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Amayopevetal 1 avTypoen, amodnkevon Kot dtoevoun tng Tapodoag epyaciog, €€ 0AOKANPOL 1|
TUNUOTOC ALTNG, Y10 EUTOPIKO okomd. Emtpénetan | avatomwon, amodnkevon kot dtavopur yio
oKOTO UN KEPOOOKOTIKO, EKMOIOEVTIKNG 1N EPELVNTIKNG QOONE, VIO TNV mpodmodeon va
AVOQEPETOL 1) TTNYN TPOEAELONG KOl VO dtaTnpeitan To mapov pRvoupa. Epotmpota Tov apopodv
TN YPNON NG EPYUCING Y10 KEPOOGKOTIKO GKOTO TPEMEL VA, AmeLHVVOVTOL TPOG TOV GLYYPOPEQ.

Ot améyel; Kol To CUUTEPAGLOTO OV TEPLEYOVIOL GE OVTO TO £YYPOUPOo €KQOPAlovv TOV
ovyypagén Ko Oev mpEmeEl vo. epunvevtel OtL exepdlovv Tic emionuec Béoeig tov A.ILG.
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Abstract

The application of hydroacoustic techniques is well established in the field of
Fisheries Science, as it is a methodology that can provide qualitative (e.g. behaviour,
direction of movement) and quantitative (e.g. abundance, biomass) information of fish
stock in high resolution and non-invasively collected. DIDSON is one of the most
recent technological achievements in the field of Hydroacoustics. It is an acoustic
camera that utilizes very high frequencies, thus having the capability to produce high
quality images. As the DIDSON data can be properly converted to an image array,
computer vision techniques can be used for processing the data. However, those
methods almost invariably necessitate human intervention, in order to refine the final
results and suitably fine-tune all processing parameters for an optimal result. The main
aim of this study is to explore and identify the potential for automation of fish target
detection from DIDSON data, combining techniques from the fields of computer vision
and machine learning. Specifically, a workflow is proposed and validated, which is
based on optical flow field calculation and the application of a genetic algorithm, in
order to detect fish targets. Manual validation of the methodology indicated that at least
half of the targets are successfully detected almost 60% of the time. The average
neighborhood size (moving structure bounds) for the optical flow field calculation was
estimated by the genetic algorithm to be around 12-14 pixels. The methodology
provides promising results with minimal user intervention and can be extended to

include additional parameters of the detection and tracking workflows.

Keywords: Hydroacoustics, acoustic imaging, image classification, fish detection
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Xovoyn

Ta 1televtaio ypdvio To €0MTEPIKA VOOTO, Kol 1OW0ATEPO TOL  TOTAML,
avtipetonilovy Pabuioioc vrofdOuion ™ moOTNTOS TOLG AOY® TOV avOp®TOYEVDV
opactnpotitov. Mio omd T ONUOVTIKOTEPEG TPOKANCELS elvar 1 emitevén g
dlTNPNoNG TS AELTOLPYIOG TV OKOGLOTNUATOV YAVKOD VvEPOD Kot 1 UEl®ON TOL
puOuoy amwAcwng g Promokikdmtoc. o Tov okomd avtodv Kobiototon ovoykoio 1
VI0OETON VEOV OTPOTNYIKAOV Y10 TNV TOPAKOAOLONGT NG KATAGTAGNG TOV VOATIVOL
nepifdrioviog, ot omoieg Ba  eivor "euukég" mpog T VRO  mopakoAovONoN
OlKOGLGTHLLOTO. XVYVA, ot péEBodot TapakorovOnons TV 1BH®V G€ TOTANLN OTOLTOVV TN
Mym derypdtov, pe amotédecpo ™ peiwon g Popdlog tov tybvomAnbuoudv. Xto
TA0icl0 avTO, 1 VOPOUKOLOTIKY amoteAel un mopspPotikn péBodo pe dvvaTodTnTo
GLVEYOVG GLAAOYNG OEdOUEVOV UE HEYAAN YOPIKN Kol YPOVIKN avdaivor. AAlo
TAEOVEKTNUOTO. TNG VOPOOKOVGTIKNG &fval o) 1 €0KOAN Kot YpIyopn OmEKOVIOT TOV
cLAAEOEVTOVY dedopévav, B) M dvvatodTNT GUYKPLONG Kol 0EI0AOYNONG OO POVIKMDY
OE0OUEVOV KO Y) M YNOOKT LOPPY| TOV OEGOUEV®V, 1 OTOL0L EMTPENEL TNV EVKOAOTEPT)
aVAKTNON KOl TV TOYLTEPT OVAALGT), LELOVOVTOS TO KOGTOG, TOV XPOVO EMEEEPYAGIOG
HEYAAOL OYKOL OOUEVOV.

H voépoaxovotikn Pacileton oe Opyava, to omoio peTadidovv kot Aapupdvovv
nmMTIKE Kopoto. Mg tov TpOMO ALTOV UTOPOVV VO aviyveDoOoLV Wdaplo. 1 GAlo
OVTIKEIPEVO, OMOTELEGUOTIKOTEPO OO TO. OTMTIKG GLGTHUOTO, OEJOUEVOVL OTL O MNYOG
owmepvd T0 vePd  OMOTEAEGUOTIKOTEPO omd 0,11 10 @G Ot gpapuoyég g
VOPOOKOVOTIKTG, OGOV apopd oto medio g AMevtikng ‘Epevvag, dmtovion g
TOPAKOAOVONONG TNG CLUTEPLPOPAS, TG aeBoviag Kot TG KaTavoung Tov ydvwv 1
GAA®V VOPOPLBY opyaviocudV (Ty. TAAYKTOV), KOBDOG Kot TG TopakolovOnong ko
aloAdOyNoNG TOV EMATOCEOV TOV KOW®OV OEIYHOTOANTTIK®OV EPYOAElV  GTOVG
BvonAnBuopovc. Emedn n vdpoakovotiky) eivor pia evpémg dradedopévn nébodog otov
topéa g AMevtikng ‘Epevvag, €yl katackevaotel TA00¢ cvokevdv mov Pacilovron
OTNV EKTOUTY] HOG MYNTIKNG SLYVOTNTAG KOl TV OviYveuomn TG avaiKAacong g omod
CONOTO, SLUPOPETIKNG TUKVOTNTOS.

H axovotikn képepa DIDSON eivor éva nyofoMotikd vyning cuyvottog kavo
va mopdyst e€kdveg LYMANG avdAvong HEC®  €VOG  HOVOSIKOD  TTPOGOPUOCUEVOL

GLGTHLOTOG aKOVOTIKOV Qakdv. H akovotikn kdpepa DIDSON, mov avartoydnke omd
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10 [Mavemiotio g Ovdotyktov, HITA (Applied Physics Lab), uropel va dnpovpynoet
Bivteo vyming avilvone. Q¢ amotédeoua, N mopokolovOnon v yHdwv pmopel va
emutevyfel oe mOAD KOAOTEpPO EemMimEdO AEMTOUEPEING OO OLTE 7TOL UTOPOVV Vo
TPOCPEPOVY 01 KOWVEG TEYVOAOYiEG Nyofoiotikmy. EmmAgov, etvar dvuvaty 1 aviyvevon
KO 1) OTLTIKT] ovaryvaptot) Tov 0opOBovu (T.y. eUOAAIdES, alwpOOUEVT] DA K.AT.).

H axovotikr kdpepo DIDSON dwobéter 600 cuyvotnteg Aettovpyiog, 1.8 MHz (1)
Aertovpyion vynAng ovyvotrtog) kor 1.1 MHz (Aettovpyio youning ocovyvomntog). X
Agrtovpyia LYNANG GLYVOTNTOG, 1| GLVOAKN aKTiva amoteleitat amd 96 vo-aKTives, Evd
N andéotaon oaktvoPfoAnong umopel vo pvbuiotel amd 12 émg kot 15 pérpo. X
Aertovpyio yoUnAng cuyxvotTog, N GLVOAKY aKTiva omoteAEitan amd 48 VITO-OKTIVES Kot
N amdotacn axtvoBoinong pmopel v puvluiotel €wg kot 40 pétpa. To cvvoAkmg
axtwvoPolovpevo medio Exel €bpog 29° x 14° (oprldvtia X KOTAKOPLEN O146TACT)) KoLl GTIG
oo kataotdoelg Asttovpyioc. To pnkog tov moApov (Stdpkelo HETAED JAOOYIKAOV
moApmv) e€aptdton amd T pubuicelg amdoTaong Kot Kopaiveton amd 4.5 £og ko 144 ms.
Q¢ ex 10010V, VTOosTNPilovTan pLOLOl KataypaEg Emg Kat 21 Kopé avd devTEPOLETTO.

Ta owocvotuato yAvkod vepod eivar €tepoyevy kot ot TePPUAAOVTIKOL
TOPAYOVTEG TOWKIAAOLY HETAED TV VOPOOKOVOTIKMOV KoTaypap®v. ¢ €k ToUTOL,
OOUTOVVTOL  OMOTEAECHOTIKEG HEBOdOL aviivong yw v emnefepyocion dedopEVOV
DIDSON. "Eyovv avomtuyfel opketd AOyGUIKA oviAvong, To omoio Hmopovdv vo
aviyveHGOVV, VO KOTOUETPTICOVY KOl VO TOPUKOAOVONGOVY TN GuUTIEPIPopd TV 1HHmV
and dedopéva, DIDSON. Tuykekpéva, ta doyiopukd DIDSON (Sound Metrics Corp.),
ECHOVIEW (Myriax Pty Ltd, Hobart, TAS, Australia) kot Sonar5-Pro (Lindem Data
Acquisition, OcAo, Norway) eivorl to 7o gvpémg YPNOILOTOLOVUEVE, AOYICUIKE Yo TV
avdivorn tov dedopéveov DIDSON. Emiong, dedopévov o6t ta dedopéva DIDSON
UTOpOvV VO HETATPOTOVV G LYNANG aviilvong Pivieo, ot meplocdtepes cOYYPOVES
pebodoroyieg ypnolomoovy texvikeG emelepyaciog ewovag. QoTOGO, 01 VPICTAUEVES
pébodol avdivong twv dedopévev oyeddv mavtote omottovv avBpomivn mapéufoon,
TPOKEWEVOD VO TEAEIOMOWCOVV  TAL TEMKGO OMOTEAECUOTO [E TNV  OTOUAKPLVOT
OVTIKEWWEVOV 1 GAAV Tuyoiov amoteAecpdtov. EmmAéov, evd m avtopatomoinom
EMTLYYAVETOL TPOKTIKA, o1 JSwdikacieg Poacilovtar ovvnbmg o€ exteTapévn
TOPOUETPOTOINGT KOl OTOLTOVY OTLOVTIKY EUTEPiDL Y10 TNV KATOAANAN TeEAE0MTOINON

OAOV TOV TOPAUETPOV ETEEEPYAGTOS Y1 £va PEATIOTO OMOTELEGLAL.
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O wpwTapYIKOG OKOMOG TG TOPOVONG EPYACIOG €ivol vo SlepeuvnoeEl Kot Vo
Bedtioel TG Tpéyovoeg  HeBodoAoyieG YL TOV OWTOUOTOTOUUEVO EVIOMICUO KoL
mapoakoAovdnon 1ybvwv amd ta dedopévo tov DIDSON. 1o mAaicto g Bertioong twv
VEoTAPEVOVY UEBOOOAOYIDV aviyvevong Kot mopakoAovdnong ybvwv kabopilovror dvo
Baokol otdyoL:

e O mpdtoc otdY0C £lvarl 1 TPATOON Kot 1 SIEPEVVNON TNG AMOTEAECUOTIKOTITOG

LG OYETIKA TPOGPATNG TEXVIKNG OViYVELONG KIvoNG, VTG TNG OTTTIKNG PON|S,
Yoo TNV TopokoAovOnon kot v aviyvevon ybdwv — otdywv oe dedopéva
DIDSON. Avt6 6Oa emrtevyfel pe v opydvoon Kot vioBétnon puog
GLYKEKPILEVIC POTIG EPYACLDV, 1| 010l Bol TEPIEXEL EVOOUOTMOUEVOVG GE QLTNV
VIOAOYIGUOVG OTTIKNG PONG, TPocdlopilovtag, £T61, OAES TIG TOPAUETPOVG TTOV
eMNPEALOVVY LLE TNV TOLOTNTO TOL OMOTEAEGLOTOC.

e O devtepog o10Y0C gtvar 1 TpdTAoN Kot 1 vwoBEToN oG pebodoroyiag yio Tnv
OVTOUOTOTTOINGT TNG OAOIKACIOG EMAOYAG CLUYKEKPIUEVMOV TOPUUETPOV GTNV
veoTaUEV] pon epyaciac. Avtd Bo emtevybel pécw TOL CLVILAGHOV NG
npoavopepOeicag pong epyacidv pe po HEB0O0 avampoSaPLOYNS TOPAUETPOV,
CLYKEKPIUEVA LE EVOY YEVETIKO 0lyOp1OLLO.

To mpotevopevo epeuvnTikd mhaicto Oa epappooctet oe Eva chvoro dedopévov DIDSON,
70 OTO{0 OMOKTHONKE OO MYNTIKES KATAYPAPEG GTOV TOTAUO MOASAP0.

2mv mopovoa epyacio, ypnoyoromonkoy 6£dopéva VOPOUKOVGTIKNG, TO. OTOio!
ocLMEYONkav oto mhaicto tov épyov “Coexistence of human and pearl mussel
Margaritifera margaritifera in the Vltava River” pe oxond tv mapakorohbnon tng
petavaotevong tov  yBdwv otov motapd MoAddPo, Anpokpatio ™ Togyiog.
ZUYKEKPLUEVQ, EYIVAV KOTAYPOQES LE TN xpnon akovotikng kapepag DIDSON yo v
nmapoakoAovdnon g oievong tov v arnd tov Topevtipa Lipno otov motoud
MoAdaBa, oty mepoyy tov Efvikod ITdpkov Sumava (48 °© 48.52115'N, 13 °
56.77817'E). H mapaxorovBnon g diéhevong tov 1y8dwv mpaypatorombnke v 600
epLodovg wotokiag (5/4 / 2014-9 / 5/2014 wou 18/3 / 2015-18 / 6/2015). Katd ™
OWIPKEL OQVTAOV TOV TEPOOWV 1 OKOVOTIKY Kataypoer Mrav oxeddv ocvveyms. H
axovotikn Kdpepa DIDSON ypnoipomomOnke otn Asttovpyia vynAng cuyvotnTog Yo ™
My KoADTEPTG TOLOTNTOS OESOUEVOV.

H ontikn pon €xel optotel ¢ 1 KOTOVOUN TOV TOXLTATOV TG Kivnong Tov potifov

QPOTEWVOTNTOS GE MO €IKOVOL. Oep®VTIOG TN OCNUEWK QOTEWVOTNTO ®C TO KLPLO

[9]



GLGTOTIKO TNG OTTIKNG OVOTAPACTOONG, 1) OTTIKY] POT UTOPEL Vo TEPLYpaPel w¢ To Tedio
™g ToydTnTag (1 T™C oTtypaiog petatdémong) g eotevotras. Aappdvoviag vadym
TNV TUTIKY] ONTIKY] OVOTOPACTOCT] MOG E€KOVOC G OLOTOIN OTOlKElMV EIKOVAG
(ewovootoein) pe xabopiopéves TEG eotevottoc B (X, y) kot dedopévov 0Tt 1
ewova eival pio avomapioTao GUVEKTIKAOV Kol ¥POVIKG Sl0d0YIKOV KATUGTAGE®Y, TO
QOTEAEGUOTO TNG KIVNONG TTOL 0modidovVTaL e TNV ELGOYWOYT TNG XPOVIKNG UETAPANTNAG
010 medio potevdTTag TG €1KOVOG, B (X, y, t). O telkdg otdy0oc ™ nebddov g
OTTIKNG poNg elvar ) eEaymyn TV TOAVOV LETATOTICEMY OVTIKEWEVOV GE o akoAovBio
eoveV, pe PBAon TNV OTTIK OVATOPACTOCT) TOL XPOVIKE UeTABoAAOUEVOL TEGIOV
POTEWVOTNTOC.

[ va Kotaotel Suvatdc 0 TPoGOOPIGUOG TNG LETOTOTIONG [e Paon T néB0do NG
ontikng pong Ba mpémer va AneBovv vdyn opopéveg mapadoyéc. H mo onpoavtikn
mapadoyn ivar OTL 1) ETOPACN TN PLOIKNG Kivnong LETAPPALETOL (OC L0 LETUTOTIOT TG
€vtaong €vOg EIKOVOGTOLYEIOL GE éval S10POPETIKO, GUVIOMG YEITOVIKO, EIKOVOGTOLYELO.
Avt| M mapadoyn OVORALeTol TEPLOPIGUOG TNG GTAOEPOTNTOS TNG POTEWVOTNTOG KOt
TPOKTIKO GLVETAYETOL TNV TTOPAdOYT], OTL 1| POTEWVOTNTO OADV TMV OVIIKEWEVOV TOV
aVIKOLV oTNV €KOVa givar otabepn.

‘Exovv avamtuyBetl dtdpopeg dopopikés neBodot Yo ToV VTOAOYICUO TNG OMTIKNG
pong. ‘Evag amd toug mo mpdc@atovg alyoplfpovg vroAoytopol ontikng pong Pacileton
otg teyvikég tov Gunnar Farnebdck vy extipnon g kivnomg ypnoylomoumvtog
TETPAYOVIKO TOAVMVUUO. ZVYKEKPYEVD, YPNoILomotdvtag Cebyn ekovav, kdbe vmod-
TEPLOYN NG EKACTOTE EIKOVOG TOV (g0Y0oVE TpoceyYILeTan YPNGILOTOUDVTOG TETPAYWOVIKA
moAvovopa. To medlo petatomons, otn ovvéxew, vroloyiletor mpocapuodlovtog
KatdAAAo évo YeviKO HOVTEAO ToAL®VLLIKOD peTacynpaticpod. H kawvotopio tov
aAyopiBumv extipnong kivnong Farnebdck ntav n ypnon 1ovueTtdV TPOGOVATOAGLOV,
KaODG Kot 1) GUUTEPIANYT TOPAUETPIKAOV HOVTEA®V Kiviiong. Ot vtoAoyiopol Tov Eyvav
6T0 TAOIGLO OLTNAG TNG €PYOCIOG TPOyUATOTOMONKAY LE TN YPNON TOL AOYIGHKOD
MATLAB® ka1 tov adyopiOpov ektipmong g ontikic poric Farnebick.

O yevetikdg alydpBpog eivor ) pobnpatikny évvola, n onoia propet va Oewpndet wg
T0 adyoplBukd opdAoyo g eEEMENG. Eva mpdPAnua, to omoio £xel poviehomombel mg
€voL TOPOUETPOTOMUEVO COOTNHO UTOpel var €xel oG ADCES ddpopa  cHVOAX
TOPAUETPOV, TO OTOl0L UTOPOVV Vo, TNPOLV TOKIAovS mepropiopovs. Ot yevetikol

aAyoppol givat, og ek ToVToV, o, opdda HeBOd®V mov atoyedeL oty e0peom PEATIGT®OV
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TPOGEYYICE®V GE aVTA To GUVOAN AVGEWMY, SEOOUEVOL €VOG OPLOLOD apPYIK®OY GUVOAMV
Ko AapBdvovtoc vmoyn Eva kprtplo a&loAdynons. Ymapyovv 600 YeVIKES KoTnyopieg
Kprtnpiov a&loAdynone, to KpItnplo KATOAANAOTNTOC Kol To. Kprtipla mowvhg. Eivou
onUavTiKéd vo avagepbel, 6Tl 01 AVGELS TOL TPOKVTTOLV OO TOLG YEVETIKOVS OAyOp10LOVG
dev eivol amaportnteg ot PéAtioteg ADCEG o©TO avtioToyo TpoPAnupata.  XTnVv
TPOYLLOTIKOTNTOL, ENELON Ol YEVETIKOL 0AyOptOpot pptodvTon Tig eEeMKTIKES dlepyaoieg, dgv
elvar wévtote duvatd va epunvevfodv AoyiKa oe Lonuotikd minedo.

Amapaitntn mpobndOeom ywo T yPNON TOL YEVETIKOL oAyopiBuov oty emiivon
evOg mpoPAnuoTog, eivor m duvatdtNTo AS0AOYNOoNG TOV AVGE®V, OVEEUPTATOC TNG
duvatdmtog enilvong tov TpoPAnpatoc. Ta Bacikd Prpata evog YEVETIKOL aAyopiBuov
etvan, evoekTikd, To eENG :

e Kdébe vmoynouo Adom avomopiotator pe o cvopPorocepd, m omoia
OVOPEPETOL OC YPOUOCOLLOL.
o [lapéyetan €vo chHvoro apyik®V AGe®V (KON Kot TVYOi®V).
o  E@oppoyn celpdg YEVETIKOV POPEDV KOl 0VOTLUVOVAGHOG TOV ADGEWMV.
e MetdPacn oty emodpevn yevid (1 omoio. SIUOPPAOVETOL MG ETOVOANTTIKN
owdikacio) epappolovtag T dladtkasio TG ETAOYNG.
Avtd to frjpata givon dpota pe ™ ProAoyikn €EEMEN Ko, LE TO TEPAGLO TOV YEVUDV,
odnyovv ot cuveyn PeAtioon TV GUVOA®Y ADGEWV.

Mo oNUOVTIKY EQAPLOYT YEVETIKOV ahyopiBuwv, 1| omoia oyetileTon Queca pe v
napovoa epyoacio, eivor mn xpnom TOvg OtV EMAVON  UN-YPOUMUKOV  UEIKTOV
TPOPANUATOV axepainV LE TEPLOPIoUEVO Tedio TimV. Enedn ot yevetikol akyopiBpot dev
amotovv Tpocheteg mANpoPopleg oxeTIKG pE TO. TPOPANHOTA N TNV amdKPIoT TOL
mpoPAuatog oe dupopeg AVGELS, €ivol KOTAAANAOL Yoo TPOPANUOTO HE OCOPEIS
opopovg 1/kan eAmeic mpodiaypagés. Ta mpoPAnpata axepaimy givon exeiva, oto omoia
T0 GUVOAO AVcewV glvarl mOAVAOG oprodetnuévo Kol Vol VITOGHVOAO TV TOPAUETPOV
AopBévet Tipég and 1o Voo TV akepaimv. Emeldn opiopéveg amod Tig TapapETpous mon
oyetilovtal Le TOV TPOGOIOPIGUO TNG OTTIKNG POoN|g eivar €€ OptopoD axépotes TYES (..
t0 péyebog Tov PiAlTpov), ot yevetikol alyoptpot ivar KOTAAANAOL Yio TOV TPOGOIOPIGHO
TOV BEATIOTOV TOTIKOV AVGEW®V.

H pon gpyacidv mov akolovbndnke oty mapovoa epyacio amotedeitor and Eva
otafepd TUNUO Kot £VOL ETAVOANTTIKO LEPOG, TO omoio Paciletol o pio TpoKabopiopévn

T emovoAnyewv, n omoio opiletonr omd tov ypnotn. EmmAéov, €va pépog g

[11]



emovaAnmTikng  Swdikaciog Pocileton oty emioyr] &vog apiuod N cuvOA®V
TOPAUETPOV, Ol 0moieg emovakafopilovTal KOt TOV VTOAOYIGUO TV OVTIGTOYY®OV TESIWV
OTTIKNG PONG. ZVYKEKPIUEVO, TPOKEWEVOL va e€ayBel n emBount) TAnpoopio amd To

dgdopéva DIDSON, axorovBeiton 1 mopakdtm dodikacio:

1. E&aymyn tov dedopévav and 1o avtictoryo ynowokd apysio DIDSON. Katd
@AoMN oTH, TO OEOOUEVA LETATPETOVTOL OO TV YNPLOKN LOPPT) TOVG GE THVOKESG
2-0100TACE®V e TYEG OVAKAMUEVNG £VTOOTG, Ol 00101 EPUNVEVOVTOL MG EIKOVEG
otV KAipoka tov ykpt. H aAAniovyio tov ewdvov tapdyest Eva apyiko Pivteo, 1o
omoio pmopetl va ypnoponmombetl yo mepoutépw enelepyacio. 1o Ppa avtod, ot
TIEG €VTOOTG HeTATPETOVTOL £elta, Kot and Pabuovouncn oe peyéon kotdAinio
o mepotépo yprion (twég Sv — Volume Backscattering Coefficient), evod
amoKafioTaTol EIKOVIKA 1 YEOUETPIO TNG OPYIKNG ANYNG, COUPOVA LLE TNV OOl
TO 0KOLOTIKO TS0 BE0oMC SLEVPVVETL [LE TNV OTOUAKPLVGCT] OTO TOV TOUTO TOV
NYOPOMGTICOD UNYOVILLOTOG.

2. TlpoemeEepyacio tov OmMOTEAEGUOTOS Yoo TNV amopdkpuven tov  Bopvfov.
ZuyKekpEva, eapuoletol IATPo xpovikng EEOUEAVLVGNC, TO 0010 XPNCLOTOLEL
Kivnto mapdBupo peyéBoug 8 kapé (= 1 devtepdriento pe Ao TOV GUYKEKPULEVO
PLOUO KOTOYPOPNG TOV XPNOUOTOMOEVTOV SESOUEV®V).

3. Movtelomoinon tov “mopoacknviov” Kot TOL “TPOCKNVIOL” KOl SLoOPIGHOG
HETOED TOV KVNTOV Kol TOV okivtov TUNpdtov yio Kale ewdvo-Kopé g
axolovBiog. Xvykekpiuévo, ta okivnto pHEPN HOVIEAOTO0VVTOL ¢ Mo XPOVIKN
votépnon 8  kopé, Omiadn vy kdBe ewodvo-kapé, To  axivnTo  péEpM
avtiototyiCovior g M ewoOva-Kapé, 1N omoio. TPoMyeital oVTNG YPOVIKE Kot 8
kapé. H apaipeon petald twv 600 odnyel oty e€aywyn TV Kvntdv TUNUATOV
Yo KaBe ewcova g akorovdiag. Adym tov yeyovotog, OTL To 8 TPAOTU KopE OeV
£€Youv opOA0YO Kapé “mapacknviov”, avtd eEopodvtol amd TV TEAMKT akolovbia
EIKOVOV.

4. Tleploptopdg TV TEPOYMY KIVIONG TV GTOX®OV Kot SLo(®PIGHOS o TO oKiviTa
puépn (Topacknvio) pe xpnom aAyopifuov VTOAOYIGHOD OTTTIKNAG PONG. XTO Priua
avTd VIoAoYilovTOl Ol UETOTOTICES UE Y¥PNOT OaAyopiOuov OmTIKAG pong, Kot
eQapuroletarl aAyOpOLOGC EVIOTIGUOV Slay®PLoTIKNG oplakng Tyng (thresholding)

YW TOV TPOGOIOPIGHO EEOUOAVUEVOV YEVIKAOV TEPLOYADY, OTOL KIVOLVTOL Ol
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otoyoL. Q¢ aAydp1OHOC EVIOTIGHOD OPLOKNG SOYMPIGTIKNG TIUNG XPTOLOTOLE TN
N nébodoc tov Otsu. To amotéAeopo ovtov TOoL PrnoTog eivor pion TPMTN
“ndoxa”, 1 omoia dlaypilet Tig yevikég meployég Omov evtomiletal kivnon, and 1o
VIOAOITO OKIVITO TUNLOL TG EIKOVOLG.

[Mepartépm day®PIoUOS KOl AOGOPIVICT) TOV GTOY®V Ot ToL KynTa UEPT). XTO
OLYKEKPIUEVO Ppa, oTig ekdveg eapudletarl ek vEOL aAYOPIOOG EVIOTIGLOD
oplakng dwympiotikig tung (threshold) avaivoviog pévov to amopovopévo
pixel tov yevikdv meploydv, to omoio. mEpapUPAvovTal otV UAcKO TOV
Tponyovuevov Prpotog. I to fripa avtd amontovvTon W TAPAUETPOL EIGOIOV TO
uéyebog g meproyng eiktpov (filter size) ko to péyebog g meproyng avdivong
(neighborhood size), ot onoieg ivar yapaktnploTikég TG HeBO30V VITOAOYIGUOD
OMTIKNG PONG, M omoio, YPNoYoTomOnKe, CLYKEKPUEVE, TOV oAyopiBov Tov
Farnebdck. O mpocdiopiopog tov mapopétpov Aape ydpoa akoAovOdVTOC TO
eMOLEVO PripLoL.

Epappoleton yevetikdg aiydplBpog yio tov mpocolopicd Tov VIO GLVONKES
Bértiotov  Tipdv  yuoo  Tig  mpoovagepBeicec  mapapétpovg. H o ovvBniknm
BektioTonoinong exepaletonr g o cuvapton aSlohdynong g TeMkNG Avomng,
ONAad G TEMK®MG VLTOAOYIGUEVNG MHAoKAS Tov otoywv. H ocuvvdpmmon
a&lohdynong exkepaletol MG KPP0 TOWNG, LE OMOTEAECUO VO EMOIDKETAL O
EVTOMIGUOG AVGEMV, Ol OTOIEG EAAYLGTOTOLOVV TN GuvdpTnom avtr. [ oromovc
GLYKPIOTNG EPAPUOGTNKOY dVO SAPOPETIKEG cLuVaPTNGELS Tovhg. H pio and avtég
vroAoYilel ¢ amotéAespa TS a&oAdYNoNS T0 HEGOo TANB0G amd EKOVOGTOYELDL
™mg paokag avé ewova. H devtepn epoppdlel avtiotoryyn apBuntikny mwowr| yo
TOAD peYGAo M Yoo TOAD pkpd evtomopévo avtikeipeva. o avtikeipeva pe
TAN00g €KOVOCTOEIMV OVAUEGH GTOL OploL EQOPUOLETOL TTOWY OVTIOTPOPMGS

avdAoyn Tov TAn6ovg.

Metd 10 mépag ™G oAyoplOUIKNG O1001KOGIOG VTOAOYICUAV, 1 TEAIKN HOCKO HE TN

Bértiot a&ohdynon (eAdylotn mown) EMALYETOL ®G TO TEAIKO ONOTEAECUO NG

SadtKaciog.

Ta 0edopéval TTOL YPNGILOTONONKAY Y10l TV OVOADOT] OVOKATOCKEVAGTNKOY GE L0,

aAAnAovyio ewoévov peyéBovg [717 pixel * 400 pixel] xor ypnoyomomdnke £Eva

vrocOvoro 1000 ewdvev yioo Tepautépm avaivor. O yeveTikds akyopBpog pubuicke

v voL eEeMEEL S YeVIEG 6 PEHOVOUEV®V ADCEMV.
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Ta anotekéopata £6e1Eav OTL Ol LEPOVOLEVEG ADCELS OVIIKOLY GE dVO OpddeS, ot
omoieg yapoktnpiovior amd mOAD peYAAN Sopopd OTIC EKTIUMUEVEG TOWEG, LE
TOANOTALG TAEELG peyEBovg, TapOUOlEG UE TN Opopd oTlG €QPUPUOLOUEVES TOIVEC.
Exeiveg mov eppaviCovv moAd peydrec TyéEG mepEyovy £va. 1| TEPIOCOTEPO. OVTIKEIEVL
peydlov peyébovg otig paokes. Ot empuépouvg ADGELG TOL TOPOLGIALOVY HIKPT TOWVN
dtnpodivion PETaED TOV YEVEDV Kol, TEMKE, 1 HEOT TOWN avl Yevid mapovctdlet
peiwon.

Avo Mtav o1 BérTioTeg ADGELS TOL TPOEKLY AV, ovdAoYa e TN cuvaptnon Towng. H
Adon  5-12 (péyebog  oiktpov S5  ewovootoyeiov kot péyebog  yertovidg 12
EIKOVOOTOLYEIV) OO TNV EPOPLOYN TOL TPAOTOL KPLTNPiov TowNg, Kou 1 Avorn 33-14
(1éyeBog pidtpov 33 ewkovoototyeimv kot péyebog yertovidg 14 eucovootoyeinwv) amd tnv
epappoyn Tov devtepov kprnpiov mowvng. H Adon 33-14 £yt yevikd vynAdtepo moGooTo
emruyiog aviyvevong TPAYUATIKOV oTOY®V 6€ cOYKplon pe TN Abon 5-12. Qotdco, n
AOom 33-14 €yel meplocOTEPES EGPAAUEVES AVIYVEDGELS GTOY®V ava ewcova. H Avon 33-14
odnyel oto oynuaticpd kaavtepa oprodetnuévng paokas. Avtd to amotélecpa eEnyeiton
amd ™ péBodo aviyvevong, n omoia iye oplotel Yo vor amoKAEIGEL TIC OVIYVEVGELS GTOY MOV
cuvolMko¥ peyéBovg <50 ewovootoyyeio. Amd v aplOunTiky GLYKPIoT TG AmTAd0oNG
TV 000 Avoewv Yo OAeg TIG €kOveg mpokvmTel OTL M Avon 33-14 €xet eueovég
TAEOVEKTN O, OTTOO0CTC GE COGTES OVIYVEVGELG.

H mopovca epyacio amotelel po mpoomdBeio depedvnong tng SuvoToTnToS
avATTUENG WOG CVTOUOTOTOUIEVNG, TOPAUETPIKE PeATiIoTOTOMUEVNG PONG EpYOTiag,
mov mepthopPdver v aviyvevon kivnong pe t péBodo g OMTIKNG PONG, YL TNV
Bektioon g aviyvevong ybvwv oe dedopéva DIDSON. H mpotewvopevn pebodoroyia
OTOXEVEL OV  €loylotonoinon TG TopéuPacns Tov  ¥pnoTn  HE TN XpNom
OV TOOTOTOUUEVOV KOl 0L TOPPLOLLOUEVOV OAYOPIOLUKADY O0SIKAGIDV, OTTMG OVTH TOV
YEVETIKOV akyopifuov.

Ot Baowkég mapdpetpotl Tov peyéBovg Tov @idtpov Kot Tov peyédoug g YEToVIdGg
Y. TOV VIOAOYIoUO TOV TEdiov OMTIKNG poNg amd v akoiovbio ewoveov DIDSON
emnpedlovv oNUAVTIKA TV TEAKA vIoAoywouévn paoko. H Avon [5, 12] eaiveton 6t
elarotomotlel VTO GPOVE TO GLVOAIKEL EIKOVOCTOLYEINL TOV KAAVTTTOVTOL Y10 KAOE E1KOVOL,
evdd M Aoon [33,14] ehaylotomoilel tov GLVOAMKSO aplfud OSKPITOV CLVOESEUEVOV
otolyeiwv. H cvuvolikn akyopiBuikn dadikocio odnyel eMTuyds o€ P TOTKE PEATIO

pdoka amd to dedopéva DIDSON, 00ny®dVvTog G€ KOVOTOMTIKG OTOTEAECUOTO LE
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eMdyiot mapépPacn tov ypnot. Qotdc60, 0 aAydpBHog eEapTATOL CNUAVTIKA OO THV
EMAOYT TOV KOTAAANAOV KPITHPLOV TOWVNG.

Mo GAAn mapoatipnon mov oa&ilel vo avaeepbel givar 6tTL Tor 000 OloPOPETIKA
KPLTNPLO. TOWNG 001YoUV o€ GUYKAIoN o)eddv 610 o0 péyebog yertovidg, fror 12-14
gwovootoyyeia. Avtd eivar 1o péco péyebog tng meployng, Omov umopel vo aviyvevdel
Bértiota n kivnomn, n omola pe T GEPA TG pmopel va epunvevbel og to peyolvtepo
duvnTikd PEyeboc TV TOPATPOVUEVOV LETAKIVOUUEVOV OOUMV.

Evd ) adyopiBukn| dadikacio ypnoponomdnke pe exapkn emitvuyio oe 600 SopopeTIKE
ocbvola Ogdopévav, To  omoteléopata  ypeldlovtal  EMKVPMON CLYKPIVOVTOS e
evoAakTikéG pebodoroyiec. ‘Eva amd to onUovTIKOTEPA LEIOVEKTUOTO TG JlOOIKAGTIOG
etvar 0 oyetikd peydhog xpodvog mov OMOUTEITOL Yot TOV VIOAOYIGUO TOL aAyopifuov

VTOAOYIGHLOV OTLTIKOV TTESIOV PONiC.
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1. Introduction

As inland waters are faced with a gradual deterioration of water quality, it is
imperative to develop new methods and strategies to monitor and reverse the condition of
the aquatic environment. Fisheries science is generally concerned with both the biological
and physical aspects and focuses on cross-manipulating these aspects in order to achieve
regulation of the corresponding processes. To be effective, this field strongly depends on
the availability of fast and detailed analytical monitoring tools. One such tool, which has
the potential to enhance the methodologies of Fisheries science is hydroacoustics, which,
unlike traditional methods, offers high-resolution data, containing dense spatial
information. This information can quickly and easily be visualized, evaluated and cross-
compared across water bodies or periods (e.g. seasonal or annual variations). Also,
hydroacoustic data are collected in a digital format, enabling easier retrieval and very
efficient potential for analysis, and reducing cost, time and effort for the processing of
large volumes of data. The combination of hydroacoustics with capture methods, in order
to establish ground truth information comprises a great tool for tackling the key
ecohydrological concerns of how fish populations interact with their habitats, by mapping
fish spatial distribution, biomass and behavioral aspect responses under habitat changes
(Godlewska et al., 2002; Winfield, 2004).

1.1. Principles of Fisheries Acoustics

Active remote-sensing instruments based on the transmission and reception of
sound waves (acoustic instruments) can detect fish, or other targets, at a far greater range
compared to visual systems, because sound penetrates water significantly more than light.
As a result, acoustic instruments have become a commodity of fishing vessels, as they can
determine fish and seabed location as well. Applications based on acoustics have
extensively pervaded the field of fisheries science as a tool for the assessment of
behaviour, abundance and distribution of fish or other aquatic organisms (e.g. plankton),
as well as the performance monitoring and assessment of sampling gears (Walsh et al.,
2001; Fernandes et al., 2002; Rakowitz et al., 2012).

The fundamental tool used in acoustics applications in fisheries science is a

scientific echosounder. An echosounder’s transducer converts an electrical signal to an
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acoustic pulse, which is termed “ping”. This transducer is typically hull-mounted, while
the pulse is emitted horizontally or vertically (toward the bottom of the water body) inside
the water creating an acoustic beam, in a manner similar to a flashlight beam. When the
sound wave hits (or encounters) a target, such as a fish, a part of the sound energy is
reflected back to the receiver and interpreted as an echo. The time interval between the
signal transmission and echo reception can be converted to the fish distance using a good
approximation of the speed of sound in water, i.e. ~1500 m/s). Because the sound energy
is diminished while traveling through the water, amplification is applied as a means of
compensation for energy absorption and geometrical spreading.

In order to establish an accurate conversion, echosounders are calibrated. During
this process, absolute echo levels are determined as averages of a number of
transmissions. This technique uses echo integration and produces a value that is
representative of fish density as a proportion expressed according to the principle of
linearity (Foote, 1983). Fish densities calculated this way are averaged and interpolated
along specific transects surveyed by vessels, in order to produce estimates of fish
abundance with respect to the totally surveyed area (Simmonds et al., 1992). However, in
order to obtain proper analysis results, the target acoustic properties have to be known in
advance. As these vary depending on fish species, relationships are used between fish
species and target-strength, which are established by identifying the ensonified fish and
studying the acquired data with respect to the identified target characteristics. Echo
characteristics are usually enough to match observed targets to fish species (Reid, 2000).
However, determining additional information, such as age, length or the composition with
respect to various other characteristics (such as maturity), often needs further
confirmation. Acoustic surveys provide data for stock assessment, usually used to
determine abundance classified by age. However, other classifications are also used for
the same reason, such as spatial distribution, absolute biomass or average weight-age
relations.

Acoustic techniques are very popular in fisheries around the world, with a multitude
of sonars being available. Differences include wider beam angles and fully flexible beam
orientation capability that enables the ensonifying of any directional aspect. Sonars can
detect fish targets at relatively large distances, which renders them invaluable for studying
fish behavior under a multitude of perspectives and aspects, not solely related to the
original purpose of simply detecting the fish targets.
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1.1.1. DIDSON System Characteristics

An acoustic camera DIDSON is a multibeam high-frequency sonar capable of
producing high-resolution images through a unique adapted acoustic lens system.
DIDSON, developed by the University of Washington, U.S.A. Applied Physics Lab can
generate high-quality video sequences (Belcher et al., 2001, 2002a). DIDSON technology
was developed in the context of harbor surveillance, in order to identify underwater
intruders. It can be mounted on a submersible base or under a small vessel, which can be
sent to produce a more detailed identification, upon coarse detection from a wider
surveillance system. Among the original uses of the device were the assistance in diver
supervision in conditions of high water turbidity (Elliott, 2005), the detection of mines or
other obstacles (Belcher et al., 2002b), the monitoring of underwater constructions
(Belcher, 2006) and the inspection of hulls from marine vessels (Vaganay et al., 2005).
Modern sonar systems are used in the study of fish migration, with promising results
(Maxwell and Gove, 2004; Baumgartner et al., 2006; Petreman et al. 2014). The high-
frequency DIDSON operating mode utilizes 96 acoustic beams and is capable of mapping
details such as the body shape, outline and fins of target fish

Acoustic cameras utilize very high frequencies, thus higher frequencies are
reflected from softer parts of targets (muscle tissue, fins) and due to beam arrangement
with single, narrow beams can provide image of the whole body of fish. As a result, fish
behavior and morphology can be studied in much better levels of detail than what
common sonar technologies can offer (Baumgartner et al., 2006). Additionally, noise of
various types can also be mapped and recognized visually (e.g. bubbles, suspended
matter, etc.). Due to the distinct shape of fish and their characteristic motions, which are
typically non-linear, they can be distinguished from debris that typically exhibit a constant
direction and velocity within adequately small time frames). In that respect, fish size
measurements can be obtained directly from images of fish body shapes juxtaposed with
the recorded data, without having to convert to or from target strength, which entails
additional uncertainties and inaccuracies.

What is more important is the good performance of the system in the absence of
light or in the presence of turbidity and, generally, in conditions of poor visibility. The
DIDSON data are used for detecting, counting and measuring fish targets, greatly
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facilitating operations such as the monitoring of fish behavior during, e.g., spawning,
feeding, or migration.

The acoustic lens used has the capability to focus on targets located even at 1 m
distance from the transmitter. Two emission frequencies are available, 1.8 MHz (the high-
frequency mode) and 1.1 MHz (the low-frequency mode). In the high-frequency mode,
the total beam is separated into 96 sub-beams (0.3° x 14°, horizontal x vertical
dimensions), while the range is adjustable between 12 and 15 m (Holmes and Cronkite,
2006; Hughes, 2012). In the low-frequency mode, the beam is separated into 48 sub-
beams (0.5° x 14°, horizontal x vertical dimensions) (Figure 1). The total ensonifiable
field spans 29° x 14° (horizontal x vertical dimensions) in both modes (Maxwell and
Smith, 2007). Long-range DIDSON cameras have the capability of increasing the range
settings up to 33 m for their corresponding high-frequency mode (1.2 MHz) and up to 80
m for their corresponding low-frequency mode (0.7 MHz). The width of the pulse
(duration between successive pulses) depends on the range setting and varies between 4.5
and 144 ms. As a result, frame rates up to 21 frames-per-second are supported. The
accompanying data visualization application used for control and playback resembles a
digital video program (Maxwell and Gove, 2004).

Data are visualized in 2D, resolved using X as the horizontal dimension and Y as
the range dimension. The data display does not visualize the Z-dimension (Hughes,
2012). When the beam direction faces the bank (horizontal orientation), the DIDSON
camera supplies relative distance and motion direction information regarding the detected
fish but not their absolute positions with respect to the water column. The update rate is
variable between 21 and 5 frames per second, according to the operating frequency and
set range. The 1image is constructed throughout 4 cycles of successive
transmission/reception, again in sets of 12 beams. In general, the low-frequency mode is
utilized for longer ranges, over 12 m, but because half cycles are needed with respect to
the high-frequency mode, the frame rates are similar between the two modes. Table 1 lists
the DIDSON specifications.

DIDSON provides a remote focus function, which enables setting the focus on
objects at a distance between 1 and 40 m from the sonar. When a range span is chosen for
an image, DIDSON automatically sets the center of the set span as the optimum focus.
This auto-focus can be overridden to any other range within an image. In all cases, the
focus is technically good across the entirety of the settable range span.
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Table 1. Detailed description of DIDSON specifications. (Source: Belcher et al. (2002b)).

Low Frequency mode

Operating Frequency 1.0 MHz

Beamwidth (two-way) 0.6° horizontal by 14° vertical

Number of beams 48

Source Level (average) 205dBrelpPaatlm

Range Settings
Start range 0.75 m to 23.25 min 0.75 m intervals
Window Length 4,5,9,18,36 m

Range bin separation 8, 17, 35, 70 mm respective to window length

High Frequency mode

Operating Frequency 1.8 MHz

Beamwidth (two-way) 0.3° horizontal by 14° vertical

Number of beams 96

Source Level (average) 205dBre 1 yPaat 1m

Range Settings
Start range 0.4 mto 11.63 min 0.4 mincrements
Window Length 1.1,2.2,4.5,9m

Range bin separation 2.2, 4.4,9, 18 mm respective to window length

Both Modes

Frame rate 4-21 frames

Field of view 29°

Remote focus 1 m to maximum range

Power consumption 30 watts (using 115VAC or 14-18VDC)

Depth rating 152 m (500 ft) or 2400 m ( 8000 ft)

Control Ethernet, RS232 or switches

Output format Ethernet and NTSC video

Cable length 152 m

Dimensions 30.7 cm long by 20.6 cm high by 17.1 cm wide

Weight in air 7 kg

Weight in water 0.8 kg

Topside requirements Computer running windows, Ethernet card and

video monitor
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48 sound beams

.......

512 segments
(sample)

Window length

Window start  \3

Figure 1. A brief description of the formation procedure of a DIDSON frame, operating at low
frequency (Source: Lilja and Orell, 2011; Martignac et al., 2015).

1.2. Review of the data processing methods

The most widespread applications of DIDSON in the field of fisheries research
concern the study of fish counting (e.g. Han et al., 2009; Faulkner et al., 2009; Pipal et al.,
2010), fish sizing (e.g. Han et al., 2009; Burwen et al., 2010; Becker et al., 2011), fish
behavior (e.g. Mueller et al., 2006; Johnson et al., 2012; Bevelhimer et al., 2015) and
monitoring fish populations (e.g. Galbreath and Barber 2005; Maxwell and Gove, 2007;
Hughes, 2012; Martignac et al., 2015;).

However, freshwater ecosystems are very diverse and environmental factors vary
among hydroacoustic recordings. Therefore, efficient analysis software is required to
handle and process DIDSON data at high speed. To date, several analysis software
applications have been developed, which are capable of enumerating and sizing fish and
investigating fish behavior from DIDSON data. Namely, DIDSON software (Sound
Metrics Corp.), ECHOVIEW (Myriax Pty Ltd, Hobart, TAS, Australia) and Sonar5-Pro
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(Lindem Data Acquisition, Oslo, Norway) have been used among diverse groups of
scientists for various objectives such as fish stock assessment, fish monitoring, and
environmental management. Sonar5-Pro (CageEye, Oslo, Norway) offers tools to display
echograms, track fish echoes automatically and extract tracks to a database. Processing
tools include background subtraction, automatic tracing and classification or single echo
detection. Manual tracking, track editing and fish length ruling is also available (Balk and
Lindem, 2002; Balk et al., 2009). Like the Sound Metrics Corp. software, Sonar5-Pro
makes DIDSON data (echogram and video displays) visible, manually tracking fish
echoes and extracting information into a database. An automatic tracking tool is available.
It has several settings (e.g. number of consecutive pings, number of ping gaps, cluster
size) and enables consecutive echoes to be grouped into a track. Sonar5-Pro can extract all
the available data in DIDSON files. Extraction of fish data from DIDSON records.
Similarly, Echoview software also visualizes and exploits DIDSON data. Some Echoview
tools perform semi-automated data analysis (Han et al. 2009; Kang 2011) and some are
similar to those of DIDSON software, such as the background subtraction tool. All these
programs count fish passages, provide estimates of fish length (Han et al. 2009) and can
describe fish behaviour (Kang 2011).

As the DIDSON data can be properly converted to an image-snapshot stream
similar to a video, most modern methodologies employ computer vision techniques (e.g.
Langkau et al.2012) to resolve motion patterns from image sequences. While having
substantial success (e.g. Mueller et al, 2008; Han et al., 2009), these methods almost
invariably necessitate human intervention, in order to refine the final results by removing
artifacts or other random effects. Furthermore, while automation is practically attained,
procedures are typically based on extensive parameterization and it takes significant
expertise and experience to suitably fine-tune all processing parameters for an optimal
result. Finally, because underlying algorithms are complicated and work based on a
varying number of assumptions, their performance is almost invariably situation-specific.
Fuzziness in the data, minimum and maximum expected target size, average single-target
shape and average target separation distance are, among others, just a few of the variables
that can affect the capability of algorithms to detect and track single targets throughout a

dataset.
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1.3.Objectives

The primary aim of this thesis is to explore and improve upon current
methodologies for automated fish target detection and tracking from DIDSON data. The
first objective is to propose and test the efficiency of a relatively recently established
computer vision technique that has been considered and used in various suggested or
experimental motion detection scenarios such as (Wu, 2012; Algaddafi, 2019) that of
optical flow, for the purpose of improving the detection and tracking of motion in
DIDSON data. This will be achieved by establishing and describing a specific workflow
with optical flow calculations integrated into it, identifying all parameters relevant to the
quality of the outcome and highlighting their importance and interactions with other
characteristics of the involved dataset, instruments or other circumstances. The second
objective is to propose and test a methodology to automate the process of parameter
selection for a subset of the involved parameters in the employed workflow. This will be
achieved by coupling the workflow with a parameter re-adjustment method, specifically a
genetic algorithm. The proposed framework will be applied as a case study in a DIDSON

dataset which was obtained from an acoustic monitoring recording in the Vltava River.
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2. Study site and Data collection

The fish migration data for this study were obtained from a stationary acoustic
recording conducted in the Vltava River, Czech Republic, under the project
“Coexistence of human and pearl mussel Margaritifera margaritifera in the Vltava
River”. A DIDSON was deployed at one site on the Vltava River to monitor fish
passage from the Lipno reservoir to the Vltava River, in the area of the Sumava
National Park.

In order to estimate the migration timing and abundance of fish, the fish passage
monitoring was performed for two spawning periods (5/4/2014-9/5/2014 and
18/3/2015-18/6/2015). During these periods the acoustic recording was almost
continuous. In the cases of high flooding risk, especially at the end of March and April,
the acoustic camera was temporarily removed for a few days, for safety reasons. Once
the fish upward movement was no longer noticeable in the recordings and the fish
migration of most species had ceased, the continuous monitoring was terminated. Water
temperature and flow velocity were additionally measured.

The DIDSON unit consisted of the sonar, a set-top control box, a data cable,
control software and an associated laptop computer. The DIDSON was directly
connected to the set-top box, which was linked to the laptop via an Ethernet connection.
The image was transferred from the unit to the laptop via the control software, which
displayed the data as a streaming image.

The DIDSON acoustic camera was operated in the high-frequency mode.
Operation with the high frequency provided an optimal footage. The DIDSON
recordings have sufficient resolution to identify of different objects and direction of
movement, but not necessarily species unless there are clear and consistent differences
in body features or behavior.

In order to obtain the highest quality image, care had to be taken when selecting
the monitoring sites and mounting the DIDSON acoustic camera. Structure of the
bottom, passing debris or other structures creating shadows and therefore ‘blind zones’
had to be taken into consideration. A cross profile of the river with the evenly
increasing depth of the river bank close to the cabin area of Nova Pec, about two
kilometers above the river mouth (48°48.52115" N, 13°56.77817" E) was selected for
the mounting of the acoustic camera (Figure 2). At the selected site, the slope of the
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right river bank is steeper than the slope of the left river bank. In addition, the gravel
river bottom is finely shaped to a relatively smooth surface, without major obstructions.
A platform for holding DIDSON was placed approximately three meters from the shore
of the right riverbank. DIDSON had a cross-sectional orientation with respect to the
river current to the opposite side of the river, and its lower edge of the beam
horizontally followed the bottom from the shallowest and deepest part of the river. Two
guiding fences were used to guide migrating fish away from the shore, where their
detection by an acoustic camera would be difficult, into a limited space observed by
DIDSON (Figure 3, 4). In addition, a small fence (30-40 cm high) was placed along the
bottom, between the two guiding fences, in order to prevent fish from passing over just

above the bottom.
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Figure 2.Location of the monitoring station (solid dots) in Vitava River, for two spawning periods
(5/4/2014-9/5/2014 and 18/3/2015-18/6/2015).
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Figure 3. The arrangement of the guiding fences during the first spawning period (5/4/2014-9/5/2014)
(Source: No. PI14V00000374 Souziti clovéka a perlorodky vicni ve Vitavském Iluhu, Operational

Programme Environment).
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Figure 4. Diagram of the equipment set-up (PC — placement of the operation unit, D — DIDSON
with an observable space, -- bottom fence,— guiding fences, D: DIDSON) (Source: No. P14V00000374

Souziti ¢loveka a perlorodky ricni ve Vitavském luhu, Operational Programme Environment) .
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3. Methodology
3.1. Theoretical Background
3.1.1. Optical Flow, Motion Detection and Problem Statement

Horn and Schunck (1981) define optical flow as the “distribution of apparent
velocities of movement of brightness patterns in an image”. Considering point brightness
as the main component of visual representation, optical flow can be described as the
brightness velocity field. Given two images at instants t and t + 4z, the brightness velocity
field at each point represents motion and is an important measure to detect the magnitude
and directions of apparent motion.

Considering the typical visual representation of an image as an array of picture
elements (pixels) with specified brightness (intensity) values B(x,y) and given that the
image is a representation of coherent and temporally sequential states, the effects of
motion are represented as the introduction of the time variable in the brightness field of
the image, leading to B(x,y,t). This brightness field is usually the available data and is
represented as an image sequence. Considering that this sequence is the result of
observation of a specific scene under a given set of conditions, the brightness field
directly represents the composition of objects that make up the scene. The goal of optical
flow methods is, then, to extract the potential displacements of objects on the scene based
on the visual representation of the temporally variable brightness field.

To make the determination of motion possible from an image sequence, a few
fundamental assumptions are made [Horn and Schunck, 1981]. The first and most
important assumption is that the effect of physical motion is translated as a corresponding

translation of a pixel intensity to a different, typically neighboring, pixel:

H(x,y,t) = H(x + Ax,y + Ay, t + At) (1)

This is called the brightness constancy constraint (Horn and Schunck, 1981; Fleet
and Weiss, 2005) and practically entails the assumption that the surface radiance of all
objects forming the represented visual scene is constant. Although this is untrue for real-
world scenes, this assumption is remarkably adequate for most applications (Fleet and
Weiss, 2005). Because there is only one intensity value at the point (x,y) and it is

theoretically impossible to determine two unknowns (4x, 4y) from a single measurement
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(4t is known as the image sequence interval), various methods make different additional
assumptions in the form of constraints, in order to bypass the indeterminacy and arrive to

a solution. Considering the Taylor expansion of (1) around (x,y):
0H 0H 0H
Hxy,t) = Hoy, 0) + o Ax + 2 Ay + 04t +&, (2)

where ¢ represents terms of order higher than 2, and dividing by Az ignoring
higher order terms, and taking the limit as t — 0, the gradient constraint equation or
optical flow constraint equation is retrieved (Horn and Schunck, 1981; Beauchemin and
Barron, 1995; Fleet and Weiss, 2005):

OH dx | OH dy

oH . B
ax ot ay5+E_V(H)'u+Ht—01 3)

where

= () = (5 50) @)

is the velocity vector. Equation (3) more clearly exhibits the aforementioned
indeterminacy, namely that it is impossible to determine ux and uy at the same time, from
a single brightness value H at a specific pixel, as this is one equation with two unknowns.
This algebraic manifestation is called the aperture problem and arises naturally in the
study of motion on a visual representation when only local structure is available (Ullman,
1979; Bertero et al., 1988; Beauchemin and Barron, 1995).

3.1.1.1. The Aperture Problem — lll-posedness of Optical Flow
Computations

The aperture problem is, mathematically, based on the interpretation of equation (3)
and means that brightness values and their changes can only lead to calculation of the
velocity component that is normal to the brightness pattern, i.e. parallel to the local

brightness gradient direction:
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The physical interpretation of the aperture problem stems from the fact that
calculations and visual interpretation typically take place in reference to small local visual
neighborhoods similar to looking the entire image through an aperture (hence its name). It
follows that if not enough local structure visualization is available (mainly due to ignoring
the distant surrounding structures), as is the case, for example, for textures aligned with a
single direction/orientation, such as stripes, it is impossible to determine velocity

components in other directions (Beauchemin and Barron, 1995), see e.g. Figures 5 and 6.

Aperture 1

Aperture 2

Visualized Shape

Figure 5. Example of a visualized shape as seen through apertures at 2 different locations.

- N N
5 g, — S,
Aperture 1 Aperture 1
p / k. oy
Frame 1 Frame 2

Figure 6.  Two consecutive frames of the moving shape of Figure 1, considering Aperture 1 as a
steady location on the visualization plane (video). The actual segment displacement between frames is
painted with light blue.
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In Figure 6, the motion of the highlighted segment cannot be determined when
only the viewport of Aperture 1 is observed because the end result is two identical
visualizations. As a result, it is impossible to quantify the total horizontal displacement
of the shape by observing only through Aperture 1, because brightness does not appear
to change. Motion in the direction that is perpendicular to the texture (shape)
orientation, i.e. in the brightness gradient direction, however, can be readily determined
because the displacement would be discernible and measurable between the different

brightness patterns in that direction, as seen in Figure 7.

i ™ g ™
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; . >y Shape from

= Frame |
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k. S e A

Frame 1 Frame 2

Figure 7. Two consecutive frames of the moving shape of Figure 1, together with Aperture 1.

Motion in the perpendicular direction of constant brightness is directly quantifiable.

In Figure 7, the motion in the direction of the brightness gradient is measurable
(considering the unit of time between the two frames for simplicity), but it still remains
unclear how much the pattern has moved in the horizontal direction because it is
impossible to match pixels, as all pixels have (normally almost) identical brightness
values. The aperture problem can be resolved if adequate local structure is available
through an Aperture, such as Aperture 2 from Figure 5.

In Figure 8, it is clearly shown how more elaborate brightness patterns having a
more complete local structure, expanding in more than one direction, can lead to
resolution of the aperture problem. However, this depends on the case and when
determining velocity of structures, local brightness pattern structure is not evident a

priori, therefore the aperture size is relevant.
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Figure 8. . Two consecutive frames of the moving shape of Figure 1 together with Aperture 2.

Because local structure visible through Aperture 2 is more elaborate, local shape displacement can be more

accurately calculated between the two frames.

The illustrations of Figures 5, 6, 7 and 8 imply the additional assumption that the
shape translation represents a corresponding movement of its real-world object
counterpart, which is purely parallel to the image plane. However, it is not infrequent for
motion on real-life captured video sequences to represent actual movement with a
nonzero component perpendicular to the image plane, i.e. depthwise with respect to the
visual sensor. This, along with the aforementioned assumptions, are taken to hold
“locally” on any visual representation and the degree of accuracy of optical flow
estimation is, therefore, directly linked to how far a processed image sequence deviates
from these assumptions (Beauchemin and Barron, 1995).

The aperture problem and the inability to determine actual motion when local
structure (as brightness patterns) degenerates in terms of dimensionality, is what makes
the optical flow computation an ill-posed problem according to the definition of
Hadamard (Hadamard, 1902). Starting from a specific frame and considering a local
neighborhood (aperture), many different velocity fields could lead to the same “next”
frame when structure degenerates. This way, the inverse problem does not have a unique
solution (Bertero et al., 1988; Bruhn et al., 2005).

3.1.1.2. Optical Flow Algorithms

A number of differential methods have been developed that introduce additional
constraints, in order to make the optical flow calculation feasible. For example Horn and
Schunck assume smoothness in the velocity field by considering that all motion is either
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rigid, or deformation-based and discontinuities mainly occur at occlusion points, i.e.
edges between distinct object borders on the image (Horn and Schunck, 1981). This
smoothness constraint, is a general assumption that enables the gradient-based estimation
of optical flow.

An important distinction in the literature is made between local and global methods.
The difference lies in attempting to minimize local or global expressions that are used as
energy functions (or functionals). While local methods do not result in dense optical flow
fields, they perform better under noise, whereas the opposite is true for global methods,
I.e. they produce dense and continuous flow fields but have higher sensitivity to noise.
The most popular representatives of algorithms in the two categories are the Lucas-
Kanade local method (Lucas and Kanade, 1981; Lucas, 1984) and the Horn and Schunck
global method (Horn and Schunck, 1981), both of which have various re-adaptations in
the literature, while combinations of local and global methods have also been proposed
(Bruhn et al., 2005).

One of the more recent optical flow calculation algorithms is based on Gunnar
Farnebédck’s motion estimation techniques using quadratic polynomials. In specific, using
frame pairs, every neighborhood of each image in the pair is approximated using
quadratic polynomials. The displacement field is, then, calculated by employing suitable
adjustments of a general translation-based polynomial transformation model (Farneback,
2003). Farnebick attempted to compensate for background motion, in order to obtain
reliable and smooth motion fields for sequential frame pairs acquired, for example, under
high-frequency vibrations of the capturing medium. The novelty of Farnebéck’s motion
estimation algorithms was the use of orientation tensors, as well as the inclusion of
parametric motion models. Calculations carried out in the frame of this thesis are based on
the MATLAB® scripting development environment’s implementation of the Farnebick

optical flow estimation algorithm.

3.1.2. Genetic Algorithms — Evolutionary Methods

Genetic algorithms are a mathematical abstraction, which can be seen as the
algorithmic counterpart to evolution. A problem modelled as a parameterized system
can be said to have, as solutions, various parameter sets, which may adhere to various

constraints. Genetic algorithms are, then, a class of methods that aims to find better
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approximations to such solution sets, given a number of initial sets, along with an
evaluation criterion. Evaluation criteria generally fall in two broad categories, namely
fitness or penalty type criteria. Evaluation of solutions through fitness express a problem
of maximization, that is, the search for the solution set with as large fitness as possible.
Similarly, evaluation of solutions through penalty is analogous to a minimization
problem, i.e. the search for a solution set with the minimum possible penalty with
respect to all other solutions. The two categories of criteria are practically equivalent in
that each type can be adapted to the other one through suitable mathematical
transformations (e.g. the inverse of penalty can be taken as the fitness).

An important note is that the aforementioned solutions are not necessarily the
optimal solutions to the corresponding problems. In fact, because genetic algorithms
mimic evolutionary processes, it is not always possible to consistently reason about
them at a mathematical level. From a simplified perspective, a genetic algorithm seems
to resemble a black box, which tends to consistently produce improved solutions to a
given problem, based on a specified evaluation criterion. Beside their cryptic nature, a
number of theorems and analyses have been carried out with respect to genetic
algorithms. As a major example, the Schema Theorem (Holland, 1975; Lankhorst, 1996)
is a first proof that solutions can consistently and favorably (from a computational
perspective) converge towards increasingly improved solutions, as long as existing
solutions are better than average. Holland (1975) also formulated what is known as the
canonical genetic algorithm, which uses binary strings to encode solution parameters
into an artificial chromosome, which is the informational counterpart of a biological
chromosome.

One of the necessary prerequisites, in order to be able to solve a problem using a
genetic algorithm, is the feasibility of evaluating solutions, regardless of the feasibility
of the problem itself. The breakdown of a typical genetic algorithm results in the
following steps:

e Expressing the solution set parameters in terms of chromosomes (i.e. encoding
the solution parameters).

e Deriving a set of initial solutions (even random).

e Applying a series of genetic operators (such as crossover and mutation) and

recombining solutions.
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e Proceeding to the next generation (which is modelled as an iterative process) by
applying a selection strategy (e.g. elitism, random, based on fitness-proportions,

or a combination thereof).

Followed in sequence, these steps closely resemble biological evolution and lead
to the continuous improvement of solution sets as generations pass. This can, therefore,
be seen as an optimization problem, in which a swarm of solutions iteratively
approaches an optimal region on the solution landscape of the problem. A concern,
however, was that the convergence to an optimal solution, rather than “wandering”
around a wider optimal region, was not always guaranteed, as only the canonical genetic
algorithm had been analyzed and attained a relatively stronger mathematical foundation
(De Jong, 1993). As a result, a number of modifications appeared to be warranted, in
order to efficiently approach optimality, while not wandering off of it. As an example,
Rudolph (1994) indicates that, in order to guarantee convergence, it is necessary to
employ elitism, i.e. the retaining of the best solution from a given generation to the next.
Other modifications of genetic algorithms have been proposed and applied with varying
degrees of success, such as a combination with simulated annealing methods (e.g.
Lozano et al., 1999).

An important application of genetic algorithms is their use in solving nonlinear
mixed integer constrained-space problems (e.g. Li and Gen, 1996). As genetic
algorithms do not require additional information regarding the problem domain or the
behavior of the problem in various regions of the solution landscape, they are well-
suited for hard problems with vague definitions and/or incomplete specifications.
Integer problems are problems, where the solution set is potentially bounded and a
subset of the parameters (or all of them) vary over the integers. Because some of the
parameters related to the determination of optical flow are by definition integral values
(e.g. the filter size and the neighborhood size), genetic algorithms are a good fit for
determining locally optimal solutions for them in the context of a constrained mixed

integer optimization problem.
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3.2. Optimal Target Mask Extraction Algorithm

In order to obtain the desired information from the DIDSON data, a step-wise
algorithmic process is performed. The steps of this process are described below. A
workflow diagram that schematically represents the algorithm is also depicted in Figure
9. The algorithm is comprised of a standard part and an iterative part, which is based on
a predefined iteration count M that is manually decided. In practice, because of the
computational effort involved in the iterative part of the algorithm, this number is kept
to a relatively small value. Additionally, part of the iterative process is based on
choosing a number N of parameter sets, which are re-adjusted in the course of the
algorithm, used for the calculations of N corresponding optical flow fields. This number
also has a great impact on the computational effort involved in the algorithm as it
represents the number of optical flow fields that have to be calculated at each iteration.
As a result, this number is also kept to a relatively small value.

STANDARD PART OF THE ALGORITHM:

e Data extraction, which converts the raw DIDSON data to a usable image
sequence that can be analyzed using techniques from the field of computer
vision, image processing etc.

e Data pre-processing, in order to limit the effects of noise and other artifacts
while maintaining the main information pattern depicted on each frame.

e Foreground/background identification, in order to separate the stationary parts of

each frame (background) from the “changing” areas.

ITERATIVE PART OF THE ALGORITHM:
e Initialization of N parameter sets for the optical flow calculations.
e Calculation of N optical flow fields for the entire foreground sequence, in order
to determine the areas where actual change is most notable.
e Refined mask extraction from the calculated optical flow field.
e Final masked result assessment and re-calculation (based on various techniques)
of N parameter sets (both old and new) for the optical flow calculations.

e Iteration of the above steps for a preset number of times.
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After the algorithm is completed, the output mask with the best assessment is the
primary output, along with the optical flow calculation parameter set that led to that mask.
This parameter set can be further tested for performance as a proxy parameter set for
image sequences with similar characteristics. The following sub-chapters analyze each of
the steps separately, presenting intermediate results of the calculations along the way to
illustrate the various outputs of the algorithmic process. Apart from that, a specific
identification of the parameters that can significantly influence the result is made,
highlighting their importance, interactions with other dataset characteristics, as well as

rationales for their determination.

3.2.1. Data Extraction

The raw DIDSON data are contained in corresponding files as successive data
tables (representing pings), each one consisting of a beam-range indexed array of data
points. Each element in this array corresponds to specific beam and range indices and is
an 8-bit number, which usually represents an encoded version of the observed signal. The
value corresponds to a specific location in space, which can be determined based on the
data point’s relative position to the instrument (taking the orientation of the instrument
into account) and the precise external position of the instrument, which is usually
acquired through a GPS sensor. The extraction of the data aims to transform it to a frame
sequence similar to a video capture, which can then be used to further analyze apparent
motion and detect targets by employing pertinent techniques from the field of computer

vision. The characteristics of the sample used in this work are shown in Table 2 below.

Table 2. DIDSON sample data characteristics and parameters.

Parameter Value
DIDSON Version DDF_03
Frame Rate (frames per second) 8 fps
Recorded Range (m) 1.257 — 11.257
Total Recorded Range (m) 10
No. of Beams 96
Samples per Channel 512
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In order to transform the data into a visual frame sequence, it is necessary to restore
the relative dimensional integrity of the captured space, as well as the relative spectral
range for each frame. Restoring the dimensional integrity will ensure that the visuals
depicted on each frame are properly scaled representations of the real ensonified space,
maintaining the correct aspect ratio in terms of their dimensions. Restoring the relative
spectral range, on the other hand, will ensure that each frame is a proper representation of
the reflected signal intensity at each volumetric element of the ensonified space. The
dimensional correspondence between the ensonified space and the visual frame
representation is based on using a pixel for each volumetric element of the ensonified
space, whereas the spectral correspondence is based on using an intensity value at each
pixel for each reflected signal intensity value at the corresponding volumetric element
(voxel).

The data extraction pipeline includes reading the raw data files, appropriately
converting the data samples to dB, building frame-arrays from the data samples and
reconstructing images from the frames. Figure 10 below depicts a frame and the
corresponding reconstructed image, while Figure 11 provides a schematic representation
of the process. The reconstructed image can also optionally be flipped vertically to
potentially resemble the visualization of the software accompanying the instrument.
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Reconstruction

Figure 10.  Reconstruction of frame to image (vertical flip to make image resemble the original view

of the software accompanying the instrument).
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Figure 11.  Conversion diagram of real-world ensonified Field-of-View to a digital image sequence

representation (adapted, in part, from [Johannsson et al., 2010]).

Because the recorded data sample values for each voxel are encoded, i.e. converted
to binary format suitable for storage in digital media (for example in 8-bit values, which
represent integers from 0 to 255 for the DDF_03 format), they can be converted and
rescaled, in order to represent the true reflected signal power (dB). In the data extraction
process, the encoded values are converted to Sv (MacLennan et al., 2002), based on the

instrument specifications. DIDSON echosounders do not apply a time-varied gain to the

[44]
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recorded signals, so, in the frame of this work, the data values are converted to Sv
(volume backscattering coefficient) by applying a simple range-correction term to the

recorded value as:
Sy =V, +20log;o(r), (6)

where r represents the range of the data sample and V; represents the recorded data value.
Based on the total range of 10m (from Table 2 above), this can be expressed as 10 * (i /
512):

Sy(i.J) = Vi (i,) + 20logso (10=),  (7)

where (i, j) represent the row and column indices in a data sample array of a single frame
(ping). Figure 12 shows the typical histogram of a frame from the sequence used in this
work. The total pixel count of a frame is equal to 512 * 96 = 49,152. The histogram is
derived from the frames rather than the images (leftmost depiction in Figure 10), because
reconstructed images are based on interpolating and using virtual beams, which would
skew the original distribution. Additionally, because of the necessity that all represented
images are rectangular, additional white or black padding pixels are added outside the
field-of-view, which would also create a very large count in the corresponding bins for
value 0 or 255.
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Figure 12.  Typical histogram of an extracted data frame.

3.2.2. Pre-processing of Reconstructed Frame Sequence

After extraction of the raw data and conversion to the main frame sequence,
standard computer vision techniques can be applied. A very important pre-processing step
is the smoothing of the data, in order to minimize the effects of noise, which have the
potential lead to increased outliers and mis-detections in the subsequent mask extraction
process. Various methods are used in the literature, which can be applied spatially (within
the same frame) or temporally (along the temporal dimension), or in combinations thereof
(e.g. Bulas-Cruz et al., 1993; Simonoff, 1996). In the present work, a Gaussian temporal
smoothing model was used, with a frame-window equal tol second of the frame rate, i.e.
8 frames. This parameter was determined after testing and the primary affecting dataset
characteristic was determined to be the fish target velocity distribution throughout the
recorded data.

Choosing a value for the temporal smoothing window is a trade-off between less
noise and clearer, more easily identifiable targets. Therefore, it is an attempt to achieve an
as pronounced smoothing and reduced noise effect as possible (for higher window
values), at the expense of reduced contrast of faster target motions, thus making them
appear as pale, “ghastly” imprints over the frame. At its heart, the Gaussian temporal

smoothing algorithm based on a frame-window acts as a Gaussian-weighted moving
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average that uses the frame-sequence contained in the window. In the present work, the
algorithm was applied by extracting the time series H; ; (t) of each pixel as the array

values in the temporal (third) dimension as:
Hi ;o) =HG,j,O| =iy j=j, (8)

applying the Gaussian moving-average smoothing method to get the smoothed time
series Hl-o, j, (£) and then reconstructing the original image sequence by suitably arranging
the smoothed 1D time series as the third dimension. In effect, the results are presented in
Figures 13 and 14, below, which depict the same reconstructed DIDSON image frame
before and after temporal smoothing using a window of 12 and 8 frames, respectively. To
better illustrate the effects of smoothing, the frame of a reconstructed DIDSON image
with an identified fish target on it has been deliberately chosen, with the target highlighted

with a yellow circle on all images.

Before Smoothing i cfter smootMng
Window Size: 12 frames
Figure 13. Reconstructed DIDSON image before and after smoothing with a window size

equal to 12 frames, with an identified fish target.
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After Smoothing

Window Size: 8 frames
Figure 14. Reconstructed DIDSON image before and after smoothing with a window size equal to 8

Before Smoothing

frames, with an identified fish target.

3.2.3. Foreground Detection and Extraction

The smoothing process is a vital first step to aid in detecting foreground objects in
the reconstructed DIDSON image frame sequence. Numerous algorithmic techniques
exist for modelling the background from an image sequence (video), all of which have to
deal with the main primary problem, which is the temporal variability in the intensity of
the image frames (e.g. Piccardi, 2004; Benezeth et al., 2008). Following the
generalization of Benezeth et al. (2008), the general formula that underlies background

subtraction methods is:

LG j,t) = {(1) ifd(H(i,j,t),B(@,))) > T )

otherwise

where (i, J), represent the pixel index and t represents time, in the image sequence. I(i, J, t)
represents the value of the sequence at pixel (i,j) and time t, whereas B(l, j) represents the
background value at pixel (i, j). The function d(lI, B) is a metric and z is a threshold value.
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The various available methods, then, attempt to model the background B and determine a
specific metric d (Benezeth et al., 2008), whereas the threshold is application-specific.

It is important to note that the separation of an image sequence in foreground and
background is artificial and is, in fact, more like an educated hypothesis based on the
circumstances, under which the image sequence was acquired. In the case of the
DIDSON raw data in the sample used for this thesis, the instrument position was
stationary, as it was fixed with respect to the surroundings and the ensonified space at
all times during the sequence. For this reason, one potential background model to use
would consist of the frame resulting from the average of a brief frame sequence where
no target would be detected. Despite the possibility and ease of this method, due to the
reason that the methodology mostly aims at automating the procedure, this model would
have to rely on manually determining a small frame sequence, where no identifiable fish
targets exist. For that reason, an alternative background model was used, which is
equally simple to apply. In this choice, the background of each frame was assumed to be

the specific frame corresponding to it based on a predetermined time difference tiag:

B(@,j,0) = H(i,j,t — tiag)- (10)

This simplifies the foreground calculation as:

F(,j,t) = H(,j,t) —=B(i,j,t) = H(i,j,t) — H(i,j, t — tiqg). (11)

In this work, the value used was tiag = 8. This parameter is, once again, significantly
influenced by the velocity distribution of the targets captured in the image sequence and,
in turn, significantly influences the clarity and reliability of the resulting foreground. In
short, frames located at a temporal distance of tiag apart must be adequately different, in
order to reveal a full-body displacement of the target. If targets are moving so slow that
they do not cover the complete distance, only part of their body will be identified as a
moving image component. To make this point clearer, assume the path followed by a

target:

P.(t) = (ipyjr,) + (Vi Vy) - £, (12)
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where Px(t) represents the path of a specific pixel located on the edge of a moving target x
in the sequence, with initial position P, (t,) = (ipo,jpo). For the sake of simplicity, the
target is assumed to be rigid, travelling along a linear path, which is oriented along its
maximal dimensional axis. All these assumptions are relatively reasonable and are
expected to hold for any limited timespan, while typical fish swim primarily along their
longest axes, in terms of shape. At a time t1 = to + At, the position of the given pixel will
be:

Pe(t)) = (it,jr,) = (ip, + Vi - At,jip, + V5 - At), (13)

It is furthermore assumed that the target is contained within the rectangular
dimensional range of the depicted image sequence for the entirety of the time span under
analysis, i.e. the target does not move out of the visible area. Based on the assumptions
that the target is rigid and travelling along their largest axis, the distance between the two

pixels is approximately equal to \/(Vx 402 + (V- At)z. If this distance is not at least as

large as the dimension of the fish target along its large axis, the foreground resulting from
background subtraction using the given time span will lead to the detection of a distorted
(smaller, given the current assumptions) target shape. The analysis can be more clearly
seen in the simplified diagram of Figure 15 below, where the foreground resulting from
the subtraction of the frame at t> from the same frame at t: will result in target 1 being

depicted distorted, with an approximate length equal to (L1 — dy).
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Frame at t, Frame at t,

‘dl = Vl * (tZ_ tl)‘ ‘d2= \é * (tZ_ tl)‘
For small At and V :> > target overlap!

Figure 15. Two frames at times t, > t; depicting moving targets. Depending on target velocity and

temporal frame distance, background modelling based on lagged frame subtraction may lead to
underestimation of foreground target size (case of target 1 on Figure).

An important note at this point that fish targets are represented on the reconstructed
DIDSON image frames by high intensity values, due to stronger reflection and
backscatter. Empty interstitial space, on the other hand, is represented by low values, due
to lower reflection and backscatter. As a result, if part of a frame F2 is void, while the
corresponding part on a preceding frame F1 contains a target would result in negative
intensities for the subtracted frame F = F> — F1 for that location. To avoid “ghost” traces
of past targets in future frames, these negative intensity values are converted to zero.
Figure 16 depicts a frame and its background model, based on the two aforementioned
methods (constant average frame subtraction and lagged frame subtraction). For
illustration purposes, a reconstructed DIDSON image frame with a manually identified

target was chosen and the target is highlighted on each frame.
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Foreground produced by Background Subtraction

Constant Frame Lag-based
Background Model Background Model
Figure 16. Frame foreground produced through Background Subtraction using two different

methods (constant frame model and lag-based model).

The two backgrounds reveal that the constant-frame based model results in a
relatively stronger foreground signal (intensity). However, as stated earlier, the
background frame was modelled manually, by observing the image sequence and

choosing a suitable background frame which is, to the extent possible, empty of targets.

3.2.4. Foreground Masking

The process of foreground extraction is a significant step, which ensures that the
effects of motion on the sequence can be studied in isolation from its static parts and is a
traditional processing milestone for target detection and tracking methodologies. Given
the foreground image, masking techniques can be applied to separate target pixels from
the rest of the image frame and isolate them for further analysis (such as counting and
tracking). In practice, masking is simply a pixel classification process restricted to 2
classes. Because of this, masking is often carried out by thresholding, which is the use of
a specific “separator” intensity value to distinguish object pixels from the background.
This value can be any one among the values of the intensity range of the frames and, to
complicate the matter, as each frame of the sequence has different visual characteristics
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and represents a slightly different setting, each frame may require a different threshold for
optimal object detection.

A variety of algorithms exist for automatically determining a threshold value that is
suitable for object detection on a specific image frame, with many of them using
information pertaining to the histogram of the image frame. One of these algorithms that
appears to be popular in computer vision applications and which is used in the frame of
this work, is Otsu’s method, which is based on minimizing the intra-class intensity
variance (Otsu, 1979). This method performs acceptably well when histograms exhibit
bimodality, meaning two distinct “peaks” separated by a deep “valley” in between.
However, as can be seen in Figure 12 that depicts a histogram representative of the
typically available data in the usual scenarios involved in DIDSON-data-based fish target
detection, bimodality is a rather unsuitable assumption for the image frame sequence
histograms. One important reason for this is that objects are very small, compared to the
total background area, in terms of pixels. Apart from small object size, other factors that
degrade the quality of thresholding results using Otsu’s method are, potentially, the small
difference in average values between foreground and background pixels, large variance
values of object pixels and/or background pixels, the limited foreground-to-background
contrast and the effects of noise (Kittler and Illingworth, 1985; Lee et al., 1990).

After having mitigated the effects of noise through smoothing (pre-processing
stage) and increasing the foreground-to-background pixel contrast (foreground extraction
stage), as described in the previous sub-chapters, a significant additional improvement is
to mitigate the effects of the small object-to-background size ratio prior to applying
Otsu’s method for thresholding. The technique employed in this work is primarily
focused on significantly reducing the number of background pixels on the frame by
excluding areas with no apparent motion, as well as pixels that obviously belong to the
background. This way, thresholding can be carried out in the regions constrained to an
area around the moving targets, which is proportionately smaller, so that the total object-
to-background pixel size ratio becomes significantly larger and the histograms of the
detected regions-of-motion begin to better approximate bimodality. By applying Otsu’s
method focusing on the smaller “moving” regions of each image frame of the sequence,
improved results can be achieved with respect to target detection and tracking. An
example of how constraining the area to threshold around a specific region encompassing
a moving target affects the corresponding histogram can be seen in Figure 17. In addition
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to limiting the thresholded region, the histogram bin with pixel values equal to 0 has also
been excluded from the calculations, in order to intensify the distribution of the rest of the

values, as 0 can definitively be considered as background.
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Figure 17. Comparison of histogram of entire image frame to histogram of a small region
encompassing an identified target object (pixel values with intensity equal to O are excluded from the
calculations).

3.2.5. Optical Flow Field Calculation

In order to significantly confine the areas, at which thresholding is to be applied, the
optical flow field is used. The calculation follows the MATLAB® scripting environment’s
implementation of the Farnebdck algorithm. A number of parameters affect the
calculation of the optical flow field when using Farnebéck’s algorithm, which stem from

the intricacies of the algorithm itself. Some of the most important are:
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e The number of scales to use for the multi-scale optical flow component
estimation (pyramid levels).

e The down-sampling factor between scale levels for the scales used in the
iterative calculation (pyramid scale).

e The typical size of each neighborhood that is polynomially-approximated at
each step, in pixels.

e The size of the Gaussian filter used to average displacement values estimated

from different iterations, in pixels.

Optical flow can be calculated either as a velocity field or as a displacement field.
In the frame of this thesis, the two concepts are interchangeable, considering the very
small time span between frames, as this is the minimum unit of temporal resolution. For
the analysis, the field of velocity magnitudes was used, i.e. the value of \/vxTvyz at
each point. For the application of the algorithm in the analysis, three scales were used
with a down-sampling factor equal to 0.5, i.e. resolution was doubled at each level. The
filter size and neighborhood size were not specifically chosen but were, instead, used as
inputs for the genetic algorithm in the process that is described in the next chapter.

The optical flow field calculation step was found to have a profound impact on the
quality of the result. Figure 18 below depicts a smooth image frame, along with the
smooth foreground (depicted with an equalized histogram), while Figure # depicts the

optical flow displacements as calculated on that frame using two different parameter sets.
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Smooth Frame Frame Foreground
Figure 18. Smooth frame and extracted foreground based on the processes analyzed
in the previous subchapters.

145

Displacement
Displacement

Filter Size = 9 pixels

Filter Size = 17 pixels
Neighborhood Size = 7 pixels

Neighborhood Size = 23 pixels
Figure 19. Optical flow displacement field for the image frame of Figure 18, using

two different choices for the filter size and the neighborhood size parameters.
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3.2.6.  Genetic Algorithm — Conditionally Optimal Mask

The filter size and the neighborhood size parameters significantly affect the optical
flow field calculation result. The resulting field depends on these parameters in a
nonlinear manner, while no straightforward method exists to accurately quantify this
dependency. As a consequence, no reliable way exists to choose suitable values for these
parameters, beyond experience and testing. Furthermore, their values are constrained to
be integers in the context of image processing, as they, in fact, represent pixel units. For
this reason, values for these parameters were determined by use of a constrained genetic
algorithm, where the solution space is bounded and constrained to the integers. The

typically used setup employed the following options:

e 3 pixels < Filter size < 70 pixels.

e 3 pixels < Neighborhood size < 70 pixels.

e 6 individuals (population size).

e 5 generation limit.

e Penalty function 1: Average number of masked pixels per frame.

e Penalty function 2: Constant penalty per very small or very large object.

Two option sets were used, each one using one of the two penalty functions. By
using the average number of pixels per frame as the penalty function, the objective of the
genetic algorithm is to produce a filter size — neighborhood size parameter pair, which
leads to the tightest possible average mask per frame. In that sense, the mask will contain
the fewest mask pixels possible, hence avoiding a mask that will be affected by large
objects, such as shadows or irregularly dispersed shapes. Furthermore, in order to avoid
triggering a convergence to unreasonably low masked pixel counts (for example a totally
empty mask), a lower bound is set for both the Filter size and the Neighborhood size,
which is chosen to three pixels.

A different condition is used by the second penalty function, namely that detected
objects should not bee too small or too large and not too many in total. In specific, objects
smaller than 10 pixels in total apply a penalty that is inversely proportional to their size.

Similarly, for each object larger than 5000 pixels in total, a very large constant penalty is
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applied. This heuristic is expected to lead to less noise, by penalizing too small objects,
while practically eliminating very large objects, which are expected only in cases of very
unsuitable processing parameters. These two specific penalty functions are expected to

lead to results that are conditionally optimal.

3.2.7. Output Evaluation

The resulting mask was evaluated by manually counting targets on the 1000-frame
reconstructed DIDSON sequence and performing a customized automatic detection of
connected components on all frames of the corresponding masked image sequences from
the two different solutions. The automated detection was set to include only components
with a total number of pixels between 50 and 350, while excluding smaller or larger
components. Detected components on each frame were compared with the actual fish
targets manually detected on the corresponding frames of the original video. Success rates

were calculated for each method, as well as false detections.
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4. Results

The dataset used for the analysis was reconstructed to a video sequence of [717
pixel * 400 pixel]-sized image frames and a subset of 1000 frames was kept for the
analysis. The genetic algorithm was set up to evolve 5 generations of 6 individual
solutions (optical flow field estimation parameters). Using the penalty function of
average mask pixels per frame, Figures 20 and 21 below depict the results of a single
test run over 5 iterations. Figure 20 depicts the average and the best population penalty
at each iteration. Figure 21 depicts the penalties of each generation’s solution aggregate.

The total intermediate results of the process are shown in Table 3.

4
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Figure 20. Evolution of the mean and average penalty per generation along a test run

of 5 iterations using a penalty function of the average mask pixel count per frame.
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Figure 21. Solution aggregate assessment (penalties) per generation for a test run of

5 iterations using a penalty function of the average mask pixel count per frame.

Table 3.  Detailed genetic algorithm results — Solutions and corresponding penalty values for a
test run of 5 iterations.

Generation Filter Size Neighborhood Size pﬁ(ﬁsrap?eer Il\:/lrzsr:e
9 5 83790
15 10 7729
23 32 186945
1 ar 45 241782
65 49 251938
15 10 7729
9 5 83790
15 10 7729
19 31 158501
2 13 40 222835
! 5 85475
15 10 7729
15 10 7729
3 9 5 83790
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6 7 48541
8 7 49768
15 9 17157
’ 15 10 7729
15 10 7729
15 8 33365
7 9 17234
) 5 12 2473
14 10 7729
5 12 2473
15 10 7729
14 10 7729
8 8 31806
° 5 12 2473
11 7 50719
5 12 2473
5 12 2473
8 9 17460
3 9 17280
° 13 7 51535
4 12 2473
5 12 2473

Figures 20 and 21, as well as Table 2, reveal how each successive generation
retains the most successful individuals from the previous generations, often in more
than 1 copies, while combining individuals and achieving increasingly successful
solutions. Based on the genetic algorithm results, the optimal solution was chosen as a
Filter Size of 5 pixels and a Neighborhood Size of 12 pixels. Using the same parameters
for the case of the second penalty function, which applies a significant penalty for very

small and very large objects, leads to the corresponding results shown in Figures 22 and

23.
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Figure 22. Evolution of the mean and average penalty per generation along a

test run of 5 iterations using a penalty function assigning a significant penalty to very

large objects and a size-dependent penalty to very small objects.
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run of 5 iterations using a penalty function assigning a significant penalty to very large

objects and size-dependent penalty to very small objects.
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The figures reveal that the individual solutions belong to two groups, which are
characterized by a very large difference in evaluated penalties, by multiple orders of
magnitude, similar to the difference in applied penalties. The ones with the very large
values are those that contain one or more very large objects in their masks, which is
interpreted as a probable effect of artifacts due to the specific parameters used in the
processing. Among the individual solutions with a small penalty, most are kept between
generations and, eventually, the mean penalty per generation shows a dramatic
reduction, which means that the algorithm converges in the vicinity of solutions that do
not produce very large components in the masked frames. The specific penalty values
and the filter and neighborhood sizes associated with each individual solution can be

seen in Table 4.

Table 4. Detailed genetic algorithm results — Solutions and corresponding penalty
values for a test run of 5 iterations using a penalty function assigning a significant penalty to

very large objects and size-dependent penalty to very small objects.

Generation Filter Size Neighborhood Size Total Penalty

9 ) 1507555
15 10 16252
19 27 425425

. 25 19 32308
36 12 2107
29 17 22228
36 12 2107
15 10 16252
27 12 267

? 27 16 11154
36 18 36307
33 13 95
33 13 95
27 12 267

> 27 16 11154
31 8 595990
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25 15 4152
: 33 13 95
33 13 95
33 13 95
33 13 95
4
33 13 95
38 16 24221
33 14 76
33 14 76
33 13 95
33 13 95
> 33 13 95
33 13 95
33 13 95
33 14 76
33 13 95
33 14 76
° 33 13 95
33 12 1126
33 14 76

The figure below depicts an image frame that has been masked using the proposed
algorithm, based on the conditionally optimal parameter values for the calculation of the

optical flow field, with the condition of a minimized mask pixel count per frame.
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Figure 24. Refined mask calculated using the proposed algorithm, with the
conditionally-optimal optical flow parameter values, superimposed on a single smoothed
DIDSON frame.

Per-frame target detection and comparison with ground truth was carried out by
placing the original image sequence next to the masked image sequence with detected
objects and manually evaluating successful and false detections for each frame. A specific
frame can be seen for the two cases in Figures 25 and 26. The Figures reveal a cleaner
output result using the second penalty evaluation function, which places a penalty to both
very small and very large objects. Per-frame target detection success rates were classified
for each method in 7 classes, ranging from 0% to 100% and per-frame mis-detections
were classified in 12 classes, ranging from 0 to 10+ mis-detected targets. The results can

be seen in Figures 27 and 28.
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Figure 25. Manual target detection layout frame for result produced using a

penalty function of the average mask pixel count per frame.
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Figure 26. Manual target detection layout frame for result produced using a
penalty function assigning a significant penalty to very large objects and size-dependent

penalty to very small objects.
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Figure 27. Classified per-frame target detection success rate — Comparison between

methods.
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Figure 28. Classified per-frame target mis-detections — Comparison between

methods.

Figure 27 indicates that the “33-14” method (filter size of 33 pixels and

neighborhood size of 14 pixels) has a generally higher success rate in all success rate
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classes, compared to the “5-12” method (filter size of 5 pixels and neighborhood size of
12 pixels). Figure 28, on the other hand, indicates that the “33-14” method results in more
per-frame target mis-detections, faring worse than the “5-12” method. While this seems to
contradict Figures 25 and 26, which show a cleaner mask for the “33-14” method than the
“5-12” method, this result is explained by the detection method, which was set to exclude
target detections with a total overall size < 50 pixels. In the final mask of the “5-12”
method, such small components are more abundant than in the final mask of the “33-14”
method. If these small components had been included by the detection method the result
would have been a significantly larger number of target mis-detections for the “5-12”
method and a more favourable result profile for the “33-14” method in Figure 28.

A numeric comparison indicating the performance relation between the two
methods for all frames is seen in Table 5, which reveals that the “33-14” method has an

apparent performance advantage in correct detections.

Table 5. Direct comparison between methods. Indicates the number of frames, for
which each method outperformed the other one in terms of correct detections, or the two

methods resulted in an overall equal success rate.

Performance Percentage of
Comparison Frames
33-14 > 5-12 22.3 %
33-14 > 5-12 11.8 %
33-14 =5-12 65.9 %
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5. 'Conclusions

This thesis made an attempt to produce locally optimal results through the use of an
automated, parametrically-optimized, optical-flow-based, adapted motion detection
workflow. The proposed methodology aims to minimize user intervention by employing
automated and self-adjusted algorithmic procedures, such as a genetic algorithm. One of
the very important steps of the process is the calibration of this genetic algorithm, in order
to achieve conditional optimality, by choosing a penalty (or fitness) evaluation function
for minimization (or maximization). The chosen penalty functions were, in turn, a) the
total masked pixels per frame and b) a weighted sum of the total number of too small and
too large distinct connected components per frame for the optical flow field mask. This
part of the methodology was employed to overcome the problem of selecting a subset of
the parameters, which have a relatively unforeseeable impact on the result.

The key parameters of filter size and neighborhood size for the step of the
calculation of the optical flow field from the DIDSON image sequence were confirmed to
significantly affect the finally calculated mask. A [filter size, neighborhood size] choice of
[5, 12] appears to conditionally minimize the total masked pixels for each frame, while a
choice of [33, 14] conditionally minimizes the total number of distinct connected
components. The overall algorithmic procedure has been observed to successfully lead to
a locally optimal fish target mask from DIDSON data, producing promising results with
minimal user intervention. However, the algorithm strongly depends on a good choice of
a penalty function, which is not always intuitive and may need to mimic intelligent criteria
in a deterministic manner.

Another observation that is worth mentioning is that the two different penalty
functions lead to a convergence to almost the same neighborhood size as an input to the
optical flow algorithm, namely 12-14 pixels. This is the average size of the region, where
motion can be optimally detected, which, in turn, can be interpreted as the largest
potential size of the observed moving structures (i.e. fish targets). Depending on the
orientation of the targets, their length can be anywhere between 12 to 14v/2 pixels. Since
the analyzed reconstructed videos have a total width of 400 pixels, a range of 10 m and a
total field of view of 29° correspond to an approximate total width of ~5 m, meaning a

total of 5/400 = 1.25 cm pixel width. Therefore, the detected target average length ranges
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between 15 cm and ~24.7 cm. These can be taken as indicative limits for the observed
fish targets.

While the algorithmic process was used with adequate success in two different
datasets, the results need external validation by comparing with alternative methodologies
that produce similar outputs. One of the most important drawbacks of the process is the
relatively long time taken to calculate the optical flow field calculation algorithm.

Because of the relatively small (and typically bounded) total image sizes in the
typical reconstructed DIDSON image sequences, as well as the significant difference in
computational overhead between most sub-procedures and the optical flow calculation,
the latter dominates the total computational complexity. The process of smoothing is the
only sub-process that is as computationally cumbersome as the optical flow field, but is
only performed once. As a result, the entire algorithmic process depends primarily on the
total individuals and iterated generations of the genetic algorithm, as each generation
requires the extraction of the optical flow field (in order to mask it and evaluate the result)
for each solution among the individuals. A potential improvement that can be employed
to increase the efficiency would be to use parallel computation for the calculation and
evaluation of each separate solution individual.

Last but not least, another expected benefit of the present methodology is the
possibility of establishing representative optical flow field calculation parameter values
for the analysis of DIDSON echosounder-obtained image sequences physically and
structurally similar to the dataset sample analyzed in the present thesis. The determination
of similarity in this context is, however, an additional problem that can be dealt with in

further research efforts.
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