
Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

MASTER THESIS
COMPARATIVE STUDY OF CLASSICAL

AND QUANTUM ENGINEERING
LEARNING ALGORITHMS

Supervisor: Dr Kostantinos Chatzisavvas,
Senior Research Fellow

George Balas

2019

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

2

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ

ΕΡΓΑΣΙΑ

Συγκριτική Μελέτη Κλασικών και Κβαντικών

Αλγορίθμων Μηχανικής Μάθησης

Επιβλέπων: Δρ. Χατζησάββας Κωνσταντίνος,

Ανώτερος Ερευνητής

Μπαλάς Γεώργιος

2019

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

3

Copyright c© Balas K. Georgios 2019
All rights reserved.
It is prohibited to copy, store and distribute this work, in whole or in
part, for commercial purposes. Reproduction, storage and distribu-
tion for non-profit, educational or research purposes are permitted,
provided the source of origin is indicated and this message retained.
Questions about the use of the work for profit should be directed to
the author. The views and conclusions contained in this document
are those of the author and should not be construed as expressing
the AUTH official positions.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

4

Abstract

Machine learning is considered as the top trend in 21st century. Ev-
eryone interacts with it, everyone talks about it. In the end of the day,
nobody knows exactly what it is and what exactly does. And above
that, the last few years a new meaning introduced to us, quantum
computing. Alongside machine learning, quantum computing brought
quantum machine learning that will breakthrough at science and eventu-
ally our lives. This thesis will present some basic principles of the two
types of machine learning, will analyze some basic algorithms of both of
them, reproduce them in Python and compare them. The whole thesis
alongside the code and the results are uploaded public on GitHub at
https://github.com/gkbalas/machine_learning_thesis.

Keywords

Quantum Machine Learning, Machine Learning, Supervised Learning,
Classification, Support Vector Machine, Naive Bayes, Decision Tree, Neural
Network, Quantum Neural Network, Quantum Gradient Descent Optimizer,
Variational Classifier, Data-reuploading Classifier, IBM Q Experience

https://github.com/gkbalas/machine_learning_thesis
https://github.com/gkbalas/machine_learning_thesis

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

5

Σύνοψη

Η μηχανική μάθηση θεωρείται ως η κορυφαία τάση στον 21ou αιώνα.
΄Ολοι αλληλεπιδρούν με αυτήν, όλοι μιλούν γι άυτήν. Στο τέλος της ημέρας,

κανείς δεν γνωρίζει ακριβώς τι είναι και τι ακριβώς κάνει. Και πάνω από

όλα αυτά, τα τελευταία χρόνια μία νεά έννοια μας παρουσιάζεται, η κβαντική

υπολογιστική. Παράλληλα με την μηχανική μάθηση, ο κβαντικός υπολο-

γισμός έφερε την κβαντική μηχανική μάθηση που θα επιφέρει σημαντική

ανακάλυψη στην επιστήμη και τελικά στη ζωή μας. Αυτή η εργασία θα

παρουσιάσει μερικές βασικές αρχές των δύο τύπων μηχανικής μάθησης,

θα αναλύσει κάποιους βασικούς αλγόριθμους και των δύο, θα τις αναπα-

ράγει στην Python και θα τις συγκρίνει. Η εργασία μαζί με τον κώδικα
και τα αποτελέσματα δημοσιεύονται δημόσια στο GitHub στη σελίδα

https://github.com/gkbalas/machine_learning_thesis.

https://github.com/gkbalas/machine_learning_thesis
https://github.com/gkbalas/machine_learning_thesis

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

6

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Contents

1 Introduction 9
1.1 Machine Learning . 9
1.2 Quantum Machine Learning 10
1.3 Models . 12

2 Classical Machine Learning 13
2.1 Decision Tree . 13
2.2 Support Vector Machine . 14
2.3 Naives Bayes . 15
2.4 Neural Network . 17
2.5 Metrics . 17
2.6 Results . 18

3 Quantum Machine Learning 21
3.1 Quantum Gradient Descent Optimizer 21
3.2 Variational Classifier . 22
3.3 Data-reuploading Classifier . 25
3.4 IBM Q Experience . 28

4 Conclusion 31

7

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

8 CONTENTS

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Chapter 1

Introduction

1.1 Machine Learning

Machine learning is the field of study that gives computers the capability to
learn without being explicitly programmed as Arthur Samuel [14], pioneer in
the field of artificial intelligence and computer gaming, baptised this chapter
of artificial intelligence and statistics, in 1959.

There are two types of machine learning, supervised and unsupervised. Su-
pervised learning builds a mathematical model from a set of data that con-
tains both the inputs and the desired outputs. Classification and regression
are the two kinds of supervised learning. When the algorithm is trying to
labelize the data to some existing distinct labels is called classification. For
continuous outputs in a range of values, regression is used.

In unsupervised learning the data are unlabeled and the algorithm is trying
to group them and create clusters of data. So the process is called clustering
and it is used to discover patterns in data group into categories. Dimensional
reduction is the process of reducing the number of the ”features”, or inputs,
in a set of data.

Machine learning even if it is an almost 60-year old theory it got an im-
pressive recognition, development and usage in the last decade. The reason
for this is the exceptional growth in technology and the population of data
caused by internet and personal data collection from big companies (like
Google, Facebook) or constitutions for experimental reasons.

Except from these two principle ways of machine learning several others

9

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

10 CHAPTER 1. INTRODUCTION

have been proposed through the years for different applications and research
theories. These are:

• Semi-supervised Learning
It uses both labeled and unlabeled data for more learning accuracy.

• Reinforcement Learning
The cumulative reward is the special characteristic of reinforcement
learning and it is used in a great spectrum of applications.

• Self learning
The system is driven by the interaction between cognition and emotion.
It learns without external rewards or external teacher advices.

• Feature learning
It is often used as a pre-processing step before performing classification
or predictions. It replaces manual feature engineering, and allows a
machine to both learn the features and use them to perform a specific
task.

• Sparse dictionary
Sparse dictionary learning is a feature learning method where a training
example is represented as a linear combination of basis functions, and
is assumed to be a sparse matrix.

• Anomaly detection
Also known as outlier detection, is the identification of rare items,
events or observations which raise suspicions by differing significantly
from the majority of the data.

• Association Rules
It is a rule-based machine learning method for discovering relationships
between variables in large databases. It is intended to identify strong
rules discovered in databases using some measure of ”interestingness”.

1.2 Quantum Machine Learning

After the production of the first quantum computer for broader use from
IBM, the IBM Q Experience, a lot of researches in the field of data analysis
and machine learning turn their head to the field of quantum machine learn-
ing. The reasons for this are that quantum computing is at last realizable
when entanglement between space and earth was achieved in 2017, the clas-
sical machine learning algorithms seems to reach their theoretical saturation

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

1.2. QUANTUM MACHINE LEARNING 11

and that quantum mechanics can upgrade data analysis and processing to
another level.

Before this critical point, several attempts to contribute to the field in the-
oretical level where accomplished, even from 2000, Ezhov and Ventura [5]
tried to create a theory for a quantum neural network. After them, a lot of
tries for quantum perceptrons and circuits were trying to adapt the classi-
cal machine learning algorithms in quantum mechanics which led on losing
the quantum competitive advantages, just using linear algebra and unitary
operators or detaching from real problems such as data encoding to feed an
algorithm based on qubits.

The ways to implement quantum mechanics in machine learning creates hy-
brid or pure quantum algorithms of ml. These mechanics and quantum
algorithms that have been proposed are:

• Linear algebra simulation with quantum amplitudes
The goal of algorithms based on amplitude encoding is to formulate
quantum algorithms whose resources grow polynomially in the number
of qubits n, which amounts to a logarithmic growth in the number of
amplitudes and thereby the dimension of the input.

• Quantum machine learning algorithms based on Grover search
Improving classical machine learning with quantum information pro-
cessing uses amplitude amplification methods based on Grover’s search
algorithm, which has been shown to solve unstructured search problems
with a quadratic speedup compared to classical algorithms.

• Quantum-enhanced reinforcement learning
In quantum-enhanced reinforcement learning, a quantum agent inter-
acts with a classical environment and occasionally receives rewards for
its actions, which allows the agent to adapt its behavior.

• Quantum annealing
Quantum annealing is an optimization technique used to determine the
local minima and maxima of a function over a given set of candidate
functions.

• Quantum sampling techniques
Sampling from high-dimensional probability distributions is at the core
of a wide spectrum of computational techniques. A computationally
hard problem, which is key for some relevant machine learning tasks,

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

12 CHAPTER 1. INTRODUCTION

is the estimation of averages over probabilistic models defined in terms
of a Boltzmann distribution.

• Quantum neural networks
Quantum neural networks apply the principals quantum information
and quantum computation to classical neurocomputing. They are of-
ten defined as an expansion on Deutsch’s model of a quantum compu-
tational network.

• Hidden Quantum Markov Models
Hidden Quantum Markov Models are a quantum-enhanced version of
classical Hidden Markov Models, which are typically used to model
sequential data. Unlike the approach taken by other quantum-enhanced
machine learning algorithms, HQMMs can be viewed as models inspired
by quantum mechanics that can be run on classical computers as well.

1.3 Models

In this thesis, we are going to focus on the problem of classification for both
classical and quantum algorithms, compare them in terms of accuracy met-
rics and execution time. Iris and wine dataset are chosen for being classified.
They are both trivial datasets and both of them have been tested and op-
timized, so the results can be evaluated by third except from metrics. Also
for QML will be better for presentation reasons.

The algorithms which will classify these datasets are Decision Tree, Gaussian
Naive Bayes, SVM and Neural Network for Classical Machine Learning and
Variational Classifier and Data-reuploading Classifier for Quantum Machine
Learning.

All the operations will be handled by an Intel i5-7200u processor with 16GB
RAM and Ubuntu 18.04 OS running. Python 3 version 3.6.9 with the li-
braries numpy, scikit-learn, keras, tensorflow, pandas, matplotlib, graphviz,
pennylane, openpyxl is the language of the running scripts. For the quantum
classifiers and the connection to IBM Q Experience, Pennylane [2] is used,
along with the aforementioned libraries in Python 3.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Chapter 2

Classical Machine Learning

In the perpetuity of time many algorithms have been proposed for solving
classification problems. The selection between them depends on the origi-
nal problem and the structure of data. In the next sections some principle
algorithm will be analysed and tested in action.

2.1 Decision Tree

Decision Tree Classifier is a flowchart-like graph, in which every node is a
test about the features of the sample. It is also called as tree-like model,
because three characteristics exist:

• root (first division or test outcome)

• branch (outcome of the test)

• leaf (decision-class label)

There are either classification or regression trees whether the outcome is a
class or a number. Several algorithms have been proposed as decision tree
classifier creating. The more notable and widely-known are:

• ID3 (Iterative Dichotomizer 3)

• C4.5 (successor of ID3)

• C5.0 (greatly improved successor of C4.5, commercial)

• CART (Classification And Regression Tree)

• CHAID (CHi-squared Automatic Interaction Detector)

13

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

14 CHAPTER 2. CLASSICAL MACHINE LEARNING

color_intensity ≤ 3.945
gini = 0.655

samples = 142
value = [45, 59, 38]

class = class_1

proline ≤ 987.5
gini = 0.158

samples = 58
value = [5, 53, 0]
class = class_1

True

flavanoids ≤ 1.58
gini = 0.563

samples = 84
value = [40, 6, 38]

class = class_0

False

ash ≤ 3.07
gini = 0.036

samples = 54
value = [1, 53, 0]
class = class_1

gini = 0.0
samples = 4

value = [4, 0, 0]
class = class_0

gini = 0.0
samples = 53

value = [0, 53, 0]
class = class_1

gini = 0.0
samples = 1

value = [1, 0, 0]
class = class_0

gini = 0.0
samples = 38

value = [0, 0, 38]
class = class_2

proline ≤ 679.0
gini = 0.227

samples = 46
value = [40, 6, 0]
class = class_0

gini = 0.0
samples = 6

value = [0, 6, 0]
class = class_1

gini = 0.0
samples = 40

value = [40, 0, 0]
class = class_0

(a) Wine

petal length (cm) ≤ 2.45
gini = 0.666

samples = 120
value = [41, 41, 38]

class = setosa

gini = 0.0
samples = 41

value = [41, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
gini = 0.499

samples = 79
value = [0, 41, 38]
class = versicolor

False

petal length (cm) ≤ 4.95
gini = 0.194

samples = 46
value = [0, 41, 5]
class = versicolor

gini = 0.0
samples = 33

value = [0, 0, 33]
class = virginica

petal width (cm) ≤ 1.65
gini = 0.049

samples = 40
value = [0, 39, 1]
class = versicolor

petal width (cm) ≤ 1.55
gini = 0.444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.0
samples = 39

value = [0, 39, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.0
samples = 3

value = [0, 0, 3]
class = virginica

petal length (cm) ≤ 5.45
gini = 0.444
samples = 3

value = [0, 2, 1]
class = versicolor

gini = 0.0
samples = 2

value = [0, 2, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

(b) Iris

Figure 2.1: Datasets Trees

• MARS (extends decision trees to handle numerical data better)

• Conditional Inference Trees (Statistics-based approach that uses non-
parametric tests as splitting criteria, correcter for multiple testing to
avoid overfitting)

All of them come with their own advantages and disadvantages, but also
share some common as they inherit them from the basic concept. The great
difference from other algorithm concepts is that it is understandable and easy
to interpret to human mind as it follows the same concepts as human logic.
This is pictured in the white-box model it has. Except of that they need no
data preparation to run the models and are able to handle both numerical
and categorical data.
The drawbacks that decision trees come with have to do with the lack of
robustness of the models and overfitting to the sample. Also they are NP-
complete problem and greedy algorithm.

2.2 Support Vector Machine

SVM is a supervised learning model, which is used either for classification or
regression. This method tries to find the optimal hyperplane to minimize the
error of the predicted f(x) instead of the actual y. Optically, it draws the
boundary, between the two classes of our sample, that has the greater margin
of both of them. In its simplest form it is the dot product w · xi + b = 0 for
a linear classifier. In the case of non-linear classifiers, SVM uses the kernel
trick, where every dot product is replaced by a non-linear kernel function.
Some common kernels are:

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

2.3. NAIVES BAYES 15

• Polynomial (homogeneous): K(xi,xj) = (xi · xj)
d

• Polynomial (in-homogeneous): K(xi,xj) = (xi · xj + 1)d

• Gaussian radial basis function: K(xi,xj) = exp(−γ‖xi − xj‖2), for
γ > 0

• Hyperbolic tangent: K(xi,xj) = tanh(κxi · xj + c)

The algorithm of SVM was invented by Vladimir Vapnik and Alexey Cher-
vonenkis in 1963. The kernel trick to maximum-margin hyperplanes for non-
linear classifiers is introduced in 1992 by Bernhard Boser, Isaabelle Guyon
and Vladimir Vapnik [3].

Nowadays, SVM is widely used in many applications such as medical decision
support, face detection and pattern recognition, speaker identification, even
text categorization and many more.The reason for this largely usage is the
minimum limitations it has:

• Two-class algorithm (for multiple classes the approach is multiple bi-
nary classifications)

• Requires full labeling of input data

• Kernel choose

• Parameters of a solved model are difficult to interpret

2.3 Naives Bayes

Naives Bayes Classifier is based on Bayes’ Theorem Probabilities without
being a single algorithm but a family of algorithms. Except the Bayes’ The-
orem, they share a common principle, the feature independence of each other,
given the class variable. Naive Bayes is a conditional probability P (Ck|x),
which under the Bayes’ Theorem is decomposed as

P (Ck|x) =
p(Ck)p(x|Xk)

p(x)
.

Under the main assumption of the features being independent between them,
we can safely assume that

P (Ck|x) = P (Ck|x1,x2, . . . ,xn) =
p(Ck)Π

n
i=1p(xi|Ck)

p(x1) . . . p(xn)
.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

16 CHAPTER 2. CLASSICAL MACHINE LEARNING

Because the denominator is the same for k classes, the choice of the best
class is made by the function

Ck = arg max
k∈{1,...,k}

p(Ck)Π
n
i=1p(x|Ck).

This classifier works for discrete data, for continuous data we can use one of

• Gaussian Naive Bayes:

p(xi|Ck) =
1√

2πσ2
k

e
− (xi−µk)

2

2σ2
k

where µk and σ2
k the mean and the variation of x in class k.

• Multinomial Naive Bayes:

p(x|Ck) =
(Σi=1xi)!

Πi=1(xi!)
Πi=1pkixi

which becomes linear classifier

log p(Ck|x) ∝ log(p(Ck)Π
n
i=1pkixi) = log p(Ck) + Σn

i=1xi log pki

• Bernoulli Naive Bayes:

p(x|Ck) = Πn
i=1p

xi
ki

(1− pki)(1−xi)

where xi a boolean expressing the occurrence or absence of ith term
and pki the probability of class Ck generating the term xi.

NBC is popular even though in real-life problems there is always some depen-
dence between the features, because of two reasons. Firstly, the decoupling
of the class conditional feature distributions which is translated as each dis-
tribution can be independently estimated as an one-dimensional. Second,
the little training time as a result of the above feature solving the curse
of dimensionality. It is mainly used for document classification and spam
filtering.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

2.4. NEURAL NETWORK 17

2.4 Neural Network

Artificial Neural Network is the field of machine learning that had the great-
est evolve in practical use the last two decades, because two of the major
difficulties where solved. Internet expansion helped solving the data prob-
lem and high-end machines for the great complexity.

The first contribution to the field was made by Warren McCullogh and Wal-
ter Pits [9] in 1943 introducing us the first artificial neuron, called threshold
logic. Which was later used by Rosenblatt [13] to make the first Percep-
tron. This perceptron has several inputs with their weights, by multiplying
them, summing them with a bias and feed them to a linear step function
which works as a threshold for the neuron. Sum =

∑n
i=1 IiWi, y = f(Sum).

Where y is the neuron be active y = 1 or inactive y = 0.

Iraakhenko and Lapa published the first functional networks in 1965. The
problem of weight updating was solved by Werbos [17] (1975) with his back-
propagtion algorithm.

These publications formed the artificial neural networks as we know them.
Some of these network structures and models are:

• Multi-Layer Neural Networks (MLNN)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

• Deep Learning Neural Network

These are proposed even for different types of use of machine learning either
supervised, unsupervised or hybrid. The reason of the great success of ANNs
is the universal usage they offer. They are used for image and speech recog-
nition, translation, social network filtering, playing board and video games,
medical diagnosis and many more.

2.5 Metrics

Accuracy
Accuracy is the first metric to use for an easy and fast evaluation of the
algorithm.

Accuracy =
Number of Correct Predictions

Total number of Predictions

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

18 CHAPTER 2. CLASSICAL MACHINE LEARNING

the great and only drawback in this metric is about the proportion of samples
in each class. Equal separated samples can solve this problem.

Precision and Recall
Precision and Recall have the same logic behind their mathematic formula
about true or false positive and negative predictions.

Prediction =
TruePositives

TruePositives + FalsePositives

Recall =
TruePositives

TruePositives + FalseNegatives

They try show the proportion of the true positives samples to two different
sets, the predictions the algorithm made and the actual positives samples.

F1 score
In order to identify uneven class distribution and even evaluate Precision and
Recall metrics, there is their harmonic mean called F1 score.

F1 = 2 ∗ 1
1

precision
+ 1

recall

⇒

⇒ F1 = 2 ∗ Presicion ∗ Recall
Presicion + Recall

The translation of F1 score is that it reveals how precise the classifier is (how
many instances it classifies correctly) and how robust it is (it does not miss
a significant number of instances).

2.6 Results

Iris Dataset
All four algorithms have been fed with iris dataset trying to classify data to 3
different classes equal distributed with 50 observation each one from the total
and wine dataset with 3 different classes and unequal number of observation
for them. The results were really good despite lack of optimization of the
algorithms on the datasets.

All algorithms were able to overfit the data, which is a drawback, but they
were able to predict all unseen data and reach 100%. To minimize any pos-
sible error or the optimizers do not adheres in local minima the models run

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

2.6. RESULTS 19

(a) Accuracy (b) Loss

Figure 2.2: Neural Network for iris

(a) Accuracy (b) Loss

Figure 2.3: Neural Network for wine

many times and selected overall the best results.The aforementioned metrics
evaluated the models with the best results. Even when a model could not
reach 100%, their values were high enough to classify the models as really
accurate. The execution time for the neural network was between 1-2 seconds
and for the rest of the methods were much less than a second.

Wine Dataset
The wine dataset with 13 attributes and 178 instances is classified to three
types of wine. The classes are unequal and the data need scaling. We tried
to check the algorithms without preprocessing so on this dataset the results
were not that accurate. All the methods had more than 95% accuracy on
training and on test validation. Which means that besides the overfiting
where able to classify unseen data. The other metrics followed the results
of accuracy and evaluate the algorithms as really good and accurate. The
run-times were 6 times the iris’ ones and that is why this dataset is a lot
bigger and complex than iris.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

20 CHAPTER 2. CLASSICAL MACHINE LEARNING

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Chapter 3

Quantum Machine Learning

3.1 Quantum Gradient Descent Optimizer

First of all, we are going to present the differences between the classical
gradient descent and quantum analogue one. In classical neural networks,
the natural gradient descent was first introduced by Amari (1998) [1]. The
standard gradient descent is

θt+1 = θt − ηF−1∇L(θ)

where F is the Fisher information matrix. The Fisher information matrix
acts as a metric tensor, transforming the steepest descent in the Euclidean
parameter space to the steepest descent in the distribution space.

In a similar vein, it has been shown that the standard Euclidean geometry
is sub-optimal for optimization of quantum variational algorithms (Harrow
and Napp, 2019). The space of quantum states instead possesses a unique
invariant metric tensor known as the Fubini-Study metric tensor gij, which
can be used to construct a quantum analog to natural gradient descent:

θt+1 = θt − ηg+(θt)∇L(θ)

where g+ refers to the pseudo-inverse.

A block-diagonal approximation to the Fubini-Study metric tensor of a vari-
ational quantum circuit can be evaluated on quantum hardware.

Considering a variational quantum circuit

U(θ) |ψ0〉 = VL(θL)WLVL−1(θL−1)WL−1 . . . Vl(θl)Wl . . . V0(θ0)W0 |ψ0〉

where

21

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

22 CHAPTER 3. QUANTUM MACHINE LEARNING

• |ψ0〉 is the initial state,

• Wl are layers of non-parametrized quantum gates,

• Vl(θl) are layers of parametrized quantum gates with nl parameters

θl = θ
(l)
0 , . . . , θ

(l)
n .

Further, assuming all parametrized gates can be written in the form X(θ
(l)
i) =

eiθ
(l)
i K

(l)
i , where K

(l)
i is the generator of the parametrized operation.

For each parametric layer l in the variational quantum circuit the nl × nl
block-diagonal submatrix of the Fubini-Study tensor g

(l)
ij is calculated by:

g
(l)
ij = 〈ψl−1|KiKJ |ψl−1〉 − 〈ψl−1|Ki|ψl−1〉 〈ψl−1|Kj|ψl−1〉

where

|ψl−1〉 = Vl−1(θL−1)Wl−1 . . . V0(θ0)W0 |ψ0〉

(that is, |ψl−1〉 is the quantum state prior to the application of parameterized

layer l), and we have Ki ≡ K
(l)
i for brevity.

In our code we reproduced a variational quantum circuit trying to compare
two gradient descent for it, vanilla gradient descent and quantum natural
gradient descent. The results where obviously much better for quantum nat-
ural gradient descent.

3.2 Variational Classifier

Variational quantum classifiers are quantum circuits that can be trained from
labeled data to classify new data samples. Farhi and Neven [6] as well as
Schuld et al. [16] have proposed the architecture for this task.

This architecture reminds a quantum analog of neural network, because of
weights, bias, error computing and backpropagation. Inputs are coded ac-
cording to the scheme in Möttönen, et al. [10], or—as presented for positive
vectors only—in Schuld and Petruccione [15]. Also controlled Y-axis rota-
tions decomposed into more basic circuits following Nielsen and Chuang [11].

State preparation is not as simple as when we represent a bitstring with
a basis state. Every input x has to be translated into a set of angles which

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

3.2. VARIATIONAL CLASSIFIER 23

Figure 3.1: Gradient descent optimizers

can get fed into a small routine for state preparation. To simplify things
a bit, data will be worked from the positive subspace, so that signs can be
ignored (which would require another cascade of rotations around the z axis).

In order to test this circuit, iris data is chosen and preprocessed as men-
tioned above keeping the first two classes and features.

The features feed the model as angles for the qubits’ rotations. The two
classes are encoded as 1 (blue) and -1 (red). Qubits are linked together with
CNOT gates passing the information of their angle rotation to the next one,
ending to the last one which state will be measured and compute the error.
Weights are predefined rotations between qubits that are updated every time
after backpropagation.

The system needed only 67 iterations to reach 100% accuracy in validation
and stay stabilized at this point. Due to lack of data only 15 inputs held as
validation. The model was overfitted but also it was able to predict unseen
data accurately. The whole process of training kept 197.78 seconds. The
architecture of the circuit needed only 2 qubits.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

24 CHAPTER 3. QUANTUM MACHINE LEARNING

Figure 3.2: Iris data preprocessed

(a) Accuracy (b) Cost

Figure 3.3: Variational Metrics

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

3.3. DATA-REUPLOADING CLASSIFIER 25

Figure 3.4: Variational Predictions

3.3 Data-reuploading Classifier

A single-qubit quantum circuit which can implement arbitrary unitary oper-
ations can be used as a universal classifier much like a single hidden-layered
Neural Network. Pérez-Salinas et al. [12] discuss this with their idea of ‘data
reuploading’. It is possible to load a single qubit with arbitrary dimensional
data and then use it as a universal classifier.

A simple classification problem is considered training a single-qubit varia-
tional quantum circuit to achieve this goal. The data is generated as a set of
random points in a plane (x1,x2) and labeled as 1 (blue) or 0 (red) depending
on whether they lie inside or outside a circle. The goal is to train a quantum
circuit to predict the label (red or blue) given an input point’s coordinate.

A single-qubit quantum state is characterized by a two-dimensional state
vector and can be visualized as a point in the so-called Bloch sphere. Instead
of just being a 0 (up) or 1 (down), it can exist in a superposition with say
30% chance of being in the |0〉 and 70% chance of being in the |1〉 state.
This is represented by a state vector |ψ〉 = 0.3 |0〉 + 0.7 |1〉 - the probability
“amplitude” of the quantum state. In general we can take a vector (α, β) to
represent the probabilities of a qubit being in a particular state and visualize
it on the Bloch sphere as an arrow.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

26 CHAPTER 3. QUANTUM MACHINE LEARNING

In order to load data onto a single qubit, we use a unitary operation U(x1, x2, x3)
which is just a parameterized matrix multiplication representing the rotation
of the state vector in the Bloch sphere. Pérez-Salinas et al. discuss how to
load a higher dimensional data point ([x1, x2, x3, x4, x5, x6]) by breaking it
down in sets of three parameters (U(x1, x2, x3), U(x4, x5, x6)).

Once we load the data onto the quantum circuit, we want to have some train-
able nonlinear model similar to a neural network as well as a way of learn-
ing the weights of the model from data. This is again done with unitaries,
U(θ1, θ2, θ3), such that we load the data first and then apply the weights to

form a single layer L(
−→
θ ,−→x) = U(

−→
θ)U(−→x). In principle, this is just applica-

tion of two matrix multiplications on an input vector initialized to some value.
In order to increase the number of trainable parameters (similar to increas-
ing neurons in a single layer of a neural network), we can reapply this layer

again and again with new sets of weights, L(
−→
θ1 ,
−→x)L(

−→
θ2 ,
−→x) . . . L(

−→
θ ,−→x) for

L layers.

So far, we have only performed linear operations (matrix multiplications)
and we know that we need to have some nonlinear squashing similar to ac-
tivation functions in neural networks to really make a universal classifier
(Cybenko 1989 [4]). Here is where things gets a bit quantum. After the
application of the layers, we will end up at some point on the Bloch sphere
due to the sequence of unitaries implementing rotations of the input. These
are still just linear transformations of the input state. Now, the output of
the model should be a class label which can be encoded as fixed vectors (Blue
= 4[1, 0], Red = [0, 1]) on the Bloch sphere. We want to end up at either
of them after transforming our input state through alternate applications of
data layer and weights.

We can use the idea of the “collapse” of our quantum state into one or other
class. This happens when we measure the quantum state which leads to its
projection as either the state 0 or 1. We can compute the fidelity (or close-
ness) of the output state to the class label making the output state jump to
either |0〉 or |1〉. By repeating this process several times, we can compute the
probability or overlap of our output to both labels and assign a class based
on the label our output has a higher overlap. This is much like having a set of
output neurons and selecting the one which has the highest value as the label.

We can encode the output label as a particular quantum state that we want
to end up in. We construct an observable corresponding to the output label

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

3.3. DATA-REUPLOADING CLASSIFIER 27

(a) Accuracy (b) Cost

Figure 3.5: Reuploading Classifier Metrics

using the Hermitian operator. The expectation value of the observable gives
the overlap or fidelity. We can then define the cost function as the sum of the
fidelities for all the data points after passing through the circuit and optimize

the parameters (
−→
θ) to minimize the cost.

Cost =
∑

datapoints

(1− fidelity(ψoutput(
−→x ,
−→
θ), ψlabel))

Now, we are going to use Adam optimizer to maximize the sum of the fi-
delities over all data points (or batches of datapoints) and find the optimal
weights for classification. Gradient-based optimizers such as Adam (Kingma
et. al., [7]) can be used if we have a good model of the circuit and how noise
might affect it. Or, some gradient-free method can be used such as L-BFGS
(Liu, Dong C., and Nocedal, J., [8]) to evaluate the gradient and find the
optimal weights where the quantum circuit can be treated as a black-box
and the gradients are computed numerically using a fixed number of func-
tion evaluations and iterations.

Also for this model iris dataset has been selected from which the first two
classes and features where chosen and the preprocessing of variational classi-
fier. The model was a real fast-learner as it needed only 18 epochs to predict
all the unseen data with the right label. Furthermore, it was not able to
stabilize the accuracy to 100% which means it was not able to overfit data.
Training for 50 epochs had a run time of 97.44 seconds.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

28 CHAPTER 3. QUANTUM MACHINE LEARNING

Figure 3.6: Reuploading Predictions

3.4 IBM Q Experience

In May 2016, IBM launched the IBM Q Experience, with a five qubit quan-
tum processor and matching simulator connected in a star shaped pattern,
which users could only interact with through the quantum composer, with
a limited set of two-qubit interactions, and a user guide that assumed back-
ground in linear algebra.

Nowadays, it hosts 8 processors on the cloud, open-source.

• Armonk: 1 qubit

• Yorktown: 5 qubit

• Ourense: 5 qubit

• Vigo: 5 qubit

• London: 5 qubit

• Burlington: 5 qubit

• Essex: 5 qubit

• Melbourne: 14 qubit

IBM provides the architecture of each one of them, the gate error rates
and the calibration info. Anyone is able to create an account and test quan-
tum computing. The UX is really simple as it is a drag’n’drop framework.
Also it provides online Qiskit notepad to write your own quantum code on
the cloud to run it later.

We used Pennylane’s plugin to connect to IBM’s processors. We confronted

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

3.4. IBM Q EXPERIENCE 29

Figure 3.7: Architecture 1 Figure 3.8: Architecture 2

Figure 3.9: Architecture 3

with two great deals. First of all, the so-called improvement of speed and
computational complexity reduction of quantum computers had fallen apart
on our try to minimize the errors of the measurements. In order to have a
robust result we had to run every operation for 1000 shots. This led to really
long-waiting, complex models and code that did not offer any speedup at all.
A second hurdle was the pennylane’s plugin that was returning less results
than was expected, ending up raising errors on the code, where it shouldn’t.
Debugging was also almost unable to be done with every iteration of our
models running for almost 2 hours at least.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

30 CHAPTER 3. QUANTUM MACHINE LEARNING

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Chapter 4

Conclusion

Since this thesis started, plenty of papers were published, many new models
were proposed and a lot of them were more realistic and able to test on a
simulator or even a real quantum computer.

The Quantum Machine Learning is on its baby steps and needs to give more
time to be fully operative. Quantum Computers are really fast and change
the way of processing data, but still there is a long road to go through and
structural problems to solve.

Firstly, the error correction and the probabilistic nature of quantum world
demands thousands of shots of each problem implementation to optimize the
result and to be sure that this is the right one, slowing down the whole pro-
cess and losing its competitive advantage.

Secondly, quantum mechanics have been proposed in data analysis and data
science to solve the problem of big data processing cause of the exponential
parallel process ability and data loading. In real terms, this theory comes to
many physical boundaries. The architecture of the quantum circuit and the
qubits’ in-between connections are throttling and decreases the realization of
many theoretical models. The great quantum entanglement is still not only
a nature mystery, but also a great difficult and costly task to perform it and
maintain it.

QML gives a hope for new discoveries and breakthroughs, but still it does
not answer real life problems and has the uncertainty of its results for the
next years. Also it was a real disappointment that IBM Q Experience and
Pennylane were not able to answer to generic tasks working together leaving
a gap for an easier software development.

31

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

32 CHAPTER 4. CONCLUSION

On the other hand, Classical Machine Learning has been so much studied
the last decade that has produced really good, optimized and fast models
and applications, passing the problem of classification and prediction to data
preprocessing, lack of data and to the point problem question.

Future personal goals have been set to continue study the two cutting-edge
fields, work and offer on them. Solve the connection problem of Pennylane
and IBM Q Experience. Run real data models in more quantum circuits and
computers like Google Cirq. Also, start collaborate with other colleagues
and contribute to the collective knowledge that helped me with this thesis.

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Bibliography

[1] Shun-ichi Amari. “Natural Gradient Works Efficiently in Learning”.
In: Neural Computation 10.2 (Feb. 1998), pp. 251–276. doi: 10.1162/
089976698300017746. url: https://doi.org/10.1162/089976698300017746.

[2] Ville Bergholm et al. “PennyLane: Automatic differentiation of hybrid
quantum-classical computations”. In: (2018).

[3] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A
training algorithm for optimal margin classifiers”. In: Proceedings of
the fifth annual workshop on Computational learning theory - COLT
’92. ACM Press, 1992. doi: 10.1145/130385.130401. url: https:
//doi.org/10.1145/130385.130401.

[4] G. Cybenko. “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of Control, Signals, and Systems 2.4 (Dec.
1989), pp. 303–314. doi: 10.1007/bf02551274. url: https://doi.
org/10.1007/bf02551274.

[5] A.A. Ezhov and Dan Ventura. “Quantum Neural Networks”. In: Jan.
2000, pp. 213–235. doi: 10.1007/978-3-7908-1856-7_11.

[6] Edward Farhi and Hartmut Neven. “Classification with Quantum Neu-
ral Networks on Near Term Processors”. In: (Feb. 2018).

[7] Diederik Kingma et al. “Semi-Supervised Learning with Deep Genera-
tive Models”. In: Advances in Neural Information Processing Systems
4 (June 2014).

[8] Dong C. Liu and Jorge Nocedal. “On the limited memory BFGS method
for large scale optimization”. In: Mathematical Programming 45.1-3
(Aug. 1989), pp. 503–528. doi: 10.1007/bf01589116. url: https:
//doi.org/10.1007/bf01589116.

33

https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/bf02551274
https://doi.org/10.1007/bf02551274
https://doi.org/10.1007/bf02551274
https://doi.org/10.1007/978-3-7908-1856-7_11
https://doi.org/10.1007/bf01589116
https://doi.org/10.1007/bf01589116
https://doi.org/10.1007/bf01589116

Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

34 BIBLIOGRAPHY

[9] Warren S. McCulloch and Walter Pitts. “Neurocomputing: Founda-
tions of Research”. In: ed. by James A. Anderson and Edward Rosen-
feld. Cambridge, MA, USA: MIT Press, 1988. Chap. A Logical Calcu-
lus of the Ideas Immanent in Nervous Activity, pp. 15–27. isbn: 0-262-
01097-6. url: http://dl.acm.org/citation.cfm?id=65669.104377.

[10] Mikko Möttönen et al. “Transformation of Quantum States Using Uni-
formly Controlled Rotations”. In: Quantum Info. Comput. 5.6 (Sept.
2005), pp. 467–473. issn: 1533-7146. url: http : / / dl . acm . org /

citation.cfm?id=2011670.2011675.

[11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2009. doi: 10.

1017/cbo9780511976667. url: https://doi.org/10.1017/cbo9780511976667.

[12] Adri’an P’erez-Salinas et al. “Data re-uploading for a universal quan-
tum classifier”. In: 2019.

[13] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Informa-
tion Storage and Organization in The Brain”. In: Psychological Review
(1958), pp. 65–386.

[14] A. L. Samuel. “Some studies in machine learning using the game of
checkers”. In: IBM Journal of Research and Development 44.1.2 (Jan.
2000), pp. 206–226. issn: 0018-8646. doi: 10.1147/rd.441.0206.

[15] Maria Schuld and Francesco Petruccione. Supervised Learning with
Quantum Computers. Springer International Publishing, 2018. doi: 10.
1007/978-3-319-96424-9. url: https://doi.org/10.1007/978-3-
319-96424-9.

[16] Maria Schuld et al. “Circuit-centric quantum classifiers”. In: 2018.

[17] P. J. Werbos. “Backpropagation through time: what it does and how to
do it”. In: Proceedings of the IEEE 78.10 (Oct. 1990), pp. 1550–1560.
issn: 1558-2256. doi: 10.1109/5.58337.

http://dl.acm.org/citation.cfm?id=65669.104377
http://dl.acm.org/citation.cfm?id=2011670.2011675
http://dl.acm.org/citation.cfm?id=2011670.2011675
https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1147/rd.441.0206
https://doi.org/10.1007/978-3-319-96424-9
https://doi.org/10.1007/978-3-319-96424-9
https://doi.org/10.1007/978-3-319-96424-9
https://doi.org/10.1007/978-3-319-96424-9
https://doi.org/10.1109/5.58337

	Introduction
	Machine Learning
	Quantum Machine Learning
	Models

	Classical Machine Learning
	Decision Tree
	Support Vector Machine
	Naives Bayes
	Neural Network
	Metrics
	Results

	Quantum Machine Learning
	Quantum Gradient Descent Optimizer
	Variational Classifier
	Data-reuploading Classifier
	IBM Q Experience

	Conclusion

