INTER-FACULTY MASTER PROGRAM on
COMPLEX SYSTEMS and NETWORKS

SCHOOL of MATHEMATICS
SCHOOL of BIOLOGY
SCHOOL of GECLDGY
SCHOOL of ECOMOMIC S
ARISTOTLE UNIWERSITY of THESSALONIKI

httpecosynet auth.qr/

MASTER THESIS

Analysis of recommender system algorithms in the Movielens dataset

AvaAuon cUOTNUATWY AUTOUATWY CUCTACEWYV 0TO cUVOAO dedopévwv Movielens

Anastasia Foudouli

Supervisor: Bratsas Charalampos, AUTH

AIRTMHMATIKO NPOTPAMMA METANTYXIAKQN ZNOYAQN aTa

NOAYNAOKA ZYZTHMATA ka1 AIKTYA
TMHMA MAGHMATIKON
TMHMA BIOAOTIAZ
TMHMA FEQAOTIAZ
TMHMA OIKONOMIKQN EMIZETHMON
APIZETOTEAEIO MANEMIZTHMIO @EZZAAONIKHE
hitp:/fcosynet.auth.ar/

METANTYXIAKH AINAQMATIKH EPTAZIA

AvAAUON CUCTNHUATWY QUTOUOTWY CUOTACEWV 0To oUVOAo Sebopévwy Movielens

Analysis of recommender system algorithms in the Movielens dataset

Avaotaoia ®oudoUAn

EmBAEnwv: Mnipatooc XapaAaumnoc, AMO

EykpiBnke amno tnv TpiueAn E€etaotikr Entponn tnv AekepPBpiov 2019.

X. Mnpdtoag N. Qapuakng l. Avtwviou
Mélocg EAIM, A.MN.O. Av. KaBnyntng A.MN.0. KaBnyntng, A.M.0.

Oeooalovikn, AekéupBprog 2019

Avaotacia QoudoUAn

Mtuxlovxo¢ Mabnuatikog A.N.O.

Copyright © Avaoctacia QoudoUAn, 2019
Me emdpUAagn mavtog Sikalwwpartoc. All rights reserved.

AnayopeUetal n aviypadr, anobnkeuaon Kal Slavopn Tng mapovoag epyaciag, €€ oAokApou N TUAMOTOC
OUTNAG, YlO EUMOPLKO OKOMO. Emitpémetal n avotimwon, amobrnkeuon Kol Slovopn yla OKOTO N
KEPOOOKOTILKO, EKTIALOEUTIKAG 1 EPEUVNTIKAG duoNg, UTO tnv mMpolnobeon va avadépetal n mnyn
TPOEAEUONG KaL va Slatnpeital To mapov pnvupa. Epwtripata mou adopolv tn XpHon tng epyaciag yia
KEPOOOKOTILKO OKOTIO TIPETEL va areuBuvovTal Tpog Tov cuyypadEa.

OL amoPELC KOL TA CUMITEPATHOTA TIOU TIEPLEXOVTOL OE QUTO TO £yypado ekdpalouv Tov cuyypadEa Kal
Sev mpénel va epunveutel 0tL ekbpalouv TIG emionueg B£oelg Tou A.M.0.

Abstract

Recommender systems encompass a class of techniques and algorithms which are able to suggest
“relevant” items to users. Ideally, the suggested items are as relevant to the user as possible, so
that the user can engage with those items: YouTube videos, news articles, online products, and
so on.ltems are ranked according to their relevancy, and the most relevant ones are shown to the
user. The relevancy is something that the recommender system must determine and is mainly
based on historical data.

Recommender systems are generally divided into two main categories: collaborative filtering and
content-based systems. In this thesis are focusing on Collaborative Filtering algorithms. In the
first part, and introduction to recommendation engines, classification of recommender systems
algorithms and evaluation metrics are defined. In chapter 2, the dataset is presented and
alterations that were made to the original data due to limitation of the machine that run the
algorithms. In chapter 3, a variety of algorithms that generate item to item recommendations is
presented. These algorithms work solely on the interaction matrix and transformation that are
based on natural language preprocessing techniques. In the 4™ and 5% part, three algorithms that
predict user — item rating are created. The first two of them, alternating least squares (ALS) and
singular vale decomposition (SVD) are matrix factorization techniques and the last one is a
recommender system based on a neural network of latent features. The evolution of errors as
the training iterations pass is also presented.

Key Words

Recommender System, Collaborative Filtering, Alternating Least Squares, Singular Value
Decomposition, Latent Features, Embeddings, Neural Networks, Item to item recommendations

Contents

FY o1 1 [USRS PO PP PRV 2
KBY WWOTUS. .. ettieee e ettt e ettt e e e e e ettt e et e e e e eaa b beaeeeaeea s setteeeeaeeeasesssaeseaaaaasnssaaaesanesaansssbesaeeesenannsesnseenennans 2
D01 o 11 o TSRS 4
JUOTILOTOL GUOTOOEWVY ..ceuuvereeerrreeeeiureeesaaseeeeeasseeseaassesaeessesasssssseessssssesassessesassesesssssssssasssesssasssseessssssesasseses 4
AELOAOYNGN CUOTNATWY GUOTAOEWVY. . uveeerreeureeereeesreeestreeeseeessseesseesssseessseessseesssesesssssssssssssesssssesssesssseen 10
TTEDLYPODI) EVOTIITUIV ..eeveecerrieiieeeteeeeteeeeteeeeteeesteeeeeeeesaeessseeasaeeasasessaaesbesaaseseasasesssaesnsseeasseesssesensesennseesases 11
O 1) o o To [N ot T o PO PSP PSPPSR 19
_ 1.1 Introduction to reCOMMENEr SYSTEMSuiiiiieiie ettt e e e e e esrre e e ee e e s e enrraaeeaeeeas 19
_ 1.2 Recommended systems teChNiqUES COMPAriSONccccuiiiiiiiiieeciie ettt ere e e sre e e earaee e 24
__1.3 Evaluation of RECOMMENAEN SYSTEMSeiiiiiiiiciiiie ettt e e e e st e e srr e e earaae s eanbsaeeenaeees 25
2. T dataSEE ..ttt sttt et ettt s bt e he bt she e st e st st e e b eare e re s 29
3. ltem — to — item reCOMMENAEr SYSEEIMSuviiiiiee e ecciitiee e et e e e e et e e e e e e esaattbe e e e e e seesanbraaeaeeeeenansnns 33
B T I = 1T 411 g = T g 1= PR 33
I T8 Y =1 Al o - 1Y =T IR =Yl oL o 1T [0 =P 34
_ 3.2 Similarity based tECNNIGUEScoicuiiie et e e e st r e e s aae e e e saareeeesataeeeeessaeenns 36
_ 3.3 Neighborhood based tEChNIQUES.......ccoiii et ee e e e e e e e e e rrraaeeaaeaan 38
_ 3.4 Text ProcessSing tECNNIGUESc...euiiiiiiee ettt e e e e et ee e e e e e e e stet e e e e e e e e s astasaeeeeesasnssreeeeananan 41
4. Matrix factorization tECHNIGUESeiiiii ettt e e re e e e e e e tabe e ee e e e eesnnrsaeeeeeeesensens 47
4.1 ARErNAting |€AST SQUAIES ..eiecviiieeccieeeectie e ettt te e et ee e et e e e e tar e e e s teeeeestaeesessaeesassaeesansseeesnnseeeesnnsaeenan 47
4.2 Singular value deCoOMPOSITION......ccuiiiiiiiiiccie et e e e et e e e s sbte e e esstaeesesseeesssaeeesnnnaeaaas 57
5. DEEP |€arNING LECANIGUES.....c e ittt e e e e et e e e e e e atrtae e e e ee e s ntataeeeeeeeeesnssaneesesesansenes 65
B XX I =1 T 41T g = T g 1= PR 65
_ 5.1 Neural Network of embeddings recommender SYStEMccccviiiiiiei e 70
B. CONCIUSION Lttt ettt e h e st s e st e bt et et e b e e b e e b e e sh e e meeebe e e et et e et e enreesreenneesreenaee 77

21T o LT =4 =T o] o 1 RSP 78

Zovoyn

ZUOTAUOTA CUCTACEWV

Ta cuotApaTa AUTORATWY cUoTAcEWV | Recommender systems, glvat aAyoplOpoL mou o KUPLOG
OKOTIOG TOUG €lval n dnuioupyia plag Alotag mpog mPOTaon, VEWV AVTLIKELLEVWY OTOUG XPHOTES
TOU OUOTHMOTOG. Ta QVTIKEMEVA TIOU TIpoTELVOVTAL Ba TIPETEL VAL CUVASOUV E TLG TIPOTLUNOELG
Tou KABe xpriotn ylUautd Kal cuxva TETOLO CUCTAUATA €XOUV 0a¢ OTOoxo va TipoPAéPouv tov
BaBuo mou Ba apEoel To KAOE POIOV EVOG KATAAOYOU O€ KABE XproTN TOU CUCTHOTOC WOTE VAl
npoteivouv auta pe ta vPnAotepa oKop.

H €peuva otov topéa twv Recommender systems Eekivnoe ta péoa tng Sekaetiag 1990 kot
£KTOTE TOL CUOTH AT AUTA £X0UV e€eAyOel kaL £xouv SlaxwploTel HeETAEV TOUC WOTE VOL TIOPEXOUV
TIC KAAUTEPEG OUOTAOELG. MPOKTIKA, TIPOKELTAL Yia aAyopiBuoug dktpapiopatog mAnpodopiog
oL omoiol umopoUV va KatnyoptomolnBouv o€ TPELG KAAOELS, TEXVIKEG OUVEPYATIKOU
¢ tpapiopatog (Collaborative filtering), texvikég dNtpapiopatog pe BAcn to MEPLEXOUEVO
(content based filtering) kaBwg kat UPPLOLIKEG TEXVIKEG peTAEL Twv SUO TpoavadepBEéviwy
TEXVIKWV. OL TEXVIKEG QUTEG cuvexilouv va egeAiooovTal SLOPKWEG WOTE va TIAPEXOUV KOAUTEPES
OUOTOOELG ME TNV TAON TIOU ETUKPATEL va elval n mpooOnkn véag mAnpodopiag oto cvuotnua,
OMw¢ TMAnpodopla amd KOWwVIKA Olktua, poéC S£SOUEVWV TOU (VIEPVET TWV TPAYHATWV
(internet of things), yewypadikéc mAnpodopleg K.a..

O topéac Twv Recommender systems ouveyilel va eivat upiotou evdladépovtog kabwe pmopet
va uTtapésl mMAnBwpa mPaKTkwV epappoywv. Ot alyoplBuotl auvtol pmopolv va edpapproctolV
otnv avalntnon oto Sladiktuo, oTig mpotaoelg BLBAlwY, TalVIWY, LOUOCLKNG, paper, El6NOEwWV
KATL.. EmakoAoUBwg, av Kal n avamtuén twv cuotnuAtwy autwv Eekivnoe otov akadnuaiko
kAabo, mMAEov uTtdpxel pia mapAdAAnAn pory BeAtiotomoinong tTwv oAyopiBuwv autwv otov
ETALPLKO TOMEQL.

Elva Aoutov epdaveg otL eivat SUo oL KUPLOL OTOXOL TWV CUCTNUATWY AUTOMOTWY cUoTAcEwv. O
TIPWTOG, 0 OMOoi0g Kal armevBUVETAL 0TOUG XPAOTEG ia MAATPOPUAG OTIOU YIVETAL XProN €VOG
TETOlOU ouoTAMATog, €lval va auénBel n wavomoinon tou xpRotn MECW TNG XPNONG TNG
mAatdoppag. Ocov adopd Tt MAEOVEKTAUATA TIOU OIMOPPEOUV OO TN EVOWUATWON TETOLWY
CUOTNUATWY OO ETALPLES, AUTEC auéavouv Tnv Kepdodopia Toug HEow aUENonG TWV MWANCEWV.
Yrdpyxel moAU duvatry cuoXETon METAlL Twv SUo auTwV oToXwv, dAwote Sedopévou OTL oL
TIPOTAOEL TWV VEWV TIPOIOVTWY YIVOVTOL OTOUG KATAVOAWTEC, BeAtioTonoinon tne Alotag twv
TIPOTELVOUEVWV TIPOLOVTWY, 0dnyel 0€ Lkavomoinon tou meAATN, TMEPLOCOTEPN KATAVAAWON KO
avénon Twv kePdwv NG €Talpiag. Ta CUCTAMOTA QUTA €XOUV EUPELX XpPriON OE KOTOOTHUOTA
NAEKTPOVIKOU EUTOPIOU HETATPETOVIAG XPNOTEG TNG OEAdOg 0 ayopaoteg, aufdvoviag tnv

adooiwor toug (loyalty) oto cuykekplévo site TapEéXovtag Toug TNV SuvaTtoTNTA OyOoPWV OE
Alyotepa KALK Kol TapEXovtag KaAUTEPEC MPoadopEC 0 GUXVOUC TTEAATEC.

Yrapyxel mMANBwpa CUCTNUATWY OLUTOUATOTOLNUEVWY CUOTAOEWV. KaBe €éva tétolo cuotnua av
Kall uTtoxpeoUTaL va. atkoAouBel BaoLKOUC KAVOVEG, TIPOCAPUOTIETOL OTIC OVAYKEG TWV TIEAATWV
oG etatpiag kobwg Siadopetika mpoBAnpota amattouv SlopopeTikEC Avoelg. Ta
napadeiypata mouv akoAouBouv divouv tn opalpLkn ELKOVA TPLWV TETOLWV CUCTNUATWV.

= JUotnua mpotacswv BLRALwV
ESw, 0 otoxog tou cuotrpatog eivatl n mpoPoAn véwv TitAwv otoug xpnotes. Etol to
evllopEpWY TOU XPAOTN TMAPOAUEVEL AUEIWTO KAl N KATAVOAWOH Tou otn mAatdopua
auavetal.

= J00TNUA IPOTACEWY LETOXWV
ITO OUYKEKPLUEVO TtapAaSelypa, pia Alota Twv 1o KepdodhOpwv PETOXWV TTAPoUCLAleTal
oTOoV XpNotn tng mAatdpopuag. ESw, n MPoTAcels VEWV HETOXWV SEV £lval OMOLTOUUEVO
TOU ouotnuatog. Metoxég mou €xouv NON ayopaoTel 0to MapeABOV amd TouG XPrOTEC
Umopouv va potabouv ava, epOcov QUTEG MapaUEVOUV KEpSOPOPEC

®" JUOTNUA MPOTACEWVY TTPOLOVTIWY
2TO OUYKEKPLUEVO CUOTNUA, TIPETIEL VO UTIAPXEL LOOPPOTILAL OTLG CUCTAOELG HETAED VEWV
TPOIOVIWY Kal TPOIOVTWVY Tou €xouv Nén ayopoaotel moAaltdtepa amod tov meAdtn. H
ouxvotnta Ue TNV omoia mpoidvta Bpiokovtal oe moAatdtepa KoAdbla evog meAdrn,
urmopel va xpnotpomolnBel wote va yivel emavacvotacr Touc. MopoAa autd, ol
TIPOTAOELG VEWV TIPOLOVTWYV elval e€loou ONUAVTIKECS, ELOAAAWCE TO cUOTNHA KLVOUVEVEL VOl
XAOEL TOV IEAATN, O OTIOLOG UTTOPEL vl XAOEL TO eVSLadEPOV TOU.

To. OUCTAMOTA OQUTOMOTWY OUCTACEWV MUTOPOUV KatnyoplomolnBolv o©e TPELG UEYAAEG
katnyopieg. H katnyoplomoinon aut Baoiletal otoug alyopiBuoug mou xpnollonolouvTol
kaBwg kal tnv MAnpodopia mou xpeldletal yla tnv ulomoinor toug. Ta Baowd €idn eival ta
TIAPAKATW:

= Collaborative filtering — «Zuvepyatikd» dAtpaplopa
= Content based filtering - dlAtpapiopartog pe Baon to mepLleXOUEVO
= Hybrid systems — uBptéikd cuotrpata

Collaborative Filtering

OL puéBodol collaborative filtering yla ta cuotipata avtopdtwy cuotacewy, ival pEBodol mou
Baoifovtal povo otig aAANAETILOPACELC TIOU £(XE £vVaC XPOTNC LE T TPOLOVTA 0TO TTapeABOV yLa
VO TTOPEXOUV VEEC OUOTAOELC. 2€ QUTEC TIG HeBOSoUC oL tpotdoelg Bacilovtal 0TV avaluon Twv
TapeAOOVTIKWY SpACEWV KAl TIC TIPOTIUACEL TWV XPNOTWV KABWE Kol TNV OUOLOTNTO OUTWV LE

AAAOUG XPNOTEG TOU CUOTHMOTOC. MpaKkTikd, akoAouBeital n mapadoxr OTL XPr|OTEG IOV €XOUV
emdei€el tnv (bla cupneplpopd oto mapeABov, sival mBavo va cuvexioouv va €xouv apopoLa
ocuuneplpopad kat oto peEAAov. Etol, avtikeipeva mou Bplokovtal otn AlOTO OVTLKELUEVWY UE T
omoia £xeL aAANAoeTULSPATEL Evag XpNoTNG UItopoLV va mpotabouv o€ €vav AAAO Kal avtiBeta.

OL puéBodbol collaborative filtering, pmopouv va StaxwpLotouv eMUTAEOV 0€ AAAEC UTIOKATNYOPLEC,
HE Bdaon tov alyoplBpo mou xpnotpomoLeital.

Memory based TexViKEC

TNV OUYKEKPLUEVN uTtokatnyopia Bplokoupe toug lazy learners. ESw, 6ev umdpyet n
Tapadoxr yLa CUYKEKPLLEVO HOVTEAO Kal 0 aAyoplOpog SouAelel ameuBeiag e TLG TUEG
™G aAnAentidpaong. TEtoleg TeXVIKEG Baailovtal oe avalnTAOELG KOVTLVOTEPOU YelTova,
Bplokovtag TOug IO «OUYYEVIKOUG» XPNOTEG Yl KABE XpAOTn TOU CUCTAMATOC Kol
nipoteivovtag Ta o SnUod A aVIIKEIPLEVA TNE YELTOVLAC TTOU Snuloupyeltal.

Model based texvikeég

MpOKeLTAL YLOL TNV OVTLOETN TEXVLKN, OTIOU TTAEOV UTIAPXEL N TTOpadoXN) VLA EVOL UTIOKELUEVO
VEVETIKO HOVTEAO TO OMOI0 €XEL WG OTOXO Vo «e€Nynoel» tov TPOMO LE TOV Omoio
nipaypatomnolovvtal ot atAANAemdpdoelg petafL xpriotn — mpoidvTog.

OL memory based TexVIKéG umopoUV va KatnyoplomotnBouv emumAéov os user-user (xpnotng —
TPOG — XPotn) Kat item — item (mpoiov — mpog — mpoiov) collaborative filtering.

User — User collaborative filtering

Ye auth TN HEB0SO yiveTal avamapdotacn TwV XpNOoTWV TOU CUCTAUATOG o€ Staviopata
omou kataypddetal n oAAnAenidpaocn TOUug HE TA MPOIOVTIA TOU CUCTAUATOG. TN
OUVEXELQ, N ardoTaon LETAEU TWV XPNOTWV UTIOAOYIZETAL. ZKOTIOG AUTWY TWV aAyopiBuwy
elval n elpeon Tou MO Suvatdov TMAPOPOLOU XPAOTN yla KABe €vav Xprotn Tou
CUOTNUATOG KAl N TPOTACEL; VEWV TPOIOVIWV Of auUToUg, Tou Paocilovtal otig
TIPOTLUAOELG TOU «TIOPOHOLOU» Xpnotn. MpOKeLTal yla pia TEXVLKA N omola av Kot €XEL
KaAd amoteAéoparta, ival cuvnBwg oAU damavnpr UMOAOYLOTIKA, KaBwC TPEMEL va
UTTOAOYLOTOUV amooTAcELG LeTa L KABe Suvatol cuvSuacpol XpNOoTWV.

Onwg Aén avadeépbnke, apxkd kaBe xpnotng petadpdletal oto SLAVUoUA TWV
OAANAETULOPACEWYV TOU UE TA SLADOPETIKA AVTIKELEVO TOU CUCTAATOG. TN CUVEXELD pia
METPLKN OpOLOTNTAG UTIOAOYIZETOL LETAEY TOU XpoTn TIOU pag eviladEpeL kat OAOUG TOUG
UTIOAOLTOUG XPNOTEG TOU oUVOAOU Sedopévwy. H ULETPIKN aQUTH TIPEMEL va UMOpPEL va
Slakpilvel w¢ KovtvoUG XPrOoTeG, autoug pe moapepdepeic aAnAemdpaoelg oto iSlo
OUVOAO OVTIKELMEVWV. TN OUVEXELX, adOTOU UTIOAOYLOTOUV OL OPOLOTNTEG, N TILO
Stadedopévn texViKN €lval n SlaTAPNoN TWV K — KOVTIVOTEPWVY YELTOVWY TOU XPron Kal n
npotoon Twv 1o StadeSopévwy MPoilovVTwY — cuVABWG Ao Tt ALOTA TWV AVTLKELLEVWY
HE To omolo 6ev €xel alAnAoemibpdoel OoKOPN O XPNOTNG — OTN YELTOVIA TOU
dnuoupyeitad.

Item — Item collaborative filtering

Ze auTn TNV HEBOSO Ta Mpoidvta eival autd mou petadppalovial oe SLAVUCUOTO UE TIUEG
nou adopouv TNV aAANAENiSpaon TwV XPNOTWV LE QUTA KAL OTN CUVEXELQ N OMOOTAON
METAEL TWV OVTLKELMEVWY TOU OUVOAou O6ebopévwy umoloyiletal. Avo mpoiovia
BewpouvTtal mTapOUOLa OTAV OL TIEPLOCOTEPOL XPNOTEG TTOU £XOUV AAANAETILOPACELS KAL PE
Ta 600, To €Kavav e TIapOpoLo TPOTO. MNa va mapaxBouv MPOoTACELS TTPOIOVIWY O EvVav
XPNOTN, TPWTA KOTOOKEUAZETAL N AloTa pE T avIKEipeva pe tov uPnAdtepo Babuo
oAANAeTiSpaonC Kal N OUOLOTNTA OLUTWV TWV OVTLKELUEVWY UE TOL UTIOAOLTTA TTPOIOVTA TOU
ouvoAou O&ebopévwy umoloyiletal. ITn ouvéXela SnULoupyolVTaAL VYELTOVIEG K —
KOVTLVOTEPWV YELTOVWY YLO. TA ETUAEYHEVA QVTIKE(PHEVO KOl OUTA TIPOTELVOVTAL OTOV

xenotn.

Yt model — based texvikég Bpiokovtal Kal ol pEBodol mapayovtonoinong mvakwyv (matrix
factorization).

= [lopayovtomnoinon mvakwyv

TNV MEPLMTWON TWV CUCTNUATWY CUCTACEWY, TIPOKELTAL YLO TEXVLIKEC TTAPOYOVTOTOLNONG
TILVAKWV TIOU TipooTtaBouyV Vol TTopayOVIOTIOL 00UV £vav HEYAAO Kal TTOAU apald mivako
O€ YLWVOUEVO SU0 UKPOTEPWV KL [N — apoLwyV TILVAKWV. OL Ttivakeg auTol ivatl o mivakog
XOPAKTNPLOTIKWY TWV XPNOTWVY, O OTOL0G TIEPLEXEL TNV OVATIAPACTOON TWV XPNOTWV TOU
OUOTAHATOG O€ TIUKVA SLovUOHOTA KAL O TIVOKAG TWV XOPAKTNPLOTLKWY TWV AVTLKELUEVWY
TIOU TIEPLEXEL TNV AVATTAPACTACH TWV OVTLIKELLEVWY. H tapadoxr mou yivetal o€ autr Tnv
TEXVLKN, ElvaL OTL UTTAPXEL Hia TETOLO AVATIAPAOTACH O XWPO UIKPOTEPNG SLdoTaong Kat
OTL N AvVAMaPACoTACH AUTH UIoPEL va ENYNOELG TOOO TLC TPOTLUNOELS TWV XPNOTWV aAAd
KOL TO XOPOKTNPLOTIKA TWV TIPOILOVTIWV HE TETOLO TPOTMO, WOTE UToAoyilovtag To
SLOVUOUATIKO YLWVOUEVO METAEY TwV SLAVUOUATWY XOPOKTNPLOTIKWY XPNOTWV KO
TPOIOVTIWY VA TIPOKUTITEL N aplOuntikomoinon tng aAAnmidpaong Toug.

MpéneL va emonpavOel OTL TaL XAPAKTNPLOTIKA aUTA Oev €Xouv Kapia CUOXETLON ME
XOPAKTNPLOTIKA TIoU Sivovtal 0TO HOVTEAO OE TEXVIKEG PIATPAPIOHATOG TEPLEXOUEVOU.
AvT’ auTOoU, TIPOKELTAL YLO. XOLPOKTNPLOTLKA TOL OTIOLa «AVOKOAUTITOVTALY OO TO CUCTNHO.
MaAlota, KoOwG TPOKELTOL Yla XOPAKTNELOTIKA Tou pabaivovtal kat oOxL yla
XOPOKTNPLOTLKA TTIOU 0pi{ouV MAPAUETPOUG TWV XPNOTWV 1 TWV TPOLOVTIWY, N OXECHN TIOU
avarnaplotolV ival mMoAAEG popég aduvato va katavonBel amod tov avBpwrmo. Mapoia
QUTA, ME TNV XPON QUTWV TWV TEXVIKWY, N avVOmapAoTacn TOU XWPOU TOU TIPOKUTITEL,
elval kovtd og autr mou évag avBpwmnog Ba okeptoTav evotiktwdwe. EToL Aowmov, oe
QUTOV TOV VEO XWPO TIOU SNULOUPYELTOL TOOO TIPOIOVTA ME TTAPOHOLA KXOPOKTNPLOTIKAY,
OTIWG KOLL XPOTECG £XOUV KOVTLVEG OVATIAPOOTACELC.

Content based filtering

Ta cuoTUATO TIOU €(vOL KATAOKEUAOUEVA WE QUTH TNV TEXVIKA, Bacilovtatl oto PAtpdplopa
XOPAKTNPLOTIKWY TwV TPOIOVTWY aAAA KoL TwV XPNOTWV TIPOKELUEVOU VO KOTOOKEUAOTEL Eva

HOVTEAO OUOTACEWY. lNa va edappooTel €vag TETOLOG alyoplOuog, Mpoamalteite éva BrRua
opXLKOTIOlNONG TOU CUCTHATOC, OTIOU SnLoupyouvTaL Ta TIPOdIA TwWV XpPNoTwV KABwWS Kal Twv
npoloviwv. Napadeiypatog xapwv pe tnv gyypadn o€ pia mAatdpopua, oL XpAoTeEG UMopouV va
dnuloupynoouv pia Alota mpaypdtwv mou Toug evdladépouv KaBwWE Kal Vo TIOPEXOUV
Snuoypadikd XapaKTNPLOTIKA TIoU Toug adopolv. ITn CUVEXELA TO CUOTNUA CUOTACEWV TIOU
KATALOKEUALETAL UTTOPEL VOL TIPOTEVEL AVTLKELEVA O XPOTEG TNG TTAATHOPHAG XPNOLLOTIOLWVTOG
™V nAnpodopia mou adopd ta MPodiA TWV MPOIOVIWVY KoL TWV XPNOTWV.

H mapadoxn tou cuotApatog eival OtL 0 Xpnotng eviladpEpeTal yLa mpoiovia ta onoia £Xouv
TIAPOHOLA XOPAKTNPLOTIKA LE AUTA TtoU £xeL aAAnAoemISpAceL oto apeABOV. Ta avIKE{LEVA TOU
OUVOAOU Se80UEVWV QVOTTOPLOTWVTA OTOV XWPO TWV XOPOAKTNPLOTIKWY TIou Ta SLEMOUV Kol
OMOLOTNTEC HETAEL TWV TPOLOVTWY uTtoAoyilovtal oTov XWPo auTo. EToL VEEC CUOTAOELG yivovTal
TPOTEIVOVTOC OOLO OVTLKELUEVAL.

Y€ aQUTH TNV TEXVLKA SeV oG eVvOLOPEPOUV OL TIPOTIUNOELC YELTOVIKWY XPNOTWYV, ylot aUTO Ko Sgv
elval amopaitnto éva peydlo ocuvolo OSedopévwv pe oAANAETLOPAOCELC TOU XPrOTN ME
Sladpopetikad mpoiovta wote va avénbel n akpiBela Twv MPOTACEWY TOU CUOTHUATOG. H povn
anaitnon Tou cUoTAMATOG €lval va UTIAPXEL Evag aplBuog mapeABoviikwv aAAnAemibpdoewy
KaBWG KoL vaL €XOUV OPLOTEL XOPOKTNPLOTIKA TWV AVTIKELLEVWVY 0TO TIPOdIA TwV XPNOTWV.

YBPLOLKEG TEXVLKEG

To uBPLEIKA CUCTAMATA CUCTACEWY, CUVOUALOUV TIG SU0 MAPATIAVW TEXVIKEC WOTE VA
€VIOXUOOUV TA TIPOTEPHOTO KAL VO LELWOOUV TA ELOVEKTH AT TNEG KAOE TEXVIKAG. H Lo
Stadedopévn vBpPLSIKNA TEXVIKA cuvdualel ueBodoug collaborative filtering padl pe kamowa
mAnpodopia mou adopd TO MEPLEXOUEVO TWV OVTIKELLEVWY KOL TWV XPNOTWV.

MNpotepAHATA KOL LELOVEKTAHATO TWV HEOGSWV
1. Collaborative Filtering

Ta cuotpata cuotdoswy Tou Bacilovtal oe texVikeg Collaborative Filtering (tdoo memory
000 kat model based) dgv anattolv nepetaipw mMAnpodopia, MEpaA Ao T AVILKEIULEVA, TOUG
XPNOTEG Kal TNV aAAnAenidpaon petalt Toug. MNa éva cLOTNUA TTOU 0 APLOUOC AVTLKELLEVWY
Kal xpnotwv dev avéavovtal, véeg aAANAemdpAaceLg mou kataypddovtal oe Babog xpovou,
€loayouv Véeg mAnpodopieg oto cvotnua. Kabwg Snuoupyouvtal véa mapadelypata, Umopei
va auénBel N AmMOTEAECUATIKOTATA TOU CUOTHHATOC. QOTO00, N AMOUCLO ETILITAEOV
XOPOKTNPLOTLKWVY YL TOL OVTIKELUEVOL KOIL TOUG XPHOTEG ATTOTEAEL TO KUPLO HUELOVEKTNHA TNG
Xpnong tétolwv aAyopibuwv. Ot adyoptBuot Collaborative Filtering umod€pouv amod pa peyain
TipokAnon, to «cold start problem». Eivat adUvatov va npoteivouv mpoiovta o€ VEOUG XprOTES,

N VO T(POTELVOUV OVTIKELUEVA HE TIOAU XAUNAO aplOUO KaTaysypappEVWY 0AANAETULOpACEWV.
AUTO propeil va KatamoAeunOel Le amAEG MPOCEYYIOELC, OTIWGE N TTPOTOON TUXOLWY QVTLKELUEVWV
OE VEOUG XPNOTEG I VEWV OWVTLKELLEVWV O€ TUXALOUG XproTeg (random strategy), | mpdtaon
SNUODIAWY AVTIKELLEVWVY OE VEOUG XPHOTEG, N VEWV AVTIKELLEVWVY OTOUG TILO EVEPYOUG XPROTES
(maximum expectation strategy). H BéAtiotn mpooeyylon wotdoo eival n xprion LG non-
collaborative pebddou otnv apxn Tou KUKAOU {WNG TWV VEWV XPNOTWV KOL AVTIKELMEVWY. H
HnEBodocg user-user Baaoiletal otnv avalntnon TAPOUOLWY XPNOTWV o€ O,TL apopd TV
oAANAemiSpaor) Toug UE Ta avTLKELpEVA. MeVika, KABe Xpriotng £xel aAANAosTLSpAoEL pe Alya
HOVO OVTLKELpEVa. AuTO KaBlotd tn pEB0So OXETIKA eVaioBNTN 08 KABE KATAYEYPAUUEVN
6paaon. Ano tnv alAn, epocov n teAlkn cuotaon BacileTtal AMOKAELOTIKA OTLC KATOXWPNMEVEG
OAANAETULOPAOELG XPNOTWV TIOU BEWPOUVTAL TTOPOLOLOL LE TO XPROTN Tou pag evoladEpel, Ta
QTMOTEAECHATA ELVAL TILO EEATOULKEUEVAL.

AvtiBeta, n uéBodog item-item Baciletal otnv avalntnon MOPOUOLWY OVTLKELLEVWY, OF O,TL
adopd tv aAnAemnibpaon xpAotn-avilkelhevou. Kabwg, o€ YEVIKEG YPAUUES, TTOAAOL XPOTEG
€XOoUV AAANAOETILOPACEL UE VA CUYKEKPLUEVO QVTIKELLEVO, TO cUoTnuA &gV emnpedleTal o€
HEYAAO BaBOpO amod pepovwpeves aAAnAemdpdoels. Ztov avtinoda, aAANAemdpdoeLg tou
TIPOEPYOVTAL aTt' OAOUG TOUC XPNOTEG (aKOMA Ko art' auToUC He TTOAU S1adopeTIKO LOTOPLKO o
TOU XpNoth Tou pog eviladepet) Aappfavovrat unton yia Tn ocUoTACH. ZUVETWCE, N TIPOCEyyLoNn
autn givat Atlyotepo e€atopkeupévn amno tn uEBodo user-user, aAAA Lo EVPWOTH.

2. Content based filtering

To kUplo MAeovEKTN A TG content based filtering mpooéyylong og oxéon We tn collaborative
filtering mpooéyylon, cuviotatal oto yeyovog otL To «cold start problem» pnopei va
anodpeuyBel otav Ta aviikeipeva Slabétouv emapkeig meplypadeg. EmumAéov, cuotripata
OUOTOOEWV TIOU £XOUV KATAOKEVOOTEL UE TNV TTOPATIAVW TEXVLKI UTTOPOUV VA TIPOTELVOUV
T(POLOVTA OE XPNOTEG UE LOLALTEPEG TIPOTIUNOELS, BploKovTag avikelpeva mou avtiotolyilovtal
o' auTa ta Kpttrpta. Mn dSnuodAn Kat Kovoupla aVIIKEIPEVA UmopoUV va cuotaBouv, Kabwg
Ol CUOTAOELG EEAPTWVTOL ATTOKAELOTLKA OTTO TAL XAPAKTNPLOTLKA TWV OVTLKELLEVWV KaL TWV
XpNotwv. TEAOG, N AvamapAoTAcH TOU TIEPLEXOMEVOU ETUTPETEL TN XpHoN ULag MAnBwpag
TIPOCEYYIOEWV VAAUONG, OTIWG TEXVIKEG ETESEPYATLaG KELUEVOU, onUacloloyLki TAnpodopia
KTA. QOTO00, N EUPEDN TWV KATAAANAWYV XOPAKTNPLOTIKWY Uropet va amodetyBel SUokoAn (A.x.
€LKOVEC). Emionc, oL xproTeC OMavViwg CUUTIANPWVOUV TTANPODOPLEG OXETLKA HLE TLC TIPOTLUIOELG
TOUC OTLC MAATPOPUEC, EMOUEVWCE OL CUCTAOCELC OE VEOUC XPNOTEG elval SUOKOAEC. KaTOANKTIKA,
OUTA TO cuoTpaTa Teivouv va untép-e€eLldikevovtal. Ae SUvaVTaL VO TPOTELVOUV QVTIKE(HEVDL
£KTOC TOU MpOodiA Tou Xprotn, evw ta atopa dtabtouv ouvrnBwg Lo mepimAoka evdladpEpovra.

A{LOAOYNON CUGTNHATWY CUCTACEWV

To CUCTAMOTO CLUTOUOTOTIOLNUEVWY TIPOTACEWY €ival TTOAU SnuodtAr) TOOO OTOV TOUEA TWV
ETIXELPNOEWY, OCO KOL OTOV EPEUVNTLKO, Omou TmoAAol alyoplBuol €xouv avamtuxBei kot
npotaBel yia tnv BeAtiwon Twv cUCTACEWY TIOU Ttapayovtot. Autol ot alyoptBuol kaAouvtol va
avtane{EABouv og mokileg Slepyaoieg oe Stadopetikd meptBaiiovta. N' autd to Adyo sival
TIOAU ONMOVTLKO, TOCO YLOL EPEUVNTIKOUG OAAQ KALL YLOL TIPAKTIKOU OKOTIOUG, va Utopel va emihexOet
0 KataAAnAoc aAyoplBpog mou Ba tatplalel KAAUTEPA OTNV EKACTOTE Tepiotaon. O TPOTOG UE ToV
orolo yivetatl auti n Stadoyn eival cuykpivovtog €va mARBog alyopiBuwyv XpnoLUOTOLWVTAC
UETPIKEC a€loAdynonc.

Yridpxouv TOAAEG HeTPKEG otnV BLBAloypadia mou €xouv mpotabel yla TNV cUYKPLON TETOLWY
ocuotnuatwy. MNa cuvotiuata npoPAsPng Babuoloyiag evog mpoldovtog amod To Xpriotn, oL Tio
KOLWVWC XpNOoLUoToLloUpeveG otn BLBAoypadia PETPIKEG elval TO PEGO amoOAuTto odAaApa, PEGO
TETPAYWVIKO opAApa kal pila TOU LECOU TETPAYWVIKOU 0HAALATOG,.

AMeG ouvnOelg METPIKEG, TOU OpWC Oev xpnoluomolovvtal o cuothuata TPoPAsdng
BaBuoAoynaong, eivat ot precision kat recall. To precision HeTpAeL TO TOCO LKAVO €ival To cUOTHHA
va Tapagel oxetikn mAnpodopia pe tov ehdxloto aplbuo mpotdacswv. To recall petpdaetl tnv
LKAVOTNTO TOU CUCTHMOTOG va BpeL OAa Tt OXETI{OEVA OTOLXELO KOLL VOL TOL TIPOTELVEL OTOV XPHOTN.
OL PETPLKEG QUTEG XpnolomololvVTal WG MUETPAOEL odpdApatog o mpoBARpata Suadikig
KaTnyoplomoilnong omou ivat duvatn n LEtpnon Twv true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) mpoBAéyewv.

o voL LIToOPECOUV VA XPNOLUOTIOLNO0UV QUTEG OL LETPLKEG OTO CUOTN O TIPOTACEWYV Ba TPEMEL va
yivouv oL mapakdtw mapadoxég. Eotw Ot ol mpoPAEPEL TWV a§LOAOYNOEWV OVAKOUV OE Eval
Sdtaotnua [0.5, 5]. MmopoUpe vo Bewpnooupe TOTE WG oL TLHeEG [0.5, 3] avtutpoownevouv
0pPVNTIKEG afloAoynoelg, evw oL TIHEG [3.5, 5] Oetikég. Tote ol TP, TN, FP kot FN pmopouUve va
pHetpnBolve. Emeldr] OpWCG UTAPXEL HOVO £va TOAU HIKPO KOMMATL TOU GUVOAOU
OAANAETUOPAOCEWV XPOTN-TIPOTOVTOGC, TIPOKUTITEL EVA QKON TIPOBAN AL

MevikOTEPQ, Oa TIPEMEL VA OIVAYVWOTELTE TO BAOLKO UELOVEKTN O TOU VA LETPLETOL N TTOLOTNTA EVOG
OUOTINHATOG TIPOTACEWY HOVO HE TNV XPNoN UETPLKWY 0PAAHATOC. O OKOTIOG EVOG CUOTHHATOC
TIPOTACEWV €lval va TIPOTELVEL OTOUG XPHOTEG TipoiovTa Ta omnoia Ba Toug apgcouv. To mPOPAnua
OMWG gyyudtal oto OTL eivatl aduvato va afloloynBel autd kabwg ta dedopéva pag yla tnv
eKTaidevon Tou cuoTUATOG SEV UMOPOUV TIOTE VAl TTEPLEXOUV TA ETMLOUUNTA amoteAéopata. Ma
napadelypa, o€ €va cUOTNHA TIPOTACEWV YLa TALWVIEC, EEpoupe OTL oTov Xpriotn Bob ap£oouv ot
tawieg A, B, C, D kat E. Xwpilovtag ta dedopéva os cuvolo eknaidsuonc A, B, C, D kat cuvolo
eAéyxou E, aflohoyoupe av o adyoplBuog mpotelve TNy Tawia E. Opwg évag alyoplBuog o onoiog
ocav ipoPAedn Ba €Byale F, Z 3 W Ba pumopouce va ATav akoun KAAUTEPOG Ao QUTOV TIOU

nipotetve E. H texvikng afloAdynong HEoW HETPLKWYV UMTOPEL VAL LOXUEL LOVO OTNV TIEPLIMTTWON IOV
yvwpilou e OAa ta TPoiloVTa IOV O PECOUV O KAOE XpHOTN TOU GUOTAHOTOG.

Itnv mopouoa epyoaocia, ota cuothpata npoPAedng afloAdynong, XxpPnoLLOTIOLOUVTOL HOVO Ol
KAOQLOLKEC METPIKEC (MAE, MAE kot RMSE).Ze OAEC TIC TEPUTTWOELC, UTTOAOYL(ETAL LOVO TO OhAApA
ovApEeoa oTLG TIPOPRALYPELG KL TIC YWWOTEG AAANAETILOPACELG TOU XPrOTN LE TO TIPOLOV.

Nepypadn evotitwv

Ztnv mapovoa epyacia xpnoLuomnoleital 1o cuvolo dedopévwy Movielens. Autod
OUYKEVTPWVETAL KABE xpovo amod to movielens.org omou xproteg BabpoAloyouv €va cUVoOAo
TAWLWY LE OKOTIO TNV BEATIWON CUOTNUATWY CUCTACEWV. TOo CUVOAO amoteAeital ano nepinou
29 ekatoppupla Babpoloyieg taviwy amod 0.5 aotépLa €wg 5 Kal TEPLEXEL TALVIEG LEXPL TO
2018. KaBwc ta cuotipata Kot OAoL oL UTIOAOYLOUOL TToU Tipaypatonotdnkav étpefav o £va
HUNXOVNUO TIEPLOPLOUEVNC LVIUNG, TO CUVOAO QUTO PELwONKE og 24 skatoppupla Babuoloyieg.

OL aAyopLBuot mou mapouctalovial HmopolV va SLaXwpLoToUV O TPELC LEYAAEC KaTNYOPLEG, Ol
OTtOLEC Elval KaTaVEUNUEVEG oTa KePaAala 3 €W 5 TNG SUTAWUATIKAG.

210 kepdAalo 3, Bpioketal n meplypadn CUCTNUATWY CUCTACEWV TOLWVLWY, OTIOU O XPHOTNG
UTOpPEL val ELOAYEL TOV TITAO HLOC Taviag Kal OTn CUVEXELD Vo AABEL CUOTACELS Ao To cUCTNUA.
ApPXLKA XPNOLUOTIOLELTAL Vg aAyOpLOUOC TTOU EPOPUOTEL TEXVIKEC OLLOLOTNTAC KELLEVWY WOTE Va
BpeL Tov TiTAO MOV Talplalel oTov elcaxBOEV TiTAo 0TO CUOTNUA, OE OXEON LE OAEG TLC TOLVIEC TTOU
umapxouv oto oUvolo dedopévwv. H texvikn Baoiletal otnv amootaon Levenstein, n omoia
TIPOKTIKA pag Sivel tov apBud tov aAlaywv (MeTakivnon Xopaktipwv, €looywyn VEwV
XOPOKTAPpWV 1 adaipeon XapakTnpwv) MoOU MPEMEL va Yivouv o€ pia mpotoaon wote va eival
opoLa Ke TV AAAN, TIX oL AEEELC «TIPU VN » KOL KTIPLHA» £XOUV ATIOCTAON 3 XAPAKTHPWV.

21N ouvéxela opilovtal alyoplBuol o onoiol eival Baclopévol o

= 1810TNTEC CUVOAWV

= cosine similarity

= dnuoupyla yELTOVLWY

® TEXVLKEG OHOLOTNTAG KELLEVWV

OAeg oL mopamavw TeXVIKEG epapuolovial dSnuloupywvtag Slaviopata ylo KABE eyyeypappéVo
XPNOTN TOU CUCTAMATOC HE TEG elte TG BaBuoAoyieg mou €xouv Swoel oTLg SLAPOPES TALVIES
elte Bewpwvtag Staviopata pe Acooug, mou SnAwvouv povaxa tnv mapakolouBnoe kabe
Towiog.

ZUYKEKPLUEVQ, TA CUOTAMATA CUVOAWY, Bacilovtal otnv mapadoxn OTL MAPOUOLEG TOLVIEG EXOUV
KOlL TTOPOHLOLO KOLWVO. ETal SnpLoupywvtag £vo 6UVOAO OAWV TWV ATOUWYV TOU cUVOAOU Sedopuévwy

oL omola mapakoAouBOnaoayv TNV CUYKEKPLUEVN Tawvia, Uopel va oplotel n emikaAudn Hetafd Twy
OUVOAWV TwV Beatwv Twv Tawtlwyv. AkodouBwvtag tnv mapadoxn ywo tn XPron outrnc tng
TEXVLKNAG, OUO TOLVIEG 0pIlovTaL WG TILO OUOLEG OO0 LEYAAUTEPOG €lval 0 BaBuOg TNG ETKAAUYNG.
MapoAa auTtd TO CUOTNHO AUTO EXEL TNV TAON VO KAVEL CUCTACELG Lovaxa SNUODIAWY TOLVLWV
KaBwg elval auTtég e To peyaAUTePO oUVoAo Beatwv. M auto tov Adyo évag akopn aAyoplouog
onuloupynBnke, Omou yivetalL xpnon METPKWV KATAAANAwv yia Suadikd bSedopéva.
JUYKEKPLUEVA XPNOLUOTIOLOUVTOL OL UETPLKEC opolotnTac jaccard kat dice o omoleg Sivouv
TapoOpoLla AMOTEAECUATA. TO TAEOVEKTNUA XPNONG QUTWV TWV HUETPLKWV EVAVIL TOU OKOpP
EMKAALVYPNG €lval OTL PE QUTEG TO OKOP ETUKAAUP NG KOVOVIKOTIOLATOL SLOLPWVTAS LE TO GUVOAO
BeaTwy Kal «TILWPEOUVTAL» OL TIOAU SNUOPIAELC TALVIEC.

ITIG TEXVIKEC TTOU Tteplypadovtal mapamavw Sev xpnolpomnoleitatl 6An n Stabéoiun mAnpodopia
TOU ouOoTAHATOG, KaBwc oL Babuoloyieg Twv xpnotwv dev meplappavovral. EToL TOLVIEG TTOU
€XOUV OUYKEVTPWOEL XaUNAEG Babuoloyieg pmopel va punv dtadépouv pe autég Pe LUPNAEG
BaBuoloyieg apkel va Exouv mapopoloug Beateg. EMUTAEOV TALVIESG LE LLKPOTEPO GUVOAO Beatwv
elvat SUokoAo va gpdavIoToUV 0TI CUCTACELG TOU cuoTApaTtog. Etol opiletal alyoplBuog mou
Baoiletal otnv cosine similarity. H cosine similarity, elvat pia petpikn opolotntag Stavuopdtwy
n omoia Aappavel umoPv ¢ tnv katevBuvon Vo SLAVUCUATWY KoL OXL LETPO auTtwv. Mapoia
OUTQA, OE TOLVIEG PE ULKPO apLlOUO BeaTwWV LOVO TOLVIEG OTIOU UTIAPXL ETILKAAU YN Beatwy pmopouv
va €xouv uPnAn opoldTNTA, Kol £T0L AOYW aAUTOU TOU UELOVEKTHUATOC TO cUOTNUA EXEL TIOAU
BopuPo (noisy results).

ITNn OUVEXELD, yivetal pla meplypadr TnG UNXAVIKAG HABNoNG v TAXEL Kal MOPOUCLAlETAL O
oAyOpLOHOG TwV K — KOVTIVOTEPWV YELTOVWV. Anpoupynobnke éva cuotnua collaborative filtering
HE Bdon autod Ttov aAyoplBuo. Apxikd, yio kaBe tawio dnupoupyeital to Stavuopa twv
BaBuoloylkwg tNG amd Toug XPROTEG TOU CUOTHMOTOG KOL OTN CUVEXELD YloL TNV TOLvia Tou
€LOAyETAL 0TO cuoTnpA uTtoAoyiletal n cosine similarity pe TG UTTOAOUTEG TOLVIEG TOU CUVOAOU
bebopévwy. MNa kabe tavia cUVOAO yeLTOVWY KoL auTol poTEivovTal oTov XpHoTh.

210 teAeuTtaio KOPUATL TOU KePaAaiou MoPoucLAlovTaL TEXVIKEG SOVELOUEVEG QIO TO TOUEA TOU
Natural language processing (NLP). Mpokeltal yia TG TexVikég LSA — Latent semantic analysis kat
TF-IDF — term frequency — inverse document frequency.

H LSA eival texvikn KOTA TNV Omoio Tpay LaTOTIOLELTAL TTAPAYOVTOTIOlNGN TOU apXLKOU THVALKOL TWV
oAANAeTudpdoewv xpnotn — mpoiloviwy (otnv mepinmtwon pag Babpoloylwy tawviwyv and Tov
XPNoTn), o€ YWWOUEVO SU0 TILVAKWY PE SLOTACELC ULIKPOTEPEG TOU apXLKOU. XToug SU0 auToUug
TIVOKEG amoBnKeVETAL piot ovATAPACTAON TWV XOPAKTNPLOTIKWY TWV TALVLWY KAl TWV XpPNOTWV
TOU OUOTNHATOC. Ta XQPOKTNPLOTIKA TIOU TIPOKUTITOUV, OV KOL OTOTEAOUV HOONUATIKEG
OVOTAPOOTACEL Kol eival aduvato va e€fnynbolv ocav ocuvduoopol «KAQAGLKWV»
XOPAKTNPLOTIKWY, OTIWG tapadeiypatog xapLv to €idog tng tawvia n Stdpkela autig, Bpiokovratl
WOoTO00 OUXVA, KOvid o€ pio avamapdaotacn mou SiaoBntikd Ba okedtoOTAV KATTOLOG.
ErmakoAoUBwg, n texvikn ovopdletal latent semantic analysis, kaBwg ¢aivetal va pmopel va
Onuloupyel ONUOCLOAOYLKA XAPOKTNELOTIKA TIOU OLETOUV TA QAVILKEMEVO TOU GCUVOAOU

debopévwy. O xprioTnG Tou cuoTUatog KaAeital kaBe dpopd va eMAEYEL TO Ovopa TNG Tawviag
KaBwWG¢ KoLl ToV aplBuo Twv «Kpudwv XapoKTNELOTIKWY» TTou uTtoAoyilovtal.

AeSOUEVWV TWV LOLAITEPWV ATIOTEAECUATWY TIOU TIPOEKUP OV Ao TV LSA, KOTOOKEUAOTNKE €VOG
OKOUN OAyOpLOUOG TTOU XpNOLUOTIOLE(TOL OTNV enefepyaoia Keipevwy, o TF-IDF. Autr) n TeEXVIKA
Bplokel eupela edpappoyn otig pnxaveég avalntnong, kabwg Sivel pila Baputnta os kabe AéEn
EVOG KELPEVOU. AUTO pmopel va emteuxBei Bpiokovtag tnv ouxvotnta TnG AéEnG o€ kA Oe keipevo,
TOV 0plOUd TwV KELPEVWY 0€ Hia cuANoYH KaBwWG KoL TOV CUVOALKO aplOud KelEvwy ota omola
epdavitetal n AE€n. Oswpwvtag we Keipevo TNV KABe tawvia kat wg Ae€n tov kABe Beatn Arav
Suvato va ePpopUOoTEL N MOPATTAVW TEXVLKN ylo TNV Snuioupyia MLOG HNXOVAG CUCTAOEWY
TALVLWV.

Mpémnel va mapatnpel otL ol Vo Mapamavw TEXVIKEG Bplokouv gupeia edpapuoyn o€ content
based filtering cuoTpOTO CUCTACEWY, OLWC OTNV TTAPOUCA Epyacia Slatnpeitol o MEPLOPLOUOS
TOU ouvOAou Sedopévwy HOVo oTLG BaBpoAoyieg TwV TAWVLWY Ao Toug Xprnotec. TEAOC, o€ aUTO
To KedaAAalo Sev ylveTal LETPNON TNG AKPIBELOG TWV CUCTNUATWY UE KATIOLA LETPLKI) OGAAUATOG
KOL 1) ETILTUXIQ TWV CUCTACEWV ELVOL AVTIOTOLXN TOU yoUOTOU Tou KABEe Xxprotn.

Y10 emopevo kepalawo mopouoialovtal SU0 oAyoplOUOL Yl TOPAYOVTOTIONCNG TILVAKWV.
ITOX0G, Elvall N Xpron TN TEXVLKAC WOTE va SnuoupynBet autr) tn dopd £va cUCTNUA TIPOTACEWV
TawLlwy, oL omoleg Opwg Ba eival eEATOUKEVUEVEG yla KABe xpriotn TnG mAatdoppag omou
Bploketal To cUCTNMA. ZUYKEKPLUEVA, KaL Ta U0 cuoTpata kavouv tpoAedn Babuoioyiagtng
KABe tawiog and KABe xprioTn Kal OTn CUVEXELX UITOPOUV va TPOTEIVOUV TIG TALVIEG ME TIG
vPnAotepeg Babuoloyiec. Ou alyoplBuol mou mapouctalovtal eivat o ALS (Alternating Least
Squares) kat o SVD (Singular value decomposition). AokipaZovrtot Stadopetikol cuvduacopotl
TIAPOUETPWY YL KABE évav amo autolg Kal 0 BEATLOTOG eTUAEYETAL He BAon To XapnAotepo MSE.

O ALS, amoteAel évav amod toug mo dtadedopevous alyopiBuoug mou xpnoLLomolouvtal ylo
TIAPOYOVTOTIOLN OGN TILVAKWY OTA TTAOLOLO SNULOUPYLOG CUCTNUATWY CUCTACEWVY. XToV ALS, yivetal
n mapadoyn OTL UTIAPXEL Hia avamapAoTach TWV XOPAKTNPLOTIKWY TWV XPNOTWV TOU GUCTILOTOG
KOl MO TWV TOLWVLWY TOU CUCTHOTOG, TETOLO WOTE TO ECWTEPLKO YIVOUEVO TOU SLaVUOUOTOC TWV
XOPAKTNPLOTIKWY TOU XPAROoTn €Ml TO SLAVUOUA TWV XOPAKTNPLOTIKWY TG Tawiag va Sivel Tnv
BaBuoloyia tng tawiag autig and tov xprnotn. Na va pnmopéocel va SnuioupynOet éva tétolo
oclOoTNUA, aPXIKA opieTal n ouvdptnon opaApatog mou Ba mpémel va eAaxlotonolnBbel anod to
HOVTEAO. ZTNV Tepimtwon auth eivat:

L= R —=XxYT|l2 + 201Xl + IYll2)

O mpwtog 6pog elval To HECO TETPAYWVIKO 0dAApa LETAEV TNG payUaTikng Babuoloyiag tng
tawiag kot tng mpoAnyng tng amd to ocvuotnpa. O OSeUtepog, amoteAel €vav mapdyovia
«otaBepomoinong» TNG LNXAVNG CUCTACEWY, WOTE QUTH va UNV LABeL To cuvolo dedopévwy ot
Tétolo Babuod, wote va aduvartel va mapdyel akplBeic mpoPAePelg oe veéa dedopéva (overfitting).

H AUon TnG ouvaptnong AUt yivetal péow gradient descent, n omola lvat pia eMaAvVaAnTITK
Stadkaoia BeAtioTonolnong KATd TNV omola n mapaywyog TG cuvaptnong npog BeAtiotomnoinon
umoAoyiletol wG mPoG TG HETABANTEG MPoG BeAtiotomnoinon. Ztnv mapoloa TEPIMTWON OPWG
elvat 600 oL petaPAnTég, Ta SLAVUOUATO XAPAKTNPLOTIKWY TWV XPNOTWV KAl TWV TOLVLWV TOU
cuotApatog. EtoL n cuvdptnon npog BeAtiotonoinon eivat pn-koiAn kat emakoAolBwg aduvato
va BeAtiotonolnBel.

MapoAa autd, uropet va akoAouBnBei n mapakdTw TEXVLKNA: OEWPWVTAG TLG TLUEG EVOG aTtd TOUG
Suo mivakeg otabepn (Eotw X), ToTE UmopoL e va epapuoloupe gradient descent wg mpog Y.
Tote 1o MPOPANUA PETATPETETAL OE TIPOPANUA eTAUGNG EVOG ATAOU YPAUULKOU CUCTAUATOG, N
AUon TOU OTtoloU UTTAPXEL.

‘Etol xpnolwponowwvtag auti tn duvatotnta, n ALS eival pia texviki BeAtiotomnoinong &uo
Bnuatwv. Ma tnv oAokAnpwaon piag emavaAnPng mpwta Kpatd otabepEC TIC TIUEG TOU TTivVoKa
XOPOKTNPLOTLKWY TWV XPNOTWV N TWV TALVLWY, KAVEL TIG amapaitnteg aAayEg ota Stavuopota
Kol 0Tn CUVEXELa emavoAapBavel tnv dtadikacia yla Tov AANO TivaKo, KpaTwvTog TOV MPwTo
otaBepd. OAOKANPOC 0 AAYOPLOUOG KATOOKEUAOTNKE o TNV apxn. Ol cuvaptroelg Bacilovtatl
oto makéto explicit tng Python.

la Tov €Aey)0 TNG moLoTNTaC Tou aAyopiBuou amod to ocuvolo dedopévwy emAéxBnkav tuxaia 10
BaBuoloyieg Tawwwv and kabe xpriotn kot adalpédnkav wote va dnuioupynbouv dvo oet
bebopévwy, éva yla ekmaideuon kat éva yla afloAdynon Tou CUCTAUATOG. 2T CUVEXELOL OL TLEG
Twv latent features (mivokeg XOPOKTNPLOTIKWY) apxlkomolOnkov o€ Tuxaieg TLUEG Kal O
oAyoplBuog ekmaldeUTNKE.

Ta BéATiota anoteAéopata (e Baon tnv pEtpnon tou MSE
MOVO OTLG YVWOTEG TIHEG TwV BabpoAoylwy) emtevxdBnkav
ard alyoplBuo pe 50 latent features yla Tig Tawvieg kot toug :
XPNOTEC Kal MapapeTpo otabepormnoinong ion pe 0.01 téco £ ¢
yla Ttov Tmivaka TwV Xpnotwv 000 Kal ylo ToV TivoKka
XOPOKTNPLOTLKWY TWV TOLVLWV.

ALS model with 50 latent features and lambda = 0.1

Mean squared error

KaBwc o alyoplOpog eival KATOOKEUAOUEVOG e€pXNC KOl
S6ev umnpxe n Ouvarotnta mopaAAnAomoinong Tou TaA @ 2 4 s 2 B = M
amoteAéopata Sev pnopecav va BeAtiwbolv mopanavw

kaBwg 6ev uttipxe n Suvatotnta grid search, Adyw twv peydAwv xpovwyv eknaibeuong (mepimou
6 NUEPEC yLa KABE ocuVOUAOUO TTAPAUETPWY).

2Tn ouvExeLa, oto i6lo oUvoAo Sedopévwy epapudotnke n texvikn SVD. Katd tnv TEXVIKA QUTH O
OPXLKOG TtivaKkag A Tiou TIEPLEXEL TIG BaBLOAOYIEG TTOPAYOVTOTIOLELTOL OTO YIVOUEVO:

A=UxzxVT

Omou U katV glvat oL TivaKeg XOpOoKTNPLOTIKWY TWV TALVLWYV KOL TWV XPNOTWYV avTioToLxa Kal eivat
opBoywviol, evw o mivakag X eivat o dtaywviog mivakag Twv singular values tomoBetnuévwy o€

¢Blvouoa katdtaén. Tote, pio Tiun tou mivaka A, éotw Ay;, Wopel va mpooeyyLlotel and to
ywouevo Y X . (U Zikvr,) émou K eivat o aptBudg twv latent factors tou cuotiuatog.

MpOKeLTaL ylo. piot TEXVIKN TIou £PopUOleTal EVPUTATA OF TIVOKEC, OUWC €ival aduvato va
epappootel otov mivaka BabBpoAoyuwv tou TAPOVTog TPoPANUAToc Kabwg £xel e€alpeTikad
OPOLEC TIHEG (UTAPXEL TtEPLTIOU TO 3% OAWV Twv duvatwyv Baduoloywwv). Ovopalou e singular
values T1g 18oTipég tou mivaka AT A, Spwg otnv nepimtwon pog o mivakag A Sev ivat TARpNG kat
€10l £lval adUvato va UTIOAOYLOTEL TO YLVOUEVO KOl KOTA CUVETELQ va Ttipaypatornolndsl o
oaAyoplBuog SVD.

Mia mpoosyylotiki AUon oto mapamavw tpoPAnua Sivetal av avaAoylotoUpe To TpoBAnUa anod
Vv avtiBetn omtikn. Oa mpenel va BpebBouv oL TivaKeG, oL omolol Ba PmopouV va POCEYYLooUV
TIC TIHEG TOU A. Mo va oplotel AUon 0TO Tapamavw TPOBANUO, TIPEMEL VO OPLOTEL oUVAPTNON
BeAtiotonoinong. MNa to SVD — Recommender system, xpnolonol)nke n cuvaptnon mou OpLoE
o Simon Funk katd t &idpkela tou Netflix prize kat eival n €§Ag:

L=)@= ulvi—p+ b+ b)?+ Al + Il + b7 + b}
u,iexk

Omou p eivat n péon Babpoloyia 6AwV Twv Tawwwy, b;, n uéon Baduoloyia tng towvia i kat by, o
HECOC OpOG TwV BabpoAoyLwv Tou Xpriotn u.

H cuvaptnon auth pmopel va AuBei pe tn BorBeta tng gradient descent texvikng. H Stochastic
gradient descent (SGD) mpotiunOnke o autr TNV nepimtwon évavtl Tou KAaotkol aAyopiBuou
gradient descent, kaBw¢ av kat o aplOuog twv eyypadwv (Babuoloyieg tawiwyv) dev avénbnke,
au€nOnke o aplOUOC TwV MAPAUETPWY TNG E€lowoNC Kol £TOL PE TNV KAaoLk gradient descent o
aAyopLBuog Ba kabuotepolok.

OL mapaywyot umoAoyilovtal os kABs Bripa

ylo kdBe pia omd TG TMOPOUETPOUG TNG ——
nopandvw ocuvaptnong (by, by, uy, v;) kat ot 124 | Sestierver
TWMEG Twv Slavuopdtwv avavewvovtal. To \
oddApa og kAOe Bripa umoAoyileTal POvo yla .

Best SVD model errors

=
[=]
n

TIC YVWOTEC BaBuoloyileg Kal £€Tol pOvo pia
TIPOCEYYLON TOU apXLlKoU Ttivaka A pmopel va
emtevyOel.

o
o
L

Mean squared error

o
o
L

MNa tv dnuloupylot TOU GCUOTHUATOG
OUOTOOEWG TOWVWV Xpnolpomolnbnke o e
aAyopLBuog tou makétou Surprise tng Python. Training epoch

Mo tnv elpeon Tou KaAltepou ouvduacuol Twv hyperparemeters Ttou povtélou
nipaypotonolOnke Grid search kal To KAAUTEPO HOVTEADO KATADEPE VAL EXEL LECO TETPOAYWVLKO
odaApa poALg 0.75 oto oUvVoAo eAéyxou PeTA amo 20 emoxEg eknaidsvong. To poviédo €xel 100

latent features kat 0.05 mapdpeTpo otabeponoinong.

TEAOG MpETEL va eTlonUavOEel OTL T amoteA£opata Oswpolve apKeETA KAAUTEPA TWV OVTIOTOLXWV
OMOTEAECUATWY TOU ALS, KaBwg MAE0oV TO GUOTNHUA OTAUATNOE VO «UTIEPEKTALSEVETALY OTA
bebopéva.

Y10 TEAEUTALO HEPOG TNG TOpoUoaC SUTAWHATIKAG yiveTal xprion texvikwv deep learning yla tn
Snuloupyia TOU CUCTHATOC CUCTACEWV.

ApxXKQ yiveTal pia cuvTtopn eloaywyn otnv apxLtektovikr tou Multilayer perceptron veupwvikol
Siktvou. Opilovtol Ol TUTIIKEC OUVOPTHOELC KOOTOUG TOU OIKTUOU KAl OL CUVAPTHOELS
gvepyormnoinong twv veupwvwy. EmumAéov yivetat avadopd kat otov adyoptBuo backpropagation,
0 omolog XpnolpomoLeital EUPEWG OTa VEUPWVLKA SikTua woTe To SIKTUO VO UImopETEL va LABEL
Ta Bdpn twv ocuvdEcewv Twv VEUPWVWY. O aAyoplBog auTOg XPNOLUOTIOLEL TOV KOvOvVa TG
aAuoidag wote va Slaveipel To oPAAUA TOU ATOTEAECUATOC «TIPOG Ta Tiow», SnAadn ota Bdpn
TWV CUVOECEWV KOlL VO UITOPECEL VO BEATLOTOTIOLOEL TLC TLUEC AUTWY WOTE VAL LELWOEL TO OPAALAL.

Q¢ embeddings opilovtal oL avamapooTACELS EVOG CUVOAOU KOTNYOPLKWY UETAPANTWY o€ €vav
OUVEXN XWPO aPLOUWV. XapaKTNPLOTIKO apadelypa anoteAel n texvikn one hot encoding. Opwg
n texvikn one hot encoding £xeL U0 KUpLA peLlOveKTATA. Agv ival PLIKTO va epapUoleTal OTav
N NOKOTNTA TwV SLOPOPETIKWY TIHWV Mo HETABANTAC elval peyain kabwg avéavel oAU tnv
S1a0TaoN TOU XWPOU KoL KOTA SeUTEPO HEOW QAUTAG TNG TEXVIKAG, OMOLO XOPAKTNPLOTIKA Sev
TomoBeToUvTaL «KOVTA» 0TOV XWPOo Twv embeddings. H BEATLOTN TEXVIKA €lval AUTA TIOU UopEL
va Eemepdoel kot ta SUo autd mpoPAnpata Kal propel va emiteuxBel HEow OPLOMOU €VOG
emBAenopevou mpoPARUaTOog yla AUon amd to Veupwviko Oiktuo. Ta embeddings Aoutov
T(POKUTITOUV amo ta Bdpn tou Siktuou Kal pabaivovtal va eival Tétola wote o opAApa Tou
Siktvou (n dwadopad petald mpoPAsnopevng Babuoloyiag kol mpaypatikng Baduoioyiag) va
elval to e\ayLoto.

Mo tn Snuioupyia Twv CUCTNUATWY CUCTACEWY, KATAOKEUAOTNKOV SU0 APXLTEKTOVLKEG SLKTUOU.
Kat ot U0 ival KATAOKEVAOUEVEC Xpnolpomolwvtag tnv BLBALoOnkn Keras tng Python. Meta to
emninedo €10660v, TO MPWTO EMIMESO MOV 0PLOTNKE KAl OTIG SUO APXLTEKTOVIKEC €lval €va layer
embeddings. 2tn cuvéxela tonoBetnBnke £va layer cuvévwong (merging layer) mou umoAoyilet
TO SLOVUCHATLKO YIVOLEVO TNG OVATIOPACTOONG TWV XPNOTWV ETTL TNV AVATTAPACTAC TWV TOLVLWV
TOU oUuVOAoU OSebSOUEVWY. ZTNV TIPWTN APXLTEKTOVLKY, QUTO Atav Kol To eninedo €£0dou. Itn
beltepn meplmtwon eva emumAéov kpudo enimedo tonoBetrBnKe PeTA TO merging layer.

To teleutaio HOVTEAO eKTALSEVUTNKE
ylia 10 emoyxég, eixe €éva embeddings
layer 50 latent features kat éva densely
connected kpudpo emimebo 128
VEUPWVWV WE OLYHOELSr) ouvaptnon
gvepyomoinong, evw 0 oAyoplBuog
backpropagation mpaypatonow)nke
he xprjon tou Adam.

To povtédo auto eixe ta KaAutepa
amoteAéopata Kal ota SU0 OeT o€
ox€on He 6Aoug Touc alyoplbpouc mou
Sdokipaotnkav otnv napovoa
SutAwpatiky Kol Katddepe va EXEL
HECO TETPAYWVIKO odpdipa 0.61 oto

Mean squared error

4.0 1

3.5 A

3.0 1

2.5 1

2.0 |

151

1.0 1

0.5 4

NN of embeddings with 1 hidden layer

- train error
——— test error

Training epoch

oUvoAo gAéyyxou kat 0.34 oto cuvolo ekmaideuong.

17

i Wngiak culhoyr) O
BiBAI0OnNKN \

@gmpAZToz"

,T.‘" ;.,",l'f|‘.|n|.|n rewAoyiac
AN e ANLO /6

Ty,

1. Introduction

1.1 Introduction to recommender systems

The explosive growth of internet has resulted in a phenomenon known as information
abundance. In a way we are drowning in information but starving for knowledge, and it is mainly
due to influx of data into the internet caused by people on one side and the scarcity of techniques
to process the data to knowledge on the other side. So the current scenario demands new
techniques that can assist us to discover resources of interest among the enormous options we
are presented with. All of this paved way for the introduction of recommender systems which
attempt to recommend items of interest to particular users by predicting a user’s interest in an
item based on related information about the items, the users and the interactions between items
and users.

The first research paper in recommender systems came out in the mid 90s ! and since then
research in this area got diversified and various approaches were introduced to present better
recommendations. Recommender System algorithms basically performs information filtering and
can be classified into three types, namely collaborative filtering, content based filtering and
hybrid filtering. With time newer strategies evolved from the basic categories with improved
recommendations by including the social media information 2, information from internet of
things 3, location information etc. A lot of work has happened in this area over the last decade on
both industry and academia. Recommender systems still remains an area of high interest as it
constitutes a problem-rich area and the possibilities it offer for practical applications. A wide
range of applications including recommendations in web search, books, movies, music,
restaurants, food, apparels, vehicles, targeted advertisements, medicines, news, potential
customers for companies and many more.

There are two main purposes for a recommender system. The first one is user oriented, and is to
increase a customer’s satisfaction with the platform. The second one, business oriented 4, is to
increase the company’s revenue by increasing sales. It is obvious that these two are strongly
correlated, since the better the recommendations are for a customer, the more they will consume
and the better their overall experience will be. As recommendation engines are widely used by
e-commerce sites, they are used to improves the user experience and at the same time benefiting
the store. The system is able to convert browsers to buyers and cross-sell more items by means
of suggestions while shopping. It increases the user loyalty by enabling them to purchase items
in fewer clicks and also providing the frequent customers with good deals and offers. In short a
recommender system is able to attract the interest of the customers by providing them fast and
accurate recommendations .

There is a variety of recommender systems since each company’s client’s needs differ, and
different business problems require different solutions. The following examples provide an
overview of three such recommenders.

Book recommendations.
A recommender system’s goal here is to expose new content to the user. This way the
customer’s interest can be sparked, and they are encouraged to consume more on the
platform.

The recommendation continues to have an impact even after the sale has been
completed since if the customer is satisfied with it, it is more likely that they will choose
one of the platform’s recommendations next time that they are looking for a new book to
read.

Stock recommendations
In this example, a list of stock options that are most profitable, are recommended to the
clients. Novelty is not a requirement in this case. Stocks that are in the list of the client’s
historical transactions can be recommended again if they remain a viable option.
Product recommendations.
Balance between recommending new products and products that have already been
bought by the client is key in this case. Products found in the customer’s previous
transactions, serve as a reminder of their frequent purchases. However, recommending
new products that the client may like or need is also very important, otherwise the client
will lose interest on the platform and will stop using it.

5

Recommender systems can be divided into three main categories. The classification is based on
the algorithms that are used and the kind of information that is needed to implement them. The
main types of recommendation engines are ° ’:

Collaborative filtering
Content-based filtering
Hybrid recommendation systems

‘ Recommender ‘
systems

L o

‘/ Content — Based ‘ ‘ Collaborative ‘ ‘ Hybrid filtering ‘
Techniques Filtering Techniques techniques

Model Based ‘ ‘ Memory Based
Techniques Techniques

" Neural ‘ " Matrix | (] '
‘ Networks | ‘\Factorization ‘ | Vserhased H i based ‘

Figure 1 Recommender System Classification

Collaborative filtering

Collaborative filtering methods for recommender systems are methods that rely solely on past
interactions recorded between users and items in order to produce new recommendations.
These interactions are stored in the so-called “user-item interactions matrix”.

]
a
. ‘ [4
A . A z User-item
interactions
A g || o
a
cee
[4
Y
Users User-item interactions matrix ltems
suscribers rating given by a user to a movie (integer) movies
readers time spent by a reader on an article (float) articles
buyers product clicked or not when suggested (boolean) products

Figure 2 User - Item interaction matrix

In these methods predictions are based on an analysis of the past activities and preferences of
the user, as well as similarity to other users. They are based on the assumption that people that
have a similar behavior in the past, are likely to continue to have similar behavior in the future 8.

21

Thus items from the “interaction” history of one user may be of interest to the other and vice
versa. To elaborate more, the underlying assumption is that if user A and user B have the same
opinion on subjects X and Y, then user A is more likely to have a similar opinion with user B on
subject Z, rather than a random user.

The class of collaborative filtering approach can be further split into subcategories, based on the
collaborative filtering algorithm in use.

Memory based
Memory based (lazy learner) approach, assumes no model and directly works with the
values of the recorded interactions. They are based on nearest neighbor search finding
the closest users for a given user and suggesting the most popular items in this
neighborhood.

Model based
This is the opposite of the previous approach. It assumes an underlying generative model
dthat try to explain the user-item interactions. In this approach, a scientist tries to discover
the appropriate model that will make new predictions.

Memory based approached is further split into User-User and Item-Item collaborative filtering:

User-User collaborative filtering
This method represents users based on their interactions with items and evaluates the
distance between them. The algorithm here tries to find the lookalike for a specific user
(the user with the most similar “interactions profile”) and present them with products
based on the preferences of their lookalike. This approach, although it leads to very good
results, is very computationally expensive as every customer pair must be analyzed and
the number of users on an average e-commerce site is usually larger than the number of
products.

First every user is represented by their vector of interactions with different items. Then a
similarity metric is computed between the user of interest and all other users in the
dataset. This similarity measure should consider as close users those with similar
interactions on the same set of items. After the similarities are computed, a common
approach is to keep the k-nearest neighbor 1° of the user of interest and suggest to him
the most popular items - from the list of items the user has not yet interacted with -
amongst them.

Iltem -ltem collaborative filtering
This method represents items based on interactions users had with them and evaluates
distances between them. Two items are considered similar when most of the users that
have interacted with both of them did so in a similar way. To make recommendations for
a target user, first the list of the user’s most liked items is constructed, and then those
items are represented by their vector of interactions with all users. Similarities are
computed between the most liked items of the target user, and all other items in the

dataset. Then the k-nearest neighbors of the selected item are recommended to the user.
This approach can then be continued, for the second, third, .. nth most liked item by the
user.

In the model based approaches lie the matrix-factorization methods.

= Matrix Factorization
The goal of matrix factorization methods is to decompose the sparse user-item interaction
matrix into a product of two smaller and denser matrices 1'2: a user-factor matrix, that
contains user representations, and a factor-item matrix, that contains item
representations. The assumption here is that a low dimensional latent space of features
(embeddings) exists and can represent both users and items in such a way that by
computing the dot product between the dense user and item vectors, results in the
interaction between them.
These features cannot be given to the model directly, as they would be on content based
approaches. Instead they are discovered by the system. Since they are learned features,
and not features representing distinct attributes, the relationship between them is non-
intuitive and can usually not be understood nor explained by humans. However, with the
use of such algorithms, even without introducing distinct features to it, the representation
that the model outputs is extremely close to an intuitive decomposition a human could
think of. Users that are considered to be close with one-another in terms of preferences,
and items with similar characteristics, end up having close representations in the latent
space.

Content based filtering

As the name indicates, a content-based recommender system uses the content information of
the items to build the recommendation model. A content recommender system typically contains
a user-profile-generation step (user key words), item-profile-generation step (item key words)
and a model-building step to generate recommendations for an active user. The content-based
recommender system recommends items to users by taking the content or features of both items
and user profiles. The common approach is to represent both the users and the items under the
same feature space. Then similarity scores could be computed between users and items. The
recommendation is made based on the similarity scores of a user towards all the items 13,

In simple terms, the system recommends items similar to those that the user has liked in the past.
The similarity of the items is calculated based on the features associated with the other items
they are being compared to, and is matched with the user's historical preferences.

This technique does not take into consideration the user's neighborhood preferences. Hence, it
doesn't require a large user group's preference for items to increase its recommendation
accuracy. It only considers the user's past preferences and the properties/features of the items.

Hybrid techniques

Hybrid recommendation engines combine the two previous recommendation techniques to
reinforcine their advantages and reduce their disadvantages or limitations 4. Most commonly,
collaborative filtering is combined with some sort of content based technique in an attempt to
avoid the problems, such as users with low number of interactions with catalogue items *°.

1.2 Recommended systems techniques comparison

Collaborative Filtering

Collaborative filtering approaches (both memory and model based) require no other information,
but items, users and the interaction between them. For a fixed system of items and users, new
interactions recorded over time bring new information to the system. As new examples are
created, new recommendations can become more accurate.

However the luck of extra attributes for items and users is the main disadvantage of using such
algorithms. Collaborative filtering algorithms do suffer from a major challenge, the ‘cold start
problem’ &7 |t is impossible for them to recommend products to new users, or recommend
items with a very low number of recorded interactions. This can be overcome with simple
approaches such as recommending random items to new users or new items to random users
(random strategy) 8, or recommending popular items to new users, or new items to the most
active users (maximum expectation strategy). The most robust approach however is using a non-
collaborative method for the beginning of the lifecycle of new users and items.

The user-user method is based on the search for similar users in terms of their interactions with
items. In general, every user has interacted with a few items only. This makes the method pretty
sensitive to any recorded interactions (high variance). On the other hand, as the final
recommendation is only based on interactions recorded for users that are considered similar to
the user of interest, the results obtained are more personalized (low bias).

Conversely, the item-item method is based on the search for similar items in terms of user-item
interactions. As, in general, a lot of users have interacted with a specific item, the neighborhood
search is far less sensitive to single interactions (lower variance). As a counterpart, interactions
coming from all users (even those with very different history from the user of interest) are taken
into consideration for the recommendation. This makes the method less personalized (more
biased). Thus, this approach is less personalized than the user-user approach but more robust.

Content based filtering

The main advantage of content based filtering over collaborative filtering approaches, is that the
cold start problem can be avoided when items have sufficient descriptions. Also recommender
systems that are built with this technique are able to recommend to users with unique tastes
finding items that much those criterions. Unpopular and new items can be recommended as
recommendation solely rely on item and user characteristics. Last, the content representation
allows for a variety of analysis approaches such as text preprocessing techniques, semantic
information etc. %°.

However finding the appropriate features can be hard (e.g. images, news etc.). Also, users rarely
fill information about their preferences on platforms, so recommendations for new users are
hard. Last, these systems tend to over-specialize. They can not recommend items outside the
user’s profile, but people usually have more complex interest than that.

1.3 Evaluation of Recommender systems

Recommender systems are popular both commercially and in the research community, where
many algorithms have been suggested for providing recommendations. These algorithms
typically perform differently in various domains and tasks. Therefore, it is important from a
research perspective, as well as from a practical view, to be able to choose an algorithm that is
better suited for the domain and the task of interest. The standard way to make such decisions is
by comparing a number of algorithms offline using some evaluation metric. Indeed, many
evaluation metrics have been suggested for comparing recommendation algorithms 2°.

Netflix, even started a competition (Netflix prize competition) to find an algorithm which could
improve upon their accuracy by 10 percent for one million dollars. However, they later realized
that accuracy of predictions had no relation with whether someone will be interested in watching
the predicted movie as a person wants to see new movies that they would like to see, so a list of
top-n movies should be put in front of users and we should measure how they react to these
recommended movies.

Let us consider a matrix R of user — item interactions and the one predicted by the model, the
matrix R. Then, 7,, is the predicted value of 7;;, that represents the quantitative interaction of
user i with item j. Since the three main models that are built in this thesis are generating an
approximation of these values, the metrics that are presented are for the evaluation of such
models.

There is a list of traditional error metrics for recommender systems that are used in academia.
We will be focusing solely on offline measures.

= Mean absolute error

MAE = Zieu,jezl\llrij—fﬁl (1.1)
= Mean squared errors

MSE = Yiev jer(rij— 7))? (1.2)

= Root mean squared error

RMSE = \/—Zfeu'f“(;”‘@z (1.3)

Other commonly used metrics, that are however not used when predicting ratings, are precision
and recall.

= Precision, measures how capable of delivering relevant information with the least amount

of recommendations the system is.
|Recommendet items NRelevant items|

Precision = (1.4)

|Recommended items|
= Recall, measures how capable of finding all the relevant elements and recommend them

to the user the model is.

|Recommendet items NRelevant items|
Recall =

(1.5)

|Relevant items|

This measures are typical error metrics in binary classification problems where we can calculate
the number of true positive (TP), true negative (TN), false positive (FP) and false negative (FN)
predictions.

.. TP TP
Then precision = ————, andrecall = ———.
(TP+FP) (TP+F)

In order for this metric to be used in recommendation systems the following assumptions must
be made. Let us assume we are predicting movie ratings with values in [0.5, 5]. We can then
assume that values in [0.5, 3] represent a negative rating to a movie and values in [3.5, 5] a
positive rating to a movie. Then TP, TN etc. quantities can be measured.

However, since only a tiny amount with regards to the total number of possible user — item
interactions exist, another problem arises. How can we evaluate the missing values, since the
system is predicting a rating for them. One approach is to ignore them, like we do with the classic
error metrics.

A second approach is to evaluate only the positive recommendations. Two new measures can
then be defined. Precision at k (P@k) and Recall at k (R@k), where k is the number of evaluating
recommendations sorted by value 1.

There are issues with the later approach as well. Let us imagine the original rating of three movies
is 5,4,not rated and the predicted values were 4.5, 3.9 and 3.7. Then P@k = 2/3=0.67 and R@k =
2/2=1. Imagine now that the rating are 5,4,2 and another model predicted 4.5,3.9 and 2.1. Then

P@k =2/2=1 and R@k = 1. Just looking at the metrics we would conclude that the second model
is better than the first. But that is possibly not correct.

We must however acknowledge the main flaw of measuring the quality of a recommender system
using error metrics. The purpose of a recommender system is to let the users discover items that
they will like. The problem is that this is impossible to evaluate because our training data can
never contain the results we are looking for. Let’s think about a recommender for movies, we
know user Bob likes movies A, B, C, D and E. We can split this into a train and test set with A, B, C
and D in the train set. Then we evaluate if the algorithm recommends item “E” because we know
the user likes E. The big problem is that an algorithm that recommends F, Z or W could be even
better than the one that recommends E. This evaluation strategy is valid if and only if we know
all the items the user likes, and we know for sure that the user does not like any item outside the
ones in the list.

Refining our example let us say user Alice likes Pinocchio, Aladdin and Kill Bill. Based on this, our
recommendation engine should pick things like Cinderella, Kill Bill 1, etc. If we leave Pinocchio
and Aladdin in the train set and put Kill Bill in the test set then our recommender will fail because
there is no way to recommend Kill Bill based on Pinocchio and Aladdin. This means that splitting
the training set can only lead to worst recommendations and that we can’t use part of the training
set as our test set.

So, to measure the accuracy of recommender system, we will continue the analysis in this thesis
with the classic metrics (MAE, MAE and RMSE). In all cases, only the error between the prediction
and the known interactions of the user with an item is calculated.

i Wngiak culhoyr) O
BiBAI0OnNKN \

@gmpAZToz"

,T.‘" ;.,",l'f|‘.|n|.|n rewAoyiac
AN e ANLO /6

Ty,

2. The dataset

There are two types of data used by recommendation systems. Explicit data are those that have
some sort of rating. In this scenario the scientist is aware of how much a user liked or disliked an
item by simply taking a glimpse at the provided rating. Data like that are usually really hard to
find because users rarely spend the time to rate items.

The second type of datasets is implicit datasets. These are data gathered from user behavior.
They could be items that a user purchased, how many times they repeated a song, how much
time they spend on a page describing a specific product on a website etc. 22. The upside is that
there are lots of data like this, the downside is that they are more noisy and it is not always
apparent what they mean.

In order to complete an analysis between different algorithms the famous movielens dataset was
used. Grouplens is a research lab of the University of Minnesota that runs the website
movielens.org. In this website, a large group of movie titles exist and users can sign up for free
and provide their ratings for those movies. Each year they release two new datasets, the
movielens 20M and the movielens 100M that contain 20 million and 100 million movie ratings
respectively. The first dataset was chosen for this project. It contains interactions between
viewers and movies about movies that were released up to 2018.

The dataset consists of anonymized user ids, movie ids (every movie is mapped on a specific
numeric id) and the corresponding rating the user has given to that movie. The ratings range from
0.5to0 5.0.

There are 27.753.444 distinct interactions in the dataset. They are created by a set of 283.228
distinct users over a set of 53.889 movies. The distribution of movie ratings is severely skewed
with most movies having a very low number of interactions with users. It is made very clear that
only the very popular movies have a large number of interactions.

0.00200

0.00175 4

0.00150 4

0.00125 A

0.00100 +

0.00075 A

0.00050 A

0.00025 4

0 5000 10000 15000 20000
number of ratings

Figure 3 Distribution plot of movie ratings

0.00000

statistic Number of
ratings

25% quartet 15

50% quartet 30

75% quartet 95

Min 1

Max 23.715

Mean 98

std 213

Similar behavior can be found regarding users. Users rarely do provide feedback in a dedicated
manner and are also most likely to provide feedback only on items they liked.

0.0005

0.0004 -

0.0003 -

0.0002

0.0001 A

0.0000 e — T T T T T
0 20000 40000 60000 80000 100000
number of ratings

Figure 4 Distribution plot of rated movies

Last, as it has already been mentioned, users usually
will rate products that they like. This is also the case
in this particular dataset, as 62% of the interactions
have a rating of 3 stars or more.

The dataset only contains viewer — movie pairs that
have interacted in the past. In order to perform most
of the algorithms that will be mentioned later, the
data must be reshaped into a pivoted form. To be
more precise, the data have to be represented into a
matrix form with movies as the columns and the users

statistic Number of
ratings

25% quartet 2

50% quartet 7

75% quartet 48

Min 1

Max 97.999

Mean 515

std 2.934

6000000

5000000 -

4000000 -

3000000 A

2000000 -

1000000 -

o
0.5 1.0 15

20 25 3.0 35 4.0 4.5 5.0

Figure 5 Bar chart of movie ratings

30

as rows. The values of the cells are the rating this particular user has given to that movie. The size
of this matrix will be the number of users times the number of movies and it will be very sparse
as most viewers have only rated a small number of movies.

The aforementioned step demands memory resources. All steps run on a local machine with
limited resources, so in order to improve the speed of computations, users and movies were
removed from the dataset. By keeping movies that are rated by a minimum number of 300 users
and users that have rated at least 50 movies, only 39% of different users is kept in the dataset
(109.672) and 13% of different movies (6.964).

However, since the most ‘dedicated’ viewers and the more popular movies remain in the dataset,
only 15% of the total number of interactions were removed.

Last, the data were turned into a pivoted form with sparsity 96.93%, meaning that only about 3%
of the cells actually contain any values.

i Wngiak culhoyr) O
BiBAI0OnNKN \

@gmpAZToz"

,T.‘" ;.,",l'f|‘.|n|.|n rewAoyiac
AN e ANLO /6

Ty,

3. Item - to — item recommender systems

In the following section, a selections of algorithms that can generate movie recommendations
are presented. First, algorithms that follow simple set based approaches are presented along with
the recommended movie ids for a selected movie. Their disadvantages are discussed then a
similarity based techniques and a KNN recommender are implemented. Last natural language
preprocessing techniques are then introduced and engines are created to produce better
recommendations, with LSA producing the most interesting results. In this section error metrics
are not used.

3.0 Preliminaries

In the recommendation systems that are presented in this chapter a user needs to be able to
provide human input, which in our case is the movie title, and the system must be able to find
the id of that movie. Also, since a lot of movies have similar titles, and a user might not be
completely sure about the actual title of a movie a string comparison method is needed. One way
to implement such technique is by using the fuzzywuzzy python library. It performs a fuzzy
matching of strings denoting that two strings are similar by giving a similarity index. The
Levenshtein distance is then used to calculate the differences between the two sequences. The
Levenshtein distance between two words is the minimum number of single character edits
(insertions, deletions or substitutions) required, to change one word into another. The distance
between two strings a and b is defined as follows:

(max(i, j) if min(i,j) =0
P Leva,b(i - 1:]) + 1
Leva, (i.j) = min{Levy,(i,j—1)+1 otherwise (3.0.1)

Leva,b(i - 1,] - 1) + 1(ai¢bj)
Where 1(ai¢bj) is the indicator function, equal to 0 when a; = b; and 1 elsewise. Levg (i,) is
the distance of the first i character in a and the first j character in b.

Then the similarity can be calculated as follows:

(lal+|b)— Levg,p(i.f)
(lal+1b))

fuzzy_sim(a,b) = (3.0.2)

The fuzzywuzzy.fuzz.ratio method uses this and generates values from 0 to 100, with 0 indicating
a complete string mismatch and 100 a complete match. The steps in the algorithm are described
bellow.

= Insert movie title

= Generate an empty dictionary of tuples

= Compute fuzzy ratio of all the titles in the dataset

= |f the values is above 60, append a tuple of title and ratio value in the dictionary
= Sort the values in descending order of ratio value

= Return the movie title with the highest ratio match

3.1 Set based techniques

The easiest and fastest way one could create recommendations would be by ignoring the rating
a user has provided for a movie and only keep this information in a binary form as movie watched/
not watched. Following this idea we can create recommendations by keeping a set of distinct
users for every movie. The representation looks like the following:

110 : Braveheart (1995)

262144, 262146, 4, 131076, 131082, 15, 131087, 131095, 262169, ...

1907: Mulan (1998)

166713, 232249, 166717, 35647, 101184, 166721, 265025, 68419,..

89745: The Avengers (2012)

198695, 67625, 100393, 231463, 133164, 133166, 34865, 2084, 197, ..

The first column here shows the movie id. The second, contains the user ids that have rated that
particular movie.

In an early naive approach, we can consider two movies to be similar when there is a large
intersection of users that have rated both movies, considering them as users of similar taste.
Therefore a first approach is to give recommendations based on the overlap score between two
movies.

overlap_score (A, B) = [(AnB)/] (3.1.1)

This method is very fast but the drawback is that popular movies are rated by the largest set of
users. As a consequence, very popular movies will always have the largest overlap score.

Example:

Selected movie: Mulan (1998)

10 recommendations with the highest score:

= . Recommended movie: Toy Story (1995), that shares 72.87% of its viewers

= Recommended movie: Matrix, The (1999), that shares 70.45% of its viewers

= Recommended movie: Lion King, The (1994), that shares 70.39% of its viewers

= Recommended movie: Forrest Gump (1994), that shares 69.58% of its viewers

= Recommended movie: Aladdin (1992), that shares 67.67% of its viewers

= Recommended movie: Star Wars: Episode IV - A New Hope (1977), that shares 66.1% of
its viewers

= Recommended movie: Shrek (2001), that shares 64.84% of its viewers

= Recommended movie: Star Wars: Episode V - The Empire Strikes Back (1980), that shares
62.97% of its viewers

= Recommended movie: Jurassic Park (1993), that shares 62.24% of its viewers

= Recommended movie: Beauty and the Beast (1991), that shares 62.09% of its viewers

All of the above movies are extremely popular. We cannot consider this recommendation as being
optimal. Matrix, Forrest Gump, Star wars are movies that one would probably not want to watch
after watching Mulan, which is an animated film. These movies are in the list because of their
popularity.

The most common way of dealing with this problem is by using metrics that are suited for binary
data. For example Jaccard similarity index (or Jaccard similarity coefficient) compares members
of two sets to see which members are shared and which are distinct. So, it normalizes the
intersection size of two sets by dividing with the total number of users that have watched either
movie 23. This measure of similarity between sets of data ranges from 0% to 100% and higher
percentage indicates more similar populations.

jaccard(a, b) = [anb|/[aUb| (3.1.2)

With changes in the algorithm to produce movie recommendations based on distanced data the
top 10 recommendations are very different from the previous ones. Also notice that famous
animated movies like Shrek and Lion King do not appear in the following list.

Top 10 recommendations of movie Mulan.

. Recommended movie: Tarzan (1999), with jaccard index of 0.2849.

. Recommended movie: Hercules (1997), with jaccard index of 0.2772.

. Recommended movie: Little Mermaid, The (1989), with jaccard index of 0.2591.

. Recommended movie: Emperor's New Groove, The (2000), with jaccard index of 0.2526.
. Recommended movie: Jungle Book, The (1967), with jaccard index of 0.2402.

. Recommended movie: Lilo & Stitch (2002), with jaccard index of 0.2308.

. Recommended movie: Sleeping Beauty (1959), with jaccard index of 0.2288.

. Recommended movie: Bambi (1942), with jaccard index of 0.2221.

. Recommended movie: 101 Dalmatians (One Hundred and One Dalmatians) (1961), with
jaccard index of 0.2211.

. Recommended movie: Bug's Life, A (1998), with jaccard index of 0.2199.

There are other set distances that could be used here as well. For example the Dice-Sorensen
coefficient could have been used instead. Again it measures the similarity between two sets.

dice(a, b) =2*[anb|/(]a]+[b]) (3.1.3)

As both of these indexes are very similar (D = 2J/(J+1) and J = D/(2-D)) the produced results end
up being exactly the same in this case.

3.2 Similarity based techniques

While the results are starting to look respectable, metrics like the Jaccard distance bias the
results, as they penalize movies that have dissimilarities in the number of users in their respective
sets.

Although set based methods are fast and easy to interpret, they do not use all the available
information. A viewer watches a movie and then rates it based on his preferences. However, in
set — based methods, a user that dislikes a movie is treated the same as a user who likes the
movie.

Cosine similarity is a measure of similarity between two non-zero vectors that is based on the
calculation of the cosine of the angle between them. The measure takes into consideration the
orientation of the vectors and not their magnitude 24. In positive space, as the one where our
vectors are represented, the values of the cosine are in the [0,1] interval. Vectors are then
maximally similar when they are parallel and dissimilar if they are orthogonal. Lastly, it is a
commonly used metric in high dimensional spaces such as the one we are representing our data.

Cosine similarity is generally used as a metric for measuring distance when the magnitude of the
vectors does not matter. This happens for example when working with textual data represented
by word counts. We could assume that when a word (e.g. science) occurs more frequent in
document 1 than it does in document 2, that document 1 is more related to the topic of science.
However, it could also be the case that we are working with documents of uneven lengths.
Then, science probably occurred more in document 1 just because it was way longer than
document 2. Cosine similarity corrects for this.

Although the term “distance metric” is commonly used to describe cosine similarity, it should not
be confused with a distance metric. Since cosine similarity does not follow the constraints of the
Schwarz inequality, it is not considered to be a distance in the formal sense.

Cosine similarity is advantageous to the Euclidean distance in our case, because two similar
movies (in terms of viewers) would appear close, even if they differ in size, since in cosine
similarity the closer the vectors are by angle, the higher the cosine similarity.

»

\

A(x1,yl)
d
B(x2,y2)
0
The mathematical formula for cosine similarity is:
ab n a:b;
cos6 2 i=1 A (3.2.1)

D e

Where=d - b = Yieia;b; = a;by +ayb, + -+ a,b,

To calculate the cosine similarity, all movies are mapped as sparse vectors. The values of these
vectors are the ratings every user in the dataset has given to that particular movie. This leads to
a set of 6853 movies in the 108K dimensional space.

The computations of the metric are not very intensive, because only the values that appear in the
vectors are taken into consideration, and this amount is significantly lower than 108K. However
since the metric must be computed pairwise for every movie pair, the number of combinations is
very high and the algorithm needs a lot of time to complete. This problem can be tackled by
performing the computations in parallel, as the value of every pair is only relevant to that pair
and only needs to be stored after being calculated.

Again a set of 10 movies with the highest similarity score to the movie Mulan are produced and
the recommendations are the following:

= Recommended movie: Tarzan (1999), with cosine similarity 0.5156.
= Recommended movie: Hercules (1997), with cosine similarity 0.4949.

= Recommended movie: Little Mermaid, The (1989), with cosine similarity 0.4677.

= Recommended movie: Emperor's New Groove, The (2000), with cosine similarity 0.4452.
= Recommended movie: Anastasia (1997), with cosine similarity 0.4296.

= Recommended movie: Bug's Life, A (1998), with cosine similarity 0.4182.

= Recommended movie: Lilo & Stitch (2002), with cosine similarity 0.4152.

= Recommended movie: Lion King, The (1994), with cosine similarity 0.415.

= Recommended movie: Beauty and the Beast (1991), with cosine similarity 0.4141.

= Recommended movie: Sleeping Beauty (1959), with cosine similarity 0.414.

The main advantage of using cosine similarity, is that it does not take into consideration the
magnitude of the vector. This can lead to a lot of noise in the results, because movies with a very
small audience can be generated in the results with high scores. This would happen when the
audience of these movies has watched a small list of other movies as well. The movies with the
small audience will get a high similarity score with the rest, as they share their audience.

3.3 Neighborhood based techniques

Machine learning (ML) is the scientific field of algorithms and statistical models that leverage
computing power to perform specific tasks. These tasks usually rely on patterns that emerge from
the data and no specific function that is used to generate explicit values is implied.

Machine learning algorithms can perform a plethora of different tasks. To perform a task, the
user must define the learning style the algorithm will follow. The learning styles can be
categorized as follows:

= Supervised learning
In this case the task of learning a function, maps the input to an output, based on example
input - output pairs.

Those training examples form the training data which are labeled. They consist of the
input (which is usually a vector of feature values) and the desired output — the supervised
signal. Then the core objective of the algorithm is to generalize from the data and to infer
the underlying process (function) that generated those data. Optimally, the algorithm will
find the function and will correctly generate output values on new examples, on which
the algorithm has not been trained. Tasks like Regression and Classification fall under this
category.

Unsupervised learning
In this class, the system is presented with unlabeled, uncategorized data and the
algorithms run on the data without prior training.
Unsupervised learning algorithms can perform more complex processing tasks than
supervised learning systems. However, unsupervised learning can be more unpredictable
than the alternate model.

Clustering and dimensionality reduction are the most famous classes of algorithms in
unsupervised learning.

Semi-supervised learning
It is a class of machine learning tasks techniques that make use of unlabeled data and only
a small amount of labeled data for training.

This class falls between unsupervised learning (without any labeled data) and supervised
learning (with completely labeled training data).

KNN or K nearest neighbors algorithm falls under the supervised learners hood. However it does
not fully comply with the definition that is stated above. KNN is a lazy learner 2°. That translates
into the fact that this algorithm does not need to learn a discriminative function from the training
data but instead, it ‘memorizes’ the data themselves.

KNN is a classification algorithm that has a set of . . Sex
) age weight | height
input features and a labeled target output. An (target)
example of a classification problem, is given the | 20 51 165 Female
age, height and weight of a person to try to infer | 25 77 178 Male
the sex of that person. Age, weight and height are | 21 70 180 Male
called the set of predictors, while sex is the target | 22 >4 160 Male
Iabel. cee cee cee cee

32 60 154 Female

The KNN algorithm, assumes that similarity exists in close proximity. In other words, similar items
lie next to each other. For this algorithm to be useful, we must hinge on this assumption being
true enough for the dataset on hand.

Steps of the KNN algorithms

Load the data

Initialize K, which is the number of the neighbors

Calculate the distance between the current example and all the previous examples
Add the distance and the index of the example in an ordered collection

Sort the ordered collection of distances and indices in ascending order by the distances
Pick the first K entries from the sorted collection along with their labels

= (Classify new records with the mode of their K labels

The advantages of using KNN algorithm is that we do not need to build a model or tune several
model parameters. However, while the number of examples and/or predictors increases, the
algorithm gets significantly slower, which is KNN’s main disadvantage. This makes it an impractical
choice in environments where predictions need to be made rapidly and on big volume of data.

Provided we have sufficient computing resources to speedily handle the data we are using to
make predictions, KNN can still be useful in solving problems that have solutions which depend
on identifying similar objects. An example of this is using the KNN algorithm in recommender
systems, an application of KNN-search 2.

Collaborative filtering recommender systems use the actions of users to recommend to others.
In this section an item - based approach is employed with a KNN model.

The steps followed are described below:

= Transformation of the ratings data frame into an n by m matrix of n users and m movies.
The values of the matrix are the actual rating of the movie of the particular user. If the
value is missing, the cell is filled with Os, so that linear operations can be performed later
on.

= Asnotall users interact with all movies the data are very sparse. For this reason the matrix
is transformed into a sparse representation with the use of sparse module of the scipy
library in Python

= The training data are highly dimensional and the performance of the algorithm will suffer
from the curse of dimensionality if we use the Euclidean distance as its objective function.
Euclidean distance is unhelpful in high dimensions because the vectors are almost
equidistant to the target movie’s features. Instead the cosine similarity tackles that
problem and is better suited for K nearest neighbor search 2.

Following the instructions of the first step, the data are pivoted with rows representing movies
and columns representing users. Every cell with missing values is filled with a 0. In order to make
the calculations faster and take advantage of sparsity in the data we turn the matrix into a sparse
representation using the sparse module of the scipy python library. In a sparse representation
only the non zero values are kept in memory and the calculations are performed on them.

In this thesis, the selected learner is implemented using the NearestNeighbors function of the
neighbors module in the sklearn machine learning python library. The algorithm, the metric and
the number of neighbors had to be defined.

The algorithm of choice is “brute force” because we want to calculate the pairwise distances of
all points in the dataset. This is a very competitive choice over other approaches, as brute force
algorithms do very well when the size of the data set is not very big. As for the metric, we are
using the cosine similarity because of the dimensionality of the data is so big, that using the

Euclidean distance would not be a preferred option. Lastly we can set the number of neighbors
to different integers, but 20 is the number of choice.

The user then inputs a title and the algorithm returns the top 10 movies with their respective
distances.

Top 10 movies for Mulan using a KNN approach are the following:

= Sleeping Beauty (1959), with distance of 0.5867

= Beauty and the Beast (1991), with distance of 0.5864

= Lilo & Stitch (2002), with distance of 0.5856

= Lion King, The (1994), with distance of 0.5856

= Bug's Life, A (1998), with distance of 0.5825

= Anastasia (1997), with distance of 0.5709

= Emperor's New Groove, The (2000), with distance of 0.5557
= Little Mermaid, The (1989), with distance of 0.5328

= Hercules (1997), with distance of 0.5057

= Tarzan (1999), with distance of 0.4852

3.4 Text processing techniques

Singular value decomposition or SVD is a matrix decomposition technique. It a technique used to
decompose the original matrix of ratings A into three matrices such that

A=UxzxVT (3.4.1)

The technique is described in more detail in chapter 4.2, but we have to be aligned with the
general idea before moving further.

Matrix 2€ R**¥ is a diagonal matrix. In its diagonal are stored the singular values of the original
matrix AE R™". The singular values of a non square matrix, are the eigenvalues of matrix ATA €
R™™. A common convention in this technique is keeping the list of singular values in Z in
decreasing order. We can keep a limited number of singular values, by setting the value of k to a
small number thus performing dimensionality reductions on the data.

Matrices U and VE R™* are both orthogonal. An orthogonal matrix, is a matrix with a norm that
equals 1.

Since the matrices that are generated, have only limited amount of features, practically
dimensionality reduction is performed on the item — user space. In other words, a low rank
representation of the original input matrix is generated, that helps us gain insights of the data.

The use of SVD in this way, is called Latent Semantic Analysis (LSA) or Latent Semantic Indexing %2
29

LSA is a very famous technique used in the field of Natural Language Processing (NLP). It is
regularly used to analyze the relationship between a set of documents and the terms they contain
by producing a set of concepts related to the documents and terms. The main assumption is that
words that are closely related in meaning will occur in similar pieces of text (similar documents).

The process is the following.

= Find the set of unique words that appear in the set of documents.

= Create a matrix, where each row represents a distinct word and each column a document.

= Fill the cells of the matrix with the word count of this word in the document.

= Decompose the matrix using SVD, reducing the number of lines while preserving the
similarity structure among column.

= Compare two documents by taking the cosine of the angle between the two vectors
formed by any two columns.

= Similar documents get values that are close to 1, while dissimilar documents get values
close to 0.

Naturally, this technique has been used in content based recommender systems.

In our example of movie recommendation, a set of features can be created such as genre,
runtime, release year, director, Oscar winning movie, starring actors, movie synopsis etc. All these
values generate a text, and this text can be used as the input for the model.

However in the analysis that is presented in this thesis, we are not using any extra features apart
from the rating information for a user — movie pair. This pair is represented in pivoted form. A
different way of thinking, is to think of each user as a word, and the rating that this user has given
to a specific movie, is then the “word count”. Following this idea, a recommender system can be
built.

The steps in this item — to — item recommendation engine that was created are the following:

= The original ratings matrix along with the number of latent features is given as input by
the user.

= SVDis performed (using svds function from linalg module of scipy package). It outputs the
movie factors matrix, the viewers factor matrix and the diagonal matrix containing the
singular values of the original rating matrix.

= The L2 norm of every vector of movie factors is computed and the values are kept into an
nx1 vector, where n is the number of movies in the dataset.

Each of the movie latent factors gets derived by its norm.

The user inputs a mov
Fuzzy text matching is

ie name
performed and the movie id is found in the dataset

The vectors of the latent features of the selected movie is derived
The dot product of all movie factors and the selected movie is calculated. Hence, the
cosine similarity between all movie vectors and the selected movie vector are calculated,

since all vectors are al

ready divided by their corresponding L2 norm.

The data regarding movie id and the cosine are stored into a data frame with descending
order of cosine similarity
Top N recommendations are output on the console.

Interesting recommendations are produced for the movie Her. It is a sci-fi, drama and romance
movie, where a writer falls in love with an operating system. The system run with 40 latent factors

Recommended movie
Recommended movie
score: 0.8998.

Recommended movie:
Recommended movie:
Recommended movie:
Recommended movie:
Recommended movie:
Recommended movie:
Recommended movie:
Recommended movie:

: Whiplash (2014), with score: 0.9165.
: Birdman: Or (The Unexpected Virtue of Ignorance) (2014), with

Grand Budapest Hotel, The (2014), with score: 0.8821.
Gone Girl (2014), with score: 0.8745.

Dallas Buyers Club (2013), with score: 0.8677.
Boyhood (2014), with score: 0.8395.

Ex Machina (2015), with score: 0.8322.

Nightcrawler (2014), with score: 0.8291.

Room (2015), with score: 0.7943.

Wolf of Wall Street, The (2013), with score: 0.7824.

Increasing the number of latent features to 60 included Moonrise Kingdom (2012) and Gravity
(2013) to the resulting movies, while decreasing the number of latent features generated movies
thatincluded Wild Tales (2014), Spotlight (2015), The Lobster (2015) and Captain Fantastic (2016).

According to my personal preference, the recommendation engine with 20 latent features did a
great job, recommending some out of the box movies that were never recommended by other
systems.

Another way to create a recommender system, that has its roots in the field of text processing, is
the TFIDF technique.

There are some amazing models in the field of information retrieval, that are used for calculating
the similarity between query strings and text documents. Following the idea behind the LSA

recommender system, we can easily adapt these models to our purpose, by treating each movie
as a document and each user as a term in those documents.

Again, this is a technique that is preferred when working with actual text data, so it is usually
found in content based filtering algorithms 3°,

The concepts of Term Frequency (TF) and Inverse Document Frequency (IDF) are used in
information retrieval systemg. It is used to determine the relative importance of a document /
article / news item / movie etc.

TF, or term frequency, is the frequency of a word in a document. While IDF, or inverse document
frequency, is the inverse of the document frequency amongst the whole corpus of documents.
The technique is mainly used for two reasons: Suppose we are searching using the following query
on Google “Data Science Jobs in Thessaloniki”. It is certain that the word “in” will occur a lot more
times than the word “Thessaloniki”, but the relative importance of the word “Thessaloniki” is
higher in the search query point of view. TF-IDF practically penalized words with high frequency,
determining the importance of an item.

A function that is usually used to penalize large values is the logarithmic function. Therefore the
term frequency gets weighted by the logarithm. The formula of calculations is the following:

1+ logiotfia if tfia>0 (3.4.2)

Wtd = { .
’ 0 elsewise

Where

= tistheterm

= disthe document

* tf; qis the term frequency of term t in document d

" w;q4 he weighted term frequency of term t in document d

For example
TERM FREQUENCY WEIGHTED TERM
FREQUENCY
0 0
10 2
1000 4

It is clear that the effect of high frequency words is highly reduced and the values are more
comparable as opposed to the original values of the term frequency.

IDF, or inverse document frequency is the second parameter of the TF-IDF algorithm. Having its
basis on the principle that less frequent words are generally more informative, it helps us find the
relevance of the words. The formula of the calculation is

IDF = log,,(N/DF) (3.4.3)

Where

= Nisthe number of documents in the corpus
= DF is the number of documents in which we can observe at least one occurrence of the
word

Then, by multiplying the relevance of the words (IDF) by the occurrence of the words in the
document (TF) we get the TF-IDF score. The similarity of the query and the document is the TF-
IDF distance which is just the cosine of the weighted vectors.

So, again we can consider the pivoted user - item interaction matrix as the matrix of item
appearance in documents. Users are considered as the words and items (and in our case movies)
as documents.

The problem that all the aforementioned algorithms are facing, is that they are ignoring the
overall activity of each user. There are many users of the system, that only watch a handful of
movies and probably only rate them highly. These users are treated the same as users that watch
everything and their ratings range between all possible rating values. For purposes of calculating
similarity, we want to weight people that are selective in what they are watching more than users
that are not. IDF can achieve that by multiplying the logarithm of the inverse probability that a
user will rate a movie.

To create a TF-IDF item — to — item recommendation engine, the following steps were executed:

= The original user — item interactions matrix is taken as input by the human

= A binary matrix based on the original matrix is created.

= Number of views per movies and total number of movies viewed per user is saved into
data frame format

= |DF value for every user is calculated by dividing the total number of movies by the total
number of movies that user has rated and taking the logarithm of that value

= TFis calculated on the original ratings matrix by taking the log of every observation and
then adding the binary matrix values

= TF-IDF is computed by multiplying every row of TF matrix by the corresponding IDF

= The user then inputs a movie to calculate similarities

= The id of the movie is found using fuzzy text matching

= The cosine of the movie TFIDF vector and every other movie’s TF-IDF vector is calculated

= Movie ids and cosine similarities are stored into a data frame with decreasing order in
terms of similarity magnitude

= Top N recommendations are output on the console

The output of the model is very similar to LSA’s output, there it is not printed here.

i Wngiak culhoyr) O
BiBAI0OnNKN \

@gmpAZToz"

,T.‘" ;.,",l'f|‘.|n|.|n rewAoyiac
AN e ANLO /6

Ty,

4. Matrix factorization techniques

4.1 Alternating least squares

Matrix factorization is a class of collaborative filtering algorithms that are used in the field of
recommender systems. The idea is to decompose the user — item interaction matrix into two
lower dimensionality matrices in a lower dimension latent space.

The original algorithm was proposed in 2006 during the Netflix Prize challenge by Simon Funk and
became popular because of its effectiveness. Since then, many new and more sophisticated
algorithms were constructed based upon his idea.

As it has been already stated, usually when creating a recommender system we have some sort
of implicit or explicit data. These data are represented in a form of a matrix with rows
representing users and columns representing items. Obviously these matrices are very sparse
since not everyone can cover the whole list of items.

Here lies the strength of the matrix factorization algorithms. They can incorporate explicit
feedback, that is information that is not directly given but can be derived from the data by
analyzing user behavior 3!, Using this we can estimate if a user is going to like an item or not
even if they have not interacted with and provide a rating for this specific item. If the estimated
rating is high, then this product will be recommended to the user.

Item
w X Y Z W X Y Z
A 4.5 2.0 Alizos 1.5, 1.2 | 1.0 | 0.8
. B |40 3.5 B|i140.09 1.7, 06 1.1, 0.4
g = X
5 C 5.0 90 Clis1.0
D 35 | 4.0 | 1.0 D|1.208
. . User Item
RauRg Hatr Matrix Matrix

Figure 6 Visualization of matrix factorization technique

The image above is great on summarizing the core idea behind matrix factorization.

Practically, the idea is to take a high dimensional matrix and split it into two lower dimensionality
matrices, with a dot product that equals the original matrix. It can be thought of as having a large
integer number and factoring it into the product of smaller primes.

In recommender systems, the original matrix R has millions of different dimensions. However
human taste is not nearly as “complex”. Even if a person would see hundreds of different items,
he would express just a couple of different tastes. So in the context of collaborative filtering, we
can explain the matrix factorization as reducing the dimension of all the items — all users matrix,
into a smaller all items by some taste dimensions and all users by some taste dimensions. These
dimensions are called latent hidden features and are learned from the data.

With this reduction, we are going to be working on fewer dimensions. Our computations will be
more computationally efficient and also we are going to be getting better results because we can
reason about items in this more compact “taste-space” 32.

If we can express each user as a vector of their taste values, and at the same time express each
item as a vector of what tastes they represent, we can quite easily make a recommendation. This
also gives us the ability to find connections between users who have no specific items in common
but share common tastes.

It should also be noted that the latent features or tastes cannot be interpreted by a human as
they can only be represented by a mathematical formula. We will not be able to label them
“comedy” or “black and white” or “starring Jude Law”. These latent features don’t necessarily
reflect any real metadata.

These features and their relevant values can be learned from the data. This is achieved by
minimizing a loss function.

In the field of linear algebra, matrix factorization is a form of optimization process that aims to
approximate the original matrix R, with two matrices X and Y, such as the following cost function
is minimized.

L= ||IR=XxYT|l, + A(IIXllz + IIYIl2) (4.1.1)

The first term in the formula of the loss function is the mean squared error (MSE) distance of the
original matrix R and its approximation XxYT. The second term is called a “regularization term”
and is added to govern a generalized solution, to prevent overfitting to the local noise effects of
the ratings.

The cost function introduces two new parameters: k and A. While we are trying to minimize the
loss function for given k and A values, at the same time, it is essential to determine the optimal
values for those parameters as well.

The loss function can be minimized with the help of s
gradient descent algorithm. Gradient descent is an 1 /
optimization algorithm that is widely used in the
field of machine learning. It is an iterative
optimization process, that assumes the existence of
a cost function and arbitrary initial values for the
optimization variables. In every iteration, the
gradient of the cost function is re-computed with
respect to the optimization variables. The variables ' . T
are then updated. The target of this process is to
minimize the cost function, until the later converges
to a minimum point. However, the gradient descent Figure 7 Visualization of gradient descent
method can only guarantee convergence to a local

minima 33,

Iteration 3

Iteration 4

Convergence

Y

Final
Value

Looking at the cost function of the matrix factorization algorithm, it appears that the aim is to
learn two types of variables: those of X and those of Y. Since the cost function is the sum
IR — XxYT|l, = X.i(Ry — xu " y:) plus the regularization term, the fact that both X’s and Y’s
values are unknown makes the cost function non convex.

We can, however, consider the following: If we fix the values of Y and optimize only for the values
of X alone, the problem is reduced to a linear regression problem. In linear regression we solve
the equation:

Y=0pX+¢(4.1.2)
Where

= Yisthe vector of observed variables or the dependent variables

= Xis a matrix of row vectors p;, which are known as the independent variables

= Bisthe parameter vector, with values known as the regression coefficients and
= gisthe error value or noise

In linear regression we solve for by minimizing the squared error
L= |IXB-YI*= XiLi(Bx; — ¥i)* (4.1.3)
The loss functions is solved as:
L= |xXpg-Y|*
=XB-Y)'(XB-Y)

= YTY — YTXB — BTXTY + BTXTXB (4.1.4)

The loss is convex so the optimal solution lies when the gradient is at zero value. The solution is
given by ordinary least squares (OLS).

oL o(YTY — YTXB — BTXTY + BTXTXP)
B o
= —2XTY + 2 XTXp (4.1.5)

Setting the gradient to 0 we get
—2XTY +2XTXB =0
XTy = XTxp
B = (XTX)"1xTy (4.1.6)

Alternating least squares is a two-step iterative optimization process that takes advantage of the
convergence of OLS. In every iteration, first it keeps the values of X fixed and solves for Y and then
does the same in reverse, keeping the values of Y fixed and solving for X. Since the OLS solution
is unique and guarantees a minimal MSE, in either step the cost function can either decrease or
stay unchanged but never increase. Alternating between the two steps guarantees a reduction of
the cost function until convergence. Similarly to gradient descent optimization, it is guaranteed
to converge to a local minima, and it ultimately depends on initial values for X and Y.

So, let R be the user — item interaction matrix, X the user matrix of k latent features and Y the
item matrix of k latent features. Then, user u is represented by the vector x,,, while the item i is
represented as y;.

The actual rated score of user u on item i is 1;;;. The prediction ;,; for the true rating can then be
calculated as:

Pui = X0V = D XurVri (4.1.7)

Where xT is a row vector and y; is a column vector. These are the latent vectors or low
dimensional embeddings.

By minimizing the square of the difference between all ratings in the dataset (S) and their
predictions, a loss function is produced. The formula of the function is:

L= Yyies(rui — x5 - yi) + A Tullxull” + 2, Xillyill? (4.1.8)

In the end of the formula two L, regularization parameters are added to prevent overfitting on
user or item data.

The goal is the minimization of the aforementioned function. This is achieved through gradient
descent. At each step of ALS minimization, a set of latent vectors is kept constant. For simplicity
let us assume that in the first step the item vectors are constant. Then the derivative of the loss
function is calculated with respect to the other set of vectors (the user vectors). Because we are
searching for a minimum, the derivative is set to equal zero and we solve for the non-constant
vectors (the user vectors).

The alternating part, is the one that follows. After solving the derivative, the vectors for users are
updated. We now hold them constant and take the derivative of the loss function with respect to
the previously constant vectors (the item vectors). We alternate back and forth between these
two steps until convergence.

To dive deeper into the math of the technique, let us hold the item vectors (y;) constant and take
the derivative of the loss function with respect to the user vectors (x,).

dL
a_ = -2 Z (rui - xEYu)yf + lexg
Xu i
0= —(r, —xIYT)Y + Al
xE(YTY + A, 0) = Y

xl = n,Y(YTY + 2,1)71 (4.1.9)

Let us assume that the original dimensionality of the interaction matrix is n by m, denoting that
the dataset consists of n users and m items. Also let us assume, that the number of latent features
is k.

Symbol Y, is used to refer to m by k representation of all item row vectors, that are vertically
stacked on top of each other. The row vector 7;, is used to represent the row in the interaction
matrix for user u. It contains all the ratings the user has given to all items. Its dimensions,
therefore are a vector with length m. | is the identity matrix (unit diagonal matrix) with
dimensions k by k.

So, for the kth dimension of the user’s latent vector, the formula would be transformed into:

Xuk = Tui¥ie(YeiYie + AXIKK)_1(4'1'1O)

Similarly, the derivation of the item vector is calculated.

oL

a—yi = =2 Zi(rui— yg‘xu)x;li" + Zlyle

0= —(r;— ¥y XDX+ A4y

YW XTX + A0 = X
yi = nX(X"X + 2,1)7(4.1.11)

The pseudocode of the algorithm is provided below:

Algorithm 1: ALS for matrix factorization — ALS step
Initialize with random values X and Y
repeat:
foru=1, .., ndo:
Xy = (Zruieru* yiyLT +4 Ik)_l Zruieru* TuiYi
end for
fori=1, .., mdo:
Vi = (Zruier*i xuxz + 1 Ik)_l Zruier*iruixu
end for
until convergence

To train the algorithm and assert how the algorithm is doing we must first split the dataset into a
training and a test set.

Since we have kept in the dataset only users with a minimum of 50 rated movies, 10 random
movies that a user has rated are selected from every user, and are kept hidden. Then the data
are reshaped into a pivoted form and two matrices are created, the training and the test set.

Notice, that this is not a classical split into an 80% - 20% training — test sets approach, but this is
the approach that inspired the above defined split actions. In more detail, since 20% of 50 is 10,
with 50 being the minimum number of distinct rated movies by a user, the number of 10 ratings
for removal is selected. Ideally, to create an 80% - 20% split, the number of movies each user has
rated should be multiplied by 0.2. However, we do not want to lose a large amount of data, since
the data already consist of very sparse examples, and therefore the amount for movies to be
removed was kept constant to 10. Also, for the test set, we wanted the number of examples for
each user to be kept constant, so that we can assert the performance of the model on users with
a limited amount of examples.

We also need an error metric to be optimized. This metric was chosen to be the mean squared
error, since it is the most commonly used metric when calculating the performance of a
recommender system. This is an outcome of this being the selected metric for optimization during
the Netflix prize challenge, where participants were asked to reduce the metric by 10% over that
of the then algorithm in use. Since then, MSE has remained the most liked metrics for the task.

The steps of the algorithm are defined in detail bellow.

First the system is initialized with the two matrices of latent vectors — the user and item latent
features. These matrices are shaped n by k and k by m respectively, where n is the number of
users, m is the number of items and k is the defined number of latent features. The matrices are
initialized with random values generated by a normal distribution and they should lie in the same
number interval of the actual ratings values.

After the system’s initialization, the alternating squares step has to be defined. The algorithm
goes into a loop, calculating the derivative for items and then users. So, in each step the latent
and the fixed vectors are reversed and the corresponding lambda value is provided to the
algorithm. The dot product of the fixed vectors is calculated and multiplied by the regularization
parameter lambda. Then, for every point in the latent vectors, the loss function is minimized. This
is achieved by computing the dot products of the ratings row or column that corresponds to the
selected user or item respectively, by the fixed vector and solving against the dot product of the
fixed vectors and the lambda of the eye matrix. To solve the loss function, the fast computation
of the solve function from numpy’s linalg module was selected. After solving, the values of the
latent vectors are updated and returned for the next iteration step.

On the next step of the algorithm, the training begins. The number of iterations is defined by the
user.

Next, the algorithm should be able to generate predictions. Two modules are defined: predict
and predict all. Predict, works on a defined user and a defined item. Since the user and item
vectors along with their trained values in their corresponding latent factors are defined, the
prediction is the dot product of these two vectors. Predict all, loops over every user and every
item and fills the values on a new matrix, with the same dimension as the original input matrix.

The predictions for every user — item combinations are calculated every time a full iteration of
the algorithm is completed. Predictions are generated both for the test and training set. On this
step, the error metric, mean squared error, is calculated separately over the actual data and the
train set and over the actual data and the test set. The values are saved to be able to assert the
model’s performance over every iteration.

To keep track of the resulting error, a plotting function was also defined. It kept track of the error
of the training and the test sets and how it evolved as the number of iterations increased.

All the computations were performed on local machine with 16GB RAM and on an intel i7-75000
processor. Since there are so many loops that are performed during every iteration the training
time of the algorithm was very long. In more detail, training of the algorithm was performed with
30, 40 and 50 latent features and the training time was 6 and a half days, 8 and 10 days
respectively.

Because of the long training times, parameter tuning and optimization was very hard to perform.

On the following plots, we can observe the evolution of training and test MSE as the number of
training iterations was increasing for models with different number of latent features. More
specifically, tests were conducted for models with 30, 40 and 50 latent features. All three model
run for a total of 50 iterations and had their regularization parameters set to zero for both item
and user vectors.

ALS model with 30 latent features Error evolutions on ALS model with 40 latent features

124 N —— train error

104 N\ —— train error
—— test error —— test error

10 4

Mean Squared error
Mean squared error
~

54
T
4
0 10 20 30 40 50 0 10 20 30 Yy 50
Iteration step Iteration step

The model that was initialized with a total
of 30 latent features started with a test 10 ————
MSE of 12.10 which started stabilizing | T festermor
around 10.6 after the 12t iteration of the \
algorithm. The training set had a much
lower error on the first iteration (7.21),
but it did not decrease by the same
amount as the test error. The values of the
training MSE were stable at a mean value 4]
of 6.5 after the 8t iteration step.

Error evolutions on ALS model with 50 latent features

Mean squared error

_

0 10 20 30 40 50

A similar behavior can be seen on the Iteration step

model that was initialized with 40 latent

features. However the second plot differs significantly from the first, because there is a large
drop on the 8™ iteration on both train and test set, denoting that the algorithm’s behaviors is
becoming stable after that iteration.

54

At last, the alternating least squares
recommender system was initialized with
50 latent features. At this test, the
behavior of the system changed, as both
train and test set errors decreased fast
during the first 5 iterations and then they
were stable for the rest of the iterations.

Error comparison of ALS models

12 —— train w 30 latent feats
- train w 40 latent feats
—— train w 50 latent feats
—— test w 30 latent feats
10 4 \\\

—— test w 40 latent feats
—— test w 50 latent feats

Mean squared error

So, we can assume that increasing the
number of latent features, the system is .l
able to infer more accurate rules for both _

item and user behavior and generate more 0 10
accurate results.

20 30 40 50
Iteration step

However, we do not want this number to increase dramatically, as it is also performed as a
dimensionality reduction technique, so that the space of the features is a lot lower than the
initial space.

Testing on models with more than 50 latent features was not performed on that model because
of the increase in training times.

All of the models were trained without regularization parameters. This lead to model overfitting
which can be seen in all three plots. The test set MSE is always higher than the train set MSE,
with values higher than those of the test set error more that 50%.

Since the model that worked best for this dataset is the model with 50 latent features, we
further tested it by adding a regularization parameter, to alleviate the overfitting of the model.
All of the models were tested up to 15 iterations to decrease the training time. Also the lambda
values were set to the same number for both user and item matrices.

Mean squared error

ALS model with 50 latent features and lambda = 0.01

—— train error
test error

0 2 4 6 8 10 12 14
Iteration step

Mean squared error

ALS model with 50 latent features and lambda = 0.05

—— train error
test error

Mean squared error

ALS model with 50 latent features and lambda = 0.1

—— train error
test error

0 2 4 6 8 10 12 14
Iteration step

0 2 4 6 8 10 12 14
Iteration step

First, three models were generated with regularization parameters of 0.01, 0.05 and 0.1 values
for both item and user matrices. The error values of the ALS model with lambda 0.05 seems to
not having converged yet. They would probably get lower with the completion of more iterations.

In the model of 0.1 lambda, the interval between training and test set errors is the lowest of all
three models. This is the model with the lower overfitting degree.

Of all three models, the model with the highest
I’egU|arizati0n parameter was ﬂttlng beSt the ALS model with 50 latent features and lambda = 10
data.

Another model, with a lambda value of 10 was
trained, with 50 latent features for 15 iterations.
Here the resulting diagram is very different from
the previous ones. The regularization parameter
made the model unstable and did not let it reach °1
convergence. The errors did not follow a |[— twainemor|
decreasing pattern, but instead the MSE of both Bl
training and test set are alternating values in

large values interval.

Mean squared error

0 2 4 6 8 10 12 14
Iteration step

Ideally, to complete the analysis a grid search would be required.

Grid search is a technique, applied across machine learning algorithms, to calculate the best
hyperparameters to use on a given model and a dataset. Via scanning of the data, the optimal
values for the models hyperparameters can be defined. This technique is extremely
computationally expensive, because the grid search is built on the model and calculates every
possible combination of parameters. It stores every model with every possible parameter
combinations per iteration.

To tune the hyperparameters of the ALS recommender system that was created, we should test
over combinations of different latent features, distinct lambda values for both user and item
matrices and different number of iteration steps. The model with the best overall score in terms
of error would then be the best model and get selected. The above test was not performed, as
the tests that have already been defined took very long to complete.

The model with 50 latent features on its 15 iteration with regularization of 0.1 for user and item
matrices was considered to be the best.

4.2 Singular value decomposition

An alternative to the ALS method is Singular value decomposition or SVD. SVD is a matrix
decomposition technique that has its roots in linear algebra. It decomposes the original matrix A
into three matrices such that A=UxXx VT where

. UE R™k and VE R™* are both orthogonal matrices (columns are orthogonal and their
norm equals 1)
. 3€ R*** is a diagonal matrix with the singular values of A on its diagonal. The singular

values of a matrix AE R™™ are the square roots of the eigenvalues of matrix ATA €
R™™ A common convention is keeping the list of singular values in ¥ in descending order

Assuming that A is a matrix of user — item interactions, then each row in U would correspond to
a user characteristic and each row in V to an item characteristic. For example u; j is the number
that quantifies the membership of user i to the characteristic k. Since U and V form orthogonal
bases, the overall strength of characteristic K in the interaction matrix can be either deducted
from U or V.

An interaction in matrix A, say 4,;, can be explained by a set of independent categories. For
example for user u and item |, the interaction A,; is decomposed to the following sum

Y1 (Uyp * Zig * Vi) (4.2.1)
where

= U, isthe kth latent factor value for user u
= vl is the kth latent factor value for item i
= Yy is the overall weight of kth latent factor

It follows that any interaction between user u and item i is affected by K latent factors. These
factors are each decomposed into the product of u, * vi; and the overall effect of this
dimension X on interactions across all users and items.

Lastly, since X is ordered by the size of the singular values of A in descending order, the cumulative
sum Z’k(:lek accounts for the total variance (effect of the interactions), as is explained by the K
strongest effects. Therefore, it is easy to make a rough assumption of what should the rank of A
be (how many factors affect the interaction).

However, the above algorithm is practically impossible to implement on a recommender system
as the original matrix A must have all of its values defined.

If A was dense, both U and V could be calculated easily. The columns of U are the eigenvectors of
AT A and the columns of V are the eigenvectors of AAT. The associated eigenvalues make up the
diagonal matrix 2. While A is dense, there are many packages in various computing languages that
can efficiently complete that task.

On the other hand, in the case of recommendation systems, the user — item interaction matrix is
usually very sparse, therefore the matrices ATA and AAT do not exist, and consequently, no
complete SVD can be performed. Following the non existence of matrices ATA and AAT the
eigenvalues and eigenvectors of these matrices do not exist either and it is impossible to factorize
A by the product UzVT. But, there is a way around. A first option that was used for some time is
to fill the missing entries of A with some simple heuristic, e.g. the mean of the columns (or rows).
Once the matrix is dense, we can compute its SVD using the traditional algorithm. This works OK,
but the generated results are usually highly biased.

Another way of solving the SVD matrix factorization on a sparse matrix is by finding all the vectors
u,, and v;, such that u,, make the rows of U and v; make the columns of V7. The constraints that
need to be followed are:

ayi = uyv; foralluandi
= All the vectors u,, are mutually orthogonal as well as the vectors v;.

Finding such vectors u,, and v; can be achieved by solving the following optimization problem,
while respecting the constraints over orthogonality.

: 2
I{{B}}i ZruieR(aui - uuvi) (4.2.2)
Pulpy
‘Ui_LVj
In more detail, we want to find the values for vectors u,, and v; that make the sum minimal. In
other words, we are trying to match the optimal way of calculating the values of r; with their
calculated value u, v;. Once these values are known, the construction of U and V is possible, and
consequently we can get the SVD of the original interaction matrix A.

The aforementioned operation can be performed even on sparse matrices. This time the missing
values are not treated as 0Os, or some other arbitrary values, but they are simply ignored.
However, we must also forget about the orthogonality constraints, because even if they are
useful for interpretation purposes, constraining the vectors usually does not help us obtain more
accurate predictions. So the optimization function changes to:

Lnigl- ZruieR(aui — u,v;)? (4.2.3)

Again, the problem of a non convex function is found here, as in the alternating least squares
loss function. This is because it is very difficult to find the values for the vectors u,, and v; that
make the sum minimal. Also, the optimal solution could be not unique. There are however
techniques that can be used to approximate the solution.

The main idea, comes from the solution that Simon Funk proposed during the Netflix Prize
competition. It is based on Stochastic Gradient Descent to solve the SVD system.

However Funk, proposed a slightly different loss function.

The loss function that was used along with the ALS recommender system tried to minimize the
difference between the actual value in the interaction matrix and the calculated value from the
dot product of the user and item matrices. Also, a regularization term was introduced to help the
model regularize and not overfit the training data. This was a penalty term on the minimization
equation that was introduced with a regularization factor lambda that was multiplied with the
square sum of the magnitudes of the user and item vectors.

L= Yuiex(@u— v{w)? + Al ll? + llvill?)(4.2.4)

To illustrate the usefulness of the regularization factor, imagine having an extreme case where a
low rating is given by a user to a movie with no other rating from this user. The algorithm will
minimize the error by giving v; a large value. This will cause all rating from this user to other
movies to be very low. This is intuitively wrong. By adding the magnitude of the vectors to the
equation, giving vectors large value will minimize the equation and thus such situations will be
avoided.

To reduce the error between the predicted and actual value, the algorithm makes use of some
characteristics of the dataset. In particular for each user - item pair we can extract three
parameters, called bias terms.

= u, which is the average rating of all items
= b;, which is the average rating of item i minus p
= b, which is used to represent the average rating given by user u minus p

Thus, the expected rating is:
ay, = vlu, —u+ b; + by (4.2.5)
And the loss function is transformed into
L= Yuiex(@u— wvi—p+ b+ by)? + Alluull® + llvill* + bZ + bY) (4.2.6)

We have defined only one lambda value on the function above for simplicity. However, there can
be multiple regularization parameters such as 1,, 4, and 4., etc.

The above equation can be minimized using the Stochastic Gradient Descent algorithm (SGD).
With SGD, we take derivatives of the loss function, but we take the derivative with respect to
each variable in the model. The “stochastic” aspect of the algorithm involves taking the derivative
and updating feature weights one individual sample at a time. So, for each sample, we take the
derivative of each variable, set them all equal to zero, solve for the feature weights, and update
each feature.

We want to update each feature (user and item latent factors and bias terms) with each sample.
The update for the user bias is given by:

JL
by & by —n5.-(4.2.7)

The derivative term is given by:

aL
T 2(ay; — (u+ by + by +ulv))(—1) + 21b,
u
oL
a_bu = Zeui(—l) + 2/1bu
:TLu = —ey; + Ab, (4.2.8)

Where n is the learning rate, that specifies how much the update modifies the feature weights.
e,i is aterm to represent the error in our prediction, and 2 is dropped, as we can assume that it
gets rolled up by the learning rate.

Thus, the rest of the features get updated as follows:
by < by +n(ey — Aby)
b; < b; +n(ey — Ab;)
Uy < Uy +n(eyv; — Auy)
v < v+ ey — Av) *

Apparently the number of parameters has greatly increased. The parameters that need tuning
now are:

= Number of epochs, which is the number of full iterations over the algorithm
= Number of factors, which is the magnitude of the latent features
= The distribution, from which the random values for matrices U and V will be generated
= Lambda, which is the regularization parameter that will be used over all parameters
o It can also be tuned per parameter
= Learning rate over all parameters

Surprise is a Python package, that has based its calculations on the very famous scikit package. It
has a set of built in algorithms designed for recommender systems. Also, it contains a module
that can help users perform fast cross validation to help with hyperparameter tuning.

Cross validation is a statistical method that is used to estimate the fit of machine learning models.
It is commonly used in applied machine learning to compare and select a model for a given
predictive modeling problem because it is easy to understand, easy to implement, and results in
estimates that generally have a lower bias than other methods. There are two main types of cross
validation techniques: the exhaustive and non — exhaustive cross validation.

Exhaustive cross validation methods are cross-validation methods which learn and test on all
possible ways to divide the original sample into a training and a validation set.

There are two main algorithms in use:

= |LPOCV: Leave p out cross validation
In this technique, p observations are used as the validation set and the remaining
observations are the training set. This is repeated on all ways to cut the original sample
on a validation set of p observations and a training set.

= LOOCV: Leave one out cross validation
This method is a particular case of LPOCV, wherep =1

Non — exhaustive cross validation are methods that do not compute all possible ways of splitting
the original sample dataset.

Methods included in this category are:

= K fold cross validation
In this method, the sample is randomly partitioned into K equal sized subsamples. Of
these, one subsample is retained to test the model, and the rest K-1 are used as the
training set of the model. The validation process is repeated K times, so that each of the
K subsamples are used one time as the validation set. The resulting scores of the K
models, are then usually averaged in order to produce a single score.
With this method all the observations are used for both training and validation set, and
each observation is used in the validation data exactly one time. Most commonly used K
fold cross validation method is 10-fold validation, although K remains an unfixed
parameter.

= Holdout method
In this cross validation method, points are randomly assigned to one of the two sets,
training and validation set. The size of each of the sets is arbitrary, although typically the
test set is smaller than the training set. The model is then trained on the training set and
evaluated on the test set.

To create the SVD recommender system, the data were first split into training and test set. This
was done holding the typical amount of 80% of the available data as training set and the
remaining 20% as the test set.

To test the algorithm, and end up with an optimal solution regarding the dataset in hand, 5-fold
cross validation was performed on the training set to test algorithms with different selection of
parameters.

The original dataset contains 23.396.256 observations. 20% of those observations was randomly
used as a test set (4.679.251 observations) and the rest of them as the training set (18.717.005
observation).

The training set is then randomly split into 5 folds of about 3.7 million observations each, and
performs training five times, each time using a different fold as its test set.

61

The resulting scores are printed below.

The errors are calculated over the known rating. There are three error metrics printed in the

matrices:

= MAE: mean absolute error

= MSE: mean squared error

.)2
= RMSE: root mean square error RMSE = /—Z(r“‘N Tur)

Cross validation run

= Number of training epochs: 20
= Number of latent factors: 40

= Regularization lambda 0.02

= Learning rate 0.005

MSE =

MAE — Z(Tui_ Tul)

N

N

X(rui— rl/l.:)z

Fold 1 Fold 2 Fold3 Fold4 Fold 5 Mean Std
RMSE (test set) 0.9720 0.9775 0.9774 0.9830 0.9717 0.9763 0.0039
MSE (test set) 0.9448 0.9556 0.9555 0.9663 0.9443 0.9532 0.0070
MAE (test set) 0.9718 0.9799 0.9796 0.9803 0.9792 0.9781 0.0004
Fit time 928.10 783.44 770.05 860.97 843.37 837.19 57.03
Test time 2537.47 3109.44 962.68 2007.17 1234.29 1970.21 797.21

Also, error diagrams were produced, as we run the algorithm on the train set and calculated the
errors (MSE) on both training and test data with the same hyperparameters defined above,
except the number of latent factors, that was set to 40, 60 and 100. The algorithm run for 1, 2, ...,

20 epochs consequently.

SVD with 40 latent features

Mean squared error

—— train error
—— test error

6 8 10
Training epoch

14 16 18

SVD with 100 latent features

Mean squared error
o o oo
o) o

o
>

—— train error
—— test error

4 6 8 10 12 14 16

Training epoch

62

It is apparent that test set error and training set error are
not that far apart as they were on the ALS model. Also, it
should be noted that the errors here are of a much lower
magnitude. The test set error is about 0.95 after about 6
iterations regardless of the number of latent features
selected. However it must be noted that, although the
training error did not reduce any further, the test error has
reduced with the increase of the number of latent
features. We can thus assume that increasing further that
amount might lead to a better model. That was not
performed, as it is beyond the purpose of this thesis and

the training times are getting longer the more we increase the number of features.

Mean squared error
o I
@)

o
o

0.4 4

SVD with 60 latent features

—— train error
- test error

[¢]

2 4 6

To get a better hint about the best model a grid search was performed.

The parameters that were tested were:

. Training epochs: 6, 10, 15 and 20

. Number of latent factors: 60, 80, 100

. Regularization parameter: 0.01, 0.05, 0.1
" Learning rate: 0.001, 0.005, 0.01

8

10

Training epoch

12 14

All of the above combinations were tested against the whole dataset using a 3-fold cross
validation set. The best model is selected based on the produced test set mean square error.

It turned out that the best model is trained for 20 epochs with 100 latent factors, regularization
lambda 0.05 and learning rate 0.001 with MSE of 0.4218 on the training set and 0.7512 on the

validation set.

The last iteration was performed over that

Best SVD model errors

model and the MSE is printed on the following
error plot. This is the only model that was -
trained where the test error fell below the
training set MSE for initial training epochs (up \
to 6). Hence we can be sure that the model is
not overfitting the data.

g
(=]

o
o

Mean squared error

Also since the selection of the best number of
training epochs is 20 and the optimal number
of latent features is 100, which both are the —

o
o

.

train error
test error

maximum values that where given for testing "

in the grid search, further exploration would be

T
4

6

8 10
Training epoch

advised to be performed with higher values for those hyperparameters.

12

14

16

18

i Wngiak culhoyr) O
BiBAI0OnNKN \

@gmpAZToz"

,T.‘" ;.,",l'f|‘.|n|.|n rewAoyiac
AN e ANLO /6

Ty,

5. Deep learning techniques

5.0 Preliminaries

Moving further, this analysis would be incomplete if no deep learning algorithms were
implemented.

Artificial neural networks of ANNs, are a set of graph based models inspired by the biological
neural networks of human brains. The objective is to work like the human brain performing
cognitive functions that the brain can perform like problem solving and being teachable. They
interpret data through a series of actions, labeling or clustering raw input.

Neural nets only recognize numerical input contained in vectors, into which all real world data,
let them be images, text or time series be labeled.

Input layer Hidden layers i Output layer

i h, h, h 0

Output 1

| "%
Input 2 N
KA

Output n

Figure 8 Fully connected ANN architecture

An artificial neural network has a large number of ‘processors’. They operate in parallel but they
are arranged in tiers. The first tier receives the raw input similar to how the optic nerve receives
the raw information in human beings. Each successive tier then receives input from the tier
before it and then passes on its output to the tier after it. The last tier processes the final output.

65

Each tier is made up of nodes. These nodes are also called neurons as they resemble the neurons
of biological neural networks. These neurons are usually highly interconnected with the nodes in
the previous layer as well as the next one. Every node in the network has its own sphere of
knowledge, including rules that it was programmed with and rules that is has already learned by
itself.

The learning process of each node is quite simple. The neurons are interconnected with weighted
connections. Each of these weighted connections is attached with a real value. The value of a
neuron that is placed in the previous layer is passed to a new neuron and it gets multiplied by the
weight of the connection. Each node weights the importance of the input it received from the
nodes in the previous layer. The input that contribute the most towards the right output are given
the highest weight. The sum of all the connected neurons is the neuron’s value. This value is then
put through an activation function f(x) which mathematically transforms the value and assigns it
to the connected neuron in the adjacent layer. This is propagated through the whole network.

So, in conclusion a neural network is a fully connected weighted graph. These weights must be
learned in order for the network to make good inference from the data. “Looking” at two similar
objects, the network could get confused and output the false answer. To prevent such an
occurrence of event, we equip the network with a source of feedback mechanism that is known
as back propagation. Using this algorithm, the network is able to go back and “double-check” the
weights of its interconnections, to make sure that all the biases are correct and that all the
connections are weighted properly.

There are various types of different architectures for neural network models. Each of these types
is used to solve a different type of problem. In this project we are going to focus only on the
multilayer perceptron.

The multilayer perceptron is a fully connected neural network that consists of a minimum of three
layers: The input layer, at least one hidden layer and the output layer. Every single node in a layer
is fully connected to the neurons of the previous and the following layers 3°.

Each neuron in equipped with an activation
function. The neurons of each layer first calculate
the weighted sum of the output of all the neurons
in the previous layer. This is the neuron’s input.
Then it adds a bias term. The bias term is defined
on the layer, and is a value that is added to the
input of all layers. Then the neuron decides if it
should “fire” or not.

Let us consider a neuron. Then,

Y = Z'(Weight % input) + bias Figure 9 Neuron input and output in a NN

The value of Y is unconstrained. It can be anything from — infinity to + infinity. The neuron is
agnostic of the bounds of the value. So, a process must be defined to allow the neuron to “fire”
(pass its signal to the following layer) or not.

The purpose of the activation function, or transfer function, is exactly that: Check the produced
Y value in the neuron and decide whether the outside connections should consider that this
neuron is activated or not. Typically these functions are non linear, allowing the network to learn
complex patterns in the data.

Various such functions exist. Some of the most widely used are 3¢:

* Step function fx) = {(1): if x> tg;ﬁ::f;éi
= Sigmoid function flx) = 1+l—x

= Tanh function f(x) = tanh(x) = 1+:_2x -

= Relu f(x) = max(0, x)

It must be noted that the input layer has no activation function and passes either raw of
preprocessed information to the adjacent layers. The transfer function that is then found on each
layer can be different per layer. Usually, the activation function that is used on all the layers of
the “hidden part” of the network are the same, while the activation function of the output layer
differs.

The learnable part of the neural network are the link weights. The weights need to get the optimal
values, so that the network can generate and output the correct information. This is done via
defining an error metric, which in this case is the loss function (or objective function) of the
network. While propagating information back and forth the network need to make changes in
the weights so that this function can converge to a minimum. In more detail, the loss function
maps the values of variables into one number, intuitively representing some “cost” associated
with these values.

The cost or loss function has an important job in that it must faithfully distill all aspects of the
model down into a single number in such a way that improvements in that number are a sign of
a better model. As the function must be used in backpropagation, it must satisfy two properties:

1. The cost function must be able to be written as an average C = %Zx C,, over cost

functions Cy of individual training examples X.
This is so it allows us to compute the gradient (with respect to weights and biases) for
a single training example, and run Gradient Descent.

2. The cost function C must not be dependent on any activation values of a neural
network besides the output values.
Technically a cost function can be dependent on any output values of the current
layer. This restriction is crucial, so we can backpropagate, because the equation for

finding the gradient of the last layer is the only one that is dependent on the cost
function (the rest are dependent on the next layer). If the cost function is dependent
on other activation layers besides the output one, backpropagation will be invalid
because the idea of "trickling backwards" no longer works.

Typically, the loss functions of choice for regression neural networks is the mean squared error,
which satisfies both properties

» MAE cost(s,y) = %Z [s —yl
= MSE cost(s,y) = %2(5 - ¥)?

1 .

E(y—s)z, if ly—sl<$é
* Huber cost(s,y) =

1) ((y —5)— %5), otherwise

Huber loss function is used in regression neural networks, however it is less sensitive to outliers
than the MSE, as it treats errors as square only inside an interval 3’. Mean squared error has the
tendency of getting dominated by outliers. However, in our case of building a recommender
system, by creating a network that accurately predicts the values of the rating for a specific user
— item pair, we need it to take care of low ratings. Therefore, the cost function that was chosen
is MSE.

The values of the weights along with the bias terms are “learned” using the efficient algorithm of
backpropagation (BP) 38. Simply put, first a full forward pass is completed through the network.
After that, backpropagation performs a backward pass while adjusting the model’s parameters.
In more detail, via backpropagation, the neural network repeatedly adjusts the weights of the
connections so as to minimize a measure of the difference between the actual output vector of
the net and the desired output vector. The level of adjustment is determined by the gradients of
the cost function with respect to those parameters.

The derivative of a function C measures the sensitivity to change of the function value (output
value) with respect to a change in its argument x (input value). In other words, the derivative tells
us the direction C is going. The gradient shows how much the parameter x needs to change (in a
positive or negative direction) to minimize C. So, the gradient helps us optimize the model
parameters (weights and biases)

ac
wew—g— (5.0.1)
ac
b «<b —& (5.0.2)

Where

= w and b are matrix representations of the weights and biases

= gisthe learning rate which determines the gradient’s influence

We can compute the
gradients using the chain
rule technique. For a single
weight (wjlk) and a single
bias term (bjl) , Where:

lek is the weight of the

connection between
neuron j the (I-1)-th layer
and k in the I-th layer.

b} is the bias term passed to

neuron j in the I-th layer of
the network.

x =a,M

)

-
4

Input layer

W 1)

72, ul(ln

A
A 4

Y
A 4

::IZD ”:12)
/,H»

Hidden_1 layer

Figure 10 Neural Network architecture

The gradients can be calculated as follows, via the chain rule:

Where

7 = YL, whai ' + b} (5.04)

-1

ac

T
6w]-k

ac 9z
S 11
azj aw]-k

(5.0.3)

we

“/l:i

:l(.h al(?»

2

T \

o / s

@

::l.‘) u:(lr

b@

Hidden_2 layer

W"”

Output layer

a; ~ is the output of the previous layers (passes through nodes’ activation function) that is input

in k-th neuron of layer |

and m is the number of neurons in the |-th layer

Then,

Similarly, the equations applied to b} are calculated:

ac

l
6“ﬁk

at™! (5.0.5)

ac
e (5.0.6)
J

ac 62}
Sl Al Aanl
db; 0z; 0Ob;

69

ac ac

1= A1 (5.0.7)

6b]- azj

And it is now obvious that the error gets propagated to the weight and bias values of the previous
layers. Thus, optimization of those parameters can be achieved via backpropagation.

Consequently, the steps involved to complete an epoch of training are the following:

= |nitiate the values of w and b with random values (typically chosen from a normal
distribution)

= Forward pass the network and predict the output y for all input values. (y = s)

= Evaluation of s and y through the calculation of the cost function C=cost(s,y).
Based on the values of C, the model “knows” (via backpropagation of error) how much to
adjust the parameters in order to get closer to the desired output y.

= Backpropagate the error and update the weight and bias matrices.

After each completion of training (:= training epoch), the value of the loss function is minimized
and the weights and biases of the network are getting close to their optimal values.

5.1 Neural Network of embeddings recommender system

To create a recommendation engine that is using the functionality of neural network, we have
constructed a neural network of embeddings.

An embedding is a mapping of a discrete — categorical — variable to a vector of continuous
numbers. Practically, they “translate” high dimensional input into a lower dimension continuous
vector representations of discrete variables. Neural network embeddings are useful because they
can reduce the dimensionality of categorical variables and meaningfully represent categories in
the transformed space. Ideally, since the embeddings can be learned, an embedding captures
some of the semantics of the input by placing semantically similar inputs close together in the
embedding space.

The simplest form of an embedding technique is one-hot representation of the data.

One-hot encoding, maps categorical variables into a different vector. Every observation is
mapped into a vector of Os and a single 1, signaling the specific category. As a consequence, one-
hot encoding has two main drawbacks.

1. Variables with high cardinality increase the dimensionality of the input space by a very
large amount, usually making the dimensionality of the input space infeasible.
With each additional category in a categorical variable, we have another number of one-

hot encoded features, so for example, a variable containing 5000 movie ids needs a 5000
— dimensional space to be represented with one-hot features.

2. The mapping is “uniform”, meaning that similar categories are not placed close in the
vector space.
Measuring similarity between the vectors after one-hot encoding in the embedding space
using cosine similarity, would end up O for every comparison between entities.

Considering these two problems, the ideal solution for representing categorical variables would
require fewer numbers than the number of unique categories and would place similar
categories closer to one another.

One-hot embeddings is an oversimplified transformation algorithm of representing categorical
data into a numeric representation. The task is also performed without supervision, thus the
resulting features are not able to capture similarities.

An improved embedding of the data can be achieved through a definition of a supervised task fed
into a neural network. The embeddings are then learned: they are the weights of the network’s
connections between the layers. These weights are learned by the network - to their optimal
values — minimizing the output error. The resulting vectors (the networks weights matrix) are a
representation of categories, where similar categories — relative to the task — are close to one
another.

So, to generate correct user to movie ratings, thus creating a list of high rated movies list for
recommendations to a specific user, we can create a supervised task for a neural network of
embeddings.

Since, the representation of data on hand, only contains minimal information of item id, movie id
and the corresponding rating in [0,5] range, a neural network that embeds the movie id and the
user id can be created.

For this project Python’s deep learning framework Keras was used.

Keras is a high-level neural network API, written in Python and capable of running on top of
TensorFlow, CNTK and Theano. It enables fast experimentation with a variety of different neural
network architectures.

The following structure was modeled:

= |nput layer: The input contains both user ids and movie ids, integer encoded.
= Hidden layer: One hidden layer of embeddings for user ids and movie ids.
= Qutput layer: Merge layer of dot product.

First, the neural network model is defined. The model is sequential, meaning that the output layer
will consist of one neuron outputting a continuous value.

The Embeddings layer in a Keras neural network turns positive integers (indexes) into dense
vectors of fixed size. This layer can only be used as the first layer of a model. The user must define
the size of the vocabulary (i.e. the number of unique user and item indexes) and the dimension
of the embedding. The embedding layer is then initialized with random weights and will learn an
embedding for every word in the training set vocabulary (for every id). Also, in the
implementation of Keras Embedding layer, embedding layers have no activation function.

The network is defined with two distinct input layers. One layers gets movie ids as input and the
second gets the values of user ids. Two distinct embedding layers are trained for each of the
movie and user ids alongside each other. These can be thought of as two distinct networks. It is
possible to define the embedding layers to output movie embeddings on a different dimension
space than user ids.

The two networks output the 2D matrix of embeddings which get flattened. Later, the networks
are merged together using a merge layer that computes the dot product between the two input
tensors. This is also the output layer of the network. The dot product is computed between all
possible embeddings combinations, thus the training time of the neural network can also grow
with the increase of the vocabulary.

The loss function of the network is the mean squared error, as it cares for outliers, which in our
case are the low ratings of movies. The dot product of every possible combination of item and
user embeddings is calculated, however the loss function is only computed on the training
examples that have an accompanying rating.

The errors are then back propagated through both embedding layers and the weights get
adjusted with respect to one another. Instead of using classic gradient descent, Adam
optimization algorithm was chosen, which is an extension of stochastic gradient descent .

Distinct models were created that were trained from 1 up to 10 epochs. The learning rate of all
tests was the default value of Adam optimizer, set to 0.001.

The training time of an algorithm trained for 10 epochs, takes approximately 4 days.

The following plots contain the evolution of MSE for both training and test set, as the number of
training epochs increased.

No hyperparameter tuning was performed due to the long training times of the algorithm.

NN of 5D embeddings NN of 10D embeddings

—— train error

74 \ —— train error
—— test error

—— test error 51

Mean squared error
Mean squared error
w

& N ———
—_—
0 1 2 3 4 é 6 7 8 9 T T T T T T T T T T
Training epoch 0 1 2 3 4 5 6 7 8 9
Training epoch
NN of 50D embeddings NN of 100D embeddings

—— train error
—— test error

—— train error
—— test error

Mean squared error
Mean squared error
w

Training epoch Training epoch

The resulting errors are very promising, as both train set and test set errors are almost the same
and the model is generalizing well. Of the above models the best model is the one with 10D
embeddings, as the resulting error after 10 epochs of training was 0.6178 for the training set and
0.7241 for the test set.

Since the resulting scores were very promising, another model was trained. That model had an
extra hidden dense layer that was added after the merging layer of the embeddings layers. The
embeddings layers produced embeddings of 50 — dimensional representations for both user and
item ids. The dense layer consisted of 128 neurons with sigmoid activation function and it was

73

placed after the merging layer of the

embeddings. The output layer remained Hi ot embedding= with 1 higdeniiayar

as a single output neuron. 404 e
Backpropagation of errors was completed -
with Adam.
§ 3.0 A
The training time of the model was the ;22_5_
longest, in comparison to the rest of the §;
NN model. It took a total of 9 days, so not é 07
much optimization was possible. " 18]
The model was able to achieve the lowest * .
error for both training and test set after %
the completion of 10 training epochs. o 1 2 3 4 5 6 7 8 9

. K Training epoch
Train set mean squared error is 0.3413,
while test set error 0.6112.

Error comparison diagrams were generated for all neural networks of embeddings models.

Comparison of train set errors

7 —— 5D embedding

Mean squared error

—— 10D embedding
61 o0 mbesg Model Train set error
;| —— 50D embedding + extra layer after 10

epochs
1 5D embeddings 0.6725
3 10D embeddings 0.6178
] 50D embeddings 0.6415
100D embeddings 0.7508
Y \ = 50D embeddings + layer | 0.3413

Training epoch

74

Mean squared error

Comparison of test set errors

—— 5D embedding

—— 10D embedding

—— 50D embedding

—— 100D embedding

—— 50D embedding + extra layer

Model Test set error
after 10
epochs

5D embeddings 0.7474

10D embeddings 0.7241

50D embeddings 0.7723

100D embeddings 0.8319

50D embeddings + layer 0.6112

0 1 2 3 4 5 6 7 8 9
Training epoch

75

i Wngiak culhoyr) O
BiBAI0OnNKN \

@gmpAZToz"

,T.‘" ;.,",l'f|‘.|n|.|n rewAoyiac
AN e ANLO /6

Ty,

6. Conclusion

In this thesis an introduction to different methods for recommender systems was presented. The
focus was to create good recommendations using only the data regarding the interaction
between a user and an item. In the first part, a variety of methods was used to find similar item
to recommend to users. On the second part algorithms were created to predict the rating a user
would give an item.

The analysis that was presented, made clear that even though the dataset on hand had a very
limited amount of information, consisting only with user and movie ids along with the given
rating, a recommender system can be build achieving astonishing results in terms of error.

The strength of using latent features representations was underlined, as all algorithms that used
them generated very promising results, being able to achieve very low errors in their test sets.
Neural network architectures of embeddings showed the best results, having the lowest rating
prediction error.

Bibliography

1. Sharma R, Singh R. Evolution of recommender systems from ancient times to modern
era: A survey. Indian J Sci Technol. 2016;9(20). doi:10.17485/ijst/2016/v9i20/88005

2. Huang LW, Chen GS, Liu YC, Li DY. Enhancing recommender systems by incorporating
social information. J Zhejiang Univ Sci C. 2013;14(9):711-721. doi:10.1631/jzus.ClIP1303

3. Felfernig A, Polat-Erdeniz S, Uran C, et al. An overview of recommender systems in the
internet of things. J Intell Inf Syst. 2019;52(2):285-309. doi:10.1007/s10844-018-0530-7

4, Schroder G, Thiele M, Lehner W. Setting goals and choosing metrics for recommender
system evaluations. CEUR Workshop Proc. 2011;811(January 2011):78-85.

5. Zibriczky D. Recommender systems meet finance: A literature review. CEUR Workshop
Proc. 2016;1606(5):3-10.

6. P V A. a Survey of Recommender System Types and Its Classification. Int J Adv Res
Comput Sci. 2017;8(9):486-491. doi:10.26483/ijarcs.v8i9.5017

7. Sielis GA, Tzanavari A, Papadopoulos GA. Recommender Systems Review of Types,
Techniques, and Applications. Encycl Inf Sci Technol Third Ed. 2014:7260-7270.
doi:10.4018/978-1-4666-5888-2.ch714

8. Bittner P. Modulempfehlungen tber Vo rganger- und Nachfolgemodule. Lect Notes
Informatics (LNI), Proc - Ser Gesellschaft fur Inform. 2015;246(Section 3):725-733.
doi:10.1155/2009/421425

9. Do M-PT, Nguyen D V., Nguyen L. Model-based Approach for Collaborative Filtering. Proc
6th Int Conf Inf Technol Educ. 2010;(January):217-225. https://goo.gl/BHu7ge.

10. Leben M. Applying Item-based and User-based collaborative filtering on the Netflix data.
Inf Retr Boston. 2008:1-9.

11. Hayakawa M. MF Techniques. Earthq Predict with Radio Tech. 2015:199-207.
doi:10.1002/9781118770368.ch6

12. PulL, Faltings B. Understanding and improving relational matrix factorization in
recommender systems. RecSys 2013 - Proc 7th ACM Conf Recomm Syst. 2013:41-48.
doi:10.1145/2507157.2507178

13. LuZ, DouZ, LianJ, Xie X, Yang Q. Content-Based Collaborative Filtering for News Topic
Recommendation. :217-223.

14. Analysis ID. Politecnico di Torino Porto Institutional Repository [Article] Hybrid
Recommender Systems : A Systematic Literature Review. 2017;(November).
doi:10.3233/IDA-163209

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

Modeling U, Burke R. Hybrid Recommender Systems : Survey and Experiments Hybrid
Recommender Systems : 2014;(November 2002). doi:10.1023/A

XuJ,Yao Y, Tong H, Tao X, Lu J. Ice-Breaking: Mitigating cold-start recommendation
problem by rating comparison. IJCAI Int Jt Conf Artif Intell. 2015;2015-January(ljcai):3981-
3987.

Elahi M. Chapter 1 Cold Start Solutions For Recommendation Systems. 2019;(May).
doi:10.13140/RG.2.2.27407.02725

Nadimi-Shahraki MH, Bahadorpour M. Cold-start problem in collaborative recommender
systems: Efficient methods based on ask-to-rate technique. J Comput Inf Technol.
2014;22(2):105-113. d0i:10.2498/cit.1002223

Boratto L, Carta S, Fenu G, Saia R. Semantics-aware content-based recommender
systems: Design and architecture guidelines. Neurocomputing. 2017;254(October
2017):79-85. doi:10.1016/j.neucom.2016.10.079

Gunawardana A, Shani G. A survey of accuracy evaluation metrics of recommendation
tasks. J Mach Learn Res. 2009;10:2935-2962.

Beel J, Genzmehr M, Langer S, Nirnberger A, Gipp B. A comparative analysis of offline
and online evaluations and discussion of research paper recommender system
evaluation. ACM Int Conf Proceeding Ser. 2013:7-14. d0i:10.1145/2532508.2532511

Hu Y, Volinsky C, Koren Y. Collaborative filtering for implicit feedback datasets. Proc - IEEE
Int Conf Data Mining, ICDM. 2008:263-272. doi:10.1109/ICDM.2008.22

Ayub M, Ghazanfar MA, Magsood M, Saleem A. A Jaccard base similarity measure to
improve performance of CF based recommender systems. Int Conf Inf Netw. 2018;2018-
January(January):1-6. doi:10.1109/ICOIN.2018.8343073

Gurjar K, Moon Y. A Comparative Analysis of Music Similarity Measures in. 2018;14(1):32-
55.

Garcia EK, Feldman S, Gupta MR, Srivastava S. Completely lazy learning. IEEE Trans Know/
Data Eng. 2010;22(9):1274-1285. doi:10.1109/TKDE.2009.159

Wang H. Personalized recommendation system K- neighbor algorithm optimization.
2015;(Icitel):105-108.

Prasath VBS, Arafat H, Alfeilat A, Hassanat ABA, Lasassmeh O, Ahmad S. Effects of
Distance Measure Choice on KNN Classifier Performance - A Review. :1-39.

Das U. Design of a Recommendation Model Considering Semantic Analysis.
2013;77(1):45-49.

Hofmann T. Latent Semantic Models for Collaborative Filtering. 2004;22(1):89-115.

Wang B, Ye F, Xu J. A Personalized Recommendation Algorithm Based on the User’ s
Implicit Feedback in E-Commerce. 2018. doi:10.3390/fi10120117

31.

32.

33.
34.
35.
36.

37.

38.
39.

Pilaszy 1, Zibriczky D. Fast ALS-based Matrix Factorization for Explicit and Implicit
Feedback Datasets Categories and Subject Descriptors. 2010;(January).
doi:10.1145/1864708.1864726

Konstan JA. MovieExplorer : Building an Interactive Exploration Tool from Ratings and
Latent Taste Spaces. :1383-1392. d0i:10.1145/3167132.3167281

Kao C. Introduction to gradient descent e. :1-12.
Katz G, Shani G. Using Wikipedia to Boost SVD Recommender Systems.
Dreiseitl S. Artificial Neural Networks textbook.

Nwankpa CE, ljomah W, Gachagan A, Marshall S. Activation Functions : Comparison of
Trends in Practice and Research for Deep Learning. :1-20.

Burges C, Drucker H, Golowich S, et al. Regression Estimation with Support Vector
Learning Machines in collaboration with. 2003;(June 2013).

Li F, Johnson J, Yeung S. Lecture 4 : Backpropagation and Neural Networks. 2017.

Kingma DP, Ba JL. Adam: A method for stochastic optimization. 2015:1-15.

