃(𝐵𝑐)𝑃(𝛤|𝐵𝑐) =  

= 0.7226 ∙
0.6315

0.7226
+ 0.2774 ∙

0.1102

0.2774
= 0.6315 + 0.1102 = 0.7417   

𝑃(𝛤) = 𝑃(𝛢)𝑃(𝛤|𝛢) + 𝑃(𝛢𝑐)𝑃(𝛤|𝛢𝑐) =  

= 0.2488 ∙
0.1914

0.2488
+ 0.7512 ∙

0.5503

0.7512
= 0.1914 + 0.5503 = 0.7417   

𝑃(𝛤𝑐) = 𝑃(𝐵)𝑃(𝛤𝑐|𝐵) + 𝑃(𝐵𝑐)𝑃(𝛤𝑐|𝐵𝑐) =  

= 0.7226 ∙
0.0911

0.7226
+ 0.2774 ∙

0.1672

0.2774
= 0.0911 + 0.1672 = 0.2583   

𝑃(𝛤𝑐) = 𝑃(𝛢)𝑃(𝛤𝑐|𝛢) + 𝑃(𝛢𝑐)𝑃(𝛤𝑐|𝛢𝑐) =  

= 0.2488 ∙
0.0574

0.2488
+ 0.7512 ∙

0.2009

0.7512
= 0.0574 + 0.2009 = 0.2583   

The Law of Total Probability is valid in all cases.  ∎      

However, the Wigner-d’Espagnat inequality does not hold:    

P(𝐴, 𝐵) + 𝑃(𝐵𝑐, 𝛤) = 0.57% + 11.02% = 11.59% < 19.14% = 𝑃(𝛢, 𝛤).      

We observe that the Wigner-d’Espagnat inequality is clearly violated for the data set 

we constructed. Therefore, according to the Remark 1 above, the system of three binary 

variables R, S and E should be modeled with quantum probability.       

We conclude that if we have a data set with three binary variables and we 

want to correlate the variables two by two in the frame of joint probability, we 

distinguish two cases. In the first case, the Wigner-d’Espagnat inequality is 

confirmed, so we model the system with joint probability according to Kolmogorov 

and examine Pearson correlations between the variables. In the second case, the 

Wigner-d’Espagnat inequality is violated, so we model the system with quantum 

probability according to Heisenberg and we examine correlations between the density 

operators of the variables. 

In statistical analysis, we collect data without knowing its true origin nor the type of 

modeling we should follow. However, the Wigner-d’Espagnat inequality is a criterion 

for selecting classical or quantum modeling.               



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

                                                                                              Quantum Statistics and Data Analysis                  
                                                                                                     

    

 

 

95 

2.2 Example: Quantum probability in macroworld. Vessels of water (Aerts, 

Aerts, Broekaert, Gabora, 2000)     
 

It is shown that Bell inequalities can be violated in the macroscopic world. 

The macroworld violation is illustrated using an example involving connected vessels 

of water. It is shown that whether the violation of inequalities occurs in the 

microworld or in the macroworld, it is the identification of nonidentical events that 

plays a crucial role. We investigate the violation of Bell inequalities in macroscopic 

situations and analyze how this indicates the presence of genuine quantum structure. 

We explicitly challenge the common belief that quantum structure is present only in 

micro-physical reality (and macroscopic coherent systems), and present evidence that 

quantum structure can be present in the macro-physical reality.   

Specifically, we note that if nonidentical events are consistently differentiated, 

Bell-type Pitowsky inequalities are no longer violated, even for Bohm’s example of 

two entangled spin 1/2 quantum particles.  

Bell inequalities are defined with the following experimental situation in 

macroworld. We consider a physical entity S, and four experiments 𝑒1, 𝑒2, 𝑒3 𝑎𝑛𝑑 𝑒4 

that can be performed on the physical entity S. Each of the experiments 𝑒𝑖, i ∈ {1, 2, 

3, 4} has two possible outcomes, respectively denoted 𝑜𝑖(𝑢𝑝) and  𝑜𝑖(𝑑𝑜𝑤𝑛). Some 

of the experiments can be performed together, which in principle leads to 

‘coincidence’ experiments 𝑒𝑖𝑗 , i, j ∈ {1, 2, 3, 4}.    

For example 𝑒𝑖 and 𝑒𝑗 together will be denoted 𝑒𝑖𝑗 . Such a coincidence 

experiment 𝑒𝑖𝑗 has four possible outcomes, namely (𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑢𝑝)) , 

(𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑑𝑜𝑤𝑛)), (𝑜𝑖(𝑑𝑜𝑤𝑛), 𝑜𝑗(𝑢𝑝)) and  (𝑜𝑖(𝑑𝑜𝑤𝑛), 𝑜𝑗(𝑑𝑜𝑤𝑛)). Following 

Bell, we introduce the expectation values 𝐸𝑖𝑗 , i, j ∈ {1, 2, 3, 4} for these coincidence 

experiments, as:  

𝐸𝑖𝑗 = +1 ∙ 𝑃 (𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑢𝑝)) +  1 ∙ 𝑃 (𝑜𝑖(𝑑𝑜𝑤𝑛), 𝑜𝑗(𝑑𝑜𝑤𝑛)) −  

             − 1 ∙ 𝑃 (𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑑𝑜𝑤𝑛)) −  1 ∙ 𝑃 (𝑜𝑖(𝑑𝑜𝑤𝑛), 𝑜𝑗(𝑢𝑝))           (2.1) 
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From the assumption that the outcomes are either +1 or -1, and that the 

correlation 𝐸𝑖𝑗 can be written as an integral over some hidden variable of a product of 

the two local outcome assignments, one derives Bell inequalities:  

|E13 − E14| +  |E23 + E24|   ≤   2                                (2.2)  

Hence we have the coincidence experiments  𝑒13, 𝑒14, 𝑒23 𝑎𝑛𝑑 𝑒24 , but instead 

of concentrating on the expectation values they introduce the coincidence 

probabilities 𝑝13, 𝑝14, 𝑝23 𝑎𝑛𝑑 𝑝24 , together with the probabilities 𝑝2 𝑎𝑛𝑑  𝑝4 . 

Concretely,  𝑝𝑖𝑗 means the probability that the coincidence experiment  𝑝𝑖𝑗  gives the 

outcome (𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑑𝑜𝑤𝑛)) ,  while 𝑝𝑖 means the probability that the experiment 𝑒𝑖 

gives the outcome 𝑜𝑖(𝑢𝑝). The Clauser Horne inequalities then read:  

−1 ≤  𝑝14 − 𝑝13 + 𝑝23 + 𝑝24 − 𝑝2 − 𝑝4  ≤ 0                      (2.3)   

 

Although the Clauser Horne inequalities are thought to be equivalent to Bell 

inequalities, they are of a slightly more general theoretical nature, and lend 

themselves to Pitowsky’s generalization, which will play an important role in our 

theoretical analysis.  

 

We review an example of a macroscopic situation where Bell inequalities and 

Clauser Horne inequalities are violated. Consider an entity S which is a container with 

20 liters of transparent water (Figure 9), in a state  s  such that the container is placed 

in the gravitational field of the earth, with its bottom horizontal.    

 

We introduce the experiment 𝑒1 that consists of putting a siphon 𝐾1 in the 

container of water at the left, taking out water using the siphon, and collecting this 

water in a reference vessel 𝑅1 placed to the left of the container. If we collect more 

than 10 liters of water, we call the outcome 𝑜1(𝑢𝑝), and if we collect less or equal to 

10 liters, we call the outcome 𝑜1(𝑑𝑜𝑤𝑛). We introduce another experiment 𝑒2 that 

consists of taking with a little spoon, from the left, a bit of the water, and determining 

whether it is transparent. We call the outcome 𝑜2(𝑢𝑝) when the water is transparent 

and the outcome 𝑜2(𝑑𝑜𝑤𝑛) when it is not. We introduce the experiment 𝑒3 that 

consists of putting a siphon 𝐾3 in the container of water at the right, taking out water 

using the siphon, and collecting this water in a reference vessel 𝑅3 to the right of the 
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container. If we collect more or equal to 10 liters of water, we call the outcome 

𝑜3(𝑢𝑝), and if we collect less than 10 liters, we call the outcome 𝑜3(𝑑𝑜𝑤𝑛). We also 

introduce the experiment 𝑒4 which is analogous to experiment 𝑒2, except that we 

perform it to the right of the container.   

 

 

 

 

Figure 9: The vessels of water example violating Bell inequalities. The entity  S  consists of 

two vessels containing 20 liters of water that are connected by a tube. Experiments are 

performed on both sides of the entity S by introducing syphons K1 and K2 in the respective 

vessels and pouring out the water and collecting it in reference vessels R1 and R2. Carefully 

chosen experiments reveal that Bell inequalities are violated by this entity S (Aerts, Aerts, 

Broekaert, Gabora, 2000).     

 

Clearly, for the container of water being in state  s, experiments  𝑒1 and 𝑒3 

give with certainty the outcome 𝑜1(𝑢𝑝) 𝑎𝑛𝑑 𝑜3(𝑢𝑝) , which shows that  𝑝1 = 𝑝3 = 1. 

Experiments 𝑒2 𝑎𝑛𝑑 𝑒4 give with certainty the outcome 𝑜2(𝑢𝑝) 𝑎𝑛𝑑 𝑜4(𝑢𝑝) , which 

shows that  𝑝2 = 𝑝4 = 1. 

The experiment 𝑒1 can be performed together with experiments 𝑒3 𝑎𝑛𝑑 𝑒4 , 

and we denote the coincidence experiments 𝑒13 𝑎𝑛𝑑 𝑒14. Also, experiment 𝑒2 can be 

performed together with experiments 𝑒3 𝑎𝑛𝑑 𝑒4 , and we denote the coincidence 
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experiments 𝑒23 𝑎𝑛𝑑 𝑒24 . For the container in state s, the coincidence experiment 𝑒13 

always gives one of the outcomes  (𝑜1(𝑢𝑝), 𝑜3(𝑑𝑜𝑤𝑛)) or (𝑜1(𝑑𝑜𝑤𝑛), 𝑜3(𝑢𝑝)), 

since more than 10 liters of water can never come out of the vessel at both sides. This 

shows that 𝐸13 = −1  and  𝑝13 = 0. The coincidence experiment 𝑒14 always gives 

the outcome (𝑜1(𝑢𝑝), 𝑜4(𝑢𝑝)) which shows that  𝐸14 = +1  and  𝑝14 = +1 , and the 

coincidence experiment 𝑒23 always gives the outcome (𝑜2(𝑢𝑝), 𝑜3(𝑢𝑝)) which shows 

that  𝐸23 = +1  𝑎𝑛𝑑  𝑝23 = +1 . Clearly experiment 𝑒24 always gives the outcome  

(𝑜2(𝑢𝑝), 𝑜4(𝑢𝑝)) which shows that 𝐸24 = +1  𝑎𝑛𝑑  𝑝24 = +1 . Let us now 

calculate the terms of Bell inequalities: 

|E13 − E14| +  |E23 + E24|  =   |−1 − 1| + |+1 + 1| =  +2 + 2 =  +4         (2.4) 

and of the Clauser Horne inequalities:  

𝑝
14
− 𝑝

13
+ 𝑝

23
+ 𝑝

24
−  𝑝

2
− 𝑝

4
= +1 − 0 + 1 + 1 − 1 − 1 = +1               (2.5)  

 

This shows that Bell inequalities and Clauser Horne inequalities can be 

violated in macroscopic reality. It is even so that the example violates the inequalities 

more than the original quantum example of the two coupled spin- 1/2 entities.    

If we get more than four events, and unfortunately the original Bell 

inequalities are out of their domain of applicability. However Pitowsky has developed 

a generalization of Bell inequalities where any number of experiments and events can 

be taken into account, and as a consequence we can check whether the new situation 

violates Pitowsky inequalities.   

If Pitowsky inequalities would not be violated in the vessels of water model, 

while for the microscopic Bohm example they would, then this would ‘prove’ the 

different status of the two examples, the macroscopic being ‘false’, due to lack of 

correctly distinguishing between events, and the microscopic being genuine.  

More specifically, let S be a set of pairs of integers from {1, 2, ..., n} that is: 

𝑆 ⊆  {{𝑖, 𝑗} | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}                                                                  (2.6) 

Let  R(n, S) denote the real space of all functions  𝑓 ∶ {1, 2, … , 𝑛}  ∪ 𝑆 ↦  ℝ . 

We denote vectors in  R(n, S) by  𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛 , … , 𝑓𝑖𝑗  , … )  , where the  𝑓𝑖𝑗  
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appear in a lexicographic order on the  i, j’s . Let  {0 , 1}𝑛  be the set of all n-tuples of 

zeroes and one’s. We denote elements of  {0 , 1}𝑛  by  𝜀 = (𝜀1, 𝜀2, … , 𝜀𝑛)  where  𝜀𝑗 ϵ 

{0, 1}. For each  𝜀 ∈ {0 , 1}𝑛  let  𝑢𝜀 be the following vector in  R(n, S):  

𝑢𝑗
𝜀 = 𝜀𝑗     , 1 ≤ 𝑗 ≤ 𝑛   

𝑢𝑖𝑗
𝜀 = 𝜀𝑖𝜀𝑗    ,    {𝑖 , 𝑗} 𝜖 𝑆                          

The classical correlation polytope  C(n ,S) is the closed convex hull in  R(n, S) of all  

2𝑛  possible vectors  𝑢𝜀, 𝜀 ∈ {0 , 1}𝑛.    

Let   𝑝 = (𝑝1, … , 𝑝𝑛 , … , 𝑝𝑖𝑗 , … )   be a vector in  R(n, S). Then  p ϵ C(n, S) if 

there is a Kolmogorovian probability space (X, M, μ) and (not necessarily distinct) 

events  𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝑀   such that:  

𝑝𝑖 = 𝜇(𝛢𝑖) ,  1 ≤ i ≤ n  ,    𝑝𝑖𝑗 = 𝜇(𝛢𝑖 ∩ 𝐴𝑗)   ,  {i , j} ϵ S                                                                             

where  X   is the space of events and  μ  the probability measure (Pitowsky, 1989).    

To illustrate the above theorem and at the same time the connection with Bell 

inequalities and the Clauser Horne inequalities, we consider some specific examples 

of Pitowsky’s theorem. The case n = 4 and S = {{1, 3} , {1, 4} , {2, 3} , {2, 4}}. The 

condition p ∈ C(n, S) is then equivalent to the Clauser-Horne inequalities: 

0 ≤  𝑝𝑖𝑗  ≤  𝑝𝑖  ≤ 1  

0 ≤  𝑝𝑖𝑗  ≤  𝑝𝑗  ≤ 1     , 𝑖 = 1,2  𝑎𝑛𝑑  𝑗 = 3,4                        (2.7)                                

𝑝𝑖 + 𝑝𝑗  −  𝑝𝑖𝑗 ≤ 1  

−1 ≤  𝑝13 + 𝑝14 + 𝑝24 − 𝑝23 − 𝑝1 − 𝑝4  ≤ 0   

−1 ≤  𝑝23 + 𝑝24 + 𝑝14 − 𝑝13 − 𝑝2 − 𝑝4  ≤ 0   

−1 ≤  𝑝14 + 𝑝13 + 𝑝23 − 𝑝24 − 𝑝1 − 𝑝3  ≤ 0                               (2.8)  

−1 ≤  𝑝24 + 𝑝23 + 𝑝13 − 𝑝14 − 𝑝2 − 𝑝3  ≤ 0   

The case  n = 3  and  S = {{1, 2} , {1, 3}, {2, 3}}. We find then the following 

inequalities equivalent to the condition  p ϵ C(n, S) :  

 0 ≤  𝑝𝑖𝑗  ≤  𝑝𝑖  ≤ 1  



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

100 

0 ≤  𝑝𝑖𝑗  ≤  𝑝𝑗  ≤ 1     , 1 ≤ 𝑖 < 𝑗 ≤ 3                                             (2.9)                                

𝑝𝑖 + 𝑝𝑗  −  𝑝𝑖𝑗 ≤ 1  

𝑝1 + 𝑝2 + 𝑝3 − 𝑝12 − 𝑝13 − 𝑝23  ≤ 0   

𝑝1 − 𝑝12 − 𝑝13 + 𝑝23 ≤ 0   

𝑝2 − 𝑝12 − 𝑝23 + 𝑝13 ≤ 0                                                                (2.10) 

𝑝3 − 𝑝13 − 𝑝23 + 𝑝12 ≤ 0          
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2.3 Example: Quantum probability in cognition. Cats (Aerts, Aerts, Broekaert, 

Gabora, 2000)      

 

We study how Bell inequalities can be violated in cognition, specifically in the 

relationship between abstract concepts and specific instances of these concepts. This 

supports the hypothesis that genuine quantum may represent mental processing and 

cognition. We introduce a model where the amount of nonlocality and the degree of 

quantum uncertainty are parameterized and demonstrate that increasing nonlocality 

increases the degree of violation, while increasing quantum uncertainty decreases the 

degree of violation. So we show how Bell inequalities are violated in the mind in 

virtue of the relationship between abstract concepts and specific instances of them. 

We investigate how concepts violate Bell inequalities.    

As in macroworld, Bell inequalities are defined with the following 

experimental situation in mind. We consider a physical entity S, and four experiments 

𝑒1, 𝑒2, 𝑒3 𝑎𝑛𝑑 𝑒4 that can be performed on the physical entity S. Each of the 

experiments 𝑒𝑖, i ∈ {1, 2, 3, 4} has two possible outcomes, respectively denoted 

𝑜𝑖(𝑢𝑝) and  𝑜𝑖(𝑑𝑜𝑤𝑛). Some of the experiments can be performed together, which in 

principle leads to ‘coincidence’ experiments 𝑒𝑖𝑗 , i, j ∈ {1, 2, 3, 4}.    

For example 𝑒𝑖 and 𝑒𝑗 together will be denoted 𝑒𝑖𝑗 . Such a coincidence 

experiment 𝑒𝑖𝑗 has four possible outcomes, namely (𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑢𝑝)) , 

(𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑑𝑜𝑤𝑛)), (𝑜𝑖(𝑑𝑜𝑤𝑛), 𝑜𝑗(𝑢𝑝)) and  (𝑜𝑖(𝑑𝑜𝑤𝑛), 𝑜𝑗(𝑑𝑜𝑤𝑛)). Following 

Bell, we introduce the expectation values 𝐸𝑖𝑗 , i, j ∈ {1, 2, 3, 4} for these coincidence 

experiments, as:  

𝐸𝑖𝑗 = +1 ∙ 𝑃 (𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑢𝑝)) +  1 ∙ 𝑃 (𝑜𝑖(𝑑𝑜𝑤𝑛), 𝑜𝑗(𝑑𝑜𝑤𝑛)) −  

             − 1 ∙ 𝑃 (𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑑𝑜𝑤𝑛)) −  1 ∙ 𝑃 (𝑜𝑖(𝑑𝑜𝑤𝑛), 𝑜𝑗(𝑢𝑝))           (3.1) 

From the assumption that the outcomes are either +1 or -1, and that the 

correlation 𝐸𝑖𝑗 can be written as an integral over some hidden variable of a product of 

the two local outcome assignments, one derives Bell inequalities:  

|E13 − E14| +  |E23 + E24|   ≤   2                                (3.2)  
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Hence we have the coincidence experiments  𝑒13, 𝑒14, 𝑒23 𝑎𝑛𝑑 𝑒24 , but instead 

of concentrating on the expectation values they introduce the coincidence 

probabilities 𝑝13, 𝑝14, 𝑝23 𝑎𝑛𝑑 𝑝24 , together with the probabilities 𝑝2 𝑎𝑛𝑑  𝑝4 . 

Concretely,  𝑝𝑖𝑗 means the probability that the coincidence experiment  𝑝𝑖𝑗  gives the 

outcome (𝑜𝑖(𝑢𝑝), 𝑜𝑗(𝑑𝑜𝑤𝑛)) ,  while 𝑝𝑖 means the probability that the experiment 𝑒𝑖 

gives the outcome 𝑜𝑖(𝑢𝑝). The Clauser Horne inequalities then read:  

−1 ≤  𝑝14 − 𝑝13 + 𝑝23 + 𝑝24 − 𝑝2 − 𝑝4  ≤ 0                      (3.3)   

 

To make things more concrete we present an example. Keynote players in this 

example are the two cats, Glimmer and Inkling, that live at our research center. The 

experimental situation has been set up by one of the authors (Diederik) to show that 

the mind of another of the authors (Liane) violates Bell inequalities. The situation is 

as follows. On the table where Liane prepares the food for the cats is a little note that 

says: ‘Think of one of the cats now’. To show that Bell inequalities are violated we 

must introduce four experiments 𝑒1, 𝑒2, 𝑒3 𝑎𝑛𝑑 𝑒4. Experiment 𝑒1 consists of Glimmer 

showing up at the instant Liane reads the note.    

If, as a result of the appearance of Glimmer and Liane reading the note, the 

state of her mind is changed from the more general concept ‘cat’ to the instance 

‘Glimmer’, we call the outcome 𝑜1(𝑢𝑝), and if it is changed to the instance ‘Inkling’, 

we call the outcome 𝑜1(𝑑𝑜𝑤𝑛).   

Experiment e3 consists of Inkling showing up at the instant that Liane reads 

the note. We call the outcome 𝑜3(𝑢𝑝) if the state of her mind is changed to the 

instance ‘Inkling’, and 𝑜3(𝑑𝑜𝑤𝑛) if it is changed to the instance ‘Glimmer’, as a 

result of the appearance of Inkling and Liane reading the note. The coincidence 

experiment 𝑒13 consists of Glimmer and Inkling both showing up when Liane reads 

the note. The outcome is  (𝑜1(𝑢𝑝), 𝑜3(𝑑𝑜𝑤𝑛)) if the state of her mind is changed to 

the instance ‘Glimmer’, and (𝑜1(𝑑𝑜𝑤𝑛), 𝑜3(𝑢𝑝))  if it changes to the instance 

‘Inkling’ as a consequence of their appearance and the reading of the note.   

Now it is necessary to know that occasionally the secretary puts bells on the 

cats’ necks, and occasionally she takes the bells off. Thus, when Liane comes to work, 

she does not know whether or not the cats will be wearing bells, and she is always 

curious to know. Whenever she sees one of the cats, she eagerly both looks and listens 
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for the bell. Experiment e2 consists of Liane seeing Inkling and noticing that she hears 

a bell ring or doesn’t. We give the outcome 𝑜2(𝑢𝑝) to the experiment e2 when Liane 

hears the bell, and 𝑜2(𝑑𝑜𝑤𝑛) when she does not. Experiment 𝑒4 is identical to 

experiment 𝑒2 except that Inkling is interchanged with Glimmer.    

The coincidence experiment 𝑒14 consists of Liane reading the note, and 

Glimmer showing up, and her listening to whether a bell is ringing or not. It has four 

possible outcomes: (𝑜1(𝑢𝑝), 𝑜4(𝑢𝑝))  when the state of Liane’s mind is changed to 

the instance ‘Glimmer’ and she hears a bell; (𝑜1(𝑢𝑝), 𝑜4(𝑑𝑜𝑤𝑛))  when the state of 

her mind is changed to the instance ‘Glimmer’ and she does not hear a bell; 

(𝑜1(𝑑𝑜𝑤𝑛), 𝑜4(𝑢𝑝))  when the state of her mind is changed to the instance ‘Inkling’ 

and she hears a bell and (𝑜1(𝑑𝑜𝑤𝑛), 𝑜4(𝑑𝑜𝑤𝑛))  when the state of her mind is 

changed to the instance ‘Inkling’ and she does not hear a bell. The coincidence 

experiment 𝑒23 is defined analogously. It consists of Liane reading the note and 

Inkling showing up and her listening to whether a bell is ringing or not. It too has four 

possible outcomes: (𝑜2(𝑢𝑝), 𝑜3(𝑢𝑝))  when she hears a bell and the state of her mind 

is changed to the instance ‘Inkling’; (𝑜2(𝑢𝑝), 𝑜3(𝑑𝑜𝑤𝑛))  when she hears a bell and 

the state of her mind is changed to the instance ‘Glimmer’; (𝑜2(𝑑𝑜𝑤𝑛), 𝑜3(𝑢𝑝))  

when she does not hear a bell and the state of her mind is changed to the instance 

‘Inkling’ and (𝑜2(𝑑𝑜𝑤𝑛), 𝑜3(𝑑𝑜𝑤𝑛))  when she does not hear a bell and the state of 

her mind is changed to the instance ‘Glimmer’.   

The coincidence experiment 𝑒24  is the experiment where Glimmer and 

Inkling show up and Liane listens to see whether she hears the ringing of bells. It has 

outcome (𝑜2(𝑢𝑝), 𝑜4(𝑢𝑝))  when both cats wear bells, (𝑜2(𝑢𝑝), 𝑜4(𝑑𝑜𝑤𝑛))  when 

only Inkling wears a bell, (𝑜2(𝑑𝑜𝑤𝑛), 𝑜4(𝑢𝑝))  when only Glimmer wears a bell and 

(𝑜2(𝑑𝑜𝑤𝑛), 𝑜4(𝑑𝑜𝑤𝑛))  when neither cat wears a bell.   

We now formulate the necessary conditions such that Bell inequalities are 

violated in this experiment: 

(1) The categorical concept ‘cat’ is activated in Liane’s mind.  

(2) She does what is written on the note.  
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(3) When she sees Glimmer, there is a change of state, and the categorical concept 

‘cat’ changes to the instance ’Glimmer’, and when she sees Inkling it changes to the 

instance ’Inkling’. 

(4) Both cats are wearing bells around their necks. 

The coincidence experiment 𝑒13  gives outcome (𝑜1(𝑢𝑝), 𝑜3(𝑑𝑜𝑤𝑛))  or 

(𝑜1(𝑑𝑜𝑤𝑛), 𝑜3(𝑢𝑝))  because indeed from (2) it follows that Liane will think of 

Glimmer or Inkling. This means that 𝐸13 = −1 . The coincidence experiment 𝑒14 

gives outcome (𝑜1(𝑢𝑝), 𝑜4(𝑢𝑝)), because from (3) and (4) it follows that she thinks 

of Glimmer and hears the bell. Hence  𝐸14 = +1 . The coincidence experiment 𝑒23 

also gives outcome (𝑜2(𝑢𝑝), 𝑜3(𝑢𝑝)), because from (3) and (4) it follows that she 

thinks of Inkling and hears the bell. Hence 𝐸23 = +1. The coincidence experiment 

𝑒24 gives (𝑜2(𝑢𝑝), 𝑜4(𝑢𝑝)), because from (4) it follows that she hears two bells. 

Hence 𝐸24 = +1. As a consequence we have: 

|𝐸13 − 𝐸14| + |𝐸23 + 𝐸24| =  +4                                                                                    

The reason that Bell inequalities are violated is that Liane’s state of mind 

changes from activation of the abstract categorical concept ‘cat’, to activation of 

either ‘Glimmer’ or ‘Inkling’. We can thus view the state ‘cat’ as an entangled state of 

these two instances of it.  

Our example shows that concepts in the mind violate Bell inequalities, and 

hence entail nonlocality in the sense that physicists use the concept.  

As a first approximation, we can say that the nonlocality of stored experiences 

and concepts arises from their distributed nature. Each concept is stored in many 

memory locations; likewise, each location participates in the storage of many 

concepts. In order for the mind to be capable of generating a stream of meaningfully-

related yet potentially creative remindings, the degree of this distribution must fall 

within an intermediate range. Thus, a given experience activates not just one location 

in memory, nor does it activate every memory location to an equal degree, but 

activation is distributed across many memory locations, with degree of activation 

falling with distance from the most activated one. 

Memory is also content addressable, meaning that there is a systematic 

relationship between the content of an experience, and the place in memory where it 
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gets stored. Thus not only is it is not localized as an episodic memory or conceptual 

entity in conceptual space, but it is also not localized with respect to its physical 

storage location in the brain.  

Over the past several decades, numerous attempts have been made to forge a 

connection between quantum mechanics and the mind. In these approaches, it is 

generally assumed that the only way the two could be connected is through micro-

level quantum events in the brain exerting macro-level effects on the judgements, 

decisions, interpretations of stimuli, and other cognitive functions of the conscious 

mind.    

From the preceding arguments, it should now be clear that this is not the only 

possibility. If quantum structure can exist at the macro-level, then the process by 

which the mind arrives at judgements, decisions, and stimulus interpretations could 

itself be quantum in nature.  

We should point out that we are not suggesting that the mind is entirely 

quantum. Clearly not all concepts and instances in the mind are entangled or violate 

Bell inequalities. Our claim is simply that the mind contains some degree of quantum 

structure.    

On the other side, both these hidden variable models (Aerts and Pitowsky) are 

based on an observation that a structure of conditional probabilities characteristic for 

systems with spin is not a Kolmogorovian one. The problem is rooted in a non-

Bayesian structure of such probabilities and is typically manifested by a violation of 

Bell’s inequality. Both Aerts’ and Pitowksy’s models are not about simultaneous 

measurements as we have in the EPR-Bohm framework, but about conditional 

measurements. To define conditional measurements, we assume we have some state 

φ, perform a measurement of an observable α and the state φ is changed; in a new 

post α-measurement state we perform a measurement of another observable b which 

is incompatible with (or complementary to) α. We point out both Aerts’ and 

Pitowksy’s models were created in relation to Bell’s inequality. However, there is no 

contradiction with the Bell Theorem, because it is impossible to derive the ordinary 

Bell’s inequality for this model, because we cannot perform a simultaneous 

measurement of α and b. So instead of Bell’s inequality for the simultaneous 

probability distributions, one can derive Bell’s inequality for conditional probabilities, 
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as it has been demonstrated that this inequality can be applied to conditional 

measurements. Moreover, it has been demonstrated that it is violated by quantum 

model. We remark this conditional probability inequality is based only on the 

assumption that we can use Bayes’ formula for conditional probabilities.  Since both 

Aerts’ and Pitowsky’s models reproduce quantum probabilities, Bell’s inequality for 

conditional probabilities is automatically violated for these models (Khrennikov 2003, 

2016).     
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CHAPTER 3: QUANTUM MACHINE LEARNING 

VARIABLES AND CAVEATS  

 

Machine learning algorithms construct and/or update their predictive model 

based on input data. A number of advances in the field of quantum information shows 

that particular quantum algorithms can offer a speedup over their classical 

counterparts (Jordan, 2018). It has been speculated that application of these 

techniques to the field of machine learning may produce similar results (Adcock, 

Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).      

 

 

 

Figure 10: The roles of space  S  and time  T  in the circuit model for quantum computation 

(Adcock, Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).  

 

In order to understand the potential benefits of Quantum Machine Learning 

(QML), it must be possible to make comparisons between classical and quantum 

machine learning algorithms, in terms of speed and classifier performance. To 

compare algorithms, computer scientists consider two characteristic resources: 

• Space, S: The amount of computational space needed to run the algorithm. 

Formally, `space' refers to the number of qubits required. For S qubits, the dimension 

of the relevant Hilbert space is  2𝑆 . It is important to distinguish between these two 

quantities, as there is an exponential factor between them. 
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• Time, T: The time taken to train and then classify within a specified error. Formally, 

`time' refers to the number of operations required and, in the quantum circuit model, 

can be expressed as the number of consecutive gates applied to the qubits.  

Figure 10 shows how time and space are represented in quantum circuit diagrams. 

These are typically functions of the following variables: 

• Size of training data set, n: The number of data points in the training set supplied to 

an algorithm. 

• Size of input data set, N: The number of data points to be classified by an algorithm. 

• Dimension of data points, m: The number of parameters for each data point. In 

machine learning, each data point is often treated as a vector, where the numeric value 

associated with each feature is represented as a component of the vector. 

• Error, ε: The fraction of incorrect non-training classifications made by the algorithm 

(Adcock, Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).  

We outline some challenges for quantum machine learning that we believe 

should be taken into account when designing new algorithms and/or architectures. We 

start from some common early pitfalls in quantum algorithm design.   

More specifically, an often overlooked aspect of quantum algorithms is state 

preparation. Arbitrary state preparation is exponentially hard in the number of qubits 

for discrete gate sets, providing a bound on the performance of all algorithms, and 

placing a restriction on the types of states used in initializing an algorithm. Moreover, 

there exist cases where this addition to the algorithm's complexity is ignored (Adcock, 

Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).   

We know measurement of a quantum mechanical system results in the 

collapse of the system's wave function to a single eigenstate of the measurement 

operator. Although it is possible to learn the pre-measurement state using a number of 

trials exponential in system size, this will kill any potential speedup. Therefore, any 

algorithm which outputs all of the amplitudes of the final state |x>, suffers exponential 

costs. The only information that can be easily extracted from  |x>  is a global 

statistical property, such as the inner product, <x|z>, with some fixed reference state 

|z>, or the location of the dominant amplitudes of |x>. This argues against the 
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existence of a useful quantum algorithm that stores output data in the exponentially 

large Hilbert space of a quantum state - the data would be impossible to retrieve 

(Adcock, Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 2015).   

We consider how to encode classical data into quantum states. This procedure 

is an important part of any quantum algorithm. In terms of state preparation, 

information is typically encoded in state amplitudes. So given a vector  𝑥 ∈  ℝ𝑁  

stored in memory, we create copies of the state: 

|𝑥⟩  =  
1

|𝑥|
 ∑  𝑥𝑖  |𝑖⟩𝑖                                                    (3.1)  (Prakash, 2014) 

In the context of the analysis of classical data, we can exploit the encoding of 

quantum information to efficiently represent classical probability distributions with 

exponentially many points. For instance, when   𝑣 = (𝑣1 , … , 𝑣2𝑛)     is a probability 

vector of size 2𝑛 , we can write an n-qubit state (register):   

𝜓 =   ∑   √𝑣𝑖   𝑒𝑖 
2𝑛

𝑖=1                                                   (3.2)  

Quantum Random Access Memory (QRAM) is a theoretical oracle that stores 

quantum states and allows queries to be made in superposition. The efficiency of the 

oracle removes any overheads for arbitrary state preparation, which could suppress 

the claimed quantum speedup of an algorithm.   

It is possible to use QRAM to generate a quantum state from the n-

dimensional vector x, in time   𝑂(√𝑛) . However, by pre-processing the vector, this 

can be improved to  𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛))  (Prakash, 2014).     

The inclusion of QRAM in QML proposals is troubling, both from a 

theoretical and an experimental perspective. However ruling out QRAM does not 

necessarily mean no data sets can be loaded into a quantum state efficiently. If the 

coefficients to be loaded into a state are given by an explicit formula, it may be 

possible for a quantum computer to prepare said state independently, without 

consulting a QRAM. This sample can be loaded into a superposition over n qubits 

efficiently, provided there is an efficient classical algorithm to integrate the function 

over an arbitrary interval. Therefore, it is a strong indication that a total dependence 

on QRAM is not necessary (Adcock, Allen, Day, Frick, Hinchliff, Johnson, Stanisic, 

2015).   
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The table below (Table 36) presents some algorithms and includes, where 

possible, the advantage the quantum algorithm gains over its classical counterpart and 

any conditions required for the speedup to be maintained.     
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Table 36: Table of Quantum Algorithms Advantages (Adcock, Allen, Day, Frick, Hinchliff, 

Johnson, Stanisic, 2015).  

  

We recommend some cases where quantum theory helps Machine Learning 

(ML):      

Example Principal Component Analysis  (PCA): 
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Data: classical vectors  𝑣1, … , 𝑣𝑁  ∈  ℝ
𝑑   . For example: 

-𝑗𝑡ℎ  entry of  𝑣𝑖 counts  number of times document i contains keyword j 

-𝑗𝑡ℎ entry of 𝑣𝑖 indicates whether buyer  i  bought product  j 

PCA finds the principal components of correlation matrix:  

𝐴 =   ∑  𝑣𝑖  𝑣𝑖
𝑇𝑁

𝑖=1                                                                     (3.3)  

Main eigenvectors describe patterns in the data. Can be used to summarize data, for 

prediction, etc (Lloyd, Mohseni, Rebentrost, 2014).    

 

Idea for quantum speed-up : 

If we can efficiently prepare the  |𝑣𝑖⟩  as  log2(𝑑) − 𝑞𝑢𝑏𝑖𝑡  states, then doing this for 

random i gives mixed state :  𝜌 =
1

𝛮
 𝛢                                            (3.4)   

where the equation  (3.4) is the condition for Quantum Algorithm Implementation.     

We want to sample (eigenvector, eigenvalue)-pairs from ρ (Lloyd, Mohseni, 

Rebentrost, 2014).   

- Using few copies of  ρ, we want to run   𝑈 = 𝑒−𝑖 𝜌   on some  σ 

- Idea: start with  σ ⊗ ρ, apply  SWAP, throw away 2nd register.  

1st register now has   𝑈𝜀𝜎(𝑈†)𝜀 , up to error    𝛰(𝜀2) .   

Repeat this  1/ε  times, using a fresh copy of  ρ  each time. 

First register now contains  UσU† , up to error  
1

𝜀
𝛰(𝜀2) = 𝛰(𝜀)    .  

- Suppose  ρ  has eigendecomposition:    .  

Phase estimation maps  |𝑤𝑖⟩|0⟩  ↦   |𝑤𝑖⟩|𝜆′𝑖⟩            , where  |𝜆𝑖 − 𝜆𝑖′| < δ, using  

O(1/δ)  applications of  U. 

-Phase estimation on another fresh copy of  ρ  maps: 

𝜌⨂|0⟩⟨0|   ↦   ∑  𝜆𝑖 |𝑤𝑖⟩⟨𝑤𝑖|  ⨂ |𝜆′𝑖⟩⟨𝜆′𝑖|      𝑖                                                            
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Measuring 2nd  register samples  |𝑤𝑖⟩|𝜆′𝑖⟩  with probability  𝜆𝑖  (Lloyd, Mohseni, 

Rebentrost, 2014).                  

 

Fast linear algebra with quantum mechanics:  

A significant number of methods in the quantum machine learning literature is 

based on fast quantum algorithms for linear algebra. We discuss about the two main 

quantum sub routines for linear algebra: a quantum algorithm for matrix inversion and 

a quantum algorithm for singular value decomposition.  

Fast matrix inversion: the quantum linear system algorithm 

We know for a system of linear equations Ax = b with  𝐴 ∈ ℝ𝑁×𝑁  and 𝑥, 𝑏 ∈

 ℝ𝑁 , the best classical algorithm has a runtime of  𝑂(𝑁2.373)   (Coppersmith, 

Winograd, 1990). However, due to a large pre-factor, the algorithm is not used in 

practice. Standard methods, for example, based on QR-factorisation (Q is an 

orthogonal matrix, R is an upper triangular matrix) take  𝑂(𝑁3)  steps (Golub, Van 

Loan, 1996).   The quantum linear system algorithm (QLSA) promises to solve the 

problem in  𝑂(log(𝑁) 𝜅2  
𝑠2

𝜀
) ,  where  κ  is the condition number, defined to be the 

ratio of the largest to the smallest eigenvalue, s  is the sparsity or the maximum 

number of non-zero entries in a row and column of A and  ε   is the precision to which 

the solution is approximated (Harrow, Hassidim, Lloyd, 2009).   

Although the QLSA algorithm solves matrix inversion in logarithmic time a 

number of caveats might limit its applicability to practical problems. First, the QLSA 

algorithm requires the matrix A to be sparse. Second, the classical data must be 

loaded in quantum super position in logarithmic time. Third, the output of the 

algorithm is not x itself but a quantum state that encodes the entries of x in 

superposition. Fourth, the condition number must scale at most sublinearly with N 

(Harrow, Hassidim, Lloyd, 2009).   

We present a general comparison of the asymptotic scalings of classical, 

quantum and parallel algorithms for linear algebra and their major applications in 

machine learning in Table 37. With optimal learning rates we mean that any learning 

algorithm cannot achieve better prediction performance (uniformly) on the class of 
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problems considered. Interestingly, such assumptions also allow us to derive estimates 

for the condition number of the kernel matrix to be of order  κ = 𝑂(𝑁1/2).   

 

 

Table 37 (Ciliberto, Herbster, Ialongo, Pontil, Rocchetto, Severini, Wossnig, 2018). 

 

Algorithms whose runtime is upper bounded by a polynomial function of N 

are said to be efficient. Problems for which there exists an efficient algorithm are 

easy. Conversely, hard problems are those where no polynomial algorithm is known. 

The quantum algorithms surveyed here speed up efficient classical algorithms. 

Two types of speedups are obtained: polynomial or exponential. Polynomial 

speedups, although important from a practical point of view, do not prove that 

quantum computers are able to turn hard learning problems into easy ones. On the 

other hand, exponential speedups of algorithms that are already efficient face 

important challenges.   
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In order to achieve an exponential speedup despite the computational costs 

arising from accessing the memory we are restricted to hard algorithms. This is 

because, for these algorithms, the polynomial time construction of the quantum state 

that encodes the data set does not dominate over the speedup (Ciliberto, Herbster, 

Ialongo, Pontil, Rocchetto, Severini, Wossnig, 2018).     

 

How to put classical data in superposition:     
 

- Given vector   𝑣 ∈  ℝ𝑑 : how to prepare   |𝑣⟩  =  
1

||𝑣||
 ∑  𝑣𝑖  |𝑖⟩
𝑑
𝑖=1                                                                                                                              

- Assume quantum-addressable memory:  𝑂𝑣 ∶  |𝑖, 0⟩  ↦  |𝑖, 𝑣𝑖⟩   

1. Find  𝜇 = max
𝑖
|𝑣𝑖|  in    𝑂(√𝑑) steps  

2.  
1

√𝑑
 ∑  |𝑖⟩   

𝑂𝜈
→  

1

√𝑑
  ∑ |𝑖 , 𝑣𝑖⟩   ↦   

1

√𝑑
  ∑|𝑖 , 𝑣𝑖⟩  (

𝑣𝑖

𝜇
 |0⟩ + √1 −

𝑣𝑖
2

𝜇2
  |1⟩)  

 
𝑖  

𝑂𝜈
−1

→   
1

√𝑑
  ∑ |𝑖⟩  (

𝑣𝑖

𝜇
 |0⟩ + √1 −

𝑣𝑖
2

𝜇2
  |1⟩)𝜄  =  

‖𝑣‖

𝜇 √𝑑
 |𝑣⟩ |0⟩ + |𝑤⟩ |1⟩     

3. Boost  |0>   by     𝑂 (
𝜇 √𝑑

‖𝑣‖
)   rounds of amplitude amplification 

-Expensive for “peaked”  v; cheap for “uniform” or “sparse”  v (but there we can 

efficiently compute many things classically!)  (Arunachalam, Wolf, 2017).        

 

Many other attempts at using quantum for Machine Learning (ML):    

1) k-means clustering 

2) Support Vector Machines 

3) Training perceptrons (depth-1 neural networks) 

4) Quantum deep learning (=deep neural networks) 

5) Training Boltzmann machines for sampling    (Arunachalam, Wolf, 2017)  
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Problems:  
 

1) How to efficiently put classical data in superposition? 

2) How to use reasonable assumptions about the data (also in classical ML)  

3) We don't have a large quantum computer yet!   

 

- How to measure the efficiency of the learning algorithm:  

(i) Sample complexity:  number of examples used 

(ii) Time complexity:  number of time-steps used 

-  A good learner has small time and sample complexity.    

 

Quantum data:  

We try to circumvent the problem of putting classical data in superposition, by 

assuming we start from quantum data: one or more copies of some quantum state, 

generated by natural process or experiment. However, it is observed that in 

distribution-independent learning, quantum examples are not significantly better than 

classical examples.  

We can get quadratic speed-ups for some ML problems, while exponential 

speed-ups are under strong assumptions. The biggest issue is how to put big classical 

data in superposition. So in some scenarios, provably there is no quantum 

improvement (Arunachalam, Wolf, 2017).       

 

Quantum Assisted Machine Learning:  
 

We introduce the quantum-assisted Helmholtz machine (QAHM), an attempt 

to use near-term quantum devices to tackle high-dimensional data sets of continuous 

variables. Instead of using quantum computers to assist deep learning, the QAHM 

uses deep learning to extract a low-dimensional binary representation of data, suitable 

for relatively small quantum processors which can assist the training of an 
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unsupervised generative model. Figure 2 illustrates an example of this concept for the 

case of ML tasks (Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton, Neal, Zemel, 

1995).     

Research in the field of Quantum Assisted Machine Learning (QAML) has 

been focusing on tasks such as classification, regression, Gaussian models, vector 

quantization and principal component analysis. We do not think these approaches 

would be of practical use in near-term quantum computers. The same reasons that 

make these techniques so popular, e.g., their scalability and algorithmic efficiency in 

tackling huge data sets, make them less appealing to become top candidates as killer 

applications in QAML with devices in the range of 100–1000 qubits. In other words, 

regardless of the claims about polynomial and even exponential algorithmic speed-up, 

reaching interesting industrial-scale applications would require millions or even 

billions of qubits. Such an advantage is then moot when dealing with real-world data 

sets and with the quantum devices to become available in the next years in the few 

thousands-of-qubits regime. So, we believe that only a game changer such as the new 

developments in hybrid classical quantum algorithms might be able to make a dent in 

speeding up ML tasks (Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton, Neal, Zemel, 

1995).           

We propose and emphasize the following approach to maximize the possibility 

of finding killer applications on near-term quantum computers. More specifically, we 

focus on data sets with potentially intrinsic quantum-like correlations, making 

quantum computers indispensable. These will provide the most compact and efficient 

model representation, with the potential of a significant quantum advantage even at 

the level of 50–100 qubit devices. It is suggested the case of the cognitive sciences, as 

a research domain potentially yielding such data sets (Hinton, Dayan, Frey, Neal, 

1995, Dayan, Hinton, Neal, Zemel, 1995).     

However, the small number of qubits and the limitations of currently available 

hardware may impair the sampling process, making it useless for real ML 

applications. So, we argue that even noisy distributions could be used for generative 

modeling of real-life data sets. This requires working in settings where the operations 

implemented in hardware are only partially known. We call this scenario a gray-box. 

We also argue that hybrid classical-quantum architectures are suitable for near-term 
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applications where the classical part is used to bypass some of the limitations of the 

quantum hardware. We call this approach quantum-assisted (Hinton, Dayan, Frey, 

Neal, 1995, Dayan, Hinton, Neal, Zemel, 1995).    

We wonder which type of real-life applications could benefit from quantum 

supremacy with near-term small devices. One of the main motivations underlying the 

research efforts described here is that quantum computers could speed up ML 

algorithms. This suggests that quantum models hold the potential to substantially 

reduce the amount of other type of computational resources, e.g., memory required to 

model a given data set.  

 

 

Figure 11: General scheme for hybrid quantum-classical algorithms as one of the most 

promising research directions to demonstrate quantum enhancement in ML tasks. A data set 

drives the fine tuning of model’s parameters. In the case of generative models one can use 

stochastic gradient descent to update the parameters Θ from time  t  to  t+1. The updates 

often require estimation of an intractable function  G, which could be approximated by 

samples from a probability distribution  P(s|Θt). This computationally hard sampling step 

could be assisted by a quantum computer. In some cases, making predictions out of the 

trained model is also an intractable task. The predictions F could be approximated by 

samples with the assistance of a quantum computer as well (Pedromo-Ortiz, Benedetti, 

Realpe-Gomez, Biswas, 2018).      

 

Although it is emphasized the case of cognitive sciences, it would be 

interesting to explore what other relevant and commercial data sets exhibit quantum-

like correlations, and where quantum computers can have an advantage even at the 
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level of 50–100 qubits. In general, the identification of characteristics that are 

intrinsically quantum, and therefore hard to simulate classically, could be a game 

changer in the landscape of applications for near-term quantum technologies.   

 

Challenges in QAML:  
 

We distinguish between two types of algorithms: those that operate on 

quantum data (i.e. data that is output of a quantum process, for example, a quantum 

chemistry problem) and those that seek to process data stored in a classical memory. 

The first case is ideal for QML. The data is ready to be analyzed and we do not have 

to spend computational resources to convert the data into quantum form. The second 

case is more elaborate as it requires a procedure that encodes the classical information 

into a quantum state. We know that the computational cost of this operation is 

particularly relevant to determine whether we can obtain quantum speedups in 

machine learning for classical data (Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton, 

Neal, Zemel, 1995).     

We assume that we want to process N d-dimensional classical vectors with a 

quantum algorithm. The quantum random access memory (QRAM) is a quantum 

device that can encode in superposition N  d-dimensional vectors into  log(N d)  

qubits in  O(log(N d))   time by making use of the so called “bucket-brigade” 

architecture. The idea is to use a tree-structure where the  N d  leaves contain the 

entries of the N vectors in  R
d
. The QRAM, with a runtime of  O(log(N d)), can return 

a classical vector in quantum superposition efficiently. However, the number of 

physical resources it requires scales as O(N d). This exponential scaling, with respect 

to the number of qubits, has been used to question whether the QRAM can be built in 

an experimental setting or whether it can provide a genuine computational advantage. 

Fundamentally the issue can be related to whether the exponential number of 

components needs to be continuously “active”. The proponents of the QRAM claim 

that only O(log(N d)) components need to be active while the others can be 

considered as “non-active” and error free. Whether this assumption holds in an 

experimental setting is unclear (Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton, 

Neal, Zemel, 1995).   
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The first challenge that appears with QRAM is whether all the components 

require to be error corrected. Indeed, if the exponential physical resources required 

full error correction then it would be impractical to build the device in an 

experimental setting. We consider that for superpolynomial query algorithms, the 

QRAM requires error-corrected components.  

A second problem is related to the exponential number of resources in an 

active memory. More specifically, the only fair comparison of a system which 

requires an exponential number of resources, is with a parallel architecture with a 

similar amount of processors. In this case many linear algebra routines, including 

solving linear systems and singular value decomposition, can be solved in logarithmic 

time.   

A third challenge of the QRAM is the requirement of having data distributed 

in a relatively uniform manner over the quantum register. If that was not the case, the 

QRAM would violate the search lower bounds. In the case of  non-uniformly 

distributed data, the QRAM is no longer efficient and take  O(√N)  to turn the 

classical data set into quantum superposition.  

A fourth comment on the QRAM, the possibility of loading the data in 

logarithmic time, when the size of the data is considerable, can be controversial due to 

speed of communication arguments. We point out that latency can play a role in big 

memory structures. In particular, a lower bound on the distance which the information 

has to travel implies a lower bound on latency, due to considerations on the limits set 

by the speed of light. In a three dimensional space these are given by    𝑂(√𝑁𝑑
3

)   . In 

practice these considerations will only dominate if the amount of memory is 

extremely large but, because in quantum machine learning we aim at data sets that 

surpass the current capability of classical computers, this bound is a potential caveat 

(Hinton, Dayan, Frey, Neal, 1995, Dayan, Hinton, Neal, Zemel, 1995).    

 

There are additional challenges which will generally impact any QAML 

algorithm, such as the limited qubit connectivity, the finite dynamic range of the 

parameters dictated by the intrinsic energy scale of the interactions in the device, and 

intrinsic noise in the device leading to decoherence in the qubits and uncertainty in the 

programmable parameters (Pedromo-Ortiz, Benedetti, Realpe-Gomez, Biswas, 2018).     
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We conclude that the QRAM allows to upload data efficiently but might be 

hard to implement experimentally or might not allow a genuine quantum advantage if 

we take into account all the required resources. Noticeably the fast data access 

guaranteed by the QRAM is only required for QLM algorithm that run in sublinear 

time. Although many known QML algorithms run in sublinear time, quantum learning 

theory suggests that for some classically hard problems quantum resources might give 

exponential advantages. In this case, a memory structure that can prepare a quantum 

superposition in polynomial time (i.e. in O(Nd)) can still be sufficient to maintain a 

quantum speedup compared to the classical runtime.   

One key strategy we propose towards the near-term demonstration of quantum 

advantage is the development of hybrid quantum–classical algorithms capable of 

exploiting the best of both worlds. Therefore, we put forward a new framework for 

such hybrid QAML algorithms (Pedromo-Ortiz, Benedetti, Realpe-Gomez, Biswas, 

2018).     

 

 

Figure 12: Quantum Machine Learning (Sekar, 2017). 
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CHAPTER 4: QUANTUM  CLUSTERING  
 

Quantum Computing Shor’s Algorithm and Hierarchical Clustering 

Technique:     
 

It is observed that the detection procedure of Cancer Disease is very much 

time consuming and the results obtain by them are not so fast, so there is a need of 

more accurate, fast and efficient method through computing technologies. This can be 

accomplished with the collaboration between Quantum computing and the clustering 

algorithm, i.e. Shor Algorithm of Quantum Computing with various Hierarchical 

Clustering Technique. More specifically, the Hierarchical Clustering Technique helps 

in clustering of results to obtain an approach for Cancer Disease Detection, while the 

Shor Algorithm helps to increase the efficiency in term of accuracy (Jain, Chaturvedi, 

2014).     

We use quantum switching architecture for nearest neighbour coupling, 

namely an efficient quantum shear sorting (QSS) algorithm to reduce the number of 

time steps. For the QSS algorithm, the running complexity of the quantum switching 

architecture is polynomial in time with the nearest neighbour coupling and the 

implementation is less complex. The result shows that improved switching is 

extremely simple to implement using existing quantum computer candidates. The 

Quantum Computing technique can provide faster and efficient results with the use of 

different parameter in this system and the K-means clustering technique and 

Agglomerative clustering technique can provide a result analysis by clustering of 

results (Jain, Chaturvedi, 2014).   

The quantum search algorithm is a technique for searching possibilities in only 

steps. In the first step we collect the information in the form of tumor size and node 

status as Data set, which has to be analyzed by both conventional pathological tests & 

our Quantum computing based technique which involves Shor Algorithm as an 

analyzing tool to analyze the data set. In the next step the clustering of obtained result 

by both techniques is done. In case of analyses of data set with conventional 

pathological tests, these tests analyze different aspects one by one in stages i.e. after 

completion of 1st they proceed towards 2nd and so on, whereas on the other hand in 

our Quantum computing based Analyses, Shor Algorithm analyzes the data set 
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peculiarly on the basis of range of parameters so there is no such time consumption, 

namely if the parameters are not in the range of define values, the algorithm 

automatically analyzes on next level and gives results accordingly. Then treatment 

will start within a short duration with more accuracy according to cancer type and 

stage of severity, because after getting results from Shor Algorithm and clustering an 

oncologist can get a clear cut idea about the stage of Cancer in which patient held 

(Figure 13) (Jain, Chaturvedi, 2014).    

 

 

Figure 13: Designed System for Cancer Disease Detection (Jain, Chaturvedi, 2014).  
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Basically six steps are used to create a new data set which are given below: 

Step 1: Apply the Shor Algorithm on data set providing tumor size denoted by ‘A’, 

Metastasis denoted by ‘MS’ and Node status ‘NS’. 

Step 2: Apply the number ‘N’ is the number wish to factorize. As the different stages 

of Cancer depending upon severity are here and the remainder from this operation is 

placed in a second 3 bit register.  

Step 3: Apply random number X, where  1 < X < N-1 . This is the last stage of 

providing the initials to execute the Algorithm and there are chances of multiple 

answers so to reduce the error in operation these to be verified with different value of 

random number ‘X’. 

Step 4: Results provided from Shor Algorithm. The result which we get is in the form 

of stages of Cancer which are now ready for clustering by using statistical techniques. 

Step 5: Clustering by K-means Clustering Technique and Agglomerative clustering 

technique, here top to bottom approach used. Clustered values are used to draw 

Dendrogram and graphical representations. 

Step 6: Comparing the clustered values of results obtained by both the techniques i.e. 

from conventional Cancer Disease Detection and Shor Algorithm based Disease 

Detection technique (Jain, Chaturvedi, 2014).   

 

Experiments performed on data set of cancer: In this Data set which have 

collected data for Cancer Disease which contain the Tumor Size, Node Status, 

Metastasis (Collected from Navodaya Cancer Hospital, Indrapuri, Bhopal). These 

three parameters have a great importance in Cancer Disease detection as Tumor size 

in any type of Cancer is the first Criteria for further analyses then Metastasis i.e. the 

spread of a cancer from one organ or part to another non-adjacent organ or part and 

Node status i.e. the lymph node condition at the site of tumours which either be 

negative or positive (Table 38). Here  A  is the Tumor size, ID  is Identification 

number,  N0  is clear or Negative node, N1  is Cancerous or positive node, M0  is No 
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spread of Tumor, M1  is Tumor has spread,  Weight in Kg  and  Age in years (Jain, 

Chaturvedi, 2014).   

Experiments performed on proposed data set of cancer: The given below 

variables are used for applying the Shor Algorithm on data set (Table 39). Here A is 

the tumor size, X is the random number, N is the number we wish to factorized, M 

denote the metastasis, M0=no spread of tumor, M1=tumor has spread, NS denote the 

node status, N0=clear or negative nodes, N1=cancerous or positive node.  

Shor based algorithm shows the stages of cancer, Patient age in years and ID 

shows the identification of patients. First evaluate the data set on the basis of Tumor 

Size then after applying Shor Algorithm get different Stages according to Tumor Size 

and Node status and Metastasis condition. According to Node Status and Metastasis 

Conditions sometime a patient who having a large Tumor may also do not have any 

Cancer Disease because of having N0 which means negative node or M0 condition 

which means Tumor is not malignant or not spreading which shows the Tumor is here 

but not carcinogenic (Jain, Chaturvedi, 2014).    
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Table 38: Data set of Cancer Disease                               Table 39: Results obtained from       

                                                                                       Shor Algorithm based Cancer Disease   

                                                                                       Detection Technique    

                                                                                                                         (Jain, Chaturvedi, 2014).    

Results comparison between conventional cancer disease detection technique 

and shor algorithm based cancer disease detection technique on the basis of 

dendrogram (Figures 14, 15, 16). By these two profiles search it is easy to understand 

that there is Shor Algorithm which is a basic Algorithm of Quantum Computing is 

giving results convenient for an Oncologist and make an exact figure of a patient’s 

condition who suffers from the most devastating disease of this century i.e. Cancer 

(Jain, Chaturvedi, 2014).  

We propose the use of tumour size as a parameter for disease prediction with 

metastasis condition and node status is used so accuracy is also enhanced in compare 

to any technique which uses only tumour size as a parameter. So the chances of error 

in disease detection increases because in many cases this is observed that a patient 

having a large tumour size have not been suffering from cancer, as the node status is 

not shows symptoms of Cancer (N0) also the possibility of Metastasis condition 

where the tumour is not showing any malignancy (M0) but in case of Quantum 

Computing based Approach i.e. Shor Algorithm based Cancer Disease Detection 
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Technique these errors has been removed for increasing accuracy (Jain, Chaturvedi, 

2014).  

The different Hierarchical Clustering helps to understand the results by 

making clusters of acquired data obtained by both the Detection Techniques. Finally 

with the help of these three Distance measures we get difference among the 

conventional approach and Quantum Computing based approach. Where 

Conventional  approach which is used widely for Cancer Disease Detection-based on 

Classical Computing, on the other hand this Shor Algorithm based Cancer Disease 

Detection technique is totally based on Quantum Computing so an Oncologist get the 

results more frequently that is within a few seconds in compare to hours in case of 

Classical Computing (Jain, Chaturvedi, 2014).   

Also the result are more accurate and accessibility to different parameters is 

more in case of Quantum Computing based approach so it is much easy for an 

oncologist to create a treatment program with more ease and accuracy within a short 

period of time which may be act as a boon for the Cancer patients in near future (Jain, 

Chaturvedi, 2014).  

 

 

Figure 14: Dendrogram of Conventional Cancer disease detection Technique using 

Euclidean Distance (Jain, Chaturvedi, 2014).  
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Figure 15: Dendrogram of Shor Algorithm based Cancer Disease Detection Technique using 

Euclidean Distance (Jain, Chaturvedi, 2014). 

 

 

Figure 16: Dendrogram of Shor Algorithm based Cancer Disease Detection Technique using 

Euclidean Distance (Jain, Chaturvedi, 2014).  

 

Dynamic Quantum Clustering:  
 

We provide the following question: “How does one search for a needle in a 

multi-dimensional haystack without knowing what a needle is and without knowing if 

there is one in the haystack itself”. The answer in this question is Dynamic Quantum 

Clustering (DQC). DQC is a powerful visual method that works with big, high-

dimensional data. It exploits variations of the density of the data in feature space and 

unearths subsets of the data that exhibit correlations among all the measured 

variables. The outcome of a DQC analysis is a movie that shows how and why sets of 

data-points are eventually classified as members of simple clusters or as members of - 
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what we call - extended structures. This allows DQC to be successfully used in a non-

conventional exploratory mode where one searches data for unexpected information 

without the need to model the data. The DQC methodology works for big, complex, 

real-world data sets that come from five distinct fields: i.e., x-ray nano-chemistry, 

condensed matter, biology, seismology and finance. We know that big, complex data 

sets often contain interesting structures that will be missed by many conventional 

clustering techniques. Experience shows that these structures appear frequently 

enough that it is crucial to know they can exist, and that when they do, they encode 

important hidden information. However, DQC is able to detect these structures. In 

short, we not only demonstrate that DQC can be flexibly applied to data sets that 

present significantly different challenges, we also show how a simple analysis can be 

used to look for the needle in the haystack, determine what it is, and find what this 

means (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).    

We note DQC is not only a density based clustering algorithm, but it is also a 

visual tool that can reveal subsets of large, complex data that exhibit simultaneous 

correlations among the many variables being measured. More specifically, a DQC 

analysis begins with the creation of a movie wherein proxies of the data-points move 

from their initial position towards the nearest region of higher density. Hereafter this 

step will be referred to as the DQC evolution of the data. Correlated subsets are 

distinguished from one another depending on their final shape during or after DQC 

evolution: extended shapes are referred to as structures, while the term cluster is 

reserved for subsets that collapse to a point. A DQC analysis results in a movie that 

visually reveals how and why the algorithm identifies and distinguishes between 

structures and clusters (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 

2013).      

We present some of the advantages of DQC algorithm. Firstly, DQC doesn’t 

begin by assuming there are structures to be found, and because it has been proven not 

to find structures in random data and it makes no assumptions about the type or shape 

(topology) of structures that might be hidden in the data, it can be used to determine if 

one is collecting the right kind of information. Secondly, DQC exploits variation in 

the density of the data. Thus, it reveals structures with unusual topologies even in very 

dense data sets. Furthermore, DQC works well for high-dimensional data since the 

time spent in a DQC analysis only grows linearly with the dimension of the data. 
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Finally, while DQC’s greatest strength is that it allows one to visually explore high-

dimensional complex data for unexpected structure, it can also be used to rapidly 

classify incoming data once a sufficiently large subset of data has been analyzed 

(Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).   

 

The steps of the DQC algorithm are presented in Appendices (Appendix A).  

 

We support that the output DQC evolution is an animation showing how data 

points move towards the nearest minimum of the potential. More specifically, if the 

potential has isolated minima due to topologically simple regions of higher density, 

then the results of the evolution are fixed points describing isolated clusters. If, 

however, there are higher density regions of the data where the density is constant 

along complicated and possibly intersecting shapes, then the results of DQC evolution 

will be filamentary structure (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, 

Horn, 2013).  

This is what one will see if there are subsets of the data that exhibit 

multivariate correlations that can be parameterized in terms of only a few variables. 

We can show that these structures encode important information about the data 

(Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).     

 

The Galaxies example:  
 

We want to demonstrate that the DQC potential accurately captures the 

density of data-points, and that DQC evolution can reveal extended, topologically 

non-trivial structures (or regions of nearly constant density) hidden in the data. So, we 

apply it to a well understood subset of 139,798 galaxies taken from the Sloan Digital 

Sky Survey (SDSS). Each data entry consists of the three coordinates of a single 

galaxy. The first two numbers are  θ and  φ, the angular coordinates defined in our 

Galaxy; the third coordinate is the redshift, z, a proxy for the distance from us to the 

other galaxies. It is well known that galaxies are not uniformly distributed, but rather 

they form a web of filaments and voids, so the question is if DQC evolution will 

reveal this structure (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 

2013).    
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We observe that Figure 17A is a plot of the quantum potential for a two-

dimensional subset of the data obtained by choosing galaxies whose red-shifts differ 

by a very small amount. The galaxies are plotted as yellow points and the transparent 

quantum potential constructed from this set of galaxies is plotted upside-down, so that 

the maxima of the upside-down potential actually correspond to minima. This plot 

shows that the potential closely conforms to the distribution of galaxies and so it is 

clearly a very good proxy for the density of the data. Changing by 20%, doesn’t 

change the potential significantly. We note that this two-dimensional slice of the data 

shows significant structure, but fails to exhibit filamentary features of nearly constant 

density. Furthermore, in Figures 17B-17D we see what happens to the full three-

dimensional data set as DQC evolution collects the data-points into structures that 

follow the shape of the minima of the three-dimensional potential. In this case DQC 

evolution reveals the existence of the network of filaments and voids that is not 

readily apparent in Figure 17B. The web of filaments revealed in this picture 

correspond to the topological structure of the minima of the quantum potential 

(Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).   
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Figure 17: A) Comparison of SDSS data points with the derived DQC potential. The potential 

is plotted upside down and the yellow data points are slightly shifted in order to increase 

their visibility. B) The distribution of data in a 3D space defined by  θ , φ  and  z. C) Early 

stage of DQC evolution of the data. D) Further DQC evolution exhibits the clear appearance 

of string-like structures (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).  

 

DQC algorithm can be used in a variety of applications, as it can be applied to 

all sorts of data. We recommend that possible future extensions demonstrate that 

DQC can be important to people working in such diverse fields as chemistry, biology, 

particle physics, astrophysics, genomics, business, finance, analysis of social 

networks and national security (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, 

Horn, 2013).   
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Quantum Meila-Shi Clustering Algorithm vs k-Means Clustering 

Algorithm:  
 

We know that one of the biggest problems of data analysis is data with no 

known a priori structure. Therefore, data clustering, which seeks to find internal 

classes or structures within the data, is one of the most difficult, yet needed 

implementations. The standard algorithm is K-means, which rests on the following 

assumptions:    

(1) Assume in advance the number of clusters 

(2) Generate random seeds 

(3) Assume at least one seed “hits” every cluster 

(4) Clusters “grow” in the neighborhood of each seed 

(5) Cluster regions grow until saturation (Scott, Therani, Wang, 2017).  

 

On the other hand, Meila-Shi algorithm supposes we have a real  N x K  data matrix  

Q and then:  

𝑆 = 𝑄 × 𝑄𝑇                                                              (4.3) 

𝐴 = 𝑎𝑖,𝑗 =
𝑠𝑖,𝑗

√∑  𝑠𝑖,𝑘𝑘=1  ∑  𝑠𝑗,𝑘𝑘=1  
                                   (4.4)  

𝑃 = 𝑝𝑖,𝑗 =
𝑠𝑖,𝑗

∑  𝑠𝑖,𝑘𝑘=1
                                                    (4.5) 

where  S  is the similarity matrix,  A is the adjacency matrix and  P  is a row-

stochastic matrix, often called a Markov matrix. It is also called a transition matrix. 

Moreover,  𝜑𝑖  and  𝜓𝑖  are respectively the normalized eigenvectors of  A  and  P, 

taken as column vectors, but these matrices share the same eigenvalues  𝜆𝑖 , which 

have special properties:  

𝜆0 = 1    and    𝜆𝑖+1 < 𝜆𝑖 < 𝜆0        , where  i = 1, 2, 3, …  

However, the corresponding eigenvectors of  P, i.e.  𝜓𝑖  provide a much better 

clustering picture. For  i > 0, plotting the lead eigenvectors  𝜓1  versus  𝜓2  (often the 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

                                                                                              Quantum Statistics and Data Analysis                  
                                                                                                     

    

 

 

135 

leading two eigenvectors  i = 1, 2  are sufficient) serves as the principal axes, 

graphically provides a clustering picture and consequently a considerable dimensional 

and size reduction of the original problem (Meila, Shi, 2001, Scott, Therani, Wang, 

2017).         

 

Artificially-created data set of random points data set:   
 

We compose artificially-created random points within two circular envelopes 

of different sizes with the circle of a smaller size having a high density of points. We 

observe Figure 18a shows the result for k-Means, as provided by the MATLAB 

toolbox, for a choice of two clusters. The result is stable, but illustrates one of the 

problems experienced with overlapping clusters using k-Means. The smaller cluster, 

which is shown in red, penetrate the larger circle too much. However, as we see in 

Figure 18b, the contour plot of the quantum potential allows us to better isolate the 

smaller cluster. We note the cluster centers are shown in black dots. The continuous 

transitions between potential minima, which are the cluster centers, provide a 

continuous description of the “fuzzy-clustering” aspects (Scott, Therani, Wang, 

2017).     

 

Figure 18: k-Means vs quantum clustering on two overlapping circles. (a) k-Means 

clustering: the smaller circle “overflows” into larger blue circle. (b) Quantum clustering: the 

contour plot better isolates the smaller circle,  σ = 0.7125 (Scott, Therani, Wang, 2017).  
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Rock Crabs example:  
 

This example comes from biology and we suppose one has two sexes and two 

(new) species and consequently four groups. Preserved specimens lost their colour, so 

it was hoped that morphological differences would enable museum material to be 

classified. Data was collected on 50 specimens of each sex of each species, collected 

in Western Australia. Each specimen had measurements to according to: (1) frontal 

lip, (2) rear width, (3) length along midline, (4) maximum width of carapace and (5) 

body depth. Thus,, the total data set is a  200 x 5 data matrix.  

We observe that Figure 19 shows the outcome of the application of spectral 

Meila-Shi and quantum clustering on this data. The actual classes are illustrated by 

the colours red, blue, green and yellow. The lead eigenvectors  𝜓1  and  𝜓2  are 

sufficient to provide a complete two-dimensional clustering picture. It is also shown 

the contour plot from the quantum clustering potential is the minima clearly indicating 

the cluster centers. All four classes were recovered to within 80% of the data 

according to the Jaccard index.  

The “fuzzy” nature of points that are nearly equally spaced between cluster 

centers is handled continuously by the quantum potential. Our results are comparable, 

but the difference in outcome between the two approaches increases for larger data 

sets in both row and column size (Ripley, 1996, Horn, Gottlieb, 2001, Scott, Therani, 

Wang, 2017).  
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Figure 19: Identification of four classes by quantum clustering (Scott, Therani, Wang, 2017). 

  

Quantum Clustering Algorithms – Results visually:  
 

A given set of data-points in some feature space may be associated with a 

Schrödinger equation whose potential is determined by the data. This is known to lead 

to good clustering solutions. We extend this approach into a full-fledged dynamical 

scheme using a time-dependent Schrödinger equation. Moreover, we approximate this 

Hamiltonian formalism by a truncated calculation within a set of Gaussian wave 

functions (coherent states) centered around the original points. This allows for 

analytic evaluation of the time evolution of all such states, opening up the possibility 

of exploration of relationships among data-points through observation of varying 

dynamical-distances among points and convergence of points into clusters. This 

formalism may be further supplemented by preprocessing, such as dimensional 

reduction through singular value decomposition or feature filtering (Weinstein, 

Marvin, Horn, 2009).   

We advocate the use of a Schrödinger Hamiltonian  H  that is intimately 

connected to the data structure, as defined by the quantum clustering method and 

summarized below. We extend it into a time-dependent Schrödinger equation:  

𝑖
𝜕𝜓(�⃗�,𝑡)

𝜕𝑡
= 𝐻𝜓(�⃗�, 𝑡)                                                (4.6)  
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The ensuing Dynamic Quantum Clustering (DQC) formalism allows us, by 

varying a few parameters, to study in detail the temporal evolution of wave-functions 

representing the original data-points. Then, this dynamical behavior allows us to 

explore the structure of the quantum potential function defined by the quantum 

clustering method. DQC begins by associating each data-point with a state in Hilbert 

space. The temporal development of the centroids of these states may be viewed in 

the original data-space as moving images of the original points. Their distances to 

one-another change with time, thus representing associations they form with each 

other. Convergence of many points onto a common center at some instant of time is 

an obvious manifestation of clustering. Many transitional relationships may occur, 

revealing substructures in clusters or even more complex associations. For this reason 

we propose this approach as a general method for visually and interactively searching 

for and exploring structures in sets of data (Weinstein, Marvin, Horn, 2009). 

More specifically, we start to describe the Quantum Clustering method. The 

quantum clustering approach begins by associating to each of  n  data points  �⃗�𝑖  in an 

Euclidean space of  d  dimensions a Gaussian wave-function  𝜓𝑖(�⃗�) = 𝑒
−
(�⃗⃗⃗�− �⃗⃗⃗�𝑖)

2

2𝜎2    and 

then constructing the sum of all these Gaussians:   

𝜓(�⃗�)  =   ∑   𝑒
−
(�⃗⃗⃗�− �⃗⃗⃗�𝑖)

2

2𝜎2𝑖                                                           (4.7)        

Conventional scale-space clustering views this function as a probability 

distribution (up to an overall factor) that could have generated the observed points, 

and regards therefore its maxima as determining locations of cluster centers. Often 

these maxima are not very prominent and, in order to uncover more of them, one has 

to reduce  σ  down to low values where the number and location of the maxima 

depend sensitively upon the choice of  σ. Quantum clustering took a different 

approach, requiring ψ to be the ground-state of the Hamiltonian:  

𝐻𝜓 ≡   (−
𝜎2

2
 ∇2 + 𝑉(𝑥))𝜓 = 𝛦0𝜓                            (4.8) 

By positing this requirement , the potential function  𝑉(𝑥)  has become 

inextricably bound to the system of datapoints, since  𝑉(�⃗�)  is determined, up to a 

constant, by a simple algebraic inversion of Equation (4.8). Moreover, we may expect  

V  to have minima in regions, where  ψ  has maxima. In fact, it frequently turns out 
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that a concentration of data points will lead to a local minimum in  V , even if ψ does 

not display a local maximum. Thus, by replacing the problem of finding maxima of 

the Parzen estimator by the problem of locating the minima of the associated potential  

𝑉(�⃗�) ,  we simplify the process of identifying clusters. The effectiveness of this 

approach has been demonstrated in the work by Horn and Gottlieb. It should be noted 

that the enhancement of features obtained by applying Equation (4.8)  comes from the 

interplay of two effects: attraction of the wave-function to the minima of V and 

spreading of the wave-function due to the second derivative (kinetic term) (Weinstein, 

Marvin, Horn, 2009).  

Dynamic Quantum Clustering (DQC) drops the probabilistic interpretation of  

ψ  and replaces it by that of a probability-amplitude, as customary in Quantum 

Mechanics. DQC is set up to associate data-points with cluster centers in a natural 

fashion. Whereas in Quantum Clustering this association was done by finding their 

loci on the slopes of  V , here we follow the quantum-mechanical temporal 

evolvement of states associated with these points. Specifically, we will view each 

data-point as the expectation value of the position operator in a Gaussian wave-

function: 𝜓𝑖(�⃗�) = 𝑒
−
(�⃗⃗⃗�− �⃗⃗⃗�𝑖)

2

2𝜎2    . The temporal development of this state traces the 

association of the data-point it represents with the minima of   𝑉(�⃗�)    and thus, with 

the other data-points (Weinstein, Marvin, Horn, 2009).    

We present the detailed description of the Dynamic Quantum Clustering 

method as provided by Horn, Weinstein and Marvin in Appendices (Appendix B).  

We want to test our method, so we apply it to a five-dimensional data set with 

two-hundred entries, used in Ripley’s text book. This data set records five 

measurements made on male and female crabs that belong to two different species. 

The data is stored in a matrix M which has 200 rows and 5 columns. 

In what follows we study the temporal behavior of the curves  〈�⃗�𝑖(𝑡)〉  , for all 

i. Henceforth we will refer to this as the “motion of points”. Figure 20 shows the 

distribution of the original data points plotted on the unit sphere in three dimensions. 

This is the configuration before we begin the dynamic quantum evolution. To visually 

display the quality of the separation we have colored the data according to its known 

four classes, however this information is not incorporated into our unsupervised 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

140 

method. To begin with, we see that the two species of crabs ((red,blue) and 

(orange,green)) are fairly well separated; however, separating the sexes in each 

species is problematic. The middle plot in Figure 20 shows the distribution of the 

points after a single stage of quantum evolution, stopped at a time when points first 

cross one another and some convergence into clusters has occurred (Weinstein, 

Marvin, Horn, 2009).   

It is immediately obvious that the quantum evolution has enhanced the 

clustering and made it trivial to separate clusters by eye. Once separation is 

accomplished, extracting the clusters can be performed by eye from the plots or by 

any conventional technique, e.g. k-means.  

An alternative way of displaying convergence is shown in Figure 21, where 

we plot the Euclidean distance from the first point in the data set to each of the other 

points. The clusters lie in bands which have approximately the same distance from the 

first point. It is difficult to get very tight clusters since the points, while moving 

toward cluster centers, oscillate around them, and arrive at the minima at slightly 

different times. Given this intuition, it is clear that one way to tighten up the pattern is 

to stop DQC evolution at a point where the clusters become distinct, and then restart it 

with the new configuration, but with the points redefined at rest. We refer to this as 

iterating the DQC evolution. The right-hand plots in Figure 20 and Figure 21 show 

what happens when we do this. The second stage of evolution clearly tightens up the 

clusters significantly, as was expected (Weinstein, Marvin, Horn, 2009). 

 

 

Figure 20: The left hand plot shows three-dimensional distribution of the original data points 

before quantum evolution. The middle plot shows the same distribution after quantum 
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evolution. The right hand plot shows the results of an additional iteration of DQC. The values 

of parameters used to construct the Hamiltonian and evolution operator are: σ = 0.07 and m 

= 0.2. Colors indicate the expert classification of data into four classes, unknown to the 

clustering algorithm. Note, small modifications of the parameters lead to the same results 

(Weinstein, Marvin, Horn, 2009).   

 

 

Figure 21: A plot of Euclidean distance of each point i from the first data point. Again, the 

left hand plot shows the distances for the initial distribution of points. The middle plot shows 

the same distances after quantum evolution. The right-hand plot shows results after another 

iteration of DQC. The numbering of the data-points is ordered according to the expert 

classification of these points into four classes containing 50 instances each (Weinstein, 

Marvin, Horn, 2009).  
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Figure 22: A plot of the first three principal components for a large data-set, comprising 

35,213 points in 20 dimensions, before and after DQC evolution. The potential was 

determined from the full data-set and evolved using a sub-set of 1200 points, whose 

Gaussians serve as an essentially linearly set of independent states. Three stages of DQC 

development are shown. The coloring was decided upon by selecting the most obvious 

clusters from the evolved data and assigning colors to them. The dark blue points correspond 

to points that we did not bother to assign to clusters. The purpose of coloring is to be able to 

look at the points in the original data, discern those that belong to common structures, and 

follow their dynamic distances under DQC evolution (Weinstein, Marvin, Horn, 2009).  

 

In this section we present a novel clustering method to microarray expression 

data in simple steps:  

The first stage involves compression of dimensions that can be achieved by applying 

Singular Value Decomposition (SVD) to the gene–sample matrix in microarray 

problems. Thus, the data (samples or genes) can be represented by vectors in a 

truncated space of low dimensionality (Horn, Axel, 2003).  

We find it preferable to project all vectors onto the unit sphere before applying a 

clustering algorithm.   
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The clustering algorithm used here is the quantum clustering method that has one free 

scale parameter. Although the method is not hierarchical, it can be modified to allow 

hierarchy in terms of this scale parameter (Horn, Axel, 2003).  

More specifically, Singular Value Decomposition Algorithm concerns an m × n  

gene/sample matrix  X. Its columns may be interpreted as sample vectors defined in 

gene-space, and its rows are gene-vectors in sample space. This matrix of rank  k ≤ 

min(m, n) can be expanded into a sum of  k  unitary matrices of rank  1: 

𝑋 =   ∑  𝜎𝛼 𝒖𝑎 𝒗𝑎
𝑇𝑘

𝑎=1                                          (4.18) 

The two sets {𝒖𝑎} and  {𝒗𝛽
𝛵}, where  α, β = 1, ..., k, of column and row vectors, 

respectively, are orthonormal sets. This expression can be rewritten in the matrix 

representation:  

𝑋 = 𝑈 𝛴 𝑉𝑇                                                          (4.19) 

where  Σ  is a (non-square) diagonal matrix, and U, V are orthogonal matrices. 

Ordering the non-zero elements of  Σ  in descending order, we can get an 

approximation of a lower rank  r to the matrix  X  by taking   ∑ = 0 𝑟
𝑗𝑗      for j > r, 

leading to the matrix: 

𝑌 = 𝑈 𝛴𝑟 𝑉𝑇                                                        (4.20) 

This is the best approximation of rank  r  to  X, i.e. it leads to the minimal sum of 

square deviations:  

𝑆 =  ∑ ∑ (𝑋𝑖𝑗 − 𝑌𝑖𝑗)
2𝑛

𝑗
𝑚
𝑖                                       (4.21) 

Once we apply SVD to a given matrix  X,  we automatically define two spaces 

dual to each other. The matrix  U  has orthogonal columns (eigensamples) that serve 

as axes for representing all genes (rows of U), while the matrix V has orthogonal 

columns (eigengenes) that serve as axes of a space representing all samples (rows of 

V or columns of VT). Truncating these representations to dimension r, the gene-

vectors (truncated rows of U) and the sample-vectors (truncated columns of VT) do 

not have equal norms (Horn, Axel, 2003).  

This leads to a problem for the clustering algorithm that is applied in these 

spaces since many vectors accumulate around the origin. We employ therefore 
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rescaling of all vectors to unit length. In other words, we project these vectors onto 

the unit sphere in r-space (Horn, Axel, 2003).    

We present the Quantum Clustering Algorithm suggested by Horn and 

Gottlieb (2002) in Appendices (Appendix C).  

We apply our method to three data sets. The results are very promising. On 

cancer cell data we obtain a dendrogram that reflects correct groupings of cells. In an 

AML/ALL data set we obtain very good clustering of samples into four classes of the 

data. Finally, in clustering of genes in yeast cell cycle data we obtain four groups in a 

problem that is estimated to contain five families (Horn, Axel, 2003).   

We want to describe the quality of the results, so we calculate at each stage of  

σ, the Jaccard score: 

𝐽 =
𝑛11

𝑛11 +𝑛10 + 𝑛01 
                                                          (4.27)  

where  𝑛11   is the number of pairs of samples that appear in the same cluster both 

according to the cell type and according to our clustering algorithm, whereas 𝑛10 +

𝑛01  is the number of pairs that appear together in one classification and not in the 

other. This score should be  1, for perfect clustering and decrease as the clustering 

quality decreases (Horn, Axel, 2003).  

We compare here the QC results with a k-means analysis, which turns out to 

be worse. The Jaccard scores are 0.72 for the best QC result (varying over σ) and 0.48 

for the best k-means (varying over  k and averaging over initial conditions). It can be 

seen in Figure 24 that the k = 4 k-means analysis has one quite empty cluster. Indeed, 

the best k-means results were obtained for k = 3 (Horn, Axel, 2003).  
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Figure 23: . Representation of data of four classes of cancer cells on two dimensions of the 

truncated space. These data points (denoted by star and by the relevant letters) are shown 

after the normalization of each data point in r-space. The circles denote the locations of the 

data points before this normalization was applied (Horn, Axel, 2003).    
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Figure 24: Clustering solutions for the AML/ALL problem using QC with σ = 0.54 (upper 

frame) and k-means with k = 4 (lower frame). The samples are ordered on the x-axis 

according to the true classification into four groups, indicated by alternative gray and white 

areas (Horn, Axel, 2003).  
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Figure 25: The five gene families as represented in two coordinates of our r = 4 dimensional 

truncated space (Horn, Axel, 2003).  
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Figure 26: Cluster assignments of genes for QC with σ = 0.46 as compared to the 

classification by (Spellman et al., 1998) shown as alternating gray and white areas (Horn, 

Axel, 2003).    
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QUANTUM CLUSTERING: NOVEL APPLICATION  
 

We construct the following example:  

Data set from UCI Repository: Absenteeism at work Data Set  

Abstract: The database was created with records of absenteeism at work from July 

2007 to July 2010 at a courier company in Brazil.  

Number of Instances: 740 

Attribute Characteristics: Integer, Real  

Number of Attributes: 21 

Download date: 12 January 2019  

Attribute Information:  

1. Individual identification (ID)  

2. Reason for absence (ICD).  

Absences attested by the International Code of Diseases (ICD) stratified into 21 categories (I 

to XXI) as follows:  

 

I Certain infectious and parasitic diseases  

II Neoplasms  

III Diseases of the blood and blood-forming organs and certain disorders involving the 

immune mechanism  

IV Endocrine, nutritional and metabolic diseases  

V Mental and behavioural disorders  

VI Diseases of the nervous system  

VII Diseases of the eye and adnexa  

VIII Diseases of the ear and mastoid process  

IX Diseases of the circulatory system  

X Diseases of the respiratory system  

XI Diseases of the digestive system  

XII Diseases of the skin and subcutaneous tissue  
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XIII Diseases of the musculoskeletal system and connective tissue  

XIV Diseases of the genitourinary system  

XV Pregnancy, childbirth and the puerperium  

XVI Certain conditions originating in the perinatal period  

XVII Congenital malformations, deformations and chromosomal abnormalities  

XVIII Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere 

classified  

XIX Injury, poisoning and certain other consequences of external causes  

XX External causes of morbidity and mortality  

XXI Factors influencing health status and contact with health services.  

 

And 7 categories without (CID) patient follow-up (22), medical consultation (23), blood 

donation (24), laboratory examination (25), unjustified absence (26), physiotherapy (27), 

dental consultation (28).  

3. Month of absence  

4. Day of the week (Monday (2), Tuesday (3), Wednesday (4), Thursday (5), Friday (6))  

5. Seasons (summer (1), autumn (2), winter (3), spring (4))  

6. Transportation expense  

7. Distance from Residence to Work (kilometers)  

8. Service time  

9. Age  

10. Work load Average/day  

11. Hit target  

12. Disciplinary failure (yes=1; no=0)  

13. Education (high school (1), graduate (2), postgraduate (3), master and doctor (4))  

14. Son (number of children)  

15. Social drinker (yes=1; no=0)  

16. Social smoker (yes=1; no=0)  

17. Pet (number of pet)  

18. Weight  

19. Height  

20. Body mass index  

21. Absenteeism time in hours (target)  
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Firstly, we implement classical statistical methods for clustering, like k-

Means, hierarchical clustering and Model-based clustering for the data set 

“Absenteeism at work”. Then, for the same data set we implement Quantum 

clustering method and try to interpret and compare the results of classical and 

quantum methods.   

For this implementation we use David Horn’s quantum clustering algorithm in  R. 

It does not suffer from the curse of dimensionality and takes advantage of 

eigenfunctions for non-linear clustering. It was adapted from  

http://horn.tau.ac.il/software/qc.m  with help from the following paper: Algorithm for 

Data Clustering Pattern Recognition Problems Based on Quantum Mechanics (2002).  

 

• Quantum Clustering:  
 

The goal is to perform clustering analysis according to the target variable 

“Absenteeism time in hours” of the data set.   

 

Firstly, we implemented the classical methods of cluster analysis and more 

specifically Partioning (k-Means) method, Hierarchical (Ward) method and 

Model-based method (Bayes criteria and maximum likelihood estimation). 

These methods are in appendices (see Appendix I).   

Then, we perform the quantum clustering method.  

 

 

http://horn.tau.ac.il/software/qc.m
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Figure 31: Maximum number of clusters = 740 

 

• Changing sigma (controls how closely related data in clusters should be) and 

n_clusters_max (number of clusters) and searching best choice   
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• Conclusions from the results above  

 

 

All statistics of quantum clustering can be found in appendices (see Appendix J) and 

compared with the statistics of classical methods of clustering analysis, such as k-

Means partioning and hierarchical method.   
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Here, qc {quantum clustering}: Cluster data using a non-linear clustering algorithm 

which finds organic groups of data from eigenfunctions and does not suffer from the 

curse of dimensionality. The algorithm is approximately O(n2). The function  qc  

returns a vector of the numeric clusters assigned to each row in data set.  

 

qc(data set, sigma, steps = 21, min_d_factor = 2, n_clusters_max = 1000,verbose = 

FALSE)  

Arguments:  

data set: The cleaned input data to be clustered in either data frame or matrix format. 

This should contain only numeric data and must not have any factors, strings, NAs, 

etc. It also should not contain any irrelevant columns such as observation ID or 

redundant data. 

sigma: A double which controls how closely related data in clusters should be. The 

smaller the number, more clusters will be created with fewer observations in each. If 

sigma is too small, observations either will not be clustered or will be in their own 

individual clusters. If sigma is too large, most – if not all – observations will be in the 

first cluster 

steps: An integer specifying the number of expectation-maximization steps to take. If 

faster, less accurate results are required, this may be reduced from the default of 21 

min_d_factor: A double which controls how close data points must be in order to be 

considered in the same cluster. Specifically, this value is the number of sigmas of 

distance to be within said threshold. This value should probably not be changed unless 

there is a strong reason to do so 

n_clusters_max: An integer specifying the maximum number of clusters to return. 

These clusters will always be the most common clusters with the most observations in 

them 

verbose: A boolean value which toggles the algorithm's verbosity for details as to how 

far along it is.   
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We prefer to present our visual results of Quantum Clustering using Matlab 

language because in Matlab environment the results are more comprehensible than in 

other programming languages like R or Python.  

The necessary functions for our representation are provided in appendices (Appendix 

D).  

We implement the above code in Matlab and we take the following plot and output:  

 

 

Figure 32: In my data set horizontal axis refers to observations and vertical axis refers to the 

reduction of dimensions of my data set in 4 (like PCA or SVD method)  
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Figure 33: This table contains all the statistical measures appeared during Quantum 

Clustering in the Matlab code 

 

Here we present a second visualization of Quantum Clustering for the same data set 

using Matlab environment. We provide the necessary functions for the main code in 

the appendices (Appendix E).  Then, we take the following plots:  
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Figure 34: How data is presented before Quantum Clustering, where horizontal axis refers to 

the fraction V/E  and vertical axis refers to the 740 observations of the data set. We view  ψ  

as an eigenstate of the Schrödinger equation: 𝐻𝜓  ≡   (−
𝜎2

2
 𝛻2 + 𝑉(𝒙))𝜓 =   𝛦𝜓  and 

here we rescale  H  and  V  of the conventional quantum mechanical equation to leave only 

one free parameter  σ. The case of a single point at  𝒙1  corresponds to Schrödinger equation 

with  𝑉 =
1

2𝜎2
 (𝒙 − 𝒙1)

2  and  𝐸 =
𝑑

2
  , where  d  is the dimension of the Euclidean space. The 

values  V/E  are shown as functions of the serial number of the data. Lower cutoffs in  V/E , 

including lower fractions of data, are required to define cluster cores that are well-separated 

in their relevant spaces.              
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Figure 35: How data is presented after Quantum Clustering (different colours means 

different clusters from PCA), where horizontal axis refers to the fraction V/E  and vertical 

axis refers to the 740 observations of the data set. 

  

 According to the figures of Quantum Clustering we observe that after 

Quantum Clustering the observations and cores are better separated than before 

Quantum Clustering.   
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Figure 36: This table contains all the statistical measures appeared during Quantum 

Clustering in the Matlab code   

 

Therefore, for Clustering Issues we developed a Quantum Algorithm using the 

programming language  R, which can be implemented in every data set. Then, we 

plotted the results of the Quantum Clustering Algorithm using the Matlab program. 

We also implemented the classical statistical methods for Clustering, Partioning (k-

Means) method, Hierarchical method (Ward distance) and Model-based method 

(Bayes criteria and Maximum Likelihood estimation) and plotted their results. We 

validated cluster solutions through cross-validation and compared the statistics, which 

comes from the methods k-Means and Quantum Clustering.  

We conclude that the comparison between Classical and Quantum Clustering 

Algorithms leads to results, which prove that in some cases Quantum Clustering 

algorithm prevails of the corresponding Classical Clustering algorithm. However, 

these results can not be generalized yet.   
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Moreover, we observe it is quite difficult to compare the results between 

Classical and Quantum Clustering methods visually. However, Quantum Clustering is 

an additional beyond novel method to handle a data set and it is very possible with 

few modifications in the code to take improved results in the near future.      

 

 

Comments on the Results 
 

For the clustering algorithm we select a large data set, prepare the data and 

implement:  

• Partioning (k-Means) method 

• Hierarchical method (Ward) 

• Model-based method (Bayes criteria and Maximum Likelihood estimation) 

We plot clustering solution methods and implement Quantum Clustering. Next 

we validate the cluster solutions (cross-validation), we observe and compare the 

statistics which comes from the methods k-Means and Quantum Clustering. However, 

we are not able to construct analogous plots for all the methods to compare them. For 

this reason we plot quantum clustering in Matlab. In the first figure horizontal axis 

refers to observations and vertical axis refers to the reduction of dimensions of my 

data set in 4 (like PCA or VSD method). In the first figure of second application we 

see how data is presented before Quantum Clustering and in the second figure we see 

how data is presented after Quantum Clustering (different colours means different 

clusters from PCA). Here, horizontal axis refers to the fraction V/E  and vertical axis 

refers to the 740 observations of the data set. For the statistical results of cross-

validation, we can check comments of R-studio algorithm. We can implement this 

algorithm in every data set. In another data set (or in other variables) somebody could 

extract better or more useful clustering results. In worst case, these new quantum 

methods could be used as an extra method of machine learning.    
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CHAPTER 5:  QUANTUM REGRESSION 
 

We introduce the Quantum-inspired Machine Learning Algorithms for 

Regression. These are machine learning algorithms that involve in some quantum 

theoretical elements, but do not require a quantum machine for implementing it. We 

present a novel ensemble regression algorithm inspired by quantum mechanics and 

the theoretical connection between quantum interpretations and machine learning 

algorithms. The goal of ensemble learning is to combine the predictions of multiple 

base learners to get more accurate aggregate predictions (Xie, Sato, 2017).     

Suppose we are given a data set  𝑋 ∈  ℝ𝑛×𝑚 , 𝒚 ∈  ℝ𝑛   for a regression or 

classification problem.  X is a  n × m data matrix, which contains  n  data samples, 

and each feature vector 𝒙𝑖  has  m  features. The target variable vector  y  is a vector 

with a length of  n. We define the Gram matrix  𝑃 = 𝑋𝑋𝑇  that is a symmetric and 

positive semi-definite  n × n matrix. Then, we have  𝑃 =  𝑋𝑋𝑇  =   𝑈𝛴𝛲𝑈𝑇     where  

𝛴𝛲  is a  n × n  diagonal matrix. Column vectors of   𝑈𝑆  are equal to principal 

components in Principal Component Analysis. People often use first  k  column 

features  𝑈𝑆  as dimension-reduced k-dimension feature vectors (Xie, Sato, 2017).  

As the density matrix of quantum mechanics is Hermitian, positive semi-

definite and of trace 1, if we normalize the Gram matrix  P  by multiplying a factor  

1

𝑇𝑟(𝑃)
 , the Gram matrix can be regarded as a density matrix in quantum theory. We 

denote the normalized Gram matrix by  ρ. We redefine  ρ  with a normalization factor 

as: 

𝜌 =  
𝛸𝛸𝛵

𝛵𝜌(𝛸𝛸𝛵)
 =   𝑈𝛴𝑈𝑇                                                      (5.1) 

Let  𝒖𝒊  denote the  i-th column vector of matrix  U, so  𝒖𝒊  is also a pure state 

vector, which denotes  |𝑢𝑖⟩  in quantum theory. As we have replaced the Gram Matrix 

by the normalized ρ, the sum of diagonal elements of  Σ:  ∑ 𝑠𝑖
2𝑛

𝑖=1  =   1  . The density 

matrix  ρ  describing the data matrix as a mixed state is also an operator of the form:  

𝜌 =   ∑ 𝑠𝑖
2 |𝑢𝑖⟩⟨𝑢𝑖|

𝑛
𝑖=1  =   ∑ 𝑠𝑖

2 |𝑢𝑖⟩⟨𝑢𝑖| 
𝑟
𝑖=1                             (5.2)  

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

164 

Physically, it means a data matrix  X  can be regarded as a mixed state or a 

quantum ensemble consisting of  r  pure states, where  r  is the rank. In physics, an 

ensemble of pure states  ρ  can reflect statistical expectations of quantum systems  

|𝑢𝑖⟩ . And the variance  𝑠𝑖
2  is the fraction (weight probability) of the ensemble in each 

pure state  |𝑢𝑖⟩  (Xie, Sato, 2017).  

On the one hand, the quantum interpretation treats PCA naturally as a 

dimensionality reduction process. In machine learning, researchers usually preserve 

the first  k  components with largest variance values as dimensionality reduced 

features. In quantum mechanics, PCA means that we remove several non-principal 

eigenstates from the mixed state and preserve those principal eigenstates so that we 

prepare a new mixed state consisting of less eigenstates. The new state is exactly a 

low-rank approximated copy of the original mixed state. PCA is also a naive and 

biased operation that assigns uniform weights to principal eigenstates and weight  0  

to non-principal eigenstates (Xie, Sato, 2017).  

The second quantum interpretation is we can also regard regression as a state 

preparation process that we operate several pure states  |𝑥1⟩, |𝑥2⟩, … , |𝑥𝑛⟩    to 

approximate a target state  |𝑦⟩ . Translated in quantum theoretical language, it can be 

written as: 

𝜌𝑦  =   |𝑦⟩⟨𝑦|  =   �̂�𝜌𝑥�̂�
†                                             (5.3)                             

where the state operation is noted by some quantum operator  �̂� . So the quantum 

mechanism of regression tasks can be understood as we learn a Model Operator to 

operate eigenstates in a mixed to approximate a target pure state under some metrics.  

The importance of an eigenstate  |𝑢𝑖⟩  is also reflected by the Transition Probability 

from an eigenstate   |𝑢𝑖⟩  jumping into the target state  |𝑦⟩ . We denote Transition 

Probability Amplitude as  t, so  𝑡𝑖  =   ⟨𝑦|�̂�|𝑢𝑖⟩ . We note that Transition Probability 

equals Transition Probability Amplitude squared, namely   |⟨𝑦|�̂�|𝑢𝑖⟩|
2
   (Xie, Sato, 

2017).     

Obviously, the Transition Probability is a parameter decided by model 

operator, the eigenstate, and the target state together. Aggregating fraction 

probabilities and transition probabilities together, the Fraction Transition Probability 
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for the i-th principal component is proportional to   𝑠𝑖
2|⟨𝑦|�̂�|𝑢𝑖⟩|

2
 . So we take the 

Fraction Transition Probability for the ith principal component as:  

𝑝𝑘  =   
𝑠𝑘
2 𝑡𝑘
2

∑  𝑠𝑖
2 𝑡𝑖
2𝑟

𝑖=1

                                             (5.4) 
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(Xie, Sato, 2017)  

We describe the basic steps of the above algorithms. More specifically, 

Random Subspace is a fast and efficient ensemble method widely used in many 

algorithms, including Random Forest. Random Subspace randomly select a subset of 

features for training a base learner. But Quantum-Inspired Subspace (QIS) can utilize 

the extra information inspired by quantum mechanics (Xie, Sato, 2017).  

We first preprocess the input data matrix  X  by using full-rank PCA. Different 

from either preserving principal components with largest eigenvalues or random 

subspace, QIS selects a component in a probability proportional to the corresponding 

Fraction Transition Probability. Under Gaussian assumptions of model parameters, 

we let  𝑝𝑘 =
𝑠𝑘
2

∑ 𝑠𝑖
2𝑟

𝑖=1

   for the component k. When we replace Random Subspace by 

Quantum-Inspired Subspace for Random Forest, we obtain a novel algorithm, namely 

Quantum-Inspired Forest. We note that, in principle, full-rank PCA preprocessing 

generally can neither improve nor damage algorithm performance. The additional 

computational cost of the proposed algorithm is only brought by Principal Component 

Analysis and several matrix operations for computing Fraction Transition 

Probabilities. So it is a very low cost in practice (Xie, Sato, 2017).  

We denote by  ℎ1, … , ℎ𝑇    the regressors in the ensemble and by  ℱ, the 

feature set. We need to choose ensemble size  T  in advance. All base regressors can 

be trained in parallel, which is also the case with Bagging and Random Forests.  

Algorithm 1 explains how to generate the training feature set  ℱ𝑖  for regressor  

ℎ𝑖 . And we modify Random Forest into Quantum-Inspired Forest by employing 
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Quantum-Inspired Subspace to generate ensemble feature subsets instead of Random 

Subspace. We can easily notice the difference between standard Random Forest and 

Quantum-Inspired Forest respectively described in Algorithm 2 and Algorithm 3 (Xie, 

Sato, 2017).  

It is worthy noting that Quantum-Inspired Subspace is a general method which 

can be easily applied with other ensemble methods and multiple base learners 

together. QIS also lend itself naturally to parallel processing, as ensemble feature sets 

and individual learners can be built in parallel.  

The proof following states that the advantages of QIS theoretically increase 

ensemble ambiguity and decrease the individual error expectation in the first order 

approximation. And in our empirical analysis, the experimental results support the 

advantage is still approximately applicable to nonlinear models, such as Decision 

Tree, as we see below.  

Firstly, we show how to obtain Error-Variance-Covariance Decomposition. 

We use an ensemble of  T  base regressors  ℎ1 , ℎ2 , … , ℎ𝑇   to approximate a function  

𝑓 ∶  ℝ𝑚  →  ℝ  . Then, we use a simple averaging policy for the final ensemble 

prediction:  

𝐻(𝑥) =
1

𝑇
 ∑ ℎ𝑖(𝑥)
𝑇
𝑖=1                                                 (5.5) 

where  H(x)  is the ensemble learner. We continue by defining several notations. The 

generalization error and ambiguity of a base learner are respectively defined as:  

𝑒𝑟𝑟(ℎ𝑖) =   (ℎ𝑖(𝑥) − 𝑓(𝑥))
2
                                    (5.6) 

𝑎𝑚𝑏𝑖(ℎ𝑖)  =   (ℎ𝑖(𝑥) − 𝐻(𝑥))
2
                               (5.7) 

Moreover, we denote the expectation prediction of a base learner  ℎ𝑖    as:  

𝔼[ℎ𝑖]  =   ∫ ℎ𝑖(𝑥) 𝑝(𝑥) 𝑑𝑥                                         (5.8) 

where  p(x)  is the density function for data  x.  

The error-ambiguity decomposition of ensemble learning and the generalization error 

of the ensemble can be written as:  

𝑒𝑟𝑟(𝐻)  =   𝑒𝑟𝑟̅̅̅̅̅(𝐻) −  𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(𝐻)                              (5.9) 
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where    𝑒𝑟𝑟̅̅̅̅̅(𝐻)  =  
1

𝑇
 ∑ 𝑒𝑟𝑟(ℎ𝑖)
𝑇
𝑖=1     is the average of individual generalization 

errors and   𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(𝐻)  =  
1

𝑇
 ∑ 𝑎𝑚𝑏𝑖(ℎ𝑖)
𝑇
𝑖=1   is the average of ambiguities which is 

also called the ensemble ambiguity. We know that the larger the ensemble ambiguity, 

the better the ensemble.  

Furthermore, the averaged bias, averaged variance and averaged covariance of the 

individual learners are defined respectively as: 

𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅ (𝐻)  =  
1

𝑇
 ∑ (𝔼[ℎ𝑖] −   𝑓)
𝑇
𝑖=1                                      (5.10) 

Finally, we obtain Error-Variance-Covariance Decomposition as:  

𝑒𝑟𝑟(𝐻)  =   𝑒𝑟𝑟̅̅̅̅̅(𝐻) −  (1 −
1

𝑇
) 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐻) + (1 −

1

𝑇
) 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝐻)            

                                                                                       (5.11)  (Xie, Sato, 2017).  

We present now the empirical analysis and compare Random Forest with 

Quantum-Inspired Forest method. We select 10  UCI  data sets that are commonly 

used in the machine learning literature in order to make the results easier to interpret 

and compare. We compare Random Ensemble Linear Regression with Quantum-

Inspired Ensemble Linear Regression in Table 40, where we replace Decision Tree by 

Linear Regression as base learners. Ensemble Linear Regressors are not useful in 

practice, but it can show how our proof holds (Xie, Sato, 2017).  

We take the averaged mean square error (MSE) on 10 data sets as the metrics 

in our empirical analysis. We decide to preprocess data sets and take full-rank PCA 

preprocessed data matrix and mean normalized target variables y as preprocessed data 

sets. The first purpose is to ensure any performance differences are purely caused by 

the proposed Quantum-Inspired Subspace method rather than full-rank PCA 

preprocessing. We must leave the difference from full-rank PCA out. The second 

purpose is to remove the scale differences of different data sets so that we can fairly 

evaluate overall performance on 10 data sets. It’s reasonable to start from full-rank 

PCA preprocessing because full-rank PCA is only an orthogonal transformation and 

causes no loss or distortion of information. As we mentioned above, in principle, full-

rank PCA generally can neither improve nor damage algorithm performance. In 

practice, full-rank PCA usually brings in uncertain performance improvement or 
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damage. So the full-rank PCA preprocessing is necessary for removing the uncertain 

performance differences from the orthogonal transformation (Xie, Sato, 2017). 

We present mean square errors with standard deviations as subscripts on each 

data set or the averaged MSE on all 10 data sets in following tables. In Tables 40-41, 

we denote better, significantly better, worse and significantly worse respectively as  + 

, ++ , -  and  --.  Instances is the data sample size. Dimension is the original data space 

dimensionality. We typically take 60% data instances as training data. As we notice 

the performance of Random Forest and Quantum-Inspired Forest adapt to 

hyperparameters in similar patterns, we decide to study two Forests’ performance in 

multiple settings of forest hyperparameters (Xie, Sato, 2017). 

 

 

Table 40: Quantum-Inspired Forest Regressors vs. Random Forest Regressors: select one 

half features to train base learners, namely  a = 0.5 , ensemble size  T = 30, training 

instances  N = 60% . Means square errors with standard deviations as subscripts are 

presented (Xie, Sato, 2017).   

 

 

Table 41: Quantum-Inspired Ensemble Linear Regressors vs. Random Ensemble Linear 

Regressors: select one half features to train base learners, namely   a = 0.5 , ensemble size  T 
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= 30, training instances  N = 60% . Means square errors with standard deviations as 

subscripts are presented (Xie, Sato, 2017).    

 

 

Table 42: Quantum Inspired Forest Regressors vs. Random Forest Regressors: ensemble size  

T = 30 , training instances  N = 60% , adjust  a  respectively as  0.125 , 0.25, 0.5 , 0.75 , 1.0.  

When  a = 1.0 , Quantum Inspired Forest degenerates into Random Forest. Mean Square 

Errors averaged over  10  data sets are presented (Xie, Sato, 2017).    

 

 

Table 43: Quantum Inspired Forest Regressors vs. Random Forest Regressors:  a = 0.5 , 

training instances  N = 60% , adjust ensemble size  T  respectively as  3 , 10 , 30 , 100 (Xie, 

Sato, 2017).  

 

Quantum Least Squares Regression:  
 

In this section, we present our quantum approximation algorithm for Least 

Squares Regression (QLSR), then analyze its error rate and running time (Liu, Zhang, 

2017).  
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We assume that  𝐴 ∈   ℝ𝑛×𝑛  with rank  r  is Hermitian and   𝑏 ∈  ℝ𝑛 . Our 

goal is to compute  𝑥∗ =  𝐴†𝑏 .  We analyze the precision, error probability and the 

cost. For convenience, we summarize the parameters:  the phase estimation error  

𝛿𝑃𝐸 =
𝜀

2𝜅
  , the Hamiltonian simulation error  𝛿𝐻𝑆  =   𝑂(𝛿𝑃𝐸

2 )  ⋅ 𝑂 (
𝜀

𝜅2
)  and last-step 

measurement precision  𝛿 =
𝜀

4𝜅2
 .  

We analyze the quality of the solution:  |�̃�⟩ . With probability at least  0.99, the 

outputted vector  �̃�   satisfies the inequality:  

‖�̃� − 𝑥∗‖2   ≤   𝜀 ⋅ max{‖𝑥
∗‖2 , ‖𝑏‖2}                                  (5.12) 

Next we analyze the estimated norm. With probability at least  0.99 , the outputted 

value  𝑙  satisfies the inequality: 

|𝑙 − ‖𝑥∗‖2
2|   ≤   𝜀 (‖𝑥∗‖2

2 + ‖𝑏‖2
2)                                        (5.13)  
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Finally, we analyze the computational cost:  

For Step 1 of the QLSR algorithm, we can efficiently prepare  |𝑏⟩  in time  𝑂(log 𝑛)  

provided that  𝑏𝑖   (i = 1, … , n)  and  ∑  |𝑏𝑖|
2 

𝑖2
𝑖1

  (1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛)  are efficiently 

computable.     

For Step 2 we perform quantum phase estimation by simulating  𝑒𝑖𝐴 , which takes 

time  𝑂(𝑠(log𝑛 + 𝑝𝑜𝑙𝑦 log(𝑠 ,   𝜅))) .   

We want the error of the eigenvalue estimation is at most  𝛿𝑃𝐸 =
𝜀

2𝜅
  ,  so the phase 

estimation algorithm needs  𝑂(
𝜅

𝜀
)  calls of  𝑒𝑖𝐴  simulation. Thus, the total time for 

one phase estimation is  𝑂(𝑠(log 𝑛 + 𝑝𝑜𝑙𝑦 log (𝑠, 𝜅)) 𝜅/𝜀)  . 

Repeating this for  𝑂(
𝜅2

𝜀
)  time in Step 4 needs time  𝑂(𝑠(log 𝑛 + 𝑝𝑜𝑙𝑦 log (𝑠, 𝜅)) 𝜅3/

𝜀2)  .  

Therefore, if we do not need to estimate the norm  ‖𝑥∗‖2
  , then the algorithm can just 

stop before Step 7. The total time cost is  𝑂((log𝑛) ∙ 𝑠2  ∙
𝜅

𝜀
 ∙
𝜅2

𝜀
) = 𝑂((log𝑛) 𝑠2𝜅3/

𝜀2)  .  

If we want to estimate the norm  ‖𝑥∗‖2
  , the Amplitude Estimation needs to repeat 

Step 1 to Step 3 at most  𝑂 (
1

𝛿
) = 𝑂 (

𝜅2

𝜀
)  times. So the total cost is                                                  

𝑂 ((log 𝑛) ∙ 𝑠2  ∙
𝜅

𝜀
 ∙
𝜅2

𝜀
) = 𝑂((log𝑛) 𝑠2𝜅3/𝜀2)    (Liu, Zhang, 2017).  

           

Quantum Linear Regression Algorithm from classical data set:  
 

The quantum linear regression algorithm is based on the method of encoding 

classical information such as a 2𝑛 dimensional vector  𝒂 = (𝑎0 , … , 𝑎2𝑛−1)
𝑇     into 

the  2𝑛 amplitudes  𝑎0 , … , 𝑎2𝑛−1 of a n-qubit quantum system:  |𝜓𝒂⟩ =  ∑  𝑎𝑖 |𝑖⟩
2𝑛−1
𝑖=0 , 

where  {|𝑖⟩}  is a convenient notation for the computational basis:                    

{|0…0⟩  =̂  |0⟩ , … , |1…1⟩  =̂  |2𝑛 − 1⟩}    (Schuld, Sinayskiy, Petruccione, 2016).                                                                              
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In other words, the probabilistic description of a set of 2-level quantum 

systems is used to store and manipulate classical information. We refer to this method 

here as amplitude encoding and denote every such quantum state by a  ψ  with a 

subscript referring to the classical vector it encodes. Namely  |𝑎⟩ is a quantum state 

where some mathematical object α  is encoded into the basis state in a way that is to 

specify in detail, while  |𝜓𝒂⟩  is a quantum state representing the real vector  α  via 

amplitude encoding (Schuld, Sinayskiy, Petruccione, 2016).    

The strategy for the quantum algorithm is the following. In Step 1 the general 

idea of the quantum pattern recognition algorithm is to create a quantum state 

representing the data matrix  𝑿 =  ∑  𝜎𝑟 𝒖𝑟 𝒗𝑟
𝑇

𝑟    via amplitude encoding. In Steps 2 

and 3 we use tricks to invert the unknown singular values efficiently. In Step 4, 

quantum state representations of  𝒚 , �̃�  are used to write the desired prediction from 

Equation: 

�̃�  =   ∑  𝜎𝑟
−1  𝒙 ̃𝑇𝑅

𝑟=1  𝒗𝑟 𝒖𝑟
𝑇 𝒚                                                 (5.14)  

into the off-diagonal elements of an ancilla qubit, where it can be read out by a simple  

𝜎𝑥 , 𝜎𝑦  measurement (Schuld, Sinayskiy, Petruccione, 2016).  

Step 1: State Preparation  

The quantum algorithm takes copies of the quantum states representing each 

of the objects X , y and 𝒙 ̃   from above in amplitude encoding:  

|𝜓𝑿⟩  =   ∑ ∑  𝑥𝑗
(𝑚)
 |𝑗⟩ |𝑚⟩𝑀−1

𝑚=0
𝑁−1
𝑗=0                                         (5.15) 

|𝜓𝒚⟩  =   ∑  𝑦(𝜇) |𝜇⟩ 𝛭−1
𝜇=0                                                         (5.16) 

|𝜓�̃�⟩  =   ∑  �̃�𝛾  |𝛾⟩ 
𝛮−1
𝛾=0                                                           (5.17) 

with  ∑ |𝑥𝑗
(𝑚)|

2

 =   ∑ |𝑦(𝜇)|
2
 =   ∑  |�̃�𝛾|

2
 =   1𝛾𝜇𝑚,𝑗   .    

We note that the algorithm thus works with normalized data and the results have to be 

re-scaled accordingly. Using the Gram-Schmidt decomposition, we can formally 

write:  
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|𝜓𝜲⟩ =  ∑  𝜎𝑟 𝑅
𝑟=1 ∑  𝑣𝑗

𝑟 |𝑗⟩𝐽
𝑗=1  ∑ 𝑢𝑚

𝑟  |𝑚⟩ 𝑀
𝑚=1  =    ∑  𝜎𝑟  |𝜓𝒗𝑟⟩ |𝜓𝒖𝑟⟩

𝑅
𝑟=1                        

                                                                                                              (5.18) 

We state  |𝜓𝒗𝑟⟩ =  ∑  𝑣𝑗
𝑟 |𝑗⟩𝐽

𝑗=1    and   |𝜓𝒖𝑟⟩ =  ∑ 𝑢𝑚
𝑟  |𝑚⟩ 𝑀

𝑚=1   are quantum states 

representing the orthogonal sets of left and right singular vectors of  X  via amplitude 

encoding and  𝜎𝑟  are the corresponding singular values.  

We acknowledge that overall, the question of state preparation is an 

outstanding challenge for quantum machine learning algorithm design. Our goal of 

the following algorithm is to remain linear in the number of qubits or logarithmic in 

the problem size. In this direction, we mention the number of qubits needed to 

construct states (5.15), (5.16) and (5.17) are  [log𝑁] + [𝑙𝑜𝑔𝑀]  ,  [𝑙𝑜𝑔𝑀]  and  

[𝑙𝑜𝑔𝑁]  respectively. Generally, if given a “classical” data set, techniques for the 

efficient preparation of arbitrary initial quantum states are a nontrivial and 

controversially discussed topic. However, some ideas like the linear state preparation 

in the number of qubits or via Quantum Random Access Memory (QRAM) make 

their appearance to contribute in this efficient preparation.  

 

Step 2: Extracting the singular values  

We want to transform Equation (5.18) into a “quantum representation”, so 

firstly we invert the singular values of  X. For this, we will “extract” the eigenvalues  

𝜆𝑟  of  𝑿†𝑿  to eigenvectors  𝒗𝑟  and use the inversion procedure in the following 

step. In order to access the eigenvalues, we use copies of the state (5.15) in which on 

the level of description we ignore the  |𝑚⟩ register in order to obtain a mixed state   

𝜌𝑿†𝑿  =   𝑡𝑟𝑚 {|𝜓𝜲⟩ ⟨𝜓𝜲|}   which represents the positive Hermitian matrix  𝑿†𝑿 :  

𝜌𝑿†𝑿  =   ∑ ∑  𝑥𝑗
(𝑚)
 𝑥
𝑗′
(𝑚) ∗

 |𝑗⟩ ⟨𝑗
′
|  𝑀

𝑚=1
𝑁
𝑗 ,𝑗′=1                                   (5.19) 

Now we use the ideas of Quantum Principal Component Analysis to “apply”  𝜌𝑿†𝑿  to  

|𝜓𝜲⟩  resulting in:  

∑ |𝑘𝛥𝑡⟩ ⟨𝑘𝛥𝑡|⨂𝑒−𝑖𝑘𝜌𝑿†𝑿𝛥𝑡 |𝜓𝜲⟩ ⟨𝜓𝜲| 𝑒
𝑖𝑘𝜌

𝑿†𝑿
 𝛥𝑡𝐾

𝑘=0                           (5.20) 

for some large  K. The quantum phase estimation algorithm results in:  
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∑  𝜎𝑟  |𝜓𝒗𝑟⟩ |𝜓𝒖𝑟⟩
𝑅
𝑟=1  |𝜆𝑟⟩                                                              (5.21) 

in which the eigenvalues  𝜆𝑟 = (𝜎𝑟)2  of  𝜌𝑿†𝑿  are approximately encoded in the τ  

qubits of an extra  third register that was initially in the ground state.  

 

Step 3: Inverting the singular values  

If we add an extra qubit and rotate it conditional on the eigenvalue register, 

then we have:  

∑  𝜎𝑟  |𝜓𝒗𝑟⟩ |𝜓𝒖𝑟⟩
𝑅
𝑟=1  |𝜆𝑟⟩ (√1 − (

𝑐

𝜆𝑟
)
2

|0⟩ +
𝑐

𝜆𝑟
 |1⟩)                          (5.22) 

The constant  c  is chosen so that the inverse eigenvalues are not larges than 1, which 

is given if it is smaller than the smallest nonzero eigenvalue  𝜆𝑚𝑖𝑛  of  𝑿†𝑿  or 

equivalently the smallest nonzero squared singular value  (𝜎𝑚𝑖𝑛)
2
   of  X. We 

perform a conditional measurement on the ancilla qubit, only continuing the algorithm 

(“accepting”) if the ancilla is in state  |1⟩ , else the entire procedure has to be 

repeated. In next step about runtime analysis we discuss about the amplitude 

amplification and how it can boost the probability of accepting quadratically.  

Uncomputing and discarding the eigenvalue register results in:  

|𝜓1⟩  =  
1

√𝑝(1)
  ∑  

𝑐

𝜎𝑟
 |𝜓𝒗𝑟⟩ |𝜓𝒖𝑟⟩

𝑅
𝑟=1                                                 (5.23) 

where the probability of acceptance is given by:  𝑝(1) =  ∑  |
𝑐

𝜆𝑟
|
2

𝑟       .        

 

Step 4: Executing the inner products  

The last step has the goal to write the desired result:  

∑  (𝜎𝑟)−1  ⟨𝜓�̃�| 𝑣
𝑟⟩ ⟨𝜓𝒚| 𝑢

𝑟⟩ 𝑅
𝑟=1   into selected entries of an ancilla’s single qubit 

density matric, from which it can be accessed by a simple measurement. We consider 

the result (5.23) of the previous step, as well as   |𝜓2⟩ =   |𝜓𝒚⟩ |𝜓�̃�⟩    from Equations 

(5.16) and (5.17).       
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We conditionally prepare the two states so that they are entangled with an ancilla 

qubit:  

1

√2
 (|𝜓1⟩ |0⟩ + |𝜓2⟩ |1⟩)                                                                     (5.24) 

and trace out all registers except from the ancilla, the off-diagonal elements  𝜌12 , 𝜌21  

of the ancilla’s density matrix read:  

𝑐

2√𝑝(1)
 ∑  (𝜎𝑟)−1   ∑ 𝑣𝑗

𝑟 �̃�𝑗𝑗   ∑  𝑢𝑚
𝑟  𝑦(𝑚

′)
𝑚    

𝑟                                      (5.25) 

and contain the desired result up to a known normalization factor. 

Conditionally preparing (5.24) requires us to execute the entire algorithm 

including state preparation conditioned on the state of the ancilla qubits and might not 

be easy to implement. In that case one can adapt the algorithm so that the  |0…0⟩  

basis state in  |𝜓1⟩ and  |𝜓2⟩  is “excluded” from all operations and remains with a 

constant amplitude  
1

√2
  throughout the algorithm, while the other  2𝑛 − 1  amplitudes 

are renormalized accordingly. This prepares states of the general form  |𝑎⟩ =

1

√2
 (|0…0⟩ + ∑ 𝑎𝑖 |𝑖⟩) 

𝑁
𝑖=1 ,  |𝑏⟩ =

1

√2
 (|0…0⟩ + ∑ 𝑏𝑖  |𝑗⟩) 

𝑁
𝑗=0   .  

A common swap test effectively shifts the inner product by  1/2  and thus reveals   

|⟨𝑎|𝑏⟩|2 = |
1

2
+
1

2
 ∑ 𝑎𝑖 𝑏𝑖 
𝑁
𝑖=1 |

2

  from which the sign of  ∑ 𝑎𝑖 𝑏𝑖
𝑁
𝑖=1   can be extracted 

(Schuld, Sinayskiy, Petruccione, 2016).   

These are the basic steps of the algorithm. Now we describe briefly the 

runtime analysis and the computational complexity of the above steps of the 

algorithm. According to previous researches we need temporal resources   𝑡 = 𝑘𝛥𝑡  in  

𝑂(𝑙𝑜𝑔𝑁)  and of the order  𝑂(𝜀−3)  copies of  𝜌𝑿†𝑿   to “exponentiate” a density 

matrix in Step 2, where  ε  is the error and  N  the dimension of the inputs in our data 

set. The method requires the density matrix  𝜌𝑿†𝑿  to be close to a low-rank 

approximation, which is dominated by a few large eigenvalues in order to maintain 

the exponential speedup. In general, it takes time  𝑡 = 𝑂 (
1

𝛿
)  to simulate  𝑒𝑖𝐻𝑡   for a 

Hamiltonian  H  up to error  δ  and it takes time  𝑡2  to do the same for  𝑒𝑖𝜌𝑡  (Schuld, 

Sinayskiy, Petruccione, 2016).  
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This means that if we want to resolve relatively uniform eigenvalues of the 

order of  1/N , time grows quadratically with  N  and the exponential speedup is lost. 

Hence, the method is only efficient if the density matrix is dominated by a few large 

eigenvalues.  

The singular value inversion procedure in Step 3 determines the runtime’s 

dependency on the condition number of  X,  𝜅 = 𝜎𝑚𝑎𝑥  (𝜎𝑚𝑖𝑛)
−1

 . The probability to 

measure the ancilla in the excited state is:  

𝑝(1)  =   ∑ |
𝑐

𝜆𝑟
|
2

𝑟   ≤   𝑅 |
𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥
|
2

 =   𝑅𝜅−4                                (5.26) 

which means we need on average less than   𝜅4  tries to accept the conditional 

measurement (Schuld, Sinayskiy, Petruccione, 2016).  

The amended SWAP routine in Step 4 is also linear in the number of qubits 

and the final measurement only accounts for a constant factor. The upper bound for 

the runtime can thus be roughly estimated as  𝑂(𝑙𝑜𝑔𝑁 𝜅2𝜀−3)  if we have sufficient 

copies of  𝜌𝑿†𝑿  available which is required to be close to a low-rank matrix. We have 

to remember that this does not include the costs of quantum state preparation, in case 

the algorithm processes classical information. Our algorithm tackles the problem of 

pattern recognition or prediction and it can be applied efficiently to non-sparse, but 

low rank approximations of the matrix  𝑿†𝑿  (Schuld, Sinayskiy, Petruccione, 2016).  

Therefore, in summary we described an algorithm for a universal quantum 

computer to implement a linear regression model for supervised pattern recognition. 

This quantum algorithm reproduces the prediction result of a classical linear 

regression method with least squares optimization. It runs in time logarithmic in the 

dimension  N  of the feature vectors as well as independent of the size of the training 

set if the inputs are given as quantum information. Instead of requiring the matrix 

containing the training inputs,  X , to be sparse it merely needs  𝑿†𝑿   to be 

representable by a low-rank approximation. However, the sensitive dependency on the 

accuracy as well as the unresolved problem of state preparation illustrate how careful 

we need to treat “magic” exponential speedups for pattern recognition (Schuld, 

Sinayskiy, Petruccione, 2016).       
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Quantum  Circuit  Learning:  
 

In this section we describe the theory and the details of the Quantum 

Regression Algorithm, which we use below for our novel application in Python. The 

algorithm merges two areas, Quantum Computing and Machine Learning and belongs 

to the category of Quantum Circuit Learning (QCL). The Quantum Circuit Learning 

is a quantum/classical hybrid algorithm that aims to perform supervised or 

unsupervised learning tasks (Kopczyk, 2018).      

 

Quick explanation of the algorithm:  

The QCL is based on the idea of variational circuits equivalent to 

transformation  𝑈(𝑥 , 𝜃) . By repetitive measurement of qubits after such 

transformation, we can estimate an expectation value, which is expressed as a 

function  f(x , θ) . By proper tuning of  θ   parameters the quantum circuit learns to 

output some label  y, so that a loss  𝐿(𝑦 , 𝑓(𝑥, 𝜃))       is minimized (Kopczyk, 2018).   

Variational Quantum Circuit is just a unitary transformation that is  θ-parameterized 

(θ  is a vector) and can be divided into a sequence of smaller unitaries: 

𝑈(𝑥 , 𝜃)  =   𝑈𝐽(𝜃𝐽)…𝑈𝑗(𝜃𝑗)…𝑈1(𝜃1) 𝑈0(𝑥)                         (5.27) 

where  𝑈0(𝑥) encodes an input data  x  into a quantum state. The key insight is that  θ   

parameters can be adjusted so that the variational circuit produces the desired output. 

In supervised tasks, QCL is supplied with training data  {𝑥𝑖}  and corresponding labels  

{𝑦𝑖}  for  i = 1, 2, … , M , where  M  is a number of samples. Then, the algorithm 

learns to output  𝑓(𝑥𝑖, 𝜃)   in a way it is as close as possible to  𝑦𝑖 .  

We describe below the steps of the algorithm for  N-qubits circuit (Kopczyk, 2018).  

Step 1:  Encode input data  𝑥𝑖  into a quantum state by applying some unitary 

transformation  𝑈(𝑥𝑖)  to initialized qubits  |0⟩⨂𝑁 .  

Step 2: Apply  θ-parameterized unitary on the encoded input state, generate an output 

state and measure some observable  B. As an observable we use a subset of Pauli 

operators  {𝐵}  ⊂   {𝐼, 𝑋, 𝑌, 𝑍}⨂𝑁  (for example  Z  measured on the first qubit).  



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

                                                                                              Quantum Statistics and Data Analysis                  
                                                                                                     

    

 

 

179 

Step 3: Repeat Step 1 and Step 2  P-times to get an estimate of the expectation value  

𝑓(𝑥𝑖 , 𝜃)  of some chosen observable  Β.   

Step 4: Repeat Step 3 for each sample and calculate a loss  𝐿(𝑦 , 𝑓(𝑥, 𝜃)). Minimize it 

by tuning  θ  parameters using classical optimization algorithm such as gradient 

descent. 

 

 

Figure 37: The quantum part of the algorithm amounts to encoding an input data into a 

quantum state, applying a theta-parameterized unitary and calculating expectation values for 

each training sample (Kopczyk, 2018).  

 

In this hybrid algorithm, a quantum subroutine calculates the output  𝑓(𝑥𝑖 , 𝜃)  

for each sample, whereas the calculation of loss and optimization of  θ  parameters is 

executed in a classical loop (Kopczyk, 2018). 
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Figure 38: Learning in QCL involves iterative execution of quantum and classical parts of the 

algorithm (Kopczyk, 2018). 

 

In case of larger parameter space, which is most commonly encountered in 

machine learning, the preferred optimization methods are gradient-based. This, in 

turn, requires us to calculate a derivative of  f(x, θ). So we want to calculate the 

derivative of the expectation value with respect to a circuit parameter  ∇𝜃 𝑓(𝑥, 𝜃) , but 

in many cases we can express it as a linear combination of the same quantum 

functions, differing only in a shift  ρ  in parameter  θ (Kopczyk, 2018).  

 

 

Figure 39: In many cases, the gradient can be expressed or approximated by a linear 

combination of expectation values with a shift in the parameter (Kopczyk, 2018).  

 

We present here a simple example of single parameterized gate:  

𝑈(𝑥 , 𝜃1) = 𝑈1(𝜃1) 𝑈0(𝑥)                                              (5.28) 
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with  𝑈1(𝜃1) = 𝑅𝑋(𝜃1) = 𝑒
−𝑖
𝜃1
2
 𝛸

                                   (5.29)  

where  X  is a Pauli operator. The gradient of this unitary and its conjugate transpose 

is expressed by:  

∇𝜃1  𝑈1(𝜃1)  =  −𝑖
𝜃1

2
 𝛸 𝑈1(𝜃1)                                                                                  

∇𝜃1𝑈1
†(𝜃1) =   𝑖

𝜃1

2
 𝑈1
†(𝜃1)𝛸                                        (5.30) 

as  𝑋† = 𝑋.  The expectation value of measured operator B is defined as:  

𝑓(𝑥, 𝜃1) =  ⟨0|𝑈0
†(𝑥) 𝑈1

†(𝜃1)𝛣𝑈1(𝜃1)𝑈0(𝑥)|0⟩  =   ⟨𝑥|𝑈1
†(𝜃1)𝐵𝑈1(𝜃1)|𝑥⟩                   

                                                                                                                      (5.31) 

and the gradient is:  

 ∇𝜃1  𝑓(𝑥 , 𝜃1) =  ⟨𝑥|∇𝜃1(𝑈1
†(𝜃1)𝐵𝑈1(𝜃1))|𝑥⟩                                    (5.32) 

Substituting the derivatives from Equation (5.37) we get:  

∇𝜃1  𝑓(𝑥 , 𝜃1) =
𝑖

2
⟨𝑥|𝑈1

†(𝜃1)(𝑋𝐵 − 𝐵𝑋)𝑈1(𝜃1)|𝑥⟩ =
𝑖

2
 ⟨𝑥|𝑈1

†(𝜃1)[𝑋, 𝐵]𝑈1(𝜃1)|𝑥⟩     

                                                                                                                     (5.33)  

where  [X , Y] = XY – YX  is the commutator. We use the following property of 

commutator involving Pauli operators, in particular  X, and an arbitrary operator B:  

[𝑋 , 𝐵] =  −𝑖 (𝑈1
† (
𝜋

2
)𝛣𝑈1 (

𝜋

2
) − 𝑈1

† (−
𝜋

2
)𝐵𝑈1 (−

𝜋

2
))                      (5.34) 

Thus, we obtain:  

∇𝜃1  𝑓(𝑥 , 𝜃1) =  
1

2
 ⟨𝑥|𝑈1

† (𝜃1 +
𝜋

2
)𝐵𝑈1(𝜃1 +

𝜋

2
)|𝑥⟩ −

1

2
 ⟨𝑥|𝑈1

† (𝜃1 −
𝜋

2
)𝐵𝑈1 (𝜃1 −

𝜋

2
) |𝑥⟩                                                        (5.35) 

which is just:  

∇𝜃1  𝑓(𝑥, 𝜃1) =  
1

2
 (𝑓 (𝑥 , 𝜃1 +

𝜋

2
) − 𝑓 (𝑥, 𝜃1 −

𝜋

2
))                               (5.36)  
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This is a linear combination of the same quantum functions, but with shift  

𝜌 =  ±
𝜋

2
  in the parameter! So to calculate the gradient we need to additionally run 

Step 1 – Step 3 of our algorithm twice with the shifted parameters.  

In case of multiple parameterized gates, the same logic applies. To calculate 

the gradient, one has to modify the variational circuit by inserting ±
𝜋

2
  rotations next 

to the 𝜃𝑗-dependent unitary  𝑈𝑗(𝜃𝑗)  (Kopczyk, 2018).    

 

Regression Example in Python:  

 

In this example, QCL will try to learn a simple quadratic function  𝑥2. Firstly, 

we generate a (very) small data set  𝑥 = {𝑥1, … , 𝑥8}   with corresponding labels  𝑦 =

{𝑦1, … , 𝑦8}: 

 

Next we implement  𝑈0(𝑥𝑖) unitary to encode input data  𝑥𝑖  into a quantum 

state. We will do that by applying the following qubit rotations:  

𝑈0(𝑥𝑖)  =   ∏ 𝑅𝑋
𝑘 (cos(𝑥𝑖

2)) 𝑅𝑌
𝑘(sin(𝑥𝑖)) 

𝑁
𝑘=1                           (5.37) 

to initialized state  |0⟩⨂𝑁  with  N = 3  expressing a number of qubits in quantum 

circuit and  𝑅𝑋
𝑘  rotating  k-th qubit (Kopczyk, 2018).  

 

Figure 40: The unitary encoding input data is decomposed to a set of qubit rotations 

depending on sample value (Kopczyk, 2018). 
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We code  “input_prog”  that returns an instance of “Program”  object with 

calculated 𝑈0(𝑥𝑖)  unitary (you can access the unitary with “gate”  property). The  

“inst”  method applies a gate on k-th qubit: 

  

Then, we implement  θ-parameterized gate. Generally,  U(θ)  should create a 

highly entangled output state so that the complex function can be efficiently learned. 

The output state is generated by evolving a quantum system accordingly to 

Hamiltonian of fully connected transverse Ising model and then use  θ-parameterized 

qubit rotations: 

𝑈𝑗
𝑘(𝜃𝑗

𝑘)  =   𝑅𝑋(𝜃𝑗,2
𝑘 ) 𝑅𝑍(𝜃𝑗,1

𝑘 ) 𝑅𝑋(𝜃𝑗,0
𝑘 )                                       (5.38) 

on all  k=1, … , N  qubits. This procedure is repeated  D  times to increase the 

learning capacity of the QCL algorithm. The Ising model Hamiltonian is expressed 

by:  

𝐻 =   ∑ ℎ𝑘  𝑋𝑘 
𝑁
𝑘=1 + ∑ ∑ 𝐽𝑘𝑚 𝑍𝑘  𝑍𝑚

𝑘−1
𝑚=1

𝑁
𝑘=1                                    (5.39) 

with X, Z  being Pauli operators and coefficients  ℎ𝑘 , 𝐽𝑘𝑚  can be taken randomly 

from uniform distribution on  [-1,1]. The evolution of the Hamiltonian is   𝑒−𝑖𝑇𝐻 and 

describes how interaction behaves in trapped ions or superconducting qubits, thus it is 

easy to implement on quantum computers. However, it is not straightforward how to 

emulate it on the classical machine, i.e. how to perform exponentiation of a matrix 

with non-commuting terms (Kopczyk, 2018).  

In our example we use a helper function to generate this unitary with Trotter-

Suzuki approximation (we fix T=10): 
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Figure 41: The theta-parameterized unitary is decomposed into a set of qubit rotations 

depending on adjustable parameters and entangling unitary represented by dynamics of the 

Ising model (Kopczyk, 2018).  

The output state is generated with the following function (D is denoted here by 

depth variable):  

 

We also need a function generating a variational circuit responsible for 

gradient calculations. As explained in the previous section, this is done by inserting  

±
𝜋

2
  rotations next to the  𝜃𝑗-dependent unitary  𝑈𝑗(𝜃𝑗): 
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Now, it is time to run QCL. We initialize θ  parameters with random numbers 

drawn from uniform distribution on [0,2π]. Note that the total number of parameters is 

equal to 3*N*D. The  𝑓(𝑥𝑖, 𝜃) is taken from  Z  expectation value on the first qubit 

and we use mean squared error as a loss function minimized. A number of training 

iterations (epochs) is set to 20 and we use full-batch gradient descend. Additionally, 

the expectation value is multiplied by a coefficient  α  which is also tuned, however, 

this is done inside the code. The aim of this multiplication is to keep the correct scale 

of the expectation value (Kopczyk, 2018). 

The programs that defines  𝑈0(𝑥𝑖) , 𝑈(𝜃) and  ∇𝜃 𝑈(𝜃)  are passed by a 

dictionary with “input”, “output”, “grad” keys respectively:  

 

We fit a QCL estimator to our training data and labels, extract the results for 

inspection and predict to produce a plot (Kopczyk, 2018).  
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As we see the QCL fits nicely to the data. Assuming, we have a low-noise 

quantum computer, we can increase significantly a number of qubits, depth and a 

number of samples to deal with more complex regression tasks (Kopczyk, 2018).  

 

Figure 42: QCL regression results (Kopczyk, 2018).  

The history of mean-squared error is presented on the chart below:  
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Figure 43: The loss converges after 20 epochs (Kopczyk, 2018). 

 

Benefits and Limitations:  
 

From one side, one can claim that we have just learned  θ-parameterized 

matrices in a complex way to perform the simple regression task and that is the 

triumph of form over content. However, this algorithm is meant to be executed on the 

quantum processing devices. Generally, there exist methods to encode classical data 

of size  2𝑁  into  N  qubits. Therefore, a huge data that cannot be handled on the 

classical machine, may be effectively manipulated on the quantum computer due to 

the exponential advantage (Kopczyk, 2018).  

From the other side, the learning costs can kill the quantum advantage. To 

perform gradient descend in our regression example, for each out of 3*D*N 

parameters we need to prepare and measure two quantum circuits and then this 

procedure has to be repeated in each epoch. Furthermore, the estimation of 

expectation values would require that the circuits are prepared from scratch and 

measured a sufficient number of times. In today’s world of gate noise existence, it 

makes the QCL hardly possible to implement experimentally for complex tasks. It is 
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expected that in the future the quantum computers would perform low-noise gate 

operations so that the power of QCL can be utilized (Kopczyk, 2018).     
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QUANTUM  REGRESSION : NOVEL APPLICATION 

 

We construct the following example:  

Data set Title: Student Performance Data Set  

Abstract: Predict student performance in secondary education (high school)  

Source: UCI Repository  

Number of Instances: 649 

Number of Attributes: 33 

Download date: 10 February 2019  

Data set Information: This data approach student achievement in secondary education 

of two Portuguese schools. The data attributes include student grades, demographic, social 

and school related features) and it was collected by using school reports and questionnaires. 

Two data sets are provided regarding the performance in two distinct subjects: Mathematics 

(mat) and Portuguese language (por). The two data sets were modeled under binary/five-level 

classification and regression tasks. Important note: the target attribute G3 has a strong 

correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued 

at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more 

difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper 

source for more details). 

Attribute Information: Attributes for both student-mat.csv (Math course) and student-

por.csv (Portuguese language course) data sets:  

school - student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira)  

sex - student's sex (binary: 'F' - female or 'M' - male)  

age - student's age (numeric: from 15 to 22)  

address - student's home address type (binary: 'U' - urban or 'R' - rural)  

famsize - family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3)  

Pstatus - parent's cohabitation status (binary: 'T' - living together or 'A' - apart)  

Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - “ 5th to 

9th grade, 3 - “ secondary education or 4 - “ higher education)  

Fedu - father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 -“ 5th to 9th 
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grade, 3 â- “ secondary education or 4 -“ higher education)  

Mjob - mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. 

administrative or police), 'at_home' or 'other')  

Fjob - father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative 

or police), 'at_home' or 'other')  

reason - reason to choose this school (nominal: close to 'home', school 'reputation', 'course' 

preference or 'other')  

guardian - student's guardian (nominal: 'mother', 'father' or 'other')  

traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. 

to 1 hour, or 4 - >1 hour)  

 studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 

- >10 hours)  

failures - number of past class failures (numeric: n if 1<=n<3, else 4)  

schoolsup - extra educational support (binary: yes or no)  

famsup - family educational support (binary: yes or no)  

paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)  

activities - extra-curricular activities (binary: yes or no)  

nursery - attended nursery school (binary: yes or no)  

higher - wants to take higher education (binary: yes or no)  

internet - Internet access at home (binary: yes or no)  

romantic - with a romantic relationship (binary: yes or no)  

famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent)  

freetime - free time after school (numeric: from 1 - very low to 5 - very high)  

goout - going out with friends (numeric: from 1 - very low to 5 - very high)  

Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high)  

Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)  

health - current health status (numeric: from 1 - very bad to 5 - very good)  

absences - number of school absences (numeric: from 0 to 93)  

 

# these grades are related with the course subject, Math or Portuguese:  

31 G1 - first period grade (numeric: from 0 to 20)  

31 G2 - second period grade (numeric: from 0 to 20)  

32 G3 - final grade (numeric: from 0 to 20, output target)  
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Multiple Linear Regression:  
 

We provide the code of Multiple Linear Regression in appendices (Appendix 

F). Our aim is to predict the final grade of students. The output of Multiple Linear 

Regression is presented below.    

Output:   
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Logistic Regression:  
 

We provide the code of Logistic Regression in appendices (Appendix G). Our 

aim is to predict the final grade of students. The output of Logistic Regression is 

presented below.     

 

Output:  
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Quantum Regression:  
 

We provide the code of Quantum Regression in appendices (Appendix H). 

Our aim is to predict the final grade of students. The output of Quantum Regression is 

presented below.     

 

Output: 
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Table 44: Quantum Regression results of students performance  

 

From the table above (Table 44) we conclude which variables are more important for 

the prediction of the final grade of the students.  
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Figure 44: Quantum Regression Curve  

 

 

In the above Figure 44 we can observe the data fitting after the quantum 

regression implementation. The visual results of quantum regression are not very 

distinct and comprehensible. The results of Quantum Regression for the prediction of 

the students performance are presented in Table 44. However, if we use a different 

data set, the results and the curve-line might be better.     

 

 

Comments on the Results  
 

We select a data set (Student Performance Data Set) and implement:  

• Multiple Linear Regression   

• Logistic Regression   

• Quantum Regression 
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The results of Quantum Regression may not be directly comparable with the 

rest two methods (Multiple Linear Regression, Logistic Regression), but in case that 

our model is not adapted well to the data by using Linear or Logistic Regression, we 

have an extra selection (Quantum Regression). This algorithm can work for every 

data set. It belongs to the category of QAML (Quantum Assisted Machine Learning) 

algorithms, that is it is a quantum algorithm which can be implemented and give 

results in a classical computer. However, if it was potential to implement this 

algorithm (maybe with few modifications) in a quantum computer, the extracted 

results may be more useful and well-presented.  

 

 

  



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

                                                                                              Quantum Statistics and Data Analysis                  
                                                                                                     

    

 

 

205 

EPILOGUE 

 

The goal of this work is to explore the possibility to apply quantum probability 

models and related statistical algorithms to data sets. This goal involves two parts:  

Firstly, we analyze the available criteria for data sets. We selected the Wigner-

d’Espagnat inequality as the simplest criterion to apply. The main result of this 

research is to construct a data set, which violates the Wigner-d’Espagnat inequality.   

Secondly, we implement Quantum Machine Learning from data sets. We use 

data sets related with the school grades system and absenteeism at work. In these data 

sets firstly we implement classical algorithms, such as k-Means or hierarchical 

clustering and linear or logistic regression. Then, we implement quantum algorithms, 

such as quantum clustering and quantum regression. The code of quantum regression 

in Python was developed by MIT university and the code in Matlab by David Horn. 

However, when we implemented them in our data sets, these codes were not working. 

Therefore, we modified these codes and finally got results. We also compared to some 

extent the results between the quantum and classical algorithms statistically and 

visually.  

In addition to extensive bibliographical processing the following new results 

are presented:  

1) The example on Wigner-d’Espagnat inequality (pages 88-94, chapter 2) is 

original. No such example was found in the bibliography. This example is very simple 

and straightforward, showing in a clear and simple way the distinction between 

Kolmogorov and quantum probability.   

2) The example on clustering (pages 149-162, chapter 4) is original, although 

there are similar examples in the bibliography. This example is very simple and helps 

to compare classical clustering algorithms and quantum clustering algorithm.  

3) The example on regression (pages 189-204, chapter 5) is original, although 

there are similar examples in the bibliography. This example is very simple and helps 

to compare classical regression algorithms and quantum regression algorithm.  
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It is expected that quantum computers implementing quantum statistics will 

find useful applications demonstrating the advantage of quantum resources (High-

Level Steering Committee, 2017, Lavín, Anguita, 2018).   
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APPENDICES 
 

Appendix A: Dynamic Quantum Clustering Algorithm  
 

Here we present the steps of the DQC algorithm. A DQC analysis begins with data that is 

presented as an m Χ n data matrix. Each data point is one of the m rows of the matrix and is defined by 

the n-numbers that appear in that row, These  n  numbers are referred to as features and the set of all 

possible sets of n-values that might appear in a row is referred to as the feature space. The process of 

creating a clustering algorithm using ideas borrowed from quantum mechanics starts with the creation 

of a potential function that serves as a proxy for the density of data points. We do this as follows:  

1) Define a function – Parzen estimator on the  n-dimensional feature space. This function is 

constructed as a sum of Gaussian functions centered at each data point, i.e. for  m  data points  �⃗�𝑙   :  

𝜑(�⃗�) =  ∑  𝑒
−
1

2𝜎2
 (𝑥 − 𝑥𝑙) ∙(𝑥− 𝑥𝑙) 𝑚

𝑙=1                                    (4.1) 

2) We derive a potential function  𝑉(�⃗�)  defined over the same  n-dimensional space. Since  𝜑(�⃗�)  is a 

positive definite function, we can define  𝑉(�⃗�) as that function for which  𝜑(�⃗�)  satisfies the time-

independent Schrödinger equation:  

−
1

2𝜎2
 ∇2𝜑 +   𝑉(�⃗�) 𝜑 =   𝛦𝜑 =   0                              (4.2) 

We note that the value zero is chosen to simplify the mathematics and plays no important role. Clearly, 

the energy  E  can always be set to zero by adding a constant to the potential. It is straightforward to 

solve the above equation (4.2) for  𝑉(�⃗�) .         

3) The quantum potential is of interest for two main reasons: first, physical intuition tells us that the 

local minima of  𝑉(�⃗�)  will correspond to the local maxima of  𝜑(�⃗�) if the latter are well separated 

from one another. Second,  𝑉(�⃗�)  may have minima at points, where  𝜑(�⃗�)  exhibits no corresponding 

maxima. If the Parzen estimator is meant to be a proxy for the density of the data, then DQC’s quantum 

potential can be thought of as an unbiased way of contrast enhancing the Parzen function to better 

reveal structure in the data. An additional benefit of working with this contrast enhanced version of the 

Parzen estimator is that its features depend much less sensitively upon the choice of parameter  σ  that 

appears in Equation (4.2).  

4) Using the Hamiltonian defined by this potential, evolve each Gaussian that is associated with a 

specific data point by multiplying it by the quantum time-evolution operator  𝑒−𝑖 𝛿𝑡 𝐻 , where  δt  is 

chosen to be small. We note this operator is constructed in the subspace spanned by all of the 

Gaussians corresponding to the original data points.  

5) We compute the new location of the center of each evolved Gaussian. Hereafter we refer to it as the 

evolution of the data-point.  
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6) Iterate this procedure. Ehrenfest’s theorem guarantees that for small time steps, the center of each 

Gaussian will follow Newton’s laws of motion, where the force is given by the expectation value of the 

gradient-descent in classical mechanics. The fact that we use quantum evolution rather than more 

familiar classical methods, allows us to convert the computationally intensive problem of gradient 

descent in a multi-dimensional potential into an exercise in matrix multiplication. This greatly reduces 

the workload and allows parallel execution of the code in order to quickly deal with enormous sets of 

data (Weinstein, Meirer, Hume, Sciau, Shaked, Hofstetter, Horn, 2013).  

 

Appendix B: Detailed description of Dynamic Quantum Clustering method by Horn, 

Weinstein and Marvin  
 

We present here the detailed description of the Dynamic Quantum Clustering method. As we 

already noted, the conversion of the static Quantum Clustering method to a full dynamical one, begins 

by focusing attention on the Gaussian wave-function:             𝜓𝑖(�⃗�) = 𝐶 𝑒
−
(�⃗⃗⃗�− �⃗⃗⃗�𝑖)

2

2𝜎2     associated with the  

𝑖𝑡ℎ  data point, where  𝐶  is the appropriate normalization factor. Thus, by construction, the expectation 

value of the operator  �⃗�   in this state is simply the coordinates of the original data point:   

�⃗�𝑖  =   〈𝜓| �⃗� | 𝜓〉  =   ∫ 𝑑�⃗� 𝜓𝑖
∗ (�⃗�)  �⃗� 𝜓𝑖(�⃗�)                                      (4.9) 

 

The dynamical part of the DQC algorithm is that, having constructed the potential function 

𝑉(�⃗�) , we study the time evolution of each state  𝜓𝑖(�⃗�)  as determined by the time dependent 

Schrödinger equation:  

𝑖
𝜕𝜓𝑖(𝑥,𝑡)

𝜕𝑡
 =   𝐻𝜓𝑖(�⃗� , 𝑡)  =   (−

∇2

2𝑚
+ 𝑉(�⃗�)) 𝜓𝑖(�⃗� , 𝑡)                    (4.10) 

where  m  is an arbitrarily chosen mass for a particle moving in  d-dimensions. If we set           𝑚 =
1

𝜎2
   

then, by construction,  𝜓(�⃗�)  of Equation (4.7)  is the lowest energy eigenstate of the Hamiltonian. If  

m  is chosen to have a different value, then not only does each individual state   𝜓𝑖(�⃗�)  evolve in time, 

but so does the sum of the states  𝜓(�⃗�)   (Weinstein, Marvin, Horn, 2009).  

The important feature of quantum dynamics, which makes the evolution so useful in the 

clustering problem, is that according to Ehrenfest’s theorem, the time-dependent expectation value:  

〈𝜓(𝑡)| �⃗� |𝜓(𝑡)〉  =   ∫ 𝑑�⃗� 𝜓𝑖
∗ (�⃗� , 𝑡)  �⃗� 𝜓𝑖(�⃗�, 𝑡)                              (4.11) 

satisfies the equation:  

𝑑2〈𝑥(𝑡)〉

𝑑𝑡2
 =  −

1

𝑚
 ∫ 𝑑�⃗� 𝜓𝑖

∗ (�⃗� , 𝑡)  ∇⃗⃗⃗𝑉(�⃗�) 𝜓𝑖(�⃗�, 𝑡)  =   〈𝜓(𝑡)|  ∇⃗⃗⃗𝑉(�⃗�) |𝜓(𝑡)〉                   

                                                                                                           (4.12) 
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If  𝜓𝑖(�⃗�)  is a narrow Gaussian, this is equivalent to saying that the center of each wave-

function rolls towards the nearest minimum of the potential according to the classical Newton’s law of 

motion. This means we can explore the relation of this data point to the minima of   𝑉(�⃗�)  by following 

the time-dependent trajectory: 〈�⃗�𝑖(𝑡)〉  =    〈𝜓𝑖(𝑡)| �⃗� |𝜓𝑖(𝑡)〉.  

Clearly, given Ehrenfest’s theorem, we expect to see any points located in, or near, the same 

local minimum of  𝑉(�⃗�)   to oscillate about that minimum, coming together and moving apart. In our 

numerical solutions we generate animations which display this dynamics for a finite time. This allows 

us to visually trace the clustering of points associated with each one of the potential minima 

(Weinstein, Marvin, Horn, 2009).   

In their quantum clustering paper Horn and Gottlieb successfully used classical gradient 

descent to cluster data by moving points (on classical trajectories) to the nearest local minimum of  

𝑉(�⃗�) . The idea being that points which end up at the same minimum are in the same cluster. At first 

glance it would seem that DQC replaces the conceptually simple problem of implementing gradient 

descent with the more difficult one of solving complicated partial differential equations. We will show 

the difficulty is only apparent. In fact, the solution of the Schrödinger equation can be simplified 

considerably and will also allow further insights than the gradient descent method. The DQC algorithm 

translates the problem of solving the Schrödinger equation into a matrix form which captures most of 

the details of the analytic problem, but which involves N × N-matrices whose dimension, N, is less 

than or equal to the number of data points. This reduction is independent of the data-dimension of the 

original problem. From a computational point of view there are many advantages to this approach. 

First, the formulas for constructing the mapping of the original problem to a matrix problem are all 

analytic and easy to evaluate, thus computing the relevant reduction is fast. Second, the evolution 

process only involves matrix multiplications, so many data points can be evolved simultaneously and, 

on a multi-core processor, in parallel. Third the time involved in producing the animations showing 

how the points move in data space scales linearly with the number of dimensions to be displayed. 

Finally, by introducing an m that is different from  1/𝜎2  we allow ourselves the freedom of employing 

low σ, which introduces large numbers of minima into V, yet also having a low value for m which 

guarantees efficient tunneling, thus connecting points that may be located in nearby, nearly degenerate 

potential minima. By using this more general Hamiltonian, we reduce the sensitivity of the calculation 

to the specific choice of  σ (Weinstein, Marvin, Horn, 2009). 

Here we describe the Calculation Method. We begin by assuming that there are n-data points 

that we wish to cluster. To these data points we associate n-states: |𝜓𝑖⟩  . These states are  n  Gaussian 

wave-functions such that the  𝑖𝑡ℎ  Gaussian is centered on the coordinates of the  𝑖𝑡ℎ  data point. These 

states form a basis for the vector space within which we calculate the evolution of our model 

(Weinstein, Marvin, Horn, 2009).  

Let us denote by N, the  n × n  matrix formed from the scalar products:  

𝑁𝑖,𝑗 = 〈𝜓𝑖  | 𝜓𝑗〉                                           (4.13)  
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and by  H, the  n x n  matrix:  

𝐻𝑖,𝑗 = 〈𝜓𝑖| 𝐻 |𝜓𝑗〉                                        (4.14) 

and by  �⃗�𝑖,𝑗   the matrix of expectation values: 

�⃗�𝑖,𝑗  =  〈𝜓𝑖| �⃗� |𝜓𝑗〉                                       (4.15) 

 

The calculation process can be described in five steps:  

First, begin by finding the eigenvectors of the symmetric matrix  N  which correspond to states having 

eigenvalues larger than some pre-assigned value (e.g.  10−5). These vectors are linear combinations of 

the original Gaussians which form an orthonormal set.  

Second, compute  𝐻  in this orthonormal basis  𝐻𝑡𝑟  .  

Third, do the same for  �⃗�𝑖,𝑗 .  

Fourth, find the eigenvectors and eigenvalues of  𝐻𝑡𝑟  , construct  |𝜓𝑖(𝑡)⟩  =   𝑒
−𝑖𝑡 𝐻𝑡𝑟 |𝜓⟩   that is the 

solution to the reduced time dependent Schrödinger problem: 

𝑖
𝜕

𝜕𝑡
 |𝜓𝑖(𝑡)⟩  =   𝐻

𝑡𝑟  |𝜓𝑖(𝑡)⟩                                       (4.16) 

such that  |𝜓𝑖(𝑡 = 0)⟩ =  |𝜓𝑖⟩   .  

Fifth, construct the desired trajectories:  

〈�⃗�𝑖(𝑡)〉  =   〈𝜓𝑖|  𝑒
𝑖𝑡 𝐻𝑡𝑟  �⃗�   𝑒−𝑖𝑡 𝐻

𝑡𝑟  | 𝜓𝑖〉                              (4.17) 

by evaluating this expression for a range of t and use them to create an animation.                          Stop 

the animation when clustering of points is obvious (Weinstein, Marvin, Horn, 2009).     

 

Appendix C: Quantum Clustering Algorithm by Horn and Gottlieb  
 

It starts out with a Parzen window approach, assigning to each data-point a Gaussian of width  

σ  thus constructing: 

𝜓(𝒙) =  ∑  𝑒
−
(𝑥 −𝑥𝑖)

2
 

2𝜎2   𝑖                                                      (4.22) 

that can serve (but for an overall normalization) as a probability density generating the data. One then 

proceeds to construct a potential function: 

𝑉(𝒙) = 𝐸 +
𝜎2

2
 ∇2𝜓

𝜓
                                                   (4.23) 

where   
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𝐸 =  −min
𝜎2

2
 ∇2𝜓

𝜓
                                                   (4.24) 

thus rendering  V  positive definite. In fact  V  has a global minimum at zero, and grows as a 

polynomial of second order outside the domain over which the data points are defined. Within this 

domain, V develops minima that are identified with cluster centers (Horn, Axel, 2003).   

The intuition behind this approach is that this choice of V is the correct one for the 

Schrodinger equation:  

𝐻𝜓  ≡    (−
𝜎2

2
 ∇2 + 𝑉(𝒙))𝜓 =   𝛦𝜓                          (4.25) 

whose solution (lowest eigenstate) is the probability density   𝜓(𝒙) . In this equation, the potential 

function  𝑉(𝒙)  can be regarded as the source of attraction, whereas the first Lagrangian term is the 

source of diffusion of the distribution, governed by the parameter  σ (Horn, Axel, 2003).  

Once the minima of   𝑉(𝒙)  are defined as cluster centers, the assignment of data points to 

clusters can proceed through a gradient descent algorithm, allowing auxiliary point variables  𝒚𝑖(0) =

𝒙𝑖  to follow dynamics of:  

𝒚𝑖(𝑡 + 𝛥𝑡)  =  𝒚𝑖(𝑡)  −  𝜂(𝑡) ∇ 𝑉(𝒚𝑖(𝑡))                                            (4.26) 

that lead to asymptotic fixed points:  𝒚𝑖(𝑡)  →   𝒛𝑖    coinciding with the cluster centers. 

We emphasize that although a search is carried out here for the minima of a continuous 

function  𝑉(𝒙), which may be a complex problem in high dimensions, it can in fact be simplified by 

evaluating this function only at the data points and their gradient descendants 𝑉(𝒚𝑖) which is sufficient 

to carry out the algorithm of clustering (Horn, Axel, 2003).  

In this section we describe the Hierarchical Quantum Clustering (QC) Algorithm. The QC 

algorithm has a free parameter  σ  that characterizes the length scale over which we search for cluster 

structures. Varying it from low to high values, we can get anywhere from  N clusters (where N is the 

number of data points) to one cluster. The algorithm has to be applied judiciously, e.g. by limiting 

oneself to a small number of clusters that stays stable over a range of σ . It is however important to 

realize that this algorithm does not guarantee hierarchy, i.e. the assignments of data points to clusters 

does not follow a tree, or dendrogram representation, as  σ  is being varied (Horn, Axel, 2003).  

We find it useful to define a modified version that produces a hierarchical formulation in an 

agglomerative manner. We start out with very low σ, such that each data point is a cluster of its own 

and we have the first trivial clustering  𝒛𝑖
1 = 𝒙𝑖  . Then we increase  σ  by some amount obtaining, after 

the QC gradient descent algorithm, new clustering centers  𝒛𝑖
2  . Although there are  N  values specified 

here, there should now be several coinciding with one another, thus describing small clusters with a 

few points in each (Horn, Axel, 2003).  
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We use  𝒛𝑖
2  as the data points in our next stage of QC, after once again increasing  σ. This 

leads to a new set of cluster values  𝒛𝑖
3 . This procedure is continued until large  σ  values are reached 

with only one cluster. On the way it defines a dendrogram whose clustering quality we may compare to 

biological sample data. We call this method hierarchical quantum clustering (HQC) (Horn, Axel, 

2003).  

 

Appendix D: Quantum Clustering first visualization (Matlab)  
 

• norm_fcn 

    

 

• clustMeasure 

 

• fineCluster 

 

 

• graddesc 
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• plotClust 

 

• qc 
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• QCscript 
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Appendix E: Quantum Clustering second visualization (Matlab)  
 

 

• normr 

 

 

• DisplayQC 
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• FindApproximateEntropy 

 

 

• FindApproximatePotential 
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• FindApproximateStochasticEntropy 

 

 

• FindApproximateStochasticPotential 

 

 

• FindApproxiamteStochasticWaveFunction 
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• FindApproximateWaveFunction 

 

 

• FindEntropy 

 

 

• FindEntropyStochastic 

 

 

• FindPotential 
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• FindPotentialStochastic 

 

 

• FindWaveFunction 
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• FindWaveFunctionStochastic 

 

 

• getApproximateWaveFunction 

 

• myColorMap 

 

• PerformFinalCLustering 
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• PerformGDQC

 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

                                                                                              Quantum Statistics and Data Analysis                  
                                                                                                     

    

 

 

225 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

226 

 

 

• QC 

 

  

 

Appendix F: Multiple Linear Regression (Python) 
 

import pandas as pd 

from pandas import DataFrame 

import matplotlib.pyplot as plt 
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from sklearn import linear_model 

import statsmodels.api as sm 

School = pd.read_csv(r'C:\Users\school2.csv',sep=";") 

df = DataFrame(School, 

columns=['school','sex','age','add2ess','famsize','Ps121us','Medu','Fedu','Mjob','Fjob','reason','guardian','traveltim

e','studytime','failures','schoolsup','famsup','paid','activities','nursery','higher','internet','romantic','famrel','freeti

me','goout','Dalc','Walc','health','absences','G1','G2','G3']) 

print (df) 

#Checkng Linearity 

plt.scatter(df['G1'], df['G3'], color='red') 

plt.title('G3 Vs G1', fontsize=14) 

plt.xlabel('G1', fontsize=14) 

plt.ylabel('G3', fontsize=14) 

plt.grid(True) 

plt.show()  

plt.scatter(df['G2'], df['G3'], color='green') 

plt.title('G3 Vs G2', fontsize=14) 

plt.xlabel('G2', fontsize=14) 

plt.ylabel('G3', fontsize=14) 

plt.grid(True) 

plt.show() 

#Multiple Linear Regression 

X = df[['G1','G2']] # here we have 2 variables for multiple regression. If you just want to use one variable for simple 

linear regression, then use X = df['Interest_Rate'] for example.Alternatively, you may add additional variables 

within the brackets 

Y = df['G3']  

# with sklearn 

regr = linear_model.LinearRegression() 

regr.fit(X, Y) 

print('Intercept: \n', regr.intercept_) 

print('Coefficients: \n', regr.coef_) 

# prediction with sklearn 

New_G1 = 0.15 

New_G2 = 0.90 

print ('Predicted G3: \n', regr.predict([[New_G1 ,New_G2]])) 
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# with statsmodels 

X = sm.add_constant(X) # adding a constant  

model = sm.OLS(Y, X).fit() 

predictions = model.predict(X)   

print_model = model.summary() 

print(print_model)         

 

Appendix G: Logistic Regression (Python)  
    

 import pandas as pd 

import numpy as np 

from pandas import DataFrame 

from sklearn import preprocessing 

import matplotlib.pyplot as plt  

plt.rc("font", size=14) 

from sklearn.linear_model import LogisticRegression 

from sklearn.cross_validation import train_test_split 

from sklearn.feature_selection import RFE 

import seaborn as sns 

sns.set(style="white") 

sns.set(style="whitegrid", color_codes=True) 

School = pd.read_csv(r'C:\Users\school2Log.csv',sep=";") 

df = DataFrame(School, 

columns=['school','sex','age','add2ess','famsize','Ps121us','Medu','Fedu','Mjob','Fjob','reason','guardian','traveltim

e','studytime','failures','schoolsup','famsup','paid','activities','nursery','higher','internet','romantic','famrel','freeti

me','goout','Dalc','Walc','health','absences','G1','G2','y']) 

print (df) 

df = df.dropna() 

print(df.shape) 

print(list(df.columns)) 

df.head() 

#Create dummy variables 

#That is variables with only two values, zero and one. 

cat_vars=['school','sex','age','add2ess','famsize','Ps121us','Medu','Fedu','Mjob','Fjob','reason','guardian','travelti

me','studytime','failures','schoolsup','famsup','paid','activities','nursery','higher','internet','romantic','famrel','freet

ime','goout','Dalc','Walc','health','absences','G1','G2'] 
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for var in cat_vars: 

    cat_list='var'+'_'+var 

    cat_list = pd.get_dummies(df[var], prefix=var) 

    data1=df.join(cat_list) 

    df=data1 

cat_vars=['school','sex','age','add2ess','famsize','Ps121us','Medu','Fedu','Mjob','Fjob','reason','guardian','travelti

me','studytime','failures','schoolsup','famsup','paid','activities','nursery','higher','internet','romantic','famrel','freet

ime','goout','Dalc','Walc','health','absences','G1','G2'] 

df_vars=df.columns.values.tolist() 

to_keep=[i for i in df_vars if i not in cat_vars] 

#Our final data columns will be: 

df_final=df[to_keep] 

df_final.columns.values  

prosorin = df_final.columns.values 

print(prosorin.shape) 

prosorin[0] 

prosorin[40] 

prosorin[54] 

prosorin[86] 

prosorin[109] 

prosorin[135] 

prosorin[136] 

prosorin[137] 

prosorin[138] 

prosorin[139] 

prosorin[140] 

prosorin[141] 

prosorin[135] 

prosorin[151] 

prosorin[152] 

prosorin[153] 

prosorin[154] 

prosorin[155] 

prosorin[156] 

prosorin[157] 

prosorin[158] 
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X = df_final.loc[:, df_final.columns != 'y'] 

y = df_final.loc[:, df_final.columns == 'y'] 

#Over-sampling using SMOTE 

#With our training data created, I’ll up-sample the no-subscription using the SMOTE algorithm(Synthetic Minority 

Oversampling Technique). At a high level, SMOTE: 

#1. Works by creating synthetic samples from the minor class (no-subscription) instead of creating copies. 

#2. Randomly choosing one of the k-nearest-neighbors and using it to create a similar, but randomly tweaked, 

new observations. 

from imblearn.over_sampling import SMOTE 

os = SMOTE(random_state=0) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) 

columns = X_train.columns 

os_data_X,os_data_y=os.fit_sample(X_train, y_train) 

os_data_X = pd.DataFrame(data=os_data_X,columns=columns ) 

os_data_y= pd.DataFrame(data=os_data_y,columns=['y']) 

# we can Check the numbers of our data 

print("length of oversampled data is ",len(os_data_X)) 

print("Number of no subscription in oversampled data",len(os_data_y[os_data_y['y']==0])) 

print("Number of subscription",len(os_data_y[os_data_y['y']==1])) 

print("Proportion of no subscription data in oversampled data is 

",len(os_data_y[os_data_y['y']==0])/len(os_data_X)) 

print("Proportion of subscription data in oversampled data is 

",len(os_data_y[os_data_y['y']==1])/len(os_data_X)) 

#Now we have a perfect balanced data! You may have noticed that I over-sampled only on the training data, 

because by oversampling only on the training data,  

#none of the information in the test data is being used to create synthetic observations, therefore, no information 

will bleed from test data into the model training. 

#Recursive Feature Elimination 

#Recursive Feature Elimination (RFE) is based on the idea to repeatedly construct a model and choose either the 

best or worst performing feature, setting the feature aside  

#and then repeating the process with the rest of the features. This process is applied until all features in the data 

set are exhausted. The goal of RFE is to select features 

#by recursively considering smaller and smaller sets of features. 

df_final_vars=df_final.columns.values.tolist() 

y=['y'] 
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X=[i for i in df_final_vars if i not in y] 

logreg = LogisticRegression() 

rfe = RFE(logreg, 20) 

rfe = rfe.fit(os_data_X, os_data_y.values.ravel()) 

print(rfe.support_) 

print(rfe.ranking_) 

cols=['reason_2','failures_0','goout_3','absences_5','G1_10','G1_11','G1_12','G1_13','G1_14','G1_15','G1_16','G1

_10','G2_10','G2_11','G2_12','G2_13','G2_14','G2_15','G2_16','G2_17']  

X=os_data_X[cols] 

y=os_data_y['y'] 

#Implementing the model 

import statsmodels.api as sm 

logit_model=sm.Logit(y,X) 

result = logit_model.fit(method='bfgs') 

print(result.summary()) 

#Logistic Regression Model Fitting 

from sklearn.linear_model import LogisticRegression 

from sklearn import metrics 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) 

logreg = LogisticRegression() 

logreg.fit(X_train, y_train) 

#Predicting the test set results and calculating the accuracy 

y_pred = logreg.predict(X_test) 

print('Accuracy of logistic regression classifier on test set: {:.2f}'.format(logreg.score(X_test, y_test))) 

#Confusion Matrix 

from sklearn.metrics import confusion_matrix 

confusion_matrix = confusion_matrix(y_test, y_pred) 

print(confusion_matrix) 

#The result is telling us that we have 6124+5170 correct predictions and 2505+1542 incorrect predictions. 

#Compute precision, recall, F-measure and support 

#To quote from Scikit Learn: 

#The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false 

positives. The precision is intuitively the ability of the classifier to not label a sample as positive if it is negative. 

#The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives. 

The recall is intuitively the ability of the classifier to find all the positive samples. 
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#The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta 

score reaches its best value at 1 and worst score at 0. 

#The F-beta score weights the recall more than the precision by a factor of beta. beta = 1.0 means recall and 

precision are equally important. 

from sklearn.metrics import classification_report 

print(classification_report(y_test, y_pred)) 

#Interpretation: Of the entire test set, 74% of the promoted term deposit were the term deposit that the 

customers liked. Of the entire test set, 74% of the customer’s preferred term deposits that were promoted. 

#ROC Curve 

from sklearn.metrics import roc_auc_score 

from sklearn.metrics import roc_curve 

logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test)) 

fpr, tpr, thresholds = roc_curve(y_test, logreg.predict_proba(X_test)[:,1]) 

plt.figure() 

plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc) 

plt.plot([0, 1], [0, 1],'r--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Receiver operating characteristic') 

plt.legend(loc="lower right") 

plt.savefig('Log_ROC') 

plt.show() 

#The receiver operating characteristic (ROC) curve is another common tool used with binary classifiers. The dotted 

line represents the ROC curve of a purely random classifier; a good classifier stays as far away from that line as 

possible (toward the top-left corner). 

    

Appendix H: Quantum Regression (Python) 
 

import numpy as np 

import pandas as pd 

from pandas import DataFrame 

import matplotlib.pyplot as plt 

from sklearn import linear_model 

import statsmodels.api as sm 
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School = pd.read_csv(r'C:\Users\school2normNew.csv',sep=";") 

df = DataFrame(School, 

columns=['school','sex','age','add2ess','famsize','Ps121us','Medu','Fedu','Mjob','Fjob','reason','guardian','traveltim

e','studytime','failures','schoolsup','famsup','paid','activities','nursery','higher','internet','romantic','famrel','freeti

me','goout','Dalc','Walc','health','absences','G1','G2','G3']) 

#print (df) 

Parad = (-1, -0.1, 0.2, 0.4, 0.1, 0.2, 0.3, 0, 0.5, 0.2, 0.4, 0, 0.2, 0.2, 0.4, 0.7, 0.3, 0.3, -0.2, 0.2, 0.2, 0.1, 0.2, 0, 0, 0, 

0.1, 0.1, 0.2, 0.2, 0, 0.5, 0.3, 0.3, 0.2, 0.1, 0.4, 0.3, 0.1, 0.4, 0.1, 0, 0.4, -0.1, 0, 0, 0.3, 0.7, 0.1, 0.3, 0.4, 0.6, 0, 0.3, 

0.3, 0.2, 0.5, 0.5, 0.4, 0.6, 0.7, 0, 0.3, 0.4, 0.3, 0.6, 0.1, 0, 0.1, 0.5, 0.3, 0.1, 0.3, 0.3, 0.1, 0.1, 0.2, 0.3, -0.1, 0.2, 0.1, 

0, 0.2, 0.3, 0.3, 0.2, 0.3, 0.5, 0.2, -0.1, -0.1, 0.4, 0.2, 0.3, 0.1, 0.3, -0.1, 0.3, 0.2, 0.2, -0.1, 0.6, 0.2, 0.1, 0.6, 0, 0, 0.3, 

0.2, 0.5, 0.3, 0.1, -0.2, 0.8, 0, 0.6, 0.6, 0.4, 0.2, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, -0.1, 0, -0.1, 0.4, 0.3, 0, 0, 0.1, 0.1, 0.3, 

0.5, -0.1, 0.3, 0.2, 0.3, 0, 0.4, 0.1, 0.2, 0.2, -0.1, 0, 0.3, -0.2, -0.1, -0.1, 0.5, 0.2, 0.3, 0, -0.1, 0.2, 0.1, 0.1, 0.3, 0.1, -

0.1, 0.2, 0.1, -0.1, 0.3, 0.1, 0.3, -0.3, -0.1, 0.1, 0.2, 0, -0.1, -0.2, -0.3, -0.2, -0.1, -0.2, -0.2, -0.1, 0.7, 0.2, 0.6, -0.1, 

0.6, 0.1, 0.4, 0.4, 0, 0.3, 0.1, 0, 0.1, 0.1, 0.1, 0.7, 0.4, 0.4, 0.1, 0, 0.3, 0.2, -0.1, 0.2, 0.2, 0, 0.1, 0.3, 0.4, 0.3, 0, 0.4, 

0.1, 0.4, 0.1, 0.4, 0.3, 0.3, -0.2, 0.1, 0.4, 0.2, 0.1, 0.2, 0.3, 0.3, 0.2, 0.2, 0.4, 0.1, 0, 0.2, 0.2, 0.1, 0.2, 0.3, 0, 0.5, -0.2, 

0.7, 0, -0.1, 0.5, 0.4, 0.2, 0.3, 0.3, -0.1, 0.2, 0.6, -0.1, 0.4, 0, -0.1, -0.2, -0.3, 0, 0.4, 0.1, 0.2, 0.3, -0.1, -0.2, 0.1, 0.5, 

0.5, 0.5, 0.2, 0.4, 0.4, 0.1, 0.3, 0.1, 0, 0.2, 0.5, 0.1, -0.1, -0.3, 0, 0.1, -0.3, -0.1, -0.3, 0.4, 0.2, -0.1, 0.2, 0.4, 0, 0.1, 

0.1, 0.1, 0.1, 0.1, 0.6, -0.1, 0, 0, 0.5, 0, 0, 0.5, 0.1, -0.2, 0.5, 0.1, 0, 0, -0.2, 0.1, 0.6, 0.3, 0.6, 0.4, 0.5, 0.2, 0.2, 0.1, 

0.4, 0.3, -0.1, 0, 0, 0.1, 0.3, 0.7, 0.2, 0.2, 0.2, 0.2, 0.8, 0.3, 0.4, 0.7, 0.5, 0.7, 0.8, 0.4, 0.4, 0.4, 0.3, 0.6, 0.8, 0.4, 0.2, -

0.3, 0.6, 0.8, -0.1, 0.4, 0, 0, 0.2, 0.1, 0.5, 0.4, 0.2, 0.5, 0.1, 0.1, 0.2, 0.1, 0.4, 0.5, 0.2, 0.1, -0.2, 0, -0.2, 0, 0.4, 0.1, 

0.7, 0.4, 0.4, 0.3, 0.7, 0.1, 0.3, 0.5, 0.1, 0.1, 0.1, 0, 0.5, 0.5, 0, 0, 0.4, 0.1, 0.2, 0.4, 0.4, 0.2, 0.6, 0, 0.1, 0.4, 0.5, 0.4, 

0.1, 0.2, 0.2, 0, 0, -0.1, -0.1, 0.3, 0.3, 0.2, 0.4, -0.1, 0.1, -0.1, 0.6, 0.4, 0.3, -0.3, 0.4, -0.2, 0, 0, 0.2, 0, 0, 0.6, -0.4, 0, 

0, 0, -0.4, 0.3, 0, 0, -0.4, 0.2, 0, 0.4, -0.3, -0.2, 0.2, -0.3, -0.1, -0.3, 0.1, -0.2, 0.6, 0.1, 0.5, 0, -0.1, 0, -0.1, -0.1, 0.3, 0, 

0.3, 0, 0.1, 0.3, 0.3, 0.4, 0.1, -0.1, 0, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0, 0, 0.2, 0, 0.2, -0.3, -0.1, -0.1, -0.1, -0.1, -0.1, -0.3, 

0.1, -0.1, -0.3, -0.3, -0.2, -0.1, -0.3, -0.2, -0.1, -0.2, 0.4, 0.4, 0, 0.4, 0.7, -0.4, 0.4, 0, 0.4, 0.2, 0.1, 0.1, 0.1, 0, 0.6, 0.5, 

0.1, -0.3, -0.2, -0.3, -0.1, 0.4, 0.4, -0.2, -0.2, -0.4, -0.2, -0.2, -0.5, -0.3, 0.5, 0.3, 0, -0.1, 0.1, -0.3, 0, -0.1, 0.4, 0.1, -

0.1, 0.3, 0.2, 0.1, -0.1, -0.1, 0.1, 0, -0.1, 0.2, -0.2, 0.3, 0, 0.1, 0.7, 0.2, 0.3, -0.1, 0.1, 0, 0.3, -0.1, -0.3, -0.2, 0.2, 0, 0, 

0.1, -0.3, 0.1, 0, -0.1, -0.6, -0.4, -0.6, -0.3, -0.2, -0.5, -0.3, -0.2, 0, -0.1, 0, -0.2, -0.1, -0.2, -0.4, -0.4, -0.2, 0, -0.2, -0.2, 

-0.3, -0.2, -0.3, -0.3, 0.2, 0.1, 0.2, 0.8, 0.7, 0.7, -0.1, 0, 0.2, 0.2, -0.2, 0.1, -0.5, -0.1, -0.5, 0.8, 0.1, -0.2, 0.1, -0.2, 0.4, 

0, 0, 0.2, 0.5, 0.4, 0.9, 0.6, 0.3, 0.5, 0.3, -0.2, 0.5, -0.2, 0, -0.3, -0.1, 0, -0.3, 0.5, 0, -0.3, 0.3, 0.6, -0.2, 0.7, -0.3, 0.4, -

0.5, -0.3, 0.4, -0.4, -0.3, 0, 0.5, 0.1, 0 , 0) 

Parad = np.array(Parad) 

Parad2 = (0.1, 0.1, 0.2, 0.4, 0.3, 0.3, 0.3, 0.3, 0.7, 0.3, 0.4, 0.3, 0.2, 0.3, 0.5, 0.7, 0.4, 0.4, -0.3, 0.2, 0.4, 0.2, 0.4, 0, 

0, 0.2, 0.2, 0.1, 0.3, 0.2, 0.1, 0.5, 0.5, 0.2, 0.2, 0.1, 0.4, 0.3, 0.2, 0.2, 0, 0.1, 0.5, 0, 0.1, 0.1, 0.3, 0.7, 0.3, 0.2, 0.3, 

0.6, -0.1, 0.2, 0.3, 0.2, 0.5, 0.6, 0.4, 0.6, 0.6, 0.6, 0, 0.3, 0.2, 0.6, 0.2, 0, 0.1, 0.5, 0.1, 0, 0.1, 0.4, 0.1, 0.1, 0.1, 0.3, 0, 

0.1, 0.2, -0.1, 0.1, 0.3, 0.2, 0.2, 0.1, 0.5, 0.1, 0, 0.1, 0.3, 0.2, 0.4, 0.2, 0.3, 0.1, 0.2, 0.3, 0.3, -0.2, 0.6, 0.2, 0, 0.6, 0, 0, 

0.4, 0.1, 0.4, 0.4, 0.1, 0, 0.8, 0, 0.4, 0.6, 0.5, 0.1, 0.4, 0.4, 0.3, 0.3, 0.3, 0.1, -0.1, 0.1, 0.1, 0.5, 0.3, 0.2, -0.2, 0.1, 0.3, 

0.2, 0.4, 0.1, 0.1, 0.1, 0.5, 0, 0.3, 0.2, 0.1, 0.1, 0, 0, 0.4, -0.1, 0.1, -0.1, 0.3, 0.1, 0.3, 0.1, -0.4, 0.2, 0, 0.1, 0.3, 0.1, -

0.2, 0.1, -1, 0, 0.3, 0.1, 0.3, -0.2, 0, 0.1, 0.1, -0.9, 0, -0.1, -0.2, 0, -0.2, -0.2, -0.2, 0.1, 0.8, 0.3, 0.7, 0, 0.8, 0, 0.3, 0.5, 

0.1, 0.4, 0, 0.1, 0.3, 0.1, 0.3, 0.7, 0.4, 0.6, 0.4, 0.1, 0.6, 0.4, 0, 0.3, 0.2, 0.2, 0, 0.2, 0.6, 0.4, 0.2, 0.6, 0.1, 0.5, 0.2, 

0.5, 0.3, 0.3, -0.2, 0.2, 0.5, 0.3, 0.2, 0.2, 0.2, 0.3, 0.1, 0.1, 0.5, 0, 0, 0.3, 0.3, 0.1, 0.2, 0.4, 0, 0.6, -0.2, 0.7, 0.1, 0.1, 

0.6, 0.2, 0.3, 0.3, 0.4, -0.1, 0.2, 0.6, 0, 0.3, 0, 0, -0.3, -0.2, -0.1, 0.5, 0, 0.1, 0.3, -0.2, -0.2, 0, 0.5, 0.4, 0.5, 0.2, 0.5, 

0.5, 0.2, 0.5, 0.1, 0, 0.1, 0.6, 0.1, 0.3, -0.5, 0, 0.1, -0.3, 0, -0.4, 0.2, 0.3, 0, 0.3, 0.7, 0.1, 0.1, 0.4, 0.4, 0.3, 0.4, 0.6, 0, 

0.2, 0.2, 0.5, 0.1, 0.2, 0.3, 0.3, -0.1, 0.6, 0.4, 0.2, 0.4, 0, 0.2, 0.6, 0.3, 0.8, 0.5, 0.6, 0.2, 0, 0.2, 0.3, 0.5, 0, 0, 0.1, 0, 

0.3, 0.8, 0.3, 0.4, 0.4, 0.2, 0.8, 0.4, 0.5, 0.7, 0.6, 0.8, 0.9, 0.5, 0.5, 0.3, 0.4, 0.7, 0.7, 0.5, 0.3, -0.2, 0.6, 0.8, 0.1, 0.5, 

0.1, 0.1, 0.5, 0.4, 0.7, 0.7, 0.5, 0.7, 0.4, 0, 0.3, 0.4, 0.7, 0.7, 0.3, 0.4, 0.1, 0.1, -0.1, 0, 0.3, 0, 0.7, 0.5, 0.4, 0.3, 0.7, 0, 

0.3, 0.5, 0.1, 0.2, 0, 0, 0.5, 0.5, 0.2, 0.2, 0.4, 0.4, 0.5, 0.5, 0.6, 0.3, 0.7, 0.4, 0.4, 0.7, 0.7, 0.4, 0.3, 0.5, 0.6, 0.1, 0.3, 

0.2, 0.2, 0.5, 0.7, 0.5, 0.7, 0, 0.5, 0.1, 0.8, 0.7, 0.4, 0.1, 0.7, 0, 0.3, 0.1, 0.2, 0, 0.1, 0.7, -0.1, 0.1, 0.1, 0, -0.3, 0.4, 0.1, 

0, -0.2, 0.2, 0.2, 0.6, -1, -0.1, 0.4, -0.2, 0.1, -0.1, 0.1, -0.1, 0.7, 0.3, 0.5, 0.1, 0.1, -0.2, -0.2, -0.1, 0.5, 0.1, 0.3, 0, 0.1, 

0.4, 0.4, 0.2, 0.1, -0.2, 0.1, 0.4, 0.3, 0.3, 0.2, 0.2, 0.6, 0, 0.1, 0.4, -0.2, 0.1, -0.2, 0, 0, 0.1, -0.1, 0.1, -0.2, 0.1, 0, 0, -

0.1, 0, 0, -0.1, 0, 0, -0.1, 0.3, 0.4, 0, 0.4, 0.6, -0.3, 0.3, -0.1, 0.4, 0.3, 0.1, 0, 0, -0.1, 0.8, 0.7, 0, -0.3, -0.2, -0.3, 0, 0.6, 

0.5, -0.2, -1, -0.2, 0, -0.2, -0.4, -0.2, 0.6, 0.4, 0, -0.1, 0.1, -0.1, 0, -0.2, 0.6, 0.2, 0, 0.4, 0.2, 0.1, 0, 0.1, 0.1, 0.2, -0.2, 

0.2, -0.2, 0.6, 0.1, 0.1, 0.8, 0.3, 0.3, 0, 0.2, 0, 0.3, 0.1, 0, 0, 0.3, 0, 0, 0.2, -1, 0, -0.1, -0.1, -1, -0.1, -0.2, -0.2, -0.1, -
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0.3, 0, 0, 0, 0.1, 0.1, 0, -0.1, 0, -0.2, -0.3, -1, 0.1, -0.2, -1, -0.2, -0.1, 0, -0.3, 0.4, 0.3, 0.4, 0.8, 0.7, 0.8, -1, 0.1, 0.4, 

0.4, 0, 0.3, -1, 0, -1, 0.8, 0.2, 0.1, 0.2, -1, 0.5, 0.1, 0, 0.2, 0.5, 0.4, 0.8, 0.5, 0.3, 0.5, 0.3, -0.1, 0.6, -0.1, 0, -1, 0, 0.2, -

0.1, 0.7, 0.2, -0.1, 0.4, 0.6, -0.1, 0.9, -1, 0.6, -1, -1, 0.5, 0.1, 0, 0, 0.6, -0.1, 0, 0.1) 

Parad2 = np.array(Parad2) 

#X = df['G1'] # here we have 2 variables for multiple regression. If you just want to use one variable for simple 

linear regression, then use X = df['Interest_Rate'] for example.Alternatively, you may add additional variables 

within the brackets 

#y = df['G3'] 

m=649 

X = Parad 

y = Parad2 

#Xnum = pd.to_numeric(X, errors='raise', downcast='float') 

#X = X.values.reshape(-1,1) 

#y = y.values.reshape(-1,1) 

X = np.array(X) 

y = np.array(y) 

#np.random.seed(0) 

#m = 8 

#X = np.linspace(-0.95,0.95,m) 

#y = X**2 

import qsimulator as pq 

from qsimulator import RX, RY, RZ 

n_qubits = 3 

def input_prog(sample): 

    p = pq.Program(n_qubits) 

    for j in range(n_qubits): 

        p.inst(RY(np.arcsin(sample[0])), j) 

        p.inst(RZ(np.arccos(sample[0]**2)), j) 

    return p 

from qcl import ising_prog_gen  

ising_prog = ising_prog_gen(trotter_steps=1000, T=10, n_qubits=n_qubits) 

depth = 3    

def output_prog(theta): 

    p = pq.Program(n_qubits) 

    theta = theta.reshape(3,n_qubits,depth) 

    for i in range(depth): 

        p += ising_prog 
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        for j in range(n_qubits): 

            rj = n_qubits-j-1 

            p.inst(RX(theta[0,rj,i]), j) 

            p.inst(RZ(theta[1,rj,i]), j) 

            p.inst(RX(theta[2,rj,i]), j) 

    return p 

def grad_prog(theta, idx, sign): 

    theta = theta.reshape(3,n_qubits,depth) 

    idx = np.unravel_index(idx, theta.shape) 

    p = pq.Program(n_qubits) 

    for i in range(depth): 

        p += ising_prog 

        for j in range(n_qubits): 

            rj = n_qubits-j-1 

            if idx == (0,rj,i): 

                p.inst(RX(sign*np.pi/2.0), j) 

            p.inst(RX(theta[0,rj,i]), j) 

            if idx == (1,rj,i): 

                p.inst(RZ(sign*np.pi/2.0), j) 

            p.inst(RZ(theta[1,rj,i]), j) 

            if idx == (2,rj,i): 

                p.inst(RX(sign*np.pi/2.0), j) 

            p.inst(RX(theta[2,rj,i]), j) 

    return p 

from qsimulator import Z 

from qcl import QCL 

state_generators = dict() 

state_generators['input'] = input_prog 

state_generators['output'] = output_prog 

state_generators['grad'] = grad_prog 

initial_theta = np.random.uniform(0.0, 2*np.pi, size=3*n_qubits*depth) 

operator = pq.Program(n_qubits) 

operator.inst(Z, 0) 

operator_programs = [operator]  

est = QCL(state_generators, initial_theta, loss="mean_squared_error",   
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          operator_programs=operator_programs, epochs=20, batch_size=m, 

          verbose=True) 

est.fit(X,y) 

results = est.get_results() 

print(results) 

#X_test = np.array()  

#X_test = np.linspace(-1.0,1.0,50) 

#y_pred = est.predict(X_test) 

X_test = X 

y_pred = est.predict(X_test) 

print(y_pred) 

import matplotlib.pyplot as plt 

plt.plot(X, y, 'bs', X_test,  y_pred, 'r-') 

 

Appendix I: Classical methods of Clustering Analysis (k-Means, Hierarchical and Model-

based method)  
 

• Package installation and Data preparation: 

 

 

 

• k-Means Clustering method:  
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Figure 27: Cluster means  
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Figure 28: Append cluster assignment  
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Figure 29: The cluster of each observation  

 

 

• Hierarchical method:  

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Anestis Kosmidis  
 

 

 

240 

 
 

 

• Model-based Method: 

  

 

  

• Classification:  
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• Plotting and Validating Cluster Solutions: 

  

  

 

• Centroid Plot against first 2 discriminant functions:   
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Figure 30: Comparison between k-Means and Hierarchical methods (d = Euclidean matrix distance)  
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Appendix J: Quantum Clustering Statistics   
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