Inter-Faculty Master Program on
Complex Systems and Networks

School of Mathematics

School of Biology
School of Geology
School of Economics

Aristotle University of Thessaloniki

Master Thesis
Title:

Network analysis applications in RNA-seq Data
E@appuoyég avdAuong dikTUwv o€ dedopéva aAAnAouxiong vEag YeviAg

Vagiona Aimilia-Christina

Supervisor: Sgardelis Stefanos, Professor AUTH
Co-supervisors:
Fotis E. Psomopoulos, Researcher INAB CERTH

Spyros Petrakis, Researcher INAB CERTH

Thessaloniki, November 2019



AlatunpaTiké Mpdypauua MeTATTTUXIAKWY ZTTOUBWY OTA
[MoAUTTAOKa ZuoThpaTa Kal AikTua

TuAua Madnuatikwyv

TuRua Biohoyiag
TuARua MNewAoyiag
TuAua Oikovouikwy EToTAuwy

ApioToTéAeio MavemmoTtrpio ©eocoalovikng

MeTatrTuxiakr ArmrAwpartikry Epyaocia
TiTAogG:

Network analysis applications in RNA-seq Data

E@apuoyég avdAuong dikTUwv o€ dedopéva aAAnAouxiong vEAg YeVIAG

Bayiwva AipiAia-XpioTtiva

ENIBAENQN: ZyapdéAng Ztépavog, Kabnyntig A.MN.0.

EykpiOnke ammd tnv TpipeAn E¢etaoTikr EmiTpoTi TV

>. ZyapdéAng ®. Ywpudtouhog >. Netpdkng
KaBnynmg A.1N.0. Epeuvntiic, INEB Epeuvntig, INEB
EKETA EKETA

Oeooalovikn, Noéuppiog 2019



Bayiwvd Aigidia - Xpiativa

MTuxiouxog BioAdyog A.T1.O.

Copyright © Bayiwvda AlpiAia - XpioTiva, 2019

Me emipuAaén TTavtog dikaiwpaTog. All rights reserved.

AtrayopeUeTtal N avtiypagr], amobrikeuon kal diavour TN TTapoloag Epyaciag,
€& ONOKANPOU A TUAMATOG QUTAG, VIO EUTTOPIKO OKOTTO. ETITpETTETOl N avaTuTTwon,
aT1TOBNKEUCN KAl IAvVOUR YIa OKOTTO PN KEPOOOKOTTIKO, EKTTAIOEUTIKAG I EPEUVNTIKAG
Quong, uttd Tnv TTPOUTTOBEDN va ava@épeTal N TNy TTPOEAEUONG Kal va diatnpeital
TO Tapdv uAvupa. EpwTAgata TTOU  agopouv T Xpron Tng €pyaciag yia

KEPOOOKOTTIKG OKOTTO TTPETTEI VA ATTEUBUVOVTAI TTPOG TOV CUYYPAQEQ.

O1 amoyelg Kal Ta CUUTTEPACHOTA TTOU TTEPIEXOVTAlI O€ AUTO TO €yypaqgo
eK@PAlouv ToV ouyypa@éa Kal dev TTPETTEI VA EPUNVEUTET OTI EKQPALOUV TIG ETTIONUEG

Béoeig Tou ALT.O.



Abstract

Next Generation Sequencing has created a huge amount of data - data that
has internal dependencies and interactions. There are currently many tools that allow
the primary analysis of NGS data. In this diploma thesis, a tool in R was constructed
which allow: (a) the identification of correlations between different genes in
transcriptional data, and (b) the analysis of differences in protein interaction networks

of human disease models.

The polyglutamine (polyQ) neurodegenerative disease spinocerebellar ataxia
type 1 (SCAL) is a lethal and progressive disorder caused by CAG expansions in the
ataxin-1 (ATXN1) gene. Mutant ATXN1 containing more than 39 CAG repeats
encodes the production of a pathogenic protein with an abnormal 3-dimensional
conformation. The misfolded protein forms inclusions within the nuclei of neurons and
sequesters other nuclear proteins, as well. As a result, proteins in the inclusions,
including ataxin-1, lose their normal function, an event that causes cytotoxicity and

leads to cell necrosis.

Here, we aim in the identification of disease modules within protein interaction
networks and molecular mechanisms of dysfunctions that are related to SCAl
progression. To this end, we analyzed RNA-seq data from a cell and a mouse model
of SCA1 at three discrete time points of protein aggregation and compared them with
similar data from the cerebellum of a SCA1 patient containing polyQ inclusions. We
show that the pathways protein digestion and absorption, ECM-receptor interaction
(cells-mice) and PI3K-Akt (cells-mice-patient) signaling are commonly dysregulated

in all datasets.

Keywords: RNA-seq analysis, SCA1, Differential expression analysis, Protein

interaction network



[epiAnyn

O texvohoyieg ahAnAouxnong véag yevidg (Next Generation Sequencing)
£€Xouv dnuioupynoel éva TePAoTIo OyKo dedopévwv — dedopéva T OTToia EVEXOUV
EOWTEPIKEG €€apTAOEIG KAl aAANAemdpdoelg. AuTtr) Tn OTIYUA UTTAPXOUV TTOAAG
epyaAcia TTou emTPETTOUV TNV TTPpWTAPXIKA avdAuon dedopévwv NGS. Zta TAdioia
QUTAG TNG DITTAWMATIKAG KATAOKEUAOTNKE £va epyaleio oTnv R TO OTT0i0 eMITPETTEL: (Q)
TNV aveUPECN CUOXETIOEWY PETAEU DIAPOPETIKWY YOVIDIWV O& PETaYPAPIKA dedopéva
Kal (B) Tnv avdAucn Twv dla@opwyv Ot TTPWTEIVIKA dikTua aAANAeTTiOpaonSG atmo

MOVTEAQ avBpwTTIVWV VOO UATWV.

H vwTiaio-rapeyke@ahidiki artadia Tumou 1 (SCA1) civar pia Bavarneopa
VEUPOEKPUAIOTIK] acBéveia TToAuyAouTtapivng (polyQ) TTou TrpokaAeital atrd Tnv
eTTEKTAON TPIVOUKAEOTIOIWV CAG oTo yovidio Tng ataxin-1 (ATXN1). H petaAAayuévn
ATXN1T Trepiéxel TrepioodTepeg amd 39 emavaAnyelg CAG kal KwdIKOTTolEi TNV
TTapaywyn piag TaboAoyikig TpwTeivng pe AavBaouévn tpiodidoTarn diaudpewaon.
H 1TaBoAoyiki TTpwTeivn oxnuartiel EYKAEIOTa OTOV TTUPAVA TWV VEUPWVWY TA OTroia
TTEPINOUBAVOUV Kal GAAEG TTUPNVIKEG TTPWTEIVEG. AUTO €XEl WG ATTOTEAEOUA TNV
QATTWAEIO TNG QPUOIOAOYIKAG TOug AgiToupyiag, oupTtrepiAauBavopévou kai Tng ATXN1,

YEYOVOG TTOU TTPOKOAET KUTTAPOTOEIKOTNTA KOl VEKPWON TWV KUTTAPWV.

I’ autd 10 oKOTTO avaAucape dedopéva RNA-seq atrd £va KUTTAPIKG Kal éva
CwWIKG povTéAo TNG acbBévelng o€ TPeEIG OIOKPITEG QACEIC TNG  TTPWTEIVIKAG
OUCOWHMATWONG KAl TA CUYKPIVAKPE PE avTioTolxa dedouéva atrd TNV TTapeYKEPAAIda
€VOG aoBevr| TTou TTEPIEXEI TIPWTEIVIKG €ykAgioTa polyQ. Movotrdmia 61Twe n Téywn Kai
atroppOPnon TPWTEIVWY, N aAAnAetTidpaon peTalU TNG €CWKUTTOPIKAG UATPAG KOl
TwV UTTOOOXEWV TNG (KUTTAPIKO Kal (WwIKG POVTEAOD), KABWG KAl TO onuUATOdOTIKO
povotraT PISK-Akt gival ammopuBuiopéva kai oTig TPEIG opadeg dedouévwv RNA-seq

(kuTTapIKG, CWIKG POVTEAO Kal aoBevig).

Negeic kAeidid: AvdAuon RNA-seq, SCA1, AvdAuon OSl10QopIkAG £Kepaong,
Mpwreivikd dikTUO aAANAETTIOPONG.
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1. Introduction

1.1 NGS analysis

Next generation sequencing (NGS) (Metzker, 2010) has become a valuable
tool for life sciences and research projects, studying molecular biology, evolutionary
biology, metagenomics and oncology. This technology has widened our
understanding on epigenetics and is widely used in several experimental setups
(Schorderet 2016). Compared to microarray technologies, NGS provides higher
resolution data and more precise measurement of transcripts levels for studying gene
expression. Furthermore the downstream analysis of RNA sequencing (RNA-seq)
data, indicates the variability in gene expression between different samples (Wang et
al. 2019).

NGS provides an enormous amount of complex data, making the extraction of
the relevant experimental information time consuming and challenging for
researchers (Backman and Girke 2016). Furthermore, several companies have

developed so far different sequencing platforms.

Base calling
Image raw data ————p (Raw Data

Processing)
Short read
sequences
Do Reference
assembly genome or l
transcriptome
Read mapping
|
Uniquely Multiple Unmapped
mapped reads mapped reads reads
l :
|
v
*
Peak calling (read quantification) Read splitting
1

Gene Non-coding Novel transcript | Identification of
expression RN and Isoform protein binding
quantification | = characterization detection sites

Statistical tests
for differential
expression

* function only implemented in spliced read mapping tools

Current Opinion in Biotechnology

Figure 1: Computational pipeline for next-generation sequencing data (Mutz, 2013)

The pipeline for the analysis of RNA-seq data (Fig. 1) consists of four steps,

provided that the genome or the transcriptome of the reference organism has been
12



already sequenced. First, raw image data need to be converted into short read
sequences, which are subsequently aligned to the reference genome or
transcriptome. The number of mapped reads is counted and gene expression levels
are calculated by peak calling algorithms. Finally, differential gene expression is

determined using statistical tests (Mutz, 2013).

The main experimental aim in RNA-seq is the identification of differentially
expressed genes (DEG), which is the final step during the downstream data analysis.
DEGs vary significantly in their expression levels between two sets of samples and
are either up- or down-regulated. They can be further classified according to their
biological process, molecular function, cellular localization or biological pathway in
which they participate. Eventually, this allows the functional and biological

interpretation of the experimental results (Sultan and Zubair 2019).

1.2 Poly-Q diseases

Polyglutamine diseases (polyQ) are a family of neurodegenerative disorders
that are caused by CAG trinucleotide expansions in various genes. This mutation
produces a pathogenic protein that contains a longer polyQ chain than the wild type
protein (Orr 2012a). As a result, the mutant protein adopts a different conformation
which is accompanied by a loss of its functionality (Siska, Koliakos, and Petrakis
2015). These prototypical protein misfolding disorders include Huntington disease,
spinobulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and several
spinocerebellar ataxias (Shao and Diamond, 2007). There are approximately 30
different types of SCA identified to date, but the causative mutations have been
identified for only half of them. Six SCAs, including the more prevalent SCA1, SCA2,
SCAS3, and SCAG6 along with SCA7 and SCA17 are caused by expansion of a CAG

repeat that encodes a polyglutamine tract in the affected protein (Orr 2012b).
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Figure 2: Effect of polyQ repeats in protein folding. A) Translation of a polyQ gene with a normal repeat
range, produces protein with a proper folding. B) Pathogenic polyQ repeat expansions lead to
production of a pathogenic protein with an expanded track that is misfolded (Sullivan et al. 2019)

1.2.1 Spinocerebellar ataxia type 1 (SCA1)

The polyQ disease SCAl is a lethal, progressive, autosomal dominant
neurodegenerative disorder caused by a CAG expansion in the ataxin-1 (ATXN1)
gene (Orr et al. 1993). SCAL patients typically display loss of coordination of the
limbs and trunk, unstable gait, dysarthria, and nystagmus (Klockgether, 2011).
Symptons typically manifest in midlife and worsen over the next 10-15 years; there is
no available therapy to delay the onset or slow the progression of the disease
(Zoghbi et al. 1988). A prominent and consistent SCA1 pathological feature is the
loss of the cerebellar Purkinje cells (PCs) (Koeppen, 2005).

SCA1l is caused by an expanded CAG repeat in the ATXN1 gene.
Expansions longer than 39 CAG repeats are pathologic. Longer repeats generally
result in an earlier onset of disease. However, CAT interruptions in the polyQ track of
ATXN1 can alter the penetrance and aggressiveness of the disease (Menon et al.
2013). Despite the fact that polyQ expansions are considered the main cause of
pathology, other factors also affect the progression of SCA1l (Srinivasan and
Shakkottai 2019) Numerous studies have shown that ATXN1 interacts with
transcription regulators, RNA splicing factors, and other nuclear receptors that drive
cerebellar Purkinje cell dysfunction (Lam et al. 2006; Tsuda et al. 2005)

14



Mutant ATNX1 misfolds into an abnormal 3-dimensional conformation and
forms protein inclusions within the nuclei of neurons. As a result, ATXN1 loses its
normal function, an event that damages cells and leads to cell necrosis. It is still
unclear why polyQ-expanded ATXNL1 inclusions are mainly found in the brain and the
spinal cord (central nervous system). Cerebellar neurons that coordinate movement
are particularly sensitive to ATXN1 aggregation. Their gradual dysfunction and loss
causes the characteristic symptoms of SCA1l (Matilla-Duenas, Goold, and Giunti
2008).

1.2.2 Molecular Mechanisms of Neurodegeneration

ATXNL1 is located in both the cytoplasm and nucleus; the wild-type protein is
able to translocate between these two subcellular compartments (Fig 3). The
dynamics of ATXNL1 cellular trafficking is altered by the expansion of the polyQ tract
(Krol et al. 2008). Although mutant ATXN1 is able to enter the nucleus, its ability to
be translocate back into the cytoplasm is dramatically reduced (Irwin et al. 2005).
ATXNL1 interacts with several proteins including the transcription regulators, Capicua
(Lam et al. 2006), Gfi-1 (Tsuda et al. 2005), and the Rora—Tip60 complex (Serra et
al. 2006). ATXNL1 also interacts with  RNA-splicing factors, such as RBM17 (Lim et
al. 2008) and U2AF65 (de Chiara et al. 2009).

g
~3

Transcription RNA Splicing

e

Disease

Figure 3.Contribution of ATXN1 S776 phosphorylation in SCA1 pathogenesis. ATXN1 in the nucleus
interacts with either the transcriptional repressor Capicua or the RNA splicing factor RBM17.
Phosphorylated ATXN1 interacts stronger with RBM17 affecting RNA splicing (Orr 2012a)
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Several lines of evidence indicate that the C-terminal domain of ATXN1, plays
a key role in its function and is associated with SCAl pathogenesis. Ser776,
immediately adjacent to the nuclear localization sequence (NLS) in the C-terminal of
the protein, is an endogenous phosphorylation site (Emamian et al. 2003).
Phosphorylation of S776 stabilizes ATXN1 and may regulate its interaction with other
proteins such as the phospho-serine/phospho-threonine binding protein 14-3-3 (Chen
et al. 2003), a signal transduction regulat (Morrison 2009), the splicing factors
RBM17 (Lim et al. 2008) and the transcriptional repressor Capicua.

The interaction of ATXN1 with RBM17 is enhanced by the polyQ expansion
but is dramatically suppressed in the presence of the phosphorylation-resistant
ATXN1-A776, independently of the length of the polyQ tract (Lim et al. 2008). These
data indicate that phosphorylation of serine 776 is critical for the strength of this

interaction.

The gain of function of the ATXN1-CIC complex leads to neurodegeneration
but also plays an important role to normal brain development and is essential for
survival. Loss of this complex causes a spectrum of neurobehavioral phenotypes
(hyperactivity, intellectual disability and social-behavioral deficits) (Lu et al. 2017).
Also, a recent study shows that the interaction of ATXN1 with CIC is the major driver
of toxicity in SCA1. Data from gain and loss of function models and SCA1 patients
indicate that ATXN1-CIC complex is crucial for the observed toxicity while loss of CIC
in the cerebellum does not result in the degeneration of the Purkinje cells to

(Rousseaux et al. 2018).

1.2.3 Disease models

1.2.3.1 Mouse models

In order to gain insight into the pathogenesis of the SCAL, transgenic mice
expressing the human ATXN1 gene with either a normal or an expanded CAG tract
have been generated. Mice expressing the normal ATXN1 had normal Purkinje cells,
while transgenic animals with the mutant ATXN1 developed ataxia and Purkinje cell
degeneration. These results indicate that a neurodegeneration mouse model can be

established simply by introducing CAG repeat expansions in a wild-type protein
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(Burright et al. 1995). Thus, SCAL transgenic mice provide a tool to identify
pathways associated with SCAlpathogenesis.

Recently, RNA-seq analysis in the cerebellum of SCA1 transgenic mice has
demonstrated gene expression changes that are implicated in disease progression or
the systemic response against it. Gene networks from SCA1 mice with progressive
Purkinje cell loss were constructed and compared to healthy or ataxic mice that lack
a progressive Purkinje cell loss (Ingram et al. 2016). These data indicate that e.g. the

Cck gene is protective against the progression of SCAL.

1.2.3.2 Cell model

Animal models do not indicate molecular changes at the cellular level that are
caused by the gradual aggregation of the mutant polyQ protein. Therefore, there is a
need for cell models that would indicate molecular mechanisms of dysfunction
potentially causing the disease phenotype in mice. A cell model of intranuclear
protein aggregation was generated by the inducible overexpression ATXN1(Q82) in
human mesenchymal stem cells. These cells are resistant to the cytotoxic effects of
the mutant protein and allow the detailed study of its aggregation (Laidou et al.,
unpublished data).

In this study, we assessed the similarity of this SCAL cell model with SCA1
transgenic mice. We also compared them with a human SCA1 cerebellum at the end-
stage of the disease, containing polyQ inclusions. The potential implications of the

commonly identified molecular changes for the pathogenesis of SCAL are discussed.
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2. Materials and Methods

2.1 Dataset summary

The expression level of genes from three different groups (Human, Mice and
Cells) were used for analysis. Expression levels were measured in “fragments per

kilobase of exon model per million mapped reads” (FPKM) (Trapnell et al. 2010).

2.1.1 Dataset of a SCA1 mouse model

In order to identify the differentially expressed genes that changed over time, the
dataset of mice contains the FPKM abundance in six samples. Control in three time
poins: week 5 (FPKM_W5 Q82), week 12 (FPKM_W12_Q82), week 28
(FPKM_W28_Q82) and SCAl trangenic mice in three time points: week 5
(FPKM_WS5_FVB), weekl12 (FPKM_W12 FVB) and week 28 (FPKM_W28 FVB).
The accession number for the RNA-seqdata reported in this paper is

GEO: GSE75778 (Ingram et al. 2016b).

DIOPT (DRSC Integrative Ortholog Prediction Tool) tool was used to map
orthologous genes among mice and human (DIOPT;
http://www.flyrnai.org/diopt). DIOPT is a program that integrates ortholog
predictions from 11 commonly used orthology tools (Hu et al. 2011). Human
orthologs of mice genes were found based on Rank score and the list included only

those genes with Rank score= High

2.1.2 Dataset of a human SCA1 patient

The second dataset includes RNA-seq data from post-mortem human cerebellum
of a 74-year-old female SCA1 patient and an age-/sex-matched healthy individual. All
tissues were obtained from the MRC London Neurodegenerative Diseases Brain
Bank. Gene expression levels measured in FPKM (FPKM.IZ_TR_184_S2. Control
and FPKM.I1Z_TR_185_S3. SCA1) (Laidou et al. unpublished data).

2.1.3 Dataset of cell model

The SCAL cell dataset comes from cells from human mesenchymal cells (MSCs)
inducibly overexpressing polyQ-expanded ATXN1l. This model reproducibly
generates large nuclear inclusions. Gene expression levels were measured in FPKM
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from four samples: at day 0 (FPKM_DO), day 2 (FPKM_D?2), day 5 (FPKM_D5) and
day 10 (FPKM_D10) (Laidou et al. unpublished data).

2.2 Differential Expression Analysis

Gene expression (abundance) was measured by FPKM values for every
transcript and was associated with an individual gene. Each sample was measured in
triplicates with the exception of human cerebellum. The expression level of each
gene is the mean of the FPKM of its triplicates. T-test was applied to compare FPKM
levels between the triplicates of a sample in mice and cells datasets and only genes
showing a consistent expression (p-value<0.05) were used for further analysis. Gene
expression in the human dataset was normalized using the GFOLD tool (Feng et al.
2012). A total of 12 samples were selected to obtain the gene expression patterns.

The samples that were used for the analysis are listed in table 1.

Table 1: Samples for Differential Expression Analysis

Group Time point Samples/Control Samples/Patient
Human - FPKM.IZ_TR_184_S2. Control FPKM.IZ_TR_185_S3. SCA1
Mice Week 5 FPKM_W5_FVB FPKM_W5_Q82
Week 12 FPKM_W12_FVB FPKM_W12_Q82
Week 28 FPKM_W28_FVB FPKM_W28_Q82
Cells Day 2 FPKM_DO FPKM_D2
Day 5 FPKM_DO FPKM_D5
Day 10 FPKM_DO FPKM_D10

For the analysis, differential gene expression was calculated as the FC (Fold

Change) of a SCA1 sample versus its respective control in each time point

FPKM g (SCA1
FC= g( )
FPKM g (control)

FC data were log2 normalized and genes with |IogZFC| > 0.5 were considered as

DEGs. A gene with a positive log2Fold value was considered as upregulated

whereas a negative log2Fold marks down-regulated genes. Differential expression
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analysis was performed in the R version 3.6.1 (RStudio Team 2016) programming

software.

DEGs obtained at day 2 in cells, were compared to the DEGs at week 5 in
mice. Similarly, DEGs at day 5 in cells, were compared to the DEGs at week 12 in
mice and DEGs at day 10 in cells, were compared to the DEGs at week 28 in mice
and to DEGs in human. Also, DEGs in human, were compared only to DEGs at week
28 in mice (Table 2).

Table 2: Comparisons details in Differential Expression Analysis

Comparisons for the Differential Expression Analysis

DEGs at day 2 in cells ~ DEGs at week 5 in mice
DEGs at day 5 in cells ~ DEGs at week 12 in mice
DEGs at day 10 in cells ~ DEGs at week 28 in mice

DEGs at day 10 in cells ~ DEGs at week 28 in mice ~ DEGs in human

In each comparison the common up- or -down regulated genes were used for the
construction of heatmaps and principal component analysis. The clustering was
performed in ggplot2 (version 3.2.1). PCA analysis was performed in ggbiplot
(version 0.55) of R packages (version 3.6.1).

2.3Functional Enrichment Analysis

To identify dysfunctional pathways associated with SCA1 pathogenesis, pathway
enrichment analysis was performed using dysregulated genes from each comparison
using the enrichR package (version 2.1). EnrichR provides an R interface to all
'Enrichr' databases. 'Enrichr' is a web-based tool for analyzing gene sets and returns
any enrichment of common annotated biological features (Kuleshov et al. 2016). Up
and down regulated gene lists were evaluated for significant enrichment against the
KEGG database. KEGG is a database resource for understanding high-level
functions and utilities of the biological system, including the cell, the organism and

the ecosystem (Kanehisa and Goto, 2008).
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Enriched pathways were selected and ranked by the combined score, as
calculated by the EnrichR platform. KEGG pathways with a p-value less than 0.05
that are related to SCA1 were used for the construction of the Protein Protein

Interaction Network.

2.4 Construction of Protein Interactions Networks

The protein products of genes that participate in the commonly dysregulated
pathways per comparison were used for the construction of a protein-protein
interaction network (PPI network) using the String database (Szklarczyk et al. 2017)
in Cytoscape 3.7.2 version (Shannon 2003) . Only genes expressed in the nervous
system (score of 4.8 using the relenat tissue filter)(Santos et al. 2015) and high
confidence interactions (score of 0.950) were used. Unconnected nodes were
deleted.

2.5 Network analysis

The Cystoscope plugin Network Analyzer (Assenov et al. 2008) was used to
compute the centrality parameters of the network. We extracted genes based on four
criteria: a) Degree centrality (DC), b) Betweenness centrality (BC), c¢) Closeness

centrality (CC) and d) Clustering coefficient centrality (CU)

2.5.1 Degree centrality (DC)

All the lines connected by a node are called the degree of the node. The more
connections between a node and other nodes, the greater the node. This indicates
that the node is important for the network. The degree centrality of a node i, is
defined as (Nieminen 1974):

(_.D o ki o Z;’E{i dij
" N—1  N-1

where N is a set of nodes, K is a set of edges and ki is the degree of node i.
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2.5.2 Betweenness centrality (BC)

BC is the number of the shortest pathways of all node pairs through the node
in a network, and the times of one node serves as the bridge of the shortest pathway
between the other two nodes (Zhang 2018). BC refers to the frequency of node i
appearing at nodes j and k. The standard formula is (Freeman 1978)

N —1
Zje(.‘ ‘!r'jl

(:‘ — (fﬂ-}_] —

where i # j # Kk, gjk is the number of the shortest pathways between nodes j and k,
gjk(i) is the number of the shortest pathways containing i, N is the number of nodes,
denominator is two times the logarithmic number of nodes except node i in protein

interaction network.

2.5.3. Closeness centrality (CC)

Also known as tightness centrality, it is based on the calculation of the
average shortest pathway length of a node and all other nodes. CC is calculated as
the reciprocal of the sum of the length of the shortest paths between the node and all
other nodes in the graph. Thus, the more central a node is, the closer it is to all other
nodes (Zhang 2018). The standard formula is (Sabidussi 1966).

. 1 :
C=mohw-p & 2 ik

JEG,j#i keG ki k]

where i # ], dij is the shortest pathway between nodes i and j. If the connections

between the node i and other nodes are very short, the more centrally located.
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2.5.4 Clustering coefficient centrality (CU)

According to graph theory, clustering coefficient represents the degree of
aggregation of nodes in a graph. It is the ratio of adjacent points pairs directly to all
neighboring points in the neighboring points of the node (Watts and Strogatz 1998).

The formula is defined as (Wasserman & Faust 1994):

where n represents the number of edges between all neighbors of node i.
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3. Results

3.1 Differential expression analysis

3.1.1 Differential expression analysis between Cells-Day 2 and Mice-Week 5

To detect common gene expressions changes in the different datasets, we
compared the profiles of mice at week 5 and cells at day 2. A total of 357 genes in
mice at week 5 were selected, based on their consistent expression levels in
biological triplicates (p-value <0.05 and |Log2fc|>0.5). These include 105 up-
regulated and 252 down-regulated genes. Similarly, 687 genes were selected from
the cells dataset at day 2 consisting 279 up-regulated and 408 downregulated genes.
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Figure 4: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at week 5

The log2 fold change is represented on the x-axis, and negative log of p-values is
represented on the y-axis of the volcano plot (Fig 4). Each point represents one
gene, in the mice dataset at week 5. DEGs with |log2FC| > 0.5 are shown in blue
while, nonsignificant genes are shown as red points. The top 20 significant genes are

labeled in the volcano plot.
Figure 5 shows the volcano plot of the cell dataset at day 2 (p-value < 0.05).

DEGs with |log2FC| > 0.5 are shown in blue, while nonsignificant genes in red. The

top 20 significant genes are labeled in the volcano plot.
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Figure 5: Volcano plot of genes (p-value < 0.05) in the cells RNA-seq dataset at day 2

A total of 18 genes were differentially expressed in both datasets (mice at
week 5 and cells at day 2) as shown in Venn diagram (Fig 6). Commonly

dysregulated genes are shown in Table 3.

Figure 6: Venn diagram indicates 18 overlapping genes between DEGs in mice at week 5 and cells at
day 2
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Table 3: List of the common dysregulated genes between week 5 in mice and day?2 in cells

Gene symbol Log2FCcells_D2 LOG2FCmice_w5
GREB1 -8,93002 -0,77085
CRLF1 -6,67426 -0,92048

ATF3 -3,99286 1,074221
CREG1 -3,38309 -0,79244

MPZ -2,89119 -1,5086
PER1 -2,46202 0,538488
TSPAN18 -2,39366 0,618492
COL18A1 -0,61665 -0,93243
IGF2BP1 0,710022 3,643578

AKR1B1 1,400455 0,6668
SPATS2L 1,581184 -0,53053
MMP14 2,2899 0,553661
PRSS12 2,85587 -1,45611
FRMD6 2,895461 0,742413
BCAR1 2,97111 -0,56847
IGFBP5 3,065207 -0,54587
PTGER2 3,359382 -1,24782
THBS1 6,199589 0,504296

Color Key
-5 0 5

FRMDG
MMP14
AKR1B1
SPATS2L
IGFBP5
BCAR1
PTGER2
PRSS12
THBS1
IGF2BP1
ATF3
TSPAN18
PER1
COL18A1
CREG1
MPZ
CRLF1
GREB1

—
|

Log2FC_D2.vs.DO LOG2FCmice_w5

Figure 7: Heatmap showing the log2FC in the expression of the 18 overlapping genes in mice at week 5
and cells at day 2
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Five genes were down-regulated (GREB1, CRLF1, CREG1, MPZ, COL18A1)
while five genes were up-regulated (IGF2BP1, AKR1B1, MMP14, FRMD6, THBS1) in
both datasets as show in Figure 7.

Principal component analysis (PCA) indicates that the overlapping genes
(n=18) distinctively cluster into two different categories, suggesting that they have a

different gene expression pattern in the two datasets (Fig 8).
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Figure 8: Principal Component Analysis (PCA) of gene expression profiles from mice at week 5 and
cells at day 2
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3.1.2 Differential expression analysis between Cells-Day 5 and Mice-Week 12

Next, we compared the RNA-seq datasets of mice at week 12 and cells at
day 5 and studied gene expression patterns. 1204 genes were selected from the
mice dataset at week 5 based on their consistent expression in the biological
triplicates (p-value <0.05 and |Log2FC|>0.5). 398 genes were up-regulated and 593
were down-regulated. Similarly, 789 genes were selected from cells dataset,
consisting 303 up-regulated and 486 down-regulated. Volcano plots of these two
gene groups are shown in Fig 9 and Fig 10 and the top 20 dysregulated are labeled.

DEGs with |log2FC| > 0.5 are shown in blue while, nonsignificant genes are shown in

red.
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Figure 9: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at week 12
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Figure 60 Volcano plot of genes (p-value < 0.05) in cells RNA-seq dataset at day 5

A Venn diagram indicates that 53 genes are common between DEGs of mice

at week 12 and DEGs of cells at day 5 (Fig 11). Overlapping genes are listed in
Table 4.

Figure 71: Venn diagram indicates 53 overlapping genes between DEGs of mice at week 12 and cells at
day 5
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Table 4: List of the common dysregulated genes between mice at week 12 and cells at day 5

Gene Log2FCcells_D5 LOG2FCmice_w12 Gene Log2FCcells_D5 LOG2FCmice_w12
symbol symbol
ACOT9 3,344038 -0,55874 MICALL2 -0,85744 0,700209
ADAMTS1 2,223245 -0,87229 MMP14 2,93528 0,706291
ALDH2 4,857237 0,590464 MXRA7 2,041899 1,578055
ATF3 -2,84088 1,967727 P4HA2 2,352431 -0,63494
BRWD3 -1,96821 -0,64848 PAXBP1 -3,14028 -0,62975
CAMK2A 6,928887 -1,1581 PDPN 1,675112 0,653105
CCND1 1,024861 0,617102 PLCB2 -7,47617 1,108255
CD44 1,062387 0,642703 PLCD3 2,891969 -0,57104
CD74 -4,43277 0,915891 PLEKHG4 -3,20301 -0,75041
CLSTN2 2,238265 -0,94799 PRR11 -2,50013 1,151382
COL18A1 1,660514 -2,04348 RCN3 5,170932 0,631953
COL1A2 6,012376 0,54037 RNASEH2C -1,51229 0,798496
COL5A1 4,820899 -2,42979 RPS17 -1,24759 -0,70547
COL6A2 3,700745 0,89672 RPS27 -1,07739 -0,75195
CREG1 -1,86688 -0,905 SDC1 1,325948 0,755294
CSRP2 5,223708 0,594577 SLC25A37 -1,33823 -0,51211
DGKzZ -1,79097 -0,83163 SLC6A17 -7,60689 -0,54365
EMILIN1 3,238149 1,060482 SVEP1 4,748111 -0,8229
FKBP10 2,679717 0,518734 TAX1BP3 2,22202 0,549636
GNAI1 4,462322 -0,54067 TEAD3 2,003282 0,590779
GPC6 2,993134 -0,52998 THBS1 5,715139 0,788769
GTF3C3 -1,25205 -0,58349 TMEM70 -1,65618 -0,53306
HHIP -2,54431 -0,76642 TNS3 2,878453 -0,61856
IGFBP5 5,161975 -1,43226 TOMM6 -1,60017 0,624994
ITGAL 4,255396 -0,52111 TYMS -2,06716 1,034065
LXN 4,126967 0,503225 VPS13B -0,68987 -0,54891
LYPLAL -0,93064 -0,60209
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As shown in Fig 12, the 53 overlapping genes clustered into two subgroups. A
total of 17 genes were up-regulated and 14 were down-regulated. Principal
component analysis (PCA) was applied to explore relationships in gene expression
among the samples. According to PCA, the samples from mice and cells are

separated, indicating the differences on gene expression (Fig 13).
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3.1:3 Differential expression analysis between Cells-Day 10 and Mice-Week
28

Next, we assessed the similarity in gene expression that might be related with
the final stages of the disease by comparing mice at week 28 and cells at day 10.
After applying a filtering approach for consistent expression among the experimental
triplicates in both samples (p-value < 0.05 and |Log2FC|>0.5), we identified 1063
genes in mice, of which 470 were up-regulated and 593 were down-regulated. A total
of 801 genes were selected from the cell dataset, consisting of 307 up- regulated and

494 down-regulated genes.
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Figure 104: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at week 28

The volcano plots for both samples (Fig 14-15), indicated that the majority of
genes were down-regulated. DEGs with a |log2FC| > 0.5 are shown in blue while,
nonsignificant genes are shown in red. The top 20 significant genes are labeled in

the plots. However, none of them top were shared between the two datasets.
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Figure 115: Volcano plot of genes (p-value < 0.05) in cells RNA-seq dataset at day 10

Figure 126: Venn diagram indicates 45 overlapping genes between DEGs of mice at week 28and cells
at day 10

A Venn diagram (Fig 16) shows that the dataset of mice at week 28 and cells
at day 10 share 45 DEG. These genes are listed in Table 5.
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Table 5: List of the common dysregulated genes between mice at week 28 and cells at day 10

Gene Log2FCcells_D10 FCmice_w28 Gene Log2FCcells_D10 FCmice_w28
symbol symbol
ALDH2 4,01995 1,526289 MASP1 -1,19948 1,509169
ALPK2 1,922516 0,465245 MICALL2 -1,28233 1,420941
ARHGAP35 0,697986 0,68924 MT1X -2,44932 2,814508
ARL4D -0,85719 1,899774 NUP93 -1,48011 0,655368
ATF3 -3,49685 2,592387 NUPR1 1,546291 2,15288
BCARL1 2,345642 0,532016 OGT -2,12476 0,662158
CCDC120 -1,63841 1,421447 OPN3 -1,81258 0,532433
CD74 -3,71045 2,424684 PAXBP1 -2,66235 0,613639
CLDN11 9,81759 1,77024 PLEKHG4 -1,79173 0,568401
COL16A1 4,159534 1,78999 RNASEH2A -2,65635 1,471403
COL5A1 5,302192 0,166235 RPS13 -2,0745 1,642933
COPZ2 2,288441 2,238164 SDC1 1,561245 1,766427
COTL1 6,300548 1,431714 SERPINE2 1,889727 1,548375
CREG1 -1,97608 0,488844 SLC1A5 1,168965 1,929327
CYGB -1,92884 1,528308 SLC20A1 1,616554 0,55206
CYRG61 1,452894 1,881745 SLC25A36 -2,15903 0,657641
DUSP4 -3,56701 0,380268 TMEM119 4,236712 1,648185
FKBP10 2,682255 1,634965 TNC 1,609077 0,108788
HHIP -1,61916 0,580852 TRIM37 -3,05601 0,706137
HMGB2 -3,64112 1,792593 TRIM62 0,903225 2,175274
ITM2C 1,862302 1,582011 VGLL3 1,651481 0,362141
LAPTM5 -9,7438 1,57986 WDR62 -4,43234 1,623979
LXN 3,443682 1,657066

A heatmap was generated from the common DEGs between the two datasets

(Fig 17). The Pearson correlation was used to compute distances between genes

and samples. Each column corresponds to a dataset and each row to a specific

gene. As shown, 22 common genes were up-regulated in both mice and cells while

no common gene was down-regulated in both datasets.



The PCA plot showed that the common genes from each dataset, clustered
separately, which indicates that their expression pattern in cells and mice was
different (Fig 18).
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3.1.4 Differential expression analysis between Cells-Day 10, Mice-Week 28
and post-mortem human cerebellum

Finally, we compared the RNA-seq datasets from mice and cells at the third
time point with the RNA-seq data from a human SCA 1 patient at the end stage of the
disease. Due to the lack of biological replicates, gene expression levels in the human
tissue were normalized using the GFOLD tool. In total, 2.683 genes were selected
with |log2fc| > 0.5. The majority of the genes were down-regulated as also observed

in the cells and mice datasets. Only 791 were up-regulated as shown in Fig 19.
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Figure 160: Venn diagram showing 10 overlapping genes between DEGs of mice at week 28, cells at
day 10 and human cerebellum at the end stage of the disease

36



Table 6: List of the common dysregulated genes between mice at week 28, cells at day 10 and human
cerebellum at the end stage of disease

Gene symbol Log2FCcells_D10 LOG2FCmice_w28 Log2FChuman
ALDH2 4,01995 0,610028 -0,90557
BCAR1 2,345642 -0,91046 -0,93997
COTL1 6,300548 0,517743 -1,2512
CYGB -1,92884 0,611935 -2,32192
ITM2C 1,862302 0,66176 -1,99668
MICALL2 -1,28233 0,506847 -1,16066
MT1X -2,44932 1,492883 -1,55837
OGT -2,12476 -0,59475 1,22999
TRIM37 -3,05601 -0,50198 0,858714
TRIM62 0,903225 1,121197 -1,11581

Venn diagram in Fig 20 shows the total number of DEGs per dataset. The

common dysregulated genes in all datasets are also listed in Table 6.

The heatmap in Fig 21 shows the expression values of the 10 common genes
between the mice, cells and human datasets. None of them was dysregulated at the
same direction in all three datasets, based on Pearson’s correlations coefficients.
PCA plot (Fig 22) indicates that the datasets cluster into three different categories,

indicating that their gene expression pattern was different.
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3.2. Functional enrichment analysis

Very few common genes were identified in the comparisons between the
different datasets. We therefore, attempted to identify common dysfunctional
pathways by performing pathway enrichment analysis in each individual dataset
using the significantly DEGs per time point. Then, the components of the common
dysregulated pathways per comparison were used for the construction of perturbed

protein Interaction networks.

3.2.1 Enrichment analysis in Cells-Day 2 and in Mice-Week 5

The 687 DEGs from the cells dataset at day 2 were categorized using the
KEGG database. This analysis identified 28 pathways (p-value < 0.05) including
Ribosome, ECM-receptor interaction, Alzheimer's disease, Focal adhesion and PI3K-
Akt signaling pathway. Similarly, the 357 DEGs from the mice at week 5 were
categorized in 18 pathways (p-value < 0.05) including: Aldosterone synthesis and
secretion, Circadian entrainment, Protein digestion and absorption, Renin secretion,
Cholinergic synapse, ECM-receptor interaction, Mucin type O-Glycan biosynthesis,
PI3K-Akt signaling pathway. The two datasets shared three common dysregulated
pathways, namely Protein digestion and absorption, ECM-receptor interaction and
PI3K-Akt signaling pathway. Table 7 shows the common pathways, the number of
identified components of the pathways and the p-value of the enrichment analysis in

each dataset.

Table 7: Common dysregulated pathways between cells at day 2 and mice at week 5

CELLS MICE

Term overlap p-value overlap p-value

Protein 8/90 0,011802818 6/90 0,005421201
digestion and
absorption

ECM-receptor 14/82 6,59884E-07 5/82 0,015525499
interaction

PI3K-Akt 26/341 0,000123607 12/341 0,019696666
signaling
pathway
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Figure 193: Barplot showing the common dysregulated pathways in cells at day 2 (red color) and mice
at week 5 (blue color)

Figure 23 shows the common dysregulated pathways in two datasets.

Pathways are shown on the x-axis while, -log of p-values on the y-axis.

3.2.2 Enrichment analysis in Cells-Day 5 and in Mice-Week 12

A total of 789 DEGs from cells at day 5 were categorized in 36 pathways
(p<0.05), including ECM-receptor interaction, Focal adhesion, Protein digestion and
absorption, Proteoglycans in cancer, Regulation of actin cytoskeleton, PI3K-Akt
signaling pathway ,Ribosome, DNA replication, Fatty acid biosynthesis, and Cell
cycle. Likewise, the 1204 DEGs from mice at week 12 were categorized in 58
pathways (p<0.05), including: Calcium signaling pathway, Ribosome, ECM-receptor
interaction, Neuroactive ligand-receptor interaction, Focal adhesion, Alzheimer's
disease, Rapl signaling pathway, Protein digestion and absorption, PI3K-Akt
signaling pathway and Parkinson's disease. The two datasets share eight common
dysregulated pathways as it is shown in Table 8 and Fig 24.
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Table 8: Common dysregulated pathways between cells at day 5 and mice at week 12

CELLS MICE
Term overlap p-value overlap p-value
Ribosome 38/137 4,1454E-22 17/137 0,003367322
ECM-receptor 18/82 2,26798E-09 12/82 0,003378597
interaction
Focal adhesion 24/202 1,43813E-06 21/202 0,009694847
PI3K-Akt 29/341 8,69097E-05 30/341 0,022386223
signaling
pathway
Protein 12/90 0,000205078 11/90 0,01826595
digestion and
absorption
Alzheimer's 15/168 0,002640443 18/168 0,011868882
disease
Rapl signaling 16/211 0,009370345 21/211 0,015346232
pathway
Parkinson's 11/142 0,024534867 14/142 0,045101274
disease

Ribosome
Rap1 signaling pathway

Protein digestion and absorption
Group

- Cells/Day5
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Term

Parkinson's disease

Focal adhesion
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o
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Figure 204: Barplot showing the common dysregulated pathways incells at day 5 (red color) and mice at
week 12 (blue color)



3.2.3 Enrichment-analysis in Cells-Day 10 and in Mice-Week 28

The 801 DEGs from the cells dataset at day 10 participate in 32 pathways
(p<0.05) including Ribosome, ECM-receptor interaction, Focal adhesion, Alzheimer's
disease, PI3K-Akt signaling pathway, Cell cycle, Rapl signaling pathway,
Parkinson's disease, AGE-RAGE signaling pathway.1.063 DEGs from mice at week
28 were categorized in 32 pathways containing: Rapl signaling pathway, Regulation
of actin cytoskeleton, Phospholipase D signaling pathway, AGE-RAGE signaling
pathway in diabetic complications, PI3K-Akt signaling pathway, ECM-receptor
interaction and Focal adhesion. Table 9 shows the common pathways, the number
of identified components of the pathway and the p-value of the analysis in each
dataset. Figure 25 shows the common dysregulated pathways on the x-axis while -

log of p-values on the y-axis.

Table 9: Common dysregulated pathways between cells at day 10 and mice at week 28

CELLS MICE

Term overlap p-value overlap p-value

AGE-RAGE 9/101 0,019702126 11/101 0,018299382
signaling
pathway

ECM-receptor 13/82 2,08937E-05 9/82 0,029735026
interaction

Focal adhesion 21/202 6,22556E-05 17/202 0,041428432

PI3K-Akt 26/341 0,001305403 27/341 0,025640402
signaling
pathway

Protein 8/90 0,027403072 9/90 0,049522938
digestion and
absorption

Rapl signaling 16/211 0,010838329 22/211 0,001997927
pathway

Regulation of 18/214 0,002434057 22/214 0,00238481
actin
cytoskeleton
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Figure 215: Barplot showing the common dysregulated pathways in cells at day 10 (red color) and mice
at week 28 (blue color)

3.2.4 Enrichment analysis in Cells-Day 10, in Mice-Week 28 and in Human

To further explore the biological significance of DEGs in mice at week 28 and
cells at day 10 datasets, we analyzed the 2.683 DEGs in human SCA1 cerebellum at
the end stage of the disease. The analysis identified 94 pathways (p<0.05) including:
MAPK signaling pathway, Focal adhesion, Regulation of actin cytoskeleton,
Neurotrophin signaling pathway, Glutamatergic synapse, PI3K-Akt signaling
pathway, Rapl signaling pathway, AGE-RAGE signaling pathway in diabetic
complications and cAMP signaling pathway. The common dysfunctional pathways
between the three datasets are listed in Table 10 while, the bar plot (Fig. 26) shows
these pathways on x-axis and -log10 of p-values on y-axis.



Table 10: Common dysregulated pathways between cells at day 10, mice at week 28 and in human
SCAL1 cerebellum at the end stage of the disease

CELLS MICE HUMAN
Term overlap p-value overlap p-value overlap p-value
AGE-RAGE 9/101 0,019702126 | 11/101 0,018299382 | 26/101  0,000659867
signaling
pathway
Focal adhesion 21/202 6,22556E-05 | 17/202 0,041428432 | 55/202  1,36445E-07
PI3K-Akt 26/341 0,001305403 | 27/341 0,025640402 | 68/341 0,000461597
signaling
pathway
Rapl signaling 16/211 0,010838329 | 22/211 0,001997927 | 46/211  0,000522729
pathway
Regulation of 18/214 0,002434057 | 22/214 0,00238481 | 53/214  5,24569E-06
actin
cytoskeleton
Regulation of actin cytoskeleton
Rap1 signaling pathway
Group
§ PI3K-Akt signaling pathway = Ezlrl:::ayw

AGE-RAGE signaling pathway in diabetic complications

Focal adhesion

o

2

4 6

-log10(p-value)

B vicenweekas

Figure 226: Barplot showing the common dysregulated pathways in cells at day 10 (red color), mice at
week 28 (blue color) and human SCAL1 cerebellum at the end stage of disease (green color)
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3.3 Construction of Protein Interaction Networks

PPIs networks provide a tool to study system biology and may give insights into
the cellular molecular mechanism that are affected in a disease condition. In the
present study, genes that participate in the commonly dysregulated pathways per
comparison were used for the construction of protein interaction networks (shown
below).

3.3.1 Protein Interaction Network at early stage of protein aggregation
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Figure 237: Protein Interaction Network of at early stage of protein aggregation

The PPI network at the early stage of protein aggregation in cells and mice
(cell dataset at day 2 and mouse dataset at week 5) consists of 65 nodes (genes)
and 131 edges (Fig. 27). The pathway in which each gene participates is shown in

color. Their majority are components of PI3K-Akt signaling pathway.
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3.3.2 Protein Interaction Network at middle stage of aggregation
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Figure 248: Protein interaction network at middle stage of aggregation

Figure 28 shows the PPI network at the middle stage of protein aggregation

(cells at day 5 and mice at week 12). It consists of 177 nodes (genes) and 1241

edges. The bold nodes represent the common DEGs of the network in the cells and

mouse RNA-seq datasets. Thus, CCND1, CD44, GNAI1 genes are commonly

dysregulated among cells and mouse datasets. CCND1 genes encodes the cyclin D1

protein which participates in PI3K-Akt signaling pathway and Focal adhesion

pathways and is up-regulated in both cells and mice datasets. CD44 participates in

ECM-receptor interaction pathway and is commonly up-regulated in our data. GNAI1

is component of Parkinson's disease and Rap1l signaling pathways.
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3.3.3 Protein Interaction Network at late stage of protein aggregation (cell and
mouse datasets)
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Figure 259: Protein Interaction Network at late stage of protein aggregation (cell and mouse datasets)

At the late stage of protein aggregation, the PPl network consists of 143
nodes (genes) and 402 edges (Fig 29). The common DEGs in cell and mouse
datasets are presented as bold. These are: BCAR1 and AGHGAP35 which are both
up-regulated in our data and are part of the Focal adhesion and Regulation of actin

cytoskeleton pathways.
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3.3.4 Protein Interaction Network at late stage of protein aggregation (cell,
mouse and human datasets)
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Figure 260: Protein Interaction Network at late stage of protein aggregation (cell, mouse and human
datasets)

At the late stage of the disease, the PPI network of the commonly
dysregulated pathways between cell, mouse and SCA1 patient, consists 167 nodes
(genes) and 956 edges (Fig 30). BCARL1 (shown in bold) is a common DEG gene in
all RNA-seq datasets (cells, mice, human). BCAR1 encodes an adaptor protein
which participates in Rapl signaling, Focal adhesion and Regulation of actin

cytoskeleton pathways.
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Figure 271: Protein Interaction Network at all early, middle and late stage of protein aggregation (cell

and mouse datasets)

Figure 31 shows a total PPI network at early, middle and late stages of the

protein aggregation among cell and mouse datasets. Yellow nodes represent the

DEGs at all stages of protein aggregation, green nodes the DEGs at middle stage
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and purple nodes the DEGs at the late stage of the protein aggregation. Common
DEGs among network and RNA-seq datasets (cell and mouse) are presented as bold
nodes. These genes are CCND1, CD44, GNAI1, BCAR1 and AGHGAP35.

3.3.6 Network analysis

3.3.6.1 Degree Centrality

The relatively high degree of a nodeindicates that this protein interacts with
several proteins. RPS6, CDC42, RPL15 and RPS3 have the highest DC (Table 11).
Most of the proteins with the highest DC are components of the Ribosome pathways.

Table 11: Top 10 nodes (proteins) with higher DC value

Gene Symbol Degree Centrality Gene Symbol Degree Centrality
RPS6 45 RPL3 43
CDCA42 44 RPL13A 42
RPL15 44 RPL37A 42
RPS3 44 RPL6 42
RPSA 43 RPS3A 42

3.3.6.2 Betweenness Centrality

The top five nodes are CDC42, ATP5B, ATP5A1, MTOR, and DOCK4 (Table
12), indicating that these proteins play a pivotal role in the network. CDC42, has the
highest value/status of “mediator.” The shortest pathways of many proteins pass

through CDC42, which regulates the flow of information through the network.

Table 12: Top 10 nodes (proteins) with higher BC value

Gene Symbol Betweenness Gene Symbol Betweenness
Centrality Centrality
CDC42 0,4064438 UQCRFS1 0,12572079
ATP5B 0,20698295 GNB1 0,10902259
ATP5A1 0,16889568 RHOA 0,10262978
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MTOR 0,14118029

DOCK4 0,12641788

ATP1Al 0,1
ATP1A2 0,1

3.3.6.3. Closeness Centrality

Closeness Centrality indicates the degree of proximity between a protein and
other proteins. AGRN and DAG1 have the largest CC value in this network (Table
13). These proteins are more closely associated with other proteins, have the

average shortest pathway to other proteins as they are in the center at the center of

the network. The CC value of ATP proteins are also high.

Table 13: Top 10 nodes (proteins) with higher CC value

Gene Symbol Closeness Gene Symbol Closeness
Centrality Centrality
AGRN 1 ATP1A3 0,71428571
DAG1 1 ATP1B1 0,71428571
UQCRFS1 0,71875 ATP1B2 0,71428571
ATP1A1 0,71428571 ATP1B3 0,71428571
ATP1A2 0,71428571 ATPS5B 0,6969697

3.3.6.4 Clustering coefficient

The clustering coefficient represents the dense connection between some
nodes. Node 1 is connected to the nodes 2 and 3, therefore there is a high possibility
that nodes 2 and 3 are also connected. The CU value of several genes (e.g.
SLC25A6, SDHD, APC, GIT1, and MYH10) is equal to 1 (Table 14). It shows that the

two neighbors interact with each other, forming a group structure which is connected

with each other closely.

Table 14: Top 10 nodes (proteins) with higher CU value

Gene Symbol Clustering Gene Symbol Clustering
coefficient coefficient
APC 1 PFN2 1
GIT1 1 BAIAP2 1
SLC25A6 1 PAK4 1
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SDHD 1 PAKY 1
MYH10 1 YWHAQ 1

Table 15 lists the common DEGs among cell and mouse datasets and their
centrality values. ARHGAP35, BCAR1, CCND1, CD44 are commonly up-regulated in
RNA-seq datasets.

Table 15: Common DEGs among cell and mouse datasets and their centrality values

Gene Symbol LOG2FC cell LOG2FC mouse Degree Centrality Betweenness Closeness Clustering
dataset dataset Centrality Centrality coefficient
ARHGAP35 0,697986 0,68924 3 0,00019704 0,32 0,66666667
BCAR1 2,345642 0,532016 7 0,00155489 0,34188034 0,61904762
CCND1 1,024861 0,617102 6 0,01002992 0,3030303 0,13333333
CD44 1,062387 0,642703 3 0,0307749 0,27322404 0
GNAI1 4,462322 -0,54067 11 0,00024472 0,25094103 0,67272727
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4. Discussion

In the current study, we have analyzed RNA-seq datasets obtained from three
SCAl-related samples, a cell and a mouse model and human SCA1 cerebellum.
These groups were compared in different stages of protein aggregation in order to
find similarities in terms of mechanisms that lead to the disease. Following the
identification of significant DEGS, we constructed heatmaps and PCAs for each
comparison, performed functional enrichment analysis to study the similarities
between them and generated protein-protein interaction networks. The number of
DEGs were different among the comparisons. The lowest and highest number of
DEGs were identified in the comparison between mice at week 28, cells at day 10,
human (n=10) and mice at week 12 and cells n day 5 respectively (n=53). This
observation highlights that the number of the overlapping DEGs between samples

was low.

In order to study disease progression, we found genes that are commonly
dysregulated. ATF3 and CREG1 genes are commonly dysregulated at all stages of
the protein aggregation. ATF3, a gene for activating transcription factor 3, is also was
overexpressed in Huntington cell line (Liang et al. 2009), while CYGB is related with
Huntington disease (Kocerha et al. 2013; Mattis et al. 2012). IGFBP 5, MMP14 and
THBS1 genes were dysregulated at the early and middle stage of SCAL. Several
lines of evidence suggest a down regulation of IGFBP 5 in two spinocerebellar ataxia
(SCA) mouse models (for SCA1 and SCA7) (Sanz-Gallego et al. 2014), in mouse
model (SCA17) (Friedman et al. 2007) and in Purkinje cells (Ramachandran et al.
2014). MMP14 gene was up-regulated in our results, and also dysregulated in
Huntington cellular model systems (Bano et al. 2011). Genes such as ALDH2 and
MICALL2 are dysregulated at the middle and late stage, while BCAR1, COTL1,
CYGB, ITM2C, MT1X, OGT, TRIM37, TRIM62 genes are dysregulated only at the

late stage of the disease among cell, mouse and human SCA1 patient datasets.

ATXN1 is a transcriptional regulator. Therefore, papers describe the
transcriptional effect of polyQ-expanted ATXN1 in cerebellum. These studies have
identified that various biological pathways, including glutamate signaling, calcium
signaling, and long-term depression, are enriched in this tissue at different time-
points (Crespo-Barreto et al. 2010; Cvetanovic et al. 2011; Gatchel et al. 2008; Serra
et al. 2004). Here, we also aimed to determine the biological role of DEGs and

identify commonly affected cellular processes in all datasets.
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In our analysis, we identified that protein digestion and absorption, ECM-receptor
interaction and PI3K-Akt signaling pathways were dysregulated in all time points
between cells and mice datasets. The dysregulation of the PI3K-Akt pathway by
polyQ inclusions is not unusual (Matilla-Duefas et al. 2010). In fact, proteins
oligomers were shown to dysregulate cell cycle through the PI3K-Akt pathway
(Bhaskar et al. 2009) which promotes necrotic cell death (Wu et al. 2009).
Descriptive studies of human neurodegenerative disorders and experimental studies
of animal models of neurodegeneration have begun to define potential mechanisms
of ECM disruption that can lead to synaptic and neuronal loss. Protein aggregation
can be associated with ECM alterations that would result to co-deposition of ECM
components. Those ECM alterations can result in loss of protective perineuronal nets
(PNNs) and increased susceptibility to cell death (Bonneh-Barkay and Wiley 2009).

The ribosome, Alzheimer's and Parkinson's related pathways were dysregulated
in the middle stage of protein aggregation (day5-week12). Ribosomal protein genes,
are also highly expressed in Huntington mouse models (Carnemolla et al. 2009). In
polyQ neurodegenerative diseases, the expanded CAG RNAs interact directly with
nucleolin (NCL), a protein that regulates rRNA transcription (Tsoi et al. 2012).
Regulation of actin cytoskeleton and AGE-RAGE signaling pathway were
dysregulated at the end stage of the disease. As previous studies have shown RAGE
is upregulated in the neurodegenerative process of Huntington disease and correlate
with cell death (Deyts et al. 2009; Anzilotti et al. 2012), as huntingtin protein could
bind to the RAGE leading to neuronal cell death. Dysregulation of actin dynamics
plays a key role in neurodegenerative disorders (Eira et al. 2016). The actin
cytoskeleton is strongly regulated by signaling pathways, namely by the Rho GTPase
family. In Huntington disease huntingtin protein interacts with several players of the

Rho GTPase signaling pathways (Tourette et al. 2014).

Protein Interaction networks provide a tool to study the cellular molecular
mechanism that are affected in a disease condition The protein products of genes
that participate in the commonly dysregulated pathways per comparison were used
for the construction of a protein-protein interaction network During the last years,
network studies have been applied to biological data indicating that the degree of
connectivity is a key property of any network (Jeong et al. 2001). The most common
approach to identify key nodes in a network is to search for the most connected
nodes (hubs). The underlying assumption was that these hubs could be critical to

explain the pathogenesis of diseases. In our results, CDC42 and genes that are parts
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of the Ribosome pathways have the higher DC. Previous studies have shown that
CDC42 appears to function as an initiator of neuronal cell death (Bazenet, Mota, and
Rubin 1998) and it is involved in the pathology of Huntington’s disease (Li and Li
2004), while ribosomal proteins have been shown to alter the aggregation of polyQ

proteins in animal models (Williams and Paulson 2008; Nollen et al. n.d.)

Betweenness Centrality is another key indicator that demonstrates nodes which
may be relevant in a network (Yu et al. 2007; Joy et al. 2005). In our data, CDC42,
the protein with the higher DC, has also the higher BC, indicating that this node play
an important role in the network. Proteins with higher CC values (e.g. AGRN, DAG1,
UQCRFS1 and ATP proteins) are components of the three clusters in network. In the
large cluster, the node with the higher CC is the CDC42 protein. Furthermore, within
the interaction network, essential proteins also tend to be more cliquish (as
determined from the clustering coefficient) (Yu et al. 2004). Proteins with high CU
values are APC and GIT1 which are related with ESBM (Bott et al. 2016) and
Huntington diseases (Goehler et al. 2004) respectively.
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5. Conclusion

Our study focuses on the comparison of three RNA-seq datasets from SCAl
related samples; namely, a cell model, a mouse model and a human SCAl
cerebellum, in order to find similarities in terms of mechanisms that lead to the
disease. Following the identification of significant DEGS, we constructed heatmaps
and PCAs for each comparison, performed functional enrichment analysis and
generated protein-protein interaction networks. The pathways that found to be
commonly dysregulated among the datasets at all the stages of protein aggregation
are: protein digestion and absorption, ECM-receptor interaction (cells, mice) and
PI3K-Akt (cells, mice, human) signaling pathway. Further studies are required to
examine the detailed molecular mechanisms, underlying the various biological effects
of the components of these pathways in SCAL.
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