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Abstract 
 

Next Generation Sequencing has created a huge amount of data - data that 

has internal dependencies and interactions. There are currently many tools that allow 

the primary analysis of NGS data. In this diploma thesis, a tool in R was constructed 

which allow: (a) the identification of correlations between different genes in 

transcriptional data, and (b) the analysis of differences in protein interaction networks 

of human disease models. 

The polyglutamine (polyQ) neurodegenerative disease spinocerebellar ataxia 

type 1 (SCA1) is a lethal and progressive disorder caused by CAG expansions in the 

ataxin-1 (ATXN1) gene. Mutant ATXN1 containing more than 39 CAG repeats 

encodes the production of a pathogenic protein with an abnormal 3-dimensional 

conformation. The misfolded protein forms inclusions within the nuclei of neurons and 

sequesters other nuclear proteins, as well. As a result, proteins in the inclusions, 

including ataxin-1, lose their normal function, an event that causes cytotoxicity and 

leads to cell necrosis.  

Here, we aim in the identification of disease modules within protein interaction 

networks and molecular mechanisms of dysfunctions that are related to SCA1 

progression. To this end, we analyzed RNA-seq data from a cell and a mouse model 

of SCA1 at three discrete time points of protein aggregation and compared them with 

similar data from the cerebellum of a SCA1 patient containing polyQ inclusions. We 

show that the pathways protein digestion and absorption, ECM-receptor interaction 

(cells-mice) and PI3K-Akt (cells-mice-patient) signaling are commonly dysregulated 

in all datasets.  

 

 

 

 

Keywords: RNA-seq analysis, SCA1, Differential expression analysis, Protein 

interaction network 
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Πεξίιεςε 
 

Οη ηερλνινγίεο αιιεινχρεζεο λέαο γεληάο (Next Generation Sequencing) 

έρνπλ δεκηνπξγήζεη έλα ηεξάζηην φγθν δεδνκέλσλ – δεδνκέλα ηα νπνία ελέρνπλ 

εζσηεξηθέο εμαξηήζεηο θαη αιιειεπηδξάζεηο. Απηή ηε ζηηγκή ππάξρνπλ πνιιά 

εξγαιεία πνπ επηηξέπνπλ ηελ πξσηαξρηθή αλάιπζε δεδνκέλσλ NGS. Σηα πιαίζηα 

απηήο ηεο δηπισκαηηθήο θαηαζθεπάζηεθε έλα εξγαιείν ζηελ R ην νπνίν επηηξέπεη: (α) 

ηελ αλεχξεζε ζπζρεηίζεσλ κεηαμχ δηαθνξεηηθψλ γνληδίσλ ζε κεηαγξαθηθά δεδνκέλα 

θαη (β) ηελ αλάιπζε ησλ δηαθνξψλ ζε πξσηετληθά δίθηπα αιιειεπίδξαζεο απφ 

κνληέια αλζξψπηλσλ λνζεκάησλ.   

Η λσηηαίν-παξεγθεθαιηδηθή αηαμία ηχπνπ 1 (SCA1) είλαη κηα ζαλαηεθφξα 

λεπξνεθθπιηζηηθή αζζέλεηα πνιπγινπηακίλεο (polyQ) πνπ πξνθαιείηαη απφ ηελ 

επέθηαζε ηξηλνπθιενηηδίσλ CAG ζην γνλίδην ηεο ataxin-1 (ATXN1). H κεηαιιαγκέλε 

ΑΤΧΝ1 πεξηέρεη πεξηζζφηεξεο απφ  39 επαλαιήςεηο CAG θαη θσδηθνπνηεί ηελ 

παξαγσγή κηαο παζνινγηθήο πξσηεΐλεο κε ιαλζαζκέλε ηξηζδηάζηαηε δηακφξθσζε. 

Η παζνινγηθή πξσηεΐλε ζρεκαηίδεη έγθιεηζηα ζηνλ ππξήλα ησλ λεπξψλσλ ηα νπνία 

πεξηιακβάλνπλ θαη άιιεο ππξεληθέο πξσηεΐλεο. Απηφ έρεη σο απνηέιεζκα ηελ 

απψιεηα ηεο θπζηνινγηθήο ηνπο ιεηηνπξγίαο, ζπκπεξηιακβαλνκέλνπ θαη ηεο ATXN1, 

γεγνλφο πνπ πξνθαιεί θπηηαξνηνμηθφηεηα θαη λέθξσζε ησλ θπηηάξσλ. 

Γη‟ απηφ ην ζθνπφ αλαιχζακε δεδνκέλα RNA-seq απφ έλα θπηηαξηθφ θαη έλα 

δσηθφ κνληέιν ηεο αζζέλεηαο ζε ηξεηο δηαθξηηέο θάζεηο ηεο πξσηετληθήο 

ζπζζσκάησζεο  θαη ηα ζπγθξίλακε κε αληίζηνηρα δεδνκέλα απφ ηελ παξεγθεθαιίδα 

ελφο αζζελή πνπ πεξηέρεη πξσηετληθά έγθιεηζηα polyQ. Μνλνπάηηα  φπσο ε πέςε θαη 

απνξξφθεζε πξσηετλψλ, ε αιιειεπίδξαζε κεηαμχ ηεο εμσθπηηαξηθήο κήηξαο θαη 

ησλ ππνδνρέσλ ηεο (θπηηαξηθφ θαη δσηθφ κνληέιν), θαζψο  θαη ην ζεκαηνδνηηθφ 

κνλνπάηη PI3K-Akt είλαη απνξπζκηζκέλα θαη ζηηο ηξεηο νκάδεο δεδνκέλσλ RNA-seq 

(θπηηαξηθφ, δσηθφ κνληέιν θαη αζζελήο).  

 

Λέμεηο θιεηδηά: Αλάιπζε RNA-seq, SCA1, Αλάιπζε δηαθνξηθήο έθθξαζεο, 

Πξσηετληθφ δίθηπν αιιειεπίδξζεο.  

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

6 

 

Context 
 

Abstract .................................................................................................................................... 4 

Πεξίιεςε .................................................................................................................................. 5 

Table of figures ....................................................................................................................... 8 

Table of tables ....................................................................................................................... 10 

Acknowledgments ................................................................................................................. 11 

1. Introduction .................................................................................................................... 12 

1.1 NGS analysis .............................................................................................................. 12 

1.2 Poly-Q diseases ......................................................................................................... 13 

1.2.1 Spinocerebellar ataxia type 1 (SCA1) ...................................................... 14 

1.2.2 Molecular Mechanisms of Neurodegeneration ......................................... 15 

1.2.3 Disease models ....................................................................................... 16 

2. Materials and Methods ................................................................................................. 18 

2.1 Dataset summary ....................................................................................................... 18 

2.1.1 Dataset of a SCA1 mouse model ............................................................ 18 

2.1.2 Dataset of a human SCA1 patient ........................................................... 18 

2.1.3 Dataset of cell model ............................................................................... 18 

2.2 Differential Expression Analysis .............................................................................. 19 

2.3 Functional Enrichment Analysis ............................................................................... 20 

2.4 Construction of Protein Interactions Networks ...................................................... 21 

2.5 Network analysis ........................................................................................................ 21 

2.5.1 Degree centrality (DC) ............................................................................. 21 

2.5.2 Betweenness centrality (BC) ................................................................... 22 

2.5.3. Closeness centrality (CC) ....................................................................... 22 

2.5.4 Clustering coefficient centrality (CU) ........................................................ 23 

3. Results ............................................................................................................................ 24 

3.1 Differential expression analysis ............................................................................... 24 

3.1.1 Differential expression analysis between Cells-Day 2 and Mice-Week 5 . 24 

3.1.2 Differential expression analysis between Cells-Day 5 and Mice-Week 12 28 

3.1.3 Differential expression analysis between Cells-Day 10 and Mice-Week 28

 ......................................................................................................................... 32 

3.1.4 Differential expression analysis between Cells-Day 10, Mice-Week 28 and 

post-mortem human cerebellum ....................................................................... 36 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

7 

 

3.2. Functional enrichment analysis .............................................................................. 39 

3.2.1 Enrichment analysis in Cells-Day 2 and in Mice-Week 5 ......................... 39 

3.2.2 Enrichment analysis in Cells-Day 5 and in Mice-Week 12 ....................... 40 

3.2.3 Enrichment analysis in Cells-Day 10 and in Mice-Week 28 ..................... 42 

3.2.4 Enrichment analysis in Cells-Day 10, in Mice-Week 28 and in Human .... 43 

3.3 Construction of Protein Interaction Networks ................................................... 45 

3.3.1 Protein Interaction Network at early stage of protein aggregation ............ 45 

3.3.2 Protein Interaction Network at middle stage of aggregation ..................... 46 

3.3.3 Protein Interaction Network at late stage of protein aggregation (cell and 

mouse datasets) ............................................................................................... 47 

3.3.4 Protein Interaction Network at late stage of protein aggregation (cell, 

mouse and human datasets) ............................................................................ 48 

3.3.5 Protein Interaction Network at all early, middle and late stage of protein . 49 

Aggregation ...................................................................................................... 49 

3.3.6 Network analysis ..................................................................................... 50 

4. Discussion ........................................................................................................ 53 

5.     Conclusion…..………………………………..……………………………………..57 

References............................................................................................................................. 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

8 

 

Table of figures 
 

Figure 1: Computational pipeline for next-generation sequencing data (Mutz, 2013) 12 

Figure 2:  Effect of polyQ repeats in protein folding. A) Translation of a polyQ gene 

with a normal repeat range, produces protein with a proper folding. B) Pathogenic 

polyQ repeat expansions  leads to production of a pathogenic protein with an 

expanded track that is misfolded  (Sullivan et al. 2019). .......................................... 14 

Figure 3.Contribution of ATXN1 S776 phosphorylation in SCA1 pathogenesis. 

ATXN1 in the nucleus interacts with either the transcriptional repressor Capicua or 

the RNA splicing factor RBM17. It is the RBM17.Phosphorylated ATXN1 interacts 

stronger with RBM17 affecting RNA splicing (Orr 2012a). ....................................... 15 

Figure 4: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at 

week 5..................................................................................................................... 24 

Figure 5: Volcano plot of genes (p-value < 0.05) in the cells RNA-seq dataset at day 

2 .............................................................................................................................. 25 

Figure 6: Venn diagram indicates 18 overlapping genes between DEGs in mice at 

week 5 and cells at day 2 ........................................................................................ 25 

Figure 7: Heatmap showing the log2FC in the expression  of the 18 overlapping 

genes in mice at week 5 and cells at day 2 ............................................................. 26 

Figure 8: Principal Component Analysis (PCA) of gene expression profiles from mice 

at week 5 and cells at day 2 .................................................................................... 27 

Figure 9: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at 

week 12 ................................................................................................................... 28 

Figure 10: Volcano plot of genes (p-value < 0.05) in cells RNA-seq dataset at day 5

 ................................................................................................................................ 29 

Figure 11: Venn diagram indicates 53 overlapping genes between DEGs of mice at 

week 12 and cells at day 5 ...................................................................................... 29 

Figure 12: Heatmap showing the log2FC expression  of the 53 overlapping genes in 

mice at week 12 and cells at day 5 .......................................................................... 31 

Figure 13: Principal Component Analysis (PCA) of gene expression profiles from 

mice at week 12 and cells at day 5 .......................................................................... 31 

Figure 14: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at 

week 28 ................................................................................................................... 32 

Figure 15: Volcano plot of genes (p-value < 0.05) in cells RNA-seq dataset at day 10

 ................................................................................................................................ 33 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

9 

 

Figure 16: Venn diagram indicates 45 overlapping genes between DEGs of mice at 

week 28and cells at day 10 ..................................................................................... 33 

Figure 17: Heatmap showing the log2FC expression of the 45 overlapping genes 

mice at week 28 and cells at day 10 ........................................................................ 35 

Figure 18: Principal Component Analysis (PCA) of gene expression profiles from 

mice at week 28 and cells at day 10 ........................................................................ 35 

Figure 19: Density plot of Log2fc in the human RNA-seq-dataset after GFOLD 

normalization ........................................................................................................... 36 

Figure 20: Venn diagram showing 10 overlapping genes between DEGs of mice at 

week 28, cells at day 10 and human cerebellum  at the end stage of the disease ... 36 

Figure 21: Heatmap showing the log2FC expression of the 10 overlapping mice at 

week 28, cells at day 10 and human SCA1 cerebellum at the end stage of disease 38 

Figure 22: Principal Component Analysis (PCA) of gene expression profiles from 

mice at week 28, cells at day 10 and human SCA1 cerebellum at the end stage of 

disease.................................................................................................................... 38 

Figure 23: Barplot showing the common dysregulated pathways in cells at day 2 (red 

color) and mice at week 5 (blue color) ..................................................................... 40 

Figure 24: Barplot showing the common dysregulated pathways incells at day 5 (red 

color) and mice at week 12 (blue color) ................................................................... 41 

Figure 25: Barplot showing  the common dysregulated pathways in cells at day 10 

(red color) and mice at week 28 (blue color) ............................................................ 43 

Figure 26:  Barplot showing the common dysregulated pathways in cells at day 10 

(red color), mice at week 28 (blue color) and human SCA1 cerebellum at the end 

stage of disease (green color) ................................................................................. 44 

Figure 27: Protein Interaction Network of at early stage of protein aggregation ....... 45 

Figure 28: Protein interaction network at middle stage of aggregation ..................... 46 

Figure 29: Protein Interaction Network at late stage of protein aggregation (cell and 

mouse datasets) ...................................................................................................... 47 

Figure 30: Protein Interaction Network at late stage of protein aggregation (cell, 

mouse and human datasets) ................................................................................... 48 

Figure 31: Protein Interaction Network at all early, middle and late stage of protein 

aggregation (cell and mouse datasets) .................................................................... 49 

 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

10 

 

Table of tables 
 

Table 1: Samples for Differential Expression Analysis ............................................. 19 

Table 2: Comparisons details in Differential Expression Analysis ............................ 20 

Table 3: List of  the common dysregulated genes between week 5 in mice and day2 

in cells ..................................................................................................................... 26 

Table 4: List of the common dysregulated genes between mice at week 12 and cells 

at day ...................................................................................................................... 30 

Table 5: List of the common dysregulated genes between mice at week 28 and cells 

at day 10 ................................................................................................................. 34 

Table 6: List of the common dysregulated genes between mice at week 28, cells at 

day 10  and human cerebellum at the end stage of disease .................................... 37 

Table 7: Common dysregulated pathways between cells at day 2 and mice at week 5

 ................................................................................................................................ 39 

Table 8: Common dysregulated pathways between cells at day 5 and mice at week 

12 ............................................................................................................................ 41 

Table 9: Common dysregulated pathways between cells at day 10 and mice at week 

28 ............................................................................................................................ 42 

Table 10: Common dysregulated pathways between cells at day 10, mice at week 28 

and in human SCA1 cerebellum at the end stage of the disease ............................. 44 

Table 11: Top 10 nodes (genes) with higher DC value ............................................ 50 

Table 12: Top 10 nodes (genes) with higher BC value ............................................ 50 

Table 13: Top 10 nodes (genes)with higher CC value ............................................. 51 

Table 14:  Top 10 nodes (genes) with higher CU value ........................................... 51 

Table 15: Common DEGs among cell and mouse datasets and their centrality values

 ................................................................................................................................ 52 

 

 

 

 

 

 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

11 

 

Acknowledgments 
 

 I would like to express my sincere thanks to all my supervisors for the crucial 

guidance and encouragement for the integration of this work. Special thanks to Fotis 

Psomopoulos and to Spyros Petrakis, for their thorough and meaningful help 

throughout the course of this work. Also, I would like to thank my friends and my 

family for their continuous support.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

12 

 

1. Introduction 
 

1.1 NGS analysis 

 

Νext generation sequencing (NGS) (Metzker, 2010) has become a valuable 

tool for life sciences and research projects, studying molecular biology, evolutionary 

biology, metagenomics and oncology. This technology has widened our 

understanding on epigenetics and is widely used in several experimental setups 

(Schorderet 2016). Compared to microarray technologies, NGS provides higher 

resolution data and more precise measurement of transcripts levels for studying gene 

expression. Furthermore the downstream analysis of RNA sequencing (RNA-seq) 

data, indicates the variability in gene expression between different samples (Wang et 

al. 2019).   

 

NGS provides an enormous amount of complex data, making the extraction of 

the relevant experimental information time consuming and challenging for 

researchers (Backman and Girke 2016). Furthermore, several companies have 

developed so far different sequencing platforms. 

 

Figure 1: Computational pipeline for next-generation sequencing data (Mutz, 2013) 

The pipeline for the analysis of RNA-seq data (Fig. 1) consists of four steps, 

provided that the genome or the transcriptome of the reference organism has been 
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already sequenced. First, raw image data need to be converted into short read 

sequences, which are subsequently aligned to the reference genome or 

transcriptome. The number of mapped reads is counted and gene expression levels 

are calculated by peak calling algorithms. Finally, differential gene expression is 

determined using statistical tests (Mutz, 2013).  

 

The main experimental aim in RNA-seq is the identification of differentially 

expressed genes (DEG), which is the final step during the downstream data analysis. 

DEGs vary significantly in their expression levels between two sets of samples and 

are either up- or down-regulated. They can be further classified according to their 

biological process, molecular function, cellular localization or biological pathway in 

which they participate. Eventually, this allows the functional and biological 

interpretation of the experimental results (Sultan and Zubair 2019).  

 

1.2 Poly-Q diseases 
 

Polyglutamine diseases (polyQ) are a family of neurodegenerative disorders 

that are caused by CAG trinucleotide expansions in various genes. This mutation 

produces a pathogenic protein that contains a longer polyQ chain than the wild type 

protein (Orr 2012a). As a result, the mutant protein adopts a different conformation 

which is accompanied by a loss of its functionality (Siska, Koliakos, and Petrakis 

2015). These prototypical protein misfolding disorders include Huntington disease, 

spinobulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and several 

spinocerebellar ataxias (Shao and Diamond, 2007). There are approximately 30 

different types of SCA identified to date, but the causative mutations have been 

identified for only half of them. Six SCAs, including the more prevalent SCA1, SCA2, 

SCA3, and SCA6 along with SCA7 and SCA17 are caused by expansion of a CAG 

repeat that encodes a polyglutamine tract in the affected protein (Orr  2012b).  
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Figure 2:  Effect of polyQ repeats in protein folding. A) Translation of a polyQ gene with a normal repeat 

range, produces protein with a proper folding. B) Pathogenic polyQ repeat expansions  lead to 

production of a pathogenic protein with an expanded track that is misfolded  (Sullivan et al. 2019) 

 

1.2.1 Spinocerebellar ataxia type 1 (SCA1) 
 

  The polyQ disease SCA1 is a lethal, progressive, autosomal dominant 

neurodegenerative disorder caused by a CAG expansion in the ataxin-1 (ATXN1) 

gene (Orr et al.  1993). SCA1 patients typically display loss of coordination of the 

limbs and trunk, unstable gait, dysarthria, and nystagmus (Klockgether, 2011). 

Symptons typically manifest in midlife and worsen over the next 10–15 years; there is 

no available therapy to delay the onset or slow the progression of the disease 

(Zoghbi et al. 1988). A prominent and consistent SCA1 pathological feature is the 

loss of the cerebellar Purkinje cells (PCs) (Koeppen, 2005). 

SCA1 is caused by an expanded CAG repeat in the ATXN1 gene. 

Expansions longer than 39 CAG repeats are pathologic. Longer repeats generally 

result in an earlier onset of disease. However, CAT interruptions in the polyQ track of 

ATXN1 can alter the penetrance and aggressiveness of the disease (Menon et al. 

2013). Despite the fact that polyQ expansions are considered the main cause of 

pathology, other factors also affect the progression of SCA1 (Srinivasan and 

Shakkottai 2019) Numerous studies have shown that ATXN1 interacts with 

transcription regulators, RNA splicing factors, and other nuclear receptors that drive 

cerebellar Purkinje cell dysfunction (Lam et al. 2006; Tsuda et al. 2005) 
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Mutant ATNX1 misfolds into an abnormal 3-dimensional conformation and 

forms protein inclusions within the nuclei of neurons. As a result, ATXN1 loses its 

normal function, an event that damages cells and leads to cell necrosis. It is still 

unclear why polyQ-expanded ATXN1 inclusions are mainly found in the brain and the 

spinal cord (central nervous system). Cerebellar neurons that coordinate movement 

are particularly sensitive to ATXN1 aggregation. Their gradual dysfunction and loss 

causes the characteristic symptoms of SCA1 (Matilla-Dueñas, Goold, and Giunti 

2008). 

 

1.2.2 Molecular Mechanisms of Neurodegeneration 

 

ATXN1 is located in both the cytoplasm and nucleus; the wild-type protein is 

able to translocate between these two subcellular compartments (Fig 3). The 

dynamics of ATXN1 cellular trafficking is altered by the expansion of the polyQ tract 

(Krol et al. 2008). Although mutant ATXN1 is able to enter the nucleus, its ability to 

be translocate back into the cytoplasm is dramatically reduced (Irwin et al. 2005). 

ATXN1 interacts with several proteins including the transcription regulators, Capicua 

(Lam et al. 2006), Gfi-1 (Tsuda et al. 2005), and the Rora–Tip60 complex (Serra et 

al. 2006). ATXN1 also interacts with  RNA-splicing factors, such as RBM17 (Lim et 

al. 2008) and U2AF65 (de Chiara et al. 2009). 

 

Figure 3.Contribution of ATXN1 S776 phosphorylation in SCA1 pathogenesis. ATXN1 in the nucleus 

interacts with either the transcriptional repressor Capicua or the RNA splicing factor RBM17. 

Phosphorylated ATXN1 interacts stronger with RBM17 affecting RNA splicing (Orr 2012a) 
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Several lines of evidence indicate that the C-terminal domain of ATXN1, plays 

a key role in its function and is associated with SCA1 pathogenesis. Ser776, 

immediately adjacent to the nuclear localization sequence (NLS) in the C-terminal of 

the protein, is an endogenous phosphorylation site (Emamian et al. 2003). 

Phosphorylation of S776 stabilizes ATXN1 and may regulate its interaction with other 

proteins such as the phospho-serine/phospho-threonine binding protein 14-3-3 (Chen 

et al. 2003), a signal transduction regulat (Morrison 2009),  the splicing factors 

RBM17 (Lim et al. 2008) and the transcriptional repressor Capicua. 

The interaction of ATXN1 with RBM17 is enhanced by the polyQ expansion 

but is dramatically suppressed in the presence of the phosphorylation-resistant 

ATXN1-A776, independently of the length of the polyQ tract (Lim et al. 2008). These 

data indicate that phosphorylation of serine 776 is critical for the strength of this 

interaction. 

The gain of function of the ATXN1–CIC complex leads to neurodegeneration 

but also plays an important role to normal brain development and is essential for 

survival. Loss of this complex causes a spectrum of neurobehavioral phenotypes 

(hyperactivity, intellectual disability and social-behavioral deficits) (Lu et al. 2017). 

Also, a recent study shows that the interaction of ATXN1 with CIC is the major driver 

of toxicity in SCA1. Data from gain and loss of function models and SCA1 patients 

indicate that ATXN1-CIC complex is crucial for the observed toxicity while loss of CIC 

in the cerebellum does not result in the degeneration of the Purkinje cells to 

(Rousseaux et al. 2018). 

 

1.2.3 Disease models  

 

1.2.3.1 Mouse models 

 

In order to gain insight into the pathogenesis of the SCA1, transgenic mice 

expressing the human ATXN1 gene with either a normal or an expanded CAG tract 

have been generated. Mice expressing the normal ATXN1 had normal Purkinje cells, 

while transgenic animals with the mutant ATXN1 developed ataxia and Purkinje cell 

degeneration. These results indicate that a neurodegeneration mouse model can be 

established simply by introducing CAG repeat expansions in a wild-type protein 
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(Burright et al. 1995).  Thus, SCA1 transgenic mice provide a tool to identify 

pathways associated with SCA1pathogenesis.  

Recently, RNA-seq analysis in the cerebellum of SCA1 transgenic mice has 

demonstrated gene expression changes that are implicated in disease progression or 

the systemic response against it. Gene networks from SCA1 mice with progressive 

Purkinje cell loss were constructed and compared to healthy or ataxic mice that lack 

a progressive Purkinje cell loss (Ingram et al. 2016). These data indicate that e.g. the 

Cck gene is protective against the progression of SCA1. 

 

1.2.3.2 Cell model 

 

Animal models do not indicate molecular changes at the cellular level that are 

caused by the gradual aggregation of the mutant polyQ protein. Therefore, there is a 

need for cell models that would indicate molecular mechanisms of dysfunction 

potentially causing the disease phenotype in mice. A cell model of intranuclear 

protein aggregation was generated by the inducible overexpression ATXN1(Q82) in 

human mesenchymal stem cells. These cells are resistant to the cytotoxic effects of 

the mutant protein and allow the detailed study of its aggregation (Laidou et al., 

unpublished data). 

In this study, we assessed the similarity of this SCA1 cell model with SCA1 

transgenic mice. We also compared them with a human SCA1 cerebellum at the end-

stage of the disease, containing polyQ inclusions. The potential implications of the 

commonly identified molecular changes for the pathogenesis of SCA1 are discussed.  
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2. Materials and Methods  

 

2.1 Dataset summary 
 

The expression level of genes from three different groups (Human, Mice and 

Cells) were used for analysis. Expression levels were measured in „„fragments per 

kilobase of exon model per million mapped reads‟‟ (FPKM) (Trapnell et al. 2010).  

2.1.1 Dataset of a SCA1 mouse model 
 

In order to identify the differentially expressed genes that changed over time, the 

dataset of mice contains the FPKM abundance in six samples. Control in three time 

poins: week 5 (FPKM_W5_Q82), week 12 (FPKM_W12_Q82), week 28 

(FPKM_W28_Q82) and SCA1 trangenic mice in three time points: week 5 

(FPKM_W5_FVB), week12 (FPKM_W12_FVB) and week 28 (FPKM_W28_FVB). 

The accession number for the RNA-seq data reported in this paper is 

GEO: GSE75778  (Ingram et al. 2016b).  

DIOPT (DRSC Integrative Ortholog Prediction Tool) tool was used to map 

orthologous genes among mice and human (DIOPT; 

http://www.flyrnai.org/diopt).  DIOPT is a program that integrates ortholog 

predictions from 11 commonly used orthology tools (Hu et al. 2011). Human 

orthologs of mice genes were found based on Rank score and the list included only 

those genes with Rank score= High 

2.1.2 Dataset of a human SCA1 patient 
 

The second dataset includes RNA-seq data from post-mortem human cerebellum 

of a 74-year-old female SCA1 patient and an age-/sex-matched healthy individual. All 

tissues were obtained from the MRC London Neurodegenerative Diseases Brain 

Bank. Gene expression levels measured in FPKM (FPKM.IZ_TR_184_S2. Control 

and FPKM.IZ_TR_185_S3. SCA1) (Laidou et al. unpublished data). 

2.1.3 Dataset of cell model 
 

The SCA1 cell dataset comes from cells from human mesenchymal cells (MSCs) 

inducibly overexpressing polyQ-expanded ATXN1. This model reproducibly 

generates large nuclear inclusions. Gene expression levels were measured in FPKM 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75778
http://www.flyrnai.org/diopt
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from four samples: at day 0 (FPKM_D0), day 2 (FPKM_D2), day 5 (FPKM_D5) and 

day 10 (FPKM_D10) (Laidou et al. unpublished data). 

 

2.2 Differential Expression Analysis 
 

Gene expression (abundance) was measured by FPKM values for every 

transcript and was associated with an individual gene. Each sample was measured in 

triplicates with the exception of human cerebellum. The expression level of each 

gene is the mean of the FPKM of its triplicates. T-test was applied to compare FPKM 

levels between the triplicates of a sample in mice and cells datasets and only genes 

showing a consistent expression (p-value<0.05) were used for further analysis. Gene 

expression in the human dataset was normalized using the GFOLD tool (Feng et al. 

2012). A total of 12 samples were selected to obtain the gene expression patterns. 

The samples that were used for the analysis are listed in table 1.  

Table 1: Samples for Differential Expression Analysis 

Group Time point Samples/Control Samples/Patient 

 

Human - FPKM.IZ_TR_184_S2. Control FPKM.IZ_TR_185_S3. SCA1 

 

Mice Week 5 FPKM_W5_FVB FPKM_W5_Q82 

 Week 12 FPKM_W12_FVB FPKM_W12_Q82 

 Week 28 FPKM_W28_FVB FPKM_W28_Q82 

Cells Day 2 FPKM_D0 FPKM_D2 

 Day 5 FPKM_D0 FPKM_D5 

 Day 10 FPKM_D0 FPKM_D10 

 

For the analysis, differential gene expression was calculated as the FC (Fold 

Change) of a SCA1 sample versus its respective control in each time point  

FC=
       (    )

       (       )
 

FC data were log2 normalized and genes with |log
2
FC| > 0.5 were considered as 

DEGs.  A gene with a positive log2Fold value was considered as upregulated 

whereas a negative log2Fold marks down-regulated genes. Differential expression 
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analysis was performed in the R version 3.6.1 (RStudio Team 2016)   programming 

software.  

 

 DEGs obtained at day 2 in cells, were compared to the DEGs at week 5 in 

mice. Similarly, DEGs at day 5 in cells, were compared to the DEGs at week 12 in 

mice and DEGs at day 10 in cells, were compared to the DEGs at week 28 in mice 

and to DEGs in human. Also, DEGs in human, were compared only to DEGs at week 

28 in mice (Table 2).   

 

Table 2: Comparisons details in Differential Expression Analysis 

Comparisons for the Differential Expression Analysis 

DEGs at day 2 in cells ~ DEGs at week 5 in mice 

DEGs at day 5 in cells ~ DEGs at week 12 in mice 

DEGs at day 10 in cells ~ DEGs at week 28 in mice  

DEGs at day 10 in cells ~ DEGs at week 28 in mice ~ DEGs in human 

 

In each comparison the common up- or -down regulated genes were used for the 

construction of heatmaps and principal component analysis. The clustering was 

performed in ggplot2 (version 3.2.1). PCA analysis was performed in ggbiplot 

(version 0.55) of R packages (version 3.6.1). 

 

 

2.3 Functional Enrichment Analysis 

 

To identify dysfunctional pathways associated with SCA1 pathogenesis, pathway 

enrichment analysis was performed using dysregulated genes from each comparison 

using the enrichR package (version 2.1). EnrichR provides an R interface to all 

'Enrichr' databases. 'Enrichr' is a web-based tool for analyzing gene sets and returns 

any enrichment of common annotated biological features (Kuleshov et al. 2016). Up 

and down regulated gene lists were evaluated for significant enrichment against the 

KEGG database. KEGG is a database resource for understanding high-level 

functions and utilities of the biological system, including the cell, the organism and 

the ecosystem (Kanehisa and Goto, 2008).   
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Enriched pathways were selected and ranked by the combined score, as 

calculated by the EnrichR platform. KEGG pathways with a p-value less than 0.05 

that are related to SCA1 were used for the construction of the Protein Protein 

Interaction Network. 

 

 

2.4 Construction of Protein Interactions Networks  
 

The protein products of genes that participate in the commonly dysregulated 

pathways per comparison were used for the construction of a protein-protein 

interaction network (PPI network) using the String database (Szklarczyk et al. 2017) 

in Cytoscape 3.7.2 version (Shannon 2003) . Only genes expressed in the nervous 

system (score of 4.8 using the relenat tissue filter)(Santos et al. 2015) and high 

confidence interactions (score of 0.950) were used. Unconnected nodes were 

deleted.  

 

2.5 Network analysis  
 

The Cystoscope plugin Network Analyzer (Assenov et al. 2008) was used to 

compute the centrality parameters of the network. We extracted genes based on four 

criteria: a) Degree centrality (DC), b) Betweenness centrality (BC), c) Closeness 

centrality (CC) and d) Clustering coefficient centrality (CU) 

 

2.5.1 Degree centrality (DC) 
 

All the lines connected by a node are called the degree of the node. The more 

connections between a node and other nodes, the greater the node. This indicates 

that the node is important for the network. The degree centrality of a node i, is 

defined as (Nieminen 1974):  

 

 

where N is a set of nodes, K is a set of edges and ki is the degree of node i. 
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2.5.2 Betweenness centrality (BC) 
 

BC is the number of the shortest pathways of all node pairs through the node 

in a network, and the times of one node serves as the bridge of the shortest pathway 

between the other two nodes (Zhang 2018). BC refers to the frequency of node i 

appearing at nodes j and k. The standard formula is (Freeman 1978) 

 

 

 

where i ≠ j ≠ k, gjk is the number of the shortest pathways between nodes j and k, 

gjk(i) is the number of the shortest pathways containing i, N is the number of nodes, 

denominator is two times the logarithmic number of nodes except node i in protein 

interaction network.  

 

2.5.3. Closeness centrality (CC) 
 

Also known as tightness centrality, it is based on the calculation of the 

average shortest pathway length of a node and all other nodes. CC is calculated as 

the reciprocal of the sum of the length of the shortest paths between the node and all 

other nodes in the graph. Thus, the more central a node is, the closer it is to all other 

nodes (Zhang 2018). The standard formula is (Sabidussi 1966).  

 

 

 

 

where i ≠ j, dij is the shortest pathway between nodes i and j. If the connections 

between the node i and other nodes are very short, the more centrally located.  
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2.5.4 Clustering coefficient centrality (CU) 
 

According to graph theory, clustering coefficient represents the degree of 

aggregation of nodes in a graph. It is the ratio of adjacent points pairs directly to all 

neighboring points in the neighboring points of the node (Watts and Strogatz 1998). 

The formula is defined as (Wasserman & Faust 1994):  

 

 

 

where n represents the number of edges between all neighbors of node i.  
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3. Results  
 

3.1 Differential expression analysis 
 

3.1.1 Differential expression analysis between Cells-Day 2 and Mice-Week 5 
 

To detect common gene expressions changes in the different datasets, we 

compared the profiles of mice at week 5 and cells at day 2. A total of 357 genes in 

mice at week 5 were selected, based on their consistent expression levels in 

biological triplicates (p-value <0.05 and |Log2fc|>0.5). These include 105 up-

regulated and 252 down-regulated genes. Similarly, 687 genes were selected from 

the cells dataset at day 2 consisting 279 up-regulated and 408 downregulated genes.  

 

 

Figure 4: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at week 5 

 

The log2 fold change is represented on the x-axis, and negative log of p-values is 

represented on the y-axis of the volcano plot (Fig 4). Each point represents one 

gene, in the mice dataset at week 5. DEGs with |log2FC| > 0.5 are shown in blue 

while, nonsignificant genes are shown as red points. The top 20 significant genes are 

labeled in the volcano plot.  

 

Figure 5 shows the volcano plot of the cell dataset at day 2 (p-value < 0.05). 

DEGs with |log2FC| > 0.5 are shown in blue, while nonsignificant genes in red. The 

top 20 significant genes are labeled in the volcano plot. 
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Figure 5: Volcano plot of genes (p-value < 0.05) in the cells RNA-seq dataset at day 2 

 

A total of 18 genes were differentially expressed in both datasets (mice at 

week 5 and cells at day 2) as shown in Venn diagram (Fig 6). Commonly 

dysregulated genes are shown in Table 3.  

 
 

 
Figure 6: Venn diagram indicates 18 overlapping genes between DEGs in mice at week 5 and cells at 

day 2 
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Table 3: List of the common dysregulated genes between week 5 in mice and day2 in cells 

Gene symbol Log2FCcells_D2 LOG2FCmice_w5 

GREB1 -8,93002 -0,77085 

CRLF1 -6,67426 -0,92048 

ATF3 -3,99286 1,074221 

CREG1 -3,38309 -0,79244 

MPZ -2,89119 -1,5086 

PER1 -2,46202 0,538488 

TSPAN18 -2,39366 0,618492 

COL18A1 -0,61665 -0,93243 

IGF2BP1 0,710022 3,643578 

AKR1B1 1,400455 0,6668 

SPATS2L 1,581184 -0,53053 

MMP14 2,2899 0,553661 

PRSS12 2,85587 -1,45611 

FRMD6 2,895461 0,742413 

BCAR1 2,97111 -0,56847 

IGFBP5 3,065207 -0,54587 

PTGER2 3,359382 -1,24782 

THBS1 6,199589 0,504296 

 
 

 
Figure 7: Heatmap showing the log2FC in the expression of the 18 overlapping genes in mice at week 5 

and cells at day 2 
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Five genes were down-regulated (GREB1, CRLF1, CREG1, MPZ, COL18A1) 

while five genes were up-regulated (IGF2BP1, AKR1B1, MMP14, FRMD6, THBS1) in 

both datasets as show in Figure 7.   

Principal component analysis (PCA) indicates that the overlapping genes 

(n=18) distinctively cluster into two different categories, suggesting that they have a 

different gene expression pattern in the two datasets (Fig 8).  

 
 
 

 

Figure 8: Principal Component Analysis (PCA) of gene expression profiles from mice at week 5 and 

cells at day 2 
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3.1.2 Differential expression analysis between Cells-Day 5 and Mice-Week 12 

 
 

Next, we compared the RNA-seq datasets of mice at week 12 and cells at 

day 5 and studied gene expression patterns. 1204 genes were selected from the 

mice dataset at week 5 based on their consistent expression in the biological 

triplicates (p-value <0.05 and |Log2FC|>0.5). 398 genes were up-regulated and 593 

were down-regulated. Similarly, 789 genes were selected from cells dataset, 

consisting 303 up-regulated and 486 down-regulated. Volcano plots of these two 

gene groups are shown in Fig 9 and Fig 10 and the top 20 dysregulated are labeled.  

DEGs with |log2FC| > 0.5 are shown in blue while, nonsignificant genes are shown in 

red. 

 

 

Figure 9: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at week 12 
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Figure 60 Volcano plot of genes (p-value < 0.05) in cells RNA-seq dataset at day 5 

 

 

 A Venn diagram indicates that 53 genes are common between DEGs of mice 

at week 12 and DEGs of cells at day 5 (Fig 11). Overlapping genes are listed in 

Table 4.  

 

 

Figure 71: Venn diagram indicates 53 overlapping genes between DEGs of mice at week 12 and cells at 

day 5 
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Table 4: List of the common dysregulated genes between mice at week 12 and cells at day 5 

Gene 

symbol 

Log2FCcells_D5 LOG2FCmice_w12 Gene 

symbol 

Log2FCcells_D5 LOG2FCmice_w12 

ACOT9 3,344038 -0,55874 MICALL2 -0,85744 0,700209 

ADAMTS1 2,223245 -0,87229 MMP14 2,93528 0,706291 

ALDH2 4,857237 0,590464 MXRA7 2,041899 1,578055 

ATF3 -2,84088 1,967727 P4HA2 2,352431 -0,63494 

BRWD3 -1,96821 -0,64848 PAXBP1 -3,14028 -0,62975 

CAMK2A 6,928887 -1,1581 PDPN 1,675112 0,653105 

CCND1 1,024861 0,617102 PLCB2 -7,47617 1,108255 

CD44 1,062387 0,642703 PLCD3 2,891969 -0,57104 

CD74 -4,43277 0,915891 PLEKHG4 -3,20301 -0,75041 

CLSTN2 2,238265 -0,94799 PRR11 -2,50013 1,151382 

COL18A1 1,660514 -2,04348 RCN3 5,170932 0,631953 

COL1A2 6,012376 0,54037 RNASEH2C -1,51229 0,798496 

COL5A1 4,820899 -2,42979 RPS17 -1,24759 -0,70547 

COL6A2 3,700745 0,89672 RPS27 -1,07739 -0,75195 

CREG1 -1,86688 -0,905 SDC1 1,325948 0,755294 

CSRP2 5,223708 0,594577 SLC25A37 -1,33823 -0,51211 

DGKZ -1,79097 -0,83163 SLC6A17 -7,60689 -0,54365 

EMILIN1 3,238149 1,060482 SVEP1 4,748111 -0,8229 

FKBP10 2,679717 0,518734 TAX1BP3 2,22202 0,549636 

GNAI1 4,462322 -0,54067 TEAD3 2,003282 0,590779 

GPC6 2,993134 -0,52998 THBS1 5,715139 0,788769 

GTF3C3 -1,25205 -0,58349 TMEM70 -1,65618 -0,53306 

HHIP -2,54431 -0,76642 TNS3 2,878453 -0,61856 

IGFBP5 5,161975 -1,43226 TOMM6 -1,60017 0,624994 

ITGA1 4,255396 -0,52111 TYMS -2,06716 1,034065 

LXN 4,126967 0,503225 VPS13B -0,68987 -0,54891 

LYPLA1 -0,93064 -0,60209    
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As shown in Fig 12, the 53 overlapping genes clustered into two subgroups. A 

total of 17 genes were up-regulated and 14 were down-regulated. Principal 

component analysis (PCA) was applied to explore relationships in gene expression 

among the samples. According to PCA, the samples from mice and cells are 

separated, indicating the differences on gene expression (Fig 13).   

 

Figure 82: Heatmap showing the log2FC expression of the 53 overlapping genes in mice at week 12 

and cells at day 5 

 

   

Figure 93: Principal Component Analysis (PCA) of gene expression profiles from mice at week 12 and 

cells at day 5 
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3.1.3 Differential expression analysis between Cells-Day 10 and Mice-Week 

28 
 

Next, we assessed the similarity in gene expression that might be related with 

the final stages of the disease by comparing mice at week 28 and cells at day 10. 

After applying a filtering approach for consistent expression among the experimental 

triplicates in both samples (p-value < 0.05 and |Log2FC|>0.5), we identified 1063 

genes in mice, of which 470 were up-regulated and 593 were down-regulated. A total  

of 801 genes were selected from the cell dataset, consisting of 307 up- regulated and 

494 down-regulated genes.  

 

 

 

Figure 104: Volcano plot of genes (p-value < 0.05) in the mice RNA-seq dataset at week 28 

  

 

The volcano plots for both samples (Fig 14-15), indicated that the majority of 

genes were down-regulated. DEGs with a |log2FC| > 0.5 are shown in blue while, 

nonsignificant genes are shown in red. The top 20 significant genes are labeled in 

the plots. However, none of them top were shared between the two datasets.  
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Figure 115: Volcano plot of genes (p-value < 0.05) in cells RNA-seq dataset at day 10 

 

 

Figure 126: Venn diagram indicates 45 overlapping genes between DEGs of mice at week 28and cells 

at day 10 

 

A Venn diagram (Fig 16) shows that the dataset of mice at week 28 and cells 

at day 10 share 45 DEG. These genes are listed in Table 5.   
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Table 5: List of the common dysregulated genes between mice at week 28 and cells at day 10  

Gene 

symbol 

Log2FCcells_D10 FCmice_w28 Gene 

symbol 

Log2FCcells_D10 FCmice_w28 

ALDH2 4,01995 1,526289 MASP1 -1,19948 1,509169 

ALPK2 1,922516 0,465245 MICALL2 -1,28233 1,420941 

ARHGAP35 0,697986 0,68924 MT1X -2,44932 2,814508 

ARL4D -0,85719 1,899774 NUP93 -1,48011 0,655368 

ATF3 -3,49685 2,592387 NUPR1 1,546291 2,15288 

BCAR1 2,345642 0,532016 OGT -2,12476 0,662158 

CCDC120 -1,63841 1,421447 OPN3 -1,81258 0,532433 

CD74 -3,71045 2,424684 PAXBP1 -2,66235 0,613639 

CLDN11 9,81759 1,77024 PLEKHG4 -1,79173 0,568401 

COL16A1 4,159534 1,78999 RNASEH2A -2,65635 1,471403 

COL5A1 5,302192 0,166235 RPS13 -2,0745 1,642933 

COPZ2 2,288441 2,238164 SDC1 1,561245 1,766427 

COTL1 6,300548 1,431714 SERPINE2 1,889727 1,548375 

CREG1 -1,97608 0,488844 SLC1A5 1,168965 1,929327 

CYGB -1,92884 1,528308 SLC20A1 1,616554 0,55206 

CYR61 1,452894 1,881745 SLC25A36 -2,15903 0,657641 

DUSP4 -3,56701 0,380268 TMEM119 4,236712 1,648185 

FKBP10 2,682255 1,634965 TNC 1,609077 0,108788 

HHIP -1,61916 0,580852 TRIM37 -3,05601 0,706137 

HMGB2 -3,64112 1,792593 TRIM62 0,903225 2,175274 

ITM2C 1,862302 1,582011 VGLL3 1,651481 0,362141 

LAPTM5 -9,7438 1,57986 WDR62 -4,43234 1,623979 

LXN 3,443682 1,657066    

 

A heatmap was generated from the common DEGs between the two datasets 

(Fig 17). The Pearson correlation was used to compute distances between genes 

and samples. Each column corresponds to a dataset and each row to a specific 

gene. As shown, 22 common genes were up-regulated in both mice and cells while 

no common gene was down-regulated in both datasets.  
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The PCA plot showed that the common genes from each dataset, clustered 

separately, which indicates that their expression pattern in cells and mice was 

different (Fig 18).  

  

 

Figure 137: Heatmap showing the log2FC expression of the 45 overlapping genes mice at week 28 and 

cells at day 10 

 

Figure 148: Principal Component Analysis (PCA) of gene expression profiles from mice at week 28 and 

cells at day 10 
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3.1.4 Differential expression analysis between Cells-Day 10, Mice-Week 28 

and post-mortem human cerebellum 
 

Finally, we compared the RNA-seq datasets from mice and cells at the third 

time point with the RNA-seq data from a human SCA 1 patient at the end stage of the 

disease. Due to the lack of biological replicates, gene expression levels in the human 

tissue were normalized using the GFOLD tool. In total, 2.683 genes were selected 

with |log2fc| > 0.5. The majority of the genes were down-regulated as also observed 

in the cells and mice datasets. Only 791 were up-regulated as shown in Fig 19.  

 

Figure 1915: Density plot of Log2fc in the human RNA-seq-dataset after GFOLD normalization 

 

 

Figure 160: Venn diagram showing 10 overlapping genes between DEGs of mice at week 28, cells at 

day 10 and human cerebellum at the end stage of the disease 
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Table 6: List of the common dysregulated genes between mice at week 28, cells at day 10  and human 

cerebellum at the end stage of disease 

Gene symbol Log2FCcells_D10 LOG2FCmice_w28 Log2FChuman 

ALDH2 4,01995 0,610028 -0,90557 

BCAR1 2,345642 -0,91046 -0,93997 

COTL1 6,300548 0,517743 -1,2512 

CYGB -1,92884 0,611935 -2,32192 

ITM2C 1,862302 0,66176 -1,99668 

MICALL2 -1,28233 0,506847 -1,16066 

MT1X -2,44932 1,492883 -1,55837 

OGT -2,12476 -0,59475 1,22999 

TRIM37 -3,05601 -0,50198 0,858714 

TRIM62 0,903225 1,121197 -1,11581 

 

Venn diagram in Fig 20 shows the total number of DEGs per dataset. The 

common dysregulated genes in all datasets are also listed in Table 6.  

The heatmap in Fig 21 shows the expression values of the 10 common genes 

between the mice, cells and human datasets. None of them was dysregulated at the 

same direction in all three datasets, based on Pearson‟s correlations coefficients.  

PCA plot (Fig 22) indicates that the datasets cluster into three different categories, 

indicating that their  gene expression pattern was different.  
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Figure 171: Heatmap showing the log2FC expression of the 10 overlapping mice at week 28, cells at 

day 10 and human SCA1 cerebellum at the end stage of disease 

 

Figure 182: Principal Component Analysis (PCA) of gene expression profiles from mice at week 28, 

cells at day 10 and human SCA1 cerebellum at the end stage of disease 
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3.2. Functional enrichment analysis 
 

Very few common genes were identified in the comparisons between the 

different datasets. We therefore, attempted to identify common dysfunctional 

pathways by performing pathway enrichment analysis in each individual dataset 

using the significantly DEGs per time point. Then, the components of the common 

dysregulated pathways per comparison were used for the construction of perturbed 

protein Interaction networks.  

 

3.2.1 Enrichment analysis in Cells-Day 2 and in Mice-Week 5 
 

 The 687 DEGs from the cells dataset at day 2 were categorized using the 

KEGG database. This analysis identified 28 pathways (p-value < 0.05) including 

Ribosome, ECM-receptor interaction, Alzheimer's disease, Focal adhesion and PI3K-

Akt signaling pathway. Similarly, the 357 DEGs from the mice at week 5 were 

categorized in 18 pathways (p-value < 0.05) including: Aldosterone synthesis and 

secretion, Circadian entrainment, Protein digestion and absorption, Renin secretion, 

Cholinergic synapse, ECM-receptor interaction, Mucin type O-Glycan biosynthesis, 

PI3K-Akt signaling pathway. The two datasets shared three common dysregulated 

pathways, namely Protein digestion and absorption, ECM-receptor interaction and 

PI3K-Akt signaling pathway. Table 7 shows the common pathways, the number of 

identified components of the pathways and the p-value of the enrichment analysis in 

each dataset.  

Table 7: Common dysregulated pathways between cells at day 2 and mice at week 5 

 CELLS MICE 

Term overlap p-value overlap p-value 

Protein 

digestion and 

absorption 

8/90 0,011802818 6/90 0,005421201 

ECM-receptor 

interaction 

14/82 6,59884E-07 5/82 0,015525499 

PI3K-Akt 

signaling 

pathway 

26/341 0,000123607 12/341 0,019696666 
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Figure 193: Barplot showing the common dysregulated pathways in cells at day 2 (red color) and mice 

at week 5 (blue color) 

 Figure 23 shows the common dysregulated pathways in two datasets. 

Pathways are shown on the x-axis while, -log of p-values on the y-axis.  

 

 

3.2.2 Enrichment analysis in Cells-Day 5 and in Mice-Week 12 
 

 A total of 789 DEGs from cells at day 5 were categorized in 36 pathways 

(p<0.05), including ECM-receptor interaction, Focal adhesion, Protein digestion and 

absorption, Proteoglycans in cancer, Regulation of actin cytoskeleton, PI3K-Akt 

signaling pathway ,Ribosome, DNA replication, Fatty acid biosynthesis, and Cell 

cycle. Likewise, the 1204 DEGs from mice at week 12 were categorized in 58 

pathways (p<0.05), including: Calcium signaling pathway, Ribosome, ECM-receptor 

interaction, Neuroactive ligand-receptor interaction, Focal adhesion, Alzheimer's 

disease, Rap1 signaling pathway, Protein digestion and absorption, PI3K-Akt 

signaling pathway and Parkinson's disease. The two datasets share eight common 

dysregulated pathways as it is shown in Τable 8 and Fig 24.   
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Table 8: Common dysregulated pathways between cells at day 5 and mice at week 12 

 CELLS MICE 

Term overlap p-value overlap p-value 

Ribosome 38/137 4,1454E-22 17/137 0,003367322 

ECM-receptor 

interaction 

18/82 2,26798E-09 12/82 0,003378597 

Focal adhesion 24/202 1,43813E-06 21/202 0,009694847 

PI3K-Akt 

signaling 

pathway 

29/341 8,69097E-05 30/341 0,022386223 

Protein 

digestion and 

absorption 

12/90 0,000205078 11/90 0,01826595 

Alzheimer's 

disease 

15/168 0,002640443 18/168 0,011868882 

Rap1 signaling 

pathway 

16/211 0,009370345 21/211 0,015346232 

Parkinson's 

disease 

11/142 0,024534867 14/142 0,045101274 

 

 

 

Figure 204: Barplot showing the common dysregulated pathways incells at day 5 (red color) and mice at 

week 12 (blue color) 
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3.2.3 Enrichment analysis in Cells-Day 10 and in Mice-Week 28 
 

 The 801 DEGs from the cells dataset at day 10 participate in 32 pathways 

(p<0.05) including Ribosome, ECM-receptor interaction, Focal adhesion, Alzheimer's 

disease, PI3K-Akt signaling pathway, Cell cycle, Rap1 signaling pathway, 

Parkinson's disease, AGE-RAGE signaling pathway.1.063 DEGs from mice at week 

28 were categorized in 32 pathways containing: Rap1 signaling pathway, Regulation 

of actin cytoskeleton, Phospholipase D signaling pathway, AGE-RAGE signaling 

pathway in diabetic complications, PI3K-Akt signaling pathway, ECM-receptor 

interaction and Focal adhesion.  Table 9 shows the common pathways, the number 

of identified components of the pathway and the p-value of the analysis in each 

dataset. Figure 25 shows the common dysregulated pathways on the x-axis while -

log of p-values on the y-axis.  

 

Table 9: Common dysregulated pathways between cells at day 10 and mice at week 28 

 CELLS MICE 

Term overlap p-value overlap p-value 

AGE-RAGE 

signaling 

pathway  

9/101 0,019702126 11/101 0,018299382 

ECM-receptor 

interaction 

13/82 2,08937E-05 9/82 0,029735026 

Focal adhesion 21/202 6,22556E-05 17/202 0,041428432 

PI3K-Akt 

signaling 

pathway 

26/341 0,001305403 27/341 0,025640402 

Protein 

digestion and 

absorption 

8/90 0,027403072 9/90 0,049522938 

Rap1 signaling 

pathway 

16/211 0,010838329 22/211 0,001997927 

Regulation of 

actin 

cytoskeleton 

18/214 0,002434057 22/214 0,00238481 
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Figure 215: Barplot showing the common dysregulated pathways in cells at day 10 (red color) and mice 

at week 28 (blue color) 

  

 

 

3.2.4 Enrichment analysis in Cells-Day 10, in Mice-Week 28 and in Human  
 

 To further explore the biological significance of DEGs in mice at week 28 and 

cells at day 10 datasets, we analyzed the 2.683 DEGs in human SCA1 cerebellum at 

the end stage of the disease. The analysis identified 94 pathways (p<0.05) including: 

MAPK signaling pathway, Focal adhesion, Regulation of actin cytoskeleton, 

Neurotrophin signaling pathway, Glutamatergic synapse, PI3K-Akt signaling 

pathway, Rap1 signaling pathway, AGE-RAGE signaling pathway in diabetic 

complications and cAMP signaling pathway. The common dysfunctional pathways 

between the three datasets are listed in Table 10 while, the bar plot (Fig. 26) shows 

these pathways on x-axis and -log10 of p-values on y-axis.   
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Table 10: Common dysregulated pathways between cells at day 10, mice at week 28 and in human 

SCA1 cerebellum at the end stage of the disease 

 CELLS MICE HUMAN 

Term overlap p-value overlap p-value overlap p-value 

AGE-RAGE 

signaling 

pathway  

9/101 0,019702126 11/101 0,018299382 26/101 0,000659867 

Focal adhesion 21/202 6,22556E-05 17/202 0,041428432 55/202 1,36445E-07 

PI3K-Akt 

signaling 

pathway 

26/341 0,001305403 27/341 0,025640402 68/341 0,000461597 

Rap1 signaling 

pathway 

16/211 0,010838329 22/211 0,001997927 46/211 0,000522729 

Regulation of 

actin 

cytoskeleton 

18/214 0,002434057 22/214 0,00238481 53/214 5,24569E-06 

 

 

 

Figure 226:  Barplot showing the common dysregulated pathways in cells at day 10 (red color), mice at 

week 28 (blue color) and human SCA1 cerebellum at the end stage of disease (green color) 
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3.3 Construction of Protein Interaction Networks 
 

PPIs networks provide a tool to study system biology and may give insights into 

the cellular molecular mechanism that are affected in a disease condition. In the 

present study, genes that participate in the commonly dysregulated pathways per 

comparison were used for the construction of protein interaction networks (shown 

below). 

 

3.3.1 Protein Interaction Network at early stage of protein aggregation 
 

 

 

 

Figure 237: Protein Interaction Network of at early stage of protein aggregation 

 

 The PPI network at the early stage of protein aggregation in cells and mice 

(cell dataset at day 2 and mouse dataset at week 5) consists of 65 nodes (genes) 

and 131 edges (Fig. 27). The pathway in which each gene participates is shown in 

color. Their majority are components of PI3K-Akt signaling pathway.  
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3.3.2 Protein Interaction Network at middle stage of aggregation 
 

 

 

Figure 248: Protein interaction network at middle stage of aggregation 

 

Figure 28 shows the PPI network at the middle stage of protein aggregation 

(cells at day 5 and mice at week 12). It consists of 177 nodes (genes) and 1241 

edges. The bold nodes represent the common DEGs of the network in the cells and 

mouse RNA-seq datasets. Thus, CCND1, CD44, GNAI1 genes are commonly 

dysregulated among cells and mouse datasets. CCND1 genes encodes the cyclin D1 

protein which participates in PI3K-Akt signaling pathway and Focal adhesion 

pathways and is up-regulated in both cells and mice datasets. CD44 participates in 

ECM-receptor interaction pathway and is commonly up-regulated in our data. GNAI1 

is component of Parkinson's disease and Rap1 signaling pathways.  
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3.3.3 Protein Interaction Network at late stage of protein aggregation (cell and 

mouse datasets) 
 

 

Figure 259: Protein Interaction Network at late stage of protein aggregation (cell and mouse datasets) 

 

 

At the late stage of protein aggregation, the PPI network consists of 143 

nodes (genes) and 402 edges (Fig 29). The common DEGs in cell and mouse 

datasets are presented as bold. These are: BCAR1 and AGHGAP35 which are both 

up-regulated in our data and are part of the Focal adhesion and Regulation of actin 

cytoskeleton pathways.  
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3.3.4 Protein Interaction Network at late stage of protein aggregation (cell, 

mouse and human datasets) 
 

 

 
 
 

Figure 260: Protein Interaction Network at late stage of protein aggregation (cell, mouse and human 

datasets) 

 

 

At the late stage of the disease, the PPI network of the commonly 

dysregulated pathways between cell, mouse and SCA1 patient, consists 167 nodes 

(genes) and 956 edges (Fig 30). BCAR1 (shown in bold) is a common DEG gene in 

all RNA-seq datasets (cells, mice, human). BCAR1 encodes an adaptor protein 

which participates in Rap1 signaling, Focal adhesion and Regulation of actin 

cytoskeleton pathways.  
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 3.3.5 Protein Interaction Network at all early, middle and late stage of protein  

Aggregation 

 

Figure 271: Protein Interaction Network at all early, middle and late stage of protein aggregation (cell 

and mouse datasets) 

 

 Figure 31 shows a total PPI network at early, middle and late stages of the 

protein aggregation among cell and mouse datasets. Yellow nodes represent the 

DEGs at all stages of protein aggregation, green nodes the DEGs at middle stage 
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and purple nodes the DEGs at the late stage of the protein aggregation. Common 

DEGs among network and RNA-seq datasets (cell and mouse) are presented as bold 

nodes. These genes are CCND1, CD44, GNAI1, BCAR1 and AGHGAP35.  

 

3.3.6 Network analysis 
 

3.3.6.1 Degree Centrality  

 

The relatively high degree of a nodeindicates that this protein interacts with 

several proteins. RPS6, CDC42, RPL15 and RPS3 have the highest DC (Table 11). 

Most of the proteins with the highest DC are components of the Ribosome pathways.  

 

Table 11: Top 10 nodes (proteins) with higher DC value 

Gene Symbol Degree Centrality Gene Symbol Degree Centrality 

RPS6 
 

45 RPL3 43 

CDC42 44 RPL13A 42 

RPL15 44 RPL37A 42 

RPS3 44 RPL6 42 

RPSA 43 RPS3A 42 

 

3.3.6.2 Betweenness Centrality  

 

The top five nodes are CDC42, ATP5B, ATP5A1, MTOR, and DOCK4 (Table 

12), indicating that these proteins play a pivotal role in the network. CDC42, has the 

highest value/status of “mediator.” The shortest pathways of many proteins pass 

through CDC42, which regulates the flow of information through the network.  

 

Table 12: Top 10 nodes (proteins) with higher BC value 

Gene Symbol Betweenness 

Centrality 

Gene Symbol Betweenness 

Centrality 

CDC42 0,4064438 UQCRFS1 0,12572079 

ATP5B 0,20698295 GNB1 0,10902259 

ATP5A1 0,16889568 RHOA 0,10262978 
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MTOR 0,14118029 ATP1A1 0,1 

DOCK4 0,12641788 ATP1A2 0,1 

 

3.3.6.3. Closeness Centrality  

 

Closeness Centrality indicates the degree of proximity between a protein and 

other proteins. AGRN and DAG1 have the largest CC value in this network (Table 

13). These proteins are more closely associated with other proteins, have the 

average shortest pathway to other proteins as they are in the center at the center of 

the network. The CC value of ATP proteins are also high.  

Table 13: Top 10 nodes (proteins) with higher CC value 

Gene Symbol Closeness 

Centrality 

Gene Symbol Closeness 

Centrality 

AGRN 1 ATP1A3 0,71428571 

DAG1 1 ATP1B1 0,71428571 

UQCRFS1 0,71875 ATP1B2 0,71428571 

ATP1A1 0,71428571 ATP1B3 0,71428571 

ATP1A2 0,71428571 ATP5B 0,6969697 

 

3.3.6.4 Clustering coefficient  

 

The clustering coefficient represents the dense connection between some 

nodes. Node 1 is connected to the nodes 2 and 3, therefore there is a high possibility 

that nodes 2 and 3 are also connected. The CU value of several genes (e.g. 

SLC25A6, SDHD, APC, GIT1, and MYH10) is equal to 1 (Table 14). It shows that the 

two neighbors interact with each other, forming a group structure which is connected 

with each other closely.  

 

Table 14:  Top 10 nodes (proteins) with higher CU value 

Gene Symbol Clustering 

coefficient 

Gene Symbol Clustering 

coefficient 

APC 1 PFN2 1 

GIT1 1 BAIAP2 1 

SLC25A6 1 PAK4 1 
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SDHD 1 PAK7 1 

MYH10 1 YWHAQ 1 

 

Table 15 lists the common DEGs among cell and mouse datasets and their 

centrality values. ARHGAP35, BCAR1, CCND1, CD44 are commonly up-regulated in 

RNA-seq datasets.  

 

Table 15: Common DEGs among cell and mouse datasets and their centrality values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Symbol LOG2FC cell 

dataset 

LOG2FC mouse 

dataset 

Degree Centrality Betweenness 

Centrality 

Closeness 

Centrality 

Clustering 

coefficient 

ARHGAP35      0,697986    0,68924 3 0,00019704 0,32 0,66666667 

BCAR1       2,345642      0,532016 7 0,00155489 0,34188034 0,61904762 

CCND1 1,024861 0,617102 6 0,01002992 0,3030303 0,13333333 

CD44 1,062387 0,642703 3 0,0307749 0,27322404 0 

GNAI1 4,462322 -0,54067 11 0,00024472 0,25094103 0,67272727 
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4. Discussion 
 

In the current study, we have analyzed RNA-seq datasets obtained from three 

SCA1-related samples, a cell and a mouse model and human SCA1 cerebellum. 

These groups were compared in different stages of protein aggregation in order to 

find similarities in terms of mechanisms that lead to the disease. Following the 

identification of significant DEGS, we constructed heatmaps and PCAs for each 

comparison, performed functional enrichment analysis to study the similarities 

between them and generated protein-protein interaction networks. The number of 

DEGs were different among the comparisons. The lowest and highest number of 

DEGs were identified in the comparison between mice at week 28, cells at day 10, 

human (n=10) and mice at week 12 and cells n day 5 respectively (n=53). This 

observation highlights that the number of the overlapping DEGs between samples 

was low.  

In order to study disease progression, we found genes that are commonly 

dysregulated. ATF3 and CREG1 genes are commonly dysregulated at all stages of 

the protein aggregation. ATF3, a gene for activating transcription factor 3, is also was 

overexpressed in Huntington cell line (Liang et al. 2009), while CYGB is related with 

Huntington disease (Kocerha et al. 2013; Mattis et al. 2012). IGFBP 5, MMP14 and 

THBS1 genes were dysregulated at the early and middle stage of SCA1. Several 

lines of evidence suggest a down regulation of IGFBP 5 in two spinocerebellar ataxia 

(SCA) mouse models (for SCA1 and SCA7) (Sanz-Gallego et al. 2014), in mouse 

model (SCA17) (Friedman et al. 2007) and in Purkinje cells (Ramachandran et al. 

2014). MMP14 gene was up-regulated in our results, and also dysregulated in 

Huntington cellular model systems (Bano et al. 2011). Genes such as ALDH2 and 

MICALL2 are dysregulated at the middle and late stage, while BCAR1, COTL1, 

CYGB, ITM2C, MT1X, OGT, TRIM37, TRIM62 genes are dysregulated only at the 

late stage of the disease among cell, mouse and human SCA1 patient datasets.  

ATXN1 is a transcriptional regulator. Therefore, papers describe the 

transcriptional effect of polyQ-expanted ATXN1 in cerebellum. These studies have 

identified that various biological pathways, including glutamate signaling, calcium 

signaling, and long-term depression, are enriched in this tissue at different time-

points (Crespo-Barreto et al. 2010; Cvetanovic et al. 2011; Gatchel et al. 2008; Serra 

et al. 2004). Here, we also aimed to determine the biological role of DEGs and 

identify commonly affected cellular processes in all datasets.  
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In our analysis, we identified that protein digestion and absorption, ECM-receptor 

interaction and PI3K-Akt signaling pathways were dysregulated in all time points 

between cells and mice datasets. The dysregulation of the PI3K-Akt pathway by 

polyQ inclusions is not unusual (Matilla-Dueñas et al. 2010). In fact, proteins 

oligomers were shown to dysregulate cell cycle through the PI3K-Akt pathway 

(Bhaskar et al. 2009) which promotes necrotic cell death (Wu et al. 2009). 

Descriptive studies of human neurodegenerative disorders and experimental studies 

of animal models of neurodegeneration have begun to define potential mechanisms 

of ECM disruption that can lead to synaptic and neuronal loss. Protein aggregation 

can be associated with ECM alterations that would result to co-deposition of ECM 

components. Those ECM alterations can result in loss of protective perineuronal nets 

(PNNs) and increased susceptibility to cell death (Bonneh-Barkay and Wiley 2009). 

The ribosome, Alzheimer's and Parkinson's related pathways were dysregulated 

in the middle stage of protein aggregation (day5-week12). Ribosomal protein genes, 

are also highly expressed in Huntington mouse models (Carnemolla et al. 2009). In 

polyQ neurodegenerative diseases, the expanded CAG RNAs interact directly with 

nucleolin (NCL), a protein that regulates rRNA transcription (Tsoi et al. 2012). 

Regulation of actin cytoskeleton and AGE-RAGE signaling pathway were 

dysregulated at the end stage of the disease. As previous studies have shown RAGE 

is upregulated in the neurodegenerative process of Huntington disease and correlate 

with cell death (Deyts et al. 2009; Anzilotti et al. 2012), as huntingtin protein could 

bind to the RAGE leading to neuronal cell death. Dysregulation of actin dynamics 

plays a key role in neurodegenerative disorders (Eira et al. 2016). The actin 

cytoskeleton is strongly regulated by signaling pathways, namely by the Rho GTPase 

family. In Huntington disease huntingtin protein interacts with several players of the 

Rho GTPase signaling pathways (Tourette et al. 2014).  

Protein Interaction networks provide a tool to study the cellular molecular 

mechanism that are affected in a disease condition The protein products of genes 

that participate in the commonly dysregulated pathways per comparison were used 

for the construction of a protein-protein interaction network During the last years, 

network studies have been applied to biological data indicating that the degree of 

connectivity is a key property of any network (Jeong et al. 2001).  The most common 

approach to identify key nodes in a network is to search for the most connected 

nodes (hubs). The underlying assumption was that these hubs could be critical to 

explain the pathogenesis of diseases. In our results, CDC42 and genes that are parts 
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of the Ribosome pathways have the higher DC. Previous studies have shown that 

CDC42 appears to function as an initiator of neuronal cell death (Bazenet, Mota, and 

Rubin 1998) and it is involved in the pathology of Huntington‟s disease (Li and Li 

2004), while ribosomal proteins have been shown to alter the aggregation of polyQ 

proteins in animal models (Williams and Paulson 2008; Nollen et al. n.d.)  

Betweenness Centrality is another key indicator that demonstrates nodes which 

may be relevant in a network (Yu et al. 2007; Joy et al. 2005). In our data, CDC42, 

the protein with the higher DC, has also the higher BC, indicating that this node play 

an important role in the network. Proteins with higher CC values (e.g. AGRN, DAG1, 

UQCRFS1 and ATP proteins) are components of the three clusters in network. In the 

large cluster, the node with the higher CC is the CDC42 protein. Furthermore, within 

the interaction network, essential proteins also tend to be more cliquish (as 

determined from the clustering coefficient) (Yu et al. 2004). Proteins with high CU 

values are APC and GIT1 which are related with ESBM (Bott et al. 2016) and 

Huntington diseases (Goehler et al. 2004) respectively.  
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5. Conclusion  
 

 Our study focuses on the comparison of three RNA-seq datasets from SCA1 

related samples; namely, a cell model, a mouse model and a human SCA1 

cerebellum, in order to find similarities in terms of mechanisms that lead to the 

disease.  Following the identification of significant DEGS, we constructed heatmaps 

and PCAs for each comparison, performed functional enrichment analysis and 

generated protein-protein interaction networks. The pathways that found to be 

commonly dysregulated among the datasets at all the stages of protein aggregation 

are: protein digestion and absorption, ECM-receptor interaction (cells, mice) and 

PI3K-Akt (cells, mice, human) signaling pathway. Further studies are required to 

examine the detailed molecular mechanisms, underlying the various biological effects 

of the components of these pathways in SCA1.  
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