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Abstract

Machine Learning and Quantum computing are acknowledged to be among the
state-of the-art technological developments of the 21% century. Both domains achieved
huge advancements in the last decade, demonstrating very promising implementations for
the progress of modern society. As a result of their success and progress, Quantum
Machine Learning, a newly developed domain which comprise the combination of
Machine Learning and Quantum Computing techniques, meets an explosive research
interest in the recent years. Although the field is very young and thus fuzzy and immature
compared to its parent fields, there is a variety of interesting proposals and approaches
developed. This thesis consists an effort to define the domain of Quantum Machine
Learning and identify the several schemes within the field as well as organize and
summarize the existing literature in Quantum Machine Learning, with a focus on
supervised learning, and follow the most recent developments. This effort particularly
focuses on Quantum Neural Networks proposed in the scheme of Variational Quantum
Circuits trained with hybrid methods. This choice follows the general spectrum of this
thesis to concentrate on prospects of near-term applicable quantum algorithms for
Machine Learning. Several Quantum Neural Network frameworks that appear prominent
for near-term applications are presented and discussed in an effort to reveal the general
picture of expected quantum enhancements brought by Quantum Machine Learning as
well as the caveats these frameworks carry and the obstacles the domain has to overcome

in order to demonstrate its first much-expected applications in the recent future.

Key Words: Quantum Machine Learning, Quantum Computing, Supervised Learning,
Quantum Neural Networks, Variational Quantum Circuits, Hybrid-Learning, Near-Term

applications
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20ovoyn

H avantoén tov topéwv 1000 ™¢ Mnyavikng Mdonong 6co ko g KPavtikng

YmoloyioTikng Bempovvtor e€yovia TEXVOAOYIKA emttevyota Tov 21°°

OV, EPOPUOYES TV
omoimVv £yovv NoN EMPEPEL CNUAVTIKEG BEATIOGELS TNV KaOnuepvr) LN Kot £(0VV AmOTEAEGEL
EPOATIPIO. TTEPETAIP® EMOTNUOVIK®OV avokaALyemv. Qg emakdlovbo twv eEeliewv, TIg
TehevTaieg OVO deKOETIES Exel avamTuyOel Evag Kavovplog emoTnoVIKOG KAAd0c, 11 KPoavTiky
Mnyovikn MdéOnon, mov ot1oxedel 6TovV GLUVOLAGUO HEBOdV Kol TEYVIKOV Omd Ta
TPOAVAPEPOUEVH EMGTNUOVIKE TTEdia Yo TNV avarTuEn aAdyopiBumv unyovikng pdnong mov
EKUETOAAEDOVTOL TNV VTOAOYIOTIKT SLUVOUIKT TOV KPAVTIKOV VTOAOYIGTAOV Kol TIG LOVOIIKES

WB0TNTES TOV KPOVTIKOV GUOTNUATOV, OTTMG 1) VITEPHEST] Kot 1 SIEUTAOKT).

O veoovotatog avtdg KAAd0G PplokeTar akdOUN GE €vo AGOQES OTASIO Kol OgV M
EMIGTNHOVIKT] KOWVOTNTO 0OVVOTEL VO GUULPOVINGEL GE VAV EVIAI0 OPIGLO TOL TEPIEXOUEVOL KOl
TV otOYwv tov. 'H acdesio avt €xel, oe peydio Padbuod, kinpovoundel and tov kPfaviikod
YOPOKTAPA TOL TEGIOL KOl YEVVATOL 0O TO Yeyovde g to hardware ywo v viomoinon
KBovTIK®V VITOAOYIGU®V, Kol KATd cuvETeld KPaviikdv akyopiBuwv, Ppicketor akoun vro
Kataokev]. Qotdco, Ta TEAELTOiO YPOVIOL Ol EMOTNUOVIKEG eEEAiEelg delyvouv TG
BprokoOUacTE OAO KO O KOVTO TNV ONULIOVPYIL TOV TPOTOV KPOVTIKOV DVTOAOYIGT®V EVPELNG
YPNONG, TEPOV TOV HEHLOVOUEVOV KPOVTIKOV pnyoaveov mov €xovv Non onpovpyndel oe

ddpopa avd tov kdouo gpyactipla —D-Wave, IBM, Google, Microsoft-—.

H enavdotaon mov avapéveton vo gEPEL 1] VTOAOYIGTIKN 10YVG TOV UNYOVAOV QVTOV, GE
oLVVOLACUO UE TNV EUTOPIKT emTvyion TN Mnyovikng Mdabnong, £xel otpéyet 10 evolapEpPoV
1060 NG EMOTNUOVIKNG OGO KO TNG EMLYEPNUATIKNG KowvdTnTag Tpog tv KPavtu) Mnyaviy
MdéBnon, pe amotéleca 0 TOUENS VO ATOAOUPAVEL LEYAAOV EPEVVITIKOV EVOLOPEPOVTOS TOL
teAevTAin YPOVIO KO L0 EKTANKTIKNY TOIKIALD TPOTACEWMY KOl TPOGEYYIGEMV GUVAVTATAL GTN
oyxetikn Piproypaeia. to 2° Kepdaiaio g epyaciog yivetar pia tpoomdOeia opydvwong Ko
KOTNYOPLOTOIN GG TOV TPOTACEDV KOl TPOGEYYICEDV QVTAOV, EMIKEVIPMUEVT GTNV TEPITTOON
¢ EmPrenopevne Mdbnong mov givar kot n nyetiodtepn tdon pabnong 1060 kKAocstkd 660

Kot KBavTiKa.

8 Maria Kofterou - December 2019



Quantum Neural Networks focused on Near-Term applications

H mo yvootr| kot avayvopiopévn emtvyio g Mnyavikig Mdabnong ompiletan
avapeispnmra ota Teyvntd Nevpovikd Aiktvoa kot v avdmtoén g Aeyouevng Babidc
Mé6Ononc (deep learning), Tov amoteAovV TOAOTAOKA VTOAOYIGTIKG LOVTEAQ EUTVEVGUEVA OO
NV Proloyikn Aettovpyio TOV EYKEPAAOV KO TOVS UNYOVIGHOVS LAONOTMG TOV GLVOVTAOVTOL TN
¢@VOon. H vroAoyiotikn tovg moAvmAokdtnta eivar vt mov yopilel ota Nevpwvikd Alktoa Tig
eEAPETIKES SVVATOTNTEG TTPOGEYYIONG TOAVTAOK®OV GUVOPTNCE®V Y10 EVTIOMIGUO GUVOETW®V
potifov o éva 6OVOAO SedOUEVOV Kol TNV ££0Y®YN CUUTEPAGUATOV OO oVTd. AKOun, 1
Babud pabnon emttvyydveral LEGm TS kwoukomoinong Kot eneEepyasiog tng TANpoeopiag o

OLOVUGLLOTIKY LOPOT] KO TOVUGTEC.

To pobnuotikd poviého twv Nevpovik®v AKTOOV ETOHEVOS QOIVETOL 100VIKOG
VTOYNPLOG Yo, LAOToINom o€ éva KPOavTiKd cUCTNUO TOV EMTPENEL OO TN GVUGCT TOL TNV
amofnkevon Kot Saxelplon UHEYIA®V UIYAdIK®V SVUGUATOV KOl TOVUGTAOV Kol £)EL
VTOAOYIOTIKY] oYV €KOETIKA PEYOADTEPT OUTNG €VOG KAAGIKOD LTOAOYIGTH. G QUOIKO
emokolovbo, o oyedoouog kot n vioroinon KPoaviikav Nevpovikdv Aiktimv anacyoAel Eva
ToAD peyaho koupdtt e Bipioypagiag Tov topéa e KPavrikng Mnyavikig Mabnone. H
Tapovoo OAMUATIKY] amotelel por PAtoypagiky] peAétn cuvleTikng S1dGTAGNG TOL OE
cuovavtdtolr oty péxpt otyung owbéowyun Piprloypaeic otov topén tev KPavtikdv
Nevpovikov AKTO®V, e ETIKEVIPO TIG EPAPLOYEC TOVG GTO AUECO UEAAOV. XTOYOG NG £lvat
Vo TpoocEpeL pion OMoTIK €KOva otov Topén tov KPaviikaov Nevpovikov Awtdov pe
TOPOUETPIKOTONUEVO KPOVTIKA KUKADUOATO, OCGTE VO OUOPPOGEL Hio Goen €KOVO TV
SLVATOTHTOV KoL T®V SUGKOM®MV TOV AVTILETOTILEL O TOUENG KOL VO AmoPovOEL TL SLVOTOTNTES
exepalovtot Yoo AUECEG LEALOVTIKEG EQUPUOYES. Mia avaAVTIKY 1GTOPIKY) EMCKOTNON OGMV
povtédov  €povv mpotabel g KPaviwkda Nevpovikd Aiktva ond 1o 1995 otav

TPOTOEUPAVIGTIKE 0 OPOG Kot ¢ ofjuepa Ppicketar oto 1.2

Agdopévov T0V OTL Ol TTP®TOL KPAVTIKOT LTOAOYIGTEG, TOL OVOUEVETOL VO Elvar
dwbéopot Ta emopeva ypdvia, Ba etvan pikpng ddotaons, dniadn Ba amotelovvror amd 50-
100 qubits -to kBavtikd avtictoryo twv bits- emntovue npotdcelc KPaviikdv Nevpovikdv
AwtO®V viomomoyleg pe pikpd aplud qubits. Axoun, oty zmepintoon TV KPAVTIKGOV
VTOAOYIOTOV Ba ypelacTohV apKeTd Ypovia uéxpt va ovortuybel Eva cvotnuo dtopbmwaong
OQAALOTOC OVTIOTOLYO OVTOV TOV CNUEPIVOV KAUGIKOV DTOAOYIGTAOV, Apa ivol avaykaio To
HOVTEAL oV TA Vo Tapovctdlovv avoyn otov B0pvPo kot ta cedipata. Emmiéov, ta kBavtikd

ocvotiuata ypeldlovior TOAD ovykeKpluéveg cvvinkeg amoudvmong amd 10 eEMTEPIKO

Maria Kofterou - December 2019 9
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TEPPAAAOV Y10 VO, S1TNPTICOVV TO LOVASTKE KPOVTIKE YOpaKTNPLOTIKA TOVG OTwg 1 viépbeon
KoL 1 OLEUTAOKTY], KOt kO Kot yopic eEmtepikn mopePoAn KatappEovy 6€ PIKPE YPOVIKE
dtoTRHOTO- M ovoY] TOVS E0PTATAL OO TO EKAGTOTE PUGIKO GUGTILO TTOL XPNCUOTOLEITOL
v TNV vAomoinon. Eropévmg, BEhovpe povtéda mov pmopolv va Tpayratonombovy g ToAD
UIKPA XPOVIKE O10GTHHOTA, KATL TOV 6TV TEPITTMOT KPAVTIKOV LITOAOYIGTOV oV Pacilovat
oTNV VLAOTOINCT MUAMY, GTOLG OMOIOVE EMIKEVIPMOVETOL KOl 1| E€PYACIO OLTH, ONUOIVEL
TEPLOPIGUEVO apBpd ToAdV. TELog, AOy® Tng Suokoiiag dnuovpyiag pog KPavtikng Mviung
Toyaiag IIpoérevonc (QRAM), yia va givan éva KBavtikd Nevpovikd Aiktvo dwabéotpo yio
VAOTOINGT GTOVS TPATOLG KPOVTIKOVS VITOAOYIGTES TPEMEL vaL un ot pilet Tov oyedocid Tov
o€ Kamola KPavTiKn LvAuY, TOLAGXIGTOV aVTNG TG LopPns. Ta Wiaitepa YopaKTNPIoTIKAE TOV
EMTAGGEL 1 dLVATOHTNTA LAOTTOINGNG TOV aAYopiOL®Y awT®V 68 dueso uéAlov ov (ntmvtal

extevag oto 4° Kepdiato.

Me yvopovo to mopamdve kpitnpla, 1 PAoypagiky] £pguva TV TPOTAGE®V TOV
g&xovv avamtuyfel yioo KBaviikn Mnyovikn MdéOnon kor mopovcstalovior GuvomTtikd GTo
Kepdlato 2, katéAnée Twg to mopamdve yopakpiotika ivatl mlavotepo va viomicovy o
KBavtikd Nevpovikd Aiktva mov oyeowdlovior ¢ [Mopaperpikomompéva KPavrud
Kvuxkhopato kot ekmodgvovtan pe vepLotkég HeBddovg cuvOVAGHOD KAAGIK®V Kot KPOVTIK®OV
VTOAOYICUAV. O1 CNUAVTIKOTEPES KOl TLO OAOKANPOUEVES TPOTAGELS TOV EXOVV YIVEL GE OV TO

10 TAiG10 Tapovsidlovtal, avarivovton kot culntovvtal oto Kepdiowo 3.

H KPavtikn Yrohoyiotikn éxetl emdei&et v vepoyn g EvavTtt TG KAUGTKNG apKETA
YPOVIQL TPV e TV amodelén Kpaviikov akyopibumv énwg twv Grover, Shor, Deutsch mov
KATOPEPVOLV VoL ADGOLV TTPOoPAN Lot Tov elval omAnciootao amd KAUGIKOVS VITOAOYICTES AOY®
NG TOALTAOKOTNTAG TOVG, 1 €MOEKVOOLV ekBeTikég emtayvvoels. 1o 4° Kepdiaio g
epyaciog ovaAVETOL TO10 EIVOL 1 AVOUEVOLEVT] TPOCPOPA TOV KPAVTIKAOV LOVTEA®V Mnyavikig
Mabnong, apa kot Tov KPavtikdv Nevpovikadv Aktimv, oAAd Kot To TPOPALOTO TTOV TPETEL

EMAVGOVV TO GLYKEKPIUEVA TOGO G TPOG TO GYEOAGHO OGO KOl (G TPOG TNV DAOTOINGT] TOVG,.

YUVOTTIKA, M Tapovoo MAOUOTIKY dwpbpodvetar wg €&ng: Xto 1° Kepdiawo
attohoyeiton n emAoyn evacydinong pe v Kpavtum Mnyovikn Mdadnon, n eppdbovon ota
KBavtikd Nevpovikd Aiktva yioo emPremdpevn pddnon Kot TAOG M ETKEVIPOON NG
OLYYPAPEWMS GE TPOTAGELS TOL, KOTA T1) S1KT) TNG Kpion mov emPePoarmvetar Kot fipAtoypaeikd,

etvar mBavoTePo eQaprOGLEG 6TO £yYVG PHEALOV. Xt0 2° Kepdhato kpibnke okOmIHo va yivel
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pio olotikn BipAloypapiky| avackonnon twv 6cwv Exovy tpotabel otov Topéa e KBavtikng
Mnyovikng Mdabnong, vd 10 mpicpa Tov 0Tt TOAAEG amd TIG TAGELS TOL £XOVV SLOUOPP®OE]
pmropovy vo. etloEevioovv éva KPavtikd Nevpovikd Aiktvo kot moAlol adyodpiBuotr Kot
epyoreia KBavtikeng Mnyavikng Mébnong va ypnoipomombovv og epyodeio kot o ovtd. XT0
3° Kepdrawo amodeikvoetor Twg vod mpobmobicelg tétota KPovTikd HovtéAo Umopodv v
ovviehécouy  udbnon kot 4 maporroyéc KPoavrikdv  Nevpovikdv AKTOOV — ©C
Mopaperprkonompéva KBavtikd Kukiopata mtapovsialoviot kot avaivovral. Télog oto 4°
Kepdrato cv{ntohvtor To TAEOVEKTILLOTO Lol Kol Ol SVCKOAMES TETOIOV KPOVTIKGOV HLOVTEA®V,
OVOADOVTOL TO YOPUKTNPICTIKG TOL amolTel piot QUEST) DAOTTOINGT TOLG, KOl TO OVOITOVINTOL

EPOTNLLOTA TNG EPEVVOS AVTNG OAAL KoL TOV TOUEN YEVIKOTEPQ.

Mo ™ onpovpyia evog adyopiBpov unyavikng pddnong vedpyovv dvo otpatnywkés. H
Tp®OTN ovopdletonr « METOPPACTIKI Kol AVOPEPETOL GTNV UETAPPAUCT] KAAGIKOV adyopiBumv
UNYOVikng pabnong oty kPoviikny yAdooco, pe otoyxo v Peitioon tng anddoons, g
VTOAOYIOTIKNG 10YVG, TOL XpOVoL amdkpiong Tov aiyopiBuov 1 g e€dptmong tov and 1o
mn0o¢ dedopévov ekmaidevons. Tn otpatnykn avty akoAovbodv KPaviikd HovIEAN TOV
&xovv oyedaotel Yo va Edyouv cvumepdopato Qoprolovtag pio avTieToiyion £16000V-
€£0d0v tomov f(X)=y 1 wa kotavour deopevpévng mbavotntag p(Xly). Texvikég oxediacon
tétol0v  KPavTiK®v povtéAmv ocvintodviar ota vrokepdiouo 2.2 kot 3.1. H devtepm
oTPOTNYIKN OVOUALETOL «ALEPELVNTIKI KOl EIVOIL 1] TTLO LOVTEPVOL TTOL GTOYEVEL GTT ONLLOVPYia
KBOVTIKOV LOVTEA®MV UNYOVIKNG LABNONG IKAVOV VEL YEVIKEDOLV TO GUUTEPAGHLOTA TOVG GE VEQ
dedopéva. AVl Vo ETIKEVIPAOVETOL GE VITOAOYIOTIKY EMTAYVVOT), TO LOVTEAD AVTA EEKIVOUV
and v kKPavTikn punyoavn oty omoio BEAovpe va epoapuoOcovE KATOlo LOVTEAD Ko XTilovv
oV adyopifuo Baon tov dvvatotnTeV TG unyavng avtns. Katevbovoelg yio tov oyxedacuod
KBavtikov alyopiBuov vrd avtd to mpiocpa cvintovvror ota vrokepdAao 2.4 kot 3.3.
Teyvikég exmaidevong yo to KPavTikd HovTéLo oV TPOKVLTOVY amd TV KABe KatevBuvon
Topovc1dlovtal 6To 2.3 Kot 1 TEYVIKN TOV EMALYETOL MG PEATIOTN Y10 TIG TPADTES EQAPUOYEG,

N YBp1dkn nepintmon, avardeTon 6To VIToKEPAANLo 3.2.

[Mapd Vv acdeela mov enkpoTel AKOLO GTOV TOUEN, 1 EMGTNUOVIKT] KOWVOTNTA £XEL
CLUP®VNOCEL 6TO O,TL YEVIKA Otakpivovtal 4 €idn adyopiBuwv. Avtd mov apopodv KAUCTKE
dedopEVaL Kot KAUGIKY] EMEEEPYOCTO EUTVEVCUEVT] a0 KPOVTIKE avdAoya, TNV TEPIMTO®GN TOL
KMot pnyavikn pdbnon ypnotponoteiton yuo va fondnoet kBavtikés dadikaocies, KPaviukd

dedopéva pe Kpavtikn eneEepyasio kot kKAaotkd dedopéva eneEepyacuéva e KPavTikd tpomo.
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O1 meprocdTepeS mpotdoels eoTidlovv oty TeEAevTaia TEPITTOOT, Y10 SAPOPOVS AGYOLS TTOL
avaivovior 0to 2.1.3. Tty mepimtwon avty, Yo va eneEepyaotel £vog KPavTikdg VITOAOYIGTNG
KAoowKd dedopéva TPEMEL aVTA Vo, KOJKomomBovv ce kdmol amd TG HETAPANTES TOL
oLOTANOTOG e o amd Tig 4 Pacikéc uebddovg kmdKomoinong mov mEPLYPAPovVTaL GTO
kepdioo 2.1.4. Ovopootikd; Kwmwdikomoinon 0TI KATOOGTAGES TOL  GLUOTNHLOTOG,
Kwdwonoinon oto mhdatn mboavotnrag, Kwdwkonoinon oty Xaultoviavy 1 gsamples, mov
elval KataoTtdoelg Tov KPovTikoh GLUGTAKOTOG TOL KMIKOTOOLV TUYaiEg HETABANTEG oG
katavouns. H vroloyiotiky molvmhokotnto kot to tAn0og twv qubits kot tov muAdv mov
TpENEL VoL VAOTOM B0V Yo va Tpary Latomotn 0el | Kmotkonoinon g tAnpogopiog etvor ToAAEG

Qopec dvoPdotayta yio Eva KBavTiKd LoVTELD.

O pooeyyioelg otig omoieg pmopel va katnyopronomBei to cvvoro g Piprtoypagiog
v KBavtikd poviéda yio copmepacspota givat Tpels. Ipoppikd poviéha, 1o anotéAecHd TOV
omolwv vwd mpovmobéoelg pmopel va Bewpnbel éva eocmtepkd yvopevo VO KPOVTIKOV
KOTOGTACEWMV N 1] TEAMKT KATAGTOGT VOGS LKPOV KPaVTIKOD KUKADUOTOC, OT®S OVAAVETAL GTO
2.2.1. Amodekvoetarl LAAMOTO TG TETOW KPOVTIKG HLOVIEAN UTOPOVV VO OVOTOPAcTOO0OV
Yok mg Nevpwvikd Alktva xwpig cuVapTNGELS EvepyoToinong, Omov kaBe KPovTikn TOAN
avTIoTOlKEl o€ éva oTpdUA VEVPOVOV. Moviéda Paciopéva 6 GUVAPTNGELS TLPNVEOV, KAO®DS
omwc eé€nyeitar oto 2.2.2 vapyel pio ToAd kopyn ovaoyio ovipeoa o Evav feature space
oL 0pileTOn QIO Kt GLVAPTNON TLPNVA KOl TOV YOPO XIAUTEPT TOL TEPLYPAPEL TO KPAVTIKO
oLGTNUO, AOY® NG AUECTG GYECT) TOV GLVOPTNCEWMY TLPTVA LLE TOL EGOTEPIKA Ytvopeva. TéAog,
mBovokpatikd povtéda to onoia dgv Ba propovcay va Asimovv amd to TAaiclo g KPavTKNg
Oewplag mov sivon pa Bewpia TBavotnTeV. H Tpitn mpocéyyion mapovcidletal oto 2.2.3 kot

gtvon ueca ouvoedeprévn e Tic KPavtikée kataotdoeslg gsamples wov mpoavapépOniay.

21 ovvéyeta tov 2°° Kepalaiov mopovctdlovtal 6Tpatnyikés EKmaidevons KPavTkmv
povtédmv Mnyavikng Mabnong ywo kéBe mpocéyyion. Texvikéc eknaidevong PacionEVES OTIC
dvvaToTTeG oG KPOVTIKNG Unyoving va Kaver mpd&elg ypappiknig GAyeppoag o€ TOAD
YPYOPOVG XPOVOLG, TOV OTOPPEOLV atd ToV KPavtikod adyopiOpo Harrow-Hassidim-Loyd yw
mv emilvon g ypappukng e&icwong AX=Db -6mov A évag mivakag kot b éva dtdvoopa- kot Tig
TopoALaYEC TOL avoeépovior oto 2.2.1. Eto 2.2.2. gletdlovtar pébodotl ekmaidevong mov
otpilovror og guprotikég peBodovg avalntnong eunvevouéves amd Tov KPavtikd adydpidpov
tov Grover. YBpwikéc péhodot mov cuvovalovv kKAaotkovg adyopibpovg Peltictomoinong

omwg Simplex, i Gradient Descent pe kBavtikovg vroloyiopods culntovvtol oto 2.2.3 Kot
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avaAbovIol TEPUTEP® 61O 3.2 KOOMG OMOTEAOVV TNV POYOKOKOAA TNG eKTOidELONG TOV
KBavtikov Nevpovikov Aiktdmv ota omoia emkevipovetal 1 epyacia. Térog, oto 2.2.4
viveton pio cvvropn avagopd o€ xpnon Hebddmv eumvevcuévev ard to Adofatikd Oshpnuo

v KPavtikd poviéda mov amofAEmovV oe VAOTOINGT HECH KPOVTIKNG OvOTTNONG.

Ot ovo mopomdve xoatnyopiec olyopiBumv yu €£aymyn OCULUTEPUCUATOV Kol
eKTaidevon amoteAobV KLpiwg KPAVTIKEG LETAPPOAONS OVTIOTOX®OV KAUCIKOV LOVTEA®V Kot
alyopiBumv Mnyoavikng Mdabnong. Xto 2.3 akoiovbeitor pion S0QOPETIKN TOKTIKY, 1
«e€epguvnTikny kot mapovotalovral kKPaviikd povtéda tomov Ising ywo kPavtikd Hopfield
Nevpovikd Aiktoa yio Xepmavny padbnon 1 kpavtikée unyavég Boltzmann yio fabud pabnon
(2.3.1) 1 Hopapetprkomrompuéva KPavtikd Kokiopoata o¢ KBavtikd Nevpovikd Aiktoa 1
Kamyoproromtég (2.3.2). Kdamoeg pepovouéveg GAAeS TPOoceYYIoELS avaPEPOVTAL EMIONG
(2.3.3). O ot6)0G LOVTEA®V TNG «KEEEPEVVNTIKNG» TPOCEYYIONG OEV glvart va emTHYoLV Kol
eMTdyvvon o€ GYE0T Ue KAAGIKA TOVG avdAoya, dAAa gival va e£EpELVIIGOVV TIG SUVATOTITES
plog kBavtikng unyovng vor avamtoéel teyvikég panong péoa and v enefepyacio evog

oLVOLOL dedopEVOV.

210 3° Kepdraro 1 epyacio emkevipdveTal o€ avtd mov 1660 1 Piproypaeia, 660 Kot
N TPOCMOTIKY] ATOYN TNG CLYYPOUPEMG, Oelyvel va givorl 1 owkoyéveln KPavtikav Nevpovikdv
AWKTO®V OV UTOPEL VO PTAGEL GE TPMIUEG VAOTOMGELS e TO Tp®dTO dabéotuo hardware. H
owoyévelr avt etvar ta Ioapaperpuwcomompuévo KPaviikd Kukiopato, mov amotehovv
KBavTikd KukAOpaTo e KAOGIKEG TOPAUETPOVS KOl EKTOOEVOVTOL UEGH €VOG VPPLOKOD
oYNUOTOC KPAVTIKOD VTOAOYIGHOD TOV OMOTEAEGUATOS Kol KAAGIKNG PeATioTonoinong tomv
TopaUETPOV. O SOUEPIGUOC TOV VTOAOYIGUAOV G€ KPOVTIKO Kol KAOGIKO VTOAOYLOTY, GE
GLUVOLOCUO HE TNV IKOVOTNTO TOV HOVIEA®V OUTMOV VO AEITOVPYoOV pE KAOCIKA OAAG Kot
KBavtd dedopéva, kabmg kot to 0,Tt otnpilovral oe KPovTikoOs VTOAOYIGTEG TOL SOVAEDOVY
LE VAOTOINGM TVAMV €ival To GTOLYEID TOL KAVOLV TNV OIKOYEVELD 0TI TNV WO0VIKOTEPT Yo
aueoeg epappoyéc. to 3.1 mapovsidlovrot Vo TETOL0 LOVTEAO Yo EEAYWYN CLUTEPACUATOV,
170 OeVTEPO €K TV OMOIOV KOTOPEPVEL VO TPOCHECGEL Lo U1 YPOUUIKY) CLUVAPTNON
evepyomoinong ympig va dtatapa&et Tig KPavTuKég apyEs ToL GUGTHHOTOC, HECH KOIIKOTOINoNS
™G TANPOoPopiag ToL GTAOUIGUEVOL 0BPOICUOTOC TV VEVPOVOV EVOG CTPMOUATOS GE YWVIES

TEPLOTPOPDV GTO GVGTILOL
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210 3.2 avaAvovtal ot TEXVIKES VPEPOKNG ekmaidgvong evog KPavtikod Nevpmvikov
ATOOV, TOEIVOUNUEVES GE TEYVIKEC YWPIG Tapaymdyion, n uébodog Nelder-Mead cuykekpiuévo
(3.2.1), teyvicég pe voopepikn mpocsyyion mapaydywv (3.2.1) Kot Texvikég pe avoAvTIKO
VTOAOYIOUO TV Topay®y®mV (3.3.3) Hog OpIGUEVIG AVTIKEYLEVIKNG GUVAPTNONG. XTNV TPiT)
TEPIMTOON LAAIGTO ATOOEIKVOETAL TWS OVTOC VITOAOYICUOG GE OPIOUEVEG TEPUTTMOCELS UTOPEL
va yivel ebKoA KPaVTIKA, Kol LOVO O VITOAOYIGUOG TNG TIUNG TWV OVAVEOUEVOV TOPOUUETPOV
avatifetor otV KAoowkn punyavr. Télog , oto 3.3.1 mapatifetor 1 anddeEn Tov KPavTiKod
avdioyov tov Oswpnuatog KabBoiung Ipocéyyiong, mov vmodekvidel v duvordtnta
péonong Kot wpocyyiong Kabe dittyung petafintg and éva KPaviud Nevpovikd Aiktvo
aLTAG NG HOPPNG. A@OV omodekvieTar oty 1 duvatdtnta pabnone, 4 HoviéAa Tov
amoteAoVV mopaAlayég Tov 1010V oynuatog mapovcstdlovior kot cvintovvror. Ko to 4
Bacifoviol 610 OYESOGUO TOPAUETPIKOTOMNUEVAOV KPOVTIKOV CLUGTNUATOV HE KAUGIKEG
TAPOUETPOVG, OOV OlOPOPOTOLEiTAL TO €100¢ TV KPAVIIKOV TLADV OV OTOTEAOVV TO
ocvotnpa. Avdioya pe 10 €100¢ TV KBOVTIKOV TUAGV avamTOGGOVTOL Kol O10POPETIKOL TPOTOL
AVOADTIKOD VTTOAOYIGHOV TOV TOPAYOY®OV TNG GLVAPTNONG KOGTOVG, KOl KOT EMEKTAGLY TOL
10V T0L KVKAGPOTOC. Mia 1o 101KN TEPITTM®ON AmOTELEL TO LOVTELO TTOV TTAPOVGIALETOL GTO
3.3.5, mov otpiletar o KPovTiKn VTOALOYIOTIKY cuvey®Vv petafintav. ITo cvykekpyéva, 1
TAnpogopict dev dakprromoteitor ywo v omodnkevtel oe qubits, aAAd a&lomorovvron
petaPAnTég Tov KPavTikov GLGTNUOTOC oL lvanl cuveyels, dmwg N opun Ko N B€om evog
copatidiov, kol ot Tpaéelg avomapiotavion o€ I'kaovslovovg kot un I'kaovslovodg mivokeg
OV ONUOVLPYOVV Eva TANPEG GUVOLO TEAEGTAOV. ZNUAVTIKEG COUTANPOUOTIKEG TEXVIKEG TOV
YPNOOTOOVV 0VTA T LoVTELD TapatiBevTol 6To TEA0G TG epyaciog oe Lopen fondntikdv

vropvnuatov (Appendices).

210 oOVOAO TOVLG TOL HOVTEAD GVTA GLYKAIVOUV of emimedo TOALTAOKOTNTOG Kot
amotnoelg 6to TAN00g TV qubits Kot v Tpog VAOTOINoN KPAVTIKOV TLAGDV, S10(pEPOVTAG GE
ONUELD OPYITEKTOVIKNG KO TOV €100VG TV AOYIKOV HOVASIAi®V KPOVTIKOV TUADV GTO OTToio
umopel vo avalvOel 10 TopapeTpKomomuévo KuKA®pa. Ot amoutnoelg antég Tposmadovy va
KpotnBovv 610 €AGYIOTO SLVATO OO TOVG EPEVVNTEG, YWPIC OOTOCO VO KATOPEPVOLV VL
ayyioov v YounAn TOALTAOKOTNTO, TTOV OMOUTEITOL OO TNV EMKPUTOVCH KOTAGTOO
dwabéoov kPaviikov hardware. Idwaitepeg kPavtikéc 1010t TEC OmS N VIEEPOHEST TOL GLVOLOL
OedoUEVOV Yoo TOPAAANAN emeEepyacion TOVG &ivol EPIKTEG OTOL TAOUIGLO GYESIGLOV TV
KBavtikdv Nevpovikdv AKtHmv autdv, 0AAL OV 0E10TO100VTOL 0TV TO GUGTILLO DTOKEVTOL

OTOVG TTEPLOPIOHOVS TTov emPdArovy Ta dwbéoipa péca. Emmiéov, Oleg ol mpotdoelg mov
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avaADOVTOL ATOTEAOVV YEVIKOTEPQ TTAicIa avdnTuEng KBavtikdv Nevpovikdv Atktdmv kot
oy e€erokevpéva Lovtéda, Kabmg 1o €100¢ TV TLAGV £VOC KUKAMUOTOG KOl 1| GTPOTIYIKN
EMAOYNG TNG OPYLTEKTOVIKNG TOV Ogv £Yovv avoivBel akoun omd v mapovoa BifAtoypapia.
Axoun, copmepaivovpe Tmg Waitepn HEAETN TPEMEL VaL YIVEL KOl V1ot TOV TPOTO ETAOYNG TOV
APYIK®OV TOPAUETPOV €VOG TETOOL HOVIEAOL avdAoyd pe 1o TPOPANUE mov OBéAovue va
EMAVGEL Kol TO €100 TV dedopévav. Téhog, a&ilel va onuelwbel mwg otnv mepintmon
KAOG KOV 0£30UEVOV T OTIO10L TPETEL GTO TPMTO GTAALO EVOG LOVTELOL VO, KOIIKOTOMO0oUV G€

KBoavTikn popen péca 6€ avTd, N TOATAOKOTNTO CLEAVETOL OPOLLOTUKA.

210 4° kepdroo KAetvovpe pe pio odvoyn ocvumepacpdtov, G660 and ovTé TOL
TOPOVGLACTNKOAY GTO TPONYOVLUEVO KEQPAAOLN, OGO Kol HEAETOVTOG avdioyn Biproypapia.
210 4.1 avaidovtol ot avapevopeveg Pedtidoelc mov mapovstdletl Eva KPavtikd Nevpwvikd
Aikrtvo, kot évag kKBavtikdg ahyoplOpog unyavikng Ldnong yevikodtepo -0nme TPoavapEPOLLE
N KATNYOPLdV TV dVO EVVOLOV €lvan LEYEAN- gite G GUYKPIOT UE TO VILAPYOVTOS KAUGIKA
povtéda, eite ko ¢ véa KPovtikd eumvevopévo poviéda pdbnong. Mo va emrevybel pia
TOAVTAELPT  avAAvLoT, To mhova emTeEdYHOTA  KOTNYOPLOTOOVVTOL OTNV  TEPITTMOON
BeATIOOE®V GE VTOAOYIOTIKY] TOALTAOKOTNTO, TOALTAOKOTNTA ovoyKaiov Oelypatog
EKTTA{OEVONG KOl TOAVTAOKOTNTO TOV LOVTEAOV. ZTNV TPATN TEPinT®OT avayvopiloviot Tpia
glon mbavov vrepPdoewv and kPaviikd poviéra, pe Topadeiypoto Kpaviik®v alyopifpmv
vy Ka0e mepinTmon. Lty 0e0TEPN TEPIMTOON AMOSEIKVOETOL TS UE OTOL0 TPOTO KO £YEL
TPOGPacT 6T0 GLVOAO EKTOIdELONG Evag KPAVTIKOS aAYOPIOLOG, EXEL YPOULUKT GYECT) LE TIG
avdykeg TANO0VG TOPAdEYHAT®OV €VOG KAOGIKOU OAyopiBHov Kot dgv ovOpEVETOL KATOLL
ueyaAn mpocs@opd amd to QML yia to mpoPAnpa avtd. Téhog, Ady® ™G TOAVTAOKOTNTOG
vroloyiopov ¢ VC-didotaong evog Hoviélov -0l €vOg TOAVETIMESOV HOVTEAOD OTMG TA
Nevpovikd Aiktva- 1060 6TV KAOGIKH OGO KOl 6TV KPAVTIKN mepintmon, 1 Tpootddsio

e€aymyNg KATO0V CLUTEPACUATOG KPIVETOL AKOPTT).

To 4.2 glvatl aplepoUEVO 6TV AVIAVOT TOV TPOKAGEMV TOV AVTILETMOTILEL O TOUENG
¢ KBavtume Mnyavikng Mabnong, omod emiPefoardvetor avtd mov ovapépetot ko’ dAn
dupkela TG Topovoag ATAMUATIKNG, T oA To TpoPfAnpata myalovy amd v EALEyYN
dwabéoov kPavikov hardware yio vo vrootnpiet v vAomoinon KPOvVIIKOV HOVTEL®VY Kot
TPoKTIKO mepapatiopd. To Béua avtd mapovoidletor oAotikd oto 4.2.1, evod oto 4.2.3
eupabovoovpe oy €vvota g qRAM, 1 avaykn g omoiag £xel TovicBel TOAAEG Popég KaTd

N dLdpKeLn TNG epyasiog, Kupimg yiati otny vmapén g otnpilovtatl oyxeddv 6Aot ot kPBavtikol
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alyopBuot, unyavikng pabnong Kot pun, mtov a&torotovv v kPavtikn vaépbeon. To Bépa Tov
TOAD LUKPAV ¥pOVOV cLVEKTIKOTNTAG £vOg KPavtikoh Xvotuatog kot 1 evaucnoio tov og
eEmtepcéc maperforéc TV TAPOSO TOL ¥POVOL Kot T TPOPANUATO TOL OVTO dNpovpyel

Otyovtol 610 4.2.2.

Xvveyilovtag, oto 4.3 yivetal n cuvoyn TOV arapoitnTeVv Tpoinodicewv mov mTpEnel
va kKoAomtel éva povtédo KPavtikng Mnyavikng Mabnong yia va propécet va viomomOei
OTOVG TPAOTOLG OlaBEGOVS KPavTKoVg VToAoYioTéG. Xwpig v avartuén pag qRAM, 1
omoia Oa apynoet dnwg avapépetor 610 4.2.3, N mapdAAnin eneéepyacio mov yapilel puoukd
o€ éva KPavtkd povtédo n vrépbeon Ba mpémet va peivel ava&loroin. Toécso 1o tAnbog tov
dwbéomv qubits 660 kot to Babog tov KPaviikdv KuKAoudTev, dnradn to TANBog TV
KAOGIKOV TOAMV TTOV TTPENEL Vo, VAOTomBobv- opeidovy va eivar meplopiopéva oe 50-100
qubits kot 1000-3000 woreg. AkOua, 1 exttvyio Tov HoVIEA®V Baciletor 6TV avoyn Tovg 6To
00pvPo, kabdc Ba Tpémel va dovAehovv Ympig cvoTNIA aVTOUATNG 010pBmONg AaBDOV, KATL TOV
etvar apketd mo dSVoKoAo va avortuydel yia évav kKBavTikd VTOAOYIGTH A’ OTL TAV Yo TOV
KAOG1KO VTOAOYLGTH, AdY® TOov KPavTikob Oswpnuoatog un KAwvomoinong, mov anayopedel
onpovpyia avtypdemv Tov KRoviikov Kotaotdosmy. Emmiéov, n mboavokpatiky| gvon tomv
KBavVTIK®V cVGTNUATOV G GLVOVAGUS LE TO YEYOVOS TS 1) VAOTOINGT TV TLAMV AO TOVG
TPAOTOVS KPAVTIKOVG VTOAOYIGTEG elvar eplopiopévng akpifetag Ko amontel oAALETAAANAES
TPOYLOTOTOWGES KOl UETPNGES TOV GLOTNUATOS Y. TNV aSlOMoT] TPOGEYYIoN TOV
OTOTEAEGLOTOC, VILOYPAUUILOVY TNV avAYKN TNG EVKOANG KO YPIYOPNG CVATOPUYMYIKOTTOG

TOV KBOVTIKOV HOVTEA®V UNyovikng péddnonc.

H gpyocio avty oloxAnpodvetor pe v mopdfecn TV ONUAVIIKOTEP®OV OVOLYTOV
gpotpdtev otov topéa ™ KPavtikng Mnyavikng Mabnong, oto 4.4, 6mov cuvovidvtol
epoTaTe Bepel®OoVg onpasiog Tov VIoYpoUpilovy T0 68 TOGO TPOTAPYIKO GTASI0 £ivarl
aKOUN O TORENS OVTOG. £TO TEAELTOIO VITOKEPAAO, 4.5, mopatiBevtal To GLUTEPACUATO TG
OLYYPUPENMS KATOTY VTG TNG cuvOeTIKNG PifAtoypapikng perlétng. Ta copumepacpota avtd
ocvvoyilovtar oe tpion onueio. [pdtov, o topés tov KPaviikov Nevpovikdv Aktoov
Bpioketar 610 oTdd0 oV PpiokoTov M Epevva TV Teyymtdv Nevpovikdv ATiov T
dekaetio Tov 80, dtav elhelyel TG SOOEGIUNG VITOAOYIGTIKYG IKAVOTNTOS Y10 TNV VAOTTOINGT
TOVG NTav amAd acaeis 10éeg oTic omoieg Alyot miotevav. Ta KPavtikd Nevpovikd Atktoa Oa
GULVEYIGOVV VO LaG Omacy0AoVV 6€ OempnTikd eminedo uéypt to dabécuo hardware emtpéyet

TNV VAOTOINGCT TOLG, Kol OTAV VTN 1) oTyUn POt Kot 0 TEWPAUATIOUOG G VPV GKEAOG Elvar
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EPIKTOG, B ovvteAéoouy pia VITOAOYIOTIKY| €MOVACTOCT. AVTO S10TL, Otav 1N TAPAAANAN
enefepyacia TV dedouévav péow g vrépbeong kot M ypNon KPAVIIKOV EUPICTIKMV
alyopiBuov Baciopévav 61o TAdTog ThavotnTag OTmg Tov Grover yivovv duvatég, 1 evpeon
TOV omoADTOC PEATIOTOV Papdv Ywplg emavoANTTIKES dlodlKacieg Tov gival Kava va

VAOTOMGOVV Elval KATL TOL OeV £YEL OVTE UTOPEL VO, ATOKTNGEL KAUGTKO 0VAAOYO.

Agbtepov, 1 owoyéveln KPBavtikov Nevpovikov Atdov mov mapovctdleTol 6To
Ke@dAalo 3 givar 1 KaAHTEPT TPOTACT] TOL VIAPYEL VT TN CTIYUN HUE TPOOTTIKEG AUEONS
viomoinong. Kot avto yiati, av meplopiotel oty nepintmon Sitiov GuVOPTNGEDY, EMTPETEL
TNV KOV TPOGEYYIGT] TOLG HE OYETIKO HKPNG TOALTAOKOTNTOG KPOVTIKG KUKADUOTO,
vAomomotipa amd Tovg SBEGIOVS KPAVTIKOVG LTOAOYIGTEG ToL otnpilovial 6€ VAOTOInoN
KBovTik@v moA®v. AvTd To KUKADOUOTO WITOPOVV VO, EMLTLYOVV TKOVOTOWTIKY] TPOGEYYIOoN
yopic va onpiloviat g KPavtikn vépBeon, dpa kot v vmapén pos gRAM, akdpa kot Otov
VROKEWTAL GE OVGTNPOVG TEPLOPIGUOVG GYETIKA LLE TO YOPUKTNPLOTIKE TOV TUADY QLTAV Y10l
VO HEMGOLY TNV TOALTAOKOTNTO TOV HOVTEAOL GTO gAdyloto dvvatd. Téhoc, m ypron
KAOGIK®OV TOPAPETPOV EMTPENEL TNV OTOONKEVOT KO ETAVOYPTCLOTOINGT TOVG, EVAO 1
KMotk Tovg enefepyacio dlevkoAvveL TV dwadikacio ¢ exmaidosvong. EEaidov, and ta
1€66€Epa €101 exmaidogvong mov cuintOnkay oto 3.2, n VEPOIKN ekmaidevor glvar 1 LoV TOL

d¢ onpiletar og moAOTAOKEG KPOVTIKES VITO-poLTIvEG Kot VITEPOEST OEOOUEVDV.

Tpitov, TpocoMKY AmOYN NG CLYYPUPEMS EIVOL TMOG 1 EPELVO GTOV TOUEN TV
KBavtikdv Nevpovikdv Aiktowv Oo Enpene yio To ETOUEVO S1AGTNLLO VO GTOLATHGEL VO 0LPOPEL
OMOKAEIGTIKA TNV avAnmTuEn vEwV Be@pnTIK®V Kol 0dVVOTO Vo TEKUNPLWO0VY TPOTACEWDY Yo
HovTéAQ Kot vo, eTKeVTpwBOel oy dnuovpyio pag oAoTikng mpotacns. Me enikevipo ta
KBavtikd Nevpwvikd Alktoo mov 6€ cuvovacUod e VEPLOKEG TEYVIKES EKTOIdELONG PEPOVTOL
ol BEATIGTOL VITOYNPLOL Y10, AUECES EPUPLOYEG, TO COPOPE EPOTILATO TOV TG OOUEITOL 1)
OPYITEKTOVIKY] €VOG TPOUOETPIKOTONUEVOVS KPOVTIKOD KUKAMUATOS, MG 0PYLKOTOL0VVTOL
BéAtiota or mopdpetpor Tov, T ovpPaiver pe TG OvvardTNTEG UAOMONG KOl NG
vreppovteronoinong (overfitting) kot Tdg pmopel va ovénbei n avoyn Tovg 6to B6pLPo Kot T
oc@aipata givor kdmoleg amd TG Pacikodtepeg KateHOLVGEIS TPOG dlepedivion Yo TNV

KataokeLn EvOog TAnpovg KPavtikov Nevpwvikod Awctdov.
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EAnviko I'Awccdptlo

Adiabatic: Adwafatikog

Adjacency matrix: ITivakag I'ertvioong

Amplitude: Evpog/TTAdtog

Annealing: Avorton

Artificial Intelligence: Teyvnt Nonuoosvvn

Avrtificial Neural Networks: Teyvnta Nevpovikd Aiktvo,
Classification: Katnyoptomoinon

Clustering: Ouadomroinon

Coherence: ZvvektikotnTo

Continuous Variable: Zuveyng Metafin

Density Matrix: ITivaxog [Mokvotmrog

Eigenvalue: Idtotiun

Eigenstate: Id10d14vuopa

Entanglement: Awcumloxn

Gradient descent algorithm: ALyopiOpog cOyKMonNG pe ELATTOON TNE TAPAYDYOL
Hamiltonian: Xoultoviavn

Hermitian matrix: Eppurtiavog IMivakaog

Inner Product: Ecmtepikd I'vopevo

Information Encoding: Kodikomoinon ITAnpogopiag
lon-Traps: Iayideg 1OvTov

Ising-Type Models: Movtéia tomov Ising

Kernel: ITvpivag

Markov chain: Mapkofiavi aAvcida

Machine Learning: Mnyoviky Mdadnon

Oracle: Xpnopog

Overfitting: Yneppovtehonoinon

Principal Component Analysis: Avaivon Kbpiov Zvvictocmdv
Probability Distribution: Koatovoun ITibavotntog
Quantum Computing: Kpavtikn Yroloylotikn
Quantum Gate: KBavtikn IToAn

Quantum Machine Learning: KBavtii Mnyaviki Mabnon
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Quantum Neural Networks: Kpavtikd Nevpwvikd Aiktoo

(Quantum) Random Walk: (KBavtikoc) Tvyaiog Iepinotog

Regression: TTalvépopnon

Reinforcement Learning: Evioyvtikn Mdadnon

Singular Value Decomposition: AvéAvon og Idi1alovoeg Tiuég

Superposition: YznépOeon

Supervised Learning: EnifAenopevn Mabnon

Support Vector Machines: Mnyavég Atavocpdatov YrootpiEng/ Mnyavéc Edpaimv
Awvoopdtov

Symplectic matrix: Tvpmiektikog Iivakag

Unitary gate: Movadwaiog ITivakog

Unsupervised Learning: Mdafnon yopic enipreyn

Variational Quantum Circuits: ITapapetpikoromotpa KBavrid Kukiopata
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1 Introduction

1.1 Scope of this thesis

This thesis’ purpose is to provide a holistic overview of the literature research in
Quantum Neural Networks aiming in near-term applications based on Variational Quantum
Circuits trained via Hybrid methods. It constitutes a synthetic review of the present literature
in the domain, and in order to be in parallel with the explosive number of publications in the
last two years, was updated several times. It should be pointed out that, at the author’s
knowledge, there is no such equivalent in the available literature at this moment. It should not
be claimed, of course, that it is absolutely complete as the developments and the scientific
interest in this subject are constant and new proposals are published every week. The choice to
focus on Quantum Neural Networks represented by Variational Quantum Circuits was made
after several months of studying the field of Quantum Machine Learning and Quantum Neural
Networks in particular, in October 2018, motivated by the author’s perception that this scheme
presents several potentials for an application in the first quantum hardware available. This
belief was strengthened in the following months by the rise of the researcher’s interest in this
specific type of models and the exponential increase in the number of publications. It will also

be proven based on facts in the rest of this thesis.

At this point, it should probably be pointed out that this thesis started in the scope of a
straightforward comparison of an Artificial Neural Network (from now on referred as ANN)
and a Quantum Neural Network (QNN) through simulation of both models on the same task,
trained with the same dataset. The reasons this idea was abandoned were several, and | would
like to mention the three most important of them; first, the naivety of the idea that simulating
a quantum neural network on a classical computer would be a trivial task, which was indicative
of my personal ignorance of the domain. Second, in order to analyse a QNN as a Variational
Quantum Circuit (VQC), to train the model, choose the specific architecture and design the
gates, even encode the classical data -given that there is no guidance available in the literature
so far- is a task so demanding that would overpass the time available to submit a Master Thesis.
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And although my supervisor was kind enough to offer me both support and time, the third
reason this idea was abandoned was my personal belief, which was constantly reinforced
through my research, that simulating an extremely small-scaled QNN for a very specific task,
in a specific dataset, under much strict constraints imposed by software, hardware and
complexity limitations and compare it to an ANN would have nothing to offer in the domain.
And that is because, no generalization can be achieved and no absolute conclusions can be
drawn from such a comparison, as | would end up comparing two different things. It is not fair
to compare a QNN which comes with no tools for the optimal choice of initial parameters and
has the form of a “toddler” idea and compare its results with an ANN which under years of
intensive hands-on research has reached a premium stage. Moreover, as it will be explained, it
is generally accepted that there is no benchmark comparison of an algorithm in Machine
Learning (ML) and one in QML, let alone ANN and QNN which are of a much complex nature
than simple ML algorithms. Finally, it is of the author’s belief that the true enhancements QML
has to offer will come from an approach that enables quantum machines to develop learning
techniques on their own and by doing so revolutionize the ML domain, instead of using the
quantum machines as computing devices and try to translate classical ML algorithms to

quantum formulism.

Thus, the scope of this thesis changed to meet the current status in the domain of
Quantum Machine Learning (QML) and especially QNN, which is theoretical in principal. As
it will be evident in the process, the newly founded domain faces a quite fuzzy and immature
state and undergoes a transition from a depended to an independent domain; the lack of
hardware to support and realize complex quantum models, such as QNN, makes this effort no
easier. The author of this thesis believes that an holistic and organized presentation of the
several approaches formed so far in the domain of QML along with a synthetic review of the
developments in the most promising type of QNNs, focused on the most recent ones and
detached from the abstract and unfounded ideas which ruled the literature till 2015, would be
a work of real value for the domain. All these with the hope that the present work can enable
the reader to obtain a global view of what exists in the domain of QML and a guideline for
structured research, as well as a realistic description of the advantages and challenges to expect.
Finally, the originality of this work stems from the fact that this holistic analysis of the literature
on the most prominent QNN type for near-term applications can lead to some conclusions about

the state of the field, the realistic challenges and how they may be overcome as well as the
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properties that must be carried to be near-term applicable, which cannot be drawn by an

unstructured research in the scatter present literature.

This thesis is organised as follows; In the rest of this Section, the importance of QML
and especially QNN will be pointed out, as a justification of this thesis subject of interest. Also,
the need for near-term applications will be highlighted and historical overview of the literature
on QNN- which cannot be found at this depth in the literature so far- will be adduced. Section
2 presents and briefly discusses all approaches in QML that have been met so far, grouped in
guantum models for inference, training techniques and learnable quantum models. As Artificial
Neural Networks are a subdomain of ML, the same applies to QNN and QML. Therefore, it is
considered important to review the “tool-box™ of practices and quantum routines developed for
QML in general, before moving towards QNNs in particular. After all, there is a significant
overlap between these two subjects and to support our choice of focus as a prominent for near-
term applicable scheme, the rest of available schemes should be explained and discussed. In
Section 3 we will centre our attention on QNN models, focusing on the approach that presents
to be the best candidate for near-term applications. Several QNN models based on Variational
Quantum Circuit architectures and Hybrid training methods will be presented. Finally, in
Section 4 the expected quantum advantages, as well as the challenges QML struggles with, will
be discussed and remaining open questions will be gathered. Finally, the conclusions that can
be drawn from this literature research will be discussed.

1.2 Quantum Machine Learning

Machine Learning (ML) is a very popular subset of Artificial Intelligence (Al) based
on algorithms and statistical models used by computer systems to perform specific tasks, like
regression or classification for example, without explicit instructions. They are data-driven
algorithms designed to fit mathematical models to data and use these models to derive decisions
(inference). If these decisions can be accurately generalized to new, unseen by the algorithm,
data then the model is declared learnable. Machine learning witnesses tremendous progress in
the last decade, mainly thanks to the technological advancements of the 21% century that made
computational tasks abundant and cheap as well as data collection, storage and manipulation
easy.

Quantum Machine Learning (QML) on the other hand is a much younger field which

is still struggling to find its definition and mainly consists of ideas and theories rather than
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actual applications. Under the scope of this thesis, QML is defined as the implementation of
quantum algorithms and techniques which combine the powers of quantum computing with the
existing classical ML algorithms and theories targeting to runtime speedups, better accuracy or
even tackle problems intractable from classical ML. QML models can be designed as entirely
quantum models inspired from an ML task, or as enhancements to already existing models.

This thesis will focus on the first case.

Unfortunately, only two paragraphs into this and the problems begin. QML comes to a
quite blurry framework and the relevant literature lacks consistency and organisation. It also
witnesses a roller-coaster trajectory inherited by its quantum nature. On the one hand, the
hardware to create a quantum computer and test the efficiency of the QML algorithms
compared to classical ones is yet to come. Of course, there do exist quantum simulators, the
“quantum analogue computers”, which is the most powerful quantum data analysis technique
obtained in our days. Quantum simulators are basically classical systems whose dynamics can
be programmed to match the dynamics of a desired quantum system. However, as in the
classical ML case, lots of theories had to wait for the era of digital technology to come and
make digital computers available in order to be implemented and tested. The exact same applies
to QML and that is why in our days it remains a “deeply theoretical advanced technical

domain”.

However, great advancements towards a universal quantum computer have been made
in the last five years since the domain drew besides academic also industrial attention.
Technological giants like D-Wave, Google, Microsoft, and IBM have dedicated departments
for quantum mechanics with the latest leading the race -at least till the very moment these lines
are written-. In May 2016 IBM made history by launching IBM Q Experience. IBM Q
Experience is an online platform through which anyone can have access via the cloud to two
five-qubit and one sixteen-qubit processors made by superconducting transmon qubits. In
March 2017 IBM Q Experience was enhanced by Qiskit, an open-source framework for
guantum computing. It provides tools for creating and manipulating quantum programs and
running them on prototype quantum devices and simulators. These developments gave rise to
a new generation of QML literature, more mature and realistic. Thus, more well defined and
compact theories started to form. At least 72 academic papers have been published using IBM
Q Experience via cloud for their experiments and approximately one-third of them were QML

related.
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QML started to grow and draw more and more interest from both academics as well as

industries. ML has formed a very profitable and dominating market in the last 5 years, hence

with the expected quantum speedups, both in runtime as well as in memory capacity, QML

forms a seductive domain. In the last two years the first gatherings of QML research community

started to take place, 3 books have been published, tenths of start-ups related to QML were

founded and yet no strict definition has been given to the field. The current status in the domain

can be described by the following facts about QML from one of the very first official meetings

of the QML research community, the Workshop "Quantum Machine Learning and Biomimetic
Quantum Technologies", which took place from the 19th to the 23rd of March, 2018 at The

Paraninfo of the University of the Basque Country in Bilbao, Spain (speeches can be found in

youtube):

24

There are huge fights about what the QML field actually is

QML researchers are divided into two main categories; the ones that believe that QML
is too detached from the research in classical ML and should try to adapt and learn from
it, and those who believe that in an effort to mimic classical algorithms and strategies,
QML loses its full potentials

The American Statistics Association recently created a Special Interest Group on
Quantum Computing

There is a QML group in LinkedIn which currently has 719 members

There are currently 3 books published for QML and two more are confirmed to be on
their way, but “only the latest of these three actually worth reading”

Till the moment these lines are written there are little less than 400 papers published on
the topic and almost all of them are published in Physics magazines and not magazines
related to Artificial Intelligence or Machine Learning

Although most quantum-enhanced ML papers promise some kind of speedup, they still
harvest with low-hanging fruits

Only a maximum of 5% of a quantum computer’s power is actually exploited by the
usage of QML in real problems

There are already dozens of start-ups that in one way or another try to design and
implement QML algorithms

All the technology companies in Silicon Valley have hired a QML or Quantum

Computing consultant, in order to be prepared for the quantum computers era
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e There are so many ideas impatiently waiting to be tested that some interfaces and
programming tool-boxes like dedicated machine learning platforms for quantum

computers have already immerged

These were March 2018 and now is November 2019 and not a lot of things have
changed. We still don’t actually have quantum computers, at least not of the scale required to
test QML theories. However, in the last couple of years one thing certainly changed. A great
part of QML community realized that the majority of QML theories so far will remain just
theories for a long time to come. Industry strives for near-term applications of QML and for
those it is willing to invest. And quantum community in general needs investments to build a

guantum computer.

The first quantum computers, the “near-term” ones, are currently being developed in a
variety of hardware platforms such as ion traps, annealers, superconducting materials and
photonic chips. Reality indicates that they are to be small-scaled in terms of qubits, non-fault-
tolerant in terms of error-correction techniques deployed as well as gate fidelity and quite
expensive to use. These near-term devices offer the testbed for QML algorithms. Therefore,
from a bullish yet pragmatistic point of view, a near-term QML algorithm is considered to be
realized in some thousands of unitary operations, applied on 50-100 qubits, and demonstrate
certain robustness to errors. Many of those small-scale algorithms appeared in recent literature
either in an effort to demonstrate quantum superiority over classical ones or, disregarding the
need to prove superiority, focused on offering practical solutions and having useful real-life

applications. In the second approach of near-term QML models this thesis will focus on.

1.3 Quantum Neural Networks

Let’s turn back to the classical ML. The most state-of-the-art subcategory of ML that
brought the field to a renaissance period is Artificial Neural Networks (ANN), recently forming
the domain of deep learning. ANN and deep learning enjoy an enthusiastic reception both
scientifically as well as commercially with numerous applications in tasks including complex
pattern recognition, forecasting, document intelligence, recommendation systems, signal
processing and others. The breakthroughs of ANN and deep learning where boosted by the
technological evolutions in hardware and processing units available in digital computers, as

these models perform highly complex computational tasks. Their computational and
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generalization power stems from the fact that instead of conventional bit registers, deep
learning techniques are based on continuous vectors and tensors transformed in high
dimensional spaces. As a digital computer is limited in bit registers, ANN currently settles with
approximations of continuous computations. The applications of the domain are so vast that
the scientific community is already on the way to create specialized hardware dedicated to deep
learning techniques, the Neuromorphic electronic systems, which is fundamentally analog in

naturel?2,

The computational complexity of ANNSs is what makes them perfect quantitates for
implementation on a quantum computer. As quantum computing and quantum information
processing, a closely related field to QML, are currently undergoing their transition from
academic to industrial subjects of interest, one can easily detect the growing interest in
combining one state-of-the-art technological advancement with another. In fact, quantum
mechanics naturally carry properties that enable the representation and storage of large
complex-valued vectors, tensors and matrices. As naturally they also perform linear operations
on such vectors with a computational power that meets no classical equivalent. Therefore, it is
legitimate to assume that a quantum equivalent to ANN, a Quantum Neural Network (QNN)
will demonstrate an exponential increase in memory storage or an exponential decrease in
algorithm’s runtime. In fact, before an applicable QNN available yet, several ideas have already
made their appearance for possible applications®®. Due to the author’s personal interest on
ANNs as well as all the exciting possibilities a QNN demonstrates, this thesis is mainly devoted

to the QML models related to possible QNN implementations.

The first reasonable thing to do in order to explore the potentials of a QNN is to define
what a QNN is. And this is where the troubles begin. Although there is an extensive variety in
QML literature concerning QNNss, starting from the early 90’s, the field endures a confused
state of further blurriness and hasn’t reach the maturity of other QNN fields yet. The majority
of papers till 2014 followed a “mimic” approach, trying to translate classical ANN architectures
in a quantum computer and recreate ANN strategies in a quantum formulation aiming to
accelerate their performance. More recent approaches though turned their focus on creating
quantum models that can perform the same tasks an ANN can perform without concerning

must about the resemblance of these models to their classical counterparts.
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In the first complete and coherent systematic review in the domain of QNN research’,
the authors argue that variety and diversity in the proposed QNN models forbids a strict
definition at the moment, and argued that in a general framework a QNN should satisfy three
basic requirements. First, the initial state of the quantum system should be able to encode any
binary string of length N. Moreover, the QNN should reflect one or more basic neural
computing mechanisms and, finally, system’s evolution must be based on quantum effects,
such as superposition, entanglement and interference, and be fully consistent with quantum
theory.

This last one requirement is extremely crucial in order for a QNN to actually be
quantum but it also points out the first fundamental difference between QNN and ANN. In
ANNSs non-linearities that come in the form of activation functions in the neurons play a crucial
role and provide the ANN with its power to detect complex patterns in data. On the contrary,
guantum mechanics are in principle linear. Even if some techniques have been proposed to
resolve this issue and add non-linearities to a quantum model through “back-channels”, there

are still other obstacles to overcome especially when it comes to QNN applied to classical data.

The dissipative nature of the deterministic ANN, where once you move to the next
iteration and the weight values are updated, there is no way to turn back, is incompatible with
the time symmetry unitary operators ensure. Moreover, ANN’s training is based on the
difference between its output and the target value (supervised learning). The detection of this
difference requires a measurement. A measurement’s effect on a quantum system, however,
would cause the system’s superposition to collapse, basically transforming it to a classical

system.

In their present form, the closest a QNN comes to an ANN is probably in the level of
neurons. And although it has been demonstrated that the capacity of a QNN in most cases is
approximately the same with an ANN®’s, numerical experiments indicate that a QNN can
demonstrate greater generalization performance and tolerance to noise®. All these issues will
be analysed extensively in Sections 3 and 4. In one last stop, before dive deeper, let’s take a
look at the history of QNN.
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1.4 The History of QNN

The first vision of @ QNN came from Kak® in 1995, followed by Narayanan and
Menneer’s*! neural network inspired by quantum processes. Chrisley*? followed with the third
publication of the year about QNN which was also, totally theoretical. It took three years for
the first comprehensive study of a QNN mode which was finally done by Menneer for the

needs of his master thesis.

In 2000 Ezhov and Ventura published a Hopfield QNN with quantum associative
memory inspired by Everett’s parallel universes interpretation of the quantum world, which
theoretically gains an exponential speedup by deploying Grover’s algorithm in the recall
process. The same year Narayanan and Menneer®, inspired by the double-slit experiment, also
considered the notion of a set of one-parameter MLPs combined to a QNN whose weights are
superpositions of the weights of all perceptrons existing in parallel universes. They also
suggested the 4 groups of QNN architectures which will be discussed in Section 2 and survive
until today. Mitja Perus!* compared the neuron’s input-to-output function of weighted sums,
without an activation function or a threshold, with Green’s function that describes the Time-

evolution of a quantum state.

The first complete proposal of a QNN came in 2000 from Elizabeth Behrman®® and her
coworkers, who developed Perus idea. It is a Time-array Neural Network of one “quron” -a
quantum neuron - that consists of 1 qubit propagated. Green’s function formulated by Feynman
path integral forms the input-to-output function of the quron and the weights are engineered by
the system’s interaction with the environment and updated based on a common
backpropagation with gradient descent rule. The physical implementation proposed for this
model is a quantum dot interacting with photons.

In 2000 and 2002 Trugenberger’®” brought back Menner’s Hopfield QNN by
introducing the decoding of hamming distance between an input state and each memorized
pattern in the Hamiltonian time evolution and utilizing the measurement to add non-linearities
to the model. In the meantime, Altaisky*® envisaged the first quantum perceptron, in a quantum
formalism that tries to mimic the mathematical description of the classical one and was the first

one to state the problem of non-linearity in QNNs. Later Fei et al.X® improved this idea by
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introducing the delta rule as a learning rule for the quantum perceptron, although they also

failed to suggest an activation function.

In 2002 Gupta and Zia® utilized the Deutsh algorithm in quantum circuits proposed as
QNN dedicated to quantum computations. Their model is computationally powerful and opens
the door for a family of QNN models based on quantum circuits, yet this QNN carries no ANN
attributes and no learning can be achieved. A year later an abstract yet pioneer proposal of a
QNN came from Ricks and Ventura?® . The authors considered a QNN that consists of several

MLPs in superposition and uses Grover’s algorithm for learning.

In 2006 Zhou et al.?! developed a quantum perceptron based on the quantum phase
adequately that was the first quantum perceptron proposed which could compute the XOR
problem, a problem intractable by the classical perceptron. However, this approach inherited
the iterative nature of its classical counterpart, which at the time was considered a big
disadvantage in the race for quantum speedups. Not long after that, Oliveira, Silva et al.?2
developed a QNN model based on weightless NNs which stipulates the existence of a quantum
random access memory (qRAM) followed by Sagher and Metwally?®> s QNN based on
entanglement, where the information transferred from a neuron to the other is based on original
teleportation protocol. They also discuss a theoretical application in the prediction of virus
spread.

As soon as the new decade came, the first suggestion about non-linear operators
appeared by Panella and Martinelli?*. They suggested general non-linear quantum operators to
build a feedforward QNN with successively entangled qubits. In 2013 an autonomous quantum
perceptron® with the weights encoded in the amplitudes of the state , mathematically, proved
able to solve the XOR problem, also requiring iterations to give a solution. The same year
offered a quantum MLP with 3 layers based on data encoded in the quantum basis and weights
in the amplitude of the quantum state, which uses Grover’s algorithm to detect the optimal
weights?®. Although this idea comes in a nice mathematical framework, this design requires an

immersive number of qubits and gates to be realized, therefore the idea was abandoned.

2014 was an important year for QML and QNNs. Peter Wittek published the very first
book devoted to QML?” and Schuld et. al 7 published the first systematic approach on the QNN
research, followed by a second one by Altaisky?®, although the second one focuses more on
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quantum Hopfield NN and comes with a quantum Dot NN proposal. The same year quantum
deep learning made its first appearance in literature by Wiebe et al.?® who developed two
algorithms to efficiently train Random Boltzmann machines based on amplitude amplification
and quantum Gibbs sampling. In 2015 an abstract idea for a QNN based on Hamming NN for
unsupervised learning was published by Zidan®. Later on, the idea of a quantum perceptron is
enhanced by introducing unitary weights®! (Seow Behrman and Steck). Boltzmann machines
and quantum annealing techniques for deep learning were first introduced by Maxwell and
Adachi®,

The first compact and mature review of QML so far was published by Biamonte et. al*3
at 2017. The very same year the second book regarding QML was published by Dunjko and
Briegel®** followed by the third one by Maria Schuld®®, which among three QML books the
literature has so far that, quoting Peter Wittek is “the one worth reading”. A probabilistic QNN
is proposed by Chen and Wang?®®, but the proposal comes with the admission of a universal
quantum computer of large scale required to implement this proposal. A general framework for
the quantum adaption of a feedforward MLP using quantum circuit models is given by Wan?'.

At the end of the year, Cao and partners® proposed the first strategy that employs angle
and amplitude encoding to form a strategy to add non-linear activation functions to quantum
qurons that could potentially be combined to form an ANN. This strategy was improved in
2018 by Wei Hu*® who added an alternation of the above strategy to build an activation function

for a quantum neuron that approximates the ReLu function.

Returning to 2015 McClean et. al*° set the framework for variational hybrid learning
algorithms. A QNN designed in this framework based on a variational quantum circuit and
focused on near-term applications was proposed by Farhi and Neven*! in 2018 and in the same
work, the quantum analogous to Universal Approximation Theorem was proved for QNNs of
this architecture. In 2019 Mitarai ae al*2. as well as Schuld et. al.*® published their work
regarding learnable QNN models in quantum circuits for regression and classification tasks

respectively, trained with gradient-based methods.

Along with these, 2018 was a year rich in publications regarding QNN. A Quantum
Generative Adversarial Network** based on the Variational Circuit Model was introduced by
Seth Lloyd at the end of the year. The idea of a quantum Hopfield NN for quantum Hebbian
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learning was revisited by Redentrost et al.*® based on amplitude encoding and defining the
quantum system’s energy function as a cost function. It also introduced classical techniques to
control the complexity. In a nice review of coherent QML algorithms with firm mathematical
foundations and provable speedups Biamonte, Wittek et. al®® discuss in length the potentials of
quantum deep learning in a Boltzmann machine, underling that there is a significantly higher

chance to apply these techniques before too long if restricted to quantum data.

The first idea for QML in feature Hilbert spaces proposed by Schuld and Kiloran“® in
May 2018 and then two months later by Schuld, Kiloran and associates*’ a proposal was
published about a QNN based on variational quantum circuit architecture. This idea was
revisited, improved and experimentally tested in a quantum computer simulator by Dendukuri
and his partners*® in May of 2019. In the same year came an interesting alternative to what has
been proposed so far, a quantum-assisted Helmholtz machine than can provide assistance and
speedups by deploying classical deep learning to extract low-dimensional representations of

data, suitable for quantum computing. This approach is referenced as quantum-assistant ML*°.

In march 2019 Tacchino and his team® successfully implemented a classical perceptron
on a quantum processor, using IBM’s cloud 5-qubit computer. Finally, Verdon et. al*},
improved the initial study of parameter initialization in variational quantum algorithms
published by Guerreschi and Smelaynskiy®?, and developed a case of hybrid quantum-classical
ML. Based on Quantum Approximate Optimization Algorithm, they trained a Recurrent Neural
Network to assist in heuristic parametrization of a quantum model for ML, such a QNN or in
simpler cases, as the example given by the authors, a Variational Classifier. And that leads us
to today.
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2 An Introduction to Quantum

Machine Learning so far

In Section 2 QML in general will be discussed. In the beginning, some introductory
concepts and definitions shall be given. The remaining three subsections are dedicated to
approaches to design quantum models for Inference and Learning and possible methods to
optimize and train these models. Section 2 is inspired by the book “Supervised Learning with
Quantum Computers”’® by Maria Schuld and Francesco Petruccione , published in October of
2018. This book played a crucial role in the progress of this thesis as it consists of the first
concrete and mature book about Quantum Machine Learning that gathers together the scattered
literature of more than 20 years’ research in the domain. All the existent algorithms and
techniques for supervised QML are classified into three groups; quantum inference, quantum
training and quantum learning. Within each group, the various approaches are furtherly
distinguished based on the different quantum interpretations, schemas and properties they use.
Since this is the first attempt to organize the field in subdomains and there is no alternative
approach to consider so far, Section 2 will follow closely the structure and content of book’s
respective chapters and thus it could be considered an outline or a brief summary of the book.

2.1 Basic Concepts and Definitions

2.1.1 Types of Learning
In ML and QML “learning” is the process of generalization in an algorithm-the ability
to perform accurately a task, trained by a set of N examples, to all the possible other data of a
similar type as the given example. Learning frameworks started as deeply mathematical
algorithms, inspired by human learning techniques and statistics. In classical ML there is now
an inspiring variety including Transfer Learning, Online Learning, Supervised Learning,

Unsupervised Learning, Reinforcement Learning, Semi-supervised Learning, PU Learning,
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One-shot Learning, Hebbian Learning, Deep Learning, Imitation Learning, Multi-Label
Learning and more. They all stem from the basic three categories; Supervised, Unsupervised
and Reinforcement Learning. Not so much variety is met in the QML domain, yet there has
been progress in the three leading learning types.

Unsupervised learning is self-organised learning in the sense that the train data provided
to the algorithm carry no specified information about their labels or their within relationship
and the model tries to detect an underlying structure in the data, correlations, patterns or
tendencies. Unsupervised learning allows probability densities of the inputs to be modelled and
can be seen as a type of Hebbian learning. Examples of unsupervised learning are clustering
tasks, anomaly detection and signal separation. In QML unsupervised learning techniques
proposed so far include a g-means algorithm®3, which is a quantum equivalent to k-means
clustering algorithm, quantum Principal Component Analysis>*, hybrid clustering algorithms®®,
quantum anomaly detection®®°” and more. Yet the majority of unsupervised techniques are
naturally more intriguing, due to the lack of previous knowledge for the data, thus such
techniques are not expected to be the first applications of QML to be realized in a quantum

computer.

In reinforcement learning, which belongs to the semi-supervised family, the learning
process is assisted by an exogenous agent that provides feedback, positive or negative, to the
algorithm to penalize bad decisions and provide a reward to the good ones, based on the
targeted output. Reinforcement learning is usually used in tasks where information about the
target already exists. It is the most intriguing yet tricky among the three basic learning
paradigms. In QML the majority of proposals focus on a quantum-assisted approach, where a
guantum agent interacts with a classical environment that provides the feedback for his actions.
This way the agent is assisted to adapt its behaviour towards the goal result. The main potential
in the quantum reinforcement learning comes either from the processing capabilities the agent
inherits from its quantum nature or from a possible superposition in the environment’s data. It
is the most recently developed area of QML, although steady progress is made with
implementations of quantum reinforcement learning suggested for several quantum
protocols®®® . The relevant literature met a rise of interest in the last two years, with variant

proposals for quantum reinforcement learning implementation schemes®:-53,
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Finally, the dominant type of learning is supervised. In supervised learning the
algorithm is trained with examples accompanied by information regarding the desired output
of the given task. Supervised learning models are basically functions that map inputs to outputs
based on known pairs of inputs and outputs, like classification, regression and anomaly
detection. The domination of supervised learning holds on the QML and will be extensively

explored for the rest of this thesis.

2.1.2 Strategies for QML algorithms
To build a quantum algorithm is a tricky task. To build a QML algorithm is even trickier
mainly due to the fact that ML algorithms are fundamentally complex both mathematically as
well as conceptually in order to be generic enough and applicable to a variety of data forms
and tasks. In QML literature one can distinguish two approaches in algorithmic design;
translate classical algorithms to quantum ones or create quantum algorithms based on a

quantum machine’s abilities.

The first approach dominated the domain for more than 15 years. The goal is to build a
quantum translation of a given classical model to reproduce the same results or outsource the
computation or parts of the classical algorithm to a quantum computer. It is a speedup-
orientated strategy that considers QML as an application of quantum computing rather than a
scientific field. The challenge is, therefore, to create quantum routines that “mimic” the
classical ones and produce the same results with the lowest possible resources. The models for

inference presented in Section 3 follow this approach.

The second approach on the other side, named exploratory approach, considers QML a
freestanding domain of quantum theory and a field of research. This is the modern approach,
which gained interest in the last decade. The concept of this approach is that instead of focusing
on the classical algorithms and force a quantum translation, the building of a QML algorithm
should start from the quantum device and be designed based on what kind of QML models and
ML tasks this device is capable of. The aim, in this case, is not necessarily speedups, but to
contribute to the ML community in any possible way, by offering new inspiring techniques or
models that can handle classically intractable problems. Thus, it does not rely explicitly on
digital, universal quantum computers but considers any system obeying to quantum laws, such
as annealers, to train and implement a model suitable for learning. The training techniques and
learnable models of Section 3 are examples of the explanatory approach.
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2.1.3 Types of QML Definitions
In a first effort to make the definition of Quantum Machine Learning a bit less abstract,
and categorize the proposed QML algorithms in fundamental classes, Menneer and Narayanan®
developed the C-Q notation to declare classical and quantum part combinations in a model.
This notation was later developed to the “four approaches” typology by Aimeur, Brassard and
Gambs® which is by now generally established in the domain.

CC refers to Classical data being Classically processed and includes traditional ML
methods which are inspired by quantum information research. Such cases are tensor networks®
which can be used for training an ANN or optimization of ML routines®®. In the same manner,
QC concerns Quantum data that are Classically processed in a way that ML is deployed to
assist quantum computing. It displays several applications like ANN used to learn phase
transitions in many-body systems®’, discriminate quantum states emitted by a source®® or detect

entanglement in a quantum system® and many more.

QQ, on the other hand, is for Quantum data being Quantumly processed. These
quantum data can be the measurements of a quantum system in a physical experiment or derive
from simulations in a quantum computer. Such an example is the usage of quantum annealers
as sampling devices. Finally, in the CQ case, which will be mainly concerned in this thesis, the
dataset is Classical and it can be of any kind such as text, image, audio or simply numeric
values and a quantum machine is used to analyse these data. This hybrid case accommodates
models from exploratory as well as translation approaches and aims to build algorithms to cope
with classical ML issues. The challenge is that it requires a quantum-classical interface and
classical information must be encoded in the quantum system. This information encoding ends
in being a part of these algorithms and effects heavily their efficiency and complexity. In the

next subsection information encoding techniques for the CQ cases are presented.

2.1.4 Information Encoding
In the CQ case, the classical data’s features must be converted to a representation that
is suitable for quantum processing, and also to be readable by the quantum machine. The CQ
case will be revisited many times as the QNNs discussed in Section 3 are designed in this
spectrum to be applicable to existing real-life ML-solvable problems. In fact, the majority of
QML algorithms proposed so far concern the CQ approach and there are two reasons for that;

one the one hand, the vast majority of data produced at this moment are classical and not
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quantum, therefore a real assistance to ML should be based on what is available and mainly
used at the moment in order to provide practical solutions to real problems. On the other hand,
almost any QQ model can also work with classical data, and, in fact, this is a much simpler
case as will be evident later on. The CQ case can be seen as a special category of QQ, that
requires an extra step to prepare the classical data in a quantum form (data representation) and
load it to the quantum device (data transfer to hardware), which in QML field is named “state

preparation”.

There are four main strategies to encode classical information in a quantum system at
the moment and all four of them shall be discussed. It is important to note that state preparation
routines are actually the first part of a QML CQ algorithm, and therefore this choice affects
both the design and the complexity of the algorithm. Furtherly, the probabilistic nature of a
quantum world inherited by most QML models means that the results must be estimated by
numerous repetitions of the algorithm. And due to no-cloning theorem, the state preparation of
data must be repeated too, for every repetition of the algorithm. Thus, possible speedups
provided by a QML model heavily depend on the cost of state preparation, making the choice
of strategy for this procedure even more crucial. In ML the efficiency of an algorithm depends
on the dimension d of the data and size N of the dataset to be processed. In QML, the efficiency
of the algorithm is based on qubits and the goal is to keep it polynomial in their number. Since
in a quantum system both the qubit as well as the amplitudes can encode data, QML algorithms

can be distinguished in amplitude-efficient and qubit-efficient.

The encoding strategies proposed so far are; Amplitude encoding and Hamiltonian
encoding in case of continuous data and Basis encoding or Qsample for binary data. The first
three approaches are used to represent the full dataset in the quantum system, while Qsamples
represent probability distributions over random variables. In order to discuss all four
approaches on the same basis, an n-qubit system with initial state |0000..00) and a d-
dimensional dataset D of N samples are assumed. Under these assumptions, the following table

provides a quick outlook of the best runtime estimations for each strategy.
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Table 1 Comparison of the 4 encoding strategies

Encoding Strategy Number of qubts Runtime for state prep Input features
Basis d O(dN) Binary
Amplitude logd 0(dN)/0O(log(dN)) Continuous
Hamiltonian d 0(29)/0(d) Binary
Qsample logd 0(dN)/0O(log(dN)) Continuous

Basis Encoding

In the basis encoding strategy, as the name implies, the classical data are represented in
the quantum state of a system. This can be applied in binary data where a classic sample’s
features are binary encoded and the resulting n-bit string is associated with an n-qubit string.
There are two possible approaches met in the literature for basis encoding; represent each one
of the N inputs of the dataset in a state and train the algorithm with one input at a time or bring
all inputs in a superposition state. This strategy is mainly employed in cases where non-

linearities are aimed, like in QNN’s activation functions.

The first tactic is rather straight forward and is used in the majority of QNN who aim
to be implemented in near-term applications. Given a binary data x, the input state that
represents this data is |x). The second tactic offers a natural speedup to the algorithm since it
allows the parallel process of the full dataset at once by the quantum model, which has no
classical equivalent. The initial input state of superposition of the quantum system, which
carries the information for the whole dataset D can be defined as

1 N
|D>:W;|Xi>v(2-l)

. : . . . 1
where x, € D is encoded in state |xi), as mentioned. The amplitudes in state (2.1) are —— for

N

basis states corresponding to an input data and O for the remaining states, which in general is

expected to give rise to a sparse amplitude vector.
The main problem with the second case is that in order to take advantage of the quantum
superposition, a lot of resources must be consumed to prepare, manipulate and store the

superpositional state of data in a quantum register. There are some proposals about devices that
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load patterns in parallel in a quantum register, called qRAMS but they are still not
implementable in experimental conditions mainly due to hardware issues which will be
discussed in Section 4. Other strategies about state preparation of inputs in superposition
proposed can be found in Appendix A.

These strategies require a complex procedure of O(dN) steps to be repeated N times in
a quantum system with three registers. For an average dataset of 1000 samples and 40 features,
the quantum circuit required to realize the procedure is of depth greater than 2000. Both the
cost as well as the complexity of those strategies make the encoding of data in a superposition
a task very demanding for the expected near-term hardware. They rise significantly the
complexity of the QML algorithm, possibly vanishing the speedups gained through
superposition. That is why the recent literature aiming in realistic near-term application of

QNNs mainly exploits the first tactic.
Amplitude Encoding

Amplitude encoding is also self-described by the name and is an encoding technique
used by a large number of QML algorithms, mainly because when combined with amplitude
amplification techniques like Grover’s algorithm provides possible exponential speedups. It
also allows the data to be complex-valued vectors, enabling continuous features’

representation, with the constraint that these vectors must be normalized.

A normalized classical vector x € C** can be represented by the amplitudes of a

quantum state |y in the Hilbert space via:
X = (X Xpq) |y, )= ixi ),(2.2)
Similarly, a classical matrix AeC*"*" with normalized entries, that is »_|a, [’=1, can be
i
encoded as:

2N 2d
lwa =22 a; 1] ),(23)
i=1 j=1
Therefore, the whole dataset of N d-dimensional samples D can be encoded in the
amplitudes of the initial quantum state:

N d Nd
lwo) =22 X I D=2 ), (24)

i=1l j=1 n=:
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As it follows, the initial quantum state, considered the “input” state of a quantum algorithm,
has a dN-dimensional amplitude vector. The output can also be basis encoded in an extra qubit
and be entangled to the |n) register in the initial state or also amplitude encoded in a separated

quantum register.

This routine can be summarized as the preparation of an initial arbitrary state

|1//>=Zai |[1) , where a is the amplitude vector of dN dimensions resulted from the

concertation of all data inputs. Routines to do so efficiently and robustly vary, depending on
whether the runtime or the number of qubits required is of essence. In general, amplitude
encoding techniques are very complex and the depth of an arbitrary state preparation circuit is
computed to be 2.7 A linear in time routine can be obtained by reversing a quantum
algorithm developed for mapping an arbitrary state to a ground state, but is not qubit-efficient
as the number of operations scales exponentially to the number of qubits, thus the dimensions
of the data. Qubit-efficient or at least with logarithmical dependency to the data’s dimensions
state preparation routines have been proposed based on parallelism, oracles or the usage of a
gRAM memory, but they also exhibit caveats in terms of imposing extreme constraints for the

data’s structure or depend on hardware that is unavailable for the moment being.

The main advantage of amplitude encoding is that it allows the data to be continuous.
Moreover, the qubits required for the representation of data are logarithmic to the multiple of
dataset size and data’s dimension, therefore such algorithms are qubit-efficient, as long as so
is the state preparation routine. In fact, there are some cases when, if the data is of a certain
structure, that can be achieved, but in general case the number of qubits required for the
preparation of amplitude encoded data varies. Another thing to consider is the ability to retrieve
information from amplitudes. If for example the result of a model is encoded only in the
amplitude ai, the number of measurements needed to retrieve this result scale with the number
of amplitudes, thus the number of data’s size. This is why algorithms based on amplitude
encoding usually add an extra ancilla qubit as the results carrier. Finally, due to the unitarity
that must be preserved in quantum systems, this type of encoding prohibits any non-linear map

to be implemented in a unitary fashion.
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Qsamples

Qsample encoding is used in probabilistic QML models and quantum Boltzmann
Machines. The idea is that the process of measuring n qubits in the computational basis is
equivalent to the process of sampling an n-bit string from a discrete probability distribution.
Thus the amplitude vector can be used to represent a classical discrete probability distribution
P1,P2,...pd. This can be seen as a hybrid method combining both basis as well as amplitude
encoding, since the information the model is interested in is encoded in amplitudes, using one
of the state preparation routines for amplitude encoding, while the d features are encoded in

qubits. The state whose amplitude vector encodes this distribution is called gsample.

Qsample encoding exploits the probabilistic nature of quantum word to obtain easy
manipulations of a classical discrete distribution via the quantum manipulations. Join
distributions can be easily prepared, marginalization over qubits occurs in a natural way,
rejection sampling can be performed and more. The QNN models that use Qsample encoding
are those that are proposed for deep learning in a quantum Boltzmann Machine and this is not
the case this thesis focuses on, for various reasons mentioned in Section 1 and Section 3. Thus,
there is no need to delve into how gsamples are used to perform the above manipulations and

we shall proceed to the 4rth and final strategy; Hamiltonian Encoding.
Hamiltonian Encoding

Hamiltonian encoding, also called Dynamic encoding, is used in the final QNN family
presented in Section 3, the Continuous-Variable QNN. This strategy differentiates itself from
the previous approaches as it implicitly encodes the feature’s information by letting them define
the evolution of the quantum system. To be more specific, instead of preparing an initial state,
the Hamiltonian that describes the evolution applied to the state is prepared. To do so, the
Hamiltonian H is associated with the dataset represented in a -possible pre-processed to become
Hermitian- data matrix A, assuming that data are tidy- each row represents a sample and each
column a feature- or a Gram matrix ATA. Hamiltonian encoding offers to the algorithm the
ability to extract eigenvalues of the feature-matrix or multiply these eigenvalues to the

amplitude vector as well as several other interesting potentials.
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If, for simplicity and efficiency, consider only the case of time-dependent

—iH t

Hamiltonians, any unitary transformation can be described as e and therefore, Hamiltonian

encoding depends on the ability to implement in a quantum computer the evolution

ly)=e""|y),(25)
If the initial state of n qubits is |w), then |y ’) is the quantum state that carries the information

that H indicates.
The process of implementing (2.5) in a quantum hardware is called “Hamiltonian

Simulation” and in case of gate-based quantum computers, it relates to the task of efficiently

decompose a unitary in elementary and easy to implement gates. Note that, in case A is not a

- [0 A
A=| ",
"o

can be used instead, and only part of the output should be considered. This trick allows the

Hermitian matrix,

eigenvalues of A to be processed by the quantum machine.

Polynomial time Hamiltonian simulations are based on the first-order Suzuki-Trotter

formula to cope with the fact that the factorisation rule does not stand for scalar exponentials’.

;
That reads, if a Hamiltonian H is be written as a sum of elementary Hamiltonians H = Z H,,
i=1

T
one cannot assume € =He . .Suzuki-Trotter formula states that if the

factorization is broken into small time-steps so that the Hamiltonian is expressed as a sequence
of small time-steps, an approximation of the Hamiltonian with negligible error at each step can
be achieved. However, such a decomposition of a Hamiltonian in elementary and easy to
simulate Hamiltonians is not trivial and, also, the smaller the required approximation error, the
smaller the length of the time-step has to be; thus, the whole sequence has to be repeated several

times.

Furthermore, since the Hamiltonian is used to encode a data matrix, it is important to

keep the runtime logarithmic to the dimension of the dataset and thus the Hamiltonian’s. Qubit-
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efficient Hamiltonian simulations have also been proposed for the special cases of sparse’? or
low-rank® Hamiltonians. In the first case, an oracle-based procedure is combined with quite
demanding techniques to ensure an almost linear dependency of simulation’s runtime to the
number of qubits. Therefore, a logarithmic dependency in the dimension of the data matrix
encoded in H is achieved. For dense low-rank Hamiltonians, the data are encoded to the
Hamiltonian via a density matrix and the density matrix exponentiation routine is used along
with a phase estimation routine to design a simulation technique approximately equivalent to
the simulation of a swap operator. The proposed design can guarantee a logarithmic
dependency given the ability to qubit- efficiently encode a non-sparse density matrix in the

Hamiltonian as well as assuming a high redundancy of data.

2.2 Quantum Models for Inference

This chapter is focused on useful approaches to build a QML algorithm for Inference,
that is an algorithm used for the application of input-to-output maps or probability distributions
in supervised learning tasks. Specifically, given an input x with a label or target y, to apply
f(x)=y for some f or p(y|x) respectively. The QML algorithms, routines or strategies of this
subsection can be seen as building blocks of a learnable QML model or they can be combined
with a classical ML algorithm to compute its output and precision. They all follow the
translating strategy in the sense that they explore ways to apply a classical ML technique for

inference in a quantum machine.

2.2.1 Linear Models

A linear model is a parametrised linear function that maps an n-dimensional input x to
a d-dimensional output y, given a set of n+1 weight parameters. Linear models are used in
classification or regression tasks and they can also be seen as a linear layer in an NN with
identity activation functions in the neurons. Mathematically speaking, a linear model is
described via;

fOGwW) =w'x=w, + > wx,(2.6)
i=1

Interestingly, in the case of d=1, that is a scalar output, (2.6) expresses the inner product of the
input vector and the weight vector. So, how could a linear model like (2.6) be realized in a

quantum computer?
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Linear Models in Amplitude Encoding

Consider the case were amplitude encoding is used to encode the input vector x in the
amplitudes of state |yx) and the weight vector w in state |yw/). Then (2.6) could be naturally
computed in a quantum way by;

W lw,) = FOxwW) =w'x,(2.7)
Although the quantum representation of a linear model came quite naturally, the output of this
model cannot be trivially obtained, because measuring the inner products of quantum states is

not straightforward. Small quantum circuits that use interference between different branches of

a superposition of the initial states are deployed for this task”>.

One way to achieve so is by deploying interference circuits, small quantum circuits that
use an ancilla qubit and prepare the superposition of initial states in one register, then apply a
Hadamard gate on the ancilla to entangle it with state |yx+w/) and by measuring the probability
of the ancilla state |0), the inner product is indirectly computed. Note that in case of unit vectors

their sum and inner product are related via (w+x)" (w+x)=2+2w'x.

The most well-known technique to obtain (ww|wx) is the swap test, which returns the
absolute value of (2.7), assuming the states are separated. This can be done if an ancilla qubit
is used to create initial state [0 )|ww |y}, prepare a superposition of the ancilla and then create
two branches in the superposition, one “swapped” and one “unswapped”. By computing the
sum between the swapped and unswapped states in one register and their difference in another,
the measurement of the ancilla qubit po reveals the desideratum

11

po :E_§|<l//w |!//x>| ’(28)

Note that the same routine with slight alternations can be applied for mixed states also.

Linear Models in hybrid Amplitude and Hamiltonian Encoding

For this representation, consider the input vector amplitude encoded in the initial state
lyx) while the weight vector is encoded in the Hamiltonian of the system, that is a unitary W or

in general case a quantum circuit. In the first case, a unitary linear model could be realized by
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computing the inner product of the final state W|yyx) with a uniform distribution

n

Z| i), so that the linear model can finally be described as:

ly. >—i
fOGw) =y, IW [w,).(2.9)
In order to obtain a scalar output, one just has to sum up the elements of W |y, ). A quantum

model of (2.9) form can be trained to find the function that accurately fits the right input to the

right output by choosing the optimal unitary or circuit.

If unitarity is not respected, a non-unitary quantum circuit can be interpreted as a
graphical representation of a neural network. Non-unitary transformations are functions that
map an input of n-dimensions to an output of d<n dimensions, thus they reduce the
dimensionality and the output can be considered a subsystem of system’s initial qubits. In order
to explain this representation, let’s consider a density matrix px, who encodes the input vector
X in its diagonal. This can be achieved by encoding the square roots of input vector’s elements

in the amplitudes of a pure state of N=logn qubits and compute its density matrix. In this

formulation the unitary evolution |y, ) =W |w,) of (2.9) becomes o, =WpoW'.

Via density matrices the dimension can be reduced by simply tracing out the first N-D
qubits to end up with the D=logd qubits of the output state, encoded in a “hidden layer density

matrix” p,, =t oot Vice-versa the dimension can also be increased by adding qubits

to the hidden layer density matrix and extend the evolution to these new qubits by

Pria ®100..0)(00..0|. All these can be easily understood if the graphical representation of a NN

in Figure 1is used.

Consider the initial state of the quantum system to be |in)=|qz, g2, g3/ and the diagonal
of a density matrix p.=|a)@|=|a1, az, az) (a1, a2, as| at any given point of the evolution to be
a layer of neurons. At first a unitary evolution Uz (linear transformation) forms the intermediate
layer |h1><h;| = Us]in><in|U1". Tracing out the first qubit leads as to the hidden layer [h><h|
= trif|hi><hs|} followed by joining a qubit in the ground state that stands as the 2"
intermediate layer |h2><h;| = |h2><hz| & |gs = 0><q4 = 0|. Note that the density matrix has

again 8 diagonal elements, but four of them have a probability zero and the decision which
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qubit is traced out defines the connectivity between a bigger and a smaller layer. Finally, a

unitary Uz on qubits gz, g, 0 results to the ‘output layer’ |out><out| = Uz|hz><h,|U7.

[l )y (b |ho) (ha|

N

: SRas )
: :
S

|y (R

[in) (in| [out) (out|

Figure 1The graphical representation of linear quantum circuit as a NN

Linear Models in hybrid Basis and Hamiltonian Encoding

In the final case, both the input vector and the output of the model are encoded in the
state of the quantum system, so that a parametrised circuit U(w) applied to an initial state of
two registers |x)|00...000) results to the final desired state |x)jw' ). This can be done through a

circuit U(w) such that;

U(w)=U,(W,)..U, (w,)..U, (W)U, (w),(2.10) where

0
Uk(wk):Ll) ezziwk}(z-“)-

So, if the circuit is applied to the initial state, we obtain
U (w)| x)|00...0) = 26*™*| x) | 00...0),(2.12)

At this stage, a quantum phase estimation routine can be used to write the expected
output of the algorithm in the second register. More details about this routine can be found in
Appendix B. To do so, as a preparatory step the second register is prepared as an m-qubit
ground state and it is put into a uniform superposition using a Hadamard gate on each qubit.
Moreover, an oracle O is also needed in order to apply powers of the parametrised circuit

conditioned on the qubits of the second register such as

101 H=UMW)™ 0] .(2.13)
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and prepare the state

2m
%Zl X>e27ri(j*l)WTX | j>1(214)
j=1

In the next step, via an inverse quantum Fourier transform and for a pre-chosen j that

ensures W' x =~ (j—1)/2" , the result is an approximation of the desired output state [x)Jw'x ).

m-1"1

Note that if |w'x) =|g102...gm), then w'x ~ q12—10+....+qm Zi thus the output of the linear

model has been computed. This representation has been implemented to simulate a perceptron

on a quantum computer in 201474,

2.2.2 Kernel-based Models
A kernel is a symmetric positive defined function x: X x X — C, for a non-empty set
Xand is a widely used tactic in a variety of ML algorithms, mainly in order to construct feature
maps based on these kernels to project the input data to higher dimensional hyperspaces and
potentially increase their separability. Kernel models don’t perform computations on the high-
dimension hyperspaces but, in fact, keep the complexity as low as possible by limiting the

computations in kernel’s level which is that of input data.

Kernel methods don’t depend on specific architectures of a model, they can be seen as

general tools in a wider scope, as indicated by the Represented Theorem. Such is a feature map

p:X—>C" : L :
which maps an input x to a complex-valued feature vector which is itself a function

X — x(., X)

mapping the input x to a complex number. Feature maps can therefore be used to create a vector

space with an inner product that carries the property:

(@) [@(x)) = (x (., x),x(., X)) = x(x,x),(2.15)
This can be translated as: A kernel of two inputs computes the inner product of these inputs in
a feature space. Also (2.15) implies that a kernel can be constructed from every inner product”®.

This direct relation of kernels and inner products indicates that feature spaces and
quantum Hilbert spaces express several similarities in mathematical formalism that can be
exploited to build quantum kernels and expand to Hilbert feature spaces. In fact, we have

already created quantum feature maps, without realising, in the Information Encoding
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subsection. Every process to encode an input x to a quantum system, either via basis or
amplitude encoding or any other encoding method can be seen as a feature map ¢ from the
input’s set to the Hilbert space of the state |¢(x)). So, an inner product of quantum states
produced by encoded input data is always a quantum kernel and thus different encoding

routines result to different kernels. Some example quantum kernels are:

Basis Encoding: x(X,Xx") =(x|X") =

Amplitude Encoding: x(X,Xx") =(y, |y, ) =X"X'
Angle Encoding: x(x,x") = l_Icos(xi —-X)
i=1
Several quantum kernel models can be designed based on different kernels and are described
in their general form via
M
) =D w(x,x™),(2.16)
m=1
where the weights and the inputs can be either classical or quantum parameters. Given the basic
properties of the kernel function, a kernel is always a distance function, thus quantum models

described by (2.16) called Distance-Based Quantum Classifiers.

Although the investigation of how quantum kernels and feature Hilbert spaces could
assist QML is widely unexplored and only very recently draw some attention, several QML
algorithms for implementation of Distance-Based Classifiers or kernel models have already
been proposed**®’® and one could disguise two approaches. The implicit approach uses a
quantum device to evaluate the kernel in a classical algorithm, thus to implement a quantum
circuit in charge for the state preparation routine and to compute the inner product of quantum
states of the encoded inputs. One the other hand, the explicit approach aims at developing a
learnable quantum classifier in feature Hilbert spaces via a Variational Circuit’’. The
Variational Circuits that will be presented in Section 3 constitute a more natural alternative for
kernel methods in QNN. As it will be demonstrated, Variational Circuits can in principle

explicitly compute in feature space instead of implicitly use kernel functions.

2.2.3 Probabilistic Models
So far, we’ve considered models for inference based on the application of an input to

output function f. These models are called deterministic models. There is a second type of
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models for supervised inference, those based on probability distributions of binary random
variables, generative or discriminative, called probabilistic models. As mentioned, several
times by now, quantum theory is a probabilistic theory and therefore it is a natural corollary to

ask how probabilistic models can be realized in a quantum machine.

The answer to this question has actually already be given in Information Encoding.
Qsample encoding is used to associate a probabilistic model with a quantum state through
mapping the binary random variable to the qubit and consequently the sample of these variables
to a quantum state. Therefore the probability p(x,y) is interpreted as the corresponding square

amplitude and the probabilistic model translated in the quantum world is described as:

P(x, Y) = P V) = D A/ P(X,Y) [ X, ¥),(217)

X,y
In that representation measuring the qubits in the computational basis is equivalent to sampling

from the distribution although that demands repeated preparations of the gsample.

Another advantage of gsamples is that they offer an elegant way to obtain the
marginalized distribution of the labels y by tracing over the qubits associated with the input

vector X, through

P(Y) =2 p(x, y) & tr{l p(x, )X p(x,y) [}(2.18)

In order to use a model based on (2.17) for inference the goal is to be able to prepare a gsample
Ip(y|e),), for a given x=e and a known gsample |p(y|x)), which unfortunately is not so easily
done. Probabilistic models are usually combined with amplitude amplification techniques to
achieve some sort of speedups and are exploited to create quantum Bayesian nets’®’® and
quantum Boltzmann machines®®8%8, The first case relies on the preparation of gsamples to
describe distributions with conditional independence relations, while the distributions required

in a Boltzmann machine require a good mean-field approximation.
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2.3 Training Techniques for QML

In this subsection, four different approaches for quantum optimization and training of
ML algorithms, both classical and quantum, will be presented. Each approach is inspired by a
different quantum property and perspective and can respectively be combined with models for
inference and learnable models. The first two approaches are mainly based on famous quantum
algorithms that guarantee speedups, Harrow-Hassidim-Lloyd (HHL) algorithm for linear
algebra calculations in a quantum computer and Grover’s routine for search in unstructured
datasets. The third one concerns classical gradient descent optimization techniques in hybrid
classical- quantum training and finally the fourth deploys adiabatic methods to find the ground
state which encodes the optimal result to a given problem. The output of a quantum training
routine can be either quantum or classical, based mainly on the information encoding method
used and the character of the ML algorithm this routine is applied to.

2.3.1 Based on Linear Algebra Calculus

QML literature developed a wide variety of optimization algorithms based on basic
linear algebra routines, called quantum blas*. Quantum blas routines exploit the HHL
algorithm® and its variations in linear algebra tasks like matrix multiplication, matrix
inversion and singular value decomposition to create equivalent quantum subroutines such as
guantum matrix inversion (HHL), density matrix exponentiation®(HHLPME) | quantum matrix
multiplication (HHL") , quantum phase estimation or branch selection. These subroutines are
combined to create quantum training algorithms. The basic idea relies on Hamiltonian encoding
and the usage of quantum systems for linear algebra calculus, where the training input’s matrix
is encoded in the Hamiltonian of the system and can be therefore manipulated through the

above quantum subroutines.

A summary of the HHL algorithm which forms the skeleton of these training schemes
is that in order to solve a linear equation Ax+b, it encodes b into the amplitudes of a quantum

state and matrix A in the Hamiltonian Ha. Then it applies an evolution e™

to the state |yn).
The eigenvalues of Ha are extracted in basis encoding through quantum phase estimation (see
Appendix B). In a next step, these eigenvalues are quantumly processed to be encoded as

amplitudes and the final state is computed by measuring the amplitude of |yan) (HHL"). With
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one extra step to invert the amplitudes the final state becomes |y, ., ) . HHL with density matrix

exponentiation (HHLPME) is an alternative used for kernel matrices deployed in kernel
methods, where the input matrix associated with the Hamiltonian is a kernel Gram matrix

prepared as a density matrix.

Data matrix inversion based on HHL and HHL" subroutines is the building block of
quantum training algorithms proposed for optimization of both sparse®* as well as low-rank®
linear regression. The kernel matrix inversion realized by HHL, SWAP circuits and HHLPME
is employed to quantumly train Support Vector Machines* and Gaussian Processes® while
adjacency matrix inversion achieved via HHL and HHLPME can be used to train quantum or
classical Hopfield Neural Networks*. Table 2 offers a summary of the above examples, which

are only a few indicative examples of quantum optimization based on linear algebra.

An advantage of training algorithms based on quantum blas is that they inherit runtime
speedups due to their logarithmic dependency in the inputs’ dimension as well as the size of
the input dataset. Their disadvantage is that the quantum subroutines they are based on require
a large number of gates to be executed coherently, which due to the limited gate fidelity demand
a full-blown fault tolerant quantum machine. This indicates that the above optimization

techniques, although carry potentials for exponential speedups, are not indicated for near-term

applications.
Classical Method | Computation Notation Strategy
X: the input matrix
Linear regression .
(XTX)X Ty y: the output vector Data Inversion via HHL+HHL-
ur,vr,or:singular
Linear Regression R 4T
Z o uvy vectors/values of XTX | Data Inversion via HHLPME
(low-rank) )
Vector 71 K: kernel matrix
K™y Kernel matrix inversion via HHLPME
Machines k: kernel function
Gaussian Tor -1 Trr -1 . . .
x K7y,x Kk Kernel matrix inversion via HHL+SWAP
Processes
Hopfield Neural
Adjacency matrix inversion via HHL+ HHLPME
Network

Table 2 Summary of basic examples of linear algebra-based training techniques.
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2.3.2 Based on quantum Search
In this second training scheme, the proposed algorithms aim to exploit the quadratic
speedup offered by Grover’s routine for amplitude amplification®’ in the optimization process.
The main idea is that amplitude amplification can be used either to search for the optimal
parameters which minimize a cost function in a variational quantum model, or to handle a
superposition of the input data, or to search for the best among all possible models for a given
task.

In the first case Diirr-Hgyer proposed an alternation of Grover’s routine®. This
quantum subroutine has been used for k-Nearest Neighbours® methods as a search method to
find the closest data points. The main idea is that given a distance function C(x), where data
inputs x are basis encoded in |[x)and prepared in a superposition with |Xinput), We want to search
this superposition to obtain the binary string that minimizes C(x), thus is the one closest to the
input data Xinput. An oracle is used to mark the |x) states for which C(x)<C(Xinput) and an extra
register saves and compares these states to return the optimal one. This can also be extended in
a cost function C(w), based on the weights of the model we want to optimize and in the same
manner the search problem becomes an optimization problem in the sense of searching for the
best parameters. The idea of brute force search for the optimal parameters or the smallest
distance offers a quadratic speedup inherited by Grover’s search. However, the cost of those
techniques in terms of the number of qubits and gates to be implemented is such that near-term

quantum devices will not afford.

The second idea revisits the data superposition discussed in basis encoding. It has been
proved that such a case can offer exponential memory and computational speedups in case of
models based on associative memories, such as quantum Hopfield Neural Networks. The main
advantage of a Quantum Associative memory compared to Hopfield’s classical associative
memory, is that theoretically N=2" patterns require n+1 qubits to be stored, instead of the
classic memory capacity of N/4In(N). In these terms Ventura and Martinez®® modified Grover’s
algorithm to handle data in superposition, where a zero amplitude for datapoints that don’t
appear in the dataset enables a faster quantum recall process. In the quantum computational
sense, recalling a state means to measure the system and cause it to collapse in that basis state

that corresponds to the pattern we are searching for.
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The basic idea is to use an oracle to invert the phase of the sought out basis state and

then invert all the basis states about the average amplitude of all the states, repeating O(y/2")

(binary encoding of length n for each pattern) times. These repetitions will increase the
amplitude of our desired basis state, the one closest to the state associated with the input pattern,
to near 1, while decreasing the remaining states’ amplitudes accordingly. However, these
methods also carry the caveats mentioned in the previous paragraph as well as all the

difficulties that a data superposition brings to a model.

Finally, the third strategy, proposed to train quantum perceptron models®® uses
amplitude amplification to search for the best model. The idea is to represent the decision
boundaries of a perceptron, that is the hyperplanes used to separate the data points, as points in
a hypersphere. Training data are respectively represented planes that define the good and bad
subspaces in the hypersphere of possible solutions. If K decision boundaries represented by
their weight vector are randomly selected and encoded in basis states, these weight states can
be prepared in a superposition and given an oracle O that marks the states corresponding to
decision boundaries that allow the best separability of the data points, Grover’s algorithm is
used to obtain the best perceptron model. This method of training a perceptron offers a
quadratic speedup but it is also followed by all the complexity reasons mentioned above, so the
implementation of such an innovative method in a quantum computer will probably require a

long wait.

2.3.3 Hybrid Methods for training

Hybrid training methods concern a combination of classical and quantum processes to
train a QML model and are inspired mainly from the need for near-term applications. To do
so, as will be explained in Section 4, they must constrain themselves to the limited resources
offered by the first available quantum hardware as well as demonstrate a certain robustness to
noise in order to efficiently work without the requirement of a full error-correction mechanism.
Under this spectrum, outsourcing parts of the training process to a classical processor can lead
to some optimistic and realistic results. Thus, this training scheme meets an increased interest
in the QML literature of the last couple of years and it is used for the training of all QNN

models presented in Section 3, where this training scheme will be discussed in greater detail.
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The main idea of hybrid training is to use a quantum device to compute the value of an
objective function C(6) for a given set of classical parameters & and then a classical algorithm
will be combined for the optimisation of these parameters by making queries to the quantum
device. This hybrid scheme is beautifully described in Figure 2. The procedure is based on a
parametrised circuit U(@) implemented in the quantum device to prepare and output state |y(9)),
which also depends in the set of classical parameters é. In a loose sense, a parametrised circuit
forms a family of circuits and its parameter setting defines a circuit in this family. By measuring
the output state, the expectation values of a pre-decided objective are obtained, for example the
state of a specific qubit or the energy of the quantum system. These expectation values
represent the output of the algorithm implemented by the quantum circuit and, via a cost

function C(6), are deployed to evaluate 9 for the given task.

The goal of a variational algorithm is, therefore, to optimize the parameters so that the
objective function reaches its minimum. The innovation in this scheme comes from the fact
that the parameters are classical and therefore can be saved and processed in a classical device,
using classical numerical optimization methods such as gradient descent or simplex. To achieve
that the classical device iteratively queries the quantum device to obtain the expectation values
that define the values of the cost function, the values of the cost function itself and in some

special cases the derivatives of the circuit in order to compute the gradient.

Examples of quantum variational algorithms that can be trained in this scheme include
variational eigensolvers®?, a quantum algorithm where the cost function is defined to be the
energy function of the quantum system and the optimization is achieved by finding the ground
states, thus minimize the value of the cost function. Quantum classifiers based on variational
eigensolvers were developed and further details can be found in Appendix C. Another example
is the Quantum Approximate Optimization Algorithm® which is used to prepare approximate
gsamples of Boltzmann distributions and is incorporated in a technique called quantum
approximate thermalisation which uses the samples from Gibbs state prepared by the quantum
algorithm to compute the weight update in a gradient descent training of quantum Boltzmann

machines.
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Figure 2 An illustration of the hybrid training scheme

2.3.4 Quantum Adiabatic Methods

Quantum adiabatic methods for training are mainly proposed for training quantum
models inspired by adiabatic quantum computing and annealing, therefore for models that fall
in QQ type of QML. Adiabatic quantum computing is an alternative to the standard gate model
of quantum computing, based on the adiabatic theorem. Several physical implementations have
already been demonstrated in quantum annealing devices such as D-Wave with over 100
qubits, although the results are disputed. An advantage of adiabatic computing is that it is
expected to be more robust against environmental noise and decoherence than other models of

quantum computing?’.

As this thesis is focused entirely in CQ type models and for several reasons refrains
from a deep exploration of adiabatic procedures, mainly due to the fact that these methods
follow an entirely different interpretation of the quantum mechanics vastly related to the

quantum physic, these training scheme will only be superficially mentioned.

Quantum annealers were the first quantum hardware available, thus a big part of QML
literature developed adiabatic models for inference and learning which could be experimentally
tested in a D-Wave device. However, the experiments so far failed to offer an unambiguous
answer to whether the expected speedups are possibly achieved through this framework or not.
The initial idea was to encode an optimization problem to the state of a quantum system and
use annealing devices in order to prepare the ground state of this system, finding the optimal
solution. This routine is called Quadratic Unconstrained Optimisation and can be used in the
context of memory recall of a quantum Hopfield Neural Network®. However, noise and
connectivity issues arise in this approach and the recent studies are focused on exploiting a
different, proven, advantage of quantum annealers; their ability to generate natural

distributions.
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The main goal is the preparation of the ground states in a quantum system where the
ground state typically represents a gsample for sampling. The input data are encoded in the
Hamiltonian of the system and an annealing procedure prepares gsamples sufficiently close to
a Gibbs distribution, which can be used to train a Boltzmann machine®. Experiments in a D-
Wave machine indicate that the “quantum” distributions obtained work well for training and in
fact samples from the device have been successfully used to reconstruct and generate
handwritten digits®.

2.4 Learnable Quantum Models

In supervised learning to train a model for inference is to find the optimal set of
parameters so given a set of training inputs the model will approximate the function f that
correctly maps f(x;) to their labels y; or approximate the probability distribution to evaluate
p(y|x). However, that approximation does not guaranty that the model will be able to correctly
generalize in order to provide accurate results for data of the same form which don’t belong to
the train set. This ability to generalize is called learning an in this subsection we will focus on
approaches to build learnable QML algorithms. To achieve so, instead of mimicking classical
algorithms and focus on speedups, the researchers followed the exploratory approach in the
sense that the algorithms for quantum learning discussed here don’t focus on following the
design of classical ones but contemplate the quantum mechanic’s potentials towards machine
learning problems in order to build a new branch of algorithms either without a classical
equivalent or as quantum extensions of the existent ones in ML. This approach demonstrates
some fruitful results in the terms of near-term applicable QML algorithms mainly due to the
fact that it is fixated towards the capabilities of a quantum device to build a quantum algorithm
with the minimum required resources instead of trying to achieve the maximum possible

speedup.

2.4.1 Quantum Probabilistic Ising-Type models
Ising-type models are not new in the ML, in fact they go way back to some special
cases of ANN called Recurrent Neural Networks, like Hopfield Networks®” for Hebbian
learning as well as Boltzmann machines®, which can be seen as the stochastic counterpart
of the former. An ising-type model is a physical model of interacting particles of any

connectivity and weight, characterized by its energy function:
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E(s) = —ZVVi,-SiS,- —Zbisi,(3.l9)

where s; are the binary-valued units of the Ising-type model and wij,bi a set of parameters.

In case wij=w;i and w;i=0 as well as bi=0, then (3.19) describes a Hopfield NN which
updates its set of parameters with the perceptron rule, aiming to maintain or lower, if possible,

the energy of the system. That is:
s =sgn(> w;s;), (3.20)
i

Boltzmann machines on the other hand are also based on (3.19) by interpreting si as binary
random variables and keeping the temperature parameter fixed to 1. In such case (3.19) defines

the probability distribution over the possible state vector s=(s, Sz,...,sn) Via

o) =< (3.21)

ze—E(s) !

S

If constrain w;=0 is added to (3.19), we have the special case of restricted Boltzmann machines.

Starting from (3.19), a quantum version can be obtained if s; are replaced by qubits and
in the special case they are replaced by Pauli single-qubit operators, then an operator which

represents the Hamiltonian Energy Function can be defined:
1
H =—§Zw”.zizj —Zbizi,(3.21)
ij i

Consequently, the density matrix of the quantum system’s state that can be the quantum
analogue of (3.21) is:

g H

Yo,

The problem with the above representation is that the diagonal design of H ensures that the
density matrix is also diagonal to the computational basis thus no superposition can be achieved
and the system is still a classical system translated into quantum formalism. There are two
approaches to tackle this issue and add quantum properties to create a quantum system based
on (3.21).
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The first one involves adding quantum terms to the existing system, like an x-field, to
omit the diagonal nature of H and enrich it with eigenvalues that correspond to superpositions
of states. This technique is used to build and train quantum Boltzmann machines'® as well as
guantum Hopfield NN%%, A second idea is to start from different equations of the Ising-model
to create a quantum system. For example, the replacement of the of Schrodinger’s equation
with a Quantum Master Equation®? in an open quantum system'® has been proposed to create
quantum Hopfield Neural Networks, or quantum Boltzmann machines based on fermionic

instead of stochastic Hamiltonian.

A general framework followed by the researchers exploring the development of a
learnable quantum Ising-Type probabilistic model can therefore be outlined in 3 steps; 1)
Translate a classical model into quantum language, 2) Add quantum effects to the resulting
translation and 3) Analyse the learnability and other potentials for ML in the resulting quantum
model. Although the first two steps meet a variety of proposals in the literature, the learnability
of the proposed models remains mainly an open question. The probabilistic quantum models
of this type are trained with adiabatic methods which naturally makes them ideal applicants for
quantum annealing devices, although there exist other proposals for Hopfield QNN based on

gate quantum computing®®1%4

2.4.2 Variational Classifiers and Quantum Neural Networks

A very promising approach of QML models, developed under the spectrum of near-
term applications is based on Hybrid training. In hybrid training the idea of a variational
quantum circuit was introduced as a quantum subroutine of an ML algorithm to achieve
inference by computing desired values of the algorithm. As a reminder a variational circuit
U(#) is nothing more than a quantum circuit with classical parameters inserted in key positions
of the circuit. The optimization of these parameters with respect to an objective function results
to training and possibly learning. The idea that arises from the specific scheme is that if some
circuit parameters are used to insert the input data to the circuit and the output of the circuit is
interpreted as a result, variational quantum circuits can form the mathematical framework for
supervised learning models. As it will be illustrated in the process, this construction fits
elegantly in the QNN context and in Section 3 several QNN proposed based on Variational
Quantum Circuits will be analyzed.
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A nice property carried from Variational Quantum Circuits is that the single-qubit gates
of the circuit can be interpreted as layers of a Neural Network. If the decomposition of U(6)
into parametrised single-qubit or control single-qubit gates is considered, then the variational
circuit is a product of elementary unitary blocks of the form

Up=Uplily o

U =1,01,®..8G, ®..01 _(3.23)

and Gk representing a gate applied to the k-th qubit of an n-qubit quantum system is a

parametrised single qubit gate of the form

_(e”cosa €e”sina z U
Go=ev| = 0 Tl T 7| (3.24)
—e7sina e”cosa) |-U z

The phase parameter can be omitted assuming that |u|>+|z|>=1, so each single-qubit
gate is parametrized by 3 learnable parameters 6i={«, f, y}. Uk therefore is a sparse square
matrix of 2" dimensions. Besides single-qubit gates, control qubit gates are allowed to the
circuit, denoted by c;Gk (G is applied to the k-th qubit conditioned to the state of j-th qubit) to
offer universality. Interestingly enough, the elementary building block U; can be interpreted as
linear layer in a neural network, where the architecture is based on the position of qubits to
apply the gate on and the occasional control qubits. In an n-qubit circuit with information
encoded in the 2" elements of the amplitude vector, a single-qubit gate connects 2" sets of
variables with the same weights, tying the parameter while the control gate is used to break the
symmetry by removing half of these ties and replace them with identities which carry the values

of the previous layer.

An important thing to consider in variational circuit models is how the number of
parameters is affected by the number of inputs, or the size of the input data. As mentioned
before, a QML model designed in the hope of near-term application has to ensure the lowest
possible resources. The existent literature presents examples of QNN models designed for
classification tasks based on variational circuits with poly-logarithmic*® as well as linear
number of parameters with respect to the number of training inputs and their dimension.
Several examples of QNN models of this form will be presented in Section 3, where this

approach will be extensively explored.
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2.4.3 Other approaches

Quantum Ising-type models and Variational Quantum Circuits represent the two most
famous approaches in recent literature and undoubtfully demonstrate a dynamic in terms of the
number of proposals and research interest. However, the exploratory approach gained growth
in the last half of this decade and demonstrates an enthusiastic variety of ideas and suggestions
on other aspects of quantum mechanics that can be used to build a QML model. Although these
approaches may have neither reach the mature state nor the research depth of the previous ones,
the author believes that some of them worth to be mentioned as indications of the expanded

horizons QML acquires under the spectrum of the exploratory approach.

Probabilistic quantum models beyond Ising-type models have been proposed such as
quantum random walks'® or quantum Markov chains!®® based on quantum graphs and
projective simulation models. The main idea of a quantum walk is that given a quantum state
[1)]j) which represents the edge between i-th and j-th node in a quantum graph of N nodes, an
operator

= ZijXWj |, (3.25)
i1

, Where,

N
lw) =2 JMi; [ )1),(3.26)
i=1
along with the SWAP operator
N
S= ] J,iXi, j1.(3.27)
i,j=1
can be used to create an operator U=S(277-1) whose application to the quantum system
corresponds to one step of quantum random walk. This idea has been applied to create a
guantum equivalent of PageRank algorithm and it was proved via simulations to outperform
the classical PageRank in terms of sensitivity as well as to “resolve ranking degeneracy” when

it comes to similarly weighted pages®”-1%,

Another approach contemplates the creation of quantum ‘“committees” inspired by
classical ensemble methods where a classifier is constructed by the combination of several
models, forming “committees” and the decision is taken based on the majority decision of the
committees. The quantum version of this idea® is to bring those ensembles in superposition

so that parallel implementation will naturally occur. Briefly, given a quantum classifier A(6)
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with input encoded in any way and the output is basis encoded, a model register is used to
prepare A(#) as a superposition of the possible states, that is all possible parametrizations of
this classifier resulting to several classifiers of the same architecture. The state preparation
routine of this superposition defines a weighting distribution Wa forming a weighted
superposition of all possible predictions and the prediction with the highest probability, that is
the one obtained by the majority of quantum classifiers in the committee, is retrieved via

measurement.
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3 Variational Quantum Circuits
Hybrid Learning as Quantum

Neural Networks

3.1 Quantum Circuits as Quantum Neurons for Inference

As mentioned before, this section will focus on an effort to translate a classical ANN
into the quantum computing language, aiming to the creation of a model that combines
quantum routines in such a way that will reproduce the results of it in an efficient way. A model
for inference aims to implement the well-known input-to-output map y=f(x) so that it can form
a “building-block” for a more complex QML algorithm, in our case a QNN. Under such a
spectrum, we may consider this building-block as a quantum neuron analogous to the classical

neuron of an ANN.

In section 2 it was presented how the general quantum evolution of a quantum circuit
can be interpreted as a certain type of the general linear model. This idea was also expanded to
the representation of linear layers of a neural network from such quantum circuits. However,
when it comes to Neural Networks, the main problem to be overcome is the problem of non-
linearity. The need for linearity in the quantum world comes as an opposition to the non-linear
activation function that acts in the weighted input sum of a classical neuron and empowers the
model with the ability to deal with non- linearly separable data by capturing non-trivial
patterns'®. This underlines the need to add non-linearities in a quantum model, while

respecting the basic axioms of quantum mechanics.

The most intuitive idea to overcome such a problem and thus the oldest one is to exploit

the non-linear nature of measuring a quantum state as a form of threshold decision function for
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a gquantum neuron. The interpretation of the activation function as a measurement is the key
idea of several proposed models®!*, from Kak’s very first vision of a QNN till some of the
most recent ones proposed. Under this spectrum a quantum circuit that acts as a Quantum
Perceptron based on measurement as an activation function will be presented. However,
measurement restricts the quantum model to a very specific type of step-function-like decision
functions. In the effort to build a quantum neuron that mimics the inference abilities of a
classical one, more complex activation functions such as sigmoid, or Relu should be
implemented. And in order to do so, angle encoding and Repeat-Until-Success (RUS) circuits

shall be employed.

3.1.1 A Quantum Circuit as a Classical Perceptron

A McCulloh-Pitts neuron processes binary-valued input and weight vectors and
delivers a binary result (Figure 3). This setup can create an easy to understand quantum
equivalent in the case of basis encoded inputs in a quantum circuit, whose output state can
either be [0) or |1). The construction of a quantum perceptron based on such a quantum circuit
is therefore straightforward and, thus, several proposals have been made in this
direction?>28303L111 However, most of these ideas have been outdated by now, or simply
paused due to the complexity and inability to be implemented in a near-term quantum
processor. The idea of a quantum perceptron used for inference was revisited nearly in this
year, mostly thanks to IBM’s Cloud Quantum Experience that enabled researchers to test their
ideas in the small scale of 1-5 qubit quantum circuits. This has been the case of Tacchino,
Macchiavello et al*®. who proposed a quantum circuit that acts as a perceptron neuron and was
successfully implemented for pattern recognition. Basis encoding of the inputs is utilized and
the measurement adds the necessary non-linearity of the threshold function to the quantum

perceptron.

Figure 3 A simple perceptron
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Basis Encoding of the Inputs

Let x=x=(X,,%;,-,X,,)" be an arbitrary input vector and w=wW=(w,,w,,..w, )’
the corresponding weight vector , both of them binary so x;,w; €{0,1}, define two quantum

states, respectively;

n—.

1&. .
|%>=ﬁjzo X1 (3.1

n—

1 & .
V) =ﬁjz_;,w,- 1 1)(3.2)

The N-qubit states |j,) from the N-dimensional Hilbert space correspond to all possible states of
a single qubit being |0) or |1). Thus, for N register qubits, there are n=2" basis states |j) able to
encode the n-dimensional classical vectors into a uniform weighted superposition of the full

computational basis. Apparently in this encoding scheme logzn qubits can store and process

these n-dimensional vectors, analysing 22" = 2" different input patterns and all corresponding
weights that could be defined.

An easy visualization of this process can be provided if one considers the binary inputs
and weights as black and white patterns. For example, given N=2 qubits, 22=4 binary images

can be managed resulting to 2*=16 patterns to be analysed. This is illustrated in the Figure 3:

k=0110=9=
nz | s
k=1001=6= E k:mm:m:El

J=EY L o jetow
n,n.

Ji =Nyhn,n,

Figure 4 Figure 3 The scheme used to label 2X2 patterns and a few examples of these patterns.
Prepare the states and compute the final one
In order to prepare the state (3.1) one can start from an initial ground state |0)®" and

use and nXn matrix Uy, having x in its first column, to act on this state, so that U, |0)®" =| . ).

The next step is to compute the inner product of the initial classical vectors wx. To do that, a

nXn matrix Uy, having w' in its last row is employed, so that the weighted quantum state is
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rotated as U, |y,,) =/ 1)®" =|n—1). Based on that, the scalar product of the states (3.1), (3.2)

can be computed by
: (39).(32) yyy
<lr//wll//x>:<l//wluw Uw|l//x>:<n_1|y/x,w>zcn—1 = ?’(33)
(3.3) makes the role of Uy in this scheme quite eminent; it cancels out some of the
transformations Uy applies on the initial state, or even all of them when w=x. Therefore, if Uy

is applied after Uy in the initial ground state, the required finale state is obtained:
oN n-1 .
UWUX |O> :lelﬂX):ZCj | J>Ekyx,w>’(3'4)
j=0
which contains the desired result in its coefficient Cn.1.
Extract and explain the results

The expected output can be obtained using a measurement on an ancilla qubit (z),
initially prepared on state |0). This measurement will add the non-linearity required by the
threshold decision function of the quantum perceptron. This can be done by applying a multi-

controlled NOT gate between the N encoding qubits and (z), leading to:

C-NOT n=2 ]
v, [0, = D¢ 1i10), +¢,,n-1)]D),,(35).
j=0
This results to measuring (z) in the state |1), and corresponds to an active neuron with

probability |cn-1]?.
Models Complexity, Limitations and expected Quantum Advantages

The quadratic character of the threshold function provides a quantum advantage to the
quantum perceptron over the classical one, as both parallel and anti-parallel input and weight
vectors result to an activation of the perceptron, while orthogonal vectors always result in the
ancilla being measured in the state |0 ), therefore the quantum perceptron overpass the limited
linear abilities of classical perceptron. Moreover, this algorithm presents an exponential
quantum advantage due to the storage capabilities of representing 2N bits of information using
only N qubits.

Finally, one should consider the strategies for an efficient realization of the unitary
transformations that should be followed to implement the preparation of the input state |yx)and

Uw in a quantum hardware. Strategies such as the applications of successive flip-flop blocks
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have an exponential expense in the number of qubits and gates required to the quantum circuit
(O(2M) gates for N qubits), forcing the quantum perceptron to draw away from possible near-
term applications. A more efficient approach suggests an “hypergraph states generation
routine” that maps the weight and input vector to vertices and hyperedges of generalized

graphs that can be easily prepared using multi-controlled Z gates in parallel.

However, not all problems are solved. The depth of such a circuit and the number of
unitary gates to be implemented increases exponential with the number of qubits. Furthermore,
issues arise concerning the decomposition of several controlled operations to single and two-
qubit gates only. The severity of the later issue varies from one quantum processor to the other,
and also depends to the desired accuracy, making a universal solution an extremely difficult
task.

0) —

U . : Encoding
x U qubits

0y —]|
R
0 — |Zx,fwf I
j
1l

=

0) Ancilla A

IV

Figure 5 Scheme of the quantum circuit that acts as a quantum perceptron

3.1.2 Non- Linearities Beyond Measurement

RUS are non-deterministic circuits, first introduced by Paetznick and Svore in 20142,
that form a technique for quantum gate synthesis. The main idea of such circuits is to apply a
unitary operation to a quantum state only when a certain expected measurement outcome is
observed. This process is repeated until the desired unitary operation is indeed performed, that
is the circuit is measured and re-prepared until the desired measurement is observed. RUS
circuits are designed so that they have an extremely low resource cost. A runtime analysis
performed for a RUS utilized to add non-linearities to the quantum neuron, discussed below,
has computed the average depth of such circuit in O(14) for k iterations.® In the following
idea, developed by Cao, Guerreschi and Guzik® less than two years ago, a RUS circuit can be

employed as the threshold function in a quantum neuron.
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The Quantum Neuron

Let’s first consider the classical neuron as a non-linear function ¢ of n variables -the
linear combination of n weighted outputs xi of previous layer’s neurons- and maps them to the

output value, called the state of the neuron
oD wx +b)=ae[-11],(3.6)
i=1
where -1 stands for an inactive neuron and 1 for an active one. For simplicity we will call

n
Zwi X +b =6 the weighted input of the neuron and ¢ the activation function. Consider also a
i=1

qubit with the state
T T T T . T T
R (a=+=)|0)=cos(a—+=)|0)+sin(a—+—=)|D), (3.7
y(22)|> (22)|> (22)|>()

ity
and R (t)=e 2 the quantum operation of Y Pauli matrix acted on it. As a reminder, the

rotation around the y-axis is defined as

cosu —sinu

R, (2u) ={

sinu cosu

},(3.8)

The qubit is hence rotated around the y- axis by an angle a%+% .

Thus, one can easily sense that in case a=-1 we have the quantum analogous of an
inactive classical neuron and our qubit in state |0}, while for a=1 the qubit state of [1) can be
interpreted as an active quantum neuron. We shall now call this qubit a “quron”. However, our
quron’s capabilities immediately surpass those of a classical neuron when superposition is

introduced and that can simply be done for a €[-1,1].

Under this spectrum, the idea is the following; given a control state |X)=|X1X2...xn) as
the representation of the neuron’s input or possibly the training input, create a quantum circuit
that can act as a quantum neuron of n qubits which returns a state corresponding to the output
of the classical neuron, or the output of the considered quron. The goal is to rotate the output
qubit by a nonlinear activation ¢ which depends on an angle 6, in other words, we want to

prepare the output qubit in state R (2¢(6))|x). By now one can see the importance of angle

encoding in this construction. Angle encoding is a special type of information encoding,
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developed for special quantum routines depended on RUS. While basis encoding is used for

the inputs of the quron, the weighted sum of them is encoded in the angle € of the rotation.

In order to construct such a quron of n qubits, the following quantum operations shall
be deployed:
1) R, (2w;) is applied to an ancilla qubit conditioned on the i-th qubit of |x), followed by

R, (2b) and that is repeated for n ancilla qubits. That is analogous to applying
Ry(Z(Zn:Wixi +b)) =R, (20)
i=1

to the ancilla qubit conditioned to the state |x).

2) R, (2¢(9)) is a rotation performed to state |x). Since ¢ is a non-linear activation function, the

only tricky part is to find out how to approximate such rotation.

3)RUS circuits used to approximate R, (2¢(6)).

Repeat-Until-Success Circuit as an approximator for ¢

We will focus, for simplicity, on the RUS circuit developed to approximate a sigmoid
like activation function q(@) = arctan(tan’d), thus implement R, (29(9)) to the control state
of inputs. RUS needs an ancilla qubit to be measured and upon this measurement’s output the
circuit’s output depends. The idea is really simple: if the ancilla qubit is measured in |0/ state,

this indicates that R, (2q(¢)) was successfully applied to the output qubit. If ancilla measures

|1), the circuit has implemented a rotation by R, (Z) and in order to correct it R (—Z) should
2 2

be applied to the output and the circuit will be repeated. See Figure 1-3 for the realization of

the RUS circuit in one or several iterations.

As mentioned before, RUS will act as a threshold function in . The circuit can be
repeated, say k times, to move any point 8 €/—1,1] closer to one of the ends of the interval
[0,7/2]. Therefore, points 0 and 2x have the role of attractors. In the case of q(#) this threshold

function can be described as;
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0>%= R (24(0)) >R, (7)|0) D)
S(0) = ,(3.9)
0<7 =R, (24(6) > R,(0)|0)=0)

Input state  |2) -

1 !
Ancilla qubit |0} ~| R,(26) }I{ R.(-3) |—| Ri(‘zﬁ)

Output qubit  [¢)

Rl

Figure 6 A simple RUS circuit

Tnput register |}

Ancilla qubic 1 [0) +

‘
Ancilla qubit 2 [0)

Output qubit |0)

Figure 7 Two iterations of RUS circuit

o) )
Joy**— I Jo)ek

RUSF ()
0y — — R,(20°% ())|0)

Figure 8 General case of k iterations of RUS circuit

A very interesting property of a RUS circuit, which enriches the constructed quron with

an immediate quantum advantage, is that RUS can also be applied in a quantum superposition.

Consider a circuit where the input is initialized to a uniform superposition TZM),
Nz

controlled by a n-dimensional register. Thereafter, the controlled rotation that imitates the
activation function can be
1 &,
—— > |iXi|®R,(2¢,),(3.10)
n iz
and conditioned on the output measurement being |0) the desired final state is a superposition
of rotated output states

%iﬁ ®[0) @R, (2a()) ), (311)

i=1 .
Note that Fi is a factor standing for the amplitudes of the superposition, depending on both the
angles and the number of successful and failed iterations of RUS, thus Fjis a random variable.
A more detailed analysis on such case can be found in Appendix B on the original paper by

Cao et al.®
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%ZE;I |£) T *

Input qubit |0} ~{Rﬂ,[‘2-,:i} }I{ R.(=%) H R} (2¢:)
Y]

Output qubit |¢)

Figure 9 RUS applied in superposition of input rotations

The idea of a Feedforward Neural Network

The immediate idea after constructing such a quron is to use it as a building-block for
a QNN to reproduce the behaviour of a classical ANN. Furthermore, due to the ability to
handle inputs in superposition, such a quron could handle larger training sets than its classical
competitor. Let’s try to build a Quantum analogous of a three-layer MLP (Input-Hidden-Output
Layer) used as a classifier for binary encoded input data. In the general case

6 =Y wX; +b,(3.12)
j

represents the input in the hidden layer’s i-th neuron and

16 >0
o(ei)={_l o o313

the respective activation function. The m neurons in the output layer represent the m distinct
categories (classes) with neuron’s state being 1 representing “belong” and -1 “not belong” to
the class. If z) is a vector representing the state of I-th layer in the MLP, then information’s

propagation in the network is described by

2V =W 2P +b'),i=1,2,3,(3.14)

and the cost function to be minimized could be the simple Mean Square Error.

In order to transfer such a model in a quantum setting, consider one qubit s' for each

neuron in a layer forming an input state |sjlsj2....sj”> for each layer. Thus, the state of the

qubits corresponding to the previous layer serves as the control register for the next layer. The
input state of the input layer could also be a superposition of train data as inputs and the target

labels such as
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211,619
j=1

The circuit also requires k ancilla qubits for the RUS circuits, k being the number of
iterations of RUS performed to realize the propagation from i to i+1 layer of the QNN -which

is nothing but the angle ¢{"** that encodes the weighted sum of the inputs (plus the bias) of the

J-th neuron in i+1 layer. Note that, the ancilla qubits necessary for the RUS circuit can be
reused for all neuron updates, and therefore this construction requires a single qubit for each
extra neuron. The general architecture of a circuit that realizes such a QNN can be seen in

Figure 5.

However, a QNN cannot bear any true resemblance to a classical NN unless a cost
function and training rules for weight updates are set. In a neural network the goal is to

minimize the error of the output layer f(x;) according to the known attributes of the dataset

v, S0 the cost function can be the MSE
min 51 11y, = £(@)) [0, (3.16)
A backpropagation with gradient descent is one of the most traditional ways to train an MLP,

thus update its weights.

In this QNN, consider that in the first iteration we randomly choose the weights. Using
backpropagation in a hybrid training scheme -which is vastly discuss in the following section-
the weights (thus the angles) are updated based on the objective function, and at the end of the

training the training accuracy can be defined as:
— 1 —
@Z) = . N1 Zay2n)) OF TZ) =TT} (2ay2))
where, z, the states of the qubits in dataset and z, the states of the output layer, and m the

length of dataset and output layer. (ZZ) = 1 the best accuracy.

\

i f
L
k

R, (29 ’*l,:y_”\,-||ll‘3

Figure 10 Quantum circuit realization of the quantum neuron propagation
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Moving beyond periodic activation functions

The activation function proposed so far is based on the periodic tangent function. The
periodicity it introduces creates some serious limitations and problems in the realization of a
QNN based on qurons that apply this activation function. First of all, the input & is restricted to
be in the first quadrant, plus neurons’ derivatives oscillate quickly making training with
gradient descent extremely difficult. Based on the work presented so far, Wei Hu*® created a
non-periodic and non-linear activation function that can be approximated using a RUS and be

applied in a quron as described so far.

The proposed activation function is
f (0) = arcsin(y/sigmoid (9)) , where sigmoid () = 1% (3.17)
+e

thus, it’s derivative f'(x) = f(x)(1— f (X)) is easy to compute and can be trained with efficient

gradient descent. Moreover, it is not periodic so it can take any real numbers and finally It can
generate a ReLU function that looks more like a classical ReLU function, according to
simulations of qurons with both q(8) and f(6), provided by the author. However, that doesn’t
mean that all our problems are solved. The vanishing gradients problem appears; as
maxy’(0)=0.25, the backpropagation training squeezes the errors at least by a quarter at each
layer and near the two ends of the sigmoid function, its values tend to be flat, implying the

gradient is almost zero.
Conclusion

The suggestion of this quantum circuit’s architecture utilized to mimic the neuron of a
classical NN comes with a performance guarantee®®; Given an input angle ¢(6) encoding the
input if n qurons, the minimum k iterations needed for successfully prepare the desired output

state R, (29°(@(8)) |0y for an arbitrary error ¢ such that

10 (9(9)) - 9(p(0)) [< £, (3.18)

0,p(6) < %
9(0(9)) ={ ,(3.19)

Vs i
—, 6)>—
5 »(0) 1
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), where error &

then the expected runtime of the circuit is proved to be O((g)z'm(&)‘“"15
&

corresponds to the distance of g(¢(#)) from its attractor 0 or n/2 and ¢ its distance from the
threshold /4.

The dependence on the number of iterations k emphasises the non-deterministic nature
of RUS circuits and implies that the runtime is on average slightly longer than the feed-forward
pass in a classical neural network. Moreover, on average the circuit depth scales as O(14%). The
authors also provided an estimation for k to be O(log(1/d¢)). The runtime, although polynomial,
is still challenging, especially taking into account that state preparation routines and the

generation of superposition of states is not taken not account.

The ability to process all input data in superposition is a quantum advantage of such a
QNN, that has no analogous to its classical counterpart. However, in such a case in order to
simulate an I-layered classical MLP with max layer size d ,an error at max ¢ and under the
constraint that network’s weights and bias can be represented in resolution ¢ (W=kwd and b=kno
for ki integers), the number of qubits needed is estimated to be O(nl+log(n\de!>2)). This yields
a linear relationship between the number of qubits and the number of neurons in a classical
MLP. Under very certain circumstances, a roughly linear speedup can be achieved in terms of
model complexity, but still these computations take into account neither the cost and
complexity of state preparation if the inputs to encode them in basis and then prepare them in
superposition, nor the complexity added to the model to manipulate and preserve this

superposition.

If we consider the main requirements for a QNN proposed in Section 1.3, the proposed
architecture satisfies all three of them; the mapping of its neuron to a qubit ensures the ability
to encode any binary N-dimensional input to the initial state, the threshold dynamics
represented by RUS circuits correspond to the integrate-and-fire mechanism of the classical
neurons and finally quantum effects such as superposition are exploited, providing a quantum
advantage while unitary and linearity of the quantum system are preserved, ensuring

consistency with quantum theory.
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3.2 Hybrid Training

As already mentioned in Section 2, by the term training we mean strategies that aim to
the optimization of a quantum model or the utilization of a quantum model to train a classical
algorithm with a quantum speedup. The basic 4 approaches are the utilization of linear algebra
calculus, quantum search of optimal parameters based on Grover’s routine, quantum adiabatic
routines designed for entirely quantum models and, what is considered to be the approach

closest to a near-term application, hybrid training routines of variational algorithms.

This subsection will focus on the latest case in which inference is made in a quantum
device using methods as the ones presented in subsection 3.1 as well as more elaborate ones
that will be presented in extend in the next subsection, and gradient descent backpropagating
methods -which have no quantum equivalent- are performed in a classical device. As in this
whole section, we will focus on models and ideas that can be realized by quantum circuits, in
the hybrid training scheme called variational circuits. Variational circuits are parametrized
quantum circuits used for inference, in the sense of computing terms of an objective function,
or its derivatives. The objective function is used for training, aiming to minimize the inference
error of the circuit or to maximize its accuracy. The hybrid nature of the training comes to the
fact that classical processing is used to compute better parameters for the circuit, in an iterative
process until a threshold value for the objective function is reached. Moreover, classical

methods can be utilised to find the optimal initial parametrization of the variational circuit®.

The hybrid training methods lay their foundations not that long ago, as the theory of
variational hybrid training was developed in 2015%. These methods, especially the ones
concerning quantum circuits, are a part of the exploratory approach, mentioned in Section 1,
because the aim of such algorithms is not to mimic a classical ML algorithm, or an ANN in our
case, but to accomplish the same task and reproduce the same results, offering runtime speedup
and resolve storage issues. In contrast to the “building-block™ qurons proposed for Inference,
whose resemblance to a classical neuron was clear, the quantum models proposed to form a
QNN from now on will focus on reproducing an ANN’s results rather than be straightforwardly

inspired by the classical model.

The main reason this thesis focusses on the variational scheme is the belief of the author,

supported by the recent progress in literature and research, that this scheme is the one most
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suitable for near term quantum applications. This belief is strongly based on the
acknowledgment that only a part of such an algorithm has to run coherently, allowing much
smaller circuits, and such circuits have a universal design that can be easily customized based
on the quantum device to be implemented. Finally, an iterative optimization process, which is
fairly simple and easy to understand and surprisingly easy to compute in quantum case, comes
with robustness against noise in the estimations, and since error correction has a very long way
to go in quantum computing technologies so far (more on this on the Section 4), this is a long-
awaited feature.

The theory of variational algorithms

Two of the very first variational algorithms that can be implemented for QML, appeared
not that long ago, in 2014 and are; Quantum Variational Eigensolvers®? (VQE), inspired from
the physical problem of finding the minimum energy eigenstates- the ground states of a
quantum system- and Quantum Approximate Optimization Algorithm® (QAOA) designed to
deal with combinatorial optimization problems. These are the first two variational algorithms
that found application in QML with the VQE altered to build quantum classifiers and QAOA
utilized as a preparation routine for Qsamples in Boltzmann machines. Both of these can be
realized in a quantum circuit, using Hamiltonian encoding, thus the problem is encoded in a
Hermitian matrix A, whose expectation value (A) is iteratively optimised by tuning parameters

6 of an ansatz state |y(6)).

As this thesis focuses on Quantum Circuit models used as QNNSs, there will be no
further discussion concerning QAOA or VQE. In terms of its potential use as a tool in a QNN,
detailed information about how a VQE can be used as a classifier is provided in Appendix C.
However, our main concern will focus on a third algorithm, Quantum Circuit Learning*?
(QCL), published just earlier this year. This recent job not only proposes a complete scheme
for training Quantum Circuits to be used for learning, but it also proves the simplicity of

gradient-based systematic optimization in certain scenarios.
But before dive into the construction and of a QNN based on a variational quantum

circuit, one should address the ways to optimise circuit’s parameters. At this point, the reader

should consider that such quantum algorithms return an estimation of the output in the form of
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measurements for the expectation of an operator, thus precision can be increased by repeating

the algorithm and measurement, concurrently increasing the complexity.

3.2.1 Derivative free Optimization

The simplest way of training a quantum model does not require the computation of
gradients. The idea is an iterative algorithm that successively evaluates the objective function.
Such an example is the Nelder-Mead method*3, one of the most famous methods for gradient-
free optimization of multivariable functions in ML. The method is based on a simplex is a
special polytope of n + 1 vertices in n dimensions -a line segment on a line, a triangle on a
plane.

The main idea is to start with a randomly generated initial simplex and iteratively
reshape it, one vertex at a time, towards an optimal region. Every iteration of the algorithm
tries a few modifications of the current simplex and ends up with the one shifting the simplex
towards the optimal region. In the final iterations of the algorithm the simplex should ideally
start to shrink inwards to the best point inside it, resulting to the most optimal objective value.

Consider an n-dimensional space, for an n-variable function’s f(x) optimization or an
n-parameters variational circuit and a randomly chosen initial simplex that consists of X1 X2,...,Xn

points. Then each iteration of the algorithm performs the following steps:

Step 1: Order all X Xo, ....,xn points such that f(xa)<f(xs)<...<f(xz)

Step 2: Consider all points except the worst xa and compute their centroid: C = izxi
n i#a

Step 3: Transform the simplex. There are several ways to perform such a transformation. The
transformations tried in the order of presentation:

a) Reflection: The reflected point x=C+d(C-xa) is computed, for a reflection

parameter d. If f(xp)<f(xr)<f(X;), which is translated to x; being better that Xs, Xa is

replaced with x, and the first iteration is finished. Such a transformation attempts to

move the simplex in a direction away from the sub-optimal region around Xa.

b) Expansion: If the reflected point is found to be better that the current best, f(x/)>f(xz),

the goal is to move from C in the direction of x;, trying to find a better solution. This can be
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done by defining an expanded point xe=C+m(x,-C), for an expansion parameter m, usually set

to 2. Subsequently Xa is replaced by the better of two points, Xr Or Xe.

c)Contraction: In case xr is worst that xp, so transformations (a) and (b) have no value,
this indicates that the direction defined by x, may not be optimal. If that is the case the step to
take is to contract the simplex. Define a contraction point x;=C+p(xa-C), p a parameter close

to 0.5. If f(xc)>f(xa), we replace xa with xc in the simplex.

d)Shrink contraction: In case all the above transformations fail, the entire simplex needs
to be redefined. That is, keeping x; and define all other points with respect to the old ones so

that the j-th point will be x;=x.+y(xj-X;), y again being a parameter close to 0.5

Step 4: Terminate the algorithm. Termination criteria may vary according to algorithmic needs
for high accuracy or lower complexity. Some of the most famous ones are a limit in the number

of iterations, or the simplex minimum size.

3.2.2 Numerical Gradient-Based Optimization
This optimization method, called the finite-differences method®?, is employed when a
model has a black-box access to the cost function. The idea is rather simple; Given a cost
function C(#) to be optimized, its gradient can be numerically computed by:

ce,...o0,.6,)-C6,..0,+A0 _,..0
( 1 y7i M) ( " + o M) +O(A92 )+O(i),(3.20)
AGO “ A6O

u u

¢ being the error of the estimation of C(6). It is proven to be extremely important for the success

of finite-difference method to ensure that
C(@l,...,ey,....HM)—C(e -~ +A«9#,...¢9M) <2¢,(3.21)

so that there is no overlapping in evaluation intervals of the two cost functions. This is

oC(6)
00

7

equivalentto 2¢ <A,

This final rule implies that the smaller the gradient, the highest the estimation’s
precision needed thus more iterations of the algorithm required. This is particularly
inconvenient in case the Variational Circuit creates measurements of high variance or a very

close approximation to the minimum of the cost function is desired.
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3.2.3 Analytical Gradient Based Optimization
This last type of optimization of the objective function, aka for training a model, is the
best suited one in case of Variational Quantum Classifiers, vastly used in recent research in the
field and the one chosen to train the QNN models this thesis focuses on in Learning subsection.
It is also ideal for near-term applied QNN models since, as will be evident soon, it is proven
that when dealing with the Pauli-matrix-generator-form the analytical gradients’ computation

becomes surprisingly simple*?.

Let’s consider the case of the Variational Circuit described in the previous section and
dive deeper in this idea. Then we will discuss how gradients can be analytically computed for
the cost function this circuit estimates. If we have a set of parameters 6={61, 6, ...,6n}, each one

assigned to an elementary unitary block G(#;), we can define our quantum circuit as

U©)=G(@,)...G(6,,)..G(6,),(3.22)
and let C(U(0)) be the cost function related to this circuit that needs to be minimized. In order

to compute the analytical gradient of the cost function it is obvious that one has to compute the
partial derivatives of the circuit, that is 6,U (), for an arbitrary parameter m in 4. At this point
a problem arises; there is no guarantee that the derivative of a circuit is a quantum circuit itself,
as unitarity is not necessarily preserved by derivation. Thus, a quantum device cannot be
straightforwardly used to estimate 0,U (€). Luckily, there is a special situation where a trick
can be exploited; the Classical Linear Combination of Unitaries*, a technique that, under some

assumptions, allows the same quantum hardware used to realize U(#) to also be used to

compute its gradients. For more details on this procedure, see Appendix D.

Let’s for simplicity consider the case when m appears only in .. Then the derivative of

our quantum circuit becomes

o,.U(6)=G(@,)...0,G(0,)..G(6,),(3.23)
The next observation is crucial; Quantum circuits are linear. This linearity of U(6) means that
the derivative of the circuit is exactly the same as the circuit itself, except for one block.
Consider also the special case when the computation of a unitary block’s derivative can be

expressed as the weighted sum of other unitary blocks;
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0,6(0)=3",aG,(6,).(3:29)

If that is the case, circuit’s derivative can be expressed as a linear combination of circuits;

5,U(0)= Y 86(6,)..G,(4,).-6(6) = Y. aU,(0).(3.25)

This means that the gradient can be estimated using slightly different circuits from the original
one. We can distinguish two main cases of this scenario. They will be briefly mentioned here
and then applied to QNN models described in the next subsection.

Case A: If the variational quantum circuit (3.22) consists of parametrised general

single-qubit gates, each gate G(#) can be described as':

0,G(a,b,c) =G(a+%,b,c),(3.26)

e®cosa e“sina 1

G(a,b,c) = }—> abG(a,b,c):G(a,b+%,O)+EG(a,b+%,ﬂ),(3.27)

—e“sina e ™cosa

0.G(a,b,c) = %G(a, 0.c+7) +%G(a, 7e+2),(328)

This can be seen as a case where 0G, (6,) =G(r,(6,)), where a rotation of n/2 applies to some

parameters of the circuit and setting others to constant.

Case B: In this case, the variational quantum circuit is not a decomposition of general
single-qubit gates, but it rather is parametrised as Pauli matrices. In such a case, each gate
G(#) can be described as:

G(m)=¢e" —3,G(m)=0,e™ =i0e™, (3.29)

where O a tensor product of single-qubit Pauli matrices and the identity operator. Note that
Pauli gates can be applied as unitaries, therefore O can be considered and extra gate to U(6).
This immediately results to an extreme simplicity in the computation of derivatives, by simply
adding O as a further gate to the initial circuit. In the unfortunate case that O has to be a non-
unitary Hermitian, an effort to decompose it into a linear combination of unitaries should

precede.
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3.3 Quantum Learning Models

As it has already been clarified in the introductory section, a model that is capable of
learning is a model that, trained with a set of parameters X={x1,Xo,...,xn} to accomplish a
specific task, can generalize the accomplishment of this same task and return predictions with
a desired accuracy for new input data Z={z}, and by new we mean Z-X. Such a case is, of
course, the case of ANNSs and in this section we will discuss quantum models that could be
seen as quantum analogues of ANN, in the scheme of the exploratory approach. That means
that the QNNSs based on variational circuits we will discuss are not meant to mimic ANNS, bear
the exact architecture or follow the mathematical formalization of them, but they rather are
quantum equivalents of an ANN in the sense that they can, given the same -or even smaller-

train set X learn to accomplish the same task as an ANN and return predictions for Z.

Of course one can detect some analogies of such a QNN model and an ANN if consider
the interpretation of quantum gates in a quantum circuit as linear layers in an ANN, but instead
of focussing to find and point out such analogies, our main goal in this subsection is to consider
guantum algorithms and models that can form a QNN in near term applications. Most of the
existing literature on QML focused on the approach of translating existing ML algorithms into
quantum subroutines. Due to the mathematical complexity of these classical algorithms,
enhanced by the different natures of quantum computations, these subroutines are non-trivial

and resource-intensive algorithms, unable to be implemented on small-scale devices.

This thesis considers “near-term” as something potentially realizable in the next 5 years,
at least in terms of 30-50 qubit applications to test the actual performance and complexity of
the model. Therefore, the circuits depth -the number of gates that need to be realized- the
number of qubits needed for encoding as well as the ancilla qubits required play a major role

in the selection of the following models.

Furthermore, the fact that Variational Quantum Circuits can be trained using hybrid
methods as discussed previously, enhances this choice. It cannot skip our attention that the
research community of QML has recently made a turn towards this approach in the request for
a QNN, providing twice as many model proposals in the last 2 years as all proposals for the
rest of approaches discussed in Section 2, combined. Furthermore, in the last months, such
models started to make their way towards modest realizations of 1 and 2 qubits on IBM Cloud
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Quantum Computers. All these being said, the rest of Section 3 will be dedicated to the analysis
of 4 QNN models, all of them circuit-centric, all of them coming with a hybrid training

framework, and all of them as fresh as 1-2 years old.

3.3.1 Prove of learnability

Before one starts to discuss QNN learnable models based on variational circuits, a very
fair demand would be to ensure that there exists the possibility of learning, in the sense that the
chosen quantum structure has the mathematical potentials to be adaptable, approximate
functions and, thus, detect patterns. This very same reassurance came to the world of the
classical ML with the famous Universal Approximation Theorem!>!1€ a theorem of existence,
in the sense that it provides the mathematical justification for the approximation of an arbitrary
continuous function by an ANN. The theorem comes in several variations for different ANN

architectures, but the first and general formulation, concerning MLP states:

“A single hidden layer is sufficient for a multilayer perceptron
to compute a uniform approximation to a given training set represented by the

set of inputs Xy, ..., xm and a desired (target) output f(x1, ..., Xm )"

Thankfully very recently a quantum equivalent was proved for the specific case of
binary functions* stating that any two-valued label function can be represented by a quantum
circuit, although the price of circuits depth may be forbidding for near term applications. In
order to confirm without any doubt, the quantum advantage of a QNN, the research community
of QML has to answer the open question of which functions can be compactly represented on

a quantum circuit whereas they cannot be on a classical network.
Poof’s Highlight

Given the circuit U of the form (3.22), an input state |X,xn+1) where X is the n-
dimensional input, encoded in the computational basis so that xi={-1,1} , plus an ancilla qubit

Jinitialized in |1), to be measured for the inference and a binary label function f(x), we have 2"

n-bit strings and 2% possible functions f. Now, consider the case that U=Us, forms a

generalized Pauli matrix. That is
U, =¢e",(3.30)

for a tensor product of Pauli matrices O.

80 Maria Kofterou - December 2019



Quantum Neural Networks focused on Near-Term applications

For simplicity, focus on the case when Us acts on the input state, it performs a x-axis

rotation of %* f (x) on the ancilla. This can be expressed using Dirac notation as;

(i f 00 Xp0)

U, XX, =€ | X, X1, (3.31)

Now, let f(X) an operator diagonal to the computational basis with respect to f(x) so that f(xi) is

the element in the diagonal and the i-th row of f(X), corresponding to the x; input. Then

u'Y U, :cos(%f(X))Y

n+1 n+1+5in(% f (X))Z (332)

n+1?

Since f(x) is binary valued, from (3.31) and (3.32) it follows that

f(x)=(x,1JU .Y,

U 1xD),(3.33)

That proves that in an abstract level any binary function f can be represented by a
quantum circuit. Now, to make this work in the framework of Variational Circuits that are in a
suitable form to be trained and used as QNN, it is important that Us can be decomposed as a
product of single or two-qubit unitaries. To do so, we will resort to Reed- Muller representation

of Boolean functions, thus, it is convenient to express Xi to Boolean variables. That can easily

.....

such notation, the Reed-Muller representation of the label function will be

(0 =1-2(a, ®(®ab)®( © a,h,)®...0a,, bp,..b, (334)

g2

where addition represents the mod2 and the coefficients a are all 0 or 1. There are in fact 2"

coefficients a, resulting in the representation of 2% functions f.

If we utilise an operator B, diagonal to the computational basis corresponding to b in
the same way that f(X) in (3.32) corresponded to f(x), then the operator Us can be reformed in
the following way

(i%f (X)X ) (7%n)  (-5BXna)

U, =e =e e ,(3.35)

Each non-vanishing term in the Reed-Muller formula gives rise in Us to a controlled bit flip on
the output qubit. And, as demonstrated in previous literature3, any controlled one qubit that
acts on qubit n+1 and the control qubit is one of the n previous ones, can be written as a product
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of n? single or two-qubit unitaries. Thus the proof is complete and we can now focus on how
to create Variational Circuit models that can exploit the ability to approximate any Boolean
function within a reasonable circuit depth and complexity level, so that those models can be
used in near term applications or, at least, be tested in an actual quantum system.

3.3.2 Quantum Circuit Learning
The main idea of the QCL algorithm for a supervised learning task can be summarised
as; Given a set of train data {xi} with their target vectorized values {f(x;)}, the algorithm’s output
yi=y(xi, 0) is optimized by tuning 0 to minimize the distance between the output and target
values. The hybrid nature of the algorithm comes from assigning the calculation of y; to a

quantum device and the update of ¢ to a classical computer. In this sense, the cost function can

be some function like the quadratic cost, that is C = ZH f(x —y,)| . Inan N qubit circuit, the
algorithm can be highlighted as by the following steps:

Step 1: The inputs {xi} are encoded to a quantum state |win(Xi)), using a unitary U(x;), as
described in 3.1.1.

Step 2: A parametrized unitary U(0) is applied to the input state prepared in step (1), so
that the output state is: |wout(Xi,d) )=U(0) |win(xi)).

Step 3: Use a subset of Pauli operators -as explained above such a choice will make the
computation of gradients a much simpler task- {Bj}{1,X,Y,Z}*N along with an output function

F, to measure the expectation values of some chosen observables. Output can be then defined

as: y(xi,0)=F{Bj(xi, 6)})

Step 4: Define a cost function C(f(xi), y(xi,6)) to be minimised by tuning 6. Optimization

can be achieved by either 3 methods mentioned in 3.2.

Step 5: Evaluate model’ s performance using a test set.
These steps are in principle the general scheme for variational trainable algorithms designed
for hybrid training*®. QVE and QAOA methods follow the same scheme but design the output

in different manners.
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The goal of such a quantum circuit is to be able to approximate the function f that
provides the targets. If that can be done successfully, the model will be able not only to
successfully classify the train data given as an input, but also to generalise its predictions

correctly to new, unseen data. If that can be achieved, the model is said to be trained to learn!
How QCL can approximate a given function f

Let’s for simplicity consider input data is one-dimensional. Then, given an input data x
corresponding to the input quantum state |yin(Xi)), the density operator pin(X) can be expanded

by the set of Pauli operators B;j with linear coefficient functions ax(x) such that:

Pin (X) =y, )N, (X) |= Z a, (x)By,(3.36)

The output state in a such case is obtained by the action of a parametrised unitary
transformation U(6) in (3.36) and can also be expanded by a subset of Bj, let’s name it

Bk={b«(x,0)}. Thus, the expectation value of a Pauli observable can be written as

by, (%,60) = > Uy (0)3, (x), (3.37)

with given coefficients {uj}, thus the output can be perceived as a linear combination of ax

functions under unitary constraints imposed on the parametrized Umk.

QLC approximates a function f considering simple cases where an input state is created

by single-qubit rotations. For example, the N-qubit state

pin(x):ziNi%)lu £ xX, +1-x2Z.1,(3.38)
can be generated for any binary x by implementing single-qubit rotations of the form
ﬁ R', (¢) . We have already discussed such rotations and how they can enhance the inference

i=1

in a quantum circuit in the previous subsection.
The tensor product used to create the input state has an immediate effect; an arbitrary

unitary transformation on this state results to an arbitrary N-th order polynomial as the

expectation values of a selected observable to be measured. However, the highest order term
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xN is hidden in a nonlocal observable X®N and in order to extract it one needs to transfer this
observable to a single-qubit observable, using an entangling gate, like a C-NOT for example.
Entangling nonlocal operations are the key ingredients of nonlinearity of an output. The
nonlinearity created by the tensor product is the key for the approximation of analytical

functions.
Compute the Gradients

Now, let’s return back to the parametrised unitary U(6) of (3.22) and suppose that it
follows the usual schema of decomposition to a chain of unitary transformations

[Tu,@

The goal of the circuit that applies U(6) to pin(x) is evaluated by measuring the expectation
value of an observable B, (B(#)). Then:

(B(9)) =Tr(BU,..U,p,, (x)U;...U]),(3.39)

-i60;
If it is ensured that U ;(9) =e ? , which is the Case B of 3.2.3 and Oj is a Pauli tensor product

aB)y i )
% == 2Tr(BU,..U,[0,,U ,.U,p,, (X)U", .U " 1U]...U]), (340)
i

Now, exploiting the property of the commutator of an arbitrary operator p
. T T T 4 T
[0,, ] =ilU,(5)pU",(5) -V, (- 5) U, (-1, (34D)
2 2 2 2
and apply it in case of (3.40), where
p=U,.Up, (x)U Tj_l..U f,(3.42)
the following evaluation of the gradient is obtained;
xXB) i

T T
w0 STr(BULL U, U)o U (VU ) -

T

i 7 T ¥
ETI’(BUI U U, (—E)ij j(_E)Ul U Ll), (3.43)

That has a straightforward interpretation; with the insertion of a +z/2 rotation generated by a

Pauli product O; the measurement of the respective expectation values B )" and (B )y provide
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&B) _(B);—(B);

us with an easy evaluation of the gradient 20 >

. Thus, the gradients can be
j

computed by a quantum device.

Conclusion

QCL provides a promising framework for the construction of a QNN that can
accomplish both classification as well as regression tasks. The nonlinearities added by the
tensor product and the entangling nonlocal operations required for measuring the expectation
value of the chosen observable enable such a circuit to approximate any analytical function,
which is a promising step towards learning. Moreover, if the parametrised unitaries of the
circuit are chosen to be generated by Pauli products, the computation of partial gradients of the
circuit is proved extremely easy to compute, allowing the optimization of QCL models to be
made by analytical gradient descent where gradients are computed by a quantum device.

Furthermore, another possible quantum advantage of this algorithm comes when

considering the equivalent of the input state (3.38) in case x is a d-dimensional input

Pin (X) = ZiNé(g?[l +X X +41- x.’Z;1),(3.44)

It is obvious that input states automatically have an exponentially large number of independent
functions as coefficient set to the number of qubits, meaning that QCL directly utilizes the
exponential number of functions with respect to the number of qubits to model the target

function.

3.3.3 Circuit-Centric Classification QNN

The Circuit Model (CM) proposed by Schuld and her colleagues*? that will be presented
here is a result of one of the most consistent multiannual researches in the domain of QML, the
research that resulted in the book which inspired and guided this thesis. Summarized in a
sentence CV is a strongly entangling parametrised quantum circuit that consists of single and
controlled single-qubit gates with classical parameters that, provided a set of inputs encoded in
amplitudes of its state, is hybrid trained to perform a classification task. The hybrid-training
scheme used corresponds to Case A of 3.2.3 and utilized the strategy of Classical Linear
Combination of Unitaries to retrieve the gradients and a classical computer to calculate the

parameters’ updates. The amplitude encoding ensures that the number of parameters needed
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grows only poly-logarithmically to the input dimension and is the first variational circuit model

to achieve so.

The CM’s structure and action for inference with respect to a QNN classifier are

resumed in the figure 11. The 4 steps of the algorithm are illustrated (needed for the inference

part) and there is a 5™ and 6" step needed for training. These 6 steps can be summarised as:

Step 1: State preparation routine Sy, for amplitude encoding of
the input data

Step 2: Application of the parametrized unitary circuit

Step 3: Measurement of the first qubit

Step4: Postprocessing of the result and application of a
decision step function

Step 5: Quantum computation of the gradients of a Cost
function, by realizing a circuit similar this one but slightly
changed

Step 6: Classical computation of the updated for the parameters

STEP 1 STEP 2 STEP 3

STEP 4
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Figure 11 The 4 steps of CV model

seen by 3 different perspectives

State Preparation

As mentioned in Section 2, there are several state preparation routines developed for
amplitude encoding, with respect to qubit, amplitude or runtime efficiency. However, all of
them are of a certain and non-neglectable complexity and the choice of the desired Sx depends
heavily on the constraints the data can afford to be imposed to as well as the quantum properties
and abilities of the quantum hardware chosen to perform the task. In general terms this can be
achieved by applying a kernel function, that is a feature map, to the n-dimensional real-valued
input vector x of the normalized input data, possibly pre-processed to be normalized and
advanced with some non-zero padding terms to avoid distorting the initial data. Depending on
the dimension of the Hilbert space the input data are projected to, the circuit to realize such

routines can have linear or polylogarithmic dependency in the dimension n of the input data.
The parametrized unitary circuit

Given the encoded n qubit input state |¢(x)), the goal is to use the unitary operation
U(#) to perform the mapping |¢ (x) )= U(6) |¢(X),). By now one should be familiarized with the
decomposition of an L-depth circuit U(6) of (3.22) into single or two-qubit gates where a single

qubit gate Gk is expressed as
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U,(I,®...8G, ®....®_,),(3.45)

The 2-qubit control gates will be imprimitive, in the sense that they can map any two-qubit
product state into a non-product state. Such a two-qubit gate acting on qubits a and b in the

computational basis can be written as

C.(G) ) ]y) =[x) ®G"|y),(3.46)
where G is a single-qubit gate and the state x of a is a pure state. Such a construction of U

provides it with quantum universality, which means that it can generate the entire unitary group
u(2").

In order to make the circuit trainable and thus learnable, parameters must be inserted.
The unitary nature of single-qubit gates that can be expressed as in the parametrized form of

—ic

| e®cosa  e“sina
G(a’blcl¢) :e"/’ . _ib
sina e ™cosa

},(3.47)

—€

makes this task straightforward. The term e can be neglected as one cannot physically
measure overall phase factors, so considering only the remaining three parameters as learnable,

the familiar form of parametrised single-qubit gates is obtained

e’cosa e“sina
G(a,b,c)z[ .

—e°sina e ™cosa

},(3.48)

However, this is considered a specific case and a general set of elementary parametrised gates

can be chosen base on the specific hardware and physical device used.
Circuit’s Architecture

Circuit’s architecture, i.e. which gate acts in which qubit and which act as the control
ones also depends on the physical device that will realise the algorithm, the existent
relationships in the input data as well as the specific task to be performed. The only goal is to
keep the CM a low-depth circuit. Specifically, it is to keep the depth L of the circuit polynomial
in the number of qubits n. If do so, the elementary qubit operations required will have a
polylogarithmic dependency to the dimension N of data.
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The obstacle that arises in such approach is that by keeping the circuit’s depth low, only
a limited set of amplitude vectors |¢ '(x) )= U(0) |¢(x)) can be reached. A solution to this may
be offered by utilizing entanglement. If the circuit is strongly entangling, that is able to prepare
strongly entangled states, the set of amplitudes it can reach grows impressively. To achieve
that, Code blocks B are constructed. Code blocks are a layer of single-qubit gates G of the form
(3.15) applied to each of the n qubits, followed by a layer of n/gcd(n,r) control gates, r standing

for the range of the control. If r is relatively prime with n, all n qubits can be entangled.

The k-th controlled qubit gate can be expressed in the form (3.48) and let’s denote it as

C (Gtk ) ,where ck=kr modn the number of the control qubit and tx=(kr-r)modn the target’s

C

one. Therefore, a code block B can be represented as;

n-1 n-1
B=]1¢C, (G, )[ ]G\ (3:49)
k=0 k=0

Figure 12 offers a handy visualization of an 8 qubit circuit with such architecture,
consisting of two building blocks B1 and B3 with control range r1=1 and r3=3 respectively and
in total B1 and B3 are comprised of 17 parametrised single-qubit gates of the form (3.48), and
16 trainable controlled single-qubit gates of the form (3.46).These gates must be decomposed
into elementary constant gates suitable for the quantum device that implements the model. In
the preferable case when the controlled gates are optimized to be single parametrised,
3(17+16)+1=100 parameters are to be learned. This number seems extremely small compared
to the weight matrix of a simple 3layerd MLP of just 10 neurons in each layer. The power of
CV is highlighted considering that these 100 parameters are enough to classify inputs of 28 =

256 dimensions.

Figure 12 The architecture of an 8 qubit entangling circuit that consists of 2 building blocks
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Measurement and postprocessing

The output of the CM is obtained by measuring the first qubit repeatedly, to obtain the
probability

P, =Lx0)= D |(U,0)), I (3.50)

k=2""141

Or in Dirac notation using a Pauli Z operator for the measurement this can be expressed as

E(Z)={(p(X)|UT(Z®1®...Q 1)U | p(x)),(3.51)
In order to obtain a continuous output, if that is required, we can add a learnable bias b via a

classical post-processing, so that the final output is now formed as

z(x;6,b)=p(q, =L x;0) +b,(3.52)
E@)
2

threshold value T, producing the final binary output.

Alike, using Dirac notation 7(x;8,b) = ( +%)+b. A step function is then applied for a

Define the cost function

As a cost function, any cost function can be chosen, depending on the problem.
However, the complexity of this choice has an immediate effect on the gradients that we will
eventually need to compute. A safe choice is the standard Mean Square Error, which in the
present case, given a train set X of m inputs with their respective labels provided in the set Y,
with respect in the indexing of X, then the cost function to be minimised is:

C(0.6)=2 Y Ir(x:0.)-y, (353

Training the CM

In order to train the CM, that is optimize the parameters of the circuit, stochastic
gradient descent will be used. In fact, single batch gradient descent is the key to keep the CM
low-depth, as in case we want to train all inputs in superposition, which is possible thanks to
guantum dynamics, the state preparation routine becomes linearly depended in the size of the

batch and the dimension of the inputs.
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For each parameter in the set 9, and similarly for b, the update rule given a learning rate
h, is set to be

Hl(t) — ei(t+l) _ h 8C(¢9, b) ’(354)
00,

The derivative of the cost function is

EO) _ (2x7:0)-y)0,7(x":0),(359)

and is a real-valued function. In order to obtain this value, the only obstacle is the computation

of 0,7(x™;6) . In case of the bias, this is easy because 0, 7(x";b) =1

For the rest of parameters, the derivation is not so trivial. In vector notation, the
respective derivatives of the output are given by

0,(X™,0)=0,p(d, =L Xx";0) =

0, 2, U0(x)' U,0(x), =

k=2""141

2Re{ 3 (0,U,0(0)". (U, 0(x)),}, (3.56)

k=2""t41
Or in Dirac notation

0,7 (X";0) = 2Re{((6,U,)o(x") | Z |U,,e(x" )}, (3.57)

Now, the only problem to solve is the fact that the gradient of a circuit is not necessarily
the gradient. Thankfully, using the Classical Linear Combination of Unitaries routine, which
is analysed in Appendix D, the gradients can be quantumly computed for the rest of the

parameters as easily, by realizing slight variations of the initial circuit
Conclusion

The CM seems to be an excellent competitor as a near-term applicable QNN. Given N-
dimensional data encoded in the amplitudes, the upper limit of log2N qubits applies and this is
the only case were no ancilla qubits are needed from the model. The power of this is illustrated
from the fact that for the process of a 1000-dimensional dataset, only 10 qubits are enough.
This limit is upper because CM model is designed in the simplest version possible to be easier
to apply, but it is easily upgradable with more quantum advantages -given a complexity cost-

such as the superposition of train data or the use of a tensorial feature map (kernel methods).
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Simulations also shown that this model demonstrates robustness to noise, which is a
much favourable skill for near-term applications, sine error correction in quantum hardware is
in a very primary stage. Another advantage, inherited from the variational nature of the circuit,
is the fact that learning to counterbalance systematic errors in the device architecture is

possible.

The number of repetitions of the circuit needed from the measurement can be seen as
sampling from a Bernoulli distribution s times. Using amplitude estimation, given an error ¢
and requiring an estimation probability >0.75, s is O(1/¢) by the circuit depth O(1/¢). The most
“expensive” part of CM is the complexity added by the state preparation routine. As an
example, for the state preparation of the 1000-dimensional dataset above 2048 gates are
needed. Therefore, developing more effective state preparation routines is a very much desired
next step for enhancing not only CM, but every possible QNN model. This problem can be

abolished in case the CM is used to perform a task in quantum input data.

Finally, several simulations in classical datasets, provided by the authors, revealed that
in case of several benchmark classical models like Perceptron, MLP or SVM, compared to
which CM is much slimmer and compact, the model tends to overfit a lot. Even when
regularization techniques like dropout qubit used, it still overfits badly. This sadly indicates
that although trained properly, the QM model is not exactly a learnable model that can
generalise. Moreover, how this general framework can be customized for every specific
problem is a largely uninvestigated domain. Customization refers to basic decisions in the
designment of the CM including the quantum circuit’s architectures, which gates are applied
in which qubits, initial parametrization as well as the number of code blocks used to create
entanglement to the circuit. As a matter of fact, these practical issues arise in all variational
quantum circuit QNNs met in the literature so far, forming a new domain of research necessary
to make this framework realistically applicable. It should be noted that in the last months, some
techniques for heuristics initialization and optimal architecture have been published®!5%1%7,

although considering very specific cases of variational circuits.

3.3.4 Another circuit-centric QNN
In this subsection another model that bears great resemblance to the previous one,
published in the same year, is presented*. Although this model follows the same framework
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created from variational circuits used as QNN models to be trained by hybrid methods, the
main differences is that this one is based in basis encoding of input states -although it can also
receive quantum data- possibly prepared in superposition, and analytically computes the
gradients of the circuit as in Case B of 3.2.3 section. It can be used for inference in binary
classification tasks, provided a labelling function f(x) along with train data x and in case the f
is not a random function, which is translated to the existence of a pattern in training data, it can

learn to generalise its predictions in new input data.

The main idea is that given a set of parametrized unitaries, with real value parameters,
the unitary U(6) of length L can be decomposed in the form (3.22). An input X=X1X2....Xn, Xi=t1,
can be encoded in the basis state |x,1)when an ancilla,(called readout by the authors) qubit is
added in the end for the measurement. It is obvious that n+1 qubits are required for the
encoding of the n-dimensional input. After the application of U(6) on the input state the n+1-
th ancilla qubit is measured using a Pauli operator, Y. Of course, due to the probabilistic nature
of quantum systems, the final outcome is obtained after the procedure is repeated in several
copies of the output. The classical parameters of U(6) are optimized so that the outcome of the
measurement meets, or comes as close as possible, to the provided label for x, f(x). In order to

do so, a cost function is defined such as;

C(6,x) =1— f (X)(x,1|U T (B)YU () | x,1), (3.58)

At this point, it should be underlined that there are two ways to go. The input state can
either encode one train input at a time, or all of them together in a superposition. Because of
the complexity that comes with the superposition and especially the cost concerning circuits
depth, we will focus our analysis in the first case and briefly discuss the potentials of the later

in the end.

As in the scheme described each unitary Ujacts on the outcome of the previous unitary
in the circuit, there are non-explicit non-linearities introduced. Thus, this is one of the cases
that the is used to measurement adds the non-linearity needed for the QNN, standing for the

activation function of the model.
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Parametrised gates of the circuit

Until now, no new information was provided. The first distinction of this model is that
the individual unitaries U; of the variational circuit are not a decomposition of single-qubit
gates, but as generalised Pauli matrices, therefore given a tensor product of Pauli matrices O,
i60

they can be expressed as U, (€) =e"" .This has the immediate effect

aC(0)
=, < L.(359)

L being the number of parameters. This is a very handy property for optimization methods

U, (6
N P
00

based on derivatives, as it ensures that gradients will not blow up, a problem usually faced in

classical ML.

Moreover, the quantum analogous of the Universal Approximation Theorem presented
in 3.3.1 ensures that given a two-valued label function f we can construct a quantum circuit U
that can be decomposed in one or two-qubit elementary gates U;, to approximate this function.
By adding learnable classical parameters to these gates, the quantum circuit can be trained to
achieve this approximation and this can be used to perform a binary classification task.
However, the construction of these quantum circuit depends heavily on the choice of the tensor
products of Pauli matrices O; and, so far, there is very little known, if any, about a strategy to

effectively chose these operators.
Compute the gradients and update the parameters

For the sake of argument, consider the problem of effectively chose the architecture of
the quantum circuit as resolved; after all is far beyond this thesis scope as well as the author’s

knowledge to try to tackle such an issue. Then we may proceed to training.

Stochastic gradient descent will be used for a batch size of one train input at a time.
Each input will be separately inserted in the circuit and then the parameters will be updated to
move the output closer to the desired target value provided by f. A batch of bigger size can be
achieved in case of superposition but, as already discussed, this will dramatically increase

circuit’s depth, thus this case doesn’t tie with our near-term applicable perspective.

Repeated measurement of a Y Pauli operator acting on the ancilla qubit result to the

output and the derivation of the cost functioned defined from this output in (3.30) is the next
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step to go. The computation of the gradients falls with Case B of section 3.2.3 as the

construction of this model ensured that each individual unitary of the circuit is of the form

U, (8,) =€ In this special case it was recently proven!'® that the derivative of the cost

function can very easily be computed quantumly as

aca(z, X) 5 Im((x,1]U/U}. . UlY, U,..U,_,0U,.U,|x1),(3.60)
k

And since a linear product of unitary operators in a unitary operator, let’s call it D, the above
expression of a L+2 depth’s D can be written as

%Z:X) =2Im({x,1| D| x,1)),(3.61)

It is obvious that this can be quantumly computed by letting the L+2 depth circuit to act on the
input state and perform a measurement to the ancilla. By making repeated measurements of
this ancilla, we can obtain a good estimation of the gradients in the price of an L+2 circuit and
1 extra qubit. After done so, the derivative is really easy to be classically computed via the

chain rule and also traditional ML rules can be used to classically update the parameters.
Superposition of input data

As promised in the beginning, we will now briefly discuss the potential of this QNN to
work with data in superposition. If the problems of computational complexity and the cost of
realizing quantum circuits of extreme depth will once be resolved, this potential offers a
tremendous quantum advantage to a QNN in comparison with an ANN.

Such a superposition and how it can be achieved in basis encoded inputs have already
been discussed in 3.1 and an efficient state preparation routine is analysed in Appendix A. In
this case, consider two batches A and B of train samples, each one corresponding to the two
possible values of our label function f. These states can be described in the framework of this
QNN as:

fF(A)D =N, > e [x,,1)

Xp€A

F(B)={0)=N_> e”|x,1)

Xp€A
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for N+, N- be normalizing factors and initial phases are set to 0. This, of course, means that data
must be pre-processed from a quantum devise that prepares the superposition, and that one is

a complex task.

Now, equation (3.35) describes the association of the circuit’s unitary U with any label
function. The fact that U is constructed to be diagonal in the computational basis of data qubits
has the immediate effect of vanishing cross terms and make phases irrelevant. This means that
state |1) is associated with the expected value 1 and state |0) is associated with the expected

value 0. Note that in case the diagonality of U is not assured, no such assumptions can be made.

In case of a parametrised diagonal unitary U(6), we can compute the expected value of
Yn+1 acting on the state U(6)|i) for i=1 or i=0, corresponds to the average over all samples with
the label i of QNN’s predicted label values for the inputs. This leads to the empirical risk of
the QNN to form a cost function;

U ()11 —(0UT(0)Y,.U(6)]0)),(3.62)

C(@):l—%(mUT(@)Y

The minimization of this cost function is the training goal of a QNN in superposition. The
derivation of this function creates several difficulties when trying to compute it analytically, so

the development of efficient strategies to tackle this issue is still under investigation.
Conclusion

The work presented in this framework is an effort to design a very general framework
for a QNN or in general an ML model to perform supervised tasks in a quantum computer.
This framework is general enough to be adjustable on selected hardware’s unique properties
and offers the potential exploitation of several quantum properties such as entanglement and
superposition to achieve quantum advance. It also tries to respect the restrictions imposed by
the limited quantum resources of near-term much-expected quantum devices as well as the lack
of error correction, by keeping circuits depth to as low as possible. Proof about the learnability
of such a model is provided and numerical simulations have demonstrated its ability to
correctly perform classification in Parity and Majority problems. Moreover, the hybrid

framework that this model can be trained in is easy to understand and realizable.
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However, the generality of this framework arises as many questions as it answers, since
the most important key idea, the architecture of the circuit and the strategy to select the unitaries
used to approximate a label function is not investigated at all. Another limitation comes from
the discrete nature of the data that basis encoding dictates and the very specific nature of the
Boolean label function. Basis encoding creates another problem that can be detected in
comparison to the previous model presented that utilises amplitude encoding techniques. That
is the exponential number of qubits required. In addition, complexity added by the state
preparation routines as well as the necessity of repeated measurements of the output to obtain
an acceptable estimation of observables expected value also holds in this case. Finally,
accuracy issues related to the lack of proper error correction routines in quantum hardware also

apply in this case.

3.3.5 A Continuous-Variable QNN

Quantum computation methods are traditionally designed with respect to discrete
systems based on manipulating qubits as a computational unit. However, a quantum system
consists of several other variables, rarely discussed, such as position, momentum or the, less
rarely discussed, amplitude of their states, which are continuous. Given the continuous nature
of computations in an ANN, it arises as an interesting approach to turn into continuous-variable
quantum computing!®. A brief introduction in CV computing based on phase space
formulation can be found in Appendix E.

The first idea for QML algorithms in a CV model came less than a couple of years ago
based on QML subroutines designed for an all-photonic continuous-variable quantum
computert?’. A quantum classifier*® and a Gaussian regression algorithm?! as well as the
framework for a QNN have been proposed in this context, however, the CV model is yet a
rather unexplored corner in the field of QML. The main reason this approach is reluctantly seen
from the research community is the fact that noise and precision difficulties particularly arise
when dealing with continuous variables, especially in comparison with their discrete
counterparts. Unfortunately, previous work in quantum error correction*??'?3 in case of
continuous variables did not go too far, although interesting proposals made their way to
publication in recent years'?*, giving birth to an interest in developing a QNN based on
quantum CV computing. Also, the possible realization of a CV computational model can,
among others, be achieved through optical systems!? like the photonic quantum computer
which, due to its lower cost compared to others, has drawn heavy attention from the industry
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in recent years. In fact, several start-ups worldwide are working on creating their own photonic

quantum computing device (see Xanadu for example).

In this final part of Section 3, the general scheme for a QNN as a quantum circuit in a
CV model will be presented and discussed, following the work of Killoran*’ et al. Table 3
presents a tidy outline of the analogues between a ANN and a CV-QNN. Briefly, following the
phase space formulation, a CV model encodes information in two conjugate real valued
variables x, the position, and p, the momentum, assigned to the quantum state of a bosonic
mode, called qumode. Qumodes are the continuous analogue of qubits. X and P operators are
defined based on the two variables, so that real=valued functions F(X,P), the quasiprobability
distributions, represent the qumode states. A universal gate set consists of 3 basic single-mode
Gaussian gates; the Rotation gate R(p), the Displacement gate D(a), the Squeezing gate S(r), a
two-mode Gaussian gate; the phaseless Beamsplitter SB(6) - a rotation between two qumodes-
and a non-Gaussian gate @(1) like Cubic phase or Kerr gate, or even a measurements of
specific qumodes. A detailed description for the above framework can be found in Appendix
E.

Table 3 Analogues of Continuous Variable-QNN and classical ANN

Classical ANN CV -QNN

feedforward NN CV variational circuit
weight matrix W symplectic matrix M
bias vector b displacement vector a
affine transformations Gaussian operators
nonlinear activation function non-Gaussian gates
weight/bias parameters gate parameters
variable x position operator X
derivative dx conjugate momentum operator P
no classical analogue entanglement

no classical analogue superposition

The main idea is that a quantum variational circuit can represent one layer of the QNN
and the combination of several circuits will result in a QNN which, depending on the circuit’s

architecture can be the quantum equivalent of classical feedforward Multilayer Perceptron, or
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possibly Recurrent, Convolutional or Residual NN. A layer consists of every gate in the gate

set.and can be described as:

L::q)°®i’11D(ai)OU2 °®i’118(ri)°U1’(3-63)’

where Ui=Ui(8,¢) are n-mode unitary operators that can be decomposed in basic beamsplitters
and rotation gates, called linear optical interferometers. The classical parameter set to be
optimized is (6,p,r,a,2), therefore a hybrid training scheme from those presented in 3.2 can be
utilized. The architecture described in (3.63) is illustrated in Figure 12. The first four blocks of
unitaries in the circuit carry out a parametrized affine transformation on the n input qumodes

which, given a symplectic matrix M can be described as:

{X}M{XHRE@‘)},@B@
p p| [Im(a)

Therefore, (3.64) can be interpreted as an equivalent to the weighted sum of a neuron’s
inputs in an ANN and ®", D(a,) U, c®,S(r)-U, as the weight matrix of a fully connected

layer. The non-linearity of an activation function is introduced to the model quite naturally and

without disturbing the unitary nature of the system by the non-Gaussian function @, so that:

L(x, p)=®(M (X, p)+a),(3.65)

A QNN can be constructed by combining several layers of the above form, where the
output of each layer is the input of the next one. Moreover, layer’s width can vary based on the
number of qumodes available in each level, for example tracing out extra qumodes, likewise
tracing out qubits discussed in 2.1.2. A QNN of this form can work with both quantum and
classical data. The state preparation required for the encoding of classical train data in the
gumodes can be achieved via displacements which carry the input data information on their
parameters and are applied to the ground state. Finally, the output of the QNN can is obtained
via a measurement to the last circuit’s output state, or repeated measurements to estimate the
expectation value of a pre-chosen observable. In a CV model a measurement can be achieved

via several operators, like photon-counting.
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Layer L
Figure 13 The circuit structure for a layer of a Continuous Variable QNN
Now, we will discuss the simplest case where superposition and entanglement are
omitted and a quantum equivalent of a classical feedforward ANN can be built in this

framework. Consider the input data to be real-valued vectors x=(x1,..,xn) of n-dimensions,

encoded in the eigenstates |xi) of X operators assigned in n qumodes, so that:

X—|X) = ®[, | ), (3.66)

As a reminder, X; and P;j operators for one qumode are defined to be:

X, =[x 1%)(x | dx,(3.67) (x| x)=5(x=x)
L ,where(p|p)=5(p-p’)

R= J:w P | P(P; | dp;, (3.68) (p|x)~ giPx

1

N

(—%XT xi2xT AT —%(A“' )T AT

(3.66), given a bosonic annihilator operator A=—(X +iP) can be described as:

|X) =@, | x)= e 0..0)(3.69)

As a first step, we furtherly require that the QNN will not mix among X and P operators,
thus momentum variable will be discarded. The goal is to create a quantum circuit that given
an input state |x) will return an output state |o(Wx+b) ),o the selected activation function. The
weight matrix W, which for simplicity is assumed full ranked, is a symplectic matrix assigned
to the act of Gaussian operators in the system, so it can be decomposed via Euler decomposition
to W=0,BO:. O; is an orthogonal matrix related to an interferometer Uz, constructed solely
from phaseless beamsplitters, so that the matrix is kept block-diagonal to prohibit the mix of X

and P. Therefore
U1 | X) = U1[®in:1 | Xi>] = ®in:1[| Zolijxj>] :| 01X>1 (3-70)
j=1

In the same manner the interferometer Uz is correlated with the orthogonal matrix O so that
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U, %) =U,[®L | x)]=®Ll| Zozij X;)]1=10,%),(3.71)
i1

In the next step, the squeezing gate S is constructed with respect to matrix the positive
diagonal matrix B. If B is described as B:=diag({ci})>0, then for ri=log(ci) the squeezing gate

is defined via

_EZF
S(r)[x)=e > |Bx),(3.72)
The act of a squeezing gate on the eigenstates of X; for the operator of a single qumode is

therefore
S(R) %) =+/e 16,(3.73)
The bias vector b is added through the set of single-mode displacement operator given the

selected parameter vector b, so that

D(b) | x) = x+b), (3.74)
Therefore, the affine transformation corresponding to the weighted sum of inputs in one Layer

of the QNN is prepared in the quantum circuit by
DoU,0SoU, | x) —|0,BO, +b) =|Wx +b),(3.75)

The final step is the quantum equivalent of a nonlinear real-valued activation function
o, which is inserted to the quantum circuit via a non-Gaussian operator X associated with o, so
that
Z|x) = a(x)),(3.76)
Note that if 2" is chosen to be a polylogarithmic function of a fixed degree which locally acts
on each mode, as the activation function in an ANN locally acts on the input of each neuron,
any function with a convergent Taylor series can be efficiently approximated by the QNN.

Thus, the final quantum circuit representing one layer is

L=2cDoU,0oSoU,|Xx)=[c(Wx+Db)),(3.77)

The output state L is used as the input for the next quantum circuit layer and in the final L the
QNN’s output is obtained via a measurement. The circuit corresponding to (3.77) is graphically

represented in Figure 14. This measurement in the CV model can be a homodyne detection in
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each qumode, which projects onto |x;) states. Finally, a QNN designed as above can be hybrid

trained with any of the methods discussed in 3.2, given a cost function C to be minimized.

. S(r1)
— S(rz) -D(Gz) 2()2)
Ui(61, 1) . Uz(02, ¢2) . .

. o

Layer L
Figure 14 The circuit of a layer in the CV-QNN

Conclusion

Given the fact that each quantum circuit forming a layer in the proposed QNN
incorporates every gate in a set of universal gates, it automatically inherits all the capabilities
of a CV gate quantum computer. Moreover, nonlinearities respecting to activation functions
are elegantly introduced via non-Gaussian operators without disrupting the quantum nature of
the model. This framework is so generic and flexible that theoretically can be modified to create

several NN architectures, classical and fully quantumized.

Realistically, although it constitutes a very promising approach for building a QNN, it
requires further research to construct a guideline of circuit architectures and gate combinations
corresponding to these architectures. Moreover, the model complexity of such a circuit, its
dependency on gumodes and elementary gates is uninvestigated, so although the hybrid
training scheme subsumes this idea in the family of possibly near-term applicable QNN
models, no absolute conclusions can be drawn. Finally, the possible exploitation of quantum
properties such as superposition, symmetry, interference and entanglement remains an open

question, promising further quantum advantages added to this scheme.
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4 Quantum Supremacy and

Challenges

4.1 Expected Quantum Advantages

There have been several proposals on how to measure the quantum advantage of a
model in comparison to a classical one as well as in their general assistance in the domain of
ML. The literature till 2010 summarized the expected quantum advantages in the following
"St7’9’13’31'126:

1) Exponential Memory capacity

2) Higher performance with lower complexity (a smaller number of neurons, less
required training data)

3) Faster learning (due to superposition)

4) Elimination of spurious or erased memory duo the absence of pattern interference

5) Solution to linear inseparable problems with single layer QNN

6) Absence of wiring (thanks to entanglement property)

7) Higher stability and reliability

8) Processing speed (10'%its/s)

9) Small scale (10*! neurons/mm?)

Almost ten years later, some of these advantages have seen some kind of proof,
mathematical or numerical, and others although lay their foundations in the very nature of
guantum mechanics, such as (3), (6) or (8), come with the price of qubit and gate complexity
in a model, a price that the hardware development so far cannot afford. Of course, a QML
model does not need to offer all shorts of the quantum advantages expected, even one from the

list is enough to declare supremacy over traditional models for the same task. In recent years,
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the conversation of the expected quantum advantages has taken a more realistic and
pragmatistic turn and recent literature?”-333 discusses three dimensions of quantum advantage;
computational complexity, sample complexity and model complexity. This thesis will focus on
the latest approach and in this subsection discuss these three dimensions will be discussed in
an effort to see which quantum advantages from the list of expectancies of the past survived

the progress in Quantum Computing and in which dimension it is allocated.

4.1.1 Computational Complexity

The runtime speedups in QML algorithms lay their foundations in quantum computing
itself and naturally they lead the discussion of expected quantum advantages in the domain of
ML. In order to look at computational complexity, the terms of runtime of an algorithm and
the meaning of asymptotic computational complexity should be clearly defined. The runtime
for the execution of an algorithm is simply the multiple of the number of algorithm’s
elementary operations times their respective execution times. Since this is a theoretical measure
and depends on the device which implements the algorithm, a more appropriate and universal
measurement is required. Thus, computational complexity theory used the asymptotic
complexity of an algorithm instead. By the term asymptotic one means the rate of growth of
the runtime with respect to the input’s size N. In general terms for a conventional computer, an
algorithm is tractable if it has a polynomial dependence on N, that is no more than k", for a
reasonably large k. In another case, if the dependency is exponential, the algorithm is

intractable.

As far as a quantum algorithm is concerned, quantum complexity theory tries to answer
the question of whether quantum computers can offer runtime speedups, also called advantages
or enhancements, in computational problems compared to classical ones. In case they do so,
they can be distinguished in qubit-efficient and amplitude-efficient, concerning whether these
algorithms are polynomial to the number of qubits or amplitude respectively. If a quantum
algorithm demonstrates an exponential speedup, it is often called quantum supremacy. For

example, Grover’s algorithm®' is an amplitude-efficient algorithm with quantum supremacy.
In general terms a wider definition of quantum speedups came as a need in order for

QML to move towards explanatory approaches instead of hunting the holy grail of quantum

supremacy and results to some early applications to demonstrate the theories. Thus, the recent
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QML research community has adopted the following categorization of possible quantum

runtime speedups?’:

1)Provable quantum speedup: There is proof that the algorithm performs better than
any classical algorithm could ever perform. Such an example is, of course, the Grover’s
algorithm. A very recent example, that also comes from QC and not QML domain in particular,
is this of Google’s 53-qubit superconducting processor solving the classically intractable task
of sampling the output of a pseudo-random quantum circuit!?®

2)Strong quantum speedup: The algorithm performs better than the best possible

classical algorithm. This is the speedup that Shor’s algorithm provides'?

3)Common quantum speedup: The algorithm performs better than the best available
classical algorithm. Such an example is the quadratic speedup achieved in an algorithm

proposed for training classical perceptron by utilizing amplitude amplifications®..

4) Potential quantum speedup: The algorithm performs better compared to a specific
classical algorithm. Such an algorithm to consider is a simple Quantum Perceptron proposed
to solve XOR problem, which is intractable by a classical perceptron but not intractable in
general ML.3!

5)Limited quantum speedup: The algorithm performs better compared only to specific

corresponding algorithms. Such an example is quantum annealers.!3

As QNN inherits its enhancements from quantum information processing, the expected
speedups in the domain derive directly from the speedups in quantum computing. One of these
is quadratic speedup, when Grover’s algorithm is utilized in the process of learning such as
quantum associative memory models and QNN build as equivalents of Hopfield ANN*3413,
The exponential speedups are mostly met as common speedups when it comes to amplitude
encoding and linear-algebra-based algorithms, and are not expected in terms of practical
applications due to the severe constraints that need to be imposed in the sparsity of data® 82132,
However, amplitude amplification techniques utilized in QML algorithms in circuit

architectures demonstrate potentials of some peculiarity that should not be disregarded?33,
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Polylogarithmic speedups in case of strong and common speedups is the type of
speedups met in all the QNN models presented in Section 3. Variational quantum circuit
models demonstrate this speedup compared to classical NN regarding a binary classification
task quite naturally, thanks to quantum parallelism. Since a state can be modelled as it is
holding both possibilities, any operation could potentially naturally compute both probabilities

at once.

4.1.2 Sample Complexity

The second domain that classical ML could benefit from concerns the size of the train
set an algorithm needs as inputs in order to be sufficiently trained. That is the objective function
to be within an arbitrarily small error of the best possible function, with probability arbitrarily
close to 1, or simply said to achieve generalization power. That, in statistical learning theory,
is called sample complexity*3*. There are two kinds of elements that can serve as train inputs;
these obtained by sampling from a certain distribution and those that are computed as outputs
to specific inputs, called queries. Based on this distinction, sample complexity separately for

each case will be discussed.
Learning from examples

In classical ML, the question that reflects the sample complexity in the case the train
set consists of examples drawn from an original concept that represents the problem via an
example oracle, is whether an upper limit can be found for the size of a train set, given a desired
error of probability ¢, to be less than 1-9, for a small enough 6. In classification tasks that is
equivalent to the probability ¢ of an input to be incorrectly classified being equal to 1-6. The
answer is provided by the work of Valiant in Probably Approximately Correct (PAC)
learning®® , and not surprisingly is tangled with the Vapnik-Chervonenkis (VC)-dimension of
the model. In summary, it states that a d VC-dimensional algorithm for a task of class C has a

1 d 1
log—) are
&

lower limit of Q(llogl+g) train examples, but no more that O(llog—+—
e o0 ¢ e o0 ¢

required.

The quantum equivalent of PAC learning, concerning disjunctive normal forms, started

to form more than two decades back®*¢, with the definition of a quantum example oracle as a

gsample. In Section 2 the notion of gsamples by ZJ p(x) | x, f (x)) was introduced. In this
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context, the amplitudes of the basis states represent the distribution p(x) from which the
examples are drawn. Under very certain circumstances a speedup has been proven by
interfering with these amplitudes via a quantum Fourier Transformation, but the restrictions
imposed to the data and the computational complexity cost to achieve this interference are

forbidding the declaration of a general speedup rule.

In contrary, in 2004 it has been proved that the PAC framework extends to QML
learnability®®” and a polynomial equivalence stands for classical and quantum sample
complexity:

“[F]or any learning problem, if there is a quantum learning algorithm which uses
polynomially many [samples] then there must also exist a classical learning algorithm which

uses polynomially many [samples].”

That practically means that for a class of C Boolean functions, if a quantum algorithm
requires M evaluations of a quantum example oracle to achieve learning, then there exists a

classical algorithm that can learn the same class of functions if provided with O(nM) classical

train inputs. This theory was improved several times'®!3 to finally come to its final form
stating that in terms of PAC as well as agnostic learning, classical and quantum sample
complexity are equal, up to a constant factor. This means that the very same upper and lower
bounds apply in case of quantum learnability and therefore, in terms of sample complexity with
train samples provided as examples drawn from a distribution, no exponential speedups are

expected and we have to limit ourselves to linear improvements at best.
Learning from queries

Let’s now consider the latter case where train inputs can be obtained as outputs to very
specific inputs. In case of a classification task, this is called learning from membership queries
and refers to the process of approximating (thus learning) a boolean function f by querying a
membership oracle with specific inputs z and obtain the value f(z) as the output. In the very
same sense, given an input z encoded in the computational basis and resulting in a state |z,0),
a quantum oracle is a unitary operator U such that U | z,0) = z,0® f (z)). Note that the last
qubit is once again used as an ancilla to be measured and measurement of this ancilla represents

the output of the algorithm.
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This seems to be very promising in terms of quantum computing speedups as there are
several quantum algorithms that demonstrate the efficiency of only a single quantum query in
specific types of problems4%4L by applying the quantum oracle in a uniform superposition of
qubits prepared to a register, achieving parallel processing of all possible inputs at once. These
algorithms are extremely useful for a lot sort of computational problems, but they offer no
learnability about the function and therefore, no speedup in case of QML is straightforwardly

inherited.

The specification of learning boundaries in QML algorithms’ sample complexity has
been the object of extensive and consecutive research!®142-14 \which in an expanded

framework called “impatience learning”, resulted to the following conclusions:

1)Given a membership oracle query complexity O(y/|C|), there exists quantum learning
algorithm with to resolve a classification task in the class C={Ci}, where |C| approaches
infinity.

2) Given learning algorithm with membership oracle queries and a parameter y S% indicating

how easy it is to find distinguishing patterns within the classes in C, the sample complexity in

the classical ML has an upper bound of O((log|C|)””) while in QML it is formed to

O((log|C )™).

The latter conclusion when furtherly investigated*®” led to a result equivalent to the one
in the case train examples are obtained by sampling. That is for a class of C Boolean functions,
if a quantum algorithm requires M quantum membership queries to achieve learning, then there

exists a classical algorithm that can learn the same class of functions by at most O(nM?)

classical membership queries. In conclusion, no exponential speedup can be expected in neither
this case, as the quantum algorithm provides at most polynomial overhead. Fortunately, the
very same literature that proved these limitations of quantum learning provides us with
examples of problems that, although intractable in classical ML, can be solvable via QML
thanks to computational complexity speedups. Moreover, there has been evidence that in case
of oracle-based problems, such as learning parity, a quantum advantage emerges in existing
noisy systems*?1%° and this robustness to noise not only arises hopes for near-term

applications, as will be discuss afterwards, but it also provides quantum algorithms with
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another, widely uninvestigated yet, class of quantum advantages; their possible superior
robustness to noisy data. This indicates that one has to look to all three dimensions of quantum

enhancements to answer about a QML model’s contribution to ML.

4.1.3 Model Complexity

In terms of model complexity, the flexibility, capacity and power of a model are
concerned. It is well known from classical ML theory!1®14® that more flexible models, that is
easiest to fit train data come from complex model families, unfortunately paying the cost of
overfitting'"148 In classical ML, a model’s complexity is associated with the VC-dimension
of the model in terms of expressing an upper bound for the expected generalization error which
demands the lowest flexibility of a model with respect to the lowest training error possible.
Model complexity can form a quantum advantage in models deriving from the explanatory
approach, where the goal is not to mimic a classical ML algorithm but to create a quantum one
based on the device available to implement it, designing the algorithm with respect to the

strengths and limitations it provides.

A quite straightforward theoretical way to address possible quantum advantages to
model complexity would, therefore, be to analyze the VC-dimensions of both a quantum
algorithm as well as its classical counterpart’s one. However, this task is an extremely
challenging task even in case of classical algorithms and demands very complex mathematical
and numerical studies. In literature very few ML algorithms, both quantum and classical, come
with an analysis of model’s VC-dimension, so no assumptions about possible quantum
advantages can be confirmed this way. Moreover, this investigation relies heavily on the
quantum, or classical, hardware used to implement an algorithm as well as the particularities
and subroutines of each algorithm in specific, so no general conclusion can be made and each

algorithm, or family of related algorithms, have to be analyzed and compared separately.

Another open question is whether there exist quantum models that, for specific kinds
of pattern, demonstrate an increased ability in capturing these patterns or correlations among
data. This is, again, unexplored waters although an obvious conclusion can be made regarding
the QQ case. When it comes to QML with quantum data, data produced from a quantum system

the quantum advantage offered is immediate®.
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In terms of model capacity, there is a specific kind of QML routines that seem to offer
a quantum enhancement, in fact an exponential enhancement, in models based on associative
memory®013L148 ‘naying of course a fair price in terms of computational complexity. Hopfield
quantum neural networks utilize the fact that quantum systems are specified by exponentially
many complex-valued amplitudes to store input data in those amplitudes and via quantum recall
processes output superpositions of data to the QNN, suggesting a more efficient utilization of
their associative memory. Due to the severe cost of amplitude encoding, the complexity of
preparing data’s in superposition to a register and the unavailability of a QRAM to support it

this idea unfortunately have failed so far for most applications.

Finally, if loosen from a strictly mathematical prove for quantum enhancements, one
can assume some improvements that arise naturally in case of variational quantum circuits as
QNNSs. One of these is the natural ability of quantum gates to represent a rotation operator as
there exist unitary quantum gates which represent rotations around the Bloch sphere. This
provides the quantum model with a very simple and efficient way to transform data and easily
explore hyperplanes for classification or detect several patterns. Another one is, of course, the
possible superposition between ‘0’ and ‘1’which enables the encoding of N bits information in
log2N qubits and offers a great improvement in storage capacity of the model. Finally, in case
the gates are considered as layers on a QNN, with respect to a classical ANN, then another
advantage can be made considering the potential of reduction in features space offered by the
quantum variational circuit, leading to reduced number of layers and nodes, thus a simpler
model (still though this comes with no proof in principle for the learnability skills of such a

model).

4.2 Quantum Challenges

The challenges that QML faces are in a very large part similar to the ones faced by the
guantum computation domain. And they all stem from the fact that the available hardware is
still in the development process as well as the difficulty to fully explore and prove special
quantum properties with no classical analogue to guide this exploration. The macroscopic scale
of atoms and subatomic particles that quantum theory applies on as well as the probabilistic
nature of quantum mechanics create further obstacles. One the one hand, the technology
available to observe and manipulate particles of such scale is in development process during

the last two decades, and it also requires a tremendous effort in order to be manipulated without
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disturbing the natural need of single quantum systems to be isolated from the rest of the

universe in order to remain coherent.

Therefore, scalability is a big issue. The larger-scaled a computer, the harder it is to
keep it quantum. The phenomena that promise to make quantum computers really powerful,
like entanglement, require controlled gubit interactions. Architectures that allow this control
are hard to engineer and hard to scale. Moreover, the thermodynamic conditions of the quantum
regime are very challenging to access. When a quantum system is finally achieved, it's difficult
to keep it isolated from the environment which seeks to decohere it and make it classical again.
Even though the notion of the quantum parallelism is, theoretically, the “quantum advantage”
by which a quantum algorithm outperforms a classical one, it has not yet been experimentally
demonstrated. This is because it is extremely difficult to maintain quantum phenomena in real
physical systems'®°. Thus, all these require extremely low temperatures as well as extremely

expensive materials.

On the other hand, a probability-based system is going to have small errors at each
piece/circuit/qubit, and when you have systems of 100s, it adds up. The probabilistic nature
also requires repeated measurements to obtain a good estimation of the result’s expected value,
and the no-cloning theorem offers no facilitations. The no-cloning theorem comes with an extra
obstacle, regarding the error-encoding: You cannot trivially employ more than one particle to
encode a qubit. Instead, all gates must operate so well that they are not just accurate to the
single-particle level but even to a tiny fraction of how much they act on a single-particle (to
the so-called quantum-error correction threshold)*>*. This is much more challenging than to get
gates accurate merely within hundreds of millions of electrons, which is the case met in the
classical computer. As the fountains of challenges in QML have been mentioned, let’s go

deeper and introduce the challenges themselves, grouped in 4 main categories * :

(1) The input problem, addressing to the great cost of state preparation routines when
dealing with classical data, as well as the struggle to find the most efficient quantum
representation for the classical data in the quantum system

(2) The output problem, reflecting the fact that an efficient way to obtain the solution
has also to be figured. In case of encoding the expected output in the expected value of a

guantum state requires repetitions of the quantum system to serve repeated measurements to
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estimate this value. On the other hand, obtaining the solution as a string of bits requires learning
an exponential number of bits.

(3) The costing problem, which refers to the computational complexity of an algorithm
requiring thousands of gates to be implemented in hundreds of qubits. Such an immense
guantum system is very hard to manipulate and control, and the materials required to construct
a quantum device of this scale, even if all fidelity, noise and decoherence problems were solved,
remains elusive if not forbidden.

(4) The benchmarking problem, closely related to the expected quantum advancements
discussed in 4.1. No quantum enhancement can be declared or established until a valid theory
for comparing classical and quantum ML algorithms shall be formulated. A clear and quite
recent example that demonstrates the confusion this topic creates can be given by the case of
quantume-inspired classical algorithms proposed by Tang at the end of 2018. These are classical
algorithms inspired by the quantum solutions, based on the HHL algorithm*®2153, Tang proved
that the classical “dequantumized” algorithms solve the respected problems in a similar time
than the quantum algorithms, under similar assumptions. Thus, this demonstrated that the

much-acclaimed quantum speedup was in these cases not real.

4.2.1 The hardware

The very best scenario for the immediate implementation of QNN models as the ones
discussed in this thesis, and in general case all the ones that have been proposed so far in QML
following any of the approaches discussed in Section 2, requires the existence of a quantum
computer that offers;

a) Universality. It traditionally means that the quantum machine can perform any
physically possible computation. This attribute is equivalent to the ability of a quantum
computer, based on any quantum system, to implement all possible unitaries

b) Error-correction. This refers to the fact that the outcome of any algorithm realized
by the quantum computer is the one expected by the mathematical and physical equations that
theoretically describe the algorithm. An error correction mechanism is needed to detect and
correct errors as gates have limited fidelity, due to the decoherence of qubits leading to
disturbed calculations.

c)Large- scale. The number of qubits available to support high circuit’s width as well
as the number of gates, responding to circuit’s depth, that can be implemented by the quantum

computer is large enough to meet the algorithm’s demands.
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However, the first quantum computing devices meet none of these criteria. In fact, they

154 In case

have been characterized as noisy intermediate-term as well as small-scale devices
of universality the challenges vary depending on the technology used to realize a quantum
system. Concerning the large-scale just consider the fact that the very best algorithms presented
here desire more qubits for the manipulation of 6-dimensional input data than those most
recently available by Google’s 53-qubit quantum computer, acclaimed just a week before these
lines are written'?8, Moreover, near-term applicable QML algorithms are expected to require a
circuit-depth of no more than 1000 gates, and we’ve seen so far that in some cases only for the

state preparation of data more than 2000 gates are required.

4.2.2 Decoherence

Decoherence stands for the loss of information occurring in a quantum system by its
interaction with the environment, in case of measurement, vibrations, electromagnetic waves
or temperature fluctuations for example. Unfortunately, it also occurs spontaneously, even if
we do not interfere with the system. These interactions result in decouples of state vector’s
components and entanglements with their surroundings. At the same time, the global state of
the quantum system and the environment remains coherent, it’s only the observing system that
becomes decoherent. Consequently, this decoherence explains only why the observer can no
longer witness the superposition, not the discontinuity of the measurement.

One can detect the conflicts created by the reality decoherence dictates in QML
algorithms. From the very begging, we agreed that a QML algorithm should efficiently deploy
the unique quantum properties and evolve with respect to quantum effects such as
superposition, entanglement and interference while at the same time it should be consistent
with the quantum principles’. In order for QML algorithms to reach a quantum enhancement
or simply be realized, they rely on the undisturbed evolution of quantum superpositions along
with extensive control of the quantum system so that non-trivial operations can be
implemented. Quantum coherence is fragile and can be preserved for particularly narrow time
windows of one second in best and rare cases'®, so all algorithm’s operations must also obey

to time limitations.

Although some great steps towards controlling errors created by decoherence have been
recently made by IBM*, the techniques proposed can only be applied in quantum circuits of
very sort depth and stop demonstrate efficiency for more than 4-5 qubits. Thereby, the needs
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of even very simple QML models are refrained significantly from the very best schemes for

decoherence control we have so far available.

4.2.3 The need for a gRAM to exploit superposition

A guantum Random Access Memory (QRAM) is, as the name declares, a quantum
equivalent of the classical Random-Access Memory with uses n bits to randomly address N=2"
distinct memory cells. Likewise, qRAM uses n qubits to address any quantum superposition of
N memory cells. Practically, that is to encode in superposition N n-dimensional input vectors
into log(Nn) qubits in O(log(Nn)) time®’. Quantum superposition is a crucial notion for QML
as this quantum property naturally endows the quantum algorithms with speedups. The
importance of superposition to QML derives from the fact that ML is practically used to
analyze vast amounts of data. However, the near-term applicable QNN models we so far
discussed, although recognized the immediate advancements occurred when encoding input
data in a superpositional state, have to adapt to the fact that the technology and resources
required to prepare and manipulate such superpositions are not expected to be available quite
soon.

The issue of encoding data in a superposition meets a significant research interest, as it
constitutes a basic tool for quantum computations. Relevant literature focuses on the
development of an efficient qRAM, although some other interesting yet mostly not investigated
ideas can be found™®®1%°, As expected, this issue is much more trivial in QQ case, where the
algorithm’s input is quantum and not classical and therefore no computational resources needed
for data encoding. The CQ case is more elaborate as it requires a procedure that encodes the
classical information into a quantum state. As demonstrated in Section 2, the computational
cost of state preparation can be the key element in separating a QML algorithm with quantum

speedup from one performing as efficiently as a classical one.

Although the concept of a qRAM dates back to 2008%%1%! and counts numerous
references in QML literature*"222%3845 there is yet no practical implementation of a gRAM on
a physical device in experimental settings. This is mainly due to the fact that the number of
resources required to build a gRAM scales exponentially to the number of qubits needed, If
fact, for the N n-dimensional input vectors we mentioned, gRAM requires log(Nn) qubits. To
make things more difficult, in case the QML algorithm is not fault-tolerant and requires error
correction, which is the case especially with QML models that deploy Grover’s algorithm, if

not all then at least the majority of gRAMs components should incorporate error-correction
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techniques. Moreover, in order for in O(log(Nn)) memory recall time to be achieved, the gRAM

157

requires a relatively uniform distribution of the data in the quantum register=‘, which is not

trivially obtained, otherwise the time escalates to O(VN) .

Finally, if we take into account all the required resources, the dependence of a QML
algorithm in gRAM may cost it its quantum speedup both in terms of computational as well as
model complexity. Whether the quantum enhancements provided by superposition are
diminished by the cost of preparing and manipulating this superposition is still an open question

for the QML research community.
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4.3 Prospects for Near-Term QML

In the search for the best approach to have near-term applicable QNN, or a QML model
in general, the QML community currently speaks of an algorithm that can be realized by
approximately 100 qubits, 1000 gates and has some robustness to noise. These constrains are
basically formed by the hardware difficulties QML is facing, discussed in the previous
subsection. The quantum variational circuit-based models demonstrate a momentum towards
this direction, mainly due to their ability to be hybrid trained, thus reduce the needed resources.
In fact, the hybrid training offers the advantage of using the quantum device for short routines
by outsourcing to a classical device and this also comes with the asset of easier storage and
manipulation of the classical parameters used. This storage allows the reuse of the same,
optimal parameters to predict several inputs. Taking into account that the development of a
quantum memory like much desired QRAMSs is yet to come and the no-cloning theory in
quantum physics prohibits the replication of a state, this reusage won’t be an option in case of

a quantum-blas based algorithm which encodes the training parameters in a quantum state.

Another aspect QML strongly focuses on is the quantum advantage it can offer to ML.
The majority of early literature follows the “translation” approach, trying to create quantum
equivalents of classical ML algorithms, and offers a variety of mathematical proves of upper
and lower bounds that could ensure exponential speedups in runtime compared to classical
methods. These exponential speedups come with the price of strict constraints been imposed
to the data and no practical applications to meet these constraints, as well as models of qubit

and gate cost that are realistically out of reach.

However, the very nature of ML is practical, based on intractable problems that have
been solved to a satisfactory level through approximations. Moreover, several breakthroughs
and developments in ML are owed to huge and repeated mathematical experiments. It is not by
accident that the main development of ML started as soon as the first packages developed in
popular programming languages such as Python and Matlab, enabling faster and easier
experiments. Furthermore, one should take into account that an ML model is not only measured
based on complexity, but also its ability to generalize -an attribute that often stems from

mathematical simplicity- its wide applicability or interpretability.
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Under this spectrum, the focus on quantum advantage being interpreted as an
exponential speedup offered to a classical ML algorithm needs to be revoked. The exploratory
approach, where variational quantum circuit models are accommodated, follows this direction
by aiming to create new models and dynamics. Instead of focusing on gaining an exponential
speedup, it aims to expand ML strategies and potential offer a polylogarithmic speedup, which
seems a much easier to be reached goal. This also enabled the QML research to move from
theoretical proves to numerical examples and, in recent cases, quantum simulations and small-
scale realizations to prove a model’s potentials. It also moved the discussion from possible
quantum speedup to consideration of noise manipulation or overfitting and strategies to
overcome such problems in the QML.*14358 Therefore, even a quadratic speedup is a speedup
and if we consider cases when the simulation of a quantum model cannot be done classically,
this can be considered an exponential speedup on its own. A, not less acceptable and useful,
QNN model can be settled with quantum speedups that are common, potential or even limited

if it seeks an early application.

One last thing we should consider in the search for near-term quantum applications is
the famous Big Data problem. Quantum properties such as entanglement have been proposed
to be the holy-grail for big data manipulation and storage frugality*. However, the manipulation
of high dimensional date seems to be a goal for the distant future and as discussed in sample
complexity, not much quantum advantage can be expected from that either, as the train data
required in the quantum case are, in general, polylogarithmically less at best. State preparation
routines are the bottleneck of every QML algorithm and therefore, without unlimited resources
of qubits and gates or a Quantum Random Access Memory of respectable capacity, the nearby
QML models have to settle with small data. Hybrid-training routines offer partial relief by
processing a subset of samples at a time and if approximate data encoding strategies are used

or quantum data replace classical ones, the application of such models moves even closer.

Although the difficulties of dealing with big data may be seen tremendous, one should
consider that the same stands for traditional ML, and the latter has established its domain few
decades earlier, preceding its quantum twin. Also, there exists an immense variety of problems
where data collection is expensive or impossible and seeks for a solution build for extremely
small datasets. Several QNN models have proved their ability to be efficiently trained with
much less data than an ANN3, and the less the train data the less the cost of a quantum model.
Thus, these problems may be the quest for the first efficient applications of a QNN.
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Finally, concerning near-term applications of QML, this thesis has only briefly
mentioned the QC approaches, quantum routines and algorithms employed to assist and not
replace traditional ML. Some very promising results started to occur recently*>>” and although
this form of quantum algorithms doesn’t comply with the definition of QML, at least the one
adopted for the purposes of this thesis, it offers some potential that deserves better
consideration and investigation or at the very least to be mentioned. First of all, algorithms
proposed as quantum assistance in ML processes are the only ones that genuinely and
undoubtfully can demonstrate quantum advantage. This derives from the fact that they consider

cases of ML where classical routines are intractable and try to resolve such issues.

Moreover, this approach is the first one that considers a vise-versa approach concerning
data manipulation; instead of quantumly encode classical data, which has been proven very
expensive in terms of complexity, or trying to focus on quantum data which occur to very
limited problems, they explore the idea of classical data with quantum like correlations to be
benefited from a quantum model. There is another great advantage of quantum assisted ML;
the quantum resources needed are much limited compared to a quantum model for ML tasks,
even hybrid trained. Therefore, as a conclusion, although this idea has only very currently
gained a compact and severe researching interest, the author of this thesis embraces the possible

contributions to ML field arising.

4.4 Open Questions

In the one-year process of collection, studying, analyzing and evaluating approaches
and methods in QML for this thesis | came across dozens of open questions, blurry spots,
misconceptions, poorly established proposals as well as extremely theoretical ideas. Of course,
this is unsurprising for a domain that, as mentioned in the introductory section, struggles to
obtain a holistic and solid definition. It is also justified by the fact that research interest, guided
by the overwhelming potentials offered by quantum computing theory, precedes the hardware
to test and support any QML model proposed. And although in some cases mathematical and
numerical evidence are enough to draw conclusions about a QML models’ advantages and
disadvantages, in general terms possible speedups or the ability to tackle NP-hard problems
unsolvable by the available classical hardware, the efficiency of such methods, the actual cost

to obtain the output of an algorithm after repeated executions and measurements or the model
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complexity will remain unanswered, at least till the available quantum hardware reach several

milestones.

During this study, | kept all the open questions in a separate file. Questions that the
authors of a paper declared as open for their own work as well as my own unanswered
questions. Starting from the very early contributions in QML and moving towards today one
can realize with relief that lots of the primitive misconceptions and blurry spots in the domain
can now be considered either answered, outdated, updated or at least less poorly defined.
Especially in the last 5 years the literature took a much more scientific than romantically
exploratory turn and QML even obtained its third book this year, to assist in organization,
evaluation and association of previously unstructured knowledge in the domain. Several
questions though remained and will remain for a reasonable period of time. Therefore, | deem

citing the remaining of my “question-list” as the most appropriate closure to this section.

1)Given a variational quantum circuit QNN, is there any strategy or even basic rules to follow
to decide its architecture? In other terms can any good assumption be made about the ansatz of
such a circuit given a specific problem? And if so, can this ansatz obey in the restrictions
imposed by hardware’s available resources while deploy the fullest of its given potentials?
2)Is there a way to train QML models not given as mathematical equations, but as physical
quantum algorithms?

3)Can QML models realistically benefit from quantum routines such as classical linear
combination of unitaries to overcome numerical optimisation?

4) Are there any good parametrisation strategies for variational QML models and variational
quantum circuits in particular? Given the fact that parametrisation is highly associated with the
objective function and therefore the complexity in training methods, this is a crucial question
to answer.

5) Given any train method of a parametrised quantum model, is there a strategy for optimal
initialization heuristics to allow for more consistent convergence of its local optimizers?

6) Is it necessary, and if so, is it possible, to deploy tricks from classical ML’s iterative training
processes, like momentum or adaptive learning rates, to improve a quantum model’s
performance?

7) Regarding model’s complexity, can we detect a class of quantum models that exhibit

superiority at capturing patterns and correlations in data?
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8)Is there a particular class of ML problems that would be better served by a QML model, due
to matching more to its quantum nature?

9) Which are the actual speedups and impacts of QML proposed algorithms to practical real-
life problems?

10) Is there a precise definition of what a QNN is?

11) Can the power of feature maps be exploited to introduce nonlinearities in a QNN.

12) Can the proof of learnability of variational quantum circuit QNNSs be extended in functions
that are not Boolean?

13) Is there any way to determine the quantum sample complexity for learning concepts whose
range exceeds the binary case?

14) How to introduce efficient, quantum appropriate and without great price of complexity,
means of regularisation to avoid the problem of overfitting usually witnessed in the QNN
models proposed so far?

15) Can a classical computer which uses random bits, produce outcomes which follow the same
probability distribution that a quantum circuit would give?

16) How the gapless formulation of the adiabatic theorem influences time complexity?

17) Is there an affordable way to utilise superposition in QML? Are there any other realistic
prospects besides a gRAM?

18) Which classes of relevant states for machine learning with amplitude encoding can be
prepared qubit-efficiently

4.5 Conclusions

At this final point, the author, will present its personal opinion as a conclusion, formed
by one year’s research in the vast literature of this field. To begin with, this review of all the
proposed approaches on building a QML algorithm and by extension a QNN confirms the
choice of Variational Quantum Circuits in a Hybrid training scheme as the best applicants for
an implementation in the near future. This is because this framework affords to be modified
enough to meet the restrictions discussed in section 4.4 and still be able to learn at some degree
from the train data, without depending on the existence of a gRAM as the models that follow
the ising-type approach with adiabatic training methods or Quantum Ensamble methods and
Quantum Random Walks do. The Hybrid scheme is ideal because it also abstains from
superposition effect which is hard both to create and maintain, contrary to the training methods

based on search discussed in 2.3.2. It also keeps the computational complexity and the required
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resources to a minimum by outsourcing the update of the parameters to a classical machine,
decreasing the overall complexity; which is not the case for training methods based on linear
algebra presented in 2.3.1, as the HHL algorithm and the quantum routines required depend on
the implementation of highly complex quantum subroutines and circuits of a depth of thousand
gates. Finally, the choice of classical parameters offers the extra advantage of easy
reproducibility, as they can be saved and manipulated by classical hardware such as RAM and
CPU or GPU and therefore this part of the algorithm suffers from neither the challenge of
decoherence nor the lack of error-correction, which is not a choice offered by adiabatic methods
discussed in 2.3.3. However, another potential direction found in the recent literature, though
particularly disregarded the previous years and is still in a very primitive stage, seems to be the
direction of kernel methods in 2.2.2. The immediate and intuitive relation between information
encoding, quantum kernels and inner products in a feature Hilbert space has the immediate
advantage of exploiting the pre-existent cost of state preparation routines to gain the
representation potentials of its classical counterpart. Thereafter the author believes that this is

an interesting direction which worth to be furtherly investigated.

On the other hand, in 4.2 it has been made clear that there do still exist severe challenges
imposed by the lack of hardware to support the implementation of such QNN models and the
practical experimentation needed to form some firm and global conclusions about their
performance, possible advantages and mostly, their ability to learn. The scatter and very limited
simulations provided by the authors for the models presented in section 3 can by no means
considered conclusive, due to the fact that the simulated QNNs focus on very specific
individual cases which cannot be indicative for their general performance, and even in such
cases the results reveal a limited robustness to noise and poor generalization power. This is
justifiable, considering that there is still no knowledge concerning the optimal architecture of
the quantum circuit or the initial parameters, so a comparison with an ANN’ s best results
would be unfair, given the extensive knowledge already obtained in the field of ML resulting
to assortment of optimization methods developed for the construction of an ANN based on the
task’s and the dataset’s demands. Furthermore, only in the last months the first implementations
on actual quantum processors started to occur, as in the case presented in 3.1.1, and these
implementations are of the scale of 1-5 qubits and therefore concern the implementation of a
just a single quron, which is only one building block of a QNN. Finally, the greatest caveat for
these models comes from the complexity imposed by state preparation techniques, as is
underlined in 2.1.4, which is an inevitable step when it comes to the manipulation of a classical
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dataset. And although the majority of the available data in our days is classical as well as the
real-life problems seeking a solution from ML concern classical data, as analysed in 2.1.3, the

best chances for the application of a QNN are met when quantum data are concerned instead.

Another conclusion that can be made is that the existing proposals for QNN do rather
form a general framework that a specific QNN model. The lack of specific knowledge or even
scatter indications about the proper construction of the quantum circuit’ s architecture is the
“elephant in the room” in case of Variational Quantum Circuits. However, this abstractness is
met in general in QNN proposals of all approaches and should not be considered a disadvantage
of this specific family of QNNs. There must be extensive research upon the subject and my
personal belief is that the research community should focus on the development of more
specific strategies and QNN models of one type rather than keep on investing in theoretical
frameworks for possible QNNSs. There are several issues that need to be investigated besides
the architecture of the circuit and these are: the optimal initialization of parameters,
development of more non-linear activation functions of the form presented in 3.1.2 based on
the low-cost RUS circuits, techniques to avoid overfitting and develop robustness to errors,
which types of classical datasets could benefit more from quantum processing, realistically
efficient state preparation routines. Until the available knowledge becomes more concrete and
the QNN framework less abstract, there will be no way to obtain a benchmark and conclusive

comparison of QNN and ANN’s potentials.

Machine Learning met his greatest advancements through practical and not theoretical
research, which is expected for such a practical domain. In the same manner Quantum Machine
Learning has a lot of prospects to develop and growth given the proper hardware to have easy
access to repeatable experiments and quantum simulations deep enough that a classical
computer cannot efficiently support. Although numerous software started to form in the recent
years (Strawberry Fields, PennyLane, Atos, QuantumFlow, Qiskit) to enable quantum Machine
Learning on classical computers, based either on CPU or on GPU processing, the creators of
these software admit that Quantum Neural Networks cannot be efficiently simulated on a
classical computer due to the very large number of elementary quantum gates that must be
realized, repeatedly and on hundreds of qubits, leading to an intractable task with increasing
network depth and width. In fact, in the site of Xanadu, a company dedicated to the research in
QML and the development of software for QML, the creators of Strawberry Fields and

PennyLane state “While the simulator route is useful for quantum machine learning in the
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short term, it is fundamentally not scalable”. Ultimately, direct evaluation of hardware will

likely be necessary to large scale quantum neural networks, a task that is still in development62,

It is not by accident that when a proposal about a Quantum Neural Network is provided
with a classical simulation of the model, this comes without much, if not any, details from the
authors and it always concerns a very specific case of the model. In the specific case of
Variational Quantum Circuits discussed in this thesis, given a specific task on a specific dataset,
the architecture of the simulated circuit that represents that Quantum Neural Network and
parameter’s initiation are never discussed. Even when some details about the model’s design
are mentioned, what led to the choice of these specific gates acting on those specific qubits is
not addressed. The first real implementations of Quantum Neural Networks, which tentatively
appeared in the last couple of years, are in fact implementations of quantum neurons that can
potentially act as building blocks of Quantum Neural Networks and concern 16 qubits at best

case. These facts are indicative of the primitive stage Quantum Neural Networks are on.

This imprimitive stage is very similar to the stage of Artificial Neural Networks at 80s
and 90s when the classical hardware available was far beyond to support the computational
complexity of these models. Therefore, in my opinion, the best of Quantum Neural Networks
IS just yet to come because history repeats itself. The potential speedups and revolution in the
Machine Learning that Quantum Computing can offer are mathematically proved and
intuitively straightforward, but the depth of these contributions can only be measured with
regards to their cost -which depends on the available hardware- and will increase as the
hardware challenges will decrease in time. Technological evolution in the 21% century
repeatedly proved that the impossible is possible, thus in not-so-many years from now, with
the existence of a qRAM, a quantum computer of some thousands of qubits and quantum error-
correction improved, entangling quantum circuits that process in parallel a whole train set in
superposition, or a committee of quantum perceptron will form Quantum Neural Networks
with no classical equivalent. But until then the QML research community is forced in extremely
small-scaled simulations, inefficient to experimentally prove quantum supremacy or to firmly
answer open questions regarding optimization, error correction, QNN’s architecture,

generalization power, robustness to noise and overfitting.
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Appendix A

State Preparation Routines
Basis Encoding- Create Superposition of Inputs

Ventura and Martinez®*%6 as well as Trugenberger!®®, in separate works, proposed the
following quantum routine to prepare a superposition of the input data, basis encoded, as the
initial state for a QML algorithm. Consider a dataset of N-dimensional data and size M. The
key operator during this process is SP, a set of operators that form a set of conditional
Hadamard-like transforms. Considering the simple case of 2 qubits required to encode an input
data, then:

0 0 0
1 0 0
p-1 -1
§*={0 0 ,[— — |(AD
P p
00 1 p-1
j Jr p

The parameter p is different for each one of the training inputs, so for the considered dataset
MN different parameters will be needed and accordingly M different operators of the form

(A.1). Another important operator is F° which in two-qubit case is also defined as:

Fo=

o O B

(A2)

o O +— O
o b O O
R O O O

0

FO flips the state of the second qubit if the state of the first qubit is |0). In the same manner, an

operator F* which flips the second qubit if the first qubit is in state |1)is:

Fi= (A3)

o O O -
o O +— O
O O O
o -, O O
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Obviously (A.2) and (A.3) are two C-NOT gates conditioned to the first qubit. Then, a FLIP
operator used to change the basis states corresponding to the different input patterns is

constructed as

[F 0],
o vJes

O O O O O o+ o
O O O O O O O k-
O O O O O O O
O O O O r O O O
O O O P OO O o
O O P O O O O o
O B O O O O o o
P O O O O O O o

This FLIP operator flips the state of the third qubit, conditioned to the state of the first two
qubits. In the exact similar manner, another three flip operators are constructed for all possible
states of the first two qubits, respectively A%, A®, A, A combination of these operators is used
to identify the data inputs in superposition and along with F* create the superposition. Now the
construction of such operators can be accordingly expanded to the case of N qubits.

The routine requires three quantum registers; a loading register X which consists of N
qubits are always set to |0..0) after each iteration, the C register which is an ancilla register of
2 qubits which are the control qubits and indicate the status of each state and finally the G
register, a storage register of N qubits which is used to hold the superposition. Then an outline
of the algorithm is the following:

Consider the system of three registers to be in the state |X1..Xn;a1,a2;Gy, ..., Gn)
1)Prepare the system in an initial ground state |0..0).
2)Use FLIP gates to flip selective qubits in the X register, so that the state in the X register
corresponds to the state of the first input data in basis encoding.
3)When the state in superposition in X register that represents the input data is prepared, it is
separated in two branches, a memory one and a processing one and the first one is saved in the

G register. That can be considered as:

2 10,0..0:0,0,0,...,0) +i2 10,0...0;0,1,0,..,0), (A5)

7z 72

where the term with a>=0 is the memory branch and the left flagged with a>,=1 the processing

branch. The superpositional state is broken in two unequal pieces and in each iteration the status

ai of the smallest piece is made permanent in the G register.

136 Maria Kofterou - December 2019



Quantum Neural Networks focused on Near-Term applications

4)The Xregister with the larger piece is selectively flipped again so that the state corresponding
to the second input data is prepared and steps 2-3 repeat for every input data. Note that the C-
NOT gates (A.2)-(A-4) conditioned to the second statuses’ qubit a>=1 limits the executions to
the processing branch.

Iteratively the memory branch stores the first m inputs in its storage register, while the
storage register of the processing branch is in the ground state. In both branches the loading
register is also in the ground state. In the m-th step the quantum system’s state can thereafter

be described by:

1 Co 1
——3"10,0...0;0,0;,..., X ) + —=10,0...0;0,10,..., 0), (A.6
Nzlll X N>+ﬁ| ) (A6)

Explicitly, in the (m+1)-th step of the algorithm the state that corresponds to the m+1
input data | x"",..., x5 ™) is prepared in the X register and a (A.2)-(A-4) conditioned to the

second statuses’ qubit ax=1 is applied to copy it to the storage register so that:

m+1
Zl m+1 m+1 O 0 X1 / | m+1 mﬂ’o 1 X1m+l m+1 (A.?)
i=1

A CNOT gate is used to flip the first ancilla to |1) if the second ancilla is also set to |1), which

stands always only for the processing branch as we have set a,=0 permanently to the C register

of the memory branch.

The process branch is splitted in the two pieces by applying the key operator SP, where

p=N+1-(m+1) to a» controlled by ai, and this leads to:

m

le"1+l L XE 005Xy Xy, ) F

M i=1
L XM X0, XML XU+
NIYRE
M - (m +1) m+1 m+1 m+l m+l
— e Xy 1L (A8
T | % N X, Xu 0 (A8)

The branch marked by |aia2)=|10) is the one to be added in the memory branch. This routine

will succeed after O(MN) steps in total.
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Appendix B

Phase Estimation Routine

This quantum routine is used to write information encoded in the phase of an amplitude
into a basis state via a reverse quantum Fourier transform, which maps a quantum state with an
amplitude vector x to a state whose amplitude vector is the Fourier transformation of x.

Mathematically speaking for an n-qubit state a quantum Fourier transform is:

on  27#ijk

ZX |J>—>Z\/—{Ze 2 X} i (BY

Given an amplitude a which carries the required information in its phase ¢, so that a=|a|e"

or in general terms given a unitary U=e?*¢ applied to an-qubit state |y so that U|y, )= e2™ |y,
then |w) is the eigenvector and e?™ are the corresponding eigenvalues, which are all

normalized since U is unitary.

A quantum circuit of two n-qubit registers is used for this routine. In one register, the
state |y is prepared and the other register, called the ancilla register, is prepared in the ground
state.

Step 1: The initial state of the circuit is prepared to be:

|ve) =10..0) | y), (B.2)

Step 2: An n-bit Hadamard gate operation is applied on the ancilla register to prepare

the superposition:

V) == (10+12)” [1),(B3)
22
Step 3: Construct a control unitary operator C-U? that applies the unitary operator U
on the target register only the j-th qubit is in state |1 ).
U? =U?"U =U? e?™ = e?"?* (B.4)

Step 4: Apply all the n-1 operations derived from (B.4) to state |y1) the resulting state

of the circuit is:

1 = i
lv,) == e*™ k) |y),(B.5)
25 k=0
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Step 5: Apply an inverse Fourier Transform to the ancilla register to obtain:

2'-12"-1 27K o

1 & P
Vo= 2 2 e 1% |v).(B.6)

x=0 k=0

Step 6: (B.6) picks for x=2"¢ and in case 2" ¢ is an integer the final state in the ancilla

becomes

lwy)=12"9) |w)(B.7)
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Appendix C

Variational Eigensolver Classifiers

Variational eigensolvers were the first scheme of variational algorithms proposed. The
algorithm is based on the variational principle of quantum mechanics that the ground state |y

minimizes the expectation value

(v |H|y) (1)
(wlw)

where H is the Hamiltonian of the system.

Therefore, given a parametrised quantum system with a parameter set 6, then the cost

function for a variational system can be defined as the energy expectation value of the system:

C(0) =(w(9)|H]|y(0)).(C.2)
for normalized kets, and the variational eigensolver algorithm aims to find the ground states -

that is, lowest energy eigenstates- of quantum system, thus minimize the cost function.

Initially, C(@) is quantumly estimated for an initial parameter set by repeated
measurements on the state |y(#)) to obtain the estimation of the expectation value of H. Then,
if parameters @ are classical real-valued parameters, classical training can be utilized to lower

the energy of the system by minimising the cost function in a scheme referred as hybrid.

This routine is used in Variational Classifiers for supervised learning. If the expectation
value of an observable C is interpreted as the output of a classifier for an input ¥, it results to:

f(x:6) =(w(x:6)|C |y (x:0)),(C.3)

(C.3) describes a Variational Classifier with a set of parameters 6.

To associate an expectation value with a binary model output f (x; 8), a Pauli Z operator
can be used on a pre-selected qubit i, which is called the observable, to measure its state. This
way, the expectation value can be transformed the probability of the i-th qubit to be in state |1)

or |0) thus, the binary output of the classifier is obtained. That is simply written as:
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f(%0) =W (x0)|Z |w(x;0)),(C.4)
In this framework, any cost function can be selected for optimization. For example, given target

values y; for the inputs x;, i=1,2,...,N, the standard squared loss cost function is:
N
C(0) =2 (w01 Z |y (x;0)~y)*,(C5)
i=1

After the quantum computation of observable’s expectation value, the cost function can be

trained by any traditional training scheme.
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Appendix D

Classical Linear Combination of Unitaries

Given a variational circuit Ug of n qubits and L depth, with classical real-values 6={6-
1,00,....,0uw} as parameters of the L, where L is Q(4") single-qubit or two-qubit gates that
compose the circuit. Therefore, Uy can be decomposed to elementary unitaries as;

Uu,=U_..U..U;

For a single qubit gate Gk, we have

U, =1,81,8..0G,®..81,,

G, =e

[ €”cosa e”sina
—e7sina e’ cosa

So every single qubit gate Gk can be parametrized by a set of 4 parameters {p,a,5,y}.

The two-qubit single control gates are also requested to be imprimitive, meaning they
map a two-qubit product state to a one-qubit non product state. Imprimitive gates can be
described by the 4 parameters of the single-qubit gate they incorporate for that. Thus, we need
at least 4" parameters for the circuit. However, since the overall phase factor cannot physically
be measured, ¢ is neglected and only the 3 out of 4 parameters are considered learnable.

In case the above assumptions about the circuit are met, the derivative of the circuit 06
can be computed by a procedure named by its inventors*® as “Classical Linear Combination

of Unitaries”.

First, consider 0, U; =1®...®0,G(a,5,7)®..8 L, u=a, B,y .

The respective derivatives of G are easily computed as:

aaG=G(a+%,,B,y)

1 Vs 1 /s
GﬁG :EG(a,,B+E,O)+§G(a,ﬂ+5,ﬂ),(D.l)

1 7. 1 T
0.G6==G(a,0,y +=)+=G(a, 7,y +—
> (@,0,y 2) > (a,z,y 2)

e

So, in case of differentiation for elementary operators of single-qubit gates with respect to the

three learnable parameters we have to;
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a) For parameter a: Implement the same gate, alternated by shifting parameter a by %

b) For parameter f: Implement a linear combination of two single-qubit gates where

parameter £ is shifted by % and y is replaced with constants 0 and ©

c) For parameter y: Implement a linear combination of two single-qubit gates where

parameter v is shifted by %and /5 is replaced with constants 0 and

In case of imprimitive two-qubit gates the derivation is not such straightforward.
However, if we made an extra agreement and limit to single-control single-qubit gates of the
form C(G), via:

C.G) Y =0®C 1Y) \here

Gb: A single-qubit gate acting on qubit b which is everything but a global phase factor
other than identity

|x): The state of qubit a which is a pure state

Then we obtain:
1
0,0(6)=3(C(2,8)-C(-0,8)). k= .

This elegantly leads the computation of the derivative to compute the difference
between a controlled derivative gate and the negative version of that same gate, which can be
easily computed by the derivative rules of single-qubit gates for each parameter. In case of
parameter a, the controlled gates are unitary and in case u=§ or u=y is a linear combination of

unitaries.

Now, consider a threshold decision function z(x;u,b) = p(q, =1 x,u)+b, of the

circuit’s output state |¢(x)), x be the input and ¢ the feature map used for the input encoding

to the initial state. The derivative of this function is:

0y (X";6) =0,p(q, =L, x";6) =

9y z (Ug(p(x))TK(Ua(D(X))k:

k=241

2Re{ D (6,U,0(0) . U,0(x)}

k=2"141
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And this can be analyzed to:
J
0,7 (X; p) = zaj Re{(Uy;,0(x) | Z |U9[j](0(x)>}y(D-2)
j=1

where j=a,f,7,¢ and a; a corresponding coefficient stemming from the derivation of single qubit

gates given by (D.1).

This last derivative can be quantumly estimated by repeated measurements. The ability
to quantum estimate (D.2) is proved by the authors and stems from the following observation:
“Given two unitary quantum circuits A and B that act on an n-qubit register to prepare
the two quantum states |A), |B), and which can be applied conditioned on the state of an ancilla
qubit, we can use the quantum device to sample from the probability distribution

11
== +=Re(A|B) "
P=5+37 (A[B)
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Appendix E

Continuous Variable Computing

Continuous-Variable (CV) quantum computing makes use of physical observables!!®,
like the position and momentum of photons in an electromagnetic field or ions in an ion-trap,
whose numerical values belong to countable infinite-dimensional Hilbert spaces,
thus continuous intervals. CV quantum protocols can be physically realized either through
techniques of quantum optics'®® or via modified ion-trap computers®*. A basic notion is
gumodes, referring to quantum states of bosonic modes which carry the information in a CV
quantum system. It is the equivalent of qubits in a discrete quantum model. The terminology
of a mode of free quantum field ¢(x) refers to its quantum Fourier transform:

o°p

1
o(X) = J. (27[)3 \/a

where o stands for the frequency of the mode.

(a(p)e™ +b(p)'e ™, (E.1)

There is a distinction between fermionic and bosonic modes, based on whether the
objects a and a,a’ as well as b,b"commute or anticommute, since they are the creation and

annihilation operators for the particle and antiparticle respectively, associated to the field. If
they commute, the corresponding particle is a boson - you can pile up arbitrarily many particles
into the same state just by applying the creation operator many times. Therefore, (E.1) describes
a bosonic mode. If they anticommute, the corresponding particle is a fermion - applying the
creation operator twice just gives zero, so you can't ever have more than one particle in the
same state. In such case (E.1) corresponds to a fermionic mode. In a slight generalization, any
collection of creation/annihilation operators can be called bosonic or fermionic modes
according to their commutation relations, regardless of whether they arose from a quantum

field or were just given in some other way.

Thus, gumodes can be seen as the wires of a quantum circuit and based on their dual
wave-like and particle-like nature, phase space formulation or Hilbert-space formulation is
used for information encoding. If the wave nature is considered, given two conjugate variables

x and p, which can be the position and momentum or the quadrature amplitudes of the qumode,

its state can be encoded in (x, p) € R? and be represented by a real-valued function F(x,p).
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Such a function F is called a quasiprobability distribution. Note that, although quasiprobability
distributions share some properties of classical probability distributions, they are expanded to
negative values and the normalization constraint is loosen so F(x,p) must have a unit integral
over the space phase. If the equivalent Hilbert space formulation is used instead of the phase

space one, qumode states are represented as vectors or density matrices in an infinite Hilbert

space spanned by the eigenstates of the photon number operator N, named Fock states {| n)}:.",

. We will focus on the former case.
The operators of a CV model can be divided in two classes; Gaussian and non-Gaussian.
The Gaussian transformations map the set of Gaussian distributions in phase space to itself.

The basic single-mode and two-mode gates for a real-valued mode ¢ are;

Rotation: R(p) :{X} —{ CO_S(p Smﬂ[x](E.Z)
p —sing cosg || p

Displacement : D(a; ¢): {X} —{ x+R(@) }{X},a eC,(E.3)
P p+Im(a) || p

Squeezing:S(r;gp):{x}—{er O}P},reR,(EA)
p 0 e J|p

X, cos@ -singd O 0 X,

X sin@ cosé 0 0 X

(phaseless) Beamsplitter :BS(0;¢) =| * | > ) 1,0 €[0,27],(E.5)
P, 0 0 cos@é —sind || p,
P, 0 0 sing cosé@ || p,

Gaussian operators are related to the set of affine transformations on phase space. This
can be demonstrated by the fact that any Gaussian transformation applied in an n modes

quantum system can be described by:

Wi
p p| [ Im(a)

given a symplectic matrix M and a complex vector a. Note that a symplectic matrix M carries

the property
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0 I 0 I
w0 W% ] e
e 2nx2n - 2nx2n

and can be split into an Euler decomposition (a type of Singular Value Decomposition) of the
form

> 0
M=K;| o o |Ki(ED)

where X a diagonal positive valued matrix and Ky, Kz are also symplectic and orthogonal real-

valued matrices, described via

T T
K = {_CD C[j,wheregzT :IED)IC;T Z(I)(E.Q)

The importance of Gaussian operators in the general form (E.6) stems from the
isomorphism between the intersection of the symplectic and orthogonal groups on 2n
dimensions and the unitary group on n dimensions, which enables the transformations K to be
performed via the unitary action of passive linear optical interferometers. Moreover, any
Gaussian operator can be decomposed into a CV circuit containing only the basic gates (E.2)-
(E.5), so one could define the Gaussian transformations as those quantum circuits which

contain only the gates given above.

Two very special operators in a CV model derive as operator versions of the phase
space variables x and p previously defined as information carriers. Each qumode ina CV model

is associated with a pair of operators (Xi, Pi) where,

X, =[x 1%)x [ dx,, (E.L0) X[y = 0(x=x)
Y ,where(p|p)=6(p-p’)
R=]" plpXpildp, (EL) (p|x) ~ ™

and |x) are orthogonal and not normalised. So, a n-modes quantum system can be described by
(X,P) where X and P are vectors of operators. Note that the Heisenberg uncertainty principle

applies for x and p being simultaneously measured. A special rotation gate F::R(g) connects

(E.10) and (E.11), so that x=F(p). Moreover, x operator is the multiplier operator and p the

derivative operator, so that:
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Xop(x) = xp(X)
Pp(X) =i p(x)
Finally, the CV model’s set of gates becomes universal -able to approximate any
transformation Unx py=exp(-itH) through a quantum circuit of polynomial depth- if, along with
the gates (E.2)-(E.5) a single-mode non-Gaussian operator -corresponding to a nonlinear

function of the space variables- is added. The most commonly used non-Gaussian gates are:

(2x%)

Cubit Phase Gate: V(y)=e * ,(E.12)

Kerr Gate: K (k) =e™) (E.13), where N is the number operator-the observable that counts

the number of particles
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