

ΜΑΤΣΑΚΟΥ Μ. ΑΓΛΑΙΑ Πτυχιούχος Γεωλόγος

ΚΑΤΟΛΙΣΘΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΟ ΝΗΣΙ ΤΗΣ ΛΕΥΚΑΔΑΣ ΠΡΟΚΑΛΟΥΜΕΝΑ ΑΠΟ ΤΗ ΣΕΙΣΜΙΚΗ ΔΟΝΗΣΗ ΤΗΣ 17^{ης} ΝΟΕΜΒΡΙΟΥ 2015 ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΜΕ ΒΑΣΗ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΥΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ 'ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ', ΚΑΤΕΥΘΥΝΣΗ: 'ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ'

ΘΕΣΣΑΛΟΝΙΚΗ 2020

Ψηφιακή βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

ΜΑΤΣΑΚΟΥ ΑΓΛΑΙΑ

ΠΤΥΧΙΟΥΧΟΣ ΓΕΩΛΟΓΟΣ

ΚΑΤΟΛΙΣΘΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΟ ΝΗΣΙ ΤΗΣ ΛΕΥΚΑΔΑΣ ΠΡΟΚΑΛΟΥΜΕΝΑ ΑΠΟ ΤΗ ΣΕΙΣΜΙΚΗ ΔΟΝΗΣΗ ΤΗΣ 17^{ης} ΝΟΕΜΒΡΙΟΥ 2015 ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΜΕ ΒΑΣΗ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΥΣ

Υποβλήθηκε στο Τμήμα Γεωλογίας

Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας

<u>Τριμελής Εξεταστική Επιτροπή</u>

Μαρίνος Βασίλειος, Επίκουρος Καθηγητής, Τμ. Πολιτικών Μηχανικών, ΕΜΠ (Επιβλέπων)

Παπαθανασίου Γεώργιος, Επίκουρος Καθηγητής, Τμ. Πολιτικών Μηχανικών, ΔΠΘ

Γκανάς Αθανάσιος, Ερευνητής Α', Γεωδυναμικό. Ινστ., Εθν. Αστεροσκ. Αθηνών

© Ματσάκου Αγλαΐα, Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας, 2020. Με επιφύλαξη παντός δικαιώματος. All right reserved.

ΚΑΤΟΛΙΣΘΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΟ ΝΗΣΙ ΤΗΣ ΛΕΥΚΑΔΑΣ ΠΡΟΚΑΛΟΥΜΕΝΑ ΑΠΟ ΤΗ ΣΕΙΣΜΙΚΗ ΔΟΝΗΣΗ ΤΗΣ 17^{ης} ΝΟΕΜΒΡΙΟΥ 2015 ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑΣ ΜΕ ΒΑΣΗ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΥΣ

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν την συγγραφέα και δεν πρέπει να ερμηνευτεί ότι εκφράζουν τις επίσημες θέσεις του Α.Π.Θ.

Περιεχόμενα

ΠΡΟΛΟΓΟΣ
ΕΥΧΑΡΙΣΤΙΕΣ
ΠΕΡΙΛΗΨΗ7
ABSTRACT9
ΚΕΦΑΛΑΙΟ 1° – ΕΙΣΑΓΩΓΗ11
1.1 Αντικείμενο - Σκοπός11
1.2 Περιοχή μελέτης11
1.3 Ο σεισμός της 17 ^{ης} Νοεμβρίου 2015 - αστοχίες13
1.4 Δομή εργασίας21
ΚΕΦΑΛΑΙΟ 2° – ΓΕΩΛΟΓΙΚΗ ΕΠΙΣΚΟΠΗΣΗ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ
2.1 Γεωλογία23
2.2 Τεκτονική – Νεοτεκτονική29
2.3 Σεισμικότητα39
2.4 Σεισμική επικινδυνότητα41
2.5 Τεχνικογεωλογικές συνθήκες42
2.6 Κλιματολογικές συνθήκες58
ΚΕΦΑΛΑΙΟ 3° – ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΕΠΙΣΚΟΠΗΣΗ61
3.1 Προηγούμενες έρευνες – μελέτες61
3.2 "Σημαντικοί" σεισμοί με κατολισθήσεις στον κόσμο65
3.3 Διαδικασία απογραφής κατολισθήσεων (Inventory) με σύγχρονες μεθόδους79
3.3.1 Γενικά79
3.3.2 Απογραφή κατολισθήσεων με βάση την ερμηνεία της οπτικής εικόνας και την
εργασία στο πεδίο81
3.3.3 Αρχείο καταγραφής κατολισθήσεων και βάσεις δεδομένων
3.3.4 Αποθήκευση και διανομή δεδομένων90
3.3.5 Εισαγωγή δεδομένων91

3

Ψηφιακή συλλογή Βιβλιοθήκη	
ΟΕΟΟΡΟΛΟΤΟΣΗ 3.4 Περιγραφό στατιστικών μεθόδων που υπάρχουν και εφαρμόζονται σύμφωνα με τη	
βιβλιογραφία	5
 3.4.1 Δείκτης Επιδεκτικότητας Κατολισθήσεων (Landslide Susceptibility Index)95	5
3.4.2 Λογιστική παλινδρόμηση (logistic regression)97	7
3.4.3 Διακριτική ανάλυση (discriminant analysis)	C
ΚΕΦΑΛΑΙΟ 4° – ΔΙΑΘΕΣΙΜΑ ΔΕΔΟΜΕΝΑ-ΜΕΘΟΔΟΛΟΓΙΑ101	1
4.1 Διαθέσιμα δεδομένα101	1
4.2 Μεθοδολογία101	1
4.3 Δεδομένα κατολισθήσεων106	5
ΚΕΦΑΛΑΙΟ 5ο – ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΟΛΟΓΙΑΣ114	4
5.1 Εισαγωγή και υπέρθεση δεδομένων114	4
5.2 Πυκνότητα κατολισθήσεων127	7
5.2.1 Γεωλογία128	3
5.2.2 Κλίση πρανούς139	Э
5.2.3 Προσανατολισμός κλιτύων148	3
5.2.4 Υψόμετρο157	7
5.3 Διαδικασία κατασκευής χάρτη επιδεκτικότητας	7
ΚΕΦΑΛΑΙΟ 6° – ΑΠΟΤΕΛΕΣΜΑΤΑ, ΕΠΑΛΗΘΕΥΣΗ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ	
ΣΕΙΣΜΟΥ ΤΟΥ 2003	C
6.1 Αποτελέσματα180	C
6.2 Επαλήθευση188	3
6.3 Σύγκριση με τα αποτελέσματα του σεισμού του 2003	4
ΚΕΦΑΛΑΙΟ 7º - ΥΠΑΙΘΡΟΣ202	2
ΚΕΦΑΛΑΙΟ 8° – ΣΥΜΠΕΡΑΣΜΑΤΑ253	3
ПАРАРТНМА)
ΒΙΒΛΙΟΓΡΑΦΙΑ294	4

Η παρούσα διπλωματική εργασία έχει τίτλο: «Κατολισθητικά φαινόμενα στο νησί της Λευκάδας προκαλούμενα από τη σεισμική δόνηση της 17^{ης} Νοεμβρίου 2015 και αξιολόγηση της επιδεκτικότητας με βάση στατιστικές μεθόδους». Στόχο έχει την επεξεργασία των δεδομένων των κατολισθήσεων που έχουν εκδηλωθεί στο νησί της Λευκάδας, ύστερα από την σεισμική δόνηση της 17^{ης} Νοεμβρίου 2015, καθώς επίσης και την στατιστική ανάλυση των δεδομένων και συνεπώς την αξιολόγηση της επιδεκτικότητας της περιοχής με βάση στατιστικές μεθόδους, και αποτελεί τμήμα ευρύτερης έρευνας στην Περιφέρεια Ιονίων Νήσων. Έτσι, μπορούν να εξαχθούν συμπεράσματα σχετικά με επιδεκτικές περιοχές ως προς την εκδήλωση κατολισθητικών φαινομένων. Για το σκοπό αυτό, πραγματοποιήθηκε στατιστική ανάλυση των δεδομένων με τη μέθοδο LSI (Landslide Susceptibility Index), με χρήση των τεχνολογιών ArcGIS και του προγράμματος Excel. Μια τέτοια μελέτη κρίνεται σκόπιμη και αναγκαία, αφού οι σεισμικά επαγόμενες κατολισθήσεις επηρεάζουν σημαντικά το φυσικό και ανθρωπογενές περιβάλλον, θέτοντας ακόμη και σε κίνδυνο την ανθρώπινη ζωή.

Ψηφιακή συλλογή Βιβλιοθήκη

ήμα Γεωλογίας

ΠΡΟΛΟΓΟΣ

Από αυτή τη θέση, θα ήθελα αρχικά να ευχαριστήσω τον Καθηγητή κ. Μαρίνο Βασίλειο, για τις γνώσεις που μου προσέφερε σε όλη τη διάρκεια των σπουδών μου, καθώς και για τη δυνατότητα και την εμπιστοσύνη που μου έδειξε, για την εκπόνηση της παρούσας διπλωματικής εργασίας. Επιπλέον, θα ήθελα να εκφράσω ιδιαιτέρως τις ευχαριστίες μου στον Επίκουρο Καθηγητή κ. Παπαθανασίου Γεώργιο, για την όλη βοήθεια και καθοδήγηση που μου παρείχε, κατά τη διάρκεια της διεκπεραίωσης της παρούσας εργασίας. Ακόμη, θα ήθελα να ευχαριστήσω τον Δρ. Αθανάσιο Γκανά για την συμμετοχή του στην τριμελή εξεταστική επιτροπή για τις καίριες παρατηρήσεις και συμβουλές του. Τέλος, θα ήθελα να ευχαριστήσω από καρδιάς την οικογένεια, τους φίλους και τους συγγενείς μου, και ιδιαιτέρως τις φίλες – συμφοιτήτριες μου στο εν λόγω μεταπτυχιακό, όλοι οι οποίοι στάθηκαν αρωγοί σε όλες μου τις προσπάθειες και ειδικότερα στην εκπόνηση του συγκεκριμένου μεταπτυχιακού προγράμματος.

Ψηφιακή συλλογή Βιβλιοθήκη

ΕΥΧΑΡΙΣΤΙΕΣ

μα Γεωλογίας

Οι κατολισθήσεις και δη οι σεισμικά επαγόμενες κατολισθήσεις, αποτελούν έναν από τους σημαντικότερους και πιο διαδεδομένους φυσικούς κινδύνους παγκοσμίως, που καλούνται οι αρχές να διαχειριστούν (διαχείριση φυσικών κινδύνων - καταστροφών). Η μελέτη των κατολισθήσεων και η απεικόνισή τους σε χάρτες επιδεκτικότητας και επικινδυνότητας, διαδραματίζουν σημαντικό ρόλο στον σχεδιασμό τεχνικών έργων, στην ανάπτυξη αστικού σχεδιασμού, και στην κατάλληλη επιλογή χρήσεων γης.

Ψηφιακή συλλογή Βιβλιοθήκη

μα Γεωλογίας

Μία τέτοια περίπτωση αποτελεί ο σεισμός της Λευκάδας, που έλαβε χώρα στις 17 Νοεμβρίου 2015, μεγέθους Mw=6.5, μεταξύ των οικισμών Αθάνι και Άγιος Πέτρος. Στόχος της παρούσας εργασίας είναι να μελετηθεί και να προταθεί ένα μοντέλο επιδεκτικότητας για την πρόγνωση θέσεων αστοχιών σε μελλοντικό σεισμό στο νησί της Λευκάδας. Χρησιμοποιήθηκαν δεδομένα από το αρχείο απογραφής κατολισθήσεων του 2015 (inventory 2015), που αποτελείται από 596 κατολισθήσεις. Ο χάρτης κατανομής κατολισθήσεων, δείχνει την πυκνότητα των κατολισθήσεων, που αυξάνεται από τα ανατολικά προς τα δυτικά του νησιού. Επιπλέον, η χωρική κατανομή των κατολισθήσεων αναλύθηκε στατιστικά σε σχέση με τους παράγοντες της γεωλογίας, κλίσης, προσανατολισμού και υψομέτρου ως προς την επιδεκτικότητα. Επιπροσθέτως, υπολογίστηκαν μεγέθη όπως η πυκνότητα κλάσης (densclass), η πυκνότητα κατολισθήσεων στο χάρτη (densmap), κλπ, οδηγώντας στον υπολογισμό των συντελεστών βάρους (weight factors). Ακολούθως, αθροίστηκαν όλα τα θεματικά επίπεδα (μέγεθος κανάβου 10x10m) και διαχωρίστηκαν 10 κατηγορίες επιδεκτικότητας (μέθοδος φυσικών διαστημάτων), ώστε να παραχθεί ο χάρτης επιδεκτικότητας.

Στη συνέχεια, πραγματοποιήθηκε έλεγχος του χάρτη επιδεκτικότητας (validation), με τον υπολογισμό των μεγεθών: συχνότητα κατολισθήσεων, συχνότητα κλάσης και συχνότητα κατολισθήσεων ανά κλάση, προκύπτοντας πως από τις συνολικά 596 κατολισθήσεις, το 61,58% του ποσοστού των κατολισθήσεων ανήκει στην πιο επιδεκτική κατηγορία (10), (ποσοστό 88,93% στις κατηγορίες 8,9,10). Αυτή η αξιολόγηση ερμηνεύει το ποσοστό επιτυχίας του μοντέλου, (success rate). Η ίδια διαδικασία πραγματοποιήθηκε και για το ποσοστό προβλεψιμότητας, (prediction rate), με το αρχείο απογραφής του 2003 (302 κατολισθήσεις), όπου το 51,99% των κατολισθήσεων ανήκει στην πιο επιδεκτική κατηγορία (10), (88,74% στις κατηγορίες 8,9,10).

Ψηφιακή συλλογή Βιβλιοθήκη

Επιπλέον, πραγματοποιήθηκαν 2 (αθροιστικές) καμπύλες, περιλαμβάνοντας το ποσοστό του χάρτη επιδεκτικότητας σε σχέση με το ποσοστό των κατολισθήσεων. Αναφορικά με το ποσοστό επιτυχίας (success rate), στο 10% του χάρτη περιλαμβάνεται το 78% του ποσοστού των κατολισθήσεων, ενώ για το ποσοστό προβλεψιμότητας (prediction rate), στο 10% του χάρτη θα μπορούσε να είχε προβλεφθεί το 75% του ποσοστού των κατολισθήσεων. Ολοκληρώνοντας, και για τις δύο καμπύλες, το 25% του χάρτη επαληθεύει και προβλέπει πάνω από το 90% των κατολισθήσεων, αποδεικνύοντας την αξιοπιστία του μοντέλου.

Στο πεδίο εντοπίστηκαν αστοχίες, κυρίως σε ασβεστολίθους της ζώνης Παξών, καθώς και μέτρα αντιμετώπισης έναντι αυτών των φαινομένων, (πλέγματα, συρματοκιβώτια, βραχοπαγίδες Geobrugg, αποστραγγιστικοί σωλήνες και αγκύρια).

Κλείνοντας, η παρούσα εργασία παρουσιάζει τον χάρτη επιδεκτικότητας σεισμικά επαγόμενων κατολισθήσεων για το νησί της Λευκάδας. Επισημαίνεται πως τα αρχεία απογραφής κατολισθήσεων που χρησιμοποιήθηκαν για την κατασκευή αυτού του χάρτη (δεδομένα ελέγχου και πρόβλεψης), βασίστηκαν σε δεδομένα σεισμών που έλαβαν χώρα στο βόρειο τμήμα του νησιού (14/08/2003), καθώς και στο νότιο τμήμα (17/11/2015). Τέλος, αυτός ο χάρτης είναι ο τελικός χάρτης επιδεκτικότητας για το νησί της Λευκάδας και μπορεί να χρησιμοποιηθεί από τις αρμόδιες αρχές και την Πολιτική Προστασία, για την πρόγνωση θέσεων αστοχιών σε μελλοντικό σεισμό.

Earthquake induced landslides consist one of the most important natural hazards worldwide. The compilation of landslide inventory and susceptibility maps play a key-role in the design of technical projects, the development of urban design, and in the proper selection of land use. The aim of this project is to study the earthquake-induced landslides triggered by the 2015 earthquake in the island of Lefkada and to develop a susceptibility model, to predict slope failure locations in a future earthquake. In order to achieve this, information regarding the spatial distribution of slope failures generated by the 2015 inventory was analyzed (596 landslides) in ArcGIS. The developed inventory map indicates that the density of landslides increases from east to west, while it is highlighted the importance of engineering geological mapping for developing a reliable landslide hazard map.

Ψηφιακή συλλογή Βιβλιοθήκη

μα Γεωλογίας

Furthermore, the spatial distribution of landslides was statistically analyzed in relation to the causal factors of geology and topography (classified at classes), in order to investigate their influence in landsliding phenomena. Values such as densclass (percentage of landslides within each class) and densmap (density of landslides throughout the map), were evaluated, in order to calculate the weighted factors. Subsequently, these factors were overlaid as thematic layers and the resulted map was classified at 10 susceptibility classes (natural breaks method). As an outcome, a landslide susceptibility map of pixel size 10x10m was compiled. Afterwards, this model was further analyzed by calculating frequency values, in order to estimate the success rate, using the landslide inventory in 2015 earthquake. The outcome of the analysis shows that 61,58% of the 596 landslides corresponds to the 10th susceptibility class, (in classes 8,9,10 the rate is 88,93%). Concerning the prediction rate, we took into account the landslide inventory in 2003 earthquake (302 landslides), following the same procedure. The susceptibility map indicates that 51,99% of the 302 landslides corresponds to the 10th susceptibility class, (in classes 8,9,10 the rate is 88,74%). The two cumulative curves, success & prediction rate curves, present the percentage of the susceptibility map and the percentage of landslides. Regarding the success rate, the 10% of the map includes the 78% of landslides, while the 75% of the landslides could be predicted in the 10% of the map (prediction rate curve). Finally, for both curves, 25% of the map verifies and predicts more than 90% of landslides.

Ψηφιακή συλλογή Βιβλιοθήκη

Regarding field observations, slope failures were identified mainly in limestone of Paxos zone. Protection measures were recorded, such as gabions and Geobrugg rockfall barriers.

Finally, this study presents the earthquake-induced landslide susceptibility map of Lefkada island. It is highlighted that the inventories that were used for the development of this map (training and validation dataset) are based on data provided by earthquakes occurred on the northern part (14/8/2003) and on the southern part (17/11/2015 event) of the island. Thus, this map is considered as the final susceptibility map for the island and can be used by public agencies and civil protection authorities in order to forecast slope failures triggered by future earthquakes.

Ο σκοπός της παρούσης εργασίας, είναι η επεξεργασία των δεδομένων των κατολισθήσεων που έχουν προκληθεί στο νησί της Λευκάδας, από την εκδήλωση της σεισμικής δόνησης της 17^{ης} Νοεμβρίου 2015, καθώς επίσης και η στατιστική ανάλυση των δεδομένων και συνεπώς η αξιολόγηση της επιδεκτικότητας της περιοχής με βάση στατιστικές μεθόδους. Έτσι, παράχθηκε ο χάρτης επιδεκτικότητας κατολισθήσεων με τον οποίον μπορούν να εξαχθούν συμπεράσματα σχετικά με επιδεκτικές περιοχές ως προς την εκδήλωση κατολισθητικών φαινομένων.

1.2 Περιοχή μελέτης

Η περιοχή μελέτης της παρούσας διπλωματικής εργασίας, είναι το νησί της Λευκάδας (Σχ. 1, 2). Η Λευκάδα είναι νησί του Ιονίου πελάγους και μαζί με τα νησιά Κέρκυρα, Κεφαλονιά, Ιθάκη, Ζάκυνθος και Παξοί αποτελούν την περιφέρεια Ιονίων Νήσων. Η Λευκάδα είναι μία από τις πιο χαρακτηριστικές περιοχές έρευνας κατολισθήσεων. Είναι γνωστό (Sabatakakis et al. 2013), ότι τα κατολισθητικά φαινόμενα εμφανίζονται συχνότερα και εντονότερα στο δυτικό και κεντρικό τμήμα της χώρας και για αυτό το λόγο είναι σημαντική η συστηματική τους έρευνα, τόσο σε τοπικό, όσο και σε ευρύτερο επίπεδο, σε μεγαλύτερες δηλαδή κλίμακες.

Σχήμα 1: Το νησί της Λευκάδας στον Ελλαδικό χώρο, με την απεικόνιση οικισμών και του οδικού δικτύου, στο πρόγραμμα ArcGIS.

Από το 2011 που εισήχθη στο πρόγραμμα Καλλικράτης, η Λευκάδα, μαζί με τα νησιά Μεγανήσι, Κάλαμο και Καστό, αποτελεί πλέον δήμο με έδρα την πόλη της Λευκάδος. Είναι το τέταρτο σε έκταση νησί στο Ιόνιο (320 km²) και το τέταρτο σε πληθυσμό με περίπου 23.000 κατοίκους κατά την απογραφή του 2011. Λόγω της γεωγραφικής της θέσης, οι ακτές της βρίσκονται πολύ κοντά μ' εκείνες της ηπειρωτικής Ελλάδας τις οποίες τις χωρίζει ο ιστορικός πορθμός του Δρεπάνου, συνδέεται με την Αιτωλοακαρνανία με μια πλωτή γέφυρα μήκους περίπου 20 μέτρων. Μαζί με την Εύβοια είναι τα δυο μοναδικά νησιά στην Ελλάδα στα οποία η πρόσβαση γίνεται οδικώς. Πρόκειται για ένα ορεινό νησί, με έντονο κατακόρυφο ανάγλυφο και πολύπλοκες τεκτονικές δομές, καθώς παρατηρούνται και πολυάριθμες κλιτείς και χαράδρες. Το ψηλότερο βουνό είναι τα Σταυρωτά, με απότομες πλαγιές και απόλυτο υψόμετρο 1.184 μέτρα.

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 2: Άποψη του νησιού της Λευκάδας (από Google Earth).

1.3 Ο σεισμός της 17^{ης} Νοεμβρίου 2015 - αστοχίες

Στις 17 Νοεμβρίου, 2015, 07:10 GMT (09:10 τοπική ώρα), το νησί της Λευκάδας χτυπήθηκε από έναν δυνατό, επιφανειακό σεισμό (Εθνικό Αστεροσκοπείο Αθηνών, επιφανειακού μεγέθους M_L = 6.0 και μεγέθους σεισμικής ροπής M_W = 6.5, βάθους 10.7 km). Σύμφωνα με το Εθνικό Αστεροσκοπείο Αθηνών, Γεωδυναμικό Ινστιτούτο (www.gein.noa.gr), το επίκεντρο του σεισμού τοποθετείται στο ΝΔ τμήμα του νησιού, μεταξύ των χωριών Αθάνι και Άγιος Πέτρος (Σχ.3).

Σχήμα 3: Ο σεισμός της Λευκάδας στις 17 Νοεμβρίου 2015, μεγέθους M6.5 (κίτρινο αστέρι) και τα επακόλουθα επίκεντρα σεισμών όπως καταγράφηκαν από το Εθνικό Αστεροσκοπείο Αθηνών έως τις 30 Δεκεμβρίου 2015. Δεξιόστροφα ρήγματα κατά μήκος της οριοθέτησης Κεφαλονιάς – Λευκάδας απεικονίζονται με μαύρες γραμμές. Απεικόνιση μόνιμων σταθμών GPS από το Εθνικό Αστεροσκοπείο Αθηνών και το CRNS (Centre National de la Recherche Scientifique), με κίτρινα τρίγωνα. Απεικόνιση σεισμικών σταθμών με μπλε τρίγωνα, (Ganas et al. 2016).

To ρήγμα είναι μήκους 23 km και πλάτους 10 km (Ganas et al. 2016). Λαμβάνοντας υπόψη τα δημοσιευμένα μοντέλα, τα οποία συνοψίστηκαν από το EMSC, (European-Mediterranean Seismological Centre), (<u>http://www.emsc-csem.org/Earthquake/mtfull.php?id=470390</u>), ο σεισμός του 2015 έλαβε χώρα σε ένα σχεδόν κατακόρυφο ρήγμα οριζόντιας μετατόπισης, με δεξιόστροφη κίνηση. Το επίπεδο του ρήγματος έχει παράταξη B20 \pm 5° A και βυθίζεται προς τα ανατολικά με γωνία που κυμαίνεται 70° – 80° (Ganas et al. 2016, Sokos et al. 2016).

Ψηφιακή συλλογή Βιβλιοθήκη

Άξια αναφοράς, είναι η επιφανειακή σεισμική δόνηση που έλαβε χώρα στις 14 Αυγούστου 2003 (βάθους 6.8 km), στο θαλάσσιο χώρο, στο βορειοδυτικό τμήμα του νησιού. Πρόκειται για δεξιόστροφο ρήγμα, βυθιζόμενο 59 ± 5° προς Ανατολάς, μήκους 16 ± 2km, και πλάτους 10 ± 2 km, (Ilieva et al. 2016). Προκάλεσε εκτεταμένες βλάβες και μεγάλο αριθμό εδαφικών αστοχιών, κυρίως κατά μήκος της βορειοδυτικής ακτής, (Papathanassiou et al. 2017).

Σε αυτό το σημείο πρέπει να επισημανθεί, πως οι συντεταγμένες των επικέντρων που παρουσιάζονται στον κατάλογο σεισμών του Εθνικού Αστεροσκοπείου Αθηνών, είναι πρωταρχικές και παρουσιάζονται αποκλίσεις. Για αυτό το λόγο, οι σεισμοί μελετώνται σε βάθος και πραγματοποιούνται περαιτέρω έρευνες για τον επικέντρων επαναπροσδιορισμό των (μέθοδοι γεωδαισίας, αντιστροφής δεδομένων), (Ganas et al. 2016, Ilieva et al. 2016). Έτσι, οι συντεταγμένες του επικέντρου του σεισμού του 2003 που προέκυψαν είναι: 38° 83' 00'' (Lat), 20° 64' 00" (Long), (Ilieva et al. 2016). Για το σεισμό του 2015 οι συντεταγμένες του επικέντρου που προέκυψαν είναι: 38° 40' 53["] (Lat), και 20° 35' 58["] (Long). Επιπλέον, όπως επισημαίνεται από τους llieva et al. (2016), μεταξύ των ρηγμάτων 2003 και 2015, παρουσιάζεται σεισμικό κενό 5-6km, (Σχ. 4).

Σχήμα 4: Χάρτης Ιονίου πελάγους, απεικονίζοντας τις θραύσεις των επιφανειακών σεισμών 1983, 2003, 2014, 2015. Όλοι οι σεισμοί έθραυσαν δεξιόστροφα ρήγματα μεγέθους μεταξύ 5.9<Μ<6.9. Τα ενεργά ρήγματα βυθίζονται προς ανατολάς, εκτός από το ρήγμα 3 Φεβρουαρίου 2014, που βυθίζεται προς τα Δυτικά (Boncori et al. 2015). Ένα σεισμικό κενό (κίτρινο παραλληλόγραμμο αποτελεί στοιχείο στην θαλάσσια περιοχή στα δυτικά των σταθμών GPS FISK & ASSO (ΒΔ Κεφαλονιά). Επιπλέον, μπορεί να παρατηρηθεί το σεισμικό κενό στο νησί της Λευκάδας, μεταξύ των σεισμών 2003 και 2015. Ο ένθετος χάρτης απεικονίζει την έκταση των φαινομένων του σεισμού 2003 (πράσινες τελείες), και των φαινομένων του σεισμού του 2015 (μπλε τελείες). Τα κίτρινα αστέρια απεικονίζουν τα επίκεντρα των σεισμών. Τα μαύρα τρίγωνα απεικονίζουν τους μόνιμους σταθμούς GPS, (Ganas et al. 2016).

Αναφορικά με τα χαρακτηριστικά της ισχυρής εδαφικής κίνησης του σεισμού του 2015, η ισχυρή εδαφική κίνηση καταγράφηκε από του μόνιμους σταθμούς επιταχυνσιογράφων VAS και LEF (EPPO – ITSAK) και GNSS PONT SPAN (GI – NOA stations). Ο σταθμός VAS κατέγραψε την υψηλότερη τιμή μέγιστης εδαφικής επιτάχυνσης (Peak Ground Acceleration - PGA), με τιμές 0.36 g, 0.32 g, και 0.26 g στην B-N, A-Δ και κατακόρυφη συνιστώσα, αντίστοιχα (Σχ. 5), (Kassaras et al. 2018), ενώ ο σταθμός LEF στην πόλη της Λευκάδας κατέγραψε τιμή 0,1 g, (προκαταρκτική έκθεση ΟΑΣΠ-ΙΤΣΑΚ,

Ψηφιακή συλλογή Βιβλιοθήκη

http://www.itsak.gr/uploads/news/earthquake reports/Lefkas M6.0 17-11-

<u>2015.pdf</u>). Μεταξύ των σταθμών μεγαλύτερες τιμές μέγιστης εδαφικής επιτάχυνσης είχε ο σταθμός στο λιμάνι της Βασιλικής. Αυτό προκύπτει από το ότι ο σταθμός απέχει μόνο 8 χιλιόμετρα από το επίκεντρο του σεισμικού γεγονότος. Επομένως, είναι λογικό να είναι αυξημένες οι τιμές των παραμέτρων λόγω της μικρής επικεντρικής απόστασης, καθως επίσης σημαντικό ρόλο πιθανόν να έπαιξαν και οι τοπικές εδαφικές συνθήκες στη Βασιλική.

Σχήμα 5: Ανάλυση ισχυρών σεισμικών καταγραφών. Χρονο-σειρές επιτάχυνσης στο σταθμό της Βασιλικής -VAS, (Kassaras et al. 2018).

Αξίζει να αναφερθεί, πως ο σεισμός του 2015 προκάλεσε μόνιμη παραμόρφωση, μιας και στο σταθμό PONT του Εθνικού Αστεροσκοπείου Αθηνών, η τελική παραμόρφωση υπολογίστηκε στα 40.3 ± 0.8 cm, σε διεύθυνση N-NΔ, με καθίζηση περίπου 4.3 ± 1.2 cm, (Kassaras et al. 2018, Avallone et al. 2017), και ο σταθμός GPS βρίσκεται στο άνω τέμαχος του ρήγματος, απέναντι από το χωριό Βασιλική),

Ψηφιακή συλλογή Βιβλιοθήκη

(Ganas et al. 2016).

Η εν λόγω σεισμική δόνηση, έλαβε χώρα στο νοτιοδυτικό τμήμα του νησιού, προκαλώντας ελαφρές δομικές ζημιές και σοβαρά δευτερογενή αποτελέσματα, όπως λόγου χάρη κατολισθήσεις, βραχοκαταπτώσεις, ρωγμές στο οδικό δίκτυο, εδαφικές υποχωρήσεις, ρευστοποιήσεις (Ganas et al. 2016a, 2016b), (Σχ. 6,7). Σύμφωνα με τους Papathanassiou et al. (2017) οι περιοχές που επηρεάστηκαν εντονότερα, ήταν τα χωριά Κομιλιό, Δράγανο και Αθάνι, το τμήμα της ακτογραμμής από τους Εγκρεμνούς μέχρι τον Γιαλό, και από τον Αγ. Νικήτα μέχρι τους Τσουκαλάδες στα ΒΔ του νησιού. Από το Πόρτο Κατσίκι ως το Κομιλιό, στην παράκτια αυτή ζώνη, παρατηρήθηκαν μικρής και μεγάλης κλίμακας κατολισθήσεις, βραχοκαταπτώσεις και ολισθήσεις εδάφους. Σύμφωνα με τους Papathanassiou et al. (2013) πρόκειται για μία πολύ επιρρεπή ζώνη σε καταπτώσεις πρανών, λόγω των γεωμορφολογικών παραμέτρων (απότομες κλίσεις και υψηλή τοπογραφία, λαμβάνοντας υπόψη και την κατακερματισμένη βραχομάζα λόγω τεκτονικής δραστηριότητας. Επιπλέον, καταγράφηκαν έντονα φαινόμενα αστοχιών (καταπτώσεις πρανών, κατολισθήσεις, ολισθήσεις βραχομάζας, ολισθήσεις εδάφους) στα χωριά Δράγανο-Αθάνι-Πόρτο Κατσίκι, στην παραλία των Εγκρεμνών και κατά μήκος του 6 km δρόμου από Τσουκαλάδες ως Αγ. Νικήτα. Στην νότια παράκτια ζώνη μεταξύ Βασιλικής και Πόντης, καταγράφηκαν ρευστοποιήσεις. Τέλος, καταγράφηκαν διάσπαρτες κατολισθήσεις (μεγαλύτερες από 6 m³) κατά μήκος της ακτής της παραλίας του Καθίσματος.

Όπως προαναφέρθηκε, ο σεισμός του 2015 στη Λευκάδα, προκάλεσε ελαφρές – μέτριες δομικές βλάβες στο νησί. Καταγράφηκαν ωστόσο 2 θύματα, λόγω της σεισμικής δόνησης, αλλά και λόγω βραχοκαταπτώσεων, περίπου 10 τραυματισμοί και κατά μέσο όρο 20 εκατομμύρια δολάρια απωλειών, όπως υπολογίστηκε από την ομάδα CEDIM (Center for Disaster Management and Risk Reduction Technology), (Shäfer et al. 2015), κυρίως λόγω καταστροφής των υποδομών, λόγω κατολισθήσεων.

Σχήμα 6: Χάρτης με αστοχίες που προκλήθηκαν λόγω σεισμών και οι οποίες καταγράφηκαν από έρευνες στο πεδίο. Τα αστέρια δείχνουν τα επίκεντρα των σεισμών του 2003 (καφέ χρώμα) και του 2015 (κόκκινο χρώμα). Τα νεοτεκτονικά ρήγματα και η επιφάνεια του ρήγματος του σεισμού του 2015 είναι από τον Ganas et al. (2016). (Papathanassiou et al. 2017).

Σχήμα 7: Χωρική κατανομή αστοχιών προκαλούμενων από τον σεισμό στις 17 Νοεμβρίου 2015, και ενδεικτικές φωτογραφίες που τραβήχτηκαν 19-22 Νοεμβρίου 2015. Α) & Ι) βραχοκαταπτώσεις και ολισθήσεις βράχων κατά μήκος του οδικού δικτύου Τσουκαλάδες – Άγιος Νικήτας, Β) Κατολίσθηση κατά μήκος του οδικού δικτύου Δράγανο – Άγιος Πέτρος, C) Ρωγμές στην άσφαλτο στην είσοδο του χωριού Δράγανο, D) βραχοκαταπτώσεις στην παραλία του Πόρτο Κατσίκι, Ε) κρατήρας άμμου δυτικά της Βασιλικής, F & G) δομικές βλάβες στη Βασιλική, Η) επίπεδες ολισθήσεις στο χωριό Μαραντοχώρι, (Ganas et al. 2016).

Η παρούσα εργασία αποτελείται από επτά (7) κεφάλαια. Στο πρώτο κεφάλαιο, περιγράφεται το αντικείμενο, ο σκοπός της εργασίας, η περιοχή έρευνας, ο σεισμός της 17^{ης} Νοεμβρίου 2015 καθώς και η δομή της εργασίας.

Ψηφιακή συλλογή Βιβλιοθήκη

1.4 Δομή εργασίας

Στο δεύτερο κεφάλαιο, πραγματοποιείται γεωλογική επισκόπηση της περιοχής μελέτης. Συγκεκριμένα περιγράφεται η γεωλογία του νησιού, οι τεκτονικές και νεοτεκτονικές συνθήκες, όπως επίσης η σεισμικότητα και η σεισμική επικινδυνότητα της Λευκάδας. Τέλος, πραγματοποιείται αναφορά στις τεχνικογεωλογικές συνθήκες των περιοχών Εγκρεμνοί και Γιαλός, όπου εντοπίστηκε η πλειοψηφία των αστοχιών.

Στο τρίτο κεφάλαιο, γίνεται μια εκτενής περιγραφή της υπάρχουσας βιβλιογραφίας, τόσο με προηγούμενες έρευνες και μελέτες σχετικά με το νησί της Λευκάδας, όσο και με αναφορές σχετικά με «σημαντικούς» σεισμούς με κατολισθήσεις στον κόσμο. Ωστόσο, πραγματοποιήθηκε περιγραφή σχετικά με την διαδικασία δημιουργίας ενός αρχείου απογραφής κατολισθήσεων (inventory), με όλες τις εξελίξεις που υπάρχουν. Επιπλέον, περιγράφεται η διαδικασία απογραφής κατολισθήσεων με βάση την οπτική εικόνα και την εργασία στο πεδίο, σε συνδυασμό με τις βάσεις δεδομένων για την αποθήκευση και διανομή των πληροφοριών. Τέλος, περιγράφονται στατιστικές μέθοδοι που υπάρχουν και που εφαρμόζονται σύμφωνα με τη βιβλιογραφία (LSI, Logistic Regression και Discriminant analysis).

Στο τέταρτο κεφάλαιο, αναφέρθηκαν τα διαθέσιμα δεδομένα, καθώς και η μεθοδολογία, η οποία εφαρμόστηκε, για την ανάλυση των κατολισθήσεων. Συγκεκριμένα, για κάθε κατολίσθηση (για τα αρχεία απογραφής 2015 και 2003), βρέθηκε η έκταση την οποία καταλαμβάνει,το μέγιστο και ελάχιστο υψόμετρο, καθώς και κάποια γεωμετρικά χαρακτηριστικά (μήκος και πλάτος).

Στο πέμπτο κεφάλαιο αναλύεται η εφαρμογή της μεθοδολογίας και συγκεκριμένα η εισαγωγή και υπέρθεση των δεδομένων, η πυκνότητα των κατολισθήσεων ανά παράγοντα (γεωλογία, κλίση πρανούς, προσανατολισμός κλιτύων και υψόμετρο), καθώς και η διαδικασία κατασκευής του χάρτη επιδεκτικότητας.

Ψηφιακή συλλογή Βιβλιοθήκη

Στο έκτο κεφάλαιο παρουσιάστηκαν τα αποτελέσματα της εφαρμογής της μεθοδολογίας και συγκεκριμένα ο χάρτης επιδεκτικότητας κατολισθήσεων, καθώς και διαγράμματα και χάρτες που τον ερμηνεύουν. Ωστόσο, πραγματοποιήθηκε επαλήθευση του μοντέλου αυτού, όπως επίσης και σύγκριση αυτού με τα αποτελέσματα που προέκυψαν από το σεισμό του 2003.

Στο έβδομο κεφάλαιο παρατίθενται τα δεδομένα από την επιτόπου παρατήρηση στο πεδίο, στο νησί της Λευκάδας στις 26 Μαίου 2020, ενώ τέλος στο όγδοο κεφάλαιο παρατίθενται συνολικά τα συμπεράσματα που προέκυψαν από την παρούσα εργασία.

ΚΕΦΑΛΑΙΟ 2° – ΓΕΩΛΟΓΙΚΗ ΕΠΙΣΚΟΠΗΣΗ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ

2.1 Γεωλογία

Α.Π.Θ

Ψηφιακή συλλογή Βιβλιοθήκη

Τα νησιά του Ιονίου δομούνται από σχηματισμούς των ζωνών Παξών και Ιόνιας (Σχ. 8). Βρίσκονται ανατολικά της Ελληνικής τάφρου και κατά μήκος του Ελληνικού τόξου. Όσον αφορά τη γεωλογία της Λευκάδας, στο μεγαλύτερο τμήμα του νησιού, συναντάται η Ιόνιος ζώνη, ενώ η ζώνη Παξών καταλαμβάνει το πιο δυτικό τμήμα του νησιού (Μπορνόβας 1964, Cushing 1985).

Σχήμα 8: Γεωτεκτονικές ζώνες Ελλάδος (Mountrakis et al. 2010).

Η ζώνη των Παξών κατά κύριο λόγο αποτελείται από ασβεστόλιθους και δολομίτες και καλύπτεται από Νεογενή κλαστικά ιζήματα, ψαμμιτικής και μαργαϊκής κυρίως σύστασης. Η Ιόνιος ζώνη αποτελείται από ασβεστόλιθους και πυριτικούς σχιστόλιθους, ενώ τμηματικά εντοπίζεται και φλύσχης ηλικίας Ολιγοκαίνου – Μ. Μειοκαίνου, ενώ περιλαμβάνει και εβαπορίτες. Τα Νεογενή ιζήματα της Ιονίου ζώνης περιλαμβάνουν κροκαλοπαγή, ψαμμίτες, μάργες και μαργαϊκούς ασβεστολίθους. Αξίζει να τονισθεί, πως τα Τεταρτογενή ιζήματα της Λευκάδας, σε αντίθεση με τα υπόλοιπα νησιά του Ιονίου, έχουν μικρή εξάπλωση. Ωστόσο ιζήματα του Πλειστοκαίνου και του Ολοκαίνου έχουν μεγάλη εξάπλωση κατά κύριο λόγο στο βόρειο τμήμα του νησιού, στην πόλη της Λευκάδας και στους οικισμούς Βασιλική και Νυδρί (Papathanassiou et al. 2005, Rondoyanni et al. 2012), (Σχ. 9).

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 9: Γεωτεκτονικός χάρτης νήσου Λευκάδας (Papathanassiou et al. 2017, τροποποιημένο από Cushing 1985 και Rondoyanni et al. 2008).

Σύμφωνα με τους Mountrakis et al. (2010), η Ιόνιος ζώνη θεωρείται μία «ηπειρωτική λεκάνη, με ημιπελαγική – πελαγική ιζηματογένεση». Η Ιόνιος ζώνη περιλαμβάνει αποκλειστικά Αλπικά ιζήματα, ενώ δεν έχει παρατηρηθεί Προαλπικό υπόβαθρο. Αξίζει να αναφερθεί πως οι εβαπορίτες θεωρούνται ως τα πρώτα αλπικά ιζήματα, Περμοτριαδικής ηλικίας, πάχους 1500 m, όπως προσδιορίστηκε από γεωτρήσεις. Οι εβαπορίτες αυτοί, συνοδεύονται ασβεστόλιθους και ασβεστολιθικά λατυποπαγή (Mountrakis et al. 2010).

Έτσι, κατά τον Μπορνόβα (1964), η Ιόνιος ζώνη αποτελείται από τους ακόλουθους γεωλογικούς σχηματισμούς από τον παλαιότερο προς τον νεότερο, (Σχ. 10):

Ασβεστόλιθοι του Καρνίου, πάχους 50 m – 100 m.

Ψηφιακή συλλογή Βιβλιοθήκη

Ιόνιος ζώνη:

- Τεφροί ως λευκοί δολομίτες του Κατώτερου Νορίου, με κυμαινόμενο πάχος.
- Ασβεστόλιθοι του Παντοκράτορα, ηλικίας Κατώτερου Νορίου Ανώτερου Λιασίου, πάχους 400m – 800m. Είναι χαρακτηριστικό, πως όταν εμφανίζονται σε μεγάλη έκταση, διαμορφώνουν καρστικές περιοχές, όπως δολίνες και οχετούς. Αξίζει να αναφερθεί, πως το φαινόμενο της δευτερογενούς δολομιτίωσης των ασβεστολίθων του Παντοκράτορα είναι αρκετά συχνό, με την επιφάνεια του αρχικού πετρώματος από το δολομιτιωμένο, να είναι πάντα ανώμαλη.
- Παχυστρωματώδεις, τεφροκίτρινοι ασβεστόλιθοι με πυριτικούς κονδύλους, ηλικίας Δομερίου, πάχους 20 m – 40 m. Νότια του οικισμού Εξάνθια, εμφανίζονται ως μαργαϊκοί υποκίτρινοι ασβεστόλιθοι, ενώ ΒΔ, στον οικισμό Άγιος Ηλίας, εμφανίζονται στιφροί, με βολβούς πυριτολίθων.
- Ammonitico Rosso, ηλικίας Ανώτερου Λιασίου Κατώτερου Δογγερίου. Κατά ένα τμήμα, το Ammonitico Rosso αντικαθίσταται από σχιστολίθους με Posidonia, πάχους 20 m – 40 m. Οι αμμωνιτοφόρες αποθέσεις αντιπροσωπεύουν περιβάλλον βαθιάς θάλασσας, ενώ οι σχιστολιθικοί σχηματισμοί είναι ενδεικτικοί κρηπιδαίων σχηματισμών. Ακόμη, μεγάλο τμήμα της Λευκάδας καταλαμβάνεται από Ammonitico Rosso, ενώ οι σχιστολιθικοί σχηματισμοί περιορίζονται κατά κύριο λόγο στις ανατολικές ακτές.

To Ammonitico Rosso περιλαμβάνει έγχρωμους κονδυλώδεις και συνήθως μαργαϊκούς ασβεστολίθους με αμμωνίτες, οι οποίοι εναλλάσσονται με αργιλικά ή μαργαϊκά στρώματα. Το πάχος των ασβεστολίθων κυμαίνεται από 5cm – 20cm.

Πλακώδεις αμμωνιτοφόροι ασβεστόλιθοι, ηλικίας Μέσου Δογγερίου.

Ψηφιακή συλλογή Βιβλιοθήκη

- Ασβεστόλιθοι Βίγλας (λεπτοπλακώδεις ασβεστόλιθοι με πυριτικούς κονδύλους), ηλικίας Ανώτερου Ιουρασικού – Κατώτερου Σενωνίου, πάχους 500m. Το πάχος των ασβεστολιθικών πλακών κυμαίνεται από 2cm ως 10cm. Επιπλέον, ΝΑ του οροπεδίου «Καλοκαιρινό», οι ασβεστόλιθοι Βίγλας επικάθονται στους ασβεστολίθους δίχως παρεμβολής τεκτονικού λατυποπαγούς και δίχως κροκαλοπαγούς επίκλησης.
- Νοτίως της περιοχής «Πόρος», εντοπίζονται οι ακόλουθοι ασβεστολιθικοί σχηματισμοί (παλαιότερο προς νεότερο), ηλικίας Μαιστριχτίου Ηωκαίνου, πάχους 200m 250m (το μεγαλύτερο δηλαδή πάχος που έχει παρατηρηθεί στη Λευκάδα):
 - Στρωματώδεις μικρολατυποπαγείς ή μικρολατυποπαγείς ασβεστόλιθοι με αραιές ενστρώσεις πυριτολίθων, ηλικίας Ανώτερου Σενωνίου, πάχους 60m.
 - Πελαγικοί ασβεστόλιθοι με αραιές ενστρώσεις πυριτολίθων, οι οποίοι μεταπίπτουν πλευρικά σε μικρολατυποπαγείς ασβεστόλιθους, ηλικίας Παλαιοκαίνου, πάχους 60m.
 - Πελαγικοί ασβεστόλιθοι, ακολουθούμενοι από μικρολατυποπαγείς
 ασβεστόλιθους ηλικίας Υπρεσίου, πάχους 20m 30m.
- Φλύσχης ηλικίας Ανώτερου Ηωκαίνου. Ο φλύσχης αποτελείται κατά τα κατώτερα στρώματα από μάργες και κατά τα ανώτερα από ψαμμίτες, ενώ στα ενδιάμεσα στάδια παρατηρούνται στρώματα γύψου, τα οποία ανήλθαν λόγω τεκτονικής. Ο Ιόνιος φλύσχης εμφανίζεται στο ΝΑ τμήμα του νησιού ως σύγκλινο, ενώ οι εμφανίσεις του φλύσχη στο υπόλοιπο νησί είναι λίγες και επιμήκεις.

Σχήμα 10: Λιθοστρωματογραφική στήλη Ιονίου ζώνης, 1: γύψος, 2: μαύροι ασβεστόλιθοι, 3: δολομίτες, 4: ασβεστόλιθοι Παντοκράτορα, 5: ασβεστόλιθοι Ammonitico Rosso, 6: σχιστόλιθοι με Posidonomyes, 7: κερατόλιθοι, 8: ασβεστόλιθοι Βίγλας, 9: ασβεστόλιθοι Ηωκαίνου, 10: φλύσχης, (Mountrakis 2010), (με κόκκινα βέλη οι σχηματισμοί στους οποίους εκδηλώθηκαν αστοχίες).

Ζώνη Παξών:

Σύμφωνα με τους Mountrakis et al. (2010), η ζώνη των Παξών χαρακτηρίζεται από τη συνεχή ανθρακική ιζηματογένεση και την απουσία του φλύσχη. Οι εβαπορίτες, οι δολομίτες και οι νηριτικοί ασβεστόλιθοι Άνω Τριαδικού, είναι τα παλαιότερα πετρώματα που εντοπίζονται σε αυτή την ενότητα. Ακολούθως, εμφανίζονται νηριτικοί ασβεστόλιθοι Κάτω – Μέσου Ιουρασικού, ενώ στους ασβεστόλιθους του Άνω Ιουρασικού εμφανίζονται μαργαϊκές και κερατολιθικές ενστρώσεις. Κατά το Κρητιδικό ως το Νεογενές, η ιζηματογένεση συνεχίστηκε χωρίς διακοπή, με την απόθεση νηριτικών και μαργαϊκών ασβεστολίθων.

Ψηφιακή συλλογή Βιβλιοθήκη

Κατά τον Μπορνόβα (1964), οι σχηματισμοί της ζώνης Παξών είναι οι ακόλουθοι από τον παλαιότερο προς τον νεότερο, (Σχ. 11):

- Από τα Δυτικά προς τα Ανατολικά (παλαιότερα προς νεότερα), κατά κύριο λόγο ανάμεσα στα χωριά Δράγανο και Αθάνι, έχουμε τους ακόλουθους σχηματισμούς Ιουρασικής ηλικίας:
 - Τεφρόχροοι δολομίτες και δολομιτικοί ασβεστόλιθοι χωρίς απολιθώματα, πάχους 150 m.
 - Μαύροι βιτουμενιούχοι σχιστόλιθοι με ενστρώσεις ασβεστολίθων.
 - Πελαγικοί παχυστρωματώδεις ασβεστόλιθοι με αραιές ενστρώσεις πυριτόλιθων.
- Πελαγικοί στρωματώδεις ασβεστόλιθοι, με αραιές-λεπτές ενστρώσεις πυριτόλιθων, ηλικίας Κατώτερου Κρητιδικού Ανώτερου Σενωνίου και πάχους 2cm 5cm. Αντιπροσωπεύουν την προς δυσμάς εξέλιξη των ασβεστολίθων της Βίγλας, με πάχος περίπου 100m. Στα ανώτερα στρώματα, οι παχυστρωματώδεις ασβεστόλιθοι εναλλάσσονται με πελαγικούς πλακώδεις ασβεστόλιθους με σπάνιους πυριτόλιθους. Χαρακτηριστικό τους γνώρισμα είναι πως αυτοί οι ασβεστόλιθοι είναι πιο αδρομερείς από τους αντίστοιχους της Ιονίου ζώνης. Αυτοί οι ασβεστόλιθοι εξαπλώνονται στο μεγαλύτερο μέρος της Λευκάδας και αποτελούν την μεγαλύτερη εμφάνιση του Άνω-Κρητιδικού του νησιού.
- Πλακώδεις, μαργαϊκοί, μικρολατυποπαγείς ασβεστόλιθοι, χωρίς πυριτόλιθους, Ολιγοκαινικής ηλικίας και πάχους 20m-30m.
- Κλαστικά ιζήματα Μειοκαινικής ηλικίας, με τα οποία ουσιαστικά κλείνει ο κύκλος της κανονικής ιζηματογένεσης. Χωρικά, εντοπίζεται νότια του οικισμού Καλαμίτσι, ως τις ακτές της Βασιλικής. Η βάση αυτής της κλαστικής σειράς ξεκινά με ασβεστολίθους του Ακουιτάνιου, πάχους μερικών m. Ακολούθως, συνεχίζεται με κλαστικά ιζήματα, πάχους 700m, εκ των οποίων τα πρώτα 250m αποτελούνται από μάργες, με αραιές λεπτές ενστρώσεις μικρολατυποπαγών ασβεστολίθων, ενώ τα υπόλοιπα 400m-500m, αποτελούνται από ψαμμούχες μάργες με αραιές ενστρώσεις ψαμμιτών και φυλλώδεις παρεμβολές λιγνιτών.

Σχήμα 11: Λιθοστρωματογραφική στήλη ζώνης Παξών, 1: γύψος, 2: δολομίτες, 3: νηρητικοί ασβεστόλιθοι, 4: ασβεστόλιθοι με κερατολιθικές ενστρώσεις, 5: μαργαικές ενστρώσεις, 6: μικρολατυποπαγείς ασβεστόλιθοι, 7: μαργαικοί ασβεστόλιθοι, (Mountrakis 2010), (με κόκκινα βέλη οι σχηματισμοί στους οποίους εκδηλώθηκαν αστοχίες).

2.2 Τεκτονική – Νεοτεκτονική

Γενικά, η Ελλάδα, βρίσκεται γεωτεκτονικά στο νότιο τμήμα της Ευρασιατικής λιθοσφαιρικής πλάκας, η οποία συγκλίνει με την Αφρικανική. Το γεωτεκτονικό καθεστώς που επικρατεί στην Ελλάδα και τον ευρύτερο χώρο του Αιγαίου, τις καθιστά τις πιο σεισμογενείς περιοχές της Μεσογείου αλλά και της Ευρώπης.

Συγκεκριμένα, η περιοχή της Λευκάδας χαρακτηρίζεται από τις πιο ενεργά τεκτονικά περιοχές της Ευρώπης και ως μια από τις πιο ενεργές ζώνες της ανατολικής Μεσογείου (Ganas et al. 2016). Χαρακτηρίζεται από έντονη σεισμικότητα και νεοτεκτονική δομή, η οποία οφείλεται στο δεξιόστροφο ρήγμα της Κεφαλονιάς (CTF ή KLTF), μήκους 140 km (Scordilis et al. 1985, Louvari et al. 1999, Sachpazi et al. 2000, Kokinou et al. 2006, Ganas et al. 2016). Αυτό διότι κατά την υποβύθιση της Αφρικανικής πλάκας κάτω από την Ευρασιατική, η οποία λαμβάνει χώρα στο νότιο τμήμα της Ελλάδας, μεταπίπτει στην Αδριατική σύγκρουση, μέσω του ανωτέρω ρήγματος (Hatzfeld et al. 1995, Clement et al. 2000, Rondoyanni et al. 2012, Ganas et al. 2013), (Σχ. 12). Αυτό το ρήγμα CTF μήκους 140 km, παρουσιάζει ρυθμό ολίσθησης (μέσω μετρήσεων GPS), μεταξύ 10-25 mm/year (Pérouse et al. 2012), παρουσιάζοντας ρυθμό διάτμησης 225 ±20 ns/yr (Caporali et al. 2016).

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 12: Τεκτονικό καθεστώς Α. Μεσογείου για την ζώνη της ελληνικής υποβύθισης. Η έντονη μαύρη γραμμή αντιπροσωπεύει το ίχνος της υποβύθισης. CHSZ (Central Hellenic Shear Zone): Ζώνη Διάτμησης Κεντρικής Ελλάδας, (Κόλλια, 2019), (από Royden and Papanikolaou, 2011).

Σχήμα 13: Οριζόντιες προβολές σεισμικών ρηγμάτων αναφορικά με το ρήγμα της Κεφαλονιάς (CTF). Από νότια προς βόρεια οι χρονολογίες θραύσης: 1983, 2014, 2014, σεισμικό κενό (gap), 2015, 2003, (Ganas et al. 2016).

Στην παραπάνω εικόνα (Σχ. 13), παρουσιάζονται οι οριζόντιες προβολές των σεισμικών ρηγμάτων, αναφορικά με το ρήγμα της Κεφαλονιάς (CTF ή KLTF). Συγκεκριμένα, παρατηρούμε τα τμήματα του ρήγματος CTF ή KLTF, τα οποία έχουν θραυστεί. Παρατηρείται ένα σεισμικό κενό - κίτρινο παραλληλόγραμμο - στην θαλάσσια περιοχή στα ΒΔ της Κεφαλονιάς. Σύμφωνα με τους Ganas et al. (2016), από νότια προς βόρεια, τα τμήματα θραύστηκαν: 17/01/1983, 26/01/2014, 03/02/2014, σεισμικό κενό (gap), 17/11/2015 και 14/08/2003.

Αναφορικά με το νησί της Λευκάδας, η τεκτονική δομή του νησιού είναι ιδιαιτέρως πολύπλοκη και αυτό οφείλεται κατά ένα μεγάλο μέρος στις έντονες συμπιεστικές κινήσεις, που έλαβαν χώρα λόγω της επώθησης της Ιόνιας ζώνης στη ζώνη Παξών (ή Προ-Απούλια), (βύθιση προς βορειοανατολικά, Ganas et al. 2016), (Σχ. 14). Έτσι, λόγω αυτής της επώθησης, σχηματίστηκαν πολλές συγκλινικές και αντικλινικές δομές, όπως τα επωθητικά ρήγματα (Rondoyanni et al. 2012).

Σχήμα 14: Επώθηση Ιόνιας ζώνης στη ζώνη Παξών και κατανομή ρηγμάτων στο νησί της Λευκάδας (Papathanassiou et al. 2017), (τροποποιημένο από Cushing 1985, Rondoyanni et al. 2007).

Η Ιόνιος ζώνη χαρακτηρίζεται από πτυχωσιγενή τεκτονική, λόγω της τεκτονικής του Τριτογενούς, η οποία έλαβε χώρα κατά το Κάτω Μειόκαινο. Η συμπιεστική αυτή τεκτονική υποβοηθήθηκε τόσο από τα πλαστικά στρώματα της γύψου αυτής της ζώνης, όσο και από τη φάση της πτύχωσης όπου δημιουργήθηκαν συνεχείς επωθήσεις, εφφιπεύσεις και λεπιώσεις (Mountrakis 2010). Ένα ιδιαίτερο χαρακτηριστικό, είναι η «Διναρική διεύθυνση» των μεγαπτυχών που δημιουργήθηκαν, ακριβώς λόγω της προαναφερόμενης συμπίεσης. Αυτές οι μεγαπτυχές έχουν διεύθυνση BBΔ-NNA έως BΔ-NA. Μεγάλης σπουδαιότητας είναι τα μεγάλα ρήγματα οριζόντιας μετατόπισης, τα οποία έχουν γενική διεύθυνση Α-Δ ή ABA-ΔNΔ και ουσιαστικά σχηματίστηκαν κατά το τελευταίο στάδιο της πτύχωσης, κάθετα στους άξονες των μεγαπτυχών. Επιπλέον, παρατηρούνται μεγάλα επιμήκη κανονικά και ανάστροφα ρήγματα διεύθυνσης BBΔ-NNA (Mountrakis 2010).

Ψηφιακή συλλογή Βιβλιοθήκη

Σχετικά με την τεκτονική της ζώνης Παξών, λόγω των μικρών εμφανίσεών της, δεν υπάρχουν αρκετά στοιχεία. Ωστόσο, αξίζει να αναφερθεί πως σε αυτή την περίπτωση η ιζηματογένεση δεν ολοκληρώθηκε με την απόθεση του φλύσχη, όπως συνηθίζεται. Αυτό μας οδηγεί στην περίπτωση ορογενετικής διαδικασίας και ακολούθως στη δράση κανονικών ρηγμάτων, τα οποία ουσιαστικά καταβυθίζουν την περιοχή, με αποτέλεσμα να συνεχίζεται η ιζηματογένεση (Mountrakis 2010).

Όπως προαναφέρθηκε, λόγω της Ιόνιας επώθησης, τα επωθητικά ρήγματα είναι οι κυριότερες δομές, οι οποίες συναντώνται στο νησί της Λευκάδας. Συγκεκριμένα, αυτά τα επωθητικά ρήγματα έχουν παράταξη ΒΑ-ΝΔ και λαμβάνουν χώρα κυρίως στον ασβεστόλιθο της Ιονίου ζώνης, ο οποίος επωθείται στα Μειοκαινικά μάρμαρα της ζώνης Παξών (Μπορνόβας 1964), όπως επίσης και στις Μειοκαινικές μάργες (Papathanassiou et al. 2005). Επιπλέον, σύμφωνα με τον Μπορνόβα, (1964), εντοπίζεται ένα σύστημα ρηγμάτων με παράταξη ΒΑ-ΝΔ έως BBA-ΝΝΔ, τα οποία κατά κύριο λόγο είναι δεξιόστροφα κανονικά ρήγματα, ενώ σύμφωνα με τον Cushing (1985), εντοπίζονται και δευτερεύοντα κανονικά ρήγματα, με παράταξη ΒΔ-ΝΑ, και αριστερόστροφη συνιστώσα. Τέλος, πρέπει να αναφερθεί πως στην περιοχή δρουν κανονικά ρήγματα, παράταξη ΑΒΑ-ΔΝΔ και Β-Ν, από τα οποία πολλά μπορούν να χαρακτηριστούν ως ενεργά, βάσει μορφοτεκτονικών κριτηρίων (Papathanassiou et al. 2005, Papathanassiou et al. 2017).

Η τεκτονική δομή της Λευκάδας, διαμορφώνεται επίσης και από το ρήγμα Αθανίου - Δραγάνου, το οποίο είναι παράλληλο στο δεξιόστροφο ρήγμα της Κεφαλονιάς (CTF ή KLTF). Αυτό το ρήγμα, είναι οριζόντιας μετατόπισης, με διεύθυνση BBA-NNΔ, κλίνει προς τα Ανατολικά, ενώ είναι μια δομή η οποία είναι εμφανής σε δορυφορικές φωτογραφίες και αεροφωτογραφίες (Papathanassiou et al. 2017), (Σχ. 15). Αυτό το ρήγμα τέμνει τους ασβεστόλιθους και τους δολομίτες της περιοχής (Rondogianni & Tsiambaos, 2008), και συγκεκριμένα όπως φαίνεται στο σχήμα 16, διαχωρίζει στα δυτικά τους Κρητιδικούς ασβεστόλιθους, από Πλειστοκαινικές χερσαίες αποθέσεις (Papathanassiou et al. 2017). Τέλος, κατά τον Cushing (1985), αυτό το ρήγμα Αθανίου – Δραγάνου, κατά τη δράση του, δημιούργησε ένα σύστημα κανονικών ρηγμάτων (Σχ. 17), το οποίο έδρασε πιθανώς κατά το Α. Πλειόκαινο έως το Μ. – Α. Πλειστόκαινο.

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 15: Ρήγμα Αθανίου-Δραγάνου από το Google Earth.

Σχήμα 16: Ρήγμα οριζόντιας μετατόπισης Αθανίου – Δραγάνου, καθώς και οι γεωλογικοί σχηματισμοί που διαχωρίζει το ρήγμα στην περιοχή (Papathanassiou et al. 2017).

Σχήμα 17: Γεωλογική τομή Α – Α', με προσανατολισμό Α-Δ στο ρήγμα Δραγάνου, με γεωλογικά στοιχεία από τον Μπορνόβα (1964), (Papathanassiou et al. 2017).

Ακολούθως, αναφέρονται και περιγράφονται οι νεοτεκτονικές μονάδες και συνεπώς το δίκτυο ρηγμάτων στο νησί της Λευκάδας (Lekkas et al. 2016), (Σχ. 18):

- 1) Η νεοτεκτονική μονάδα της πόλης της Λευκάδας, είναι ουσιαστικά μία τάφρος στο ΒΑ τμήμα του νησιού, όπου βρίσκεται και η πόλη της Λευκάδας. Πρόκειται για μια ευρεία επίπεδη περιοχή, που αποτελείται από Τεταρτογενείς σχηματισμούς και κυρίως αλλουβιακές αποθέσεις, οι οποίες καλύπτουν τους υποκείμενους θαλάσσιους και λιμνοθαλάσσιους σχηματισμούς. Οριοθετείται στα Νότια με τη ζώνη ρηγμάτων Φρύνι - Απόλπαινα (FAFZ).
- 2) Η μονάδα Τσουκαλάδες-Κατούνα είναι ένα κέρας, το οποίο βρίσκεται νότια της προηγούμενης νεοτεκτονικής μονάδας της πόλης της Λευκάδας. Αποτελείται στα δυτικά από ανθρακικούς σχηματισμούς και στα ανατολικά από μολασσικούς σχηματισμούς και στα ανατολικά από μολασσικούς σχηματισμούς και πρόσφατες αποθέσεις. Οριοθετείται στα βόρεια με τη ζώνη Φρύνι Απόλπαινα (FAFZ), και στα νότια με τη ζώνη Πηγαδησάνοι Φράξη (PFFZ), και στα από ρήγματα παράταξης ΒΔ-ΝΑ και

προτείνεται η οριζόντια συνιστώσα κίνησης, ενώ η ζώνη Τσουκαλάδες- Άγιος Νικήτας (TANFZ) αποτελείται από ρήγματα παράταξης Β-Ν και ΒΑ-ΝΔ.

Ψηφιακή συλλογή Βιβλιοθήκη

- 3) Η νεοτεκτονική μονάδα Άγιου Νικήτα, είναι ένα μικρό κέρας στο ΒΔ τμήμα του νησιού. Αποτελείται από ανθρακικούς σχηματισμούς της Ιόνιας ζώνης και οριοθετείται στα ανατολικά από το ρήγμα του Άγιου Νικήτα και στα δυτικά από ρήγματα παράταξης σχεδόν Β-Ν, σχεδόν παράλληλα στην ακτογραμμή.
- 4) Η νεοτεκτονική μονάδα Δρυμόνα, που βρίσκεται στα ανατολικά του Αγίου Νικήτα και αποτελείται από ανθρακικά της Ιονίου ζώνης, σχιστόλιθους και πρόσφατες αποθέσεις. Οριοθετείται στα δυτικά από το ρήγμα του Άγιου Νικήτα, και στα ανατολικά από το ρήγμα Δρυμόνα, παράταξης Β-Ν και στα νότια από το ρήγμα Καλαμίτσι Εξάνθειας (KEFZ).
- 5) Η νεοτεκτονική μονάδα Μέγα Όρους-Σκαρί, βρίσκεται στα ανατολικά της νεοτεκτονικής μονάδας του Δρυμόνα και αποτελείται από σχηματισμούς της Ιόνιας ζώνης, μεταξύ άλλων ανθρακικούς σχηματισμούς, σχιστόλιθους, φλυσχικές ακολουθίες, όπως επίσης και πρόσφατες αποθέσεις (αλλουβιακές αποθέσεις και terra rossa). Οριοθετείται στα βόρεια από το ρήγμα Πηγαδησάνοι Φράξη (PFFZ), με παράταξη ΒΔ-ΝΑ και νότια από το ρήγμα Σύβρος-Νυδρί (SNFZ) με παράταξη ΒΑ-ΝΔ.
- 6) Η νεοτεκτονική μονάδα Βλυχός-Πόρος βρίσκεται στο ΝΑ μέρος του νησιού, περιλαμβάνοντας ανθρακικούς σχηματισμούς της Ιόνιας ζώνης και φλύσχη, μολασσικούς σχηματισμούς και πρόσφατες αποθέσεις, περιλαμβάνοντας αλλουβιακούς σχηματισμούς. Οριοθετείται στα ΒΔ από το ρήγμα Σύβρος-Νυδρί (SNFZ) με παράταξη ΒΑ-ΝΔ και στα ΝΑ από το ρήγμα Σύβοτα-Σύβρος (SSFZ) με παράταξη ΒΔ-ΝΑ.
- 7) Η νεοτεκτονική ενότητα Βασιλικής που βρίσκεται στο νοτιότερο τμήμα του νησιού και αποτελείται από ανθρακικούς σχηματισμούς της Ιόνιας ζώνης και φλύσχη, μολασσικούς σχηματισμούς και πρόσφατες αποθέσεις, περιλαμβάνοντας αλλουβιακούς σχηματισμούς. Οριοθετείται στα ΒΔ το ρήγμα της Βασιλικής, με παράταξη ΒΑ-ΝΔ, το οποίο είναι η ΝΔ προέκταση του ρήγματος -Νυδρί (SNFZ), και στα ΒΑ από το ρήγμα Σύβοτα-Σύβρος (SSFZ) με παράταξη ΒΔ-ΝΑ.

8) Τέλος, η νεοτεκτονική ενότητα Λευκάτας, που βρίσκεται στο πιο ΝΔ τμήμα του νησιού, αποτελούμενο από Ιουρασικούς-Μειοκαινικούς ασβεστόλιθους και Μειοκαινικά μάρμαρα ζώνης Παξών, καθώς και πρόσφατες αποθέσεις. Οριοθετείται στα βόρεια από το ρήγμα Καλαμίτσι-Εξάνθειας με παράταξη ΒΔ-ΝΑ και την επώθηση της Ιόνιας ζώνης πάνω στη ζώνη Παξών, και στα ανατολικά από το ρήγμα Βασιλικής με παράταξη ΒΑ-ΝΔ και στα δυτικά από το δεξιόστροφο ρήγμα Αθανίου. Αποτελείται επίσης από μικρότερες ενότητες όπως αυτή του Δραγάνου-Αθανίου, η οποία οριοθετείται στα δυτικά και στα ανατολικά από ρήγματα παράταξη ΒΒΑ-ΝΝΔ.

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 18: Νεοτεκτονικές Ενότητες Λευκάδας (Lekkas et al. 2016).

Η περιοχή του κεντρικού Ιονίου, αποτελεί μία από τις πιο ενεργές περιοχές αβαθούς σεισμικότητας στην Ελλάδα (Benetatos et al. 2017), (Σχ. 19). Τα κεντρικά νησιά του Ιονίου (Λευκάδα, Κεφαλονιά, Ζάκυνθος), βρίσκονται στην πλάκα του Αιγαίου, μεταξύ της ηπειρωτικής σύγκρουσης της Απούλιας και της Ευρασίας στα βόρεια, καθώς και της ωκεάνιας υποβύθισης στα νότια, με έντονες επιφανειακές παραμορφώσεις διεύθυνσης ABA-ΔΝΔ (Ganas et al. 2013), με σεισμικές δονήσεις που μπορεί να φτάσουν ή και να ξεπεράσουν το μέγεθος 7, όπως το 1953 ή το 1983 (Papazachos and Papazachou, 1997).

Ψηφιακή συλλογή Βιβλιοθήκη

2.3 Σεισμικότητα

Σχήμα 19: Αριστερά: σεισμικότητα ανατολικής Μεσογείου, από το 1973, σύμφωνα με το USGS, με το παραλληλόγραμμο τα κεντρικά νησιά του Ιονίου. Δεξιά: Σεισμικότητα στην περιοχή των κεντρικών Ιονίων νήσων, η γεωμετρία των ρηγμάτων από Barrier et al. 2004, (Ilieva et al. 2016).

Η Λευκάδα βρίσκεται στο πιο βορειοδυτικό άκρο το τόξου του Αιγαίου, μια περιοχή με υψηλά ποσοστά σεισμικότητας, η οποία έχει υποφέρει στο παρελθόν από πολυάριθμους σεισμούς, που δημιουργήθηκαν από το κυρίαρχο δεξιόστροφο ρήγμα μετασχηματισμού της Κεφαλονιάς (Hatzfeld et al. 1995). Οι περισσότεροι σεισμοί της περιοχής, δημιουργήθηκαν στο δυτικό τμήμα του νησιού, επηρεάζοντας κατά κύριο λόγο την πρωτεύουσα του νησιού, την πόλη της Λευκάδας. Οι σεισμοί της Λευκάδας, έχουν αποτελέσει αντικείμενο πολλών ερευνών, σχετικά με τη φυσική των σεισμικών πηγών και τη σεισμική συμπεριφορά των κτηρίων (π.χ.

Touliatos and Vintzileou, 2006), που χαρακτηρίζονται ως ειδικές αντισεισμικές κατασκευές από τη Μονάδα Πολιτιστικής Κληρονομιάς του Ευρωπαϊκού Συμβουλίου (Kalantoni et al. 2013).

Ψηφιακή συλλογή Βιβλιοθήκη

Λαμβάνοντας υπόψη πληροφορίες που παρέχονται από πρωτογενείς πηγές (π.χ. εφημερίδες, «Αίον», «Φιλόμαθον», το αρχείο δηλαδή της Λευκάδας για τη σεισμικότητα του νησιού), και δημοσιευμένους σεισμικούς καταλόγους [Barbiani and Barbiani, (1864), Critikos, 1916; Galanopoulos, 1955; Rondoyannis, 1995; Rondoyanni-Tsiambaou, 1997; Papazachos and Papazachou, 1997 and Papazachos et al. 2000), κατασκευάστηκε λίστα με σεισμούς που έχουν λάβει χώρα στο νησί της Λευκάδας από το 1612 ως το 2003, καθώς επίσης και σύντομη περιγραφή των δημιουργούμενων μακροσεισμικών αποτελεσμάτων, που παρουσιάστηκαν από Papathanassiou et al. (2005a).

Ως προκαταρκτικό αποτέλεσμα, οι Papathanassiou et al. (2005a), παρατήρησαν πως η πραγματοποίηση σεισμών μέσα σε αυτή την περιοχή, συχνά εμφανίζεται κατά ζεύγη (δίδυμα φαινόμενα ή cluster events), με περίοδο επανάληψης μεταξύ 2 μήνες έως και 5 χρόνια, π.χ. 1612 – 1613 (16 μήνες), 1625 – 1630 (5 χρόνια), 1722 – 1723 (10 μήνες), 1767 – 1769 (2 χρόνια), 1783 – 1783 (2 μήνες, πιθανά μετασεισμός), 1867 – 1869 (2 χρόνια), 1914 – 1915 (2 μήνες), 1948 – 1948 (2 μήνες).

Η παρακάτω εικόνα (Σχ. 20), απεικονίζει τις σεισμικές δονήσεις που έχουν λάβει χώρα στην ευρύτερη περιοχή της Λευκάδας, σε ακτίνα 25km. Αυτές οι δονήσεις αναφέρονται στο διάστημα 2000-σήμερα, και τέθηκε το κριτήριο το μέγεθός τους να είναι ML>4.

Σχήμα 20: Σεισμικές δονήσεις στην ευρύτερη περιοχή της Λευκάδας (ακτίνα 25 km), ML>4, το διάστημα 2000-σήμερα, (<u>www.gein.noa.gr</u>).

2.4 Σεισμική επικινδυνότητα

Σύμφωνα με τον Νέο Χάρτη Σεισμικής Επικινδυνότητας του ΟΑΣΠ (Οργανισμός Αντισεισμικού Σχεδιασμού & Προστασίας), η περιοχή μελέτης, εντάσσεται στην υψηλότερη ζώνη σεισμικής επικινδυνότητας (ΙΙΙ), του Ελληνικού Αντισεισμικού Σχεδιασμού (ΕΑΚ 2000, 2003), με μέγιστη εδαφική επιτάχυνση 0,36g (Σχ. 21).

Σχήμα 21: Νέος χάρτης σεισμικής επικινδυνότητας (<u>https://www.oasp.gr/node/2391</u>).

Όπως προαναφέρθηκε, βάσει προκαταρκτικής έκθεσης του ΟΑΣΠ - ΙΤΣΑΚ (<u>http://www.itsak.gr/uploads/news/earthquake reports/Lefkas M6.0 17-11-2015.pdf</u>), στον σεισμό του 2015, η τιμή της PGA (Peak Ground Acceleration – η μέγιστη τιμής της εδαφικής επιτάχυνσης), καταγράφηκε στο σταθμό της Βασιλικής, ως 0,36g.

2.5 Τεχνικογεωλογικές συνθήκες

Γενικά, όπως αναφέρεται και στην εργασία των Papathanassiou et al. (2017), οι περισσότερες αστοχίες (κατολισθήσεις, βραχοκαταπτώσεις, ροές) που εκδηλώθηκαν από τη σεισμική δόνηση στις 17 Νοεμβρίου 2015, φαίνεται πως συγκεντρώνονται σε μία στενή ζώνη, ακολουθώντας τη δυτική ακτή του νησιού της Λευκάδας (Σχ. 22α). Αυτό δικαιολογείται λόγω του ότι στο δυτικό τμήμα του νησιού οι γεωλογικοί σχηματισμοί είναι αρκετά κερματισμένοι, λόγω της Ολοκαινικής τεκτονικής δραστηριότητας. Επίσης, η διάρρηξη ξεκίνησε με μία μικρή ολίσθηση, κυρίως νότια του υποκέντρου (Sokos et al. 2016, Chousianitis et al. 2016). Ως εκ τούτου, οι περιοχές Δ-ΝΔ από το επίκεντρο, αναμένεται να δεχτούν μεγαλύτερες

σεισμικές διαταράξεις και συνεπώς η χωρική κατανομή των σεισμικά επαγόμενων αστοχιών να είναι πυκνότερες σε σχέση με το BA τμήμα του νησιού. Η πυκνότητα των αστοχιών, παρουσιάζεται στο σχήμα 22β. Συγκεκριμένα, η χρωματική διαβάθμιση δείχνει τον αριθμό των κατολισθήσεων ανά 500m x 500m². Το κίτρινο αστέρι αντιπροσωπεύει το επίκεντρο του σεισμού του 2015. Το επίπεδο του ρήγματος είναι από τους Ganas et al. (2016). Αναφορικά με το ανώτερο τμήμα της χρωματικής διαβάθμισης, δείχνει τη σχέση πυκνότητας κατολισθήσεων και κλίσης. Η πυκνότητα (κατολισθήσεις/ km²) παρουσιάζει εκθετική αύξηση με την κλίση. Αναφορικά με το χαμηλότερο τμήμα της χρωματικής διαβάθμισης, παρουσιάζεται η σχέση μεταξύ κατολισθήσεων και απόστασης από την επιφανειακή προβολή του ρήγματος. Οι μέγιστες τιμές εντοπίζονται σε αποστάσεις μικρότερες από 3000m από το ρήγμα και μειώνονται σταδιακά μακριά από το ρήγμα.

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 22: α) Κατανομή αστοχιών λόγω του σεισμού στις 17 Νοεμβρίου 2015, β) Η πυκνότητα των αστοχιών. Η χρωματική κλίμακα δείχνει τον αριθμό των κατολισθήσεων ανά 500m x 500m². Το κίτρινο αστέρι αντιπροσωπεύει το επίκεντρο του σεισμού του 2015. Το επίπεδο του ρήγματος είναι από τους Ganas et al. (2016). Το ανώτερο τμήμα της χρωματικής κλίμακας, δείχνει τη σχέση πυκνότητας κατολισθήσεων και κλίσης. Η πυκνότητα (κατολισθήσεις/ km²) παρουσιάζει εκθετική αύξηση με την κλίση. Το χαμηλότερο τμήμα της χρωματικής κλίμακας, δείχνει τη σχέση πυκνότητας. Οι μέγιστες τιμές εντοπίζονται σε αποστάσεις μικρότερες από 3000m από το ρήγμα και μειώνονται σταδιακά μακριά από αυτό, (Papathanassiou et al. 2017).

Πιο συγκεκριμένα, σύμφωνα με τους Grendas et al. (2018), η πλειοψηφία των αστοχιών εντοπίστηκαν στις περιοχές Εγκρεμνοί και Γιαλός, όπου και μελετήθηκαν τα τεχνικογεωλογικά χαρακτηριστικά των σχηματισμών (Σχ. 23). Οι Grendas et al. (2018), πραγματοποίησαν τεχνικογεωλογική χαρτογράφηση σε αυτές τις περιοχές με στόχο την ταξινόμηση των τεχνικογεωλογικών ενοτήτων που χαρτογραφήθηκαν στις βαριά πληττόμενες περιοχές, αλλά και τη σύγκριση αυτών με τους τύπους αστοχιών των πρανών.

Σχήμα 23: Χάρτης απεικόνισης του νοτιοδυτικού τμήματος του νησιού, εστιάζοντας στις περιοχές που εξετάστηκαν οι κατολισθήσεις. Το κίτρινο τρίγωνο αντιπροσωπεύει το επίκεντρο του σεισμού στις 17 Νοεμβρίου 2015, μεγέθους Mw 6.5, (Grendas et al. 2018).

Οι προαναφερθείσες περιοχές αποτελούνται ως επί το πλείστον από υψηλά πρανή (>150m), με μεγάλες γωνίες κλίσης (>70°), ενώ η βραχόμαζα εμφανίζεται ιδιαίτερα κερματισμένη, λόγω του τεκτονικού καθεστώτος και συχνά αποτελείται από υλικά κορημάτων (debris material). Συγκεκριμένα, στη περιοχή Εγκρεμνοί, μια βαθιά κατολίσθηση αναφέρθηκε ότι επηρέασε τον πλακόστρωτο δρόμο, οδηγώντας στην ακτή. Αναφορικά με την περιοχή του Γιαλού, αυτή βρίσκεται βόρεια των Εγκρεμνών, και επλήγη επίσης έντονα από αστοχίες λόγω του σεισμού.

Σύμφωνα με τους Grendas et al. (2018), ύστερα από την χαρτογράφηση των ενοτήτων, πραγματοποιήθηκε η τεχνικογεωλογική αξιολόγηση, για την εκτίμηση και την ταξινόμηση της βραχόμαζας, αλλά και για την ομαδοποίηση/κατηγοριοποίηση ενοτήτων με παρόμοια τεχνικογεωλογική συμπεριφορά. Αυτό επιτεύχθηκε με την εφαρμογή γνωστών διαδικασιών, εστιάζοντας στην περιγραφή αλλά και στην ποσοτικοποίηση της ποιότητας της βραχόμαζας. Έτσι, εφαρμόστηκαν οι ακόλουθες διαδικασίες:

Ψηφιακή συλλογή Βιβλιοθήκη

Γεωλογικός Δείκτης Αντοχής (GSI- Geological Strength Index), που προτάθηκε από τους Marinos and Hoek (2000) και βασίζεται στην εκτίμηση της δομής της βραχόμαζας και στις συνθήκες των επιφανειών των ασυνεχειών. Το σύστημα ταξινόμησης GSI, στοχεύει στη βαθμονόμηση της ποιότητας της βραχόμαζας, καθώς και στον προσδιορισμό των γεωτεχνικών παραμέτρων. Εφαρμόζεται και για ετερογενείς βραχόμαζες (φλύσχης και μολάσσα), ωστόσο όμως λαμβάνοντας υπόψη την περιοχή μελέτης, όπου ο κύριος σχηματισμός που συναντάται είναι ο ασβετόλιθος (Εγκρεμνοί, Γιαλός), χρησιμοποιήθηκε το αντίστοιχο διάγραμμα ταξινόμησης που είναι ειδικά για το ασβεστόλιθο (Marinos 2010), (Σχ. 24). Έτσι, έχοντας υπολογίσει το GSI για κάθε Τεχνικογεωλογική Ενότητα, κρίνεται υποχρεωτικός ο υπολογισμός των παραμέτρων διατμητικής αντοχής (συνοχής c και γωνίας τριβής φ, παράμετροι Mohr- Coulomb), ώστε να χρησιμοποιηθούν στη μελέτη της κρίσιμης εδαφικής επιτάχυνσης). Έτσι εφαρμόστηκαν οι ακόλουθες σχέσεις (1-8), (Hoek 2006):

$$\varphi' = \sin^{-1} \left[\frac{6\alpha m (s + m\sigma'_{3n})^{\alpha - 1}}{2(1 + \alpha)(2 + \alpha) + 6\alpha m (s + m\sigma'_{3n})^{\alpha - 1}} \right]$$
(1)

$$c' = \frac{\sigma ci[(1+2a)s + (1-a)m\sigma'_{3n}](s+m\sigma'_{3n} + \alpha^{-1})}{(1+\alpha)(2+\alpha)\sqrt{1+6\alpha m(s+m\sigma'_{3n})^{\alpha^{-1}}/[(1+\alpha)(2+\alpha)]}}$$
(2)

Όπου όμως για να προκύψουν, χρησιμοποιήθηκαν τα ακόλουθα:

$$m = mi \exp\left(\frac{GSI - 100}{28 - 14D}\right) \tag{4}$$

$$s = \exp\left[\frac{GSI - 100}{9 - 3D}\right]$$
(5)

$$\sigma'_{3n} = \frac{\sigma'_{3}max}{\sigma ci} \tag{6}$$

$$\frac{\sigma'_{3}max}{\sigma'cm} = 0.47 \left(\frac{\sigma'cm}{\gamma H}\right)^{-0.94}$$
(7)

$$\sigma' cm = \sigma ci \frac{[m + 4s - \alpha(m - 8s)](m/4 + s)^{\alpha - 1}}{2(1 + \alpha)(2 + \alpha)}$$
(8)

Όπου: D= ο παράγοντας διατάραξης, σ'3max= το ανώτερο όριο της επιτρεπόμενης τάσης μεταξύ των κριτηρίων Hoek–Brown and the Mohr–Coulomb, σci=μονοαξονική θλιπτική αντοχή, mi=σταθερά του υλικού, σ'cm= μονοαξονική αντοχή βραχόμαζας, γ= φαινόμενο βάρος βραχόμαζας και H= ύψος πρανούς.

Σχήμα 24: Διάγραμμα GSI για ασβεστολιθική βραχόμαζα (Marinos 2010).

Αναφορικά με την χαρτογράφηση, αποφασίστηκε από τους Grendas et al. (2018), η ταξινόμηση αστοχιών κατά μήκος του οδικού δικτύου, ώστε να πραγματοποιηθεί συσχέτιση του είδους της αστοχίας και των τεχνικογεωλογικών παραμέτρων της ενότητας.

Ψηφιακή συλλογή Βιβλιοθήκη

Οι περιοχές Εγκρεμνοί και Γιαλός, ανήκουν εξολοκλήρου στην ζώνη Παξών, και η βραχόμαζα αποτελείται κατά κύριο λόγο από ανθρακικούς σχηματισμούς και δη ασβεστολίθους.

Σύμφωνα με τους Grendas et al. (2018), στην περιοχή Εγκρεμνοί, διακρίθηκαν επτά (7) Τεχνικογεωλογικές ενότητες (ΤΕ), (Πίν. 1), (Σχ. 25).

Πίνακας 1: Τεχνικογεωλογικές ενότητες για την περιοχή Εγκρεμνών, (Grendas et al. 2018).

A/A	GSI	Αποσάθρωση	Αντοχή	Κλίση (°)	Υψόμετρο (m)	Εκσκαφή με γεωλογικό σφυρί	Συνοχή	Τύπος αστοχίας	Σχόλια - Αστοχίες σε περιορισμένη έκταση	
TE1	60-70	1-11	R5-R6	80°–85°	5-50	-	-	Όχι αστοχία	-	
TE2	55-60	II	R5	80°–85°	5-10	-	-	Ολισθήσεις βράχου & βραχοκαταπτώσεις	Αστοχίες σε περιορισμένη έκταση	
TE3	35-45	II	R4	35°-40°	10-20	-	-	Όχι αστοχία	Πτυχωμένη βραχόμαζα	
TE4	25-30	Ш	R3	35°-40°	5-20	-	-	Βραχοκαταπτώσεις - βαθιές ολισθήσεις	-	
TE5	15-20	III-IV	R2 - (R1)	45°-50°	5-30	Εύκολα	-	Ολισθήσεις βράχου & βραχοκαταπτώσεις	-	
TE6	-	-	-	60°-70°	7-10	Εύκολα	Χαλαρή	Ροές κορημάτων - βραχοκαταπτώσεις	-	
TE7	-	-	-	50°-60°	6-10	Δύσκολα	Ισχυρή	Επιφανειακές ολισθήσεις	Σημαντικές αστοχίες λόγω βροχόπτωσης	

Σχήμα 25: Ο γεωλογικός χάρτης, ο τεχνικογεωλογικός χάρτης και ο χάρτης ταξινόμησησης των κατολισθήσεων στην περιοχή Εγκρεμνοί, (Grendas et al. 2018).

Grendas et al. (2018), ασβεστολιθικά λατυποπαγή Σύμφωνα τους με παρουσιάστηκαν ως τα πιο παραμορφωμένα υλικά (ΤΕ4 και 5), και αυτός είναι ο σχηματισμός που προκάλεσε τις κυρίαρχες ολισθήσεις (ολισθήσεις βράχων, βραχοκαταπτώσεις, βαθύτερες ολισθήσεις), χαρακτηρίζοντας τη δριμύτητα υψηλή πολύ υψηλή. Αντιθέτως, ο άρρηκτος ασβεστόλιθος, ο οποίος κατά κύριο λόγο εντοπίστηκε κοντά στην ακτή, ανήκει στην ΤΕ1 και προκάλεσε αν όχι καθόλου, τότε πολύ λίγες αστοχίες (χαμηλή – πολύ χαμηλή δριμύτητα). Η ΤΕ7, παρουσιάζει την ίδια τεχνικογεωλογική συμπεριφορά με την ΤΕ1, η οποία αναφέρεται σε ασβεστολιθικά θραύσματα, με μεγάλη συνοχή. Οι ΤΕ 2, 3, 6 κατά κύριο λόγο προκάλεσαν σύνθετες ολισθήσεις, βραχοκαταπτώσεις και ροές κορημάτων, ενώ η δριμύτητα των κατολισθήσεων χαρακτηρίζεται ως μέτρια. Συνοπτικά οι ΤΕ στο πεδίο όπως καταγράφηκαν από τους Grendas et al. (2018), παρουσιάζονται παρακάτω (Σχ. 26):

Ψηφιακή συλλογή Βιβλιοθήκη

Παρομοίως, και για στην περιοχή Γιαλός, διακρίθηκαν έξι (6) Τεχνικογεωλογικές ενότητες (Πίν. 2), (Σχ. 27):

Σχήμα 26: Απεικόνιση στο πεδίο των Τεχνικογεωλογικών ενοτήτων στην περιοχή των Εγκρεμνών, (Grendas et al. 2018).

Πίνακας 2: Τεχνικογεωλογικές ενότητες για την περιοχή Γιαλός, (Grendas et al. 2018).

A/A	GSI	Αποσάθρωση	Αντοχή	Κλίση (°)	Υψόμετρο (m)	Εκσκαφή με γεωλογικό σφυρί	Συνοχή	Τύπος αστοχίας	Σχόλια
TE1	60-70	11	R5	>70°	5-10	-	-	Όχι αστοχία	Παρατηρείται η στρώση
TE2	55-60	11-111	R4 – (R3)	45°-50°	15-20	-	-	Ολισθήσεις βράχου & βραχοκαταπτώσεις	Αστοχίες σε περιορισμένη έκταση
TE3	35-45	Ξ	R3	60°-70°	6-10	-	-	Ολισθήσεις βράχου & βραχοκαταπτώσεις (βαθιές ολισθήσεις)	Πτυχωμένη βραχόμαζα
TE4	15-20	IV	R2 – (R1)	40° – 45°	3-10	-	-	Ολισθήσεις βράχου , βραχοκαταπτώσεις	-
TE5	-	-	-	45° – 50°	6-10	Εύκολα	Χαλαρή	Ροές κορημάτων	-
TE6	-	-	-	60° – 70°	6-10	Δύσκολα	Ισχυρή	Όχι αστοχία	Ίδια συμπεριφορά με την ΤΕ1

Σχήμα 27: Ο γεωλογικός χάρτης, ο τεχνικογεωλογικός χάρτης και ο χάρτης ταξινόμησησης των κατολισθήσεων στην περιοχή Γιαλός, (Grendas et al. 2018).

Σύμφωνα με τους Grendas et al. (2018), δεν είναι μόνο τα ασβεστολιθικά λατυποπαγή που εμφανίζονται ως τα πιο παραμορφωμένα υλικά, αλλά και το ασβεστολιθικό υπόβαθρο, με την ίδια παραμόρφωση λόγω της αποσάθρωσης (TE3 & 4, ανάλογα με την ποιότητα της βραχόμαζας). Αυτές οι Τεχνικογεωλογικές ενότητες προκάλεσαν κυρίαρχες αστοχίες (ολισθήσεις βράχων, βραχοκαταπτώσεις, βαθύτερες κατολισθήσεις, καθώς και σύνθετες κατολισθήσεις), όπου η δριμύτητααυτών χαρακτηρίστηκε υψηλή – πολύ υψηλή. Ο άρρηκτος ασβεστόλιθος εντοπίστηκε κυρίως στο δυτικό τμήμα της περιοχής, όπου ανήκει στην TE1. Αυτή η τεχνικογεωλογική ενότητα προκάλεσε αν όχι καθόλου, τότε λίγες αστοχίες (χαμηλή ως πολύ χαμηλή δριμύτητα). Την ίδια τεχνικογεωλογική συμπεριφορά παρουσιάζει και η TE6, η οποία αναφέρεται στα ασβεστολιθικά θραύσματα, με μεγάλη συνοχή. Οι Τεχνικογεωλογικές ενότητες 2 και 5, προκάλεσαν κυρίως ολισθήσεις βράχων και βραχοκαταπτώσεις και περιορισμένες ροές κορημάτων, ενώ η δριμύτητα (Συνοπτικά, οι TE στο πεδίο παρουσιάζονται παρακάτω (Σχ. 28), όπως καταγράφηκαν από τους Grendas et al. (2018):

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 28: Απεικόνιση στο πεδίο των Τεχνικογεωλογικών ενοτήτων στην περιοχή του Γιαλού, (Grendas et al. 2018).

2.6 Κλιματολογικές συνθήκες

Ψηφιακή συλλογή Βιβλιοθήκη

Το κλίμα της Ελλάδας είναι κατά κύριο λόγο μεσογειακό. Ωστόσο, λόγω της γεωγραφίας της χώρας, η Ελλάδα έχει αξιοσημείωτο εύρος μικροκλιμάτων και τοπικών διαφοροποιήσεων. Στα δυτικά της οροσειράς της Πίνδου, το κλίμα είναι γενικά πιο υγρό, με ορισμένα θαλάσσια χαρακτηριστικά. Στο ανατολικό τμήμα, το κλίμα είναι γενικά πιο ξηρό και πιο ζεστό το καλοκαίρι.

Η κατανομή της ετήσιας βροχόπτωσης προκύπτει από τον ακόλουθο χάρτη ετήσιας κατανομής βροχόπτωσης (Σχ. 29). Η ευρύτερη περιοχή της Λευκάδας και γενικά των Ιονίων νήσων, παρουσιάζει υψηλή ετήσια βροχόπτωση, περίπου 800mm-1000mm, ενώ σε πολύ ορεινές περιοχές, στο τοπικό μικροκλίμα μπορεί να ξεπεραστούν τα 1400mm με 1800mm. Σύμφωνα επίσης με το χάρτη κλιματικών περιοχών της Ελλάδας (Σχ. 30), η περιοχή μελέτης έχει υγρό κλίμα, με πολλές βροχές, ήπιους χειμώνες και δροσερά καλοκαίρια.

Σχήμα 29: Χάρτης ετήσιας βροχόπτωσης, (<u>http://physiclessons.blogspot.com/2012/03/k.html</u>).

58

Σχήμα 30: Χάρτης κλιματικών περιοχών Ελλάδας, (<u>https://rizosdimitris.blogspot.com/2012/01/4.html</u>).

Αναφορικά με τις καιρικές συνθήκες το ευρύτερο διάστημα πριν την εκδήλωση, αλλά και κατά την εκδήλωση του φαινομένου, όπως φαίνεται και στην παρακάτω εικόνα (Σχ. 31), δεν υπήρχαν βροχοπτώσεις, οι οποίες θα μπορούσαν άμεσα να συσχετιστούν με την εκδήλωση των αστοχιών. Επομένως, πρόκειται για σεισμικά επαγόμενες αστοχίες.

MONTHLY CLIMATOLOGICAL SUMMARY for NOV. 2015

IIZOTZA

NAME: lefkada CITY: STATE: ELEV: 12 m LAT: LONG:

Ψηφιακή συλλογή Βιβλιοθήκη

TEMPERATURE (°C), RAIN (mm), WIND SPEED (km/hr)

М	FAN		HEA	T CO	DEG	۹۷G WIN	D	П	ом			
DAY	TEMP	HIGH	TIME	LOW	TIME	DAYS	DAYS	RAIN	SPEED	HIGH	TIME	DIR
1	16.4	18.6	13:10	14.7	22:00	1.8	0.0	0.0	40.9	86.9	8:10	ENE
2	15.4	20.6	12:10	10.5	7:50	3.4	0.5	0.0	5.1	29.0	0:10	NW
3	14.3	20.3	15:20	10.1	6:00	4.3	0.3	0.0	4.3	14.5	12:40	WNW
4	14.2	20.5	13:30	8.2	6:40	4.5	0.4	0.0	5.3	20.9	14:50	NW
5	14.9	20.2	12:50	10.0	6:50	3.8	0.4	0.0	4.3	16.1	15:30	WNW
6	15.1	20.3	14:00	11.1	3:10	3.6	0.4	0.0	4.5	14.5	15:20	WNW
7	15.2	21.5	15:00	9.9	7:30	3.6	0.5	0.0	3.9	17.7	16:10	WNW
8	15.8	21.3	15:30	11.5	8:00	3.0	0.5	0.0	4.7	19.3	18:20	NW
9	16.3	20.9	13:50	11.4	6:20	2.7	0.7	0.0	4.8	20.9	14:40	WNW
10	16.8	21.7	16:50	13.3	7:10	2.2	0.8	0.0	6.3	27.4	15:00	WNW
11	17.8	25.4	13:10	13.2	7:30	2.0	1.6	0.0	3.2	12.9	13:20	WNW
12	17.4	21.5	13:00	13.7	5:50	1.8	0.9	0.0	4.0	20.9	14:50	SSE
13	16.9	21.2	15:20	13.3	6:10	2.2	0.8	0.2	5.1	22.5	15:20	NE
14	17.5	20.9	16:00	13.2	7:50	1.6	0.8	0.0	5.5	27.4	22:30	NW
15	17.3	20.7	14:30	14.3	23:10	1.5	0.5	0.0	4.8	19.3	15:20	W
6	16.7	21.2	15:30	12.8	6:10	2.2	0.6	0.0	6.6	25.7	16:30	WNW
.7	16.6	23.3	13:30	12.2	8:00	2.8	1.1	0.0	4.7	20.9	13:10	WNW
.8	17.6	21.2	15:20	13.2	7:20	1.5	0.8	0.0	6.3	24.1	21:00	WNW
.9	17.3	20.6	15:10	14.2	8:10	1.4	0.4	0.0	5.0	22.5	15:00	W
20	17.2	20.2	15:00	14.6	7:40	1.5	0.4	0.0	4.3	25.7	14:10	W
21	18.7	21.2	15:00	17.0	7:20	0.3	0.7	2.4	9.3	33.8	00:00	SSW
22	19.9	22.6	13:10	16.4	23:40	0.3	2.0	18.0	14.8	59.5	18:30	S
23	17.4	20.3	00:00	15.2	8:10	1.1	0.3	0.6	8.0	41.8	3 23:40) SW
24	20.1	22.9	11:30	15.4	00:00	0.1	1.9	0.2	12.9	43.5	0:50	S
25	14.6	19.3	11:50	12.5	6:00	3.8	0.1	78.4	11.6	54.7	11:40	SW
26	13.9	17.1	11:10	12.6	0:10	4.4	0.0	37.4	11.1	46.7	21:20	SSE
27	13.3	16.4	14:50	11.2	22:50	5.0	0.0	50.8	11.9	48.3	16:40	SSE
28	13.7	16.0	19:20	11.4	1:20	4.6	0.0	26.2	10.1	38.6	15:40	WNW
29	13.0	16.5	14:40	9.2	8:00	5.3	0.0	0.4	7.6	45.1	15:40	SW
30	11.5	15.8	16:30	8.0	4:50	6.8	0.0	0.0	4.5	22.5	7:10	NNE
	16.1	25.4	11	8.0	30	83.2	2 17.3	214	.6 7.9	86.	91	WNW
Max >= 32.0: 0												
Max <= 0.0: 0												
Min <= 0.0: 0												
IVIIN <= -18.U: U												
Vlax	Rain:	78.41 ()N 25/1	1/15	- ·							
Days	s of Rai	n: 10 (> .2 mm	1) 6 (>	2 mm)	4 (> 20	mm)					
Heat Base: 18.3 Cool Base: 18.3 Method: Integration												

Σχήμα 31: Μηνιαία κλιματολογικά δεδομένα Λευκάδας, τον Νοέμβριο 2015, (<u>http://meteosearch.meteo.gr/data/lefkada/2015-11.txt</u>).

ΚΕΦΑΛΑΙΟ 3° – ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΕΠΙΣΚΟΠΗΣΗ

3.1 Προηγούμενες έρευνες – μελέτες

Ψηφιακή συλλογή Βιβλιοθήκη

Για το νησί της Λευκάδας πραγματοποιήθηκε έρευνα από τους Papathanassiou et al. (2013), με τίτλο: «GIS-based statistical analysis of the spatial distribution of earthquake-induced landslides in the island of Lefkada, Ionian Islands, Greece», όπου εξετάστηκαν οι τοπογραφικοί παράγοντες και ο παράγοντας της γεωλογίας, ως προς την επιδεκτικότητα κατολισθήσεων, ύστερα από το σεισμό του 2003. Επιπλέον, οι Grendas et al. (2018), πραγματοποίησαν έρευνα με τίτλο: «Engineering geological mapping of earthquake-induced landslides in South Lefkada Island, Greece: evaluation of the type and characteristics of the slope failures», όπου κατά κύριο λόγο πραγματοποιήθηκε τεχνικογεωλογική χαρτογράφηση και μελετήθηκαν οι τεχνικογεωλογικές συνθήκες των περιοχών Εγκρεμνοί και Γιαλός, και εκτιμήθηκαν τα χαρακτηριστικά και οι διαστάσεις (τύπος, εμβαδόν, όγκος) των αστοχιών.

Επιπλέον, οι Ganas et al. (2016), πραγματοποίησαν έρευνα με τίτλο: «Coseismic deformation, field observations and seismic fault of the 17 November 2015 M=6.5, Lefkada Island, Greece earthquake», οι οποίοι με βάση τα δεδομένα που κατέγραψαν στο πεδίο συμπέραναν μεταξύ άλλων πως το μοτίβο της σεισμικότητας στο Ιόνιο πέλαγος, χαρακτηρίζεται από την ύπαρξη ενός σεισμικού κενού μήκους 15 km στο θαλάσσιο χώρο ΝΔ της Κεφαλονιάς. Επιπλέον, οι Papathanassiou et al. (2017), στην έρευνα με τίτλο: «The November 17th, 2015 Lefkada (Greece) strike-slip earthquake: Field mapping of generated failures and assessment of macroseismic intensity ESI-07», χαρτογράφησαν και μελέτησαν αστοχίες και βλάβες λόγω του σεισμού του 2015 (ροές υλικού, βραχοκαταπτώσεις, ρευστοποιήσεις, αλλά και βλάβες στο οδικό δίκτυο). Επιπροσθέτως, οι Papaioannou et al. (2018), πραγματοποίησαν έρευνα με τίτλο: «The November 17, 2015 MW 6.4 Lefkas, Greece earthquake: Source characteristics, ground motions, ground failures and structural response», $\delta \pi o u$ μελετήθηκαν οι σεισμικές κινήσεις του εδάφους, αξιολογήθηκαν τα αποτελέσματα από επιταχυνσιογραφήματα, όπως επίσης και τα αποτελέσματα από την επί τόπου έρευνα σε κτήρια και γενικότερα υποδομές, λόγω του σεισμού του 2015. Τέλος, οι Kazantzidou – Firtinidou et al. (2016), πραγματοποίησαν έρευνα με τίτλο: «The November 2015 Mw 6.4 earthquake effects in Lefkas Island», όπου μελετήθηκε το φαινόμενο και η κατανομή της μακροσεισμικής έντασης, καθώς και τα αποτελέσματα ύστερα από δύο επιτόπου έρευνες στο πεδίο, στη νοτιοδυτική χερσόνησο, μετά από το σεισμό του 2015, καθώς και βλάβες κατά κύριο λόγο σε οικίες σε ισόγεια, αλλά και 2 ορόφων πετρόχτιστα σπίτια, όπου κρίθηκε η ανάγκη μηχανικών μέτρων αποκατάστασης.

Ψηφιακή συλλογή Βιβλιοθήκη

Σχετικά τώρα με άλλες μελέτες που έχουν πραγματοποιηθεί σε παγκόσμιο επίπεδο με παρόμοια μεθοδολογία, αλλά και αρκετές καινοτομίες, παρουσιάζονται ακολούθως. Αρχικά, οι Yu Zhao et al. (2020), στην έρευνά τους με τίτλο: «The assessment of earthquake-triggered landslides susceptibility with considering coseismic ground deformation», εξετάζουν έναν νέο παράγοντα, ο οποίος θεωρούν πως επηρεάζει την επιδεκτικότητα των κατολισθήσεων και δεν είναι άλλος από τη σεισμική εδαφική παραμόρφωση (coseismic ground deformation), στην περιοχή Mid-Niigata, χρησιμοποιώντας μοντέλα Logistic Regression (LR), Artificial Neural Networks (ANN) and Support Vector Machines (SVM), με τη μεγαλύτερη επιτυχία στις καμπύλες ROC, να λαμβάνει το μοντέλο ANN. Τέλος εξήγαγαν το συμπέρασμα πως οι σεισμοί προκαλούν περισσότερες κατολισθήσεις στην επικεντρική περιοχή, κάτι το οποίο την καθιστά πολύ επιδεκτική σε περαιτέρω κατολισθήσεις, και άρα η επιδεκτικότητα στη συγκεκριμένη επικεντρική περιοχή εκτιμήθηκε περαιτέρω.

Επιπλέον, οι Guirong Wang et al. (2020), στην εργασία τους με τίτλο: «Hybrid Computational Intelligence Methods for Landslide Susceptibility Mapping», εξετάζουν την εκτίμηση της επιδεκτικότητας κατολισθήσεων, στην περιοχή Nanchuan County, στην Κίνα. Αυτό βασίστηκε στην υβριδική ενσωμάτωση του MultiBoosting σε δύο μεθόδους τεχνητής νοημοσύνης (the radial basis function network- (RBFN) και credal decision tree (CDT) models). Το αρχείο των κατολισθήσεων δημιουργήθηκε με βάση αποτελέσματα προηγούμενων ερευνητών, σε συνδυασμό με το GIS και αεροφωτογραφίες. Επιλέχθηκαν 16 παράγοντες προς εξέταση (υψόμετρο, επιφανειακή καμπυλότητα, plan curvature, κλίση, προσανατολισμός, δείκτης δυναμικού ποταμού, δείκτης τοπογραφίας, δείκτης μεταφοράς ιζημάτων, απόσταση από ποτάμια, δρόμους, ρήγματα, βροχόπτωση, NDVI, έδαφος, χρήσεις γης και λιθολογία). Ακολούθως, τα CDT, RBFN, και τα σύνολα MultiBoosting (MCDT and MRBFN) χρησιμοποιήθηκαν στο ArcGIS, για να παραχθούν οι χάρτες επιδεκτικότητας κατολισθήσεων. Οι τέσσερις χάρτες που προέκυψαν συγκρίθηκαν και επαληθεύτηκαν, με μεγαλύτερη επιτυχία του μοντέλου MCDT.

Ψηφιακή συλλογή Βιβλιοθήκη

Επιπροσθέτως, οι Gordo et al. (2019), στην εργασία τους με θέμα: «Landslide Susceptibility Assessment at the Basin Scale for Rainfall- and Earthquake-Triggered Shallow Slides», μελέτησαν την εκδήλωση κατολισθήσεων στην υδρογραφική λεκάνη της περιοχής Ribeira Grande (S. Miguel Island, Azores), λόγω σεισμικών δονήσεων και βροχοπτώσεων. Δημιούργησαν δύο βάσεις καταγραφής δεδομένων κατολισθήσεων, το LI2 (από σεισμικές δονήσεις του 2005) και τι LI1 (από τις έντονες βροχοπτώσεις 2005-2016). Αυτές οι δύο βάσεις εξετάστηκαν ξεχωριστά από μορφομετρικής απόψεως και χρησιμοποιήθηκαν μεμονωμένα για την παραγωγή μοντέλων επιδεκτικότητας, χρησιμοποιώντας απλές στατιστικές μεθόδους (simple bivariate state-of-the-art statistical method). Αυτά τα μοντέλα εξετάστηκαν στη συνέχεια και επαληθεύτηκαν (validation).

Ακόμη, οι Martino et al. (2019), στην εργασία τους με τίτλο: «Earthquake-induced landslide scenarios for seismic microzonation: application to the Accumoli area (Rieti, ltaly)», ασχολήθηκαν ουσιαστικά με σενάρια κατολισθήσεων από σεισμικές δονήσεις, για χάρη σεισμικών μικροζωνικών μελετών (SM), για την εύρεση ασταθών και επιδεκτικών περιοχών. Η μέθοδος PARSIFAL (Probabilistic Approach to pRovide Scenarios of earthquake-Induced slope FAiLures), παρέχει σενάρια, τα οποία βασίζονται σε σεισμικά δεδομένα και δεδομένα κορεσμού του εδάφους. Λαμβάνει υπόψη την 1^η εκδήλωση βραχοκαταπτώσεων και ολισθήσεων εδάφους, καθώς και επαναδραστηριοποιήσεις ήδη υπαρχουσών κατολισθήσεων, παρέχοντας αναλύσεις ευστάθειας σε διάφορους μηχανισμούς αστοχίας. Αυτό, επιτρέπει την αξιολόγηση των περιοχών και την εκτίμηση επιδεκτικών πρανών και γενικότερα περιοχών, με σκοπό την παροχή πληροφοριών για μελλοντικές μηχανικές κατασκευές.

Σύμφωνα με τους Rouba Kaafarani et al. (2019), στην εργασία τους με τίτλο: «Landslide susceptibility mapping based on triggering factors using a multi-modal approach», εξετάζεται η αξιολόγηση κατολισθήσεων (από σεισμικές δονήσεις και βροχοπτώσεις), στην περιοχή του Λιβάνου, όπου δεν είναι διαθέσιμα τα αρχεία απογραφής κατολισθήσεων. Έτσι, μελετήθηκαν τρεις περιπτώσεις αστοχιών: ροές, βραχοκαταπτώσεις και περιστροφικές ολισθήσεις. Περιοχές επιδεκτικές σε αυτές τις τρεις περιπτώσεις, ταυτοποιήθηκαν από τη γεωλογία και την τοπογραφία και ύστερα διάφορα μοντέλα, πραγματοποιήθηκε χρησιμοποιώντας η εκτίμηση της επιδεκτικότητας. Ακολούθως, παρουσιάστηκε μια αξιολόγηση εκτίμησης για τον προσδιορισμό της περιοχής που θα επηρεαστεί από κάθε προβλεπόμενη κατολίσθηση και την απόκτηση ολοκληρωμένων χαρτών επιδεκτικότητας. Η αξιολόγηση στο πεδίο επικύρωσε το προτεινόμενο μοντέλο, το οποίο ήταν σε συμφωνία με τις πραγματικές κλίσεις των αστοχιών στο Λίβανο.

Ψηφιακή συλλογή Βιβλιοθήκη

Σύμφωνα με τους Suhua Zhou et al. (2019), στην εργασία τους με τίτλο: «Earthquakeinduced landslide susceptibility mapping: Application and Comparison of Frequency Ratio, Logistic Regression, Weight of Evidence and Support Vector Machine», εξετάζονται οι κατολισθήσεις που προέκυψαν από το σεισμό στις 20 Απριλίου 2013, στην περιοχή Lushan στην Κίνα. Επιλέχθηκαν επτά παράγοντες: υψόμετρο, κλίση, προσανατολισμός, χρήσεις γης, απόσταση από ενεργά ρήγματα, μέγιστη εδαφική επιτάχυνση (PGA) και φυσικά λιθολογία. Τα δεδομένα επεξεργάστηκαν και κατασκευάστηκαν μοντέλα επιδεκτικότητας και για τις τρεις στατιστικές μεθόδους, με μεγαλύτερη επιτυχία των LR & WE, χρησιμοποιώντας αυτά τα μοντέλα για την ευρύτερη ανασυγκρότηση αυτών των επιδεκτικών περιοχών και την προστασία τους.

Ακόμη, οι Chalkias et al. (2014), στην εργασία τους με τίτλο: «GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece», εξέτασαν τους παράγοντες υψόμετρο, κλίση πρανών, προσανατολισμός κλιτύων, λιθολογία, χρήσεις γης, μέση ετήσια βροχόπτωση και μέγιστη επιτάχυνση του εδάφους (PGA), για την εξαγωγή χάρτη επιδεκτικότητας με τη μέθοδο LSI για την περιοχή της Πελοποννήσου. Επίσης, οι Chyi-Tyi Lee et al. (2008), πραγματοποίησαν έρευνα με τίτλο: «Statistical approach to earthquake – induced landslide susceptibility». Σε αυτή την εργασία εισήχθη η έννοια της στατιστικής μεθοδολογίας, όπου χρησιμοποιήθηκε η ένταση της σεισμικής κίνησης ως παράγοντας εκδήλωσης κατολισθήσεων, στην κεντρική και δυτική Ταϊβάν. Έτσι ερμηνεύτηκε η κατανομή κατολισθήσεων στην περιοχή, καθώς και η πρόβλεψη φαινομένων και σε γειτονικές περιοχές. Αυτό το μοντέλο επιδεκτικότητας προβλέπει επιφανειακές κατολισθήσεις που προκύπτουν λόγω σεισμικών δονήσεων, σε περιοχές με παρόμοιο εύρος έντασης σεισμικής κίνησης, δίχως την απαίτηση γεωτεχνικών δεδομένων, δεδομένων υπόγειου νερού ή

Τέλος, οι S. Lee et al. (2006), στην εργασία τους με τίτλο: «Earthquake-induced landslide-susceptibility mapping using an artificial neural network», έθεσαν σε εφαρμογή τεχνικές Τεχνητών Νευρωνικών Δικτύων (ANN) και GIS, στην περιοχή Baguio City, Philippines. Οι περιοχές των κατολισθήσεων ταυτοποιήθηκαν από αεροφωτογραφίες, έρευνα στο πεδίο, και διαμορφώθηκε μια βάση δεδομένων από τοπογραφικούς χάρτες, γεωλογικούς χάρτες, χρήσεις γης και χαρτογραφίσιμων μονάδων εδάφους. Εξετάστηκαν οι παράγοντες της γεωλογίας, κλίσης, προσανατολισμού, καμπυλότητας, απόστασης από συστήματα αποστράγγισης. Αυτοί οι παράγοντες χρησιμοποιήθηκαν στα ANN για την εξαγωγή της επιδεκτικότητας και οι συντελεστές βάρους προέκυψαν από τη μέθοδο back-propagation και οι χάρτες επιδεκτικότητας κατασκευάστηκαν μέσω GIS.

3.2 "Σημαντικοί" σεισμοί με κατολισθήσεις στον κόσμο

A) Περιοχή Umbria, κεντρική Ιταλία

Ψηφιακή συλλογή Βιβλιοθήκη

Η περιοχή Umbria, στην κεντρική Ιταλία, είναι σεισμικά ενεργή και έχει μεγάλη ιστορία όσον αφορά τους σεισμούς (Boschi et al. 1998). Με βάση τις διαθέσιμες ιστορικές καταγραφές (Boschi et al. 1997), η μέγιστη σεισμική ένταση στην Umbria, ποικίλλει από 6 σε 11 MCS, και το μέγιστο τοπικό σεισμικό μέγεθος κυμαίνεται μεταξύ 4.7 και 6.7. Κάποιοι από τους ιστορικούς σεισμούς, είναι γνωστοί για την εκδήλωση κατολισθήσεων, (Σχ. 32). Η παλαιότερη καταγεγραμμένη σεισμικά προκαλούμενη κατολίσθηση στην περιοχή, πιθανότατα είναι η βραχοκατάπτωση Serravalle del Chienti, η οποία προκλήθηκε από τον σεισμό στις 30 Απριλίου 1279 (Boschi et al. 1998, Antonini et al. 2002b). Μία άλλη σχετικά πιο πρόσφατη κατολίσθηση που προκλήθηκε από σεισμό, έλαβε χώρα την περίοδο Σεπτέμβριο 1997 έως Απρίλιο 1998, ως αποτέλεσμα της σεισμικής ακολουθίας Umbria-Marche (Antonini et al. 2002b, Bozzano et al. 1998, Esposito et al. 2000).

Ψηφιακή συλλογή Βιβλιοθήκη

Η εκτίμηση της επιδεκτικότητας κατολισθήσεων ολοκληρώθηκε στις εξεταζόμενες περιοχές, για διαφόρων ειδών κατολισθήσεις, από τους Carrara et al. (1991, 1995) και Guzzetti et al. (1999b, 2003b, 2005d). Ακόμη, πραγματοποιήθηκε εκτίμηση της αναγνώρισης του αντίκτυπου των κατολισθήσεων στον πληθυσμό, το δίκτυο μεταφορών και τις κατασκευές στην περιοχή Umbria, από τους Guzzetti et al. (2003a). Η εκτίμηση της επικινδυνότητας λόγω κατολισθήσεων σε συγκεκριμένα σημεία, πραγματοποιήθηκε από τους Cardinali et al. (2002b) και Guzzetti et al. (2005).

Εικόνα 32: Παραδείγματα τυπικών βλαβών λόγω κατολίσθησης στην περιοχή Umbria. (A) Καταστροφή σπιτιού από βαθιά ολίσθηση στην περιοχή Monteverde τον Δεκέμβριο 1982. (B) Καταστροφή δρόμου από την κατολίσθηση Monteverde. (C) Καταστροφή κτηρίων από βραχοκατάπτωση στην περιοχή Piedipaterno στις 15 Σεπτεμβρίου 1992. (D) Καταστροφή σπιτιού από βαθιά κατολίσθηση, προκαλούμενη από ξαφνικό λιώσιμο πάγου, τον Ιανουάριο 1997 στην περιοχή Bivio Saragano. (E) Καταστροφή σπιτιού από την κατολίσθηση Valderchia, στις 6 Ιανουαρίου 1997. (F) Καταστροφή δρόμου από βαθιά ολίσθηση στην περιοχή San Litardo, τον Ιανουάριο 1997. (G) Ροές κορημάτων προκαλούμενες από τις βροχοπτώσεις την περίοδο Δεκεμβρίου 2004, στην περιοχή Porano. (H) Βραχοκαταπτώσεις και αστοχίες ανατροπών, προκαλούμενα από τους σεισμούς Σεπτεμβρίου – Οκτωβρίου 1997, κατά μήκος ενός επαρχιακού δρόμου κοντά στην περιοχή Stravignano. (K) Βραχοκαταπτώσεις προκαλούμενες από τους σεισμούς Σεπτεμβρίου – Οκτωβρίου 1997, κατά μήκος του δικτύου SS 320, κατά μήκος της κοιλάδας του ποταμού Corno, (Guzzetti et al. 2003).

B) Κοιλάδες ποταμών Nera και Corno, περιοχή Umbria, κεντρική Ιταλία

Η σεισμική ακολουθία που επηρέασε την περιοχή Umbria-Marche Apennines την περίοδο Σεπτέμβριο έως Οκτώβριο 1997, προκάλεσε άφθονες βραχοκαταπτώσεις κατά μήκος των κοιλάδων των ποταμών Nera & Corno, (Σχ. 33). Μεγάλος αριθμός βραχοκαταπτώσεων έλαβε χώρα κατά μήκος του φαραγγιού Balza Tagliata, NA της περιοχής Triponzo.

Εικόνα 33: Εικόνες που απεικονίζουν βραχοκαταπτώσεις κατά μήκος δρόμων στις κοιλάδες των ποταμών Nera & Corno, προκαλούμενες από την ακολουθία σεισμών Σεπτεμβρίου - Οκτωβρίου 1997, στην περιοχή Umbria-Marche Apennines, Guzzetti et al. (2003, 2004b).

Γ) Η περίπτωση του Hokkaido, Ιαπωνία

Στις 6 Σεπτεμβρίου 2018, στο νησί Hokkaido της Ιαπωνίας έλαβε χώρα σεισμός μεγέθους Mw=6.6. Ο σεισμός προκάλεσε πολυάριθμες κατολισθήσεις στην περιοχή Atsuma (Σχ. 34, 35, 36, 37), με περισσότερους από 41 θανάτους.

Σχήμα 34: Το αποτέλεσμα μιας εκτεταμένης κατολίσθησης, στην περιοχή Atsuma, καλύπτοντας αγροτικά τεμάχια (from The Guardian. Photo credit: Jiji Press/EPA).

Σχήμα 35: Εδαφική ροή κοντά στην πόλη Atsuma, (from The Guardian. Photo credit: Kyodo/Reuters).

Σχήμα 36: Επιπτώσεις από τις κατολισθήσεις που προκλήθηκαν από τη σεισμική δόνηση, (from The Guardian. Photo credit: Jiji Press/AFP/Getty Images).

Σχήμα 37: Ευρύτατη καταστροφή στην περιοχή, (from The Guardian. Photo credit: Asahi Shimbun).

Οι κατολισθήσεις που προκλήθηκαν από το σεισμό του Hokkaido, δεν έχουν να κάνουν με βραχοκαταπτώσεις. Όπως είναι εμφανές και από τις παραπάνω εικόνες, κατά κύριο λόγο το μετακινούμενο υλικό είναι εδαφικό. Επιπλέον, το υλικό κάποιων κατολισθήσεων μετακινήθηκε για μεγάλες αποστάσεις σε ρευστή κατάσταση. Αυτά τα χαρακτηριστικά οδηγούν στο συμπέρασμα πως η ασταθής μάζα ήταν κορεσμένη, όταν έλαβε χώρα η αστοχία.

Ψηφιακή συλλογή Βιβλιοθήκη

Το εδαφικό υλικό που περιλαμβάνεται στις κατολισθήσεις, αποτελείται από ευρύτατες στρώσεις τέφρας χαμηλής πυκνότητας και υψηλού πορώδους, η οποία εκτοξεύθηκε από προηγούμενες ηφαιστειακές εκρήξεις στην περιοχή, όπως καταγράφηκε από Ιάπωνες επιστήμονες. Αυτές οι στρώσεις ηφαιστειακής τέφρας, μπορούν εύκολα να μετακινηθούν και να ολισθήσουν, όπως ακριβώς στα παραπάνω παραδείγματα. Σύμφωνα εφημερίδα Mainichi με την (https://mainichi.jp/english/articles/20180907/p2a/00m/0na/004000c), διαφαίνεται πως οι πυκνές και συνεχείς βροχοπτώσεις εκείνου του καλοκαιριού, πιθανών να συνετέλεσαν στο να γεμίσουν οι πόροι αυτού του ηφαιστειακού εδάφους με νερό, διευκολύνοντας ουσιαστικά την κατάρρευση κτηρίων και προκαλώντας κατολισθήσεις, όταν έλαβε χώρα η σεισμική δόνηση. Ωστόσο, σε άρθρο του Dennis Normile στο περιοδικό Science(https://www.sciencemag.org/news/2018/09/slipperyvolcanic-soils-blamed-deadly-landslides-during-hokkaido-earthquake) υποστηρίζεται πως οι βροχοπτώσεις δεν ήταν αρκετές, ώστε να αντιπροσωπεύουν έναν τόσο σημαντικό παράγοντα που να προκαλέσει αυτά τα φαινόμενα. Μένει να πραγματοποιηθούν και άλλες μελέτες, ώστε να επιλυθεί επακριβώς η παραπάνω αμφιβολία.

Δ) Κατολισθήσεις προκαλούμενες από το σεισμό Kaikōura μεγέθους M_w 7.8 , Νέα Ζηλανδία

Στις 12.03 τοπική ώρα, στις 14 Νοεμβρίου 2016 (UTC: 11.03 στις 13 Νοεμβρίου 2016), έλαβε χώρα επιφανειακή (15km) σεισμική δόνηση μεγέθους Mw 7.8, με επίκεντρο κοντά στην περιοχή Waiau στο βόρειο Canterbury, πλήττοντας τις περιοχές βόρειο Canterbury και Marlborough της Νέας Ζηλανδίας. Είναι γεγονός πως λόγω του
σεισμού, προκλήθηκαν δεκάδες χιλιάδες κατολισθήσεις, έκτασης πάνω από 10.000 km², στο βόρειο Canterbury και Marlborough, (Σχ. 38, 39, 40), (Dellow et al. 2017).

Ψηφιακή συλλογή Βιβλιοθήκη

Η ισχυρή σεισμική κίνηση προκάλεσε ευρύτατες βλάβες σε κτήρια και υποδομές, σε αραιοκατοικημένες περιοχές, βορειοανατολικά της νότιας νήσου. Η πιο εμφανής συνέπεια αυτής της ισχυρής κίνησης, ήταν οι ευρύτατες κατολισθήσεις. Η πιο έντονη και καταστροφική κατολίσθηση, ήταν συγκεντρωμένη σε μία έκταση 3500 km², γύρω από περιοχές διάρρηξης ρήγματος. Δεδομένου ότι η περιοχή που επηρεάστηκε από τις κατολισθήσεις είναι αραιοκατοικημένη, λίγα μόνο σπίτια καταστράφηκαν, και επίσης δεν καταγράφηκαν θάνατοι λόγω κατολισθήσεων. Οι κατολισθήσεις προκάλεσαν σημαντικές διακοπές οδικών και σιδηροδρομικών δικτύων, που συνέδεαν την πόλη Kaikōura, με αποτέλεσμα η περιοχή να αποκοπεί, (Dellow et al. 2017).

Σχήμα 38: Ο σεισμός Kaikōura στις 14 Νοεμβρίου 2016 μεγέθους Mw 7.8. Το επίκεντρο απεικονίζεται με κόκκινο αστέρι στο νότιο τμήμα του χάρτη. Οι χρωματικές αποχρώσεις αντικατοπτρίζουν την τροποποιημένη ένταση Mercalli (Modified Mercalli Shaking Intensity), με τις περιοχές που έχουν επηρεαστεί χειρότερα με MM VIII και τοπικά απομονωμένα έως MM IX, όπου υπάρχουν βαθιά εδάφη. Απεικονίζονται: οι περιοχές χωρίς βλάβες από κατολισθήσεις, οι περιοχές με ελαφριές ως μέτριες βλάβες από κατολισθήσεις (μπλε διακεκομμένη γραμμή) και οι περιοχές με πολλαπλές βλάβες λόγω κατολισθήσεων (κόκκινη διακεκομμένη γραμμή). Γενικά, η σοβαρότητα της βλάβης λόγω κατολισθήσεων, αντιστοιχίζεται καλά με τη δύναμη της ωριμότητας/γήρανσης του εδάφους, σε περιοχές λόφων και βουνών, (Map credits: MMI - Nick Horspool; Landslide observations - Dougal Townsend), (Dellow et al. 2017).

Σχήμα 39: Κατολισθήσεις που διακόπτουν τη σιδηροδρομική γραμμή, τον αυτοκινητόδρομο 1 βόρεια της Kaikōura. Η κατολίσθηση έχει σπάσει τις σιδηροδρομικές γραμμές και έχει μετατοπίσει τις ράγες στο δεξί μέρος της εικόνας. Η παράκτια ανύψωση σε αυτή τη θέση είναι επίσης ορατή στην εκτεθειμένη ακτογραμμή που καλύπτεται με υπο-παλιρροϊκά φύκια. (Photo: S. Dellow 14/11/2016), (Dellow et al. 2017).

Σχήμα 40: Φράγμα κατολισθήσεων στον ποταμό Leader, λίγο μετά το σεισμό. Η κατολίσθηση είναι μια block ολίσθηση, λαμβάνει χώρα σε ιλυόλιθο και είναι χαρακτηριστική μεγάλων κατολισθήσεων σε Νεογενή πετρώματα. Το φράγμα κατολισθήσεων υπερκαλύφθηκε και εν μέρει παραβιάστηκε στις 13-14 Φεβρουαρίου 2017, (Environment Canterbury), (Dellow et al. 2017).

Ε) Ο μεγάλος σεισμός της Αλάσκας μεγέθους Μ 9.2 στις 27 Μαρτίου 1964

Ψηφιακή συλλογή Βιβλιοθήκη

Στις 27 Μαρτίου 1964, στις 5:36 π.μ. τοπική ώρα (UTC 28 Μαρτίου, 3:36), ένας ιδιαίτερα ισχυρός σεισμός μεγέθους Mw 9.2 έλαβε χώρα στην περιοχή Prince William Sound, στην περιοχή της Αλάσκας. Η διάρρηξη ξεκίνησε σε βάθος 25 km, με το επίκεντρο να εντοπίζεται 10 km ανατολικά από τα College Fiord, 90 km δυτικά από Valdez και 120 km ανατολικά από Anchorage, με αποτέλεσμα την εκδήλωση κατολισθήσεων και βλαβών στις συγκοινωνίες (Σχ. 42, 43). Η διάρκεια του σεισμού ήταν περίπου 4.5 λεπτά και είναι ο ισχυρότερος σεισμός που έχει καταγραφεί στην ιστορία της Αμερικής καιο 2^{ος} ισχυρότερος σεισμός που έχει καταγραφεί σε παγκόσμια κλίμακα, ύστερα από το σεισμό μεγέθους Mw 9.5 στην Χιλή το 1960.

Ο παρακάτω χάρτης (Σχ. 41) δείχνει το επίκεντρο του σεισμού του 1964 (κόκκινο αστέρι), προκαλούμενος όταν η πλάκα του Ειρηνικού καταβυθίζεται κάτω από τη Βόρεια Αμερικάνικη Πλάκα.

Σχήμα 41: Χάρτης Νότιας Αλάσκας απεικονίζοντας το επίκεντρο του μεγάλου σεισμού της Αλάσκας το 1964 (κόκκινο αστέρι), (https://earthquake.usgs.gov/earthquakes/events/alaska1964/)

Σχήμα 42: Η κατολίσθηση στα Turnagain Heights in Anchorage, η οποία προκάλεσε βλάβες σε 75 σπίτια. Η κατολίσθηση προκλήθηκε από το σεισμό της Αλάσκας το 1964 Image Credit: NOAA National Geophysical Data Center, (<u>https://www.americangeosciences.org/critical-issues/landslide-basics</u>).

Σχήμα 43: Ακολουθία σεισμών προκάλεσε κατολισθήσεις σε παγετώδεις αποθέσεις και διέκοψαν για περίπου 1 μίλι την κύρια γραμμή του σιδηρόδρομου της Αλάσκας στο Potter Hill, κοντά στο Anchorage.

(https://earthquake.usgs.gov/earthquakes/events/alaska1964/1964pics.php)

ΣΤ) Κατολισθήσεις λόγω του μεγάλου σεισμού μεγέθους Μ 8.0 στις 12 Μαίου 2008, στην περιοχή Wenchuan, Κίνα.

Ψηφιακή συλλογή Βιβλιοθήκη

Σύμφωνα με τους Xu et al. (2013), στις 12 Μαίου 2008, και ώρα 14:28 (ώρα Πεκίνου), έλαβε χώρα ένας καταστροφικός σεισμός, μεγέθους M 8.0, στην περιοχή Wenchuan (ή Sichuan), νοτιοδυτικά του Πεκίνου, (Σχ. 44). Μεγάλος ήταν ο αριθμός των απωλειών και συγκεκριμένα 15.941 άνθρωποι πέθαναν, 34.583 τραυματίστηκαν και 7.474 ακόμη αγνοούνται. Η παραπάνω σεισμική δόνηση έλαβε χώρα στην οροσειρά Longmenshan, μια περιοχή που παραμορφώνεται ως αποτέλεσμα της σύγκρουσης της Ινδικής με την Ευρασιατική πλάκα.

Σχήμα 44: Περιοχή εκδήλωσης του σεισμού Wenchuan, (Xu et al. 2013).

Ο σεισμός έσπασε δύο μεγάλες ζώνες διάρρηξης, στο ανατολικό περιθώριο του Θιβετιανού οροπεδίου, (Xu et al. 2008a). Αυτός ο σεισμός προκάλεσε μια ζώνη διάρρηξης μήκους 240 km, κατά μήκος του ρήγματος «Beichuan-Yingxiu», ένα δεξιόστροφο ρήγμα και επιπλέον μια ζώνη διάρρηξης 72 km, κατά μήκος του ρήγματος «Guanxian-Jiangyou», ένα ανάστροφο ρήγμα. Τέλος, προσδιορίστηκε μια ζώνη διάρρηξης μήκους 6 km, με βορειοδυτική διεύθυνση, και με στοιχεία να υποστηρίζουν την ανάστροφη και αριστερόστροφη κίνησή του (Xu et al. 2008b; 2009b, c), (Σχ. 45).

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 45: Απεικόνιση διαρρήξεων πριν (Α) και μετά την εκδήλωση του σεισμού (Β), μέσω τηλεπισκόπισης, (Xu et al. 2013).

Αναφορικά με τις κατολισθήσεις, είναι γεγονός πως προκλήθηκαν περί τις 200.000 κατολισθήσεις, με κάποιες από αυτές να προκαλούν απώλειες ζωών, καθώς και πολλές οικονομικές απώλειες. Η ευρύτερη περιοχή που επηρεάστηκε από κατολισθήσεις λόγω του σεισμού Wenchuan, υπολογίζεται πως είναι μεγαλύτερη από 100,000 km². Επιπλέον, ύστερα από την έρευνα των Xu et al. (2013), οι περισσότερες κατολισθήσεις κατανεμήθηκαν κατά μήκος του κύριου ρήγματος και διαρρήξεων και συνεπώς οι πιο επιδεκτικές περιοχές εντοπίζονται κατά μήκος του σεισμογενετικού ρήγματος (Σχ. 46, 47).

Σχήμα 46: Χάρτης απογραφής κατολισθήσεων του σεισμού Wenchuan 2008, (Xu et al. 2013).

Σχήμα 47: Κατολισθήσεις και ροές κορημάτων στην πόλη Qushan, Beichuan County, China, λόγω του ισχυρού και καταστροφικού σεισμού μεγέθους M 8.0, στις 12 Μαίου 2008, (https://www.usgs.gov/media/images/damage-2008-great-sichuan-earthquake-china).

Συνοπτικά, από όλα τα παραπάνω χαρακτηριστικά παραδείγματα εκδήλωσης σεισμικά επαγόμενων αστοχιών, προκύπτει πως όπως και στην περιοχή της Λευκάδας, οι σεισμοί είναι δυνατόν να προκαλέσουν μεγάλο αριθμό αστοχιών, βλαβών στο οδικό δίκτυο, σε οικισμούς, οικονομικές απώλειες, και κυρίως απώλειες ανθρώπινων ζωών. Όπως προέκυψε, οι ευρύτερες περιοχές που επηρεάστηκαν με τις περισσότερες αστοχίες, εντοπίζονται κυρίως κατά μήκος του εκάστοτε σεισμογενετικού ρήγματος.

3.3 Διαδικασία απογραφής κατολισθήσεων (Inventory) με σύγχρονες μεθόδους

3.3.1 Γενικά

Ψηφιακή συλλογή Βιβλιοθήκη

Σύμφωνα με τους Galli (2008) και Hervás (2009), με τον όρο αρχείο απογραφής κατολισθήσεων (Inventory), προσδιορίζεται ένα λεπτομερές μητρώο κατανομής, όπως επίσης και η περιγραφή χαρακτηριστικών παλαιών κατολισθήσεων.

Σύμφωνα με τους Kreuzer et. al. (2017), ένα έγκυρο αρχείο καταγραφής κατολισθήσεων, είναι ένα θεμελιώδες εργαλείο για όλων των ειδών των εφαρμοσμένων σπουδών, που ασχολούνται με τις κατολισθήσεις (Van Den Eeckhaut and Hervás 2012a). Σε γενικές γραμμές, η εκτίμηση του κινδύνου, η διαχείριση καταστροφών καθώς και ο μετριασμός αυτών, απαιτούν βάσεις δεδομένων. Κάθε στατιστική έρευνα εξαρτάται από τη διαθεσιμότητα των δεδομένων.

Όπως αναφέρουν και οι Galli (2008) και Hervás (2009), για κάθε κατολίσθηση η οποία είναι καταγεγραμμένη σε ένα μητρώο, οι βασικές πληροφορίες περιλαμβάνουν συνήθως έναν μοναδικό αναγνωριστικό κώδικα περιλαμβάνοντας: τοποθεσία (γεωγραφικές συντεταγμένες, δήμο, επαρχία ή νομό, περιοχή ή κράτος), είδος κατολίσθησης, ημερομηνία εμφάνισης (εάν γνωρίζουμε) ή την ημερομηνία της τελευταίας επαναδραστηριοποίησης, την κατάσταση της δραστηριότητάς της και τον όγκο (ή έκταση της επιφάνειας) αυτής. Επιπρόσθετες πληροφορίες μπορεί να περιλαμβάνονται σχετικά με τη γεωμετρία των κατολισθήσεων (διαστάσεις στην επιφάνεια, βάθος της επιφάνειας ολίσθησης), γεωλογία (λιθολογία, δομή, ιδιότητες του υλικού), υδρογεωλογία, κάλυψη και χρήση γης, γεωμετρία του πρανούς, παράγοντες εναύσματος εκδήλωσης του φαινομένου, επιπτώσεις π.χ. θάνατοι, βλάβες εκπεφρασμένες σε οικονομική αξία ή σε περιγραφικούς όρους, μέτρα αντιμετώπισης, μέθοδοι και ημερομηνίες μέτρησης, το όνομα του επιστήμονα, όπως επίσης και βιβλιογραφικές αναφορές. Συμπληρωματικά δεδομένα, όπως εικόνες (εδάφους ή αεροφωτογραφίες, σχέδια) και δεδομένα παρακολούθησης (τύπος οργάνων, ρυθμός κίνησης), μερικές φορές μπορούν να βρεθούν σε ένα αρχείο καταγραφών. Ωστόσο, δεδομένου ότι πολλά από αυτά είναι σπάνια διαθέσιμα ή δαπανηρά προκειμένου να συλλεχθούν, τα περισσότερα μητρώα κατολίσθησης περιέχουν μόνο ένα υποσύνολο αυτών των δεδομένων. Επιπλέον, δεν περιλαμβάνουν συνήθως το ίδιο επίπεδο πληροφοριών για όλες τις κατολισθήσεις.

Ψηφιακή συλλογή Βιβλιοθήκη

Τα δεδομένα απογραφής κατολισθήσεων, μπορούν να συγκεντρωθούν με αεροφωτογραφίες, έρευνες στο πεδίο και όργανα, βιβλιογραφικές έρευνες (π.χ. επιστημονικές δημοσιεύσεις, τεχνικές εκθέσεις, εφημερίδες, ιστορικά χρονικά, προηγούμενα αρχεία απογραφής και γεωλογικούς χάρτες), δορυφορικές και αερομεταφερόμενες τεχνικές τηλεπισκόπησης και μαρτυρίες, πάντα σε σχέση με τον σκοπό και την κλίμακα του αρχείου καταγραφής και τους διαθέσιμους πόρους.

Τα αρχεία κατολισθήσεων συνήθως αποτελούνται από τον χάρτη απογραφής, που δείχνει τη χωρική κατανομή κατολισθήσεων και ένα συναφές αλφαριθμητικό στοιχείο, το οποίο περιλαμβάνει τις προαναφερθείσες πληροφορίες που αφορούν την κατολίσθηση. Στους χάρτες, οι κατολισθήσεις, μπορούν να αναπαρασταθούν ως κουκίδες, γραμμές ή κλειστές γραμμές (πολύγωνα), ανάλογα κυρίως με την έκταση και το σχήμα της επιφάνειας των κατολισθήσεων σε σχέση με την κλίμακα του χάρτη. Περιστασιακά, μεγάλης κλίμακας χάρτες απογραφής μπορούν επίσης να διαφοροποιήσουν την πηγή μιας κατολίσθησης, όπως επίσης και την περιοχή απόθεσης και να απεικονίσουν χαρακτηριστικά όπως την επιφάνεια ολίσθησης, το φρύδι (scarp), κορυφογραμμές (ridges), κοιλότητες (troughs) και λίμνες (ponds) για μεγάλες κατολισθήσεις, [Galli (2008) και Hervás (2009)]. Σήμερα, τα ψηφιακά αρχεία απογραφής κατολισθήσεων βασίζονται σε χωρικές βάσεις δεδομένων, χρησιμοποιώντας τα γεωγραφικά συστήματα πληροφοριών (GIS) για σχετικά απλά αρχεία, και σχεσιακά συστήματα διαχείρισης σχεσιακών βάσεων δεδομένων (RDBMS) με δυνατότητες διαχείρισης γεωχωρικών δεδομένων ή σε συνδυασμό με τεχνολογία GIS για ολοκληρωμένα αρχεία καταγραφής. Τα αρχεία κατολισθήσεων παρέχουν πληροφορίες σχετικά με την κατανομή κατολισθήσεων και την εμφάνιση για επιστημονική, οργανωτική διαχείριση, λήψη αποφάσεων και άλλους σκοπούς. Είναι ιδιαίτερα πολύτιμα για τη δημιουργία χαρτών πυκνότητας κατολισθήσεων και ειδικά χάρτες επιδεκτικότητας, επικινδυνότητας και κινδύνου, τα οποία αποτελούν βασικά εργαλεία για τη λήψη μέτρων μείωσης των κινδύνων. Τα αρχεία απογραφής κατολισθήσεων πρέπει να ενημερώνονται τακτικά, ειδικά ύστερα από ένα μεγάλο παράγοντα, που προκαλεί κατολίσθηση, όπως π.χ. ένα σεισμό ή μια μεγάλη καταιγίδα, [Galli (2008) και Hervás (2009)].

Ψηφιακή συλλογή Βιβλιοθήκη

3.3.2 Απογραφή κατολισθήσεων με βάση την ερμηνεία της οπτικής εικόνας και την εργασία στο πεδίο.

Η ερμηνεία της οπτικής εικόνας μπορεί να επικεντρωθεί σε μικρότερες περιοχές, όπου από τα αποτελέσματα της ταξινόμησης των εικόνων έχουν ήδη παραχθεί πιθανά πολύγωνα κατολισθήσεων. Ωστόσο, εφαρμόζεται και σε περιοχές, όπου σύννεφα και σκιές καθιστούν δύσκολη την μέθοδο ημι-αυτόματης ταξινόμησης εικόνων. Η ερμηνεία της οπτικής εικόνας είναι πολύ σημαντική και θα πρέπει να γίνεται από εμπειρογνώμονες. Αυτοί επίσης είναι σε θέση να χαρακτηρίσουν τα πολύγωνα κατολισθήσεων με ορισμένα από τα χαρακτηριστικά που περιγράφονται παρακάτω και μπορούν να δώσουν προτεραιότητα στις κατολισθήσεις που πρέπει να ελεγχθούν. Επιπλέον, απαιτείται κατάρτιση για τη λήψη αξιόπιστων αποτελεσμάτων και η επαλήθευση (validation) είναι επίσης σημαντική. Ο επιτόπου έλεγχος είναι δαπανηρός και χρονοβόρος και ως εκ τούτου θα πρέπει να βασίζεται στα αποτελέσματα της ερμηνείας της οπτικής εικόνας ή στις πληροφορίες έκτακτης ανάγκης για κατολισθήσεις. Η λεπτομερής περιγραφή ορισμένων από τα χαρακτηριστικά που περιγράφονται παρακάτω, μπορεί να επιτευχθεί μόνο μέσω ελέγχου στο πεδίο.

Προτεινόμενη μέθοδος για την απογραφή κατολισθήσεων

Ψηφιακή συλλογή Βιβλιοθήκη

μήμα Γεωλογίας

Σύμφωνα με τον Cees van Westen, στην ιστοσελίδα: <u>http://www.charim.net/datamanagement/43</u>, ένα αρχείο κατολίσθησης πρέπει να ακολουθεί τις ακόλουθες απαιτήσεις:

1. Οι κατολισθήσεις θα πρέπει να χαρτογραφούνται σε κλίμακα 1:10.000. Όταν χρησιμοποιούνται δορυφορικές εικόνες, οι κατολισθήσεις πρέπει να χαρτογραφούνται σε γεωαναφερθείσες και ορθο-διορθωμένες εικόνες σε αυτή την κλίμακα. Η κλίμακα αυτή είναι κατάλληλη για την τοπική αξιολόγηση των επιπτώσεων και ως βάση για την τοπική εκτίμηση επικινδυνότητας.

2. Οι κατολισθήσεις θα πρέπει να επαληθεύονται χρησιμοποιώντας την ερμηνεία της οπτικής εικόνας, από ειδικά καταρτισμένους ανθρώπους στις κατολισθήσεις. Η χρήση της (ημι) αυτόματης αξιολόγησης του αρχείου των κατολισθήσεων από δορυφορικές εικόνες είναι καλή για την γρήγορη απόκτηση μιας επισκόπησης των πιθανών προβληματικών περιοχών και ορισμένοι από τους αλγόριθμους που χρησιμοποιούνται (π.χ. από το CNR-IRPI) και παρέχουν αξιόπιστα αποτελέσματα όσον αφορά τις περιοχές που κατολισθαίνουν. Ωστόσο, απαιτείται προσεκτική επαλήθευση για την αποφυγή λαθών και παραλείψεων. Η βάση δεδομένων θα πρέπει να υποδεικνύει ποιος ερμήνευσε την κατολίσθηση.

3. Οι κατολισθήσεις θα πρέπει να ελέγχονται στο πεδίο. Είναι σημαντικό να ελέγχεται η κατολίσθηση στο πεδίο και να συλλέγονται χαρακτηριστικά που δεν είναι δυνατόν να προσδιοριστούν μόνο από την ερμηνεία της εικόνας. Αποτελεί χρονοβόρα και ακριβή διαδικασία. Η βάση δεδομένων απογραφής των κατολισθήσεων θα πρέπει να υποδεικνύει ποιες κατολισθήσεις ελέγχεται μόνο το 5% ή ακόμα και το 2% των κατολισθήσεων στο πεδίο. Ωστόσο, οι κατολισθήσεις σε οικιστικές περιοχές και υποδομές, θα πρέπει πάντα να ελέγχονται στο πεδίο.

4. Οι κατολισθήσεις θα πρέπει να χαρτογραφούνται ως πολύγωνα, και όχι ως σημεία. Μόνο έτσι είναι δυνατόν να αναλυθεί η περιοχή και ο όγκος της κατολίσθησης, ο οποίος είναι σημαντικός για την εκτίμηση της επικινδυνότητας, ειδικά για βαθιές κατολισθήσεις. Τα ήδη υπάρχοντα αρχεία κατολισθήσεων που είναι αποτυπωμένα ως σημεία, θα πρέπει να μετατραπούν σε πολύγωνα.

5. Τα πολύγωνα των κατολισθήσεων **θα πρέπει να διαχωρίζουν τις περιοχές** έναρξης από τις περιοχές απόθεσης/τερματισμού. Αυτό είναι σημαντικό και για την εκτίμηση επικινδυνότητας.

Ψηφιακή συλλογή Βιβλιοθήκη

6. Οι κατολισθήσεις θα πρέπει να χαρτογραφούνται μεμονωμένες και όχι ως ομάδες. Είναι σημαντική διαδικασία και συχνά δύσκολη, αν μια κατολίσθηση συγχωνευθεί στις χαμηλές περιοχές συσσώρευσης. Αυτό όμως επιτρέπει καλύτερη ταυτοποίηση των παραγόντων που τις προκαλούν, και συνεπώς βελτιωμένη εκτίμηση της επικινδυνότητας. Επιπλέον, εκεί που δεν μπορεί να γίνει ο διαχωρισμός μεμονωμένων κατολισθήσεων, αυτό θα πρέπει να γίνεται σαφές στον χάρτη, καθώς επηρεάζει την επιδεκτικότητα των κατολισθήσεων.

7. Για την καλύτερη ανταλλαγή πληροφοριών μεταξύ διαφορετικών πλατφορμών υπολογιστών, τα πολύγωνα των κατολισθήσεων θα πρέπει να χαρτογραφούνται ως μεμονωμένα πολύγωνα χρησιμοποιώντας τη μορφή vector (π.χ. shapefiles), όπου κάθε κατολίσθηση θα πρέπει να έχει ένα μοναδικό αναγνωριστικό και να έχει τα ακόλουθα χαρακτηριστικά:

- Τύπος της κατολίσθησης (προδιαγραφές Cruden and Varnes (1996)),
- Περιοχή εκκίνησης ή συσσώρευσης (η διαφοροποίηση αυτών),
- Βάθος της κατολίσθησης σε 2 απλές τάξεις (ρηχή, βαθιά). Αν και είναι δύσκολο να πραγματοποιηθεί, είναι πολύ σημαντικό, και μπορεί να γίνει σωστά μόνο με βάση την επαλήθευση στο πεδίο.
- Όγκος της κατολίσθησης (με GIS, πολλαπλασιάζοντας το βάθος με την περιοχή),
- Αποκλεισμός ποταμού (υποδεικνύει αν η κατολίσθηση μπλοκάρει την ροή).
 Όταν χαρτογραφούνται οι κατολισθήσεις που προκαλούνται από σεισμική δόνηση, θα πρέπει να υποδεικνύεται εάν οι κατολισθήσεις φράσσουν τον ποταμό (μερικώς ή εξολοκλήρου), ακόμη και αν αυτό το φράγμα με υλικά από την κατολίσθηση έχει διασπαστεί.
- Βλάβες λόγω κατολίσθησης (πληροφορίες σε κείμενο, σχετικά με παρατηρούμενες βλάβες). Αυτό γίνεται μόνο για κατολισθήσεις που πραγματικά επαληθεύτηκαν στο πεδίο, αλλά είναι ένα σημαντικό

χαρακτηριστικό, που θα πρέπει να χρησιμοποιηθεί στην εκτίμηση του κινδύνου σε μετέπειτα στάδιο.

Ψηφιακή συλλογή Βιβλιοθήκη

- Παρατηρήσεις (κείμενο γραμμένο στο πεδίο, το οποίο καταγράφει οποιεσδήποτε παρατηρήσεις).
- Από ποιόν έχει χαρτογραφηθεί (είναι σημαντικό να υποδεικνύεται το άτομο που πραγματοποίησε τη χαρτογράφηση). Εάν υπάρχει εποπτεία του έργου, θα πρέπει να αναφέρεται και το όνομα του επιβλέποντος.
- Δυναμικό κινδύνου (υποκειμενική αξιολόγηση του πιθανού κινδύνου που μπορεί να προκαλέσει αυτή η κατολίσθηση στο μέλλον).

8. Οι χάρτες απογραφής κατολισθήσεων θα πρέπει να κατασκευάζονται για διάφορες χρονικές περιόδους:

Είναι σημαντικό, αλλά όχι εύκολο να επιτευχθεί. Είναι πολύ σημαντικό πως το αρχείο καταγραφής περιλαμβάνει πληροφορίες, οι οποίες χρησιμοποιούνται για την προετοιμασία χαρτών (συμπεριλαμβανομένου και των χρονικών πληροφοριών, π.χ. ο χρόνος της εργασίας/αρχειοθέτησης). Έτσι, κάποιος μπορεί να ταξινομήσει το αρχείο κατολισθήσεων, με βάση τις κατηγορίες που δίνονται παρακάτω, Είναι επίσης σημαντικός ο χρόνος που χρειάστηκε για την προετοιμασία των μεμονωμένων αρχείων καταγραφής.

 Ταξινόμηση κατολισθήσεων, η οποία θα πρέπει να ακολουθεί τις προδιαγραφές των Cruden & Varnes (1996), (Πίν 3). Πίνακας 3: Κατάταξη κατολισθήσεων με βάση τους Cruden & Varnes (1996),

(http://www.charim.net/datamanagement/43).

Ψηφιακή συλλογή Βιβλιοθήκη

Α.Π.Θ

μα Γεωλογίας

		Τύπος μετακίνησης					
		Ολίσθηση	Ροή	Καταπτώσεις			
Υλικό	Εδαφικό	Ολίσθηση εδάφους • Μεταθετική • Περιστροφική • Σύνθετη	Εδαφική ροή	Εδαφικές καταπτώσεις			
	Κορήματα	Ολίσθηση κορημάτων • Μεταθετική • Περιστροφική • Σύνθετη	Ροή κορημάτων • Σε μορφή καναλιών • Σε μορφή ανοιχτού πρανούς	Καταπτώσεις κορημάτων			
	Βράχος	Ολίσθηση βράχου • Μεταθετική • Περιστροφική • Σύνθετη		Βραχοκαταπτώσε ις			

Ο συνδυασμός ειδών κατολίσθησης είναι συνηθισμένος και λαμβάνεται υπόψη στο σχεδιασμό της βάσης δεδομένων. Επιπλέον, ίσως να υπάρχουν περιπτώσεις, όπου η περιοχή της κύριας κατακρήμνισης ή η περιοχή συσσώρευσης, αποτελείται από δύο τύπους και στη συνέχεια ο χρήστης θα πρέπει να υποδείξει τον συνδυασμό αυτό.

10. Η ταξινόμηση του βάθους θα πρέπει να ακολουθεί μια απλή κατάταξη:

- Επιφανειακή: λιγότερο από 5 μέτρα
- **Βαθιά**: περισσότερο από 5 μέτρα

Ο χαρακτηρισμός του βάθους μιας κατολίσθησης, είναι πάντα μια δύσκολη και υποκειμενική δουλειά. Για αυτό το λόγο η εξάσκηση είναι σημαντική, και ένα σύνολο παραδειγμάτων θα πρέπει να έχει προετοιμαστεί.

11. **Χαρακτηριστικά του ποταμού που φράσσεται.** Είναι εξίσου σημαντικό να υποδειχθεί ποιες κατολισθήσεις φράσσουν μερικώς ή εξολοκλήρου τους ποταμούς.

• **Καθόλου** (όχι σημάδια φραγής των ποταμών).

Ψηφιακή συλλογή Βιβλιοθήκη

- **Μερικώς** (η κατολίσθηση έχει φράξει μερικώς το ποτάμι).
- Πλήρως (η κατολίσθηση έχει φράξει εξολοκλήρου το ποτάμι, και το υλικό βρίσκεται ακόμη εκεί).
- Πλήρως με απομάκρυνση του υλικού (η κατολίσθηση έχει φράξει εξολοκλήρου το ποτάμι, αλλά αυτός ο φραγμός στη συνέχεια διασπάται, απομακρύνεται το υλικό που έχει συγκεντρωθεί).

12. Πληροφορίες σχετικά με τον συνολικό **όγκο τον κατολισθήσεων** είναι δύσκολο να εκτιμηθεί στο πεδίο, αλλά υπολογίζεται με μεγαλύτερη αξιοπιστία στο GIS, πολλαπλασιάζοντας το μέσο βάθος με την περιοχή της κατολίσθησης. Είναι επίσης σημαντικό να χαρτογραφούνται οι κατολισθήσεις ως μεμονωμένα χαρακτηριστικά και όχι ως ευρύτερες ζώνες, αφού αυτό θα υπερεκτιμούσε τους όγκους των κατολισθήσεων. Τέλος, πρέπει να υπολογίζονται ξεχωριστά οι όγκοι κατολίσθησης στις περιοχές εκκίνησης και συσσώρευσης, αντίστοιχα.

13. Πληροφορίες σχετικά με τις βλάβες, θα πρέπει να προστίθενται στη βάση δεδομένων, χρησιμοποιώντας πληροφορίες τόσο από την ερμηνεία εικόνων, όσο και από τον έλεγχο στο πεδίο. Συνίσταται να χρησιμοποιείται ξεχωριστή λίστα ελέγχου, για να επισημαίνονται οι βλάβες στο πεδίο λεπτομερώς.

14. Είναι σημαντικό να **υποδεικνύεται ο άνθρωπος ο οποίος χαρτογράφησε την** κατολίσθηση, ώστε να είναι δυνατή η επικοινωνία.

15. Είναι εξίσου σημαντικό **να υποδεικνύεται** και η **ημερομηνία που ελέγχθηκε** η κατολίσθηση στο πεδίο. Αυτό είναι πολύ σημαντικό, διότι ενδεχομένως τα χαρακτηριστικά να έχουν μεταβληθεί μεταξύ διάφορων περιόδων.

16. **Δυναμικό κινδύνου.** Αναφέρεται στην πιθανή μελλοντική ενεργοποίηση μιας κατολίσθησης και σχετίζεται με την αναμενόμενη δραστηριότητα της κατολίσθησης στο μέλλον και του δυναμικού της να προκαλέσει βλάβες στο μέλλον. Προτείνεται

μια απλή ταξινόμηση, π.χ. τρεις κλάσεις, όπου η κάθε μία περιέχει μια περιγραφή των πραγματικών λόγων (κατά προτίμηση με παρατηρήσεις στο πεδίο):

- Χαμηλή: περιορισμένος κίνδυνος η κατολίσθηση να γίνει προβληματική στο μέλλον. Πιθανά είναι ένα μεμονωμένο γεγονός.
- **Μέση**: μέσος κίνδυνος η κατολίσθηση να γίνει προβληματική στο μέλλον.
- Υψηλή: υψηλός κίνδυνος ότι η κατολίσθηση μπορεί να επανεργοποιηθεί στο μέλλον και να αυξηθεί το μέγεθός της ή να γίνει πιο καταστροφική.

17. **Παρατηρήσεις.** Συνίσταται να πραγματοποιείται επί τόπου έλεγχος στο πεδίο, όπου είναι χρήσιμο να υπάρχει ένα γραπτό κείμενο, στο οποίο να μπορούν να προστεθούν όλες οι παρατηρήσεις. Αυτό θα πρέπει να είναι ένα σχετικά μεγάλο μπλοκ, στο οποίο να μπορούν να αποθηκευτούν όλες οι σχετικές με την κατολίσθηση πληροφορίες.

Το παρακάτω γράφημα, απεικονίζει όλα τα προαναφερθέντα σημεία, (Σχ. 48, 49):

L_002_S

Ψηφιακή συλλογή Βιβλιοθήκη

Digitized landslide polygons

ID	Slide_ID	Туре	Age	Part	Depth	Volum	e Blocking	Damage	
L_001_5	L_001	Rotational rockslide	26 April 2015	Initiation	Deep	-	-	Agricultural terraces, farm endangered	
L_001_B	L_001	Rotational rockslide	26 April 2015	Accumulation	Deep		Complete but breached	Road destroyed, river blocked	
L 002 S									
Etc									
						1			
Attribut	a table com	the second							
	Landslide_ID	Mapped by	Checked by	Checked date	Hazard	i I ial	Remarks		
ID L_001_S	Landslide_ID	Mapped by JohnSmith	Checked by RajeshPandey	Checked date	Hazard potent High	ial r	Remarks Retrogression po reactivate deepe rotational mass,	ssible. Intense rainfall may r seated slides within the and/or above the initial slide	

Σχήμα 48: Επεξήγηση της προτεινόμενης μεθόδου απογραφής κατολισθήσεων (<u>http://www.charim.net/datamanagement/43</u>).

Σχήμα 49: Παράδειγμα αρχείου απογραφής κατολισθήσεων για τις περιοχές Dominica, Saint Lucia, Saint Vincent και Grenada, (http://www.charim.net/datamanagement/43).

3.3.3 Αρχείο καταγραφής κατολισθήσεων και βάσεις δεδομένων

Σύμφωνα με τους Kreuzer et al. (2017), μία ολοένα και σημαντικότερη απαίτηση είναι η πρόσβαση αλλά και η διανομή δεδομένων, μεταξύ διαφόρων θεσμικών οργάνων και εμπειρογνωμόνων (Van Den Eeckhaut et al. 2012). Οι πολύπλευρες εργασίες και αναλύσεις απαιτούν μια εξαιρετικά ευέλικτη διαχείριση για την αρχειοθέτηση και τη διανομή δεδομένων. Ένα αποτελεσματικό εργαλείο για την κάλυψη αυτών των πολύπλευρων απαιτήσεων της ανάλυσης δεδομένων, είναι ένα κεντρικό σύστημα βάσης δεδομένων που συνδέεται με καθορισμένους χρήστες του δικτύου (Härder et al. 1988, Foster et al. 2011).

Οι αποτελεσματικές βάσεις δεδομένων πρέπει να αντιμετωπίζουν μια μεγάλη ποσότητα αρχείων κατολίσθησης και η συνέπεια των δεδομένων είναι μια πολύ σημαντική προϋπόθεση. Για αυτή την περίπτωση, το λογισμικό διαχείρισης σχεσιακών βάσεων δεδομένων (RDBMS= Relational Database Management Systems), μπορεί να κρατήσει τα δεδομένα συνεπή και χωρίς πλεονασμό. Το RDBMS πρέπει να διατηρήσει την απόδοσή του με ένα συνεχώς αυξανόμενο όγκο δεδομένων, ενώ ταυτόχρονα να εξυπηρετεί τα δεδομένα σε ένα δίκτυο (Yeung and Hall 2007). Ωστόσο, η πρόσβαση σε δεδομένα είναι μόνο η μία πλευρά της ροής δεδομένων διπλής κατεύθυνσης. Καθώς τα ιδρύματα μπορούν να έχουν πρόσβαση σε καταχωρημένα στοιχεία κατολίσθησης, οι χρήστες πρέπει να μπορούν να εισάγουν δεδομένα στο αρχείο καταγραφής, αντίστοιχα. Για αυτό το λόγο, θα πρέπει να είναι διαθέσιμο ένα είδος εισόδου, όπου οι τύποι δεδομένων και οι λεπτομέρειες της διαδικασίας εγγραφής θα πρέπει να προσαρμοστούν σε καλά καθορισμένα πρότυπα ως προς τη σύγκριση και τη λειτουργικότητα (Parsons 2011).

Ψηφιακή συλλογή Βιβλιοθήκη

Είναι ευρέως γνωστό, πως η απόκτηση δεδομένων σχετικά με τις κατολισθήσεις, είναι μια χρονοβόρα διαδικασία. Επομένως, το σύστημα RDBMS πρέπει να λειτουργεί μακροπρόθεσμα. Το χαμηλό κόστος μειώνει την εξάρτηση από τις αποφάσεις του προϋπολογισμού και συνεπώς μπορεί να εξασφαλίσει έναν συνεπή χρόνο εγκατάστασης του RDBMS. Επιπλέον, το σύστημα πρέπει να είναι ανεξάρτητο από τη θέση μίας μόνο εταιρείας και να επιτρέπει προσαρμογές χωρίς περιορισμούς. Η προσαρμογή είναι απαραίτητη, διότι χωρίς αυτήν μια μόνιμη αύξηση δεδομένων θα προκαλούσε αύξηση του κόστους και του χρόνου για τις εργασίες μεταφοράς και αρχειοθέτησης. Για αυτό το λόγο, τα μοντέλα ανάλυσης θα πρέπει να ενσωματωθούν άμεσα στο RDBMS, για να καταστεί δυνατή η μεταφορά των αποτελεσμάτων ανάλυσης (Aye et al. 2016). Το ελεύθερο λογισμικό ανοικτού κώδικα μπορεί να παρέχει υποδομή, η οποία να πληροί τις προαναφερόμενες απαιτήσεις (Raymond 2001).

Αξίζει να αναφερθεί, πως η τεχνική υλοποίηση μιας κατολίσθησης RDBMS, μπορεί να γίνει μέσω ενός συστήματος, που ονομάζεται «Wurzburg Information System on Landslides» (WISL), (Jäger et al. 2015). Το σύστημα αντιμετωπίζει τρεις βασικές προϋποθέσεις για τις σύγχρονες απογραφές κατολισθήσεων:

- i) σταθερή αποθήκευση δεδομένων και κατανομή δεδομένων,
- βολική, τυποποιημένη εισαγωγή δεδομένων και
- ενοποίηση μοντέλων για εξαιρετικά ευέλικτη και γρήγορη χωρική ανάλυση.

Για αυτό το λόγο, είναι κατάλληλη για εφαρμογές μεγάλης κλίμακας και επιτρέπει τη λειτουργία εθνικών απογραφών, για να αποφευχθούν οι ελλείψεις των περιφερειακών βάσεων δεδομένων, οι οποίες χαρακτηρίζονται συνήθως από περιορισμένη πρόσβαση σε δεδομένα, διαφορετικά πρότυπα για την εισαγωγή δεδομένων και ισχυρές ετερογενείς δυνατότητες ανάλυσης, και φυσικά περιορισμένα σύνολα δεδομένων, (Damm and Klose 2014). Το σύστημα WISL στοχεύει στη μείωση του κερματισμού του συστήματος απογραφής κατολισθήσεων. Το WISL υποστηρίζει την κατάρτιση ελλιπών συνόλων δεδομένων και οι καθιερωμένες διαδικασίες GIS είναι ενσωματωμένες, έτσι ώστε η εισαγωγή δεδομένων να μπορεί να συμπληρωθεί από τα υπολογισθέντα αποτελέσματα. Σε αυτή την περίπτωση το δελτίο δεδομένων συμπληρώνει τον ρόλο μιας λίστας ελέγχου γνησιότητας για τα προκαθορισμένα μέρη.

Στα πλαίσια της παρούσας εργασίας έγινε χρήση του λογισμικού ArcGIS, για την στατιστική επεξεργασία των δεδομένων των κατολισθήσεων και την κατασκευή του μοντέλου επιδεκτικότας, ενώ δεν έγινε χρήση κάποιας από τις εξελιγμένες μεθόδους με το συνδυασμό βάσεων δεδομένων.

3.3.4 Αποθήκευση και διανομή δεδομένων

Ψηφιακή συλλογή Βιβλιοθήκη

Η δομή του λογισμικού του WISL, αναπτύσσεται στη βάση της PostgreSQL. Ως σύστημα διαχείρισης σχεσιακών βάσεων δεδομένων (ORDBMS = Object Relational Database Management System), η PostgreSQL προσαρμόζεται ώστε να επεξεργάζεται μεγάλα ποσά σύνθετων δεδομένων, με πολλές εσωτερικές σχέσεις (Sandmeier et al. 2013). Παρέχει υψηλά πρότυπα όσον αφορά τη σταθερότητα, την ικανότητα, τη μνήμη και, το πιο σημαντικό, την επιλογή της επεξεργασίας των γεωδεδομένων. Η PostgreSQL αποθηκεύει μεμονωμένα σύνολα δεδομένων σε διαφορετικούς πίνακες, με τους φορείς εκμετάλλευσης να δημιουργούν εσωτερική σύνδεση.

Είναι σε συγχρονισμό με τα πρότυπα SQL (Structured Query Language), παρέχοντας όλες τις λειτουργίες της SQL ως γλώσσα βάσης δεδομένων για τη δημιουργία, οργάνωση και διαχείριση αποθηκευμένων δεδομένων καθώς και ερωτημάτων δεδομένων. Παρότι η PostgreSQL υποστηρίζει χειρισμό γεωμετρικών δεδομένων, δεν είναι σε θέση να επεξεργαστεί και να αποθηκεύσει μεγάλους όγκους χωρικών

δεδομένων. Για αυτό το λόγο, η PostGIS, μια επέκταση για την PostgreSQL, ενσωματώθηκε στο WISL. Το PostGIS όχι μόνο βελτιώνει την αποθήκευση δεδομένων GIS στο DBMS (Database Management System), αλλά προσφέρει χωρικούς χειριστές, λειτουργίες, τύπους δεδομένων και δείκτες για γρήγορες χωρικές εφαρμογές (Obe and Hsu 2011). Εκτός από τη δημιουργία νέων γεωμετρικών δεδομένων, οι χρήστες μπορούν να παράγουν μορφομετρικές μετρήσεις και να δημιουργήσουν χωρικά σχετιζόμενους συνδέσμους μεταξύ διαφορετικών αντικειμένων (Obe and Hsu 2011; Mitchell et al. 2008). Επιπλέον, το PostGIS καθιστά δυνατή την επεξεργασία, την ανάλυση και την αποθήκευση χωρικών δεδομένων (π.χ. σημείων, γραμμών ή πολυγώνων) σε μια βάση δεδομένων χωρίς τη χρήση εξωτερικού GIS.

Σύμφωνα με τους Obe και Hsu (2011), όλες οι κοινές εφαρμογές GIS ανοιχτού κώδικα και οι εφαρμογές ανάλυσης είναι σε θέση να χειριστούν και να απεικονίσουν χωρικές πληροφορίες μιας βάσης δεδομένων PostgreSQL / PostGIS. Έτσι, το WISL επιτρέπει στους ειδικούς να έχουν πρόσβαση στα δεδομένα με δικά τους εργαλεία εργασίας από όλο τον κόσμο.

3.3.5 Εισαγωγή δεδομένων

Ψηφιακή συλλογή Βιβλιοθήκη

Μία από τις βασικές απαιτήσεις για όλα τα είδη ανοιχτών συστημάτων βάσεων δεδομένων, είναι τα τυποποιημένα σύνολα δεδομένων εισόδου, προκειμένου να εξασφαλιστεί η αναπαραγωγικότητα και η στατιστική συνοχή. Επιπλέον, ένα σύστημα με πολλούς συμμετέχοντες πρέπει να εξασφαλίζει την προέλευση των δεδομένων (Tilmes et al. 2010). Εκ μέρους της WISL, δίνεται ιδιαίτερη έμφαση σε μια συλλογή δεδομένων, λεπτομερή προκειμένου να καταστεί δυνατή η πραγματοποίηση επιστημονικών αναλύσεων. Αυτό σημαίνει ότι τα δεδομένα δεν πρέπει να προέρχονται από «δεύτερο χέρι», αλλά από επιτόπου έρευνες στο πεδίο. Ωστόσο, στην πράξη αυτό είναι συχνά μια αμοιβαία διαδικασία: μία δευτερογενής πηγή (συνήθως μη ειδήμονες), δίνει μια γενική περιγραφή μιας κατολίσθησης, η οποία στη συνέχεια αξιολογείται περαιτέρω με παρατηρήσεις πεδίου. Η κανονικοποίηση των δεδομένων των πληροφοριών πεδίου, πραγματοποιείται με τη βοήθεια του δελτίου δεδομένων που αναπτύχθηκε στη μορφή φορητού εγγράφου (PDF), (Πίν 4).

91

Πίνακας 4: Μορφή φύλλου δεδομένων PDF για τυποποιημένη γεωμορφολογική συλλογή δεδομένων, (Kreuzer et. al. 2017).

Α – Γενικές πληροφορίες												
Όνομα	Ημερομηνία ΓεωλογίαΣυγγρ			υγγραφέας	Πηγή		Δήμος		No TM25		ID	
А.П.О				10								
Β – Γεωγραφική επισκόπηση Γ – Επιφάνεια ολίσθησης												
Ανατολικά Δυτικά Υψόμετρο Έκθεση			Βαθμίδα	αθμίδα Θέση πρανούς			Βάθος		Γεωλογία			
								-				
Δ - Λεπτομέρειες												
Ενότητα				Φρύδι	Φρύδι κατολίσθησης Συσσώρευση			η	Εμπρόσθιο μέρος κατολίσθησης			
	Ύ	Ύψος/Πάχος										
- ,	Ν	Λήκος										
Γεωμετρία	Г	Πλάτος										
	В	Βαθμίδα										
	Γευ	ωλογία										
	K	αμπυλότη	τα									
	Σ	Σχήμα και επιφάνεια										
ινιορφολογι	α Ρ	Ροές/υπόβαθρο										
	Г	Πρόσφατες μετακινήσεις										
Χρήσεις γης	Х	Χρήση γης										
	Δ	Δασική έκταση										
		Ιρόσφατες	ιετακινήσε	ELC								
	Υδο	ολονία	Pro									
					$\mathbf{E} - \mathbf{B}^{2}$	άβες/Κίνδυνος						
Βλάβες	Δάσος	Χωράφι	ζωράφι Διβάδι Δρόμος		Σιδηρόδρομ	Σιδηρόδρομος Μονοπάτι		Σωλήνας Κτήριο		Άνθρωπος	Νερό	Άγνωστο
Κίνδυνος	5	1 1				2				1 2		· ·
					ΣΤ – Αιτίες / Ε	ναυσματικοί πα	ράγοντες	;				
	Αίτιο)			Φυσικ	Φυσικός Ανθρωπογενής			Άγ	νωστο		
Εναυσματικός παράγοντας												
Ζ - Ερμηνεία												
Τύπος μετακίνησης			Ηλικία		Κατάστ	Κατάσταση δραστηριότητας		Κατανομή δραστηριότητας		τηριότητας	Στυλ δραστηριότητας	
[] Απροσδιόριστο		Από		Έως	[] Ενεργι	[] Ενεργή		[] Αναπτυσσόμενη		νη	[] Movó	
[] Ερπυσμός [] ά		γνωστο	Ημ/νία	α [] Επανα	δραστηριοποίης	η	[] Όχι προοδευτική		ική	[] Πολλαπλό		
[] Περιστροφική ολίσθηση Διατήρηση			[] Ανενει	[] Ανενεργή		[] Εκπλάτυνση			[] Συνεχές			
[] Μεταθετική ολίσθηση [] Πολύ υψηλή			[] Αδραν	[] Αδρανής		[] Μεγεθυνόμενη		η	[] Μικτό			
[] Ροή		[] Υψηλή		[] Εγκατα	[] Εγκαταλελειμμένη		[] Περιορισμένη			[] Σύνθετο		
[] Κατάπτωση		[] Μέτρια		[] Σταθε	[] Σταθεροποιημένη		[] Μειούμενη			[] Άγνωστο		
[] Ανατροπή		[] Χαμηλή		[] Παλαι	ωμένη		[] Μετακινούμενη		νη			
[] Πλευρική εξάπ	[] Πολύ χαμηλή			[] Άγνωσ	[] Άγνωστη			[] Άγνωστη				

To PDF αυτό επιτρέπει τη ψηφιακή εισαγωγή δεδομένων, για την επίτευξη των στόχων των επιτόπιων ερευνών στο πεδίο. Ψηφιακά, το φύλλο μπορεί να χρησιμοποιηθεί σε όλες τις συσκευές που υποστηρίζουν πεδία εισαγωγής PDF, αυτό σημαίνει δηλαδή σχεδόν σε όλους τους διαθέσιμους σήμερα επιτραπέζιους υπολογιστές ή φορητές συσκευές. Επιπλέον, το δελτίο δεδομένων είναι ένα συμπέρασμα μιας επαναληπτικής διαδικασίας, πολλών ετών χαρτογράφησης κατολισθήσεων και εμπειρίας, σε αντάλλαγμα με τις ομοσπονδιακές αρχές (Sandmeieret al. 2013).

Ψηφιακή συλλογή Βιβλιοθήκη

Γενικά, δεν χρειάζεται να συμπληρωθούν όλα τα τμήματα από το ίδιο άτομο, επομένως μια περαιτέρω πρακτική προσέγγιση είναι ότι τα «μη επεξεργασμένα» δεδομένα αποκτώνται από μη-εμπειρογνώμονες, ενώ τα ερμηνευτικά μέρη προστίθενται από έναν ειδικό αργότερα. Δεδομένου ότι καταγράφονται επίσης τα πρόσωπα που διεξάγουν την επιτόπια έρευνα, η προέλευση των δεδομένων ικανοποιείται και οι ερμηνείες μπορούν να επαναληφθούν. Το φύλλο δεδομένων χρησιμεύει ως είσοδος στο WISL. Συνεπώς, το δελτίο δεδομένων παρέχει ένα σημείο αναφοράς (οριζόμενο ως το υψηλότερο σημείο του scarp) της κατολίσθησης ως χωρική πληροφορία.

Η εισαγωγή του αρχείου PDF (φύλλο δεδομένων), όπως αναφέρουν και στην εργασία τους οι Kreuzer et al. 2017, μπορεί είτε να υποβληθεί σε επεξεργασία από εντολές SQL χαμηλού επιπέδου, είτε από γραφικό περιβάλλον χρήστη με τη μορφή επέκτασης GIS για επιτραπέζιους υπολογιστές. Μια αντίστοιχη προσθήκη για το κοινό λογισμικό GIS, συγκεκριμένα το ArcGIS και το QGIS, αναπτύχθηκε προκειμένου να επιτευχθεί ευκολία και καλύτερη πρόσβαση (Σχ. 50). Επιπλέον, η προσθήκη αυτή δείχνει την ικανότητα του WISL να χρησιμοποιεί την επεξεργασία PostGIS, έτσι ώστε να υπολογίσει ορισμένες τιμές δεδομένων, π.χ. απότομη κλίση, κάλυψη γης κλπ. Αυτές οι διαδικασίες υπολογισμού εκτελούνται με τη βοήθεια βοηθητικών δεδομένων εντός της βάσης δεδομένων, π.χ. ψηφιακά μοντέλα υψομέτρου και θεματικούς χάρτες. Προαιρετικά, εάν εφαρμοστεί πριν από την επιτόπια έρευνα, αυτή η επέκταση μπορεί να διευκολύνει και να εξυπηρετήσει την τεκμηρίωση στο πεδίο: το φύλλο δεδομένων συμπληρώνει τον ρόλο μιας λίστας ελέγχου για τις προυπολογισμένες τιμές. Έτσι, το φύλλο δεδομένων μπορεί να χρησιμεύσει ως είσοδος

Ψηφιακή συλλογή Βιβλιοθήκη

μήμα Γεωλογίας

και έξοδος.

Σε περίπτωση αλλαγής καταγραφής κατολισθήσεων με την πάροδο του χρόνου, υπάρχουν δύο διαδικασίες που μπορεί να αντικατοπτρίζουν την τροποποίηση: i) τα χαρακτηριστικά μπορούν απλά να ενημερωθούν με τις τρέχουσες τιμές, ii) μια δευτερεύουσα διαδικασία μπορεί να συνδεθεί με την κύρια διαδικασία. Και οι δύο επιλογές υποδηλώνουν ότι υποβάλλεται ένα νέο φύλλο δεδομένων και το WISL δημιουργεί αυτόματα ένα νέο τροποποιημένο σύνολο δεδομένων. Αυτό σημαίνει ότι μια καταχώρηση κατολίσθησης περιλαμβάνει δύο (ή περισσότερα) σύνολα δεδομένων. Σε κάθε περίπτωση το αρχικό παραμένει άθικτο και συνδέεται με το νέο σύνολο δεδομένων. Κατά τη διάρκεια μιας ερώτησης i) παρουσιάζεται μόνο το τελευταίο σύνολο δεδομένων.

Σχήμα 50: Διάγραμμα ροής σχετικά με τον τρόπο εισαγωγής δεδομένων στο GIS με δύο χωριστά σημεία εισόδου Α και Β. Το Α αντιπροσωπεύει τη ροή εργασίας ενός άδειου φύλλου δεδομένων πριν από τις παρατηρήσεις πεδίου, όπου οι πληροφορίες σχήματος είναι προαιρετικές. Το Β αντιπροσωπεύει τη ροή εργασίας με προκαθορισμένες τιμές στο φύλλο δεδομένων, οι οποίες τιμές απαιτούν shapefiles, (Kreuzer et al. 2017).

3.4 Περιγραφή στατιστικών μεθόδων που υπάρχουν και εφαρμόζονται σύμφωνα με τη βιβλιογραφία

3.4.1 Δείκτης Επιδεκτικότητας Κατολισθήσεων (Landslide Susceptibility Index)

Ψηφιακή συλλογή Βιβλιοθήκη

Πρόκειται για έναν από τους πιο διαδεδομένους δείκτες που χρησιμοποιούνται στη στατιστική ανάλυση και άλλοτε εμφανίζεται διμεταβλητός και άλλοτε πολυμεταβλητός. Σύμφωνα με τους Soeters and van Westen (1996), van Westen et al. (1997), ο Δείκτης Επιδεκτικότητας Κατολισθήσεων (Landslide Susceptibility Index ή LSI), έχει στόχο να υπολογίσει την επιδεκτικότητα των κατολισθήσεων για κάθε κατηγορία όλων των παραγόντων (π.χ. γεωλογία, γωνία κλίσεων, υψόμετρο, κάλυψη γης, κ.λ.π) που επιλέγονται κάθε φορά σε μια μελέτη. Έτσι, υποθέτοντας ότι j είναι μια από τις κατηγορίες του παράγοντα i μιας περιοχής μελέτης, τότε η επιδεκτικότητα για την κατηγορία j ορίζεται ως εξής:

$$Si, j = \ln \left[\frac{\left(\frac{\text{Npix}(\text{Li}, j)}{\text{Npix}(\text{Ti}, j)}\right)}{\left(\frac{\Sigma Npix(Li, j)}{\Sigma Npix(Ti, j)}\right)} \right]$$

όπου Npix(Li,j) είναι το πλήθος των ψηφίδων (pixels) κατολίσθησης (δηλαδή των ψηφίδων που καλύπτονται από τα πολύγωνα των κατολισθήσεων) της κατηγορίας j του παράγοντα i και Npix(Ti,j) είναι το πλήθος όλων των ψηφίδων της κατηγορίας j του παράγοντα i. Εκτελώντας την παραπάνω σχέση, τα χωρικά κατανεμημένα σύνολα δεδομένων μετατρέπονται σε χάρτες επιδεκτικότητας, (Dai and Lee 2002, Ercanoglu and Gokceoglu 2004, Lee 2007, Pradhan and Youssef 2010).

Ο Δείκτης Επιδεκτικότητας Κατολισθήσεων χρησιμοποιείται όλο και περισσότερο από τους ειδικούς μελετητές για τον προσδιορισμό και τη χαρτογράφηση της επιδεκτικότητας κατολισθήσεων συγκεκριμένων περιοχών. Χαρακτηριστικές είναι οι περιπτώσεις των Bui, Lofman, Revhaug και Dick (2011), του Akgun (2012), και των Demir, Aytekin, Akgun, Ikizler και Tatar (2012). Στην πρώτη μελέτη, εξετάστηκε μια περιοχή του Βιετνάμ (έκτασης 4.660 km²) με την επεξεργασία δέκα παραγόντων που επιδρούν στην εκδήλωση κατολισθήσεων. Επιπλέον, στις δύο τελευταίες μελέτες εξετάστηκαν περιοχές της Τουρκίας (έκτασης 1.800 και 144 km² περίπου, αντιστοίχως) μέσω της ανάλυσης έξι και εννέα, αντιστοίχως, κατολισθητικών παραγόντων. Στην Ελλάδα, από τους πρώτους που εφάρμοσαν αυτή τη μέθοδο ήταν οι Papathanassiou et al. (2013) για το νησί της Λευκάδας, Chalkias et al. (2014) για την χερσόνησο της Πελοποννήσου, όπως επίσης στη συνέχεια και οι Kavoura et al. (2019).

Ψηφιακή συλλογή Βιβλιοθήκη

Σε πιο πρόσφατες εργασίες, οι Rui-Xuan Tang et al. (2020), O. H. Ozioko et al. (2020), Guirong Wang et al. (2020), Jie Dou et al. (2019), χρησιμοποίησαν αυτή τη μέθοδο σε συνδυασμό με άλλες, προκειμένου να εξαχθεί η επιδεκτικότητα των αντίστοιχων περιοχών. Συγκεκριμένα οι Rui-Xuan Tang et al. (2020), χρησιμοποίησαν τις μεθόδους cluster analysis (CA), μεθόδους πιθανοτήτων (probabilistic methods) και τεχνητά νευρωνικά δίκτυα (ANN), όπου με τη συμβολή του δείκτη επιδεκτικότητας κατολισθήσεων (LSI), προσδιορίστηκε η επιδεκτικότητα στην πόλη Longfeng, της επαρχίας Hubei, στην Κίνα. Επιπλέον, οι Ozioko et al. (2020), πραγματοποίησαν εκτίμηση επιδεκτικότητας στην περιοχή Iva Valley, στην νοτιοανατολική Νιγηρία, με τον συνδυασμό των μεθόδων FR, analytical hierarchy process (AHP), μαζί με την εφαρμογή του δείκτη επιδεκτικότητας κατολισθήσεων (LSI). Οι Guirong Wang et al. (2020), εφάρμοσαν τέσσερα (4) μοντέλα [weight-of-evidence (WoE), linear discriminant analysis (LDA), Fisher's linear discriminant analysis (FLDA) και quadratic discriminant analysis (QDA)], όπου κατασκεύασαν το χάρτη επιδεκτικότητας για την περιοχή Chongqing, στην Κίνα. Τέλος, οι Jie Dou et al. (2019), συγκρίνουν τις ιδιότητες των μεθόδων που εφάρμοσαν [statistical probabilistic likelihood-frequency ratio (PLFR) model, information value (InV) method, certainty factors (CF), artificial neural network (ANN) and ensemble support vector machine (SVM)], για την κατασκευή του χάρτη επιδεκτικότητας, για την περιοχή Chuetsu, νομαρχία Niigata, Ιαπωνία. Παρατηρούμε επομένως πως τα τελευταία χρόνια η μέθοδος LSI πραγματοποιείται συνδυαστικά με άλλες μεθόδους.

Πολυμεταβλητή ανάλυση (multivariate analysis)

Σύμφωνα με τους Guzzetti et al. (1997), οι παράμετροι των περιοχών που είναι επιρρεπείς ως προς την εκδήλωση κατολισθήσεων, αναλύονται είτε με τη μέθοδο της λογιστικής παλινδρόμησης (logistic regression), είτε με τη μέθοδο της διακριτικής ανάλυσης (discriminant analysis).

3.4.2 Λογιστική παλινδρόμηση (logistic regression)

Ψηφιακή συλλογή Βιβλιοθήκη

Πρόκειται για μια πολύ-παραγοντική μέθοδο, ουσιαστικά για ένα μοντέλο ταξινόμησης των τιμών της εξαρτημένης παραμέτρου, χρησιμοποιώντας τη θεωρία των πιθανοτήτων. Σύμφωνα με τον Menard (1995), η φύση της εξαρτημένης παραμέτρου είναι δίτιμη. Όσον αφορά το πλήθος των ανεξάρτητων παραμέτρων, μπορεί να είναι αριθμητικές, κατηγορικές ή περιγραφικές.

Σύμφωνα με τους Carrara (1983), Carrara et al. (1991), Menard (1995), Guzzetti et al. (1997), Ayalew et al. (2004), η λογιστική παλινδρόμηση (logistic regression) περιγράφει τη σχέση μεταξύ της κατηγορικής (αληθής και ψευδής) ή δυαδικής (0 και 1) μεταβλητής (εξαρτημένη μεταβλητή, π.χ. πιθανότητα εμφάνισης ή όχι κατολίσθησης) και μιας ή περισσοτέρων συνεχών ή κατηγορικών ή δυαδικών επεξηγηματικών μεταβλητών (ανεξάρτητες μεταβλητές, π.χ. λιθολογία, γωνία κλίσεων, κ.λ.π.) που προέρχονται από τα δείγματα. Έτσι, παράγεται ένας συντελεστής για κάθε μία μεταβλητή και στη συνέχεια χρησιμοποιούνται ως βάρη σε μια εξίσωση της μορφής:

Y = Logit(p) = In(p / (1-p)) = C0+ C1X1+ C2X2+ ... + CnXn,

όπου Υ είναι η εξαρτώμενη μεταβλητή, p είναι η πιθανότητα η Υ να είναι 1, p / (1-p) είναι η αναλογία πιθανοτήτων, CO είναι το σημείο τομής και C1, C2, ..., Cn είναι οι συντελεστές οι οποίοι υπολογίζουν τη συμβολή των ανεξάρτητων μεταβλητών (X1, X2, ..., Xn) στις διακυμάνσεις του Υ.

Η εκτίμηση των παραμέτρων γίνεται με την μέθοδο του λόγου πιθανοφάνειας, όπου για να προκύψει ένα αποτέλεσμα επιλέγονται οι πιο πιθανές τιμές για τις παραμέτρους. Η λογιστική παλινδρόμηση, χρησιμοποιείται ευρύτατα σε πολλά και διαφορετικά επιστημονικά πεδία και ουσιαστικά, εκτιμάται η επίδραση που έχει κάθε ανεξάρτητη παράμετρος στην εξαρτημένη. Για την πρόβλεψη της πιθανότητας εμφάνισης ή μη ενός γεγονότος τα δεδομένα προσαρμόζονται στην εξίσωση της λογιστικής καμπύλης, που αποτελεί μια τυπική ανάπτυξη σιγμοειδούς καμπύλης σαν αυτή του Σχήματος 51:

Σχήμα 51: Ανάπτυξη τυπικής σιγμοειδούς καμπύλης. (<u>https://www.statisticssolutions.com/conduct-interpret-logistic-regression/</u>)

Η δίτιμη λογιστική παλινδρόμηση είναι της μορφής:

Ψηφιακή συλλογή Βιβλιοθήκη

$$f(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

όπου: z είναι η παράμετρος εισόδου, f(z) είναι το αποτέλεσμα της παραμέτρου.

Η παράμετρος εισόδου λαμβάνει θετικές και αρνητικές τιμές, αντιστοιχεί στη δράση μιας ομάδας ανεξάρτητων παραμέτρων και εκφράζει το μέτρο της συνολικής συνεισφοράς όλων αυτών των παραμέτρων στο μοντέλο ως εξής:

$$z=bo + b\mathbf{1}\cdot X\mathbf{1} + \dots + bv \cdot Xv$$

Τα αποτελέσματα κυμαίνονται μεταξύ των τιμών 0 και 1 και ισχύει πως:

 Αν ο συντελεστής βαρύτητας είναι μεγαλύτερος του 0, τότε η λογαριθμική αξία της πιθανότητας είναι μεγαλύτερη του 1 και επομένως είναι πιθανότερη η εμφάνιση κατολίσθησης.

Ψηφιακή συλλογή Βιβλιοθήκη

- Αν ο συντελεστής βαρύτητας είναι μικρότερος του 0, τότε η λογαριθμική αξία της πιθανότητας είναι μικρότερη του 1 και επομένως η πιθανότητα εμφάνισης κατολίσθησης είναι μικρότερη.
- Αν ο συντελεστής βαρύτητας ισούται με το 0, τότε η λογαριθμική αξία της πιθανότητας ισούται με 1 και δεν επηρεάζονται τα αποτελέσματα της μιας ή της άλλης εκδοχής.

Επιπλέον αν η τιμή του συντελεστή είναι υψηλή σημαίνει ότι η ανεξάρτητη παράμετρος επηρεάζει πολύ την πιθανότητα να συμβεί ή όχι το γεγονός ενώ σε αντίθετη περίπτωση που είναι χαμηλή δείχνει ότι ασκεί μικρή επίδραση.

Ακόμη, παρακάτω παρατίθενται κάποια παραδείγματα εφαρμογής αυτής της μεθόδου ανά τον κόσμο. Οι Duman, Can, Gokceoglu, Nefeslioglu & Sonmez (2006), χρησιμοποίησαν την μέθοδο της λογιστικής παλινδρόμησης για την εκτίμηση της κατολισθητικής επιδεκτικότητας στην περιοχή Cekmece στην Κωνσταντινούπολη. Χρησιμοποιήθηκαν εικοσιπέντε (25) παράμετροι και τα δεδομένα αντλήθηκαν από μια πολύ καλά δομημένη βάση δεδομένων, αφού είχαν προστεθεί και δεδομένα που αποκτήθηκαν μέσω διαδικασιών φωτοερμηνείας και εργασιών υπαίθρου. Σε αυτή την εργασία έγινε χρήση της προοδευτικής βηματικής λογιστικής παλινδρόμησης και έτσι η εκτίμηση του μοντέλου έφτασε το 83,8% των επιτυχημένων προβλέψεων.

Την πολυμεταβλητή αυτή μέθοδο έχουν αναπτύξει και εφαρμόσει στις μελέτες τους οι Nandi και Shakoor (2010), και οι Schicker και Moon (2012). Και οι δύο αυτές μελέτες ασχολήθηκαν με την κατασκευή χάρτη επιδεκτικότητας κατολισθήσεων για περιοχές των Η.Π.Α. (έκτασης 2.105 km²), και της Νέας Ζηλανδίας (έκτασης 25.000 km² περίπου), αντιστοίχως, αναλύοντας εφτά και έντεκα, αντιστοίχως, κατολισθητικούς παράγοντες. Η πολυμεταβλητή μέθοδος logistic regression, εφαρμόστηκε και από τους Wei Chen et al. (2019), εξετάζοντας την επιδεκτικότητα κατολισθήσεων στην επαρχία Shaanxi της Κίνας. Επιπλέον, οι Luigi Lombardo et al. (2018), εφάρμοσαν τη μέθοδο της λογιστικής παλινδρόμησης για την εξαγωγή της επιδεκτικότητας στις περιοχές Scaletta και Itala, στη νότια Ιταλία. Τέλος, οι Schlögel et al. (2017), εξήγαγαν την επιδεκτικότητα της περιοχής Ubaye Valley (Νότιες Γαλλικές Άλπεις), μέσω της μεθόδου της λογιστικής παλινδρόμησης, της ανάλυσης των ψηφιακών μοντέλων αναγλύφου (DEMs) και της περιγραφής των κλίσεων.

3.4.3 Διακριτική ανάλυση (discriminant analysis)

Ψηφιακή συλλογή Βιβλιοθήκη

Σύμφωνα με τους Carrara (1983), Carrara et al. (1991), Menard (1995), Guzzetti et al. (1997), Ayalew et al. (2004), η διακριτική ανάλυση αποτελεί μια πολυμεταβλητή στατιστική μέθοδο. Στόχος αυτής της μεθόδου είναι η δημιουργία κανόνων που μπορούν να ταξινομήσουν τον κίνδυνο κατολισθήσεων στην κατάλληλη κατηγορία. Η διαδικασία που ακολουθείται είναι παρόμοια διαδικασία μ' αυτή της λογιστικής παλινδρόμησης, με μοναδική εξαίρεση το γεγονός ότι η εξαρτώμενη μεταβλητή είναι κατηγορική και όχι συνεχής.

Η μέθοδος αυτή έχει χρησιμοποιηθεί από τους Baeza, Lantada και Moya (2010) για την εκτίμηση της επιδεκτικότητας κατολισθήσεων σε μια περιοχή της Ισπανίας (με βάση πέντε παραμέτρους), όπως επίσης και από τους He, Pan, Dai, Wang και Liu (2012) για τη χαρτογράφηση της επιδεκτικότητας κατολισθήσεων στο δέλτα του ποταμού Qinggan με έκταση 131 km², στην Κίνα (με βάση οχτώ παραμέτρους). Γενικά, η πολυμεταβλητή ανάλυση, αν και εφαρμόζονταν με επιτυχία σε διάφορους κλάδους (π.χ. μοντελοποίηση εδάφους), και πρόσφατα άρχισε να χρησιμοποιείται και στον τομέα των κατολισθήσεων. Σύμφωνα με τους Gorsevski, Gessler και Foltz, (2000), τα πλεονεκτήματα αυτής της μεθόδου είναι: i) Παραγωγή λιγότερων νέων μεταβλητών σε σχέση με τον αριθμό των αρχικών μεταβλητών, ii) Ευκολότερος εντοπισμός ή προσδιορισμός των ανωμαλιών της, iii) Ευκολότερος έλεγχος των υποθέσεων έτσι ώστε να εξακριβωθεί η εγκυρότητα της.

ΚΕΦΑΛΑΙΟ 4° – ΔΙΑΘΕΣΙΜΑ ΔΕΔΟΜΕΝΑ-ΜΕΘΟΔΟΛΟΓΙΑ

4.1 Διαθέσιμα δεδομένα

Ψηφιακή συλλογή Βιβλιοθήκη

Αναφορικά με τη συλλογή δεδομένων σχετικά με την περιοχή μελέτης, αυτά αφορούν την γεωλογία της περιοχής, γεωμορφολογικά στοιχεία, καθώς και κατολισθητικά φαινόμενα. Τα διαθέσιμα δεδομένα για την εκπόνηση της παρούσας διπλωματικής εργασίας έχουν ως ακολούθως: αρχικά χρησιμοποιήθηκε ο γεωλογικός χάρτης όπως έχει προκύψει από τη διδακτορική διατριβή του Cushing, [Cushing M., (1985), «Evoluation structurale de la marge nord-ouest hellenique dans l'ile de Lefkada et ses environs (Greece nord-occidentale)», Ph.D. Thesis, Univ. de Paris-Sud (XI), Centre d'Orsay, France]. Επιπλέον, χρησιμοποιήθηκε το Ψηφιακό Μοντέλο Εδάφους (DEM) της περιοχής της Λευκάδας, από το ΚΤΗΜΑΤΟΛΟΓΙΟ Α.Ε. με ανάλυση 5m, όπως επίσης και το αρχείο απογραφής κατολισθήσεων, που έλαβαν χώρα ύστερα από τους σεισμούς του 2003 και 2015, αντίστοιχα, [Papathanassiou G, Valkaniotis S, Ganas A, Pavlides S, (2017) Earthquake-induced landslides in the island of Lefkada, Ionian Islands, Greece, https://doi.org/10.5066/F79G5K96, in Schmitt R, Tanyas H, Nowicki Jessee, M.A., Zhu J, Biegel K.M., Allstadt K.E., Jibson R.W., Thompson E.M., van Westen C.J., Sato H.P., Wald D.J., Godt J.W., Gorum T., Xu C., Rathje E.M., Knudsen K.L., (2017) An Open Repository of Earthquake-triggered Ground Failure Inventories, U.S. Geological Survey data release collection, accessed Month Day, Year, at https://doi.org/10.5066/F7H70DB4)], [Papathanassiou et al. (2020) Spatial patterns, controlling factors and characteristics of landslides triggered by strike-slip faulting earthquakes; case study of Lefkada island, Greece, submitted to Bulletin of Engineering Geology and the Environment)].

4.2 Μεθοδολογία

Στα πλαίσια της εκπόνησης της εν λόγω μεταπτυχιακής εργασίας, η μεθοδολογία που αναπτύχθηκε για την εκτίμηση της κατολισθητικής επιδεκτικότητας θα αναλυθεί ακολούθως. Αρχικά, θα πρέπει να αναφερθεί, πως τα λογισμικά προγράμματα τα οποία χρησιμοποιήθηκαν, είναι το ArcGIS 10.5 για τη διαχείριση και επεξεργασία των χαρτογραφικών δεδομένων, καθώς και το Microsoft Office Excel 2007 για τη στατιστική ανάλυση και επεξεργασία των δεδομένων. Η διαδικασία περιγράφεται και συνοπτικά με διάγραμμα ροής (Σχ. 52).

Ψηφιακή συλλογή Βιβλιοθήκη

Στο πρώτο στάδιο, εισήχθησαν στο ArcGIS τα επίπεδα με τη μορφή shapefile, που αφορούν: τη θαλάσσια περιοχή (Sea Mask), τη γεωλογία της περιοχής (Geology), τα ρήγματα που έχουν χαρτογραφηθεί (Faults), καθώς επίσης και οι κατολισθήσεις που έχουν χαρτογραφηθεί (Landslides). Ακολούθως, όλα τα παραπάνω γεωαναφέρθηκαν στο κατάλληλο προβολικό σύστημα ΕΓΣΑ'87 (Greek Grid) και εισήχθη το DEM της περιοχής (από το ΚΤΗΜΑΤΟΛΟΓΙΟ Α.Ε. με ανάλυση 5m), προσαρμόστηκε κατάλληλα στο περίγραμμα του νησιού της Λευκάδας, παράγοντας στη συνέχεια τον γεωλογικό χάρτη της Λευκάδας, καθώς και τους χάρτες κλίσεων πρανούς, προσανατολισμού κλιτύων και υψομέτρου. Έτσι, είναι φανερό πως οι παράγοντες οι οποίοι θα αναλυθούν και θα επεξεργαστούν ως προς την επιδεκτικότητα είναι: η γεωλογία, η κλίση πρανών, ο προσανατολισμός των κλιτύων, καθώς και το υψόμετρο. Ο σεισμικός παράγοντας και συγκεκριμένα η σεισμική επιτάχυνση δεν λήφθηκε υπόψη ως παράγοντας, καθόσον τα δεδομένα δεν κάλυπταν την περιοχή μελέτης. Έπειτα, πραγματοποιήθηκε κατηγοριοποίηση των παραγόντων σε κλάσεις. Αυτές οι κλάσεις αναταξινομήθηκαν, λαμβάνοντας «κωδικές αύξουσες τιμές», π.χ. 1,2,3,4 κλπ και τα shapefiles μετατράπηκαν σε raster αρχεία, με κάναβο (cell size) 10 x 10m. Στη συνέχεια, λαμβάνοντας τις πληροφορίες από το περιβάλλον του ArcGIS και δουλεύοντας στο περιβάλλον του Microsoft Office Excel 2007, υπολογίστηκαν κάποια μεγέθη, τα οποία θα περιγραφούν στο επόμενο κεφάλαιο διεξοδικά (Surface area, landslide area, total landslide density, densclass, densmap), και τα οποία τελικά οδήγησαν στον υπολογισμό των συντελεστών βάρους (weight factor).

Ύστερα, στο περιβάλλον ArcGIS και μέσα από μια σειρά εντολών προκύπτουν raster αρχεία με πίνακες, οι οποίοι πραγματοποιούν την αντιστοίχιση του κάθε pixel του χάρτη, σε μία από τις παραπάνω κλάσεις (1,2,3,4, κλπ), και οι οποίες αντιπροσωπεύουν μία κλάση. Ακολούθως, πάλι μέσω εντολών οι οποίες θα παρουσιαστούν αναλυτικά στο επόμενο κεφάλαιο, πραγματοποιήθηκε ένωση (Union) των παραπάνω αρχείων raster με το αρχείο απογραφής των κατολισθήσεων, του σεισμού του 2015. Έτσι, μέσω επεξεργασίας πραγματοποιείται η αντιστοίχιση κάθε κατολίσθησης σε μία κατηγορία, του κάθε παράγοντα. Αυτό πραγματοποιήθηκε για κάθε κλάση του κάθε παράγοντα. Αφότου πραγματοποιήθηκαν όλα τα παραπάνω, στη συνέχεια αθροίστηκαν όλα τα θεματικά επίπεδα, με αποτέλεσμα κάθε pixel του χάρτη να χαρακτηρίζεται από μία κλάση για κάθε παράγοντα. Έτσι ουσιαστικά παράχθηκε ο χάρτης επιδεκτικότητας κατολισθήσεων.

Ψηφιακή συλλογή Βιβλιοθήκη

Σε επόμενο στάδιο, πραγματοποιήθηκε ο έλεγχος αυτού του μοντέλου, δηλαδή το κατά πόσο το μοντέλο αυτό της επιδεκτικότητας ερμηνεύει και έρχεται σε συμφωνία με το inventory του 2015. Για να πραγματοποιηθεί αυτό, καταγράφεται κάθε κατολίσθηση σε ποια κλάση επιδεκτικότητας ανήκει και υπολογίζεται το ποσοστό επί τοις εκατό (frequency landslides, δηλαδή το πλήθος – και κατ΄ επέκταση το ποσοστό των κατολισθήσεων σε κάθε κατηγορία-). Επίσης, υπολογίστηκαν μεγέθη, όπως το ποσοστό της έκτασης που καλύπτει η κάθε κλάση σε σχέση με τη συνολική επιφάνεια του νησιού (frequency class), όπως επίσης και το ποσοστό της έκτασης των κατολισθήσεων, σε σχέση με τη συνολική έκταση των κατολισθήσεων, σε σχέση με τη συνολική έκταση των κατολισθήσεων (frequency class), όπως επίσης και το ποσοστό της έκτασης των κατολισθήσεων, σε σχέση με τη συνολική έκταση των κατολισθήσεων (frequency landslides per class). Αυτή η αξιολόγηση ουσιαστικά ερμηνεύει το ποσοστό επιτυχίας αυτού του μοντέλου (success rate), όσον αφορά το αρχείο απογραφής κατολισθήσεων του 2015, το οποίο και αποτελεί την ομάδα εκτίμησης των αποτελεσμάτων (estimation group).

Στη συνέχεια, πραγματοποιήθηκε η ίδια διαδικασία για το αρχείο απογραφής κατολισθήσεων του 2003. Δηλαδή πραγματοποιήθηκε έλεγχος για το αν αυτό το μοντέλο επιδεκτικότητας ερμηνεύει – επιβεβαιώνει – έρχεται σε συμφωνία με το αρχείο απογραφής κατολισθήσεων του 2003. Και σε αυτή την περίπτωση καταγράφηκε κάθε κατολίσθηση σε ποια κλάση επιδεκτικότητας ανήκει και υπολογίστηκε το ποσοστό επί τοις εκατό (frequency landslides, δηλαδή το πλήθος – και κατ΄επέκταση το ποσοστό των κατολισθήσεων σε κάθε κατηγορία-). Ακόμη, υπολογίστηκαν μεγέθη, όπως το ποσοστό της έκτασης που καλύπτει η κάθε κλάση σε σχέση με τη συνολική επιφάνεια του νησιού (frequency class), όπως επίσης και το ποσοστό της έκταση το ποσοστό των κατολισθήσεων, σε σχέση με τη συνολική έκταση των κατολισθήσεων σε καθο κατολισθήσεων (frequency landslides per class). Αυτή η αξιολόγηση ουσιαστικά ερμηνεύει το το ποσοστό προβλεψιμότητας αυτού του μοντέλου (prediction rate),

όσον αφορά το αρχείο απογραφής του 2003, το οποίο και αποτελεί την ομάδα επαλήθευσης των αποτελεσμάτων (validation group).

Ψηφιακή συλλογή Βιβλιοθήκη

Τέλος, πραγματοποιήθηκαν 2 καμπύλες (αθροιστικές καμπύλες), οι οποίες προβλήθηκαν στο ίδιο γράφημα και περιλαμβάνουν το ποσοστό του χάρτη επιδεκτικότητας σε σχέση με το ποσοστό των κατολισθήσεων. Με αυτό τον τρόπο απεικονίστηκαν τα ποσοστά επιτυχίας και προβλεψιμότητας του χάρτη επιδεκτικότητας της Λευκάδας (Success and predicted rate curves).

Αναφορικά με τα αρχεία απογραφής κατολισθήσεων, αυτό του 2015 περιλαμβάνει 596 κατολισθήσεις, ενώ αυτό του 2013 περιλαμβάνει 302 κατολισθήσεις.

Σχήμα 52: Διάγραμμα ροής μεθοδολογίας.

Πρέπει να αναφερθεί πως πολύ μικρού μεγέθους αστοχίες (μη χαρτογραφήσιμες ως πολύγωνο στη συγεκριμένη κλίμακα) έλαβαν χώρα σε διάσπαρτες θέσεις και ανατολικότερα του επικέντρου (Papathanassiou et al. 2017). Ωστόσο για την ανάλυση της επιδεκτικότητας στην παρούσα εργασία, χρησιμοποιήθηκαν οι συγκεκριμένες περιοχές κυρίως κατά μήκος της δυτικής ακτής του νησιού, καθώς μπορούσαν να επεξεργαστούν οι εκτάσεις της κατολίσθησης με τους παράγοντες που επηρεάζουν την εκδήλωση των αστοχιών.

Ψηφιακή συλλογή Βιβλιοθήκη

ύἡμα Γεωλογίας Α.Π.Θ

4.3 Δεδομένα κατολισθήσεων

Όπως αναφέρθηκε και παραπάνω, το αρχείο απογραφής κατολισθήσεων του 2015, αποτελείται από 596 κατολισθήσεις, και το αρχείο απογραφής των κατολισθήσεων του 2003, περιλαμβάνει 302 κατολισθήσεις. Για όλες τις κατολισθήσεις υπολογίστηκαν και παρατίθενται παρακάτω σε πίνακες τα εξής: η έκταση των κατολισθήσεων, το μέγιστο και το ελάχιστο υψόμετρο (min & max altitude) και τέλος το μήκος και το πλάτος της κάθε κατολίσθησης (length, width). Όλα αυτά υπολογίστηκαν μέσα στο περιβάλλον του ArcGIS. Συγκεκριμένα:

- Η έκταση των κατολισθήσεων προσδιορίστηκε όταν στον πίνακα ιδιοτήτων (Attribute table), προστέθηκε μία νέα στήλη και με δεξί κλικ επιλέχτηκε η εντολή Calculate geometry.
- Αναφορικά με το μέγιστο και ελάχιστο υψόμετρο, αυτό υπολογίστηκε μέσω της εντολής zonal statistics as table, όπου εισήχθη το ψηφιακό μοντέλο εδάφους (DEM), καθώς και οι κατολισθήσεις (πρώτα του 2015 και στη συνέχεια με την ίδια διαδικασία του 2003).
- Τέλος, τα γεωμετρικά χαρακτηριστικά των κατολισθήσεων μήκος και πλάτος, υπολογίστηκαν μέσω της ακόλουθης ροής εντολών: Data Management Tools, Features, Minimum Bounding Geometry, όπου εισήχθησαν οι κατολισθήσεις (2015 και 2003, αντίστοιχα) και επιλέχθηκε η εντολή Rectangle by width, στο υποπαράθυρο που εμφανίστηκε.

Επιπλέον, για κάθε ένα από τα παραπάνω (έκταση, μέγιστο και ελάχιστο υψόμετρο, μήκος και πλάτος), υπολογίστηκε η ελάχιστη και η μέγιστη τιμή (min, max), ο μέσος όρος (average), καθώς και η τυπική απόκλιση (standard deviation).

Έτσι, σύμφωνα με όλα τα παραπάνω, προκύπτει ο ακόλουθος ενδεικτικός πίνακας αναφορικά με την έκταση για τις 10 πρώτες κατολισθήσεις του 2015 (Πίν. 5), καθώς και οι πίνακες με τα στατιστικά μεγέθη (Πίν. 6 & 7).

Landslides	ENCLODED				
2015	AREA (km²)	Min (m)	Max (m)	Length (m)	Width (m)
1	0,009	24,23	290,01	260,64	65,63
2	0,003	51,29	264,00	222,47	28,99
3	0,001	141,23	236,71	105,65	29,71
4	0,0005	53,53	108,09	74,74	14,10
5	0,007	9,47	243,29	254,21	60,83
6	0,006	17,97	223,82	246,37	66,67
7	0,019	1,95	204,84	283,79	99,78
8	0,004	72,54	217,03	154,20	59,07
9	0,005	160,16	220,76	153,63	61,16
10	0,002	198,52	216,10	75,10	36,18

Πίνακας 5: Στοιχεία κατολισθήσεων 2015.

Για τα δεδομένα του 2015:

Ψηφιακή συλλογή Βιβλιοθήκη

Πίνακας 6: Στατιστικά μεγέθη κατολισθήσεων 2015.

	Έκταση (km²)	Min elevation (m)	Max elevation (m)	Length (m)	Width (m)
min	0,00004	0	16,68	11,59	4,47
max	0,043	556,77	566,70	565,75	324,88
average	0,002	168,39	232,05	87,46	34,39
standard					
deviation	0,004	134,22	124,51	71,45	31,10
ήμα Γεωλογία Πίνακας 7: Στατιστικά μεγέθη κατολισθήσεων 2003.

Ψηφιακή συλλογή Βιβλιοθήκη

ΔΠΘ

	Έκταση (km²)	Min elevation (m)	Max elevation (m)	Length (m)	Width (m)
min	0,0001	0	6,10	20,13	7,80
max	0,113	558,57	573,21	566,04	367,70
average	0,006	135,88	230,21	127,65	55,04
standard deviation	0,011	143,39	131,94	99,07	46,09

Έτσι, συγκεντρωτικά θα μπορούσαμε να πούμε πως για το αρχείο απογραφής κατολισθήσεων του 2015, η μέση έκταση μιας κατολίσθησης είναι 0,002 km², με ελάχιστο υψόμετρο 168m, μέγιστο υψόμετρο 232m, μήκος 87m, πλάτος 34m. Ομοίως, για το αρχείο απογραφής κατολισθήσεων του 2003, η μέση έκταση μιας κατολίσθησης είναι 0,006 km², με ελάχιστο υψόμετρο 135m, μέγιστο υψόμετρο 230m, μήκος 127m και πλάτος 55m.

Αναλυτικά οι πίνακες για όλα τα δεδομένα βρίσκονται στο παράρτημα της εργασίας.

Παρακάτω, παρουσιάζονται οι ποσοστιαίες κατανομές που κατασκευάστηκαν για τα δεδομένα του 2015 και του 2003, αντίστοιχα, αναφορικά με την έκταση των κατολισθήσεων, το μέγιστο και το ελάχιστο υψόμετρο, το μήκος και το πλάτος των κατολισθήσεων, (Σχ. 53 – 62).

Σχήμα 54: Διάγραμμα κατανομής ελάχιστου υψομέτρου κατολισθήσεων 2015.

Σχήμα 55: Διάγραμμα κατανομής μέγιστου υψομέτρου κατολισθήσεων 2015.

Σχήμα 56: Διάγραμμα κατανομής μήκους κατολισθήσεων 2015.

Σχήμα 57: Διάγραμμα κατανομής πλάτους κατολισθήσεων 2015.

Αναφορικά με τα δεδομένα από το αρχείο απογραφής κατολισθήσεων του 2003:

Σχήμα 58: Διάγραμμα κατανομής έκτασης κατολισθήσεων 2003.

Σχήμα 59: Διάγραμμα κατανομής ελάχιστου υψομέτρου κατολισθήσεων 2003.

Σχήμα 60: Διάγραμμα κατανομής μέγιστου υψομέτρου κατολισθήσεων 2003.

Σχήμα 61: Διάγραμμα κατανομής μήκους κατολισθήσεων 2003.

Σχήμα 62: Διάγραμμα κατανομής πλάτους κατολισθήσεων 2003.

ΚΕΦΑΛΑΙΟ 5ο – ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΟΛΟΓΙΑΣ

5.1 Εισαγωγή και υπέρθεση δεδομένων

Ψηφιακή συλλογή Βιβλιοθήκη

Το παραγωγικό μέρος της παρούσας διπλωματικής εργασίας, σε πρώτο στάδιο περιλαμβάνει την εισαγωγή των ακόλουθων δεδομένων στο πρόγραμμα ArcGIS, μέσω του Catalog, (Σχ. 63):

- τη θαλάσσια περιοχή (Sea Mask),
- τη γεωλογία της περιοχής (Geology),
- τα ρήγματα που έχουν χαρτογραφηθεί (Faults), καθώς επίσης και
- οι κατολισθήσεις που έχουν χαρτογραφηθεί (Landslides).

Σχήμα 63: Εισαγωγή δεδομένων στο ArcGIS.

Σε επόμενο στάδιο, γεωαναφέρθηκαν στο κατάλληλο προβολικό σύστημα ΕΓΣΑ'87 (Greek Grid). Αυτό πραγματοποιήθηκε με τις ακόλουθες εντολές (Σχ. 64, 65):

- Εισάγουμε το shapefile, του οποίου το προβολικό σύστημα θέλουμε να μετατρέψουμε (Input Dataset or Feature Class) και στο Output Coordinate System επιλέγουμε το προβολικό σύστημα που επιθυμούμε (Projected Coordinate Systems, National Grids, Europe, Greek Grid).

Σχήμα 64: Εντολές μετατροπής προβολικού συστήματος.

File Edit View Bookmarks Insert Selectio	on Geoprocessing Customize V	Project		- 🗆 ×	
@, Q, @] @ ## \$2 \$\$ \$\$ \$\$ 10 - \$\$ 0 @ @ @ \$# \$2 \$\$ @ @ X \$\$ 7 (* \$ 0 @ @ @ 0 * \$ 5napping*	3D Analyst ▼ 1:300.000	Input Dataset or Feature Class [\$ea_Mask_Cushing Input Coordinate System (optional) WIGS 1984 (ITM Zone 1984	J 🛃	Output Coordinate System The coordinate system to	^?·
Table Of Contents		Output bataset or Feature Class C:Liseer liseer Documents VircGIS/Default1.gdh/Sea_Mask_Cushing_Project3 Output Coordinate System Creek_Crit Vietical (optional) Geographic Transformation (optional)		which the input data will be projected.	is ^
 Ses_Mask_Cushing Ses_Mask_Cushing Culpionatiki inventory Andslides_2015_GGRS87 		GGR5_1397_To_WGS_1984	+ × +		nistration c
		Preserve Shape (optional) Maximum Offset Deviation (optional) Unknown	~		ews nsformations
()		OK Cancel Environments	< Hide Help	Tool Heb	nate Notation Geographic Trans eference m

Σχήμα 65: Διαδικασία επιλογής του προβολικού συστήματος Greek Grid.

Ακολούθως, στο περιβάλλον ArcGIS εισήχθη το Ψηφιακό Μοντέλου Εδάφους (DEM) της περιοχής. Ωστόσο, έπρεπε το DEM του νησιού να προσαρμοστεί κατάλληλα στο περίγραμμα του νησιού της Λευκάδας. Αυτό έγινε με την ακόλουθη διαδικασία. Αρχικά παράχθηκε ένα νέο shapefile, το οποίο περιλαμβάνει την έκταση του νησιού της Λευκάδας. Αυτό έγινε ενεργοποιώντας τον Editor και χρησιμοποιώντας την εντολή Trace (Σχ. 66).

Σχήμα 66: Κατασκευή shapefile με την έκταση του νησιού της Λευκάδας, με ανάλυση 5m του DEM.

Στη συνέχεια, ακολουθήθηκαν οι ακόλουθες εντολές:

- Ύστερα στο input εισήχθη το DEM της περιοχής, ενώ στο output εισήχθη το shapefile που κατασκευάστηκε νωρίτερα (Σχ. 67).

Q Lefkada - ArcMap		- 5 ×
File Edit View Bookmarks Insert Selection Geoprocessing Customize	Windows Hele	× 218.8.
Q, Q, X, Q X, X Q + M W + U 20 Analyst + ⊘ Leukas_GGRS D 😂 🖬 😓 % () () () X + ♡ () () () () () () () () () () () () ()	Input Raster Leukas_GGRS87_DEM.tif Upup Extent (optional)	Output Extent (optional) A raster dataset or feature
Table Of Contents	perigramma teliko	Class to use as the extent. The clip output includes amy poxels that intersect the minimum bounding rectangle. If a feature class is used as the output extent and you vant to clip the raster based on the polygon features, clack Use input features for clipping geometry. If this option is used, then the pixel depth df he ninter may be
Sum_Output_levation Sum_Output_lop_new Sum_Output_5 Sum_Output_5 Sum_Output_9 Control Control Co	CL/Werriyser/booments/Wr035/Default1.gdb/j.ex/aa_GGR587_DEM_Clip2 NoData Vable (optional) -3.276/00-40-4 Maintan Clipping Extent (optional)	promoted. Therefore, you need to make sure that the output format can support the proper pixel depth. Bands Pansharpen Weight no Corrected Raster odataset -sharpened Raster odataset -sharpened Raster odataset -starpened Raster -starpened Raster -
	OK Cancel Environments << Hide Help	Tool Help

Σχήμα 67: Διαδικασία προσαρμογής του ψηφιακού μοντέλου εδάφους (DEM) στο περίγραμμα της Λευκάδας.

Έτσι, προέκυψε το DEM του νησιού (Σχ. 68).

Ακολούθως και ύστερα από την εισαγωγή και διαμόρφωση του DEM, μέσω κάποιων εντολών, παράχθηκαν οι χάρτες κλίσεων πρανούς (slope) και προσανατολισμού κλιτύων (aspect), όπως επίσης και ο χάρτης αναγλύφου (Hillshade). Θα πρέπει να αναφερθεί, πως παρατηρούνται κενά στην τοπογραφία και έλλειψη δεδομένων στο κεντρικό τμήμα του νησιού, σε μία κυκλική μορφή. Αυτό συμβαίνει πιθανότατα, επειδή η συγκεκριμένη περιοχή αποτελεί πρώην αμερικάνικη βάση ραντάρ.

Ψηφιακή συλλογή Βιβλιοθήκη

Πιο συγκεκριμένα, για να παραχθεί το Hillshade (ο χάρτης αναγλύφου), εκτελούνται οι ακόλουθες εντολές:

όπου επιλέγοντας και το shapefile των κατολισθήσεων του 2015 από το Table Of Contents, παράγεται ο αντίστοιχος χάρτης (Σχ. 69).

Επίσης, μέσω της ακόλουθης σειράς εντολών, παράχθηκε ο χάρτης κλίσεων πρανούς (slope), (Σχ. 70):

Τέλος, παράχθηκε και ο χάρτης προσανατολισμού κλιτύων (aspect), ως ακολούθως (Σχ. 71):

Σχήμα 68: Ψηφιακό Μοντέλου Εδάφους (DEM) της Λευκάδας.

Σχήμα 69: Χάρτης απεικόνισης αναγλύφου και κατολισθήσεων 2015 του νησιού της Λευκάδας (επεξεργασμένος σε περιβάλλον GIS από πρωτογενή δεδομένα των Papathanassiou et al. 2020).

Σχήμα 70: Χάρτης κλίσεων πρανούς Λευκάδας.

Παρατηρούμε το διαχωρισμό 9 κλάσεων κλίσης πρανούς, 0-5°, 5° -10°, 10°-20°, 20°-30°, 30°-40°, 40°-50°, 50°-60°, 60°-80°, 80°-89°. Κατά κύριο λόγο, οι μεγαλύτερες κλίσεις εντοπίζονται στο δυτικό τμήμα της Λευκάδας, και κυρίως στο δυτικό παραθαλάσσιο τμήμα.

Σχήμα 71: Χάρτης προσανατολισμού κλιτύων Λευκάδας.

Παρατηρούμε το διαχωρισμό 5 κλάσεων προσανατολισμού, 0-40°, 40°-115°, 115°-195°, 195°-275°, 275°-360°. Στη συνέχεια, εισήχθη στο περιβάλλον του ArcGIS το αρχείο (shapefile) που έχει να κάνει με τη γεωλογία της περιοχής, και έτσι κατασκευάστηκε ο ακόλουθος γεωλογικός χάρτης της Λευκάδας (Σχ. 72).

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 72: Γεωλογικός χάρτης Λευκάδας, (επεξεργασμένος σε περιβάλλον GIS, με πρωτογενή δεδομένα από Cushing, 1985).

Σύμφωνα με τον Cushing (1985), βάσει του αντίστοιχου γεωλογικού υπομνήματος (Σχ. 73), πρόκειται για τους ακόλουθους γεωλογικούς σχηματισμούς (Πίν. 8):

Βιβλιοθήκη Βιβλιοθήκη "ΘΕΟΦΡΑΣΤΟΣ" Τμήμα Γεωλογίας Α.Π.Θ	
3 CARTE GEOLOGIQUE DE LEVKAS ECHELLE	1/50 000°. D'APRES BORNOVAS I.G.S.R ET B.P. J.G.S.R. LEVE PARTIEL E. M. CUSHING
ZONE DE PAXOS.	ZONE IONIENNE.
TT Sable de plage. VALABLE POUR LES DEUX ZONES	
gm plage ancienne (microconglomerat	I Mincene auperlaur Pilocene marin
Qa Altuvions recentes.	Miocene moyen a superieur : (sens large)
QI" Terra Rosse.	Mmg Miocene moyen a superieur facies marno graseux.
Qe Eboulle recente.	Mb Miccene moyen a superieur factes brechlques ou conglomeratiques.
[] Tut de source.	[] Miccene moyen : facies des gres bleus d'Alexandhros
[99] Grézes uthitiées	1 Mo Miocene moyen : formations contenant des olistolites.
QC Pleistocene superieur.	Olm Olige-Miscene : Flysch.
QT Plaistacene moyen a superiour. Tablicas de béches Utbliffes	E. Eocene moyen a superieur : calcuires fins ou microbrechiques.
CP Pilacène continental conglomérats	1 IIIes. 1 C Cretaco superiaur : Albien : calcaires lites, sublithographiques.
Md. Mossinien dessale.	JC Cretace Interieur : Berriaelen : calcaires porcelanes
Miccane (Burdigallen-Messinien marin) : marnes bleues et	a rares nodules siliceux. Jm Jurassique moyen et (?) superieur.
Eocene-Aquitanien : calcaires fins, illes ou microbrachiques,	Jar Liss superieur : Facies ammonitico Rosso.
Pc Palsucane : *]] J] Norian a Lias mayon : calcairee massifs of graveleux
C3 Benodien : calcaires massifs a debris de Rudistas.	du Pantokrator. JU Dolamies,
Ci Bérriasien-Cénomanien calcaires bréchiques à microbréchique	an 1 TC Tring : calcaires sombres at delemitiques a Cardita.
US Tilhonique calcaires tilés et bitumineux à Aptychus	The Trias : breches noiraires a brunaires a elements de calcaire et
UI Jurassique inférieur à moyen dolomies pulvérulentes	de dolomie Tg Trias gypseux toujours lamine tectoniquement.

Σχήμα 73: Γεωλογικό υπόμνημα για το νησί της Λευκάδας, (Cushing, 1985).

TOT"		
Πίνακας 8: Επεξή	γηση γεωλογικών σχηματισμών, (Cushing	g, 1985).

Ψηφιακή συλλογή Βιβλιοθήκη

)@P

Αριθμός	Σύμβολο	Ερμηνεία	
1	al	Πρόσφατες αποθέσεις (Ολόκαινο)	
2	Qm	Παράκτιες αποθέσεις (συνένωση μικρολατυποπαγών), (Ολόκαινο)	
3	Qp	Άμμος (Ολόκαινο)	
4	Qt	Τραβερτίνης (Ολόκαινο)	
5	Qc	Κώνος κορημάτων (Πλειστόκαινο)	
6	М	Μπλε μάργες και μάργες (Μειόκαινο)	
7	Mb	Λατυποπαγές ή κροκαλοπαγές (Μειόκαινο)	
8	Mgb	Φάσεις μπλε ψαμμίτη (Μειόκαινο)	
9	Mmg	Φάσεις ψαμμίτη (Μειόκαινο)	
10	Olm	Φλύσχης (Ολιγο-Μειόκαινο)	
11	E	Λεπτοπλακώδεις ή θραυσμένοι ασβεστόλιθοι (Ηώκαινο)	
12	Рс	Ασβεστόλιθοι (Παλαιόκαινο)	
13	С	Στρωμένοι (bedded) ασβεστόλιθοι, υπολιθογραφικοί, με πάγκους	
1.4	6.		
14	Cod		
15	Csa		
16	Ci	Λατυποπαγεις ως μικρολατυποπαγεις ασβεστολίθοι (Βεριασίο- Κενομάνιο)	
17	Jc	Ασβεστόλιθοι με κονδύλους πυριτίου (Κρητιδικό)	
18	Js	Στρωμένοι ασβεστόλιθοι και βιτουμενιούχοι (Τιθώνιο)	
19	Jm	Ασβεστόλιθοι με πάγκους πυριτίου (Ιουρασικό)	
20	Jar	Φάσεις Ammonitico Rosso (Λιάσιο)	
21	11	Συμπαγείς ασβεστόλιθοι Παντοκράτορα με χαλίκια (Νόριο-	
21	JT	Λιάσιο)	
22	J1d	Δολομίτης (Ιουρασικό, Τριαδικό-Ιουρασικό)	
22	ть	Μαύρα ως καφέ λατυποπαγή με ασβεστόλιθο και στοιχεία	
23	10	δολομίτη (Τριαδικό)	
24	Тс	Σκούροι και δολομιτικοί ασβεστόλιθοι (Τριαδικό)	
25	Tg	Γύψος – σχιστοποιημένη (Τριαδικό)	

Η γεωλογία της Λευκάδας, όπως μελετήθηκε και από τον Bornovas (1964), αποτελείται από: μία ανθρακική σειρά της Ιονίου ζώνης, τους ασβεστόλιθους της ζώνης Παξών, η οποία περιορίζεται στη νοτιοδυτική χερσόνησο του νησιού, κάποιες γλώσσες Ιόνιου φλύσχη (τουρβιδίτες), καθώς και Μειοκαινικά μάρμαρα- ψαμμίτες, κυρίως στο βόρειο τμήμα του νησιού, (Cushing 1985, Rondoyanni-Tsiambaou 1997).

Ψηφιακή συλλογή Βιβλιοθήκη

Αναφορικά με τον παραπάνω γεωλογικό χάρτη (Σχ. 72), κυρίως Πλειστοκαινικές -Ολοκαινικές αποθέσεις εντοπίζονται στο βόρειο τμήμα του νησιού (al, Qp, Qm, Qc, Qt), όπου έχουν μεγάλη εξάπλωση, σε αντίθεση με τα υπόλοιπα νησιά του Ιονίου. Εξάλλου και η πόλη της Λευκάδας έχει κατασκευαστεί στην κοιλάδα της Βασιλικής και στον οικισμό της περιοχής Νυδρί (Papathanassiou et al. 2005, Rondoyanni et al. 2012). Επιπλέον, εντοπίζονται οι σχηματισμοί της Ιονίου ζώνης, αποτελούνται από φλύσχη (Olm), ασβεστόλιθους του Παντοκράτορα (J1), ασβεστόλιθους (C, Ci, Cs, E), δολομίτες (J1d, Tc, Tb), δολομιτικούς ασβεστόλιθους (Csd), κροκαλοπαγή-ψαμμίτες και μάργες (M, Mb, Mgb, Mmg), Ammonitico Rosso (Jar), ασβεστόλιθοι με πάγκους και κονδύλους πυριτίου (Jm, Jc). Όσον αφορά τη ζώνη των Παξών, αποτελείται από μάρμαρα, εβαπορίτες -σχιστοποιημένη γύψος- (Tg), ασβεστολίθους (E, Ci, Cs), δολομίτες (J1d), Παλαιοκαινικούς ασβεστόλιθους (Pc, Js), και κλαστικά ιζήματα Μειοκαινικής ηλικίας - Μειοκαινικοί ψαμμίτες (M).

Επιπλέον, κατασκευάστηκε και χάρτης υψομέτρων (Σχ. 74), με βάση το Ψηφιακό Μοντέλου Εδάφους (DEM) του νησιού της Λευκάδας. Η κατηγοριοποίηση των ζωνών υψομέτρου, έγινε βάσει αυτής που χρησιμοποιεί η Διεύθυνση Πολιτικής Προστασίας και η Εθνική Μετεωρολογική Υπηρεσία (Ε.Μ.Υ) για την έκδοση δελτίων Επικίνδυνων Καιρικών Φαινομένων (Πίν. 9), όπως προβλέπεται, σύμφωνα με το Φ.970/ΑΔ:7753/Σ1863/22-11-2012 της Ε.Μ.Υ. ΚλάσηΖώνηΕύρος ζώνης (m)1Πεδινή0-3002Λοφώδης300-6003Ημιορεινή600-9004Ορεινή>900

Πίνακας 9: Κατηγοριοποίηση ζωνών υψομέτρου.

Ψηφιακή συλλογή Βιβλιοθήκη

ήμα

Α

Σχήμα 74: Χάρτης υψομέτρων Λευκάδας.

Έως αυτό το σημείο, έχουν παραχθεί οι χάρτες: αναγλύφου (Hillshade), κλίσεων πρανούς (slope), προσανατολισμού κλιτύων (aspect), γεωλογικός χάρτης, καθώς και ο χάρτης υψομέτρου.

Οι παράγοντες οι οποίοι θα εξεταστούν ως προς την επιδεκτικότητά τους είναι:

Γεωλογία (Geology)

5.2 Πυκνότητα κατολισθήσεων

Kλίση (Slope)

Ψηφιακή συλλογή Βιβλιοθήκη

μήμα Γεωλογίας

- Προσανατολισμός (Aspect)
- Υψόμετρο (Elevation)

Ακολούθως, πραγματοποιήθηκε η κατάλληλη στατιστική ανάλυση, ώστε για κάθε κλάση του κάθε παράγοντα, να υπολογιστούν οι συντελεστές βάρους (Weight factors). Προτού ωστόσο να γίνει αυτό, διαχωρίστηκαν κλάσεις σε κάθε παράγοντα. Ύστερα, υπολογίστηκαν κάποια μεγέθη:

- Study area (km²): το εμβαδό όλου του νησιού
- Landslide . η έκταση των κατολισθήσεων σε όλο το νησί
- Densmap: η πυκνότητα των κατολισθήσεων σε όλο το χάρτη
- Surface area (km²): η έκταση που έχει όλη η κλάση του κάθε παράγοντα
- Surface area (%): το ποσοστό της επιφάνειας αυτής σε σχέση με όλο το νησί
- Landslide area (km²): η έκταση των κατολισθήσεων που έχουν λάβει χώρα στην κάθε κλάση.
- Landslide area (%): το ποσοστό των κατολισθήσεων μέσα σε κάθε κλάση (Densclass).
- > Total landslide density: το ποσοστό των κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο.
- Τέλος, ο weighted factor: ο συντελεστής βάρους, ο οποίος προκύπτει από την ακόλουθη σχέση:

Weight factor =
$$ln \left(\frac{densclass}{densmap}\right)$$

Όλα αυτά παρουσιάζονται παρακάτω.

Κλάση	Γεωλογική μονάδα	
1	Qm-Qp-al	
2	Qt	
3	Qc	
4	M-Mgb-Mmg-Mb-Olm	
5	E	
6	Рс	
7	C-Jc	
8	Ci-Cs-Csd	
9	Jar-Jm-Js	
10	J1-J1d	
11	Tb-Tc	
12	Тg	

Πίνακας 10: Κατηγοριοποίηση του παράγοντα της γεωλογίας σε 12 κλάσεις.

Study area (km²): το εμβαδό όλου του νησιού

Ψηφιακή συλλογή Βιβλιοθήκη

Για να υπολογιστεί το εμβαδό όλου του νησιού ακολουθήθηκε η παρακάτω διαδικασία: έχοντας ήδη φτιάξει ένα shapefile, με το περίγραμμα του νησιού της Λευκάδας, ανοίγοντας τον Attribute Table, προστέθηκε μια νέα στήλη, η οποία και ονομάστηκε «Area». Επιλέγοντάς την και εφαρμόζοντας ύστερα από δεξί κλικ το «Geometry calculator», υπολογίστηκε το εμβαδό όλου του νησιού.

Landslide geo : η έκταση των κατολισθήσεων σε όλο το νησί

Προκειμένου να υπολογιστεί το παραπάνω μέγεθος, αρχικά ενεργοποιήθηκε ο πίνακας ιδιοτήτων του αρχείου (Attribute Table του shapefile) των κατολισθήσεων του 2015. Εκεί η στήλη που μας αφορά είναι η στήλη «Enclosed Area». Επιλέγοντας αυτά τα δεδομένα, επεξεργάζοντάς τα στο Excel και αθροίζοντάς τα, υπολογίστηκε

Densmap: η πυκνότητα των κατολισθήσεων σε όλο το χάρτη

Η πυκνότητα των κατολισθήσεων σε όλο το χάρτη (Densmap), δίνεται από τη σχέση:

και προκύπτει πως Densmap = 0,42

> Surface area (km²): η έκταση που έχει όλη η κλάση του κάθε παράγοντα

Για να επιτευχθεί ο υπολογισμός του αυτού του μεγέθους, ακολουθήθηκε η παρακάτω διαδικασία: ανοίγοντας τον Attribute Table του shapefile της γεωλογίας, επιλέχθηκε η στήλη των γεωλογικών σχηματισμών (Form), και κάνοντας δεξί κλικ επιλέχθηκε η εντολή «Summarize», ενώ ζητήθηκε από το πρόγραμμα να αθροίσει την περιεχόμενη έκταση, (Στην υποκατηγορία Shape Area επιλέχθηκε το sum),(Σχ. 75).

Σχήμα 75: Διαδικασία υπολογισμού surface area (km²).

Σχήμα 76: Ο αθροιστικός πίνακας που προέκυψε ύστερα από την παραπάνω διαδικασία.

Ομαδοποιώντας τους παραπάνω σχηματισμούς στις κλάσεις που έχουν προκαθοριστεί και μετατρέποντας σε km², προκύπτει τελικά η έκταση που έχει όλη η κλάση του κάθε παράγοντα (Πίν. 11).

Κλάση	Γεωλογική μονάδα	Έκταση (km²)
1	Qm-Qp-al	27,43
2	Qt	1,63
3	Qc	15,52
4	M-Mgb-Mmg-Mb-Olm	61,29
5	E	48,32
6	Рс	1,94
7	C-Jc	22,63
8	Ci-Cs-Csd	30,29
9	Jar-Jm-Js	5,85
10	J1-J1d	86,14
11	Tb-Tc	2,56
12	Тg	0,35

Πίνακας 11: Η έκταση που έχει η κλάση του κάθε παράγοντα.

> Surface area (%): το ποσοστό της επιφάνειας αυτής σε σχέση με όλο το νησί

Έχοντας υπολογίσει την έκταση της κάθε κλάσης του κάθε παράγοντα, ανάγονται αυτές οι ποσότητες επί τοις εκατό, σε σχέση με την έκταση όλου του νησιού.

Συγκεκριμένα, η έκταση της κάθε κλάσης διαιρείται με την συνολική έκταση όλου του νησιού και πολλαπλασιάζεται επί εκατό. Έτσι, προέκυψε ο ακόλουθος πίνακας (Πίν. 12):

Ψηφιακή συλλογή Βιβλιοθήκη

Κλάση	Γεωλογική μονάδα	Έκταση (km²)	Έκταση (%)
1	Qm-Qp-al	27,43	9,02
2	Qt	1,63	0,54
3	Qc	15,52	5,11
4	M-Mgb-Mmg-Mb-Olm	61,29	20,16
5	E	48,32	15,90
6	Рс	1,94	0,64
7	C-Jc	22,63	7,45
8	Ci-Cs-Csd	30,29	9,97
9	Jar-Jm-Js	5,85	1,92
10	J1-J1d	86,14	28,34
11	Tb-Tc	2,56	0,84
12	Tg	0,35	0,12

Πίνακας 12: Υπολογισμός ποσοστού επιφάνειας σε σχέση με όλο το νησί.

Landslide area (km²): η έκταση των κατολισθήσεων που έχουν λάβει χώρα στην κάθε κλάση.

Προκειμένου να υπολογιστεί το παραπάνω μέγεθος, αρκεί να αντιστοιχισθεί κάθε κατολίσθηση σε τι γεωλογικό σχηματισμό ανήκει και στη συνέχεια να αθροιστούν οι εκτάσεις που ανήκουν σε κάθε κλάση. Για να επιτευχθεί αυτό, ακολουθείται μια συγκεκριμένη διαδικασία, η οποία και παρουσιάζεται παρακάτω.

- Πρώτο βήμα αποτελεί η μετατροπή του shapefile σε raster (cell size 10x10m).
- Δεύτερο βήμα αποτελεί η αναταξινόμηση των κλάσεων. Συγκεκριμένα, η κάθε κλάση λαμβάνει μια κωδική ονομασία, και πιο συγκεκριμένα λαμβάνει τιμές αύξοντα αριθμού. Αυτό επιτυγχάνεται μέσω των ακόλουθων εντολών:

Spatial Analyst Tools Reclass Reclassify,

όπου ως input βάζουμε το αρχείο της γεωλογίας. Στο Reclassification, εμφανίζονται αυτόματα στο old values οι γεωλογικοί σχηματισμοί, ενώ στο new values οι τιμές αναταξινόμησης καθορίστηκαν από την υποφαινόμενη (Σχ. 77). Πιο συγκεκριμένα, για να προκύψουν οι κλάσεις που παρουσιάστηκαν παραπάνω στον Πίνακα 3 (κατηγοριοποίηση του παράγοντα της γεωλογίας σε 12 κλάσεις), ο κάθε σχηματισμός πήρε την ακόλουθη κωδική τιμή (Πίν. 13)

Ψηφιακή συλλογή Βιβλιοθήκη

Q Lefkada - ArcMap		- 0	×
File Edit View Bookmarks Insert Selection Geoproces	sing Customize Windows Help		
	: 1 🖓 이 / 한 같 🗊 1 원 것 1 원 원 💶 🔹 🔂 🔀 🚂 🛓 Editor* > 🏷 1 / /	↑ 台・米 四比車×り ■図	11 P .
🔍 🔍 🕎 🥥 👯 🌠 < ា 🕅 🍟 3D Analyst	Veclassify — 🗆 🔿	× 本物社会国国の・	÷
ें 🗋 🚔 🖨 🛸 🗿 🛍 🗙 🔊 🝽 🚸 - 1:250.000	Beelessify	_	
Snapping 🗸 🔘 🖽 🔲	reclassity	\sim	-
Table Of Contents	Reclassifies (or changes)	ArcToolbox	
% 🗊 🐟 🚇 🖽	the values in a raster.	Schematics Tools Senser Tools	^
Tq	Reclassification	Space Time Pattern Mining Tools	
al al	Old values New values	🖃 🌍 Spatial Analyst Tools	
Landslides_2003 - weight factors_ 10 classes	Calability (rev)	Conditional Description	
Landslides 2015 - weight factors 10 classes	Unique	Density Distance	
		🗄 🇞 Extraction	
Landslides 2003 - weight factors_5 classes	Add Entry	🗄 🍆 Generalization	
	Delete Entries	Groundwater	
Landslides_2003_GGR587_Proje		Hydrology Internolation	
Landslides 2015-weight factors_5 classes	Load Save Reverse New Values Precision	🗉 🇞 Local	
	Output raster	🗄 🗞 Map Algebra	
UNION_Raster		🗄 🥎 Math	
Weights_tinal	Change missing values to NoData (optional)	Multivariate Multivariate	
-9,1099997,190000		Source Overlay	
-7,1899995,780000		🚯 🇞 Raster Creation	
-5,7799994,810000		🖃 🇞 Reclass	
-4,8099993,650000		Reclars by ASCIL File	
-2,3299991,110000		Reclass by Table	
-1,109999 - 0,280000		🔨 Reclassify	
0,280001 - 2,020000		Rescale by Function	
2,020001 - 4,710000		Slice	
Weights final		Solar Radiation	<u>.</u>
- 42 400000 - 6 500000		🗉 🇞 Surface	
000 0 u <	OK Cancel Environments. <<< Hirle Help Tool Help	😠 🇞 Zonal	
	er en	General Statistics Tools General Statistics Spatial Statis Spatial Statistics Spatial Statistics Spatial Stat	_

Σχήμα 77: Διαδικασία αναταξινόμησης (Reclassification).

Συμβολισμός	Τιμή Αναταξινόμησης
Qm	1
Qp	1
al	1
Qt	2
Qc	3
М	4
Mgb	4
Mmg	4
Mb	4
Olm	4

Πίνακας 13: Αναταξινόμηση κλάσεων.

Ψηφιακή συλλογή Βιβλιοθήκη	۲ ۲ ۲	
Τιήμα Γεωλογί	Συμβολισμός	Τιμή Αναταξινόμησης
А.П.Ө	E	5
	Рс	6
	С	7
	Jc	7
	Ci	8
	Cs	8
	Csd	8
	Jar	9
	Jm	9
	Js	9
	J1	10
	J1d	10
	Tb	11
	Тс	11
	Tg	12

Στη συνέχεια, προκύπτει το αναταξινομημένο αρχείο με την ονομασία Reclass_Geology (Σχ. 78).

Σχήμα 78:Το αρχείο Reclass_Geology.

Η διαδικασία για την αντιστοίχιση κάθε κατολίσθησης σε μια κλάση γεωλογικού σχηματισμού, συνεχίζεται με τις ακόλουθες εντολές:

Raster to polygon → ως input το αρχείο Reclass_Geology που προέκυψε.

Έτσι, προκύπτει ένα αρχείο με την ονομασία Raster T_Reclass (Σχ. 79).

Σχήμα 79: Αρχείο Raster T_Reclass.

Ύστερα, εφαρμόστηκαν οι εντολές:

Ψηφιακή συλλογή Βιβλιοθήκη

Analysis Tools Overlay Union,

όπου ουσιαστικά πραγματοποιήθηκε ένωση των αρχείων Landslides 2015 & Raster T_Reclass. Έτσι προέκυψε ένας πίνακας ιδιοτήτων (Attribute Table), όπου πραγματοποιήθηκε αντιστοίχιση κάθε μίας από τις 596 κατολισθήσεις σε μία κλάση γεωλογικού σχηματισμού (Σχ. 80).

a salar i	Lefkada - ArcMap File Edit View Bookma	rks Insert Selection Geoprocessing C	Customize Windo	ows Help		- <i>σ</i>
	● ● ● ● ● * 8		ukas_GGRS87_DEM	. Clip - % &	에 있 데 법 법 법 에 관 <mark>에 하 대 · · · · · · · · · · · · · · · · · ·</mark>	** ト / / ど 4 - 米 以比中 / の 目図
	Table				□ ×	ArcToolbox
	🗄 • 🖶 • 🐂 🗞 🖄 🏘	×				 B SD Analyst Tools
	Landslides - geology_Proje6				×	🖃 🌍 Analysis Tools
	OBJECTID * Shape *	FID Landslides 2015 GGRS87 Proje	ENCLOSED A	gridcode	^	🛞 🍋 Extract
	1042 Polygon	573	0.0003099 sq km	10		E S Overlay
	1043 Polygon	575	0.000742 Sq km	10		> Intersect
	1045 Polygon	576	0.003314 sq km	10		Spatial Join
	1046 Polygon	577	0.0002842 sq km	10		🔨 Union
	1047 Polygon	578	0.0004486 sq km	10		🗉 🇞 Proximity
	1048 Polygon	579	0.000852 sq km	10		🕀 🌇 Statistics
	1049 Polygon	580	0.000249 sq km	10		Cartography Tools
	1050 Polygon	582	0.0003725 sq km	1		Conversion Tools
	1052 Polygon	582	0.0003725 sq km	10		Data Interoperability Tools
	1053 Polygon	583	0.001566 sq km	1		Data Management Tools
	1054 Polygon	584	0.001053 sq km	3		Solution Texts
	1055 Polygon	584	0.001053 sq km	10		Concerting Tools
	1056 Polygon	586	0.000302 so km	10		le gooding fools
	1058 Polygon	587	0.0003691 sq km	10		E Geostatistical Analyst Tools
	1059 Polygon	588	0.0002642 sq km	10		Inear Referencing Tools
	1060 Polygon	589	0.002706 sq km	10		Multidimension Tools
	1061 Polygon	590	0.0002232 eq.km	10		Network Analyst Tools
	1063 Polygon	591	0.0004468 sq km	10		🕀 🌍 Parcel Fabric Tools
	1064 Polygon	593	0.00083 sq km	10		🕞 😂 Schematics Tools
	1065 Polygon	594	0.0002431 sq km	10		
	1066 Polygon	595	0.0002829 sq km	10		😠 🌍 Space Time Pattern Mining Tools
	1067 Polygon	596	0.000646 sq km	10	×	🗉 🌍 Spatial Analyst Tools
	1					
	I4 4 1127 ▶ ▶I	(0 out of 1127 Selected)				Spatial Statistics Tools
	Landslides - geology_Proje6	0 out of 1127 Selected)				 Spatial Statistics Tools Spatial Statistics Tools

Σχήμα 80: Αντιστοίχιση κατολίσθησης σε μία κλάση γεωλογικού σχηματισμού, μέσω του Attribute Table.

Έτσι, αφού έγινε αντιστοίχιση της κάθε κατολίσθησης σε ποια κλάση γεωλογικού σχηματισμού ανήκει, πραγματοποιήθηκε η παρακάτω διαδικασία στο Excel: έγινε διαχωρισμός στην κάθε κλάση πόσες και ποιες κατολισθήσεις έλαβαν χώρα και μετά για κάθε κλάση αθροίστηκαν οι εκτάσεις των κατολισθήσεων (Πίν. 14).

Κλάση	Γεωλογική μονάδα	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)
1	Qm-Qp-al	27,43	9,02	0,073
2	Qt	1,63	0,54	0,003
3	Qc	15,52	5,11	0,003
4	M-Mgb-Mmg-Mb- Olm	61,29	20,16	0,063
5	E	48,32	15,90	0,054
6	Рс	1,94	0,64	0,006
7	C-Jc	22,63	7,45	0,028
8	Ci-Cs-Csd	30,29	9,97	0,661
9	Jar-Jm-Js	5,85	1,92	0,017
10	J1-J1d	86,14	28,34	0,385
11	Tb-Tc	2,56	0,84	0
12	Tg	0,35	0,12	0,0003

Πίνακας 14: Άθροισμα εκτάσεων κατολισθήσεων σε κάθε κλάση.

Προκειμένου να υπολογιστεί το παραπάνω μέγεθος, σε κάθε κλάση διαιρείται η έκταση των κατολισθήσεων που έχουν λάβει χώρα σε αυτήν (Landslide area km²), προς την έκταση που έχει όλη η κλάση (Surface area km²), (Πίν. 15).

					densclass
Κλάση	Γεωλογική μονάδα	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσε ων (km²)	Πυκνότητα κατολισθήσεω ν (%)
1	Qm-Qp-al	27,43	9,02	0,073	0,26
2	Qt	1,63	0,54	0,003	0,17
3	Qc	15,52	5,11	0,003	0,02
4	M-Mgb-Mmg- Mb-Olm	61,29	20,16	0,063	0,10
5	E	48,32	15,90	0,054	0,11
6	Рс	1,94	0,64	0,006	0,32
7	C-Jc	22,63	7,45	0,028	0,12
8	Ci-Cs-Csd	30,29	9,97	0,661	2,18
9	Jar-Jm-Js	5,85	1,92	0,017	0,30
10	J1-J1d	86,14	28,34	0,385	0,45
11	Тb-Тс	2,56	0,84	0	0
12	Тg	0,35	0,12	0,0003	0,08

Πίνακας 15: Υπολογισμός ποσοστού κατολισθήσεων μέσα σε κάθε κλάση.

Total landslide density: το ποσοστό των κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο.

Αυτό το μέγεθος υπολογίστηκε ως εξής: σε κάθε κλάση διαιρείται η έκταση των κατολισθήσεων που έχουν λάβει χώρα σε αυτήν (Landslide area km²), προς την έκταση των κατολισθήσεων σε όλο το νησί (Landslide/geo), (Πίν. 16).

Πίνακας 16: Υπολογισμός ποσοστού κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο.

				<u>densclass</u>	
Γεωλογική μονάδα	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)	Συνολική πυκνότητα κατολισθήσεων (%)
Qm-Qp-al	27,43	9,02	0,073	0,26	5,62
Qt	1,63	0,54	0,003	0,17	0,21
Qc	15,52	5,11	0,003	0,02	0,20
M-Mgb-Mmg-Mb-Olm	61,29	20,16	0,063	0,10	4,86
E	48,32	15,90	0,054	0,11	4,20
Рс	1,94	0,64	0,006	0,32	0,48
C-Jc	22,63	7,45	0,028	0,12	2,17
Ci-Cs-Csd	30,29	9,97	0,661	2,18	51,21
Jar-Jm-Js	5,85	1,92	0,017	0,30	1,34
J1-J1d	86,14	28,34	0,385	0,45	29,85
Tb-Tc	2,56	0,84	0	0	0
Тg	0,35	0,12	0,0003	0,08	0,02

Τέλος, ο weighted factor: ο συντελεστής βάρους, ο οποίος προκύπτει από την ακόλουθη σχέση:

Woight factor - In	(densclass)
weight factor = th	(densmap)

Πίνακας 17: Υπολογισμός συντελεστή βάρους (weight factor).

				densclass		
Γεωλογική μονάδα	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)	Συνολική πυκνότητα κατολισθήσεων (%)	Συντελεστής βάρους
Qm-Qp-al	27,43	9,02	0,073	0,26	5,62	-0,47
Qt	1,63	0,54	0,003	0,17	0,21	-0,93
Qc	15,52	5,11	0,003	0,02	0,20	-3,23
M-Mgb-Mmg-Mb- Olm	61,29	20,16	0,063	0,10	4,86	-1,42
E	48,32	15,90	0,054	0,11	4,20	-1,33
Рс	1,94	0,64	0,006	0,32	0,48	-0,29
C-Jc	22,63	7,45	0,028	0,12	2,17	-1,23
Ci-Cs-Csd	30,29	9,97	0,661	2,18	51,21	1,64
Jar-Jm-Js	5,85	1,92	0,017	0,30	1,34	-0,36
J1-J1d	86,14	28,34	0,385	0,45	29,85	0,05
Tb-Tc	2,56	0,84	0	0	0	0
Tg	0,35	0,12	0,0003	0,08	0,02	-1,70

Όσον αφορά την κλίση των πρανών σε όλο το νησί της Λευκάδας, διαχωρίστηκαν 9 κλάσεις (Πίν. 18):

Κλάση	Γωνία κλίσης πρανούς (°)
1	0-5
2	5-10
3	10-20
4	20-30
5	30-40
6	40-50
7	50-60
8	60-80
9	>80

Πίνακας 18: Κατηγοριοποίηση του παράγοντα της κλίσης πρανούς σε 9 κλάσεις.

Study area (km²): το εμβαδό όλου του νησιού

Περιγράφηκε παραπάνω για τον παράγοντα της γεωλογίας ο τρόπος υπολογισμού του εμβαδό όλου του νησιού, ωστόσο και εδώ ακολουθήθηκε η ίδια διαδικασία, προκύπτοντας πως το εμβαδό όλου του νησιού ισούται με 301,98 km².

Landslide geo : η έκταση των κατολισθήσεων σε όλο το νησί

Όπως παρουσιάστηκε και για τον παράγοντα της γεωλογίας, υπολογίστηκε η συνολική έκταση των κατολισθήσεων σε όλο το νησί, που ισούται με 1,29 km².

Densmap: η πυκνότητα των κατολισθήσεων σε όλο το χάρτη

Η πυκνότητα των κατολισθήσεων σε όλο το χάρτη (Densmap), δίνεται από τη σχέση:

$$Densmap = \frac{\frac{Landslide}{geo}}{Study Area} * 100\%$$

και προκύπτει πως Densmap = 0,42

Surface area (km²): η έκταση που έχει όλη η κάση του κάθε παράγοντα.

Ψηφιακή συλλογή Βιβλιοθήκη

Παρουσιάστηκε και για τον παράγοντα της γεωλογίας η διαδικασία υπολογισμού του παραπάνω μεγέθους. Πιο συγκεκριμένα, για να προκύψουν οι κλάσεις που παρουσιάστηκαν παραπάνω (Πίν. 21), (κατηγοριοποίηση του παράγοντα της κλίσης σε 9 κλάσεις), η κάθε κλάση πήρε την ακόλουθη κωδική τιμή και πιο συγκεκριμένα (Πίν. 19):

Γωνία κλίσης πρανούς (°)	Τιμή Αναταξινόμησης
0-5	1
5-10	2
10-20	3
20-30	4
30-40	5
40-50	6
50-60	7
60-80	8
>80	9

Πίνακας	19:	Αναταξινόμησι	ι κλάσεων.
---------	-----	---------------	------------

Στη συνέχεια, προέκυψε το αναταξινομημένο αρχείο με την ονομασία Reclass_Slope (Σχ. 81).

Σχήμα 81: Το αρχείο Reclass_Slope.

Ακολούθως, εφαρμόστηκαν οι ακόλουθες εντολές:

Σχήμα 82: Αρχείο Raster T Reclass.

Ανοίγοντας τον Attribute Table σε αυτό το αρχείο Raster T Reclass, προστέθηκε μία στήλη «Area», όπου με δεξί κλικ και την εντολή «Calculate Geometry» προέκυψε η έκταση των αναταξινομημένων κλάσεων (Σχ. 83).

Σχήμα 83: Διαδικασία προσθήκης της στήλης Area.

Summarize → Area → Sum (Σχ. 84), προκύπτοντας το Sum Output (Σχ. 85).

Σχήμα 84: Διαδικασία άθροισης των εκτάσεων σε κάθε κλάση.

Q Lefkada - ArcMap		- 0 ×
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help		
· · · · · · · · · · · · · · · · · · ·	3 🖬 젊 음 왕 🛄 🗹 📴 🖬 🏦 🔓 👳 Editor • 🗌	トレートに有・米国が中大の1日回18月
🔍 🔍 🕙 🏈 👯 👯 🐗 🔶 🕅 🖉 + 🔟 🍟 3D Analyst + 🖗 Leukas_GGRS87_DEM_Clip 💌 🎘 💑 🦗 🍰	🚡 🛱 🛌 + 🔘 💮 💂 🤅 Georeferencing +	↓ オオオロロ Q・」
i 🗋 🚔 🖬 🖨 % 🗿 🛍 🗙 🔊 (*) 🚸 - (1:250.000) 💦 🗸 🔛 🎵 👼 🗖 🕻 🎾 🍃		
Snapping 🕶 🔘 🖽 🗊 🥃		
Table 🗆 ×	- là	ArcToolbox 🗆 ×
日 - 1 雪 - 1 唱 動 12 週 ×	1 martin	E Seature Class
Sum Output slope X		Fields
OID gridcode Count gridcode Sum Area		🗉 🗞 File Geodatabase
▶ 0 1 15087 49061204,8386		😠 🗞 General
2 3 50940 57305876,6519		Seneralization
3 4 57389 49719747,5017		Geodatabase Administration Seconstric Network
5 6 30193 32261329,0155		Fi S Graph
6 7 13831 15567190,7286		🗑 🥎 Indexes
8 9 153 23738,782241		😠 🚳 Joins
		🗉 🦓 LAS Dataset
	8	Son Devices and Table Views
	1° a	H S Photos
		Section Projections and Transformations
		🖂 🗞 Raster
		💿 🇞 Mosaic Dataset
	3	🗉 🗞 Ortho Mapping
		🗉 🗞 Raster Catalog
		Raster Dataset Rester Processing
		Clip
		Composite Bands
		🔨 Compute Pansharpen Weight
If f 1 > H = (0 out of 9 Selected)		Create Ortho Corrected Raster
Sum_Output_slope		Create Pan-sharpened Raster
Table Of Contents Table		Rester To DTED
	- , , , , ,	Resample
		Split Raster

Έτσι, προέκυψε το ακόλουθο αθροιστικό Output (Σχ. 85):

Σχήμα 85: Ο αθροιστικός πίνακας που προέκυψε ύστερα από την παραπάνω διαδικασία.

Κάνοντας όλη την παραπάνω διαδικασία, προέκυψε η έκταση (km²), που έχει η κάθε κλάση για τον παράγοντα της κλίσης πρανών, (Πίν. 20).

Κλάση	Γωνία κλίσης πρανούς (°)	Έκταση (km²)
1	0-5	49,06
2	5-10	52,48
3	10-20	57,31
4	20-30	49,72
5	30-40	41,09
6	40-50	32,26
7	50-60	15,57
8	60-80	4,26
9	>80	0,24

Πίνακας 20: Η έκταση που έχει η κάθε κλάση στον παράγοντα της κλίσης πρανών.

ιβλιοθηκη

ημα Γε Α.Π

> Surface area (%): το ποσοστό της επιφάνειας αυτής σε σχέση με όλο το νησί

Όπως παρουσιάστηκε και για τον παράγοντα της γεωλογίας, έχοντας υπολογίσει την έκταση της κάθε κλάσης του παράγοντα κλίσης πρανούς, ανάγονται αυτές οι ποσότητες επί τοις εκατό, σε σχέση με την έκταση όλου του νησιού. Έτσι, προέκυψε ο ακόλουθος πίνακας (Πίν. 21):

Κλάση	Γωνία κλίσης πρανούς (°)	Έκταση (km²)	Έκταση (%)
1	0-5	49,06	16,25
2	5-10	52,48	17,38
3	10-20	57,31	18,98
4	20-30	49,72	16,47
5	30-40	41,09	13,61
6	40-50	32,26	10,68
7	50-60	15,57	5,16
8	60-80	4,26	1,41
9	>80	0,24	0,08

Πίνακας 21: Υπολογισμός ποσοστού επιφάνειας σε σχέση με όλο το νησί.

Landslide area (km²): η έκταση των κατολισθήσεων που έχουν λάβει χώρα στην κάθε κλάση.

Πραγματοποιήθηκε αντιστοίχιση κάθε κατολίσθησης με την κλάση κλίσης πρανούς στην οποία ανήκει και στη συνέχεια αθροίστηκαν οι εκτάσεις που ανήκουν σε κάθε κλάση. Έτσι προέκυψε ένας μεγάλος πίνακας ιδιοτήτων (Attribute Table), όπου
ραγματοι	υλλογή Βηκη τοιήθηκε αντις	στοίχιση	ι κά	ε μίας από τις 596 κατολισθήσεις σε μία	ι ατ
ις κλασεια	; κλισης πρανοι	υς (Σχ. δ	36).		
Lefkada - ArcMap				1777	٥
1 <u>9</u> 0 :: 314 D 26 8 4 9 8 		eukas_GGRS87_DEM_C	lip 🗾 🧖	• ≟ È È ⊨ • © © g i Georeferencing • ∨ ⊀ ≴ ≰ ∦ ⊞ ⊡ ⊙ • g	
ible					
Indslides - slope_new_Proje4				x	
OBJECTID * Shape * 136465 Polygon	FID Landslides 2015 GGRS87 Proje 517	ENCLOSED A	gridcode 5	^	
136466 Polygon	517	0.0004906 sq km	6		
136467 Polygon 136468 Polygon	517	0.0003916 sq km	6		tion
136469 Polygon	518	0.0003916 sq km	5		
136470 Polygon 136471 Polygon	519	0.0001486 sq km	5		
136472 Polygon	520	0.000669 sq km	6		
136473 Polygon	520	0.000669 sq km	5		
136475 Polygon	521	0.0004527 sq km	4		
136476 Polygon	521	0.0004527 sq km	3		
136478 Polygon	521	0.0004527 sq km	4		
136479 Polygon	522	0.000171 sq km	4		mations
136480 Polygon	522	0.000171 sq km	5		
136482 Polygon	523	0.00056 sq km	2		
136483 Polygon	523	0.00056 sq km	4		
136485 Polycon	523	0.00056 sq km	4		
136486 Polynon	523	0.00056 sq km	5		
roo roo rongon	523	0.00056 sq km	3		
136487 Polygon 136488 Polygon	524	0.0004211 sq km	3		
136487 Polygon 136488 Polygon 136489 Polygon	524	and the second se			
136487 Polygon 136488 Polygon 136489 Polygon 136490 Polygon	524	0.000264 sq km	3	v	men Wei
136487 Polygon 136488 Polygon 136489 Polygon 136490 Polygon 136490 Polygon ↓ 136860 → ↓1	525 525 (0 out of 136860 Selected) 1	0.000264 sq km	3	· · · · · · · · · · · · · · · · · · ·	rpen Weig rected Ras ened Rast

Σχήμα 86: Αντιστοίχιση κατολίσθησης σε μία κλάση κλίσης πρανούς, μέσω του Attribute Table.

Έτσι, αφού έγινε αντιστοίχιση της κάθε κατολίσθησης σε ποια κλάση κλίσης πρανούς ανήκει, έγινε διαχωρισμός, σε κάθε κλάση πόσες και ποιες κατολισθήσεις έλαβαν χώρα και μετά για κάθε κλάση αθροίστηκαν οι εκτάσεις των κατολισθήσεων (Πίν. 22).

Κλάση	Γωνία κλίσης πρανούς (°)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)
1	0-5	49,06	16,25	0,0004
2	5-10	52,48	17,38	0,0006
3	10-20	57,31	18,98	0,0179
4	20-30	49,72	16,47	0,0351
5	30-40	41,09	13,61	0,4497
6	40-50	32,26	10,68	0,6930
7	50-60	15,57	5,16	0,0811
8	60-80	4,26	1,41	0,0143
9	>80	0,24	0,08	0

Πίνακας 22: Άθροισμα εκτάσεων κατολισθήσεων σε κάθε κλάση.

Class landslide density (%): το ποσοστό των κατολισθήσεων μέσα σε κάθε

Προκειμένου να υπολογιστεί το παραπάνω μέγεθος, σε κάθε κλάση διαιρείται η έκταση των κατολισθήσεων που έχουν λάβει χώρα σε αυτήν (Landslide area km²), προς την έκταση που έχει όλη η κλάση (Surface area km²), (Πίν.23).

Ψηφιακή συλλογή Βιβλιοθήκη

κλάση (Densclass).

					densclass
Κλάση	Γωνία κλίσης πρανούς (°)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσε ων (km²)	Πυκνότητα κατολισθήσεων (%)
1	0-5	49,06	16,25	0,0004	0,001
2	5-10	52,48	17,38	0,0006	0,0012
3	10-20	57,31	18,98	0,0179	0,03
4	20-30	49,72	16,47	0,0351	0,07
5	30-40	41,09	13,61	0,4497	1,09
6	40-50	32,26	10,68	0,6930	2,15
7	50-60	15,57	5,16	0,0811	0,52
8	60-80	4,26	1,41	0,0143	0,34
9	>80	0,24	0,08	0	0

Πίνακας 23: Υπολογισμός ποσοστού κατολισθήσεων μέσα σε κάθε κλάση.

Total landslide density: το ποσοστό των κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο.

Αυτό το μέγεθος υπολογίστηκε ως εξής: σε κάθε κλάση διαιρείται η έκταση των κατολισθήσεων που έχουν λάβει χώρα σε αυτήν (Landslide area km²), προς την έκταση των κατολισθήσεων σε όλο το νησί (Landslide/geo), (Πίν. 24).

Πίνακας 24: Υπολογισμός ποσοστού κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο.

					densclass	
Κλάση	Γωνία κλίσης πρανούς (°)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)	Συνολκή πυκνότητα κατολισθήσεων
1	0-5	49,06	16,25	0,0004	0,001	0,03
2	5-10	52,48	17,38	0,0006	0,0012	0,05
3	10-20	57,31	18,98	0,0179	0,03	1,39
4	20-30	49,72	16,47	0,0351	0,07	2,72
5	30-40	41,09	13,61	0,4497	1,09	34,86
6	40-50	32,26	10,68	0,6930	2,15	53,72
7	50-60	15,57	5,16	0,0811	0,52	6,28
8	60-80	4,26	1,41	0,0143	0,34	1,11
9	>80	0,24	0,08	0	0	0

Τέλος, ο weighted factor: ο συντελεστής βάρους, ο οποίος προκύπτει από την ακόλουθη σχέση:

Waight factor - In	(densclass)
	(densmap)

Πίνακας 25: Υπολογισμός συντελεστή βάρους (weight factor).

					densclass		
Κλάση	Γωνία κλίσης πρανούς (°)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)	Συνολκή πυκνότητα κατολισθήσεων	Συντελεστής βάρους
1	0-5	49,06	16,25	0,0004	0,001	0,03	-6,26
2	5-10	52,48	17,38	0,0006	0,0012	0,05	-5,88
3	10-20	57,31	18,98	0,0179	0,03	1,39	-2,61
4	20-30	49,72	16,47	0,0351	0,07	2,72	-1,80
5	30-40	41,09	13,61	0,4497	1,09	34,86	0,94
6	40-50	32,26	10,68	0,6930	2,15	53,72	1,62
7	50-60	15,57	5,16	0,0811	0,52	6,28	0,20
8	60-80	4,26	1,41	0,0143	0,34	1,11	-0,24
9	>80	0,24	0,08	0	0	0	0

Αναφορικά με τον προσανατολισμό των κλιτύων σε όλο το νησί της Λευκάδας, κατηγοριοποιήθηκαν σε 5 κλάσεις (Πίν. 26).

Πίνακας 26: Και	τηνοριοποίηση του	παράνοντα τοι	υ προσανατολι	σμού κλιτύων	σε 5 κλάσεις.
nerana zor na		napa jovia io	o npoouvatoni		00 3 10100013.

Κλάση	Προσανατολισμός (°)
1	0-40
2	40-115
3	115-195
4	195-275
5	275-360

Study area (km²): το εμβαδό όλου του νησιού

Ψηφιακή συλλογή Βιβλιοθήκη

5.2.3 Προσανατολισμός κλιτύων

Η διαδικασία περιγράφηκε και παραπάνω για τους παράγοντες της γεωλογίας, κλίσης πρανών. Έτσι, όπως προέκυψε και εδώ, το εμβαδό όλου του νησιού, ισούται με 301,98 km².

Landslide geo : η έκταση των κατολισθήσεων σε όλο το νησί

Όπως παρουσιάστηκε και για τους παράγοντες της γεωλογίας και τις κλίσεις πρανών, υπολογίστηκε η συνολική έκταση των κατολισθήσεων σε όλο το νησί, η οποία και ισούται με 1,29 km².

Densmap: η πυκνότητα των κατολισθήσεων σε όλο το χάρτη

Η πυκνότητα των κατολισθήσεων σε όλο το χάρτη (Densmap), δίνεται από τη σχέση:

και προκύπτει πως Densmap = 0,42

Η διαδικασία παρουσιάστηκε παραπάνω. Πραγματοποιήθηκε κατηγοριοποίηση του παράγοντα προσανατολισμού σε 5 κλάσεις και η κάθε κλάση πήρε την ακόλουθη κωδική τιμή (Πίν. 27):

Πίνακας 27: Αναταξινόμηση κ	κλάσεων.
-----------------------------	----------

Προσανατολισμός (°)	Τιμή Αναταξινόμησης
0-40	1
40-115	2
115-195	3
195-275	4
275-360	5

Στη συνέχεια, προέκυψε το αναταξινομημένο αρχείο με την ονομασία Reclass_Aspect (Σχ. 87).

Σχήμα 87: Το αρχείο Reclass_Aspect.

Ακολούθως, εφαρμόστηκαν οι ακόλουθες εντολές:

Raster to polygon → ως input το αρχείο Reclass_Aspect που προέκυψε.

Έτσι, προκύπτει ένα αρχείο με την ονομασία Raster T_Reclass (Σχ. 88).

Σχήμα 88: Το αρχείο Raster T_Reclass.

Ανοίγοντας τον πίνακα ιδιοτήτων (Attribute Table) σε αυτό το αρχείο Raster T_Reclass, προστέθηκε η στήλη «Area», όπου με δεξί κλικ και την εντολή «Calculate Geometry» προέκυψε η έκταση των αναταξινομημένων κλάσεων (Σχ. 89).

Q Lefkada - ArcMap		- 🛛 ×
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows	Help	
	: 3 3 7 7 7 8 8 8 8 9 9 🔽 🗸 🕞 8 6 9 - Edito	・トトリノアガ・実内や市メタ目図18日
ি 🍳 🔍 🛐 🎱 । 💥 👯 🗸 । 💠 🔶 । 🔯 - 🖾 🍟 i 3D Analyst - । 🖗 Leukas_GGRS87_DEM_Clip	🔽 🦟 🗞 🍰 🖾 🖕 🔛 🕲 🖉 🧝 i Georeferencing -	
ें 🗋 🚰 🔚 🖨 🖏 🗿 🛍 🗙 🗠 🗠 🧑 - 🛛 1:250.000 🛛 💎 👥	👼 🗁 🦫 🖕	
Snapping • O B D D		
	= +1	ArcToolbox 🗆 🗙
lable	L X	🗉 🇞 Feature Class
[] -] 탑 -] 탭 전 🗅 🕸 🗙		Features
RasterT_Reclass2	× /.	💿 🇞 Fields
OBJECTID* Shape* gridcode Area	n ka	🗷 🗞 File Geodatabase
1 Polygon 2 68,467	and a second sec	🛞 🇞 General
2 Polygon 2 68,467		🛞 🇞 Generalization
4 Polygon 5 167,15		🕀 🇞 Geodatabase Administration
5 Polygon 2 200		Geometric Network
6 Polygon 4 100		🐨 🇞 Graph
7 Polygon 4 400		+ S Indexes
8 Polygon 2 1171,4		Soloins
9 Polygon 1 200		T AS Datarat
11 Polygon 1 139.52		So Louis and Table Vision
12 Polygon 1 100	123	Cayers and Table Views
13 Polygon 2 100		a Speckage
14 Polygon 2 329,24		E S Photos
15 Polygon 2 200		Projections and Transformations
17 Polygon 1 200	6 8	🖃 🇞 Raster
18 Polygon 2 100	(A) ~	🖽 🍋 Mosaic Dataset
19 Polygon 1 139,52	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	🗉 🇞 Ortho Mapping
20 Polygon 2 100		III 🇞 Raster Catalog
21 Polygon 3 100		🕀 🇞 Raster Dataset
22 Polygon 2 00,407		Raster Processing
24 Polygon 5 100	0	5 Clin
25 Polygon 1 100		S Composite Bands
26 Polygon 1 300	* <u>N</u>	Compute Panchaman Weight
14 4 0 b bl III (0 out of 68500 Selected)	l w	Compute Pansharpen Weight
(v out of door of door of decided)	P	Create Ortho Corrected Raster
RasterT_Reclass2		Create Pan-snarpened Kaster
Table Of Contents III Table		Extract Subdataset
		Raster To DTED
		Resample

Σχήμα 89: Διαδικασία προσθήκης της στήλης Area.

Προκειμένου να αθροιστούν οι εκτάσεις για κάθε κλάση, επιλέχθηκε η στήλη Gridcode, και με δεξί κλικ επιλέχθηκαν οι εντολές:

Summarize Area Sum (Σχ. 90), προκύπτοντας το Sum Output (Σχ. 91).

Ψητοριακή συλλογή Βιβλιοθήκη Θιβλιοθήκη Θιβλιοθήκη Γίε Edit View Bookmarks Inset Selection Geoprocessing Customiz Θιβιζιζιφικά Θιβιζιφικά Θιβιζιφικά Θιβιζιφικά Βιβλιοθήκη Θιβιζιφικά Θιβιζιφικά Βιβιζιφικά Βιβιζιφικά Θιβιζιφικά Βιβιζιφικά Βιβιζιφικά	e Windows Help	- 6 × ** > M / パガロ・米 12日中×の 10日間。
Table □ • □ • □ • □ □ □ □ □ □ □ □ □ □ □ □ □ □	Summatize creates a new table containing one record for each unique value of the selected field, along with statistics summating any of the other fields.	ArcToolbox × Image: Section of the sec

Σχήμα 90: Διαδικασία άθροισης των εκτάσεων σε κάθε κλάση.

Έτσι, προέκυψε το ακόλουθο αθροιστικό Output (Σχ. 91):

Q Lefkada - ArcMap		- 5 ×
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help		
	: 여 전 전 1 월 1 월 2 🖬 🚾 🗸 🖻 🖬 👧 💂 🗄 Editor •	・トレノアム・米国出車メタ目回回日
	🖌 🚣 🚔 🔄 🕞 v 🔘 🔘 📮 Georeferencing •	
	Ē	
		ArcToolbox 🗆 🗙
Table		🕀 🇞 Feature Class 🔥
[[] -] 탑 -] 唱 정 🛛 🚳 🗙		III 🗞 Features
Sum_Output_aspect	×	Fields
OID gridcode Count gridcode Sum Area	Prove Prove	File Geodatabase Seperal
1 2 12601 73155627,8524	- Cint	Generalization
2 3 12415 63877366,8697		🗉 🗞 Geodatabase Administration
4 5 11309 71772652,1719		🕢 🍋 Geometric Network
		🗃 🌄 Graph
		Goins
		🗉 🗞 LAS Dataset
		Eavers and Table Views
		🕀 🇞 Package
		Photos Provide the second Transformations
	2	Rester
		🛞 🇞 Mosaic Dataset
		🕢 🚳 Ortho Mapping
		😠 🇞 Raster Catalog
		Raster Dataset
	0	Clip
		🔨 Composite Bands
		🔨 Compute Pansharpen Weight
(0 out of 5 Selected)		Create Ortho Corrected Raster
Sum_Output_aspect		Create Pan-sharpened Raster Evtract Subdatacet
Table Of Contents III Table		Raster To DTED
0010H K		🔨 Resample
		🔨 Split Raster

Σχήμα 91: Ο αθροιστικός πίνακας που προέκυψε ύστερα από την παραπάνω διαδικασία.

Κάνοντας όλη την παραπάνω διαδικασία, προέκυψε η έκταση (km²), που έχει η κάθε κλάση για τον παράγοντα του προσανατολισμού κλιτύων, (Πίν. 28).

Πίνακας 28: Η έκταση που έχει η κάθε κλάση στον παράγοντα του προσανατολισμού κλιτύων.

Ψηφιακή συλλογή Βιβλιοθήκη

A.Π.(

Κλάση	Προσανατολισμός (°)	Έκταση (km²)
1	0-40	27,61
2	40-115	73,16
3	115-195	63,88
4	195-275	65,54
5	275-360	71,77

> Surface area (%): το ποσοστό της επιφάνειας αυτής σε σχέση με όλο το νησί

Όπως έχει παρουσιαστεί, ανάγονται οι παραπάνω ποσότητες επί τοις εκατό, σε σχέση με την έκταση όλου του νησιού. Έτσι, προέκυψε ο ακόλουθος πίνακας (Πίν. 29):

Κλάση	Προσανατολισμός (°)	Έκταση (km²)	Έκταση (%)
1	0-40	27,61	9,14
2	40-115	73,16	24,23
3	115-195	63,88	21,15
4	195-275	65,54	21,70
5	275-360	71,77	23,77

Πίνακας 29: Υπολογισμός ποσοστού επιφάνειας σε σχέση με όλο το νησί.

Landslide area (km²): η έκταση των κατολισθήσεων που έχουν λάβει χώρα στην κάθε κλάση.

Όπως έχει παρουσιαστεί και προηγουμένως, πραγματοποιήθηκε η αναταξινόμηση των κλάσεων (reclassification) και ένωση των αρχείων Landslides 2015 & Raster T_Reclass. Έτσι προέκυψε ένας μεγάλος πίνακας ιδιοτήτων (Attribute Table), όπου πραγματοποιήθηκε αντιστοίχιση κάθε μίας από τις 596 κατολισθήσεις σε μία από τις κλάσεις προσανατολισμού κλιτύος (Σχ. 92).

Σχήμα 92: Αντιστοίχιση κάθε κατολίσθησης σε μία κλάση προσανατολισμού κλιτύος, μέσω του Attribute Table.

Έτσι, αφού έγινε αντιστοίχιση της κάθε κατολίσθησης σε ποια κλάση προσανατολισμού ανήκει, πραγματοποιήθηκε η παρακάτω διαδικασία στο Excel: έγινε διαχωρισμός στην κάθε κλάση πόσες και ποιες κατολισθήσεις έλαβαν χώρα και μετά για κάθε κλάση αθροίστηκαν οι εκτάσεις των κατολισθήσεων (Πίν. 30).

Κλάση	Προσανατολισμός (°)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)
1	0-40	27,61	9,14	0,0108
2	40-115	73,16	24,23	0,011
3	115-195	63,88	21,15	0,019
4	195-275	65,54	21,70	0,521
5	275-360	71,77	23,77	0,731

Πίνακας 30: Άθροισμα εκτάσεων κατολισθήσεων σε κάθε κλάση.

Class landslide density (%): το ποσοστό των κατολισθήσεων μέσα σε κάθε κλάση (Densclass).

Ψηφιακή συλλογή Βιβλιοθήκη

Σε κάθε κλάση διαιρείται η έκταση των κατολισθήσεων που έχουν λάβει χώρα σε αυτήν (Landslide area km²), προς την έκταση που έχει όλη η κλάση (Surface area km²), (Πίν. 31).

					densclass
Κλάση	Προσανατολισμός (°)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)
1	0-40	27,61	9,14	0,0108	0,04
2	40-115	73,16	24,23	0,011	0,02
3	115-195	63,88	21,15	0,019	0,03
4	195-275	65,54	21,70	0,521	0,79
5	275-360	71,77	23,77	0,731	1,02

Πίνακας 31: Υπολογισμός ποσοστού κατολισθήσεων μέσα σε κάθε κλάση.

Total landslide density: το ποσοστό των κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο. (Πίν. 32).

Πίνακας 32: Υπολογισμός ποσοστού κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο.

					densclass	
Κλάση	Προσανατολισμός (°)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)	Συνολική πυκνότητα κατολισθήσεων
1	0-40	27,61	9,14	0,0108	0,04	0,84
2	40-115	73,16	24,23	0,011	0,02	0,86
3	115-195	63,88	21,15	0,019	0,03	1,45
4	195-275	65,54	21,70	0,521	0,79	40,35
5	275-360	71,77	23,77	0,731	1,02	56,67

Τέλος, ο weighted factor: ο συντελεστής βάρους, ο οποίος προκύπτει από την ακόλουθη σχέση:

Waight factor - In	(densclass)
weight factor - th	(densmap)

Πίνακας 33: Υπολογισμός συντελεστή βάρους (weight factor).

					densclass		
Κλάση	Προσανατολισμός (°)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)	Συνολική πυκνότητα κατολισθήσεων	Συντελεστής βάρους
1	0-40	27,61	9,14	0,0108	0,04	0,84	-2,39
2	40-115	73,16	24,23	0,011	0,02	0,86	0,70
3	115-195	63,88	21,15	0,019	0,03	1,45	-2,68
4	195-275	65,54	21,70	0,521	0,79	40,35	0,62
5	275-360	71,77	23,77	0,731	1,02	56,67	0,87

Αναφορικά με το υψόμετρο σε όλο το νησί της Λευκάδας, κατηγοριοποιήθηκε σε 4 κλάσεις (Πίν. 34). Η κατηγοριοποίηση των ζωνών υψομέτρου, έγινε βάσει αυτής που χρησιμοποιεί η Διεύθυνση Πολιτικής Προστασίας και η Εθνική Μετεωρολογική Υπηρεσία (Ε.Μ.Υ) για την έκδοση δελτίων Επικίνδυνων Καιρικών Φαινομένων, όπως προβλέπεται, σύμφωνα με το Φ.970/ΑΔ:7753/Σ1863/22-11-2012 της Ε.Μ.Υ.

Πίνακας 34: Κατηγοριοποίηση του παράγοντα του υψομέτρου σε 4 κλάσεις.

Κλάση	Υψόμετρο(m)
1	0-300
2	300-600
3	600-900
4	>900

Study area (km²): το εμβαδό όλου του νησιού

Ψηφιακή συλλογή Βιβλιοθήκη

5.2.4 Υψόμετρο

Όπως περιγράφηκε και παραπάνω για τους παράγοντες της γεωλογίας, κλίσης πρανών και προσανατολισμού κλιτύων, το εμβαδό όλου του νησιού ισούται με 301,98 km².

Landslide geo : η έκταση των κατολισθήσεων σε όλο το νησί

Όπως παρουσιάστηκε και για τους άλλους παράγοντες, συνολική έκταση των κατολισθήσεων σε όλο το νησί, η οποία και ισούται με 1,29 km².

Densmap: η πυκνότητα των κατολισθήσεων σε όλο το χάρτη

Η πυκνότητα των κατολισθήσεων σε όλο το χάρτη (Densmap), δίνεται από τη σχέση:

και προκύπτει πως Densmap = 0,42

Surface area (km²): η έκταση που έχει η κάθε κλάση του υψομέτρου

Ψηφιακή συλλογή Βιβλιοθήκη

Για να επιτευχθεί ο υπολογισμός του αυτού του μεγέθους, κατηγοριοποιήθηκε ο παράγοντας του υψομέτρου σε 4 κλάσεις), η κάθε κλάση πήρε την ακόλουθη κωδική τιμή και πιο συγκεκριμένα (Πίν. 35):

Υψόμετρο (m)	Τιμή Αναταξινόμησης
0-300	1
300-600	2
600-900	3
>900	4

Πίνακας 35: Αναταξινόμηση κλάσεων.

Στη συνέχεια, προέκυψε το αναταξινομημένο αρχείο με την ονομασία Reclass Elevation (Σχ. 93).

Σχήμα 93: Το αρχείο Reclass_Elevation.

Ακολούθως, εφαρμόστηκαν οι ακόλουθες εντολές:

Raster to polygon → ως input το αρχείο Reclass_Elevation που προέκυψε.

Έτσι, προκύπτει ένα αρχείο με την ονομασία Raster T_Reclass (Σχ. 94).

Σχήμα 94: Το αρχείο Raster T_Reclass.

Ανοίγοντας τον πίνακα ιδιοτήτων (Attribute Table) σε αυτό το αρχείο Raster Τ Reclass, προστέθηκε η στήλη «Area», όπου με δεξί κλικ και την εντολή «Calculate Geometry» προέκυψε η έκταση των αναταξινομημένων κλάσεων (Σχ. 95).

Σχήμα 95: Διαδικασία προσθήκης της στήλης Area.

Προκειμένου να αθροιστούν οι εκτάσεις για κάθε κλάση, επιλέχθηκε η στήλη Gridcode, και με δεξί κλικ επιλέχθηκαν οι εντολές:

Σχήμα 96: Διαδικασία άθροισης των εκτάσεων σε κάθε κλάση.

Έτσι, προέκυψε το ακόλουθο αθροιστικό Output (Σχ. 97):

Σχήμα 97: Ο αθροιστικός πίνακας που προέκυψε ύστερα από την παραπάνω διαδικασία.

Κάνοντας όλη την παραπάνω διαδικασία, προέκυψε η έκταση (km²), που έχει η κάθε κλάση υψομέτρου (Πίν. 36).

όμα Γεω	Noviac		
ΛΠ	Κλάση	Υψόμετρο (m)	Έκταση (km²)
Addin	1	0-300	147,5
	2	300-600	104,26
	3	600-900	37,13
	4	>900	13,1

Πίνακας 36: Η έκταση που έχει η κάθε κλάση στον παράγοντα του υψομέτρου.

Ψηφιακή συλλογή Βιβλιοθήκη

Surface area (%): το ποσοστό της επιφάνειας αυτής σε σχέση με όλο το νησί

Για να υπολογιστεί, η έκταση της κάθε κλάσης διαιρείται με την συνολική έκταση όλου του νησιού και πολλαπλασιάζεται επί εκατό. Έτσι, προέκυψε ο ακόλουθος πίνακας (Πίν. 37):

Πίνακας 37: Υπολογισμός ποσοστού επιφάνειας σε σχέση με όλο το νησί.

Κλάση	Υψόμετρο (m)	Έκταση (km²)	Έκταση (%)
1	0-300	147,5	48,84
2	300-600	104,26	34,53
3	600-900	37,13	12,30
4	>900	13,1	4,34

> Landslide area (km²): η έκταση των κατολισθήσεων που έχουν λάβει χώρα στην κάθε κλάση.

Προκειμένου να υπολογιστεί το παραπάνω μέγεθος, αρκεί να πραγματοποιηθεί αντιστοίχιση κάθε κατολίσθηση σε ποια κλάση υψομέτρου ανήκει και στη συνέχεια να αθροιστούν οι εκτάσεις που ανήκουν σε κάθε κλάση. Έτσι προέκυψε ο ακόλουθος πίνακας ιδιοτήτων (Attribute Table), (Σχ. 98).

Σχήμα 98: Αντιστοίχιση κάθε κατολίσθησης σε μία κλάση υψομέτρου, μέσω του Attribute Table.

Έτσι, έγινε διαχωρισμός στην κάθε κλάση πόσες και ποιες κατολισθήσεις έλαβαν χώρα και μετά για κάθε κλάση αθροίστηκαν οι εκτάσεις των κατολισθήσεων (Πίν. 38).

Κλάση	Υψόμετρο (m)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)
1	0-300	147,5	48,84	1,13
2	300-600	104,26	34,53	0,16
3	600-900	37,13	12,30	0
4	>900	13,1	4,34	0

Πίνακας 38: Άθροισμα εκτάσεων κατολισθήσεων σε κάθε κλάση.

Class landslide density (%): το ποσοστό των κατολισθήσεων μέσα σε κάθε κλάση (Densclass).

Σε κάθε κλάση διαιρείται η έκταση των κατολισθήσεων που έχουν λάβει χώρα σε αυτήν (Landslide area km²) , προς την έκταση που έχει όλη η κλάση (Surface area km²), (Πίν. 39). Πίνακας 39: Υπολογισμός ποσοστού κατολισθήσεων μέσα σε κάθε κλάση.

Ψηφιακή συλλογή Βιβλιοθήκη

[saloving

					densclass
Κλάση	Υψόμετρο (m)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)
1	0-300	147,5	48,84	1,13	0,77
2	300-600	104,26	34,53	0,16	0,16
3	600-900	37,13	12,30	0	0
4	>900	13,1	4,34	0	0

Total landslide density: το ποσοστό των κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο.

Αυτό το μέγεθος υπολογίστηκε ως εξής: σε κάθε κλάση διαιρείται η έκταση των κατολισθήσεων που έχουν λάβει χώρα σε αυτήν (Landslide area km²), προς την έκταση των κατολισθήσεων σε όλο το νησί (Landslide/geo), (Πίν. 40).

Πίνακας 40: Υπολογισμός ποσοστού κατολισθήσεων μέσα στην κάθε κλάση σε σχέση με το σύνολο.

					densclass	
Κλάση	Υψόμετρο (m)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)	Συνολική πυκνότητα κατολισθήσεων
1	0-300	147,5	48,84	1,13	0,77	87,58
2	300-600	104,26	34,53	0,16	0,16	12,59
3	600-900	37,13	12,30	0	0	0
4	>900	13,1	4,34	0	0	0

Τέλος, ο weighted factor: ο συντελεστής βάρους, ο οποίος προκύπτει από την ακόλουθη σχέση:

Waight factor - In	(densclass)
weight factor – th	(densmap)

Πίνακας 41: Υπολογισμός συντελεστή βάρους (weight factor).

					densclass		
Κλάση	Υψόμετρο (m)	Έκταση (km²)	Έκταση (%)	Έκταση κατολισθήσεων (km²)	Πυκνότητα κατολισθήσεων (%)	Συνολική πυκνότητα κατολισθήσεων	Συντελεστής βάρους
1	0-300	147,5	48,84	1,13	0,77	87,58	0,58
2	300-600	104,26	34,53	0,16	0,16	12,59	-1,01
3	600-900	37,13	12,30	0	0	0	0
4	>900	13,1	4,34	0	0	0	0

Έτσι, προκύπτει συνοπτικά ο ακόλουθος συγκεντρωτικός πίνακας κλάσεων και συντελεστών βάρους (Πίν. 42):

88

Ψηφιακή συλλογή Βιβλιοθήκη

Παράγοντας	Αρ.	Κλάσεις	Συντελεστής βάρους
	1	Qm-Qp-al	-0,47
	2	Qt	-0,93
	3	Qc	-3,23
Γεωλογία	4	M-Mgb-Mmg-Mb-Olm	-1,42
	5	E	-1,33
	6	Рс	-0,29
	7	C-Jc	-1,23
	8	Ci-Cs-Csd	1,64
	9	Jar-Jm-Js	-0,36
	10	J1-J1d	0,05
	11	Tb-Tc	0
	12	Tg	-1,7
	1	0-5	-6,26
	2	5-10	-5,88
	3	10-20	-2,61
Κλίση	4	20-30	-1,8
	5	30-40	0,94
	6	40-50	1,62
	7	50-60	0,20
	8	60-80	-0,24
	9	>80	0
	1	0-40	-2,39
	2	40-115	0,7
Προσανατολισμός	3	115-195	-2,68
	4	195-275	0,62
	5	275-360	0,87
	1	0-300	0,58
Υψόμετρο	2	300-600	-1,01
	3	600-900	0
	4	>900	0

Πίνακας 42: Συγκεντρωτικός πίνακας κλάσεων – συντελεστών βάρους.

5.3 Διαδικασία κατασκευής χάρτη επιδεκτικότητας

Ψηφιακή συλλογή Βιβλιοθήκη

μήμα Γεωλογίας Α.Π.Θ

Γενικά, ο χάρτης επιδεκτικότητας κατασκευάστηκε με βάση τα δεδομένα των κατολισθήσεων του 2015. Σε αυτό το στάδιο, πραγματοποιήθηκε ουσιαστικά αναταξινόμηση της κάθε κλάσης του κάθε παράγοντα, με τον αντίστοιχο συντελεστή βάρους. Ο σκοπός που έγινε η παραπάνω διαδικασία, είναι πως ουσιαστικά για κάθε pixel του χάρτη, θέλουμε να αθροίσουμε όλους τους συντελεστές βάρους και από αυτά τα αθροίσματα να εξαχθούν οι κατηγορίες επιδεκτικότητας (μέσω της μεθόδου natural breaks).

Όπως προαναφέρθηκε, οι κλάσεις έλαβαν τις τιμές των συντελεστών βάρους. Αυτό επιτεύχθηκε πάλι μέσω των ακόλουθων εντολών:

όπου ως input εισήχθησαν τα ήδη αναταξινομημένα από πριν αρχεία (Reclass_Geology, Reclass_Slope, Reclasss_Aspect, Reclass_Elevation). Αυτόματα εμφανίζονται ως old values, οι τιμές αναταξινόμησης για κάθε κλάση που είχαν προηγουμένως ληφθεί (οι αυξανόμενες τιμές 1,2,3,4, κλπ). Ως new values εισάγονται οι τιμές των συντελεστών βάρους (weighted factors) για κάθε κλάση. Ωστόσο, αξίζει να τονισθεί πως το σύστημα της Αναταξινόμησης (Reclassification) δεν δέχεται δεκαδικές τιμές (στις οποίες είναι εκφρασμένοι οι συντελεστές βάρους/weighted factors), και συνεπώς εισάγονται πολλαπλασιασμένοι επί εκατό. Ακολούθως και όταν στη συνέχεια θα αθροιστούν όλα τα θεματικά επίπεδα για κάθε pixel του χάρτη, το τελικό άθροισμα θα διαιρεθεί με το εκατό, για να επανέλθει στην αρχική του κατάσταση.

Συνεπώς για κάθε παράγοντα (Πίνακες 43-46, Σχήματα 99-102):

Γεωλογική μονάδα	Αναταξινόμηση_1	Συντελεστής βάρους	Αναταξινόμηση_2
Qm-Qp-al	1	-0,47	-47
Qt	2	-0,93	-93
Qc	3	-3,23	-323
M-Mgb-Mmg-			
Mb-Olm	4	-1,42	-142
E	5	-1,33	-133
Рс	6	-0,29	-29
C-Jc	7	-1,23	-123
Ci-Cs-Csd	8	1,64	164
Jar-Jm-Js	9	-0,36	-36
J1-J1d	10	0,05	5
Tb-Tc	11	0	0
Тg	12	-1,7	-170

Πίνακας 43: Γενικός πίνακας του παράγοντα της γεωλογίας και αναταξινόμηση αυτού.

🔍 🔍 🕎 🥥 💥 🖏 🗢 🔶 🕅 - 🔛 🍟 3D Analyst	• 🖗 L 🔨 Reclassify	× **®=?.
Image: Strapping * Image:	Trput raster Reclass Feat1 Reclass Field Value	A remap table that defines how the values will be the form
Cov:-288 Cov:-288 Cov:-288 Cov:-288 Cov:-288	Reclassification Oild values New values 1 -47 2 -93 4 -142 5 -113 6 -23 7 -124 Delete christer Cutput raster C: User user Upcouments Wrc03Default.gdbRedss_Rec30 C: User wave to NoData (optional)	Polassimeu. Polassimeu. Oold values – The ranges of values of cells in the input raster. Acceptable settings are a single values, a range of values, arage of values, arage of values, arage of values, arage of values, only reclassify the classification Merchod to be specified. The ontions are Manual

Σχήμα 99: Δεύτερη αναταξινόμηση του παράγοντα της γεωλογίας.

Γωνία κλίσης πρανούς (°)	Αναταξινόμηση_1	Συντελεστής βάρους	Αναταξινόμηση_2
0-5	1	-6,26	-626
5-10	2	-5,88	-588
10-20	3	-2,61	-261
20-30	4	-1,8	-180
30-40	5	0,94	94
40-50	6	1,62	162
50-60	7	0,2	20
60-80	8	-0,24	-24
>80	9	0	0

Πίνακας 44: Γενικός πίνακας του παράγοντα της κλίσης και αναταξινόμηση αυτού.

Σχήμα 100: Δεύτερη αναταξινόμηση του παράγοντα της κλίσης.

Πίνακας 45: Γενικός πίνακας του παράγοντα του προσανατολισμού και αναταξινόμηση αυτού.

Προσανατολισμός (°)	Αναταξινόμηση_1	Συντελεστής βάρους	Αναταξινόμηση_2
0-40	1	-2,39	-239
40-115	2	0,7	70
115-195	3	-2,68	-268
195-275	4	0,62	62
275-360	5	0,87	87

The Lat view bookmans insert selection dec		Editor• > h_{A} \nearrow f' \square \oplus \oplus \square \square \square \square \square \square
🔍 🔍 🕙 🎱 👯 💱 🗢 🔶 🔯 - 🖾 🚆 3D Ai	nalyst * 🖗 L 🔨 Reclassify	× ** • • • • • • • • • • • • • • • • •
🗋 🚰 🖶 🖓 🖗 🛍 🗙 🔊 🖻 🔶 🕇 1200.0	00	Peologification
Snapping 👻 🔘 🖽		Reclassification
Table Of Contents	Deduc field	A remap table that defines
% 3 🚓 🛛 🖻	Value	how the values will be tatics Tools ^
	Reclassification	reclassified. Time Pattern Mining Tools
Ta	Old values New values	Old values—The Analyst Tools
🗖 Geology	1 -239 Classify	ranges of values of inditional
Reclass_Slop2new	- 2 70 Unique	cells in the input insity
1	4 62	settings are a single
3	5 87 Add Entry	value, a range of neralization
4	NoData NoData	values, a string, or NoDeta A lict of pundwater
5	✓ vere chores	single values can be drology
6	Load Save Reverse New Values Precision	specified by erpolation
7		separating each with cal
o 	Output raster	range of values can ath
Reclass Leuk3	C: /Users /user /Documents /ArcGIS /Default 1.gdb /Reclass_Rec28	be specified by ultivariate
1	Change missing values to NoData (optional)	using a hyphen (-) as the range
2		separator. erlay
3		New values—The ster Creation
		new value to assign class
		of values. Only Reclass by ASCII File
2		integer values are Reclass by Table
3		supported. Reclassify
4		Glassify—Opens the Rescale by Function dialog box allowing
5		the classification
		Method to be
< >>		options are Manual I face
8 0 0 H K	Of Canad Environments of Hide Hole	Taal Hole
Calculating unique values for reclassify	Cancel Environments << nide nep	Statistics Tools

Σχήμα 101: Δεύτερη αναταξινόμηση του παράγοντα του προσανατολισμού.

Πίνακας 46: Γενικός πίνακας του παράγοντα του υψομέτρου και αναταξινόμηση αυτού.

Υψόμετρο (m)	Αναταξινόμηση_1	Συντελεστής βάρους	Αναταξινόμηση_2
0-300	1	0,58	58
300-600	2	-1,01	-101
600-900	3	0	0
>900	4	0	0

Q Lefkada - ArcMap		- 5 ×
File Edit View Bookmarks Insert Selection Geoprocessing	Customize Windows Help	
	: 4 - 4 - 5 - 5 - 6 - 6 - 7 - 7 - 6 - 6 - 7 - 7 - 6 - 6	Editor・ トト ノアロ・米 四山中×ウ 目回 冒 _見
🔍 🔍 🕙 🥥 👯 🏹 < 💠 🕅 🕅 😴 🕺 3D Analyst 🗸 🎼	Reclassify	- □ × ¢ 禄 犀 国 Q * ■
ि 🚰 🖬 🖨 🛸 🗿 🛍 🗙 । ७० २९ 💠 🗉 [1:200.000		Declassification
Snapping 🕶 🖸 🛱 🥃	Paclare Lauk2	Reclassification
Table Of Contents	Reclass field	A remap table that defines
8: 🕘 🐟 🚇 🖂	Value	how the values will be hatics loois
Tb/Tc ^	Reclassification	Time Pattern Mining Tools
Tg	Old values New values	Old values—The Analyst Tools
Geology Geology Geology Geology	2 -101	cells in the input nsity
1	0 Unque	raster. Acceptable stance
2	NoData NoData Add Entry	value, a range of
4		values, a string, or purdwater
5	 Delete chales 	single values can be drology
6	Load Save Reverse New Values Precision	specified by erpolation
8		a semicolon (;). A ap Algebra
9	C:\Users\user\Documents\ArcGIS\Default1.adb\Redass_Rec29	range of values can th
Reclass_Leuk3	Construction of the No Data (antional)	using a hyphen (-)
2		as the range relay
3		New values—The ster Creation
4		new value to assign class
I Reclass_Aspel		of values. Only Reclass by ASCII File
2		integer values are Reclass by Table
3		Classify—Opens the Reclassify
5		dialog box allowing Slice
		Method to be gmentation and Classification
< >	×	specified. The Var Radiation
20 0 I K		nal
Calculating unique values for reclassify	OK Cancel Environments << Hide Help	Tool Help Statistics Tools

Σχήμα 102: Δεύτερη αναταξινόμηση του παράγοντα του υψομέτρου.

Έτσι, έχοντας κάνει τις απαραίτητες αναταξινομήσεις των εξεταζόμενων παραγόντων με τους συντελεστές βάρους (πολλαπλασιασμένους επί εκατό), προέκυψαν οι ακόλουθοι χάρτες που παρουσιάζουν την κατανομή των συντελεστών βάρους (Σχήματα 103, 104, 105, 106).

Σχήμα 103: Χάρτης κατανομής συντελεστών βάρους, στον παράγοντα της γεωλογίας.

Παρατηρείται πως οι συντελεστές βάρους στον παράγοντα της γεωλογίας κυμαίνονται μεταξύ -3,23 έως 1,64 (στον χάρτη είναι πολλαπλασιασμένοι επί εκατό).

Παρατηρείται πως οι συντελεστές βάρους στον παράγοντα της κλίσης πρανούς κυμαίνονται μεταξύ -6,26 έως 1,62 (στον χάρτη είναι πολλαπλασιασμένοι επί εκατό).

Σχήμα 105: Χάρτης κατανομής συντελεστών βάρους, στον παράγοντα του προσανατολισμού κλιτύων.

Παρατηρείται πως οι συντελεστές βάρους στον παράγοντα του προσανατολισμού, κυμαίνονται μεταξύ -2,68 έως 0,87 (στον χάρτη είναι πολλαπλασιασμένοι επί εκατό).

Σχήμα 106: Χάρτης κατανομής συντελεστών βάρους, στον παράγοντα του υψομέτρου.

Παρατηρείται πως οι συντελεστές βάρους στον παράγοντα του υψομέτρου, κυμαίνονται μεταξύ -1,01 έως 0,58 (στον χάρτη είναι πολλαπλασιασμένοι επί εκατό).

Στη συνέχεια, και για να οδηγηθούμε στην ολοκλήρωση της κατασκευής του χάρτη επιδεκτικότητας, τα ήδη δύο φορές αναταξινομημένα αρχεία (Reclass_Geology, Reclass_Slope, Reclass_Aspect, Reclass_Elevation), υπόκεινται το καθένα κάθε φορά στην εντολή:

Raster to polygon (ως input ένα από τα παραπάνω Reclass αρχεία).

Έτσι, προκύπτουν για καθεμία περίπτωση αρχεία RasterT_Reclass. Αυτά τα αρχεία ονομάστηκαν από την υποφαινόμενη αρχεία RasterT_Weights_Geology, RasterT_Weights_Slope, RasterT_Weights_Aspect, RasterT_Weights_Elevation. Ακολούθως, αυτά τα αρχεία ενώθηκαν ανά δύο, με την ακολουθία εντολών:

Analysis Tools Overlay Union

Ψηφιακή συλλογή Βιβλιοθήκη

Συνεπώς, προέκυψαν 2 ενωμένα αρχεία, τα οποία στη συνέχεια ενώθηκαν και αυτά με την εντολή Union. Επομένως, προέκυψε ένα τελικό αρχείο (Σχ. 107), στο οποίο περιλαμβάνονται όλα τα δεδομένα των μεμονωμένων αρχείων, σχετικά με τους συντελεστές βάρους σε κάθε pixel του χάρτη.

Σχήμα 107: Το τελικό αρχείο που προέκυψε από την ένωση των τεσσάρων μεμονωμένων αρχείων.

Σε αυτή τη φάση της κατασκευής του χάρτη επιδεκτικότητας, ανοίγοντας τον πίνακα ιδιοτήτων (Attribute Table) του συνολικού αυτού αρχείου, προστέθηκε μία στήλη, που ονομάστηκε Weights. Σε αυτή τη στήλη, αθροίστηκαν για κάθε pixel του χάρτη, όλοι οι συντελεστές βάρους (αναγράφοντα ως gridcode aspect, gridcode elevation, gridcode slope, gridcode geology). Αυτή η διαδικασία της άθροισης όλων αυτών των συντελεστών έγινε ως εξής:

Ψηφιακή συλλογή Βιβλιοθήκη

• • • • • •								
🛃 Lefkada - ArcMap								- 0 /
File Edit View Boo	kmarks Insert Selecti	on Geoprocessing (Customize Window	s Help				
				: () ()	1 23	🛅 📰 🖏 📾 42% 🗸 📄 🖾 🖓 🕒 🗧 Editor -	トトレノア G· HINNE	
		•						
ે બ બ 🔄 🥥 👬 🖓	≪ ⇒ %	🗧 : 3D Analyst 🕶 🕸 Le	ukas_GGRS87_DEM_0	lip 🔟 🎊 🏄 🐝 .		🔉 🏭 🔚 👻 🤍 🚽 🗄 Georeferencing 🕶	~ * 大牧政法国	□ (·) *
i 🗋 🧀 🔚 🚔 I 🤸 🖻	🏥 x 🔊 🕾 🔶 -	1:200.000	- v 🛃 🖂 🧃	🚍 🚳 🖸 🥻 😓				
	. Consideration							
	; snapping							
Table							•	<
	~ ~							
UNION							>	1
OBJECTID* gride	ode aspect gridcor	de elevation gridc	ode slope grido	ode geology We	ic ^{hte}	Wainhta final	^	ie
198437	87	58	162	164	1	Sort Ascending		
199409	87	58	162	164	7	Sort Descending		
200103	87	58	162	164		Advanced Sorting		dministration
240587	87	58	162	164				vork
240604	87	58	162	164		Summarize		
240609	87	58	162	164	Σ	Statistics		
240613	87	58	162	164		Field Calculates		
240623	87	58	162	164	- 88	Field Calculator		
240624	87	58	162	164		Calc Field Calculator		e Views
240626	87	58	162	164		Turn		
240628	87	58	162	164	-	Populate or update the values of		
240632	87	58	162	164		Free: this field by specifying a		Transformations
240639	87	58	162	164	×	Dele the records in the table are		
240644	87	58	162	164	-	currently selected, only the values		er at
240652	87	58	162	164		Prop of the selected records will be		ling
240657	87	58	162	164	47	calculated.		ling
240659	87	58	162	164	47	4,/1		0g
240660	87	58	162	164	47	1 4,71		et .
240661	87	58	162	164	47	4,71		essing
240665	87	58	162	164	47	4,71		
240671	87	58	162	164	47	4,71	~	lite Bands
								e Pansharpen Weight
	(0 out of 344	iUSS Selected)						In Corrected Raste
UNION								an-sharpened Raster
Table Of Contents	Table							ubdataset
						· · · · ·		b DTED
							Resam	iple

Σχήμα 108: Εφαρμογή εντολής Field Calculator.

Ακολούθως, εμφανίζεται ένα παράθυρο, στο οποίο καθορίζονται οι πράξεις που επιθυμεί ο χειριστής να πραγματοποιήσει στην συγκεκριμένη στήλη (weights). Πιο συγκεκριμένα (Σχ. 109) :

Weights = gridcode geology + gridcode slope + gridcode aspect + gridcode elevation

	Inset Selection Geoprocessing Customize	Windows Help : @ @ 87_DEM_Clip_ • 7 % & @	- ○ ○ □ □ □ □ □ ● ● -22	■ Stelling : Editor • ► ^P _A cing •	- σ × ハイロ・米 宮山中×の 国図 181 マノズはえよ同国の・―――。
i 🗋 😝 🖬 🖨 i 🤸 🖄 🛍 🗙	🔊 (~ 🚸 - 1:200.000 🔍 🛃	🖂 🗊 🗑 🗑 🗁 🐎	-		
a second a s	Snapping • 🔘 🖽 🗖 📮		Field Calculator	×	
Table 월 - 1 등 - 1 등 전 문 전 전 사			Parser VB Script OPython Eickler	Frankissa	×
08567180* gridkode as 196437 196439 200169 200171 244587 244587 244589 244587 244581 244581 244581 244581	act aridecode elevation aridecode aloge 87 58 11 37 58 16 87 58 58 16 37 38 16 87 58 58 16 37 38 16 3	gridcode geology 2 164 2 164	OBJECTID gritcode prictode_1 gritcode_12 gritcode_12_13 Weights_final	Abs () ng Cos () Exp () Exp () int () Log () Sin () Sin () Tan () Sin ()	diministration vork
240624 240624 240626 240628	87 58 16 87 58 16 87 58 16 87 58 16 87 58 16	104 12 164 12 164 12 164	Show Codeblock Weights =	* / & + - =	e Views
24603 24603 24664 24664 24665 24665 24665 24665 24665 24665 24665 24665 24665 24665	07 53 11 07 53 11 07 58 16 07 58 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16 07 59 16	z. 104 2 164 12 164 12 164 12 164 12 164 12 164 12 164 12 164 12 164 12 164 12 164 12 164 12 164 12 164 12 164	[grdcode] + [grdcode_1] + [grdcode_12] + [grdcode_1	vde_12_13]	Transformations set ing og og st xsing ite fands ite fands ite fands
UNION UNION Table Of Contents Table D B 2 H <	(0 out of 344033 Selected)		About calculating fields C	Clear Load Save OK Cancel	Artho Corrected Rate an-sharpened Raster ubdataset b DTED

Σχήμα 109: Διαδικασία άθροισης συντελεστών βάρους.

Τα βάρη ωστόσο που προκύπτουν είναι πολλαπλασιασμένα επί εκατό (αφού στην αναταξινόμηση -Reclassification- δεν μπόρεσαν να εισαχθούν δεκαδικές τιμές και εισήχθησαν πολλαπλασιασμένα επί εκατό), (Σχ. 110). Για να μετατραπούν στις κανονικές μονάδες που θα έπρεπε να βρίσκονταν, δημιουργήθηκε μια νέα στήλη, η στήλη Weights final (Σχ. 111), όπου πάλι με δεξί κλικ και Field Calculator πραγματοποιήθηκε η πράξη:

Σχήμα 110: Οι συντελεστές βάρους, πολλαπλασιασμένα επί εκατό, όπως προέκυψαν.

ae	B	βλιο	θήκη \ Γ Τ	05"						
	Q Le	fkada - ArcMap								- 0
and a	File	Edit View Bookn	marks Insert Selecti	on Geoprocessing	Customize Window	s Help		2%	ditor• ト ト _ル ノ ア Д	*1555 + X 218 5
and		⊂		3D Analyst • 🛛 😵 [eukas_GGRS87_DEM_	Clip 🚬 🎉 🏡 🐝 👍 .	₽ ₩ <u> </u>	Georeferencing	× ¥ % ↓	法或场面回约-
11. M.	:	2 6 8 8 8	🗄 x 🄊 🖓 🔶	1:200.000	🔛 🔛 🗔	🗟 📦 🏹 🐎 🏝				
the second second			Snapping				Field Calculator		×	
	Table						Parcer			□ ×
	- 🗄	। 🔁 - । 🖳 🎦 🖉	₫ ×				VB Script) Python		
	UNIO	N					Fields:	Type:	Functions:	×
		OBJECTID * gridcoo	de aspect gridco	de elevation grid	code slope gride	ode geology Weigh	OBJECTID	· Aburbar	Abs ()	^ ie
	н-	198437	87	58	162	164 4	71 gridcode	(Invalidee	Atn ()	
		200169	87	58	162	164 4	71 gridcode_1	⊖ String	Exp()	dministration
	н-	200171	87	58	162	164 4	71 gridcode_12	ODate	Fix ()	work
	H-	240604	87	58	162	164 4	71 gridcode_12_13		Log ()	101k
	—	240609	87	58	162	164 4	71 Weights final		Sin ()	
	н-	240613	87	58	162	164 4	71 Weights_inal		Tan ()	
	н-	240623	87	58	162	164 4	71			
		240624	87	58	162	164 4	71			e Views
	н.	240626	87	58	162	164 4	71 Show Codeblock		* / & + - =	
	н-	240628	87	58	162	164 4	71 Weights_final =			
	L	240632	87	58	162	164 4	71 [Weights] /100		~	Transformation
	H-	240639	87	58	162	164 4	71			
	H-	240644	87	58	162	164 4	71			oset
	н-	240654	87	58	162	164 4	71			bing
	<u> </u>	240657	87	58	162	164 4	71			og
	H-	240659	87	58	162	164 4	71			et
	H-	240661	87	58	162	164 4	71			essing
		240664	87	58	162	164 4	71			
	нF	240665	87	58	162	164 4	71		U	ite Bands
	μ.	2406/1	87	58	162	164 4				e Pansharpen W
	н	4 0 > H	🔲 🔲 (0 out of 34	4033 Selected)			About calculating fields	Clear	Load Save	Prtho Corrected F
		0N	_							an-sharpened Ra

ON THE PARTY

Σχήμα 111: Διαδικασία μετατροπής των συντελεστών βάρους στην κατάλληλη κλίμακα.

Έτσι, προέκυψαν οι τελικοί συντελεστές βάρους για κάθε pixel του χάρτη (Σχ. 112).

Q Lefkada - ArcMap											_	٥	×
File Edit View	Bookmarks Insert	Selection Geoproces	sing Customize	Windows Help									
				. E) E	199	1 🗰 👪 🛍 🎫 💷	- 🖻 🖻 🔒 🕒	🖕 🗄 Editor 🕶 📄 トート	1214-第	1151a d	XQI		F
: Q Q 🕅 🥥 🕻	t 53 🗢 🔶 🔯	- 🖾 🍟 3D Analyst -	Leukas_GGRS8	DEM_Clip 💌 🧖 🝌	🦗 🕹 🖻	🖽 🛌 - 🔘 🐑 💂 🗄 Geor	referencing •	_	~ 2 2 4	4400	= Q -		
	。 自 島 x り	≈ 🕁 - 1:200.000	~ <u>~</u> []	= a = e = »									_
	E		1		•								
~									· • ·	= -			o ×
lable										U X			^
[] -] 웹 -] 뉴 (4 L () X												
UNION							-			×			
OBJECTID*	gridcode aspect	gridcode elevation	gridcode slope	gridcode geology	Weights	Weights final]			^	e		
199409	87	58	162	164	471	4,71							
200169	87	58	162	164	471	4,71					Instruction		
200171	87	58	162	164	471	4,71					unninistratio		
240587	87	58	162	164	4/1	4,/1	-				VOIK		
240604	87	58	162	164	471	4,71							
240613	87	58	162	164	471	4,71							
240614	87	58	162	164	471	4,71							
240623	87	58	162	164	471	4,71							
240624	87	58	162	164	471	4,71					e Views		
240628	87	58	162	164	471	4,71							
240629	87	58	162	164	471	4,71							
240632	87	58	162	164	471	4,71					Transform	ations	
240639	87	58	162	164	471	4,71							
240644	8/	58	162	164	4/1	4,/1	-				eset		
240652	87	58	162	164	471	4,71					hing		
240657	87	58	162	164	471	4,71					00		
240659	87	58	162	164	471	4,71					og ret		
240660	87	58	162	164	471	4,71	-				recipe		
240661	8/	56	162	164	4/1	4,/1	-				essing		
240665	87	58	162	164	471	4,71							
240671	87	58	162	164	471	4,71					ite Bands		
240677	87	58	162	164	471	4,71					e Pansharp	en Weig	ht
240678	87	58	162	164	471	4,71				Ŷ	Irtho Correc	cted Ras	tei
14 4 0	▶ н 📄 🗖 (0	out of 344033 Selected)									an-sharpen	ned Rast	er
TINIZNE											ubdataset		
	attraction of										o DTED		
Iable Of Content	s all lable										le		
										🔨 Split Ra	ster		

Σχήμα 112: Οι τελικοί συντελεστές βάρους.

Στο επόμενο κεφάλαιο, αυτό των αποτελεσμάτων, θα παρουσιαστεί ο χάρτης επιδεκτικότητας.
ΚΕΦΑΛΑΙΟ 6° – ΑΠΟΤΕΛΕΣΜΑΤΑ, ΕΠΑΛΗΘΕΥΣΗ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΣΕΙΣΜΟΥ ΤΟΥ 2003

Σε αυτό το κεφάλαιο πραγματοποιείται η παρουσίαση των αποτελεσμάτων από τη στατιστική ανάλυση που πραγματοποιήθηκε παραπάνω, και πιο συγκεκριμένα παρουσιάζονται τα διαγράμματα των παραγόντων και των συντελεστών βάρους που προέκυψαν, όπου επισημαίνεται ποιες είναι οι πιο επιδεκτικές κλάσεις σε κάθε παράγοντα. Στη συνέχεια, παρατίθεται το μοντέλο επιδεκτικότητας κατολισθήσεων που κατασκευάστηκε, καθώς επίσης πραγματοποιείται και συσχέτιση του οδικού δικτύου με τις κλάσεις κατολισθητικής επιδετικότητας. Ακολούθως, λαμβάνει χώρα η επαλήθευση του μοντέλου επιδεκτικότητας, όπου και επεξεργάστηκε το αρχείο απογραφής κατολισθήσεων από το σεισμό του 2015 (Papathanassiou et al. 2020). Εν συνεχεία, πραγματοποιείται σύγκριση του μοντέλου επιδετικότητας, με τα δεδομένα των κατολισθήσεων από το σεισμό του 2003 (Papathanassiou et al. 2017) ολοκληρώνοντας, κατασκευάστηκαν οι καμπύλες ποσοστού επιτυχίας και προβλεψιμότητας της επιδεκτικότητας της Λευκάδας.

6.1 Αποτελέσματα

Ψηφιακή συλλογή Βιβλιοθήκη

Όπως αναφέρθηκε και σε προηγούμενα κεφάλαια, αν ο συντελεστής βαρύτητας είναι μικρότερος του 0, τότε η πιθανότητα εμφάνισης κατολίσθησης είναι μικρότερη. Αν ο συντελεστής βαρύτητας είναι μεγαλύτερος του 0, η πιθανότητα εμφάνισης κατολίσθησης είναι πιθανότερη. Αν τέλος ο συντελεστής βαρύτητας είναι ίσος με το 0, τότε δεν επηρεάζεται το αποτέλεσμα.

Ουσιαστικά, αν η τιμή του συντελεστή είναι υψηλή, σημαίνει ότι η ανεξάρτητη παράμετρος επηρεάζει πολύ την πιθανότητα να συμβεί ή όχι το γεγονός ενώ σε αντίθετη περίπτωση που είναι χαμηλή, δείχνει ότι ασκεί μικρή επίδραση.

Όπως παρουσιάστηκε και παραπάνω, προέκυψαν οι συντελεστές βάρους για κάθε κλάση, παράγοντας και τα αντίστοιχα διαγράμματα (Σχ. 113, 114, 115, 116):

Σχήμα 113: Διάγραμμα κατανομής συντελεστή βάρους σε κάθε κλάση του παράγοντα γεωλογίας.

Σχήμα 114: Διάγραμμα κατανομής συντελεστή βάρους σε κάθε κλάση του παράγοντα της κλίσης.

Σχήμα 115: Διάγραμμα κατανομής συντελεστή βάρους σε κάθε κλάση του παράγοντα του προσανατολισμού.

Σχήμα 116: Διάγραμμα κατανομής συντελεστή βάρους σε κάθε κλάση του παράγοντα του προσανατολισμού.

Όπως φαίνεται από τα παραπάνω διαγράμματα, όσον αφορά τη γεωλογία, οι συντελεστές βάρους κυμαίνονται μεταξύ 1,64 στους σχηματισμούς Ci,Cs,Csd (ασβεστόλιθοι ζώνης Παξών), και -3,23 στον σχηματισμό Qc (Κώνοι κορημάτων, Ολοκαινικές αποθέσεις). Αναφορικά με την κλίση των πρανών, οι τιμές συντελεστή βάρους κυμαίνονται μεταξύ 1,62 αντιπροσωπεύοντας κλίσεις 40°-50° και -6,26 για

κλίσεις 0-5°. Επιπλέον, σχετικά με τον προσανατολισμό των κλιτύων, οι τιμές συντελεστή βάρους κυμαίνονται μεταξύ 0,87 για πρανή 275° – 360° και -2,68 για πρανή 115°- 195°. Τέλος, για το υψόμετρο, οι τιμές συντελεστή βάρους κυμαίνονται μεταξύ 0,58 για υψόμετρο 0m-300m και -1,01 για υψόμετρο 300m-600m. Παρατηρούμε πως η σημαντικότητα των παραγόντων προσανατολισμού και υψομέτρου για την εκδήλωση κατολισθήσεων, δεν είναι τόσο σημαντική όσο η γεωλογία της περιοχής και η κλίση των πρανών.

Ψηφιακή συλλογή Βιβλιοθήκη

Επιπλέον, όπως παρουσιάστηκε στο προηγούμενο κεφάλαιο, κατασκευάστηκε το τελικό αρχείο (Union), με τους τελικούς συντελεστές βάρους. Κατ΄επέκταση, με τις ακόλουθες εντολές, πραγματοποιήθηκε η κατασκευή του χάρτη επιδεκτικότητας κατολισθήσεων, λόγω του σεισμού του 2015:

Στο shapefile Union → Δεξί κλικ → Properties → Symbology → 10 classes Classification → μέθοδος Natural Breaks (Jenks), (Σχ. 117).

Σχήμα 117: Κατασκευή χάρτη επιδεκτικότητας κατολισθήσεων.

Παρότι υπάρχουν και άλλες μέθοδοι διαχωρισμού των κλάσεων επιδεκτικότητας (π.χ. ίσων διαστημάτων, γεωμετρικών διαστημάτων, κλπ), χρησιμοποιήθηκε η μέθοδος των φυσικών διαστημάτων (natural breaks). Αυτό διότι μία φυσική κλάση είναι το βέλτιστο εύρος κλάσης, που βρίσκεται «φυσικά» μέσα σε ένα σύνολο δεδομένων στη φύση, οπότε και είναι η πιο αντιπροσωπευτική μέθοδος.

Έτσι, με βάση όλες τις παραπάνω εντολές και βήματα, κατασκευάστηκε ο ακόλουθος χάρτης επιδεκτικότητας κατολισθήσεων (Σχ. 118):

Σχήμα 118: Ο χάρτης επιδεκτικότητας κατολισθήσεων λόγω του σεισμού του 2015 στο νησί της Λευκάδας. Κατασκευάστηκε με τη μέθοδο των φυσικών διαστημάτων (natural breaks). Η πιο επιδεκτική κατηγορία λαμβάνει την τιμή 10, ενώ η λιγότερο επιδεκτική κατηγορία λαμβάνει την τιμή 1.

Αναφορικά με τις κατηγορίες επιδεκτικότητας, έχουν διαχωριστεί 10 κατηγορίες επιδεκτικότητας (μέθοδος natural breaks), με την πιο επιδεκτική κατηγορία (very high susceptibility) να λαμβάνει την τιμή 10 και την λιγότερο επιδεκτική κατηγορία (very low susceptibility) να λαμβάνει την τιμή 1. Τα εύρη των τιμών συντελεστών βάρους παρουσιάζονται ως ακολούθως (Σχ. 119):

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 119: Αντιστοίχιση κατηγοριών κατολισθήσεων και συντελεστών βάρους.

Όπως φαίνεται και στον παραπάνω χάρτη (Σχ. 118), οι πιο επιδεκτικές περιοχές, ως προς την εκδήλωση κατολισθήσεων, εντοπίζονται στο δυτικό τμήμα του νησιού και κυρίως στα δυτικά παραθαλάσσια τμήματα του νησιού. Σε αυτές τις περιοχές, κατά κύριο λόγο εντοπίζονται οι πιο επιδεκτικές κατηγορίες (κατηγορίες 8,9 και κυρίως 10).

Επιπλέον, στην παρακάτω εικόνα (Σχ. 120), παρουσιάζεται το οδικό δίκτυο της Λευκάδας, σε σχέση με τις κλάσεις επιδεκτικότητας που διακρίθηκαν. Συγκεκριμένα, οι κλάσεις ομαδοποιήθηκαν ως εξής: από «1 ως 7» σε μια κλάση, ύστερα μεμονωμένα οι πιο επιδεκτικές κλάσεις «8», «9» και «10».

Σχήμα 120: Συσχέτιση οδικού δικτύου Λευκάδας, με τις κλάσεις επιδεκτικότητας που διακρίθηκαν. Οι κλάσεις ομαδοποιήθηκαν από 1-7, και μεμονωμένα οι πιο επιδεκτικές κλάσεις επιδεκτικότητας 8, 9, 10.

Από την επεξεργασία των δεδομένων (και συγκεκριμένα η ροή εντολών Analysis Tool, Overlay, Intersect, καθώς και από το άθροισμα μήκους τμημάτων του οδικού δικτύου που ανήκουν στην ίδια κλάση επιδεκτικότητας – εξαγωγή του SumOutput όπως έχει παρουσιαστεί αναλυτικά και σε προηγούμενο κεφάλαιο), προκύπτει πως το συνολικό μήκος του οδικού δικτύου στο νησί είναι 780,71 km. Ωστόσο σε κάθε κλάση επιδεκτικότητας αντιστοιχούν τα ακόλουθα μήκη οδικού δικτύου (Πίνακας 47, όπου προκύπτουν τα ακόλουθα ποσοστά (Σχ. 121):

Κλάση	Μήκος (m)	Ποσοστό (%)
1 to 7	669879,14	85,80
8	58166,19	7,45
9	40752,75	5,22
10	11908,55	1,53
SUM	780706,63	100

Πίνακας 47: Αντιστοίχιση κλάσης επιδεκτικότητας με τα μήκη του οδικού δικτύου.

Έτσι, προέκυψε το ακόλουθο γράφημα (Σχ. 121):

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 121: Ποσοστιαία κατανομή οδικού δικτύου στις κλάσεις επιδεκτικότητας.

Προκειμένου να πραγματοποιηθεί η επαλήθευση / αξιοπιστία του μοντέλου επιδεκτικότητας που κατασκευάστηκε, κρίνεται απαραίτητη η εκτίμηση του ποσοστού επιτυχίας και προβλεψιμότητας (success rate & prediction rate), (Dietrich et al. 1995, Chung and Fabbri 2003, Neuhäuser et al. 2011). Για να πραγματοποιηθεί αυτό, υπήρξε διαχωρισμός δεδομένων: στα δεδομένα εκτίμησης (estimation group, που είναι τα δεδομένα από το αρχείο απογραφής των κατολισθήσεων λόγω του σεισμού του 2015) και στα δεδομένα επαλήθευσης (validation group, που είναι τα δεδομέιο απογραφής κατολισθήσεων λόγω του σεισμού του 2015) και στα δεδομένα επαλήθευσης (validation group, που είναι τα δεδομένα από το αρχείο απογραφής κατολισθήσεων λόγω του σεισμού του 2003). Με τον όρο «Success rate», εννοείται ο αριθμός των κατολισθήσεων που ερμηνεύονται επιτυχώς από τον χάρτη επιδεκτικότητας που παράχθηκε, ενώ με τον όρο «Prediction rate», εννοείται το ποσοστό των ανεξάρτητων κατολισθήσεων που ερμηνεύονται επιτυχώς από τον χάρτη επιδεκτικότητας που κατασκευάστηκε για τα δεδομένα εκτίμησης (estimation group).

Ψηφιακή συλλογή Βιβλιοθήκη

6.2 Επαλήθευση

Η διαδικασία που ακολουθήθηκε έχει ως εξής: αρχικά για το ποσοστό επιτυχίας (success rate), υπολογίστηκαν 3 μεγέθη συχνοτήτων:

- Συχνότητα κλάσης Frequency class (πόση έκταση καλύπτει η κάθε κατηγορία επιδεκτικότητας σε σχέση με τη συνολική επιφάνεια όλου του νησιού).
- <u>Συχνότητα κατολισθήσεων Frequency landslides</u> (πλήθος-ποσοστό κατολισθήσεων σε κάθε κατηγορία επιδεκτικότητας).
- Συχνότητα έκτασης κατολισθήσεων Frequency landslides per class (σε κάθε κατηγορία επιδεκτικότητας, το ποσοστό έκτασης κατολισθήσεων σε σχέση με τη συνολική έκταση των κατολισθήσεων).

Τα ίδια μεγέθη υπολογίστηκαν και για το ποσοστό πρόβλεψης (Prediction rate). Πιο συγκεκριμένα:

Προκειμένου να υπολογιστεί πόση έκταση καλύπτει η κάθε κατηγορία επιδεκτικότητας σε σχέση με τη συνολική επιφάνεια όλου του νησιού, πάμε στο τελικό αρχείο (Union) που έχει κατασκευαστεί στο ArcGIS, και ανοίγοντας τον πίνακα ιδιοτήτων (Attribute Table), παρουσιάζονται δύο στήλες (Weights final & Shape Area). Με σκοπό να αθροιστούν όλες οι εκτάσεις με ίδιο συντελεστή βάρους, επιλέχθηκε η στήλη Weights final και με δεξί κλικ:

Summarize Shape Area Sum, (Σχ. 122)

Σχήμα 122: Διαδικασία υπολογισμού συχνότητας κλάσης κλάσης για το ποσοστό επιτυχίας.

Αυτό τελικά που προκύπτει είναι ένα Output, το οποίο περιέχει για κάθε συντελεστή βάρους την συνολική έκταση από όλο το νησί της Λευκάδας (Σχ. 123). Ωστόσο στη συνέχεια πραγματοποιήθηκε κατηγοριοποίηση των συντελεστών βάρους (συνεπώς και των εκτάσεων) στις κατηγορίες που είχαν υποδειχθεί από τον χάρτη επιδεκτικότητας. Έτσι λοιπόν, αφού η shape area μετατράπηκε σε km² (στήλη frequency class), διαιρώντας στη συνέχεια την έκταση κάθε κατηγορίας επιδεκτικότητας με την συνολική έκταση του νησιού, προέκυψε το επιθυμητό μέγεθος (Πίν. 48).

Σχήμα 123: Το Output που προέκυψε για τον υπολογισμό της συχνότητας κλάσης για το ποσοστό επιτυχίας.

Κλάση επιδεκτικότητας	Έκταση (m²)	Έκταση (km²)	Πυκνότητα κλάσης (%)
1	13591525,03	13,59	4,47
2	28078931,35	28,08	9,23
3	33499258,95	33,5	11,01
4	34381337,87	34,38	11,3
5	34712831,2	34,71	11,41
6	49811157,3	49,81	16,38
7	46269592,37	46,27	15,21
8	28836043,33	28,84	9,48
9	23998715,13	24	7,89
10	11009161,08	11,01	3,62
Sum	304188553,6	304,19	100

Πίνακας 48: Υπολογισμός συχνότητας κλάσης για το ποσοστό επιτυχίας.

Συχνότητα κατολισθήσεων - Frequency landslides

Προκειμένου να υπολογιστεί το πλήθος-ποσοστό κατολισθήσεων σε κάθε κατηγορία επιδεκτικότητας, πραγματοποιήθηκε μέσω της εντολής Union, ένωση των αρχείων των κατολισθήσεων του 2015 (Landslides 2015), με το τελικό αρχείο που κατασκευάστηκε και περιλαμβάνει τους συντελεστές βάρους. Έτσι ουσιαστικά

πραγματοποιήθηκε αντιστοίχιση ποια κατολίσθηση ανήκει σε ποια κατηγορία επιδεκτικότητας, υπολογίζοντας στο τέλος το πλήθος των κατολισθήσεων σε κάθε κατηγορία. Έτσι, διαιρώντας το πλήθος κάθε κατηγορίας με το συνολικό πλήθος προέκυψε το επιθυμητό μέγεθος (Πίνακας 49).

Ψηφιακή συλλογή Βιβλιοθήκη

Κλάση επιδεκτικότητας	Πλήθος	Ποσοστό (%)
1	0	0
2	0	0
3	4	0,67
4	2	0,34
5	10	1,68
6	10	1,68
7	40	6,71
8	60	10,07
9	103	17,28
10	367	61,58
SUM	596	100

Πίνακας 49: Υπολογισμός συχνότητας κατολισθήσεων για το ποσοστό επιτυχίας.

Συχνότητα έκτασης κατολισθήσεων ανά κλάση - Frequency landslides per class

Προκειμένου να υπολογιστεί σε κάθε κατηγορία επιδεκτικότητας, το ποσοστό έκτασης κατολισθήσεων σε σχέση με τη συνολική έκταση των κατολισθήσεων, εφόσον καταγράφηκε στο προηγούμενο στάδιο ποια κατολίσθηση ανήκει σε ποια κατηγορία, τότε για κάθε κατηγορία αθροίστηκαν οι αντίστοιχες εκτάσεις κατολισθήσεων. Έτσι, διαιρώντας την έκταση των κατολισθήσεων της κάθε κατηγορίας επιδεκτικότητας με τη συνολική έκταση των κατολισθήσεων στο νησί της Λευκάδας, προκύπτει το επιθυμητό μέγεθος (Πίνακας 50).

Πίνακας	50: Υπολογισμός συχνότητας έκτασ	ης κατολισθήσεων	ν ανά κλάση για το
μήμα Γε Α.Π	εωλογίας επιτ	υχίας.	
	Κλάση επιδεκτικότητας	Έκταση (km²)	Ποσοστό (%)
	1	0	0
	2	0	0
	3	0,0030269	0,23

0,0006851

0,0048422

0,0050755

0,0235068

0,0548055

0,1522387

1,0479358

1,2921165

0,05

0,38

0,39

1,82

4,24

11,78

81,1

100

4

5

6

7

8

9

10

SUM

Ψηφιακή συλλογή Βιβλιοθήκη

Με βάση λοιπόν	του	ς παραπάνω	ο τρεις πίνακε	ες κα	αι τα με	γέθη τα οποία	х екф	οράζουν,
κατασκευάστηκε	το	παρακάτω	διάγραμμα,	το	οποίο	αποδεικνύει	τον	επιτυχή
έλεγχο του μοντέ	λου	επιδεκτικότ	ητας (Σχ. 124)).				

Αυτό το διάγραμμα (Σχ. 124), αποδεικνύει πως το 3,62% όλου του νησιού της Λευκάδας ανήκει στην κατηγορία επιδεκτικότητας 10 (στην πιο επιδεκτική κατηγορία), ενώ το 4,47% ανήκει στην κατηγορία 1.

Επιπλέον, αξίζει να αναφερθεί πως από τις συνολικά 596 κατολισθήσεις, το 61,58% του ποσοστού των κατολισθήσεων, ανήκουν στην κατηγορία επιδεκτικότητας 10 (στην πλέον επιδεκτική κατηγορία), ενώ στην κατηγορία 1 το ποσοστό είναι 0%. Θα λέγαμε δηλαδή πως στις πιο επιδεκτικές κατηγορίες (8,9,10), το ποσοστό των κατολισθήσεων είναι 88,93%, ενώ στις λιγότερο επιδεκτικές κατηγορίες (1,2,3), εμπίπτει μόνο το 0,67% των κατολισθήσεων.

Τέλος, φαίνεται πως το 81,1% της έκτασης των κατολισθήσεων (σε σχέση με τη συνολική έκταση των κατολισθήσεων) λαμβάνει χώρα στην κατηγορία 10, ενώ στην κατηγορία 1, το ποσοστό είναι 0%. Δηλαδή και σε αυτή την περίπτωση στις πιο επιδεκτικές κατηγορίες (8,9,10), το ποσοστό της έκτασης των κατολισθήσεων (σε σχέση με τη συνολική έκταση των κατολισθήσεων) είναι 97,12%, ενώ στις λιγότερο επιδεκτικές κατηγορίες (1,2,3), εμπίπτει μόνο το 0,23%.

Σχήμα 124: Συσχέτιση των κατηγοριών επιδεκτικότητας με τις κατολισθήσεις του 2015.

6.3 Σύγκριση με τα αποτελέσματα του σεισμού του 2003

Ψηφιακή συλλογή Βιβλιοθήκη

Παραπάνω, παρουσιάστηκε ο έλεγχος επιτυχίας του μοντέλου επιδεκτικότητας (Success rate). Ωστόσο, κρίνεται σκόπιμη η σύγκριση του μοντέλου με τα δεδομένα των κατολισθήσεων που προέκυψαν από το σεισμό του 2003 στο νησί της Λευκάδας. Συγκεκριμένα πραγματοποείται η καταγραφή του ποσοστού των ανεξάρτητων κατολισθήσεων που ερμηνεύονται επιτυχώς από τον χάρτη επιδεκτικότητας που κατασκευάστηκε για τα δεδομένα εκτίμησης (estimation group), και αποτελούν το ποσοστό πρόβλεψης (Prediction rate). Ακολούθως, (Σχ. 125), παρουσιάζεται ο χάρτης κατανομής κατολισθήσεων (inventory map) από το σεισμό του 2003, (Papathanassiou et al. 2017 in Schmitt et al. 2017).

Σχήμα 125: Χάρτης απεικόνισης αναγλύφου και κατολισθήσεων 2003 στη Λευκάδα, (επεξεργασμένος σε περιβάλλον GIS, με πρωτογενή δεδομένα από Papathanassiou et al. 2017 in Schmitt et al. 2017).

Ψηφιακή συλλογή Βιβλιοθήκη

А.П.О

Πίνακας 51: Υπολογισμό	ς συχνότητας κατο	ολισθήσεων για τα	ο ποσοστό πρόβλεψης.
-------------------------------	-------------------	-------------------	----------------------

Κλάση επιδεκτικότητας	Πλήθος	Ποσοστό (%)
1	0	0
2	2	0,66
3	2	0,66
4	1	0,33
5	2	0,66
6	8	2,65
7	19	6,29
8	30	9,93
9	81	26,82
10	157	51,99
SUM	302	100

Συχνότητα έκτασης κατολισθήσεων ανά κλάση - Frequency landslides per class

Πίνακας 52: Υπολογισμός συχνότητας έκτασης κατολισθήσεων ανά κλάση για το ποσοστό πρόβλεψης.

Κλάση επιδεκτικότητας	Έκταση (km²)	Ποσοστό (%)
1	0	0
2	0,0007732	0,05
3	0,0009777	0,06
4	0,002204	0,13
5	0,00256	0,15
6	0,0081724	0,48
7	0,0227189	1,33
8	0,0792883	4,63
9	0,3560826	20,79
10	1,2394595	72,39
SUM	1,7122366	100

Με βάση τους παραπάνω πίνακες (Πίν. 51, 52) και τα μεγέθη τα οποία εκφράζουν, κατασκευάστηκε το παρακάτω διάγραμμα, το οποίο αποδεικνύει την αξιοπιστία του ελέγχου του μοντέλου επιδεκτικότητας (Σχ. 126).

Ψηφιακή συλλογή Βιβλιοθήκη

Αυτό το διάγραμμα (Σχ. 126), αποδεικνύει πως το 3,62% όλου του νησιού της Λευκάδας ανήκει στην κατηγορία επιδεκτικότητας 10 (στην πιο επιδεκτική κατηγορία), ενώ το 4,47% ανήκει στην κατηγορία 1.

Επιπλέον, αξίζει να αναφερθεί πως από τις συνολικά 302 κατολισθήσεις, το 51,99% του ποσοστού των κατολισθήσεων που έλαβαν χώρα, ανήκουν στην κατηγορία επιδεκτικότητας 10 (στην πλέον επιδεκτική κατηγορία), ενώ στην κατηγορία 1 το ποσοστό είναι 0%. Θα λέγαμε δηλαδή πως στις πιο επιδεκτικές κατηγορίες (8,9,10), το ποσοστό των κατολισθήσεων είναι 88,74%, ενώ στις λιγότερο επιδεκτικές κατηγορίες (1,2,3), εμπίπτει μόνο το 1,32% των κατολισθήσεων.

Τέλος, φαίνεται πως το 72,39% της έκτασης των κατολισθήσεων (σε σχέση με τη συνολική έκταση των κατολισθήσεων) λαμβάνει χώρα στην κατηγορία 10, ενώ στην κατηγορία 1, το ποσοστό είναι 0%. Δηλαδή και σε αυτή την περίπτωση στις πιο επιδεκτικές κατηγορίες (8,9,10), το ποσοστό της έκτασης των κατολισθήσεων (σε σχέση με τη συνολική έκταση των κατολισθήσεων) είναι 97,81%, ενώ στις λιγότερο επιδεκτικές κατηγορίες (1,2,3), εμπίπτει μόνο το 0,11%.

196

Σχήμα 126: Συσχέτιση των κατηγοριών επιδεκτικότητας με τις κατολισθήσεις του 2003.

Τέλος, προκειμένου να αποδειχθεί η αξιοπιστία του χάρτη επιδεκτικότητας, κρίνεται σκόπιμη η κατασκευή των καμπυλών του ποσοστού επιτυχίας και προβλεψιμότητας του χάρτη επιδεκτικότητας του νησιού της Λευκάδας (Success and predicted rate curves). Για να κατασκευαστούν αυτές οι καμπύλες, υπολογίστηκαν τα αθροιστικά μεγέθη των συχνοτήτων κλάσης και κατολισθήσεων (Frequency class, Frequency landslides), τόσο για το ποσοστό επιτυχίας (success rate), όσο και για το ποσοστό πρόβλεψης (prediction rate), (Πίνακες 53, 54, 55, 56). Πιο συγκεκριμένα:

Ποσοστό επιτυχίας - Success rate

Ψηφιακή συλλογή Βιβλιοθήκη

Συχνότητα κλάσης - Frequency class

Κλάση επιδεκτικότητας	Συχνότητα	Αθροιστικό
		0
10	3,62	3,62
9	7,89	11,51
8	9,48	20,99
7	15,21	36,2
6	16,38	52,58
5	11,41	63,99
4	11,3	75,29
3	11,01	86,3
2	9,23	95,53
1	4,47	100

Πίνακας 53: Υπολογισμός του αθροιστικού μεγέθους συχνότητας κλάσης.

Συχνότητα κατολισθήσεων - Frequency landslides

Ψηφιακή συλλογή Βιβλιοθήκη

ύήμα Γεωλογίας • Α.Π.Θ

Πίνακας 54: Υπολογισμός του αθροιστικού μεγέθους συχνότητας κατολισθήσεων.

Κλάση επιδεκτικότητας	Συχνότητα	Αθροιστικό
		0
10	61,58	61,58
9	17,28	78,86
8	10,07	88,93
7	6,71	95,64
6	1,68	97,32
5	1,68	99
4	0,34	99,34
3	0,67	100
2	0	100
1	0	100

Ποσοστό πρόβλεψης - Prediction rate

Συχνότητα κλάσης - Frequency class

Πίνακας 55: Υπολογισμός του αθροιστικού μεγέθους συχνότητας κλάσης.

Κλάση επιδεκτικότητας	Συχνότητα	Αθροιστικό
		0
10	3,62	3,62
9	7,89	11,51
8	9,48	20,99
7	15,21	36,2
6	16,38	52,58
5	11,41	63,99
4	11,3	75,29
3	11,01	86,3
2	9,23	95,53
1	4,47	100

Συχνότητα κατολισθήσεων - Frequency landslides

Ψηφιακή συλλογή Βιβλιοθήκη

ιήμα Γεωλογίας Α.Π.Θ

> Κλάση επιδεκτικότητας Συχνότητα Αθροιστικό 0 51,99 10 51,99 9 26,82 78,81 8 9,93 88,74 7 6,29 95,03 6 97,68 2,65 5 0,66 98,34 4 0,33 98,67 3 0,66 99,33 2 0,66 100 1 0 100

> Πίνακας 56: Υπολογισμός του αθροιστικού μεγέθους συχνότητας κατολισθήσεων.

Έτσι, με τα παραπάνω δεδομένα κατασκευάστηκαν οι παρακάτω καμπύλες (Σχ. 127):

Σχήμα 127: Ποσοστά επιτυχίας και προβλεψιμότητας του χάρτη επιδεκτικότητας της Λευκάδας (Success and predicted rate curves), με βάση τα δεδομένα των σεισμών του 2015 και 2003, αντίστοιχα,κατά μήκος της δυτικής ακτής.

Από τις παραπάνω καμπύλες, είναι φανερό πως αναφορικά με την καμπύλη επιτυχίας (success rate), μέσα στο 10% του χάρτη της επιδεκτικότητας περιλαμβάνεται το 78% του ποσοστού των κατολισθήσεων. Όσον αφορά την καμπύλη προβλεψιμότητας (prediction rate), και αυτή η καμπύλη, ήδη στο 10% του χάρτη της επιδεκτικότητας θα μπορούσε να είχε προβλεφθεί το 75% του ποσοστού των κατολισθήσεων. Τέλος, και για τις δύο καμπύλες, στο 25% του χάρτη επιδεκτικότητας επιδεκτικότητας την κατολισθήσεων. Τέλος, του χαρτη επιδεκτικότητας, παρατηρούμε ότι επαληθεύει και προβλέπει πάνω από το 90% των κατολισθήσεων, αποδεικνύοντας την αξιοπιστία του μοντέλου.

Ψηφιακή συλλογή Βιβλιοθήκη ΚΕΦΑΛΑΙΟ 7º - ΥΠΑΙΘΡΟΣ

Ψηφιακή συλλογή Βιβλιοθήκη

Στα πλαίσια της παρούσας μεταπτυχιακής εργασίας, πραγματοποιήθηκε επίσκεψη στο πεδίο, στο νησί της Λευκάδας στις 26/05/2020. Ο σκοπός της επίσκεψης ήταν η καταγραφή αστοχιών, η καταγραφή πιθανών πληροφοριών σχετικά με το αντίστοιχο υλικό που συναντήθηκε, καθώς επίσης και η καταγραφή των μέτρων προστασίας, της λειτουργικότητάς τους, καθώς και τυχόν αστοχιών αυτών.

Συγκεκριμένα, πραγματοποιήθηκε επίσκεψη στις ακόλουθες περιοχές: Πόρτο Κατσίκι, ευρύτερη περιοχή Εγκρεμνών, ευρύτερη περιοχή στις βίλες Ωκεανός (περιοχή μεταξύ Αθανίου και Εγκρεμνών), περιοχή παραλίας Γιαλού (περιοχή Αθανίου), περιοχή Καλαμίτσι (προς την παραλία), και τέλος περιοχή Άγιος Νικήτας – Τσουκαλάδες, (Σχ. 128, 129).

Σχήμα 128: Περιοχές επίσκεψης στην ύπαιθρο.

Σχήμα 129: Περιοχές επίσκεψης στο νησί της Λευκάδας.

μήμα Γεωλογίας Στην παραλία του Πόρτο Κατσίκι, καταγράφηκαν οι αστοχίες που έχουν λάβει χώρα, το υλικό που επικρατεί, καθώς επίσης και τα μέτρα προστασίας που έχουν ληφθεί στην παραλία, για την απομάκρυνση λουόμενων από τις επίφοβες περιοχές.

Ψηφιακή συλλογή Βιβλιοθήκη

7.1 Πόρτο Κατσίκι

Σχήμα 130: Άποψη περιοχής προς NNA, όπου φαίνονται οι επιφάνειες αποκόλλησης του συμπαγή ασβεστόλιθου (Cushing, 1985), στην περιοχή Πόρτο Κατσίκι, (λήψη φωτογραφίας στις 26/05/2020 από την συγγραφέα).

Συγκεκριμένα, πρόκειται για συμπαγή ασβεστόλιθο στα ανώτερα τμήματα του πρανούς, ενώ στα κατώτερα τμήματα παρουσιάζεται λατυποπαγήςμικρολατυποπαγής ασβεστόλιθος. Επιπλέον, διαφαίνονται διαρρήξεις και ρωγμές στα πρανή, όπως επίσης και οι επιφάνειες ολίσθησης των τεμαχών. Στην παραλία υπάρχουν επίσης και τα τεμάχη που έχουν αποκολληθεί. Είναι χαρακτηριστικό, πως έχουν τοποθετηθεί ενημερωτικές πινακίδες σχετικά με τον κίνδυνο κατολισθήσεων, όπως επίσης και χαρακτηριστικά «κολωνάκια», για την απομάκρυνση των λουόμενων (ασφαλής απόσταση).

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 131: Άποψη απέναντι πλευράς του πρανούς προς ΔΒΔ, στην περιοχή Πόρτο Κατσίκι. Πρόκειται για ασβεστόλιθο, με μεγαλύτερη συμμετοχή αμμούχου υλικού, (Cushing, 1985). Παρατηρείται και η αστοχία γέφυρας, (λήψη φωτογραφίας στις 26/05/2020 από την συγγραφέα).

Σχήμα 132: Λατυποπαγής - μικρολατυποπαγής ασβεστόλιθος, στην περιοχή Πόρτο Κατσίκι, (Cushing, 1985), (λήψη φωτογραφίας στις 26/05/2020 από την συγγραφέα).

Σχήμα 133: Περιοχή βραχοκαταπτώσεων, πινακίδα προς ενημέρωση κινδύνου κατολισθήσεων, (υλικό: συμπαγής ασβεστόλιθος στο άνω μέρος, λατυποπαγής ασβεστόλιθος στο κάτω μέρος), (Cushing, 1985) και τοπικές οξειδώσεις, ρωγμές - διαρρήξεις, αποκολλημένα τμήματα – βράχοι. Παρατηρείται η περιοχή αποκόλλησης και η επιφάνεια ολίσθησης, (περιοχή Πόρτο Κατσίκι, λήψη φωτογραφίας ως προς ANA, στις 26/05/2020 από την συγγραφέα).

Σχήμα 134: Παρατηρείται ο συμπαγής ασβεστόλιθος στο άνω τμήμα, ο πιο λατυποπαγής ασβεστόλιθος στο κάτω τμήμα, (Cushing, 1985), ρωγμές - διαρρήξεις, και η επιφάνεια ολίσθησης, (περιοχή Πόρτο Κατσίκι, λήψη φωτογραφίας ως προς ANA στις 26/05/2020 από την συγγραφέα).

Σχήμα 135: Παρατηρείται το πρανές που αποτελείται κυρίως από μικρολατυποπαγή ασβεστόλιθο, με μεγαλύτερη συμμετοχή αμμούχου υλικού, (Cushing, 1985), καθώς και τα «κολωνάκια» προς απομάκρυνση των λουόμενων, (περιοχή Πόρτο Κατσίκι, λήψη φωτογραφίας ως προς ΒΑ στις 26/05/2020 από την συγγραφέα).

Σχήμα 136: Παρατηρείται η επαφή συμπαγούς ασβεστόλιθου και μικρολατυποπαγούς ασβεστόλιθου με συμμετοχή αμμώδους υλικού, (Cushing, 1985), (περιοχή Πόρτο Κατσίκι, λήψη φωτογραφίας ως προς BA στις 26/05/2020 από την συγγραφέα).

Σχήμα 137: Παρατηρείται λατυποπαγής ασβεστόλιθος, (Cushing, 1985), με στρώση στα κατώτερα τμήματα, οξειδώσεις, καθώς επίσης και η υποσκαφή του πρανούς λόγω της επίδρασης της ενέργειας των κυμάτων και «κολωνάκια» προς απομάκρυνση λουόμενων, (περιοχή Πόρτο Κατσίκι, λήψη φωτογραφίας ως προς ΒΑ στις 26/05/2020 από την συγγραφέα).

Σχήμα 138: Παρατηρείται ο λατυποπαγής ασβεστόλιθος (Cushing, 1985) σε στρώση, κατά τόπους οξειδωμένος, στην περιοχή Πόρτο Κατσίκι, (λήψη φωτογραφίας ως προς BA στις 26/05/2020 από την συγγραφέα).

Σχήμα 139: Παρατηρείται ευρύτερα η περιοχή με άποψη NNA, ο συμπαγής και ο λατυποπαγής, κατά τόπους οξειδωμένος, ασβεστόλιθος, (Cushing, 1985), οι επιφάνειας ολίσθησης, οι διαρρήξεις, τα τεμάχη που έχουν αποκολληθεί, τα «κολωνάκια» προς απομάκρυνση των λουόμενων και η πινακίδα προς ενημέρωση αυτών, (περιοχή Πόρτο Κατσίκι, λήψη φωτογραφίας στις 26/05/2020 από την συγγραφέα).

Σχήμα 140: Παρατηρείται η άποψη της απέναντι περιοχής ως προς Δ, που αποτελείται από ασβεστόλιθο με περισσότερο αμμούχο υλικό, (Cushing, 1985), (περιοχή Πόρτο Κατσίκι, λήψη φωτογραφίας στις 26/05/2020 από την συγγραφέα).

Σχήμα 141: Παρατηρούνται τα κροκαλοπαγή, κατεβαίνοντας τα σκαλοπάτια, στην περιοχή Πόρτο Κατσίκι, (λήψη φωτογραφίας ως προς ΑΝΑ στις 26/05/2020 από την συγγραφέα).

Ψηφιακή συλλογή

Σχήμα 142: Παρατηρούνται τα τοποθετημένα αγκύρια στα κροκαλοπαγή, στην περιοχή Πόρτο Κατσίκι, (λήψη φωτογραφίας ως προς Β στις 26/05/2020 από την συγγραφέα).

μήμα Γεωλογίας

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 143: Πρανή που έχουν αστοχήσει (διαδρομή από Πόρτο Κατσίκι προς Εγκρεμνούς), (λήψη φωτογραφίας ως προς BBA στις 26/05/2020 από την συγγραφέα).

Προσεγγίζοντας την παραλία των Εγκρεμνών, συναντήθηκε εργοτάξιο. Η είσοδος απαγορεύονταν, επομένως προσεγγίστηκε πέριξ η περιοχή. Το υλικό στην περιοχή είναι ασβεστόλιθος της ζώνης Παξών, ο οποίος άλλοτε είναι χαλαρά ή ισχυρά συγκολημμένος, άλλοτε παρουσιάζεται σε στρώση και άλλοτε ως λατυποπαγή. Συγκεκριμένα παρατηρήθηκαν οι αστοχίες των πρανών, όπως επίσης και τα έργα που διαφαίνονται (φράχτες προστασίας, συρματοκιβώτια, νέα άσφαλτος). Απ' ότι φαίνεται, αυτά τα έργα φτάνουν μέχρι το σπίτι που εντοπίζεται.

Ψηφιακή συλλογή Βιβλιοθήκη

7.2 Εγκρεμνοί μήμα Γεωλογίας Α.Π.Θ

Σχήμα 144: Η περιοχή Εγκρεμνών στο Google Earth.

Σχήμα 145: Είσοδος εργοταξίου στους Εγκρεμνούς, (λήψη φωτογραφίας ως προς ΝΝΑ στις 26/05/2020 από την συγγραφέα).

Σχήμα 146: Παρατηρούνται οι αστοχίες στην περιοχή των Εγκρεμνών, το κατολισθημένο υλικό (λατυποπαγείς ασβεστόλιθοι και αμμούχο υλικό), (Cushing, 1985) και η παράσυρση δέντρων (λήψη φωτογραφίας ως προς N στις 26/05/2020 από την συγγραφέα).

Σχήμα 147: Παρατηρούνται οι αστοχίες στην περιοχή των Εγκρεμνών, (λατυποπαγείς ασβεστόλιθοι και αμμούχο υλικό), (Cushing, 1985), (λήψη φωτογραφίας ως προς BBΔ στις 26/05/2020 από την συγγραφέα).

Σχήμα 148: Παρατηρούνται με κόκκινο πλαίσιο τα μέτρα που έχουν λάβει χώρα στην περιοχή των Εγκρεμνών, (υλικό: λατυποπαγείς ασβεστόλιθοι και αμμούχο υλικό), (Cushing, 1985), (λήψη φωτογραφίας ως προς Ν στις 26/05/2020 από την συγγραφέα).

Σχήμα 149: Παρατηρούνται με κόκκινο πλαίσιο και με μεγαλύτερη λεπτομέρεια τα μέτρα που έχουν λάβει χώρα στην περιοχή των Εγκρεμνών, καθώς και ένα σπίτι στην περιοχή, (υλικό: λατυποπαγείς ασβεστόλιθοι και αμμούχο υλικό), (Cushing, 1985), (λήψη φωτογραφίας ως προς N στις 26/05/2020 από την συγγραφέα).

7.3 Περιοχή στις βίλες Ωκεανός

Ψηφιακή συλλογή Βιβλιοθήκη

Προσεγγίστηκε η περιοχή στις βίλες Ωκεανός (ευρύτερη περιοχή Αθανίου), (θέση 1). Παρατηρήθηκαν εργασίες επισκευής στην επιχείρηση. Επίσης προσεγγίστηκε και η θέση 2, ως ένα σημείο, γιατί από κει και μετά το δάσος ήταν πολύ πυκνό. Σε αυτή την περιοχή υπήρχαν ενδείξεις μικροκατολισθήσεων και γενικότερα καθιζήσεων (μικρά φρύδια). Λίγο πιο κάτω από τη θέση 2, εντοπίστηκε περιοχή έκτασης περίπου μισού στρέμματος, που ήδη έχει αρχίσει να αποκόπτεται και σε επόμενο σεισμό δύναται να αστοχήσει.

Σχήμα 150: Ευρύτερη περιοχή βιλών Ωκεανού, και θέσεις παρατήρησης.

Παρακάτω παρουσιάζονται τα ευρήματα στις θέσεις 1 και 2, αντίστοιχα:

Σχήμα 151: Παρατηρούνται οι αστοχίες στις βίλες Ωκεανός, από την θέση 1. Πρόκειται για κερματισμένο και αναμοχλευμένο υλικό λατυποπαγών – μικρολατυποπαγών ασβεστολίθων, δολομιτών και αμμούχου υλικού (Cushing, 1985), (λήψη φωτογραφίας ως προς Δ στις 26/05/2020 από την συγγραφέα).

Σχήμα 152: Παρατηρούνται ενδείξεις κατολισθήσεων (μικρά φρύδια) στη θέση 1, (περιοχή στις βίλες Ωκεανός, λήψη φωτογραφίας ως προς ΝΝΔ στις 26/05/2020 από την συγγραφέα).

Σχήμα 153: Παρατηρείται το υλικό της κατολίσθησης, η ροή υλικού στη θέση 1, ακριβώς κατάντη της θέσης της εικόνας 152, (περιοχή στις βίλες Ωκεανός, λήψη φωτογραφίας ως προς Δ στις 26/05/2020 από την συγγραφέα).

Σχήμα 154: Κατολισθήσεις στην θέση 2, και περιοχή που κατολισθαίνει. Πρόκειται για κερματισμένο και αναμοχλευμένο υλικό λατυποπαγών μικρολατυποπαγών ασβεστολίθων, και σε κατώτερα τμήματα υλικό δολομιτών και αμμούχου υλικού, (Cushing, 1985), (περιοχή μεταξύ βιλών Ωκεανού και Εγκρεμνών, λήψη φωτογραφίας ως προς BBA στις 26/05/2020 από την συγγραφέα). Προσεγγίστηκε η περιοχή του Γιαλού και συγκεκριμένα ο δρόμος που οδηγεί στην παραλία. Εντοπίστηκε μια ιδιαίτερα εκτεταμένη περιοχή κατολισθήσεων. Το υλικό στην περιοχή είναι ασβεστόλιθος της ζώνης Παξών, ο οποίος όμως κατά τόπους εμφανίζεται ως κλαστικό υλικό. Σημαντικά είναι επίσης και τα έργα τα οποία έχουν λάβει χώρα στην περιοχή, όπως οι φράχτες προστασίας, συρματοκιβώτια προς αντιστήριξη και αποκοπή ροής υλικού και οι αποστραγγιστικοί σωλήνες. Τα μέτρα όπως φαίνεται στην περιοχή λειτουργούν, αποδίδουν και εξυπηρετούν το λόγο που κατασκευάστηκαν.

Ψηφιακή συλλογή Βιβλιοθήκη

7.4 Περιοχή Γιαλού

Σχήμα 155: Περιοχή Γιαλού στο Google Earth.

Σχήμα 156: Παρατηρούνται οι κατολισθήσεις στην περιοχή του Γιαλού. Πρόκειται για ασβεστόλιθους (συμπαγείς και μικρολατυποπαγείς), δολομίτες, αμμούχο υλικό, κώνοι κορημάτων, (Cushing, 1985), (λήψη φωτογραφίας ως προς BBA στις 26/05/2020 από την συγγραφέα).

Σχήμα 157: Παρατηρούνται οι κατολισθήσεις στην περιοχή του Γιαλού. Πρόκειται για ασβεστόλιθους (συμπαγείς και μικρολατυποπαγείς), δολομίτες, αμμούχο υλικό, κώνοι κορημάτων, (Cushing, 1985), (λήψη φωτογραφίας ως προς BBΔ στις 26/05/2020 από την συγγραφέα).

Σχήμα 158: Φράχτης προστασίας και συγκεντρωμένο υλικό στην περιοχή του Γιαλού, (λήψη φωτογραφίας ως προς ΝΝΑ στις 26/05/2020 από την συγγραφέα).

Σχήμα 159: Φράχτης προστασίας και αποκολλημένος βράχος. Πρόκειται για ασβεστολιθικό - δολομιτικό υλικό, (Cushing, 1985), (περιοχή Γιαλού, λήψη φωτογραφίας ως προς NNA στις 26/05/2020 από την συγγραφέα).

232

Σχήμα 160: Φράχτης προστασίας και συρματοκιβώτια στο οδικό δίκτυο, στην περιοχή του Γιαλού, (λήψη φωτογραφίας ως προς NNA στις 26/05/2020 από την συγγραφέα).

Σχήμα 161: Φράχτης προστασίας και αστοχία αυτού, στην περιοχή του Γιαλού, (λήψη φωτογραφίας ως προς NNA στις 26/05/2020 από την συγγραφέα).

Σχήμα 162: Φράχτης προστασίας και υλικό που συγκρατείται στο πλέγμα, στην περιοχή του Γιαλού, (λήψη φωτογραφίας ως προς BBΔ στις 26/05/2020 από την συγγραφέα).

Σχήμα 163: Συρματοκιβώτια που λειτουργούν ως φραγμός σε πιθανή ροή υλικού, αλλά συμβάλλουν και στην αντιστήριξη και αποστραγγιστικοί σωλήνες, (περιοχή Γιαλού, λήψη φωτογραφίας ως προς NNA στις 26/05/2020 από την συγγραφέα).

Κατά τη διαδρομή Χορτάτα - Καλαμίτσι, παρατηρήθηκαν τμηματικές αστοχίες (θέσεις 1,2). Για αυτό το λόγο, ακολουθήθηκε ο δρόμος προς την παραλία στο Καλαμίτσι, προκειμένου να παρατηρηθεί το γενικότερο φαινόμενο, όπως φαίνεται παρακάτω με το κόκκινο πολύγωνο (Σχ.164). Συγκεκριμένα, σε αυτή τη διαδρομή, παρατηρήθηκαν αστοχίες, πτώσεις τεμαχών, ρωγμές και μικρές καθιζήσεις στο οδικό δίκτυο (θέσεις 3,4). Το υλικό στην περιοχή είναι συχνά κερματισμένο, αφού στην ευρύτερη περιοχή παρατηρείται η επώθηση της Ιόνιας ζώνης. Κατά κύριο λόγο εντοπίζεται ασβεστόλιθος της Ιόνιας ζώνης, αμμούχο υλικό και θραύσματα αυτών.

Ψηφιακή συλλογή Βιβλιοθήκη

7.5 Καλαμίτσι

Σχήμα 164: Διαδρομή Χορτάτα – Καλαμίτσι και η ευρεία κατολίσθηση σε κόκκινο πολύγωνο.

Σχήμα 165: Θέσεις αστοχιών 1, 2, στο δρόμο Χορτάτα - Καλαμίτσι.

Σχήμα 166: Παρατηρείται κατολίσθηση στη θέση 1, σε ασβεστολιθικό σχηματισμό, (Cushing, 1985), στο οδικό δίκτυο Χορτάτα-Καλαμίτσι, (λήψη φωτογραφίας ως προς BBA στις 26/05/2020 από την συγγραφέα).

Σχήμα 167: Παρατηρείται κατολίσθηση στην θέση 2, σε ασβεστολιθικό σχηματισμό, (Cushing, 1985), στο οδικό δίκτυο Χορτάτα-Καλαμίτσι, (λήψη φωτογραφίας ως προς ANA στις 26/05/2020 από την συγγραφέα).

Στη συνέχεια ακολουθήσαμε το δρόμο προς την παραλία στο Καλαμίτσι. Ο δρόμος με τις αστοχίες που παρουσιάστηκε παραπάνω, φαίνεται ακολούθως:

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 168: Παρατηρείται η ευρύτερη περιοχή των τμηματικών αστοχιών στις θέσεις 1 και 2 στο Καλαμίτσι, (λήψη φωτογραφίας ως προς ΑΝΑ στις 26/05/2020 από την συγγραφέα).

Συνεχίζοντας τον δρόμο προς την παραλία στο Καλαμίτσι, εντοπίστηκαν οι

Σχήμα 169: Παρατηρείται η κατολίσθηση στη θέση 3, σε ασβεστολιθικό υλικό, (Cushing, 1985), στο δρόμο προς την παραλία στο Καλαμίτσι, (λήψη φωτογραφίας ως προς Α στις 26/05/2020 από την συγγραφέα).

Σχήμα 170: Παρατηρείται η κατολίσθηση στη θέση 3, σε ασβεστολιθικό υλικό, (Cushing, 1985), στο δρόμο προς την παραλία στο Καλαμίτσι, (λήψη φωτογραφίας ως προς ΑΝΑ στις 26/05/2020 από την συγγραφέα).

Σχήμα 171: Παρατηρείται η κατολίσθηση στη θέση 4, σε ασβεστολιθικό υλικό, (Cushing, 1985), στο δρόμο προς την παραλία στο Καλαμίτσι, (λήψη φωτογραφίας ως προς Α στις 26/05/2020 από την συγγραφέα).

Σχήμα 172: Ρωγμές στο οδικό δίκτυο, στο δρόμο προς την παραλία στο Καλαμίτσι, (λήψη φωτογραφίας ως προς ΔΝΔ στις 26/05/2020 από την συγγραφέα).

Πραγματοποιήθηκε επί τόπου παρατήρηση στο οδικό δίκτυο από Άγιο Νικήτα προς Τσουκαλάδες. Το υλικό που συναντήθηκε σε αυτή τη διαδρομή είναι ασβεστόλιθοι του Παντοκράτορα, δολομίτες και τοπικά τραβερτίνης. Εντοπίστηκαν πολλές και ευρύτατες αστοχίες πρανών, (και μεγάλης κλίμακας), καθώς επίσης και πολλά έργα προστασίας και αντιμετώπισης αυτών των φαινομένων. Παρατηρήθηκαν φράχτες προστασίας με πλέγμα Geobrugg, συρματοκιβώτια για αντιστήριξη, αγκύρια και αποστραγγιστικές οπές. Τα μέτρα γενικά στην περιοχή λειτουργούν, αποδίδουν και εξυπηρετούν το λόγο που κατασκευάστηκαν.

Ψηφιακή συλλογή Βιβλιοθήκη

μήμα Γεωλογίας

7.6 Άγιος Νικήτας - Τσουκαλάδες

Σχήμα 173: Φράχτης ανάσχεσης με βραχοπαγίδα Geobrugg, τοίχος αντιστήριξης και προστασίας από συρματοκιβώτια και αποστραγγιστικές οπές, στο οδικό δίκτυο Αγ. Νικήτας – Τσουκαλάδες, (λήψη φωτογραφίας ως προς Β στις 26/05/2020 από την συγγραφέα).

Σχήμα 174: Συρματοκιβώτια και τοίχος αντιστήριξης οικίας και έναρξη φράχτη ανάσχεσης με βραχοπαγίδα Geobrugg, στην περιοχή του Αγ, Νικήτα, (λήψη φωτογραφίας ως προς ΑΝΑ στις 26/05/2020 από την συγγραφέα).

Σχήμα 175: Παρατηρούνται αστοχίες σε ασβεστόλιθο του Παντοκράτορα (Cushing, 1985), φράχτης ανάσχεσης με βραχοπαγίδα Geobrugg, συρματοκιβώτια και αποστραγγιστικές οπές, (οδικό δίκτυο Αγ. Νικήτας-Τσουκαλάδες, λήψη φωτογραφίας ως προς BBA στις 26/05/2020 από την συγγραφέα).

Σχήμα 176: Παρατηρούνται αστοχίες σε ασβεστόλιθο του Παντοκράτορα (Cushing, 1985). Επίσης εντοπίζεται φράχτης ανάσχεσης με βραχοπαγίδα Geobrugg, συρματοκιβώτια και αποστραγγιστικές οπές, (οδικό δίκτυο Αγ. Νικήτας-Τσουκαλάδες, λήψη φωτογραφίας ως προς Α στις 26/05/2020 από την συγγραφέα).

Σχήμα 177: Παρατηρούνται αστοχίες σε ασβεστόλιθο του Παντοκράτορα, (Cushing, 1985). Επίσης εντοπίζεται φράχτης ανάσχεσης με βραχοπαγίδα Geobrugg και κατολισθημένο πρανές, (οδικό δίκτυο Αγ. Νικήτας-Τσουκαλάδες, λήψη φωτογραφίας ως προς BBA στις 26/05/2020 από την συγγραφέα).

Σχήμα 178: Παρατηρείται φράχτης ανάσχεσης με βραχοπαγίδα Geobrugg. Πρόκειται για δολομιτικό υλικό (Cushing, 1985), (οδικό δίκτυο Αγ. Νικήτας-Τσουκαλάδες, λήψη φωτογραφίας ως προς ΑΝΑ στις 26/05/2020 από την συγγραφέα).

Σχήμα 179: Παρατηρείται πλέγμα Geobrugg, με ταυτόχρονη αγκύρωση στο πρανές. Πρόκειται για δολομιτικό υλικό (Cushing, 1985), (οδικό δίκτυο Αγ. Νικήτας-Τσουκαλάδες, λήψη φωτογραφίας ως προς ΑΝΑ στις 26/05/2020 από την συγγραφέα).
Στον παρακάτω πίνακα (Πίν. 57), παρουσιάζονται οι συντεταγμένες των τοποθεσιών που παρουσιάστηκαν ανωτέρω:

Ψηφιακή συλλογή Βιβλιοθήκη

- 88

Πίνακας 57: Αντιστοίχιση συντεταγμένων θέσεων και εικόνων από την επιτόπου παρατήρηση στην ύπαιθρο.

Αριθμός σχήματος	Lat (°)	Long (°)	Περιοχή	
130-142	38.601176°	20.550333°	Πόρτο Κατσίκι	
143	38.605152°	20.552719°	Πόρτο Κατσίκι προς Εγκρεμνούς	
145	38.641211°	20.560565°	Είσοδος εργοταξίου - Εγκρεμνοί	
146-149	38.641263°	20.560217°	Εγκρεμνοί	
151-153	38.649976°	20.562957°	Περιοχή βιλών Ωκεανός	
154	38.646538°	20.559873°	Ευρύτερη περιοχή μεταξύ βιλών Ωκεανός και Εγκρεμνών	
156-157	38.672316°	20.562590°	Γιαλός	
159	38.671272°	20.563179°	Γιαλός	
166	38.753566°	20.602670°	Κάτω δρόμος Χορτάτας - Καλαμίτσι	
167	38.752528°	20.602210°	Κάτω δρόμος Χορτάτας - Καλαμίτσι	
168	38.755859°	20.597129°	Δρόμος προς παραλία Καλαμίτσι	
169-170	38.752235°	20.596299°	Δρόμος προς παραλία Καλαμίτσι	
171	38.754066°	20.592423°	Δρόμος προς παραλία Καλαμίτσι	
174	38.789707°	20.614921°	Άγιος Νικήτας	
175	38.812400°	20.635153°	Αγ. Νικήτας-Τσουκαλάδες	
178	38.814216°	20.634881°	Αγ. Νικήτας-Τσουκαλάδες	
179	38.813947°	20.634678°	Αγ. Νικήτας-Τσουκαλάδες	

ΚΕΦΑΛΑΙΟ 8° – ΣΥΜΠΕΡΑΣΜΑΤΑ

Ψηφιακή συλλογή Βιβλιοθήκη

Οι σεισμικά επαγόμενες κατολισθήσεις επηρεάζουν σημαντικά το φυσικό και ανθρωπογενές περιβάλλον, αποτελώντας έναν από τους σημαντικότερους και πιο διαδεδομένους φυσικούς κινδύνους παγκοσμίως (natural hazards), που καλούνται κάθε φορά οι εκάστοτε αρχές να διαχειριστούν (διαχείριση φυσικών κινδύνων καταστροφών). Η μελέτη των κατολισθήσεων και η απεικόνισή τους σε χάρτες, διαδραματίζουν σημαντικό ρόλο για τον σχεδιασμό τεχνικών έργων, για την ανάπτυξη αστικού σχεδιασμού, αλλά και για την κατάλληλη επιλογή χρήσεων γης. Αναφορικά με τις βλάβες που προκαλούν οι κατολισθήσεις, έχουν παρατηρηθεί τόσο σε παγκόσμιο (π.χ. Kaikōura, Wenchuan, Hokkaido), όσο και σε τοπικό επίπεδο (Λευκάδα, Κορινθιακός κόλπος).

Στην παρούσα εργασία, μελετήθηκαν τα κατολισθητικά φαινόμενα στο νησί της Λευκάδας, τα οποία προκλήθηκαν από τη σεισμική δόνηση της 17^{ης} Νοεμβρίου 2015, όπως επίσης και η αξιολόγηση της επιδεκτικότητας με βάση στατιστικές μεθόδους (Δείκτης Επιδεκτικότητας Κατολισθήσεων – Landslide Susceptibility Index, LSI). Στόχος ήταν να μελετηθεί και να προταθεί ένα μοντέλο επιδεκτικότητας, για την πρόγνωση θέσεων αστοχιών σε μελλοντικό σεισμό. Ουσιαστικά εξετάστηκε το κατά πόσο οι γεωλογικές συνθήκες και η τοπογραφία επηρεάζουν την εκδήλωση κατολισθήσεων στο νησί της Λευκάδας. Ο σεισμικός παράγοντας και συγκεκριμένα η σεισμική επιτάχυνση, δεν λήφθηκε υπόψη ως παράγοντας, καθόσον τα δεδομένα δεν κάλυπταν την περιοχή μελέτης.

Τα λογισμικά προγράμματα τα οποία χρησιμοποιήθηκαν είναι το ArcGIS 10.5 για τη διαχείριση και επεξεργασία των χαρτογραφικών δεδομένων, καθώς και το Microsoft Office Excel 2007 για τη στατιστική ανάλυση και επεξεργασία των δεδομένων. Εισήχθησαν στο ArcGIS επίπεδα που αφορούν: τη γεωλογία της περιοχής (Geology), τα ρήγματα που έχουν χαρτογραφηθεί (Faults), καθώς επίσης και οι κατολισθήσεις που έχουν χαρτογραφηθεί (Landslides). Ακολούθως, γεωαναφέρθηκαν στο κατάλληλο προβολικό σύστημα ΕΓΣΑ'87 (Greek Grid) και εισήχθη το ψηφιακό μοντέλο εδάφους (DEM) της περιοχής, το οποίο και προσαρμόστηκε στο περίγραμμα του νησιού, παράγοντας στη συνέχεια τον γεωλογικό χάρτη της Λευκάδας, καθώς και τους χάρτες κλίσεων πρανούς, προσανατολισμού κλιτύων και υψομέτρου.

Ψηφιακή συλλογή Βιβλιοθήκη

Οι παράγοντες οι οποίοι αναλύθηκαν και επεξεργάστηκαν ως προς την επιδεκτικότητα είναι: η γεωλογία, η κλίση πρανών, ο προσανατολισμός των κλιτύων, καθώς και το υψόμετρο. Πραγματοποιήθηκε κατηγοριοποίηση των παραγόντων σε κλάσεις. Αυτές οι κλάσεις αναταξινομήθηκαν, λαμβάνοντας «κωδικές αύξουσες τιμές», π.χ. 1,2,3,4 κλπ και τα shapefiles μετατράπηκαν σε αρχεία raster, με κάναβο (cell size) 10 x 10m.

Η κλίση πρανούς διαχωρίστηκε σε 9 κλάσεις, 0-5°, 5° -10°, 10°-20°, 20°-30°, 30°-40°, 40°-50°, 50°-60°, 60°-80°, 80°-89°. Κατά κύριο λόγο, οι μεγαλύτερες κλίσεις εντοπίστηκαν στο δυτικό τμήμα της Λευκάδας, και κυρίως στο δυτικό παραθαλάσσιο τμήμα. Ο προσανατολισμός κλιτύων διαχωρίστηκε σε 5 κλάσεις, 0-40°, 40°-115°, 115°-195°, 195°-275°, 275°-360°.

Αναφορικά με τη γεωλογία, κυρίως Πλειστοκαινικές - Ολοκαινικές αποθέσεις εντοπίστηκαν στο βόρειο τμήμα του νησιού (al, Qp, Qm, Qc, Qt), όπου έχουν μεγάλη εξάπλωση, σε αντίθεση με τα υπόλοιπα νησιά του Ιονίου. Εξάλλου και η πόλη της Λευκάδας έχει κατασκευαστεί στην κοιλάδα της Βασιλικής και στον οικισμό της περιοχής Νυδρί (Papathanassiou et al, 2005, Rondoyanni et al, 2012). Επιπλέον, εντοπίστηκαν οι σχηματισμοί της Ιονίου ζώνης, που αποτελούνται από φλύσχη (Olm), ασβεστόλιθους του Παντοκράτορα (J1), ασβεστόλιθους (C, Ci, Cs, E), δολομίτες (J1d, Tc, Tb), δολομιτικούς ασβεστόλιθους (Csd), κροκαλοπαγή-ψαμμίτες και μάργες (M, Mb, Mgb, Mmg), Ammonitico Rosso (Jar), ασβεστόλιθοι με πάγκους και κονδύλους πυριτίου (Jm,Jc). Όσον αφορά τη ζώνη των Παξών, αποτελείται από μάρμαρα, εβαπορίτες -σχιστοποιημένη γύψος- (Tg), ασβεστολίθους (Ε, Ci, Cs), δολομίτες (J1d), Παλαιοκαινικούς ασβεστόλιθους (Pc, Js), και κλαστικά ιζήματα Μειοκαινικής ηλικίας - Μειοκαινικοί ψαμμίτες (M). Κατασκευάστηκε χάρτης υψομέτρων, με βάση το Ψηφιακό Μοντέλου Εδάφους (DEM) του νησιού της Λευκάδας. Η κατηγοριοποίηση των ζωνών υψομέτρου, έγινε βάσει αυτής που χρησιμοποιεί η Διεύθυνση Πολιτικής Προστασίας (0m-300m, 300m-600m, 600m-900m και >900m).

Υπολογίστηκαν τα ακόλουθα μεγέθη, τα οποία οδήγησαν στον υπολογισμό των συντελεστών βάρους (weight factor).

Study area (km²): το εμβαδό όλου του νησιού

Ψηφιακή συλλογή

- \checkmark $\frac{\text{Landslide}}{\text{geo}}$: η έκταση των κατολισθήσεων σε όλο το νησί
- Densmap: η πυκνότητα των κατολισθήσεων σε όλο το χάρτη
- Surface area (km²): η έκταση που έχει όλη η κλάση του κάθε παράγοντα
- Surface area (%): το ποσοστό της επιφάνειας αυτής σε σχέση με όλο το νησί
- Landslide area (km²): η έκταση των κατολισθήσεων που έχουν λάβει χώρα στην κάθε κλάση.
- Landslide area (%): το ποσοστό των κατολισθήσεων μέσα σε κάθε κλάση
 (Densclass).
- Total landslide density: το ποσοστό των κατολισθήσεων μέσα στην κάθε
 κλάση σε σχέση με το σύνολο.
- Τέλος, ο weighted factor: ο συντελεστής βάρους, ο οποίος προκύπτει από την ακόλουθη σχέση:

Weight factor =
$$ln \left(\frac{densclass}{densmap}\right)$$

Αναφορικά με τη γεωλογία, οι συντελεστές βάρους κυμαίνονται μεταξύ 1,64 στους σχηματισμούς Ci,Cs,Csd (ασβεστόλιθοι ζώνης Παξών), και -3,23 στον σχηματισμό Qc (κώνοι κορημάτων, Ολοκαινικές αποθέσεις). Αναφορικά με την κλίση των πρανών, οι τιμές συντελεστή βάρους κυμαίνονται μεταξύ 1,62 αντιπροσωπεύοντας κλίσεις 40°-50° και -6,26 για κλίσεις 0-5°. Επιπλέον, σχετικά με τον προσανατολισμό των κλιτύων, οι τιμές συντελεστή βάρους κυμαίνονται μεταξύ 0,87 για πρανή 275° -360° και -2,68 για πρανή 115°- 195°. Τέλος, για το υψόμετρο, οι τιμές συντελεστή βάρους κυμαίνονται μεταξύ 0,58 για υψόμετρο 0m-300m και -1,01 για υψόμετρο 300m-600m. Παρατηρήθηκε πως η σημαντικότητα των παραγόντων προσανατολισμού και υψομέτρου για την εκδήλωση κατολισθήσεων, δεν είναι τόσο σημαντική όσο η γεωλογία της περιοχής και η κλίση των πρανών.

Διαχωρίστηκαν 10 κατηγορίες επιδεκτικότητας (μέθοδος natural breaks), με την πιο επιδεκτική κατηγορία (very high susceptibility) να λαμβάνει την τιμή 10 και την λιγότερο επιδεκτική κατηγορία (very low susceptibility) να λαμβάνει την τιμή 1. Τα εύρη των τιμών συντελεστών βάρους: Κατηγορία 1: -13,18 - -9,11, Κατηγορία 2: -9,11- - 7,19, Κατηγορία 3: -7,19- - 5,78, Κατηγορία 4: -5,78 - -4,81, Κατηγορία 5: -4,81 - -3,65, Κατηγορία 6: -3,65 - -2,33, Κατηγορία 7: -2,33 - -1,11, Κατηγορία 8: -1,11 - 0,28, Κατηγορία 9: 0,28 - 2,02 και Κατηγορία 10: 2,02 - 4,71. Οι πιο επιδεκτικές περιοχές, ως προς την εκδήλωση κατολισθήσεων, εντοπίστηκαν στο δυτικό τμήμα του νησιού και κυρίως στα δυτικά παραθαλάσσια τμήματα του νησιού. Σε αυτές τις περιοχές, κατά κύριο λόγο εντοπίστηκαν οι πιο επιδεκτικές κατηγορίες (κατηγορίες 8,9 και κυρίως 10).

Ψηφιακή συλλογή Βιβλιοθήκη

Επιπλέον, πραγματοποιήθηκε συχέτιση του οδικού δικτύου της Λευκάδας, σε σχέση με τις κλάσεις επιδεκτικότητας που διακρίθηκαν. Συγκεκριμένα, οι κλάσεις ομαδοποιήθηκαν ως εξής: από «1 ως 7» σε μια κλάση, ύστερα μεμονωμένα οι πιο επιδεκτικές κλάσεις «8», «9» και «10». Από την επεξεργασία των δεδομένων προέκυψε πως το συνολικό μήκος του οδικού δικτύου στο νησί είναι 780,71 km. Ωστόσο στις κλάσεις επιδεκτικότητας αντιστοιχούν: 85,8% του οδικού δικτύου στις κατηγορίες 1 έως 7, 7.45% του οδικού δικτύου στην κατηγορία 8, 5.22% στην κατηγορία 9 και τέλος 1.53% στην κατηγορία 10.

Για την επαλήθευση / αξιοπιστία του μοντέλου επιδεκτικότητας που κατασκευάστηκε, εκτιμήθηκε το ποσοστό επιτυχίας και προβλεψιμότητας (success rate & prediction rate), (Dietrich et al. 1995; Chung and Fabbri 2003; Neuhäuser et al. 2011). Για να πραγματοποιηθεί αυτό, υπήρξε διαχωρισμός δεδομένων: στα δεδομένα εκτίμησης (estimation group, που είναι τα δεδομένα από το αρχείο κατολισθήσεων λόγω του σεισμού του 2015) και στα δεδομένα επαλήθευσης (validation group, που είναι τα δεδομένα από το αριθμός των κατολισθήσεων που ερμηνεύονται επιτυχώς από τον χάρτη επιδεκτικότητας που παράχθηκε, ενώ με τον όρο «Prediction rate», εννοείται το ποσοστό των

ανεξάρτητων κατολισθήσεων που ερμηνεύονται επιτυχώς από τον χάρτη επιδεκτικότητας που κατασκευάστηκε για τα δεδομένα του estimation group.

Για να υπολογιστούν τα παραπάνω, υπολογίστηκαν 3 μεγέθη:

Ψηφιακή συλλογή Βιβλιοθήκη

- Συχνότητα κλάσης Frequency class (πόση έκταση καλύπτει η κάθε κατηγορία επιδεκτικότητας σε σχέση με τη συνολική επιφάνεια όλου του νησιού).
- Συχνότητα κατολισθήσεων Frequency landslides (πλήθος-ποσοστό κατολισθήσεων σε κάθε κατηγορία επιδεκτικότητας).
- Συχνότητα έκτασης κατολισθήσεων ανά κλάση Frequency landslides per class (σε κάθε κατηγορία επιδεκτικότητας, το ποσοστό έκτασης κατολισθήσεων σε σχέση με τη συνολική έκταση των κατολισθήσεων).

Σχετικά με τον έλεγχο επιτυχίας (Success rate), από τα διαγράμματα που κατασκευάστηκαν, αποδεικνύεται πως το 3,62% όλου του νησιού της Λευκάδας ανήκει στην κατηγορία επιδεκτικότητας 10 (στην πιο επιδεκτική κατηγορία), ενώ το 4,47% ανήκει στην κατηγορία 1. Επιπλέον, από τις συνολικά 596 κατολισθήσεις, το 61,58% του ποσοστού των κατολισθήσεων που έλαβαν χώρα, ανήκουν στην κατηγορία επιδεκτικότητας 10 (στην πλέον επιδεκτική κατηγορία), ενώ στην κατηγορία 1 το ποσοστό είναι 0%. Θα λέγαμε δηλαδή πως στις πιο επιδεκτικές κατηγορίες (8,9,10), το ποσοστό των κατολισθήσεων είναι 88,93%, ενώ στις λιγότερο επιδεκτικές κατηγορίες (1,2,3), εμπίπτει μόνο το 0,67% των κατολισθήσεων. Τέλος, φαίνεται πως το 81,1% της έκτασης των κατολισθήσεων (σε σχέση με τη συνολική έκταση των κατολισθήσεων) λαμβάνει χώρα στην κατηγορία 10, ενώ στην κατηγορία 1, το ποσοστό είναι 0%. Δηλαδή και σε αυτή την περίπτωση στις πιο επιδεκτικές κατηγορίες (8,9,10), το ποσοστό της έκτασης των κατολισθήσεων (σε σχέση με τη συνολική έκταση των κατολισθήσεων) είναι 97,12%, ενώ στις λιγότερο επιδεκτικές κατηγορίες (1,2,3), εμπίπτει μόνο το 0,23%.

Στη σύγκριση του μοντέλου με τα δεδομένα των κατολισθήσεων που προέκυψαν από το σεισμό του 2003 στο νησί της Λευκάδας (Prediction rate), από τα διαγράμματα αποδεικνύεται πως το 3,62% όλου του νησιού της Λευκάδας ανήκει στην κατηγορία επιδεκτικότητας 10 (στην πιο επιδεκτική κατηγορία), ενώ το 4,47% ανήκει στην κατηγορία 1. Επιπλέον, αξίζει να αναφερθεί πως από τις 302 κατολισθήσεις, το 51,99% του ποσοστού των κατολισθήσεων που έλαβαν χώρα, ανήκουν στην κατηγορία επιδεκτικότητας 10 (στην πλέον επιδεκτική κατηγορία), ενώ στην κατηγορία 1 το ποσοστό είναι 0%. Θα λέγαμε δηλαδή πως στις πιο επιδεκτικές κατηγορίες (8,9,10), το ποσοστό των κατολισθήσεων είναι 88,74%, ενώ στις λιγότερο επιδεκτικές κατηγορίες (1,2,3), εμπίπτει μόνο το 1,32% των κατολισθήσεων. Τέλος, φαίνεται πως το 72,39% της έκτασης των κατολισθήσεων (σε σχέση με τη συνολική έκταση των κατολισθήσεων) λαμβάνει χώρα στην κατολισθήσεων (σε σχέση με τη συνολική έκταση των κατολισθήσεων) είναι 97,81%, ενώ στις λιγότερο επιδεκτικές κατηγορίες (1,2,3), εμπίπτει μόνο το 0,11%.

Ψηφιακή συλλογή Βιβλιοθήκη

Για την απόδειξη της αξιοπιστίας του χάρτη επιδεκτικότητας, κατασκευάστηκαν οι καμπύλες του ποσοστού επιτυχίας και προβλεψιμότητας του χάρτη επιδεκτικότητας του νησιού της Λευκάδας (Success and predicted rate curves). Για να κατασκευαστούν αυτές οι καμπύλες, υπολογίστηκαν τα αθροιστικά μεγέθη των συχνοτήτων κλάσης (Frequency class) και των συχνοτήτων κατολισθήσεων (Frequency landslides), τόσο για το ποσοστό επιτυχίας (success rate), όσο και για το ποσοστό πρόβλεψης (prediction rate).

Από τις καμπύλες, είναι φανερό πως αναφορικά με την καμπύλη επιτυχίας (success rate), μέσα στο 10% του χάρτη της επιδεκτικότητας περιλαμβάνεται σχεδόν το 80% του ποσοστού των κατολισθήσεων. Όσον αφορά την καμπύλη προβλεψιμότητας (prediction rate), και αυτή η καμπύλη, ήδη στο 10% του χάρτη της επιδεκτικότητας θα μπορούσε να είχε προβλέψει σχεδόν το 75% - 80% του ποσοστού των κατολισθήσεων. Τέλος, και για τις δύο καμπύλες, στο 25% του χάρτη επιδεκτικότητας επιδεκτικότητας των κατολισθήσεων.

Ολοκληρώνοντας, με βάση όλα τα παραπάνω και με βάση τον παραγόμενο χάρτη επιδεκτικότητας, παρέχονται πληροφορίες σχετικά με τις επιδεκτικές περιοχές ως

προς την εκδήλωση κατολισθήσεων, με σκοπό τη χρησιμοποίησή του από τους ειδικούς (π.χ Πολιτική Προστασία), προκειμένου ο κίνδυνος εκδήλωσης αυτών των φαινομένων να μειωθεί, για την προστασία ανθρώπινων ζωών, κατασκευών, οδικών δικτύων και γενικότερα υποδομών.

Συνοπτικά για τις πιο επιδεκτικές κατηγορίες (8,9,10), (Πίν. 58):

Ψηφιακή συλλογή Βιβλιοθήκη

Πίνακας 58: Συγκεντρωτικός πίνακας κατολισθήσεων, με τα ποσοστά επιτυχίας και πρόβλεψης στις πιο επιδεκτικές κατηγορίες (8,9,10).

Κατολισθήσεις συνολικά	Πλήθος επιτυχών κατολισθήσεων	Ποσοστό επιτυχών κατολισθήσεων	Πλήθος επιτυχών προβλέψεων	Ποσοστό επιτυχών προβλέψεων
596	530	88,93%	///////	
302	///////////////////////////////////////		268	88,74

Τέλος, πραγματοποιήθηκε επιτόπου παρατήρηση στο πεδίο, στις περιοχές Πόρτο Κατσίκι, στην ευρύτερη περιοχή των Εγκρεμνών, των βιλών του Ωκεανού, της παραλίας του Γιαλού, της ευρύτερης περιοχής της παραλίας στο Καλαμίτσι και του οδικού δικτύου Άγιος Νικήτας – Τσουκαλάδες. Εντοπίστηκαν αστοχίες, εκτεταμένες κατολισθήσεις, κυρίως σε ασβεστολίθους της Ιόνιας ζώνης και της ζώνης Παξών. Επίσης, πολύ χαρακτηριστικά ήταν και τα μέτρα αντιμετώπισης και προστασίας έναντι αυτών των φαινομένων. Συγκεκριμένα, κατά κύριο λόγο εντοπίστηκαν φράχτες προστασίας, πλέγματα και βραχοπαγίδες Geobrugg, συρματοκιβώτια, αποστραγγιστικοί σωλήνες και αγκύρια.

Βιβλιοθήκη ΠΑΡΑΡΤΗΜΑ

Ψηφιακή συλλογή

Πίνακας 1: Έκταση κατολισθήσεων 2015.

_		
	Landslides 2015	ENCLOSED_A (km²)
	1	0,00873
	2	0,002901
	3	0,001429
	4	0,000511
	5	0,0067
	6	0,00565
	7	0,0194
	8	0,003705
	9	0,004476
	10	0,001755
	11	0,002303
	12	0,002552
	13	0,001527
	14	0,000705
	15	0,001176
	16	0,000634
	17	0,002033
	18	0,001387
	19	0,00078
	20	0,000676
	21	0,000712
	22	0,001077
	23	0,000655
	24	0,000409
	25	0,0002003
	26	0,00836
	27	0,01464
	28	0,001
	29	0,000657
	30	0,01229
	31	0,00663
	32	0,001905
	33	0,001306
	34	0,002648
	35	0,001381
	36	0,000703
	37	0,001758
	38	0,00224
	39	0,00552
	40	0,002013
	41	0,000987

Landslides 2015	ENCLOSED_A (km²)
42	0,003745
43	0,001802
44	0,000885
45	0,000669
46	0,000518
47	0,000874
48	0,000708
49	0,001063
50	0,001124
51	0,000643
52	0,004729
53	0,004015
54	0,0003281
55	0,000897
56	0,000764
57	0,001249
58	0,001338
59	0,00611
60	0,000671
61	0,001339
62	0,0004841
63	0,00534
64	0,001828
65	0,0002195
66	0,000132
67	0,004278
68	0,00778
69	0,00189
70	0,001463
71	0,002982
72	0,000645
73	0,001681
74	0,0066
75	0,001951
76	0,000889
77	0,000133
78	0,02017
79	0,0003614
80	0,003036
81	0,00607
82	0,0003096

Mart 1	Βιβλιοθήκ	'n
B eneral Contraction of the second s	OBDATI	05"
Y Litte	Landslides 2015	ENCLOSED_A (km ²)
2	83	0,000871
	84	0,0004648
	85	0,00814
	86	0,000991
	87	0,001038
	88	0,0003002
	89	0,000678
	90	0,0003369
	91	0,0001826
	92	0,0004269
	93	0,01221
	94	0,0004683
	95	0,001255
	96	0,003233
	97	0,0002567
	98	0,0002571
	99	0,001248
	100	0,0003669
	101	0,0001858
	102	0,0002057
	103	0,0003525
	104	0,000666
	105	0,000649
	106	0,0000822
	107	0,02314
	108	0,01484
	109	0,001873
	110	0,000529
	111	0,001433
	112	0,001968
	113	0,002521
	114	0,001006
	115	0,000682
	116	0,00027
	117	0,0001085
	118	0,0002494
	119	0,0001439
	120	0,001753
	121	0,004425
	122	0,00159
	123	0,000633

Ψηφιακή συλλογή

Landslides 2015	ENCLOSED_A (km²)
124	0,00435
125	0,000852
126	0,0004735
127	0,000603
128	0,0003182
129	0,0004937
130	0,001819
131	0,0004318
132	0,00109
133	0,02467
134	0,0001758
135	0,00906
136	0,01856
137	0,00597
138	0,00502
139	0,001106
140	0,004906
141	0,001133
142	0,001073
143	0,0003614
144	0,002215
145	0,000743
146	0,002466
147	0,0004367
148	0,0002899
149	0,00154
150	0,0004381
151	0,0001505
152	0,0002947
153	0,002994
154	0,004146
155	0,001097
156	0,002442
157	0,001023
158	0,000908
159	0,002261
160	0,002046
161	0,00218
162	0,001197
163	0,0003168
164	0,02833

<u>nap</u>	
Landsli 201	des ENCLOSED_A (km²)
165	0,00057
166	0,002208
167	0,00926
168	0,001069
169	0,000684
170	0,000756
171	0,0004967
172	0,000622
173	0,001868
174	0,001673
175	0,00079
176	0,000342
177	0,0003991
178	0,000657
179	0,000348
180	0,0003547
181	0,0001568
182	0,0001733
183	0,0002223
184	0,0001151
185	0,0003627
186	0,00605
187	0,004054
188	0,000389
189	0,00103
190	0,003265
191	0,002319
192	0,004375
193	0,0004281
194	0,001114
195	0,001752
196	0,001013
197	0,0003171
198	0,001705
199	0,0003112
200	0,001764
201	0,000836
202	0,0004703
203	0,0002667
204	0,00973
205	0.000768

Landslides 2015	ENCLOSED_A (km²)
206	0,002033
207	0,003966
208	0,002694
209	0,002134
210	0,00039
211	0,0000686
212	0,0000605
213	0,0001451
214	0,0002276
215	0,0001938
216	0,0001802
217	0,001341
218	0,0002794
219	0,001949
220	0,000773
221	0,000822
222	0,0001641
223	0,0001597
224	0,0002269
225	0,0000703
226	0,0000689
227	0,0001497
228	0,0001115
229	0,0003189
230	0,001604
231	0,0004926
232	0,0001613
233	0,0000438
234	0,0000926
235	0,0001796
236	0,0001267
237	0,0000404
238	0,0004737
239	0,001596
240	0,000692
241	0,0000494
242	0,0003942
243	0,000642
244	0,00167
245	0,001953
246	0,004622

	Londelidee	1 1 2 1
T	2015	ENCLOSED_A (km ²)
Č.	247	0,001326
	248	0,0003116
	249	0,000983
	250	0,001923
	251	0,002267
	252	0,0004704
	253	0,001027
	254	0,000613
	255	0,001955
	256	0,002018
	257	0,001388
	258	0,00061
	259	0,001305
	260	0,001291
	261	0,002866
	262	0,00881
	263	0,000808
	264	0,0002899
	265	0,0001891
	266	0,000506
	267	0,0004169
	268	0,0002309
	269	0,001509
	270	0,002591
	271	0,000504
	272	0,0001705
	273	0,0001196
	274	0,0001271
	275	0,000792
	276	0,0004359
	277	0,002564
	278	0,002583
	279	0,000576
	280	0,000334
	281	0,0004732
	282	0,0002692
	283	0,0001353
	284	0,000917
	285	0,001618
	286	0,00068
	287	0,0003293

Landslides 2015	ENCLOSED_A (km²)
288	0,002095
289	0,0004419
290	0,000898
291	0,000757
292	0,0003743
293	0,000593
294	0,001254
295	0,0001034
296	0,000149
297	0,0001103
298	0,000799
299	0,0001895
300	0,0003092
301	0,0002275
302	0,0002845
303	0,0004511
304	0,001299
305	0,000914
306	0,0004325
307	0,00505
308	0,00296
309	0,00434
310	0,01222
311	0,003849
312	0,001605
313	0,001252
314	0,00202
315	0,000516
316	0,02851
317	0,003378
318	0,001016
319	0,001179
320	0,001345
321	0,000668
322	0,0004936
323	0,01101
324	0,002685
325	0,003486
326	0,003471
327	0,00795
328	0,000536

	Landslides 2015	ENCLOSED_A (km ²)
25	329	0,002888
	330	0,000681
	331	0,001063
	332	0,00556
	333	0,002636
	334	0,000532
	335	0,000871
	336	0,0001554
	337	0,0002097
	338	0,0001961
	339	0,0002193
	340	0,001534
	341	0,0002461
	342	0,002438
	343	0,004033
	344	0,001644
	345	0,000691
	346	0,003208
	347	0,001515
	348	0,00117
_	349	0,001593
_	350	0,00095
	351	0,003224
	352	0,001243
	353	0,002017
_	354	0,00592
-	355	0,000922
-	356	0,002269
	357	0,00543
_	358	0,002144
	359	0,002135
	360	0,00232
	361	0,00157
	362	0,000509
ŀ	363	0,01496
╞	364	0,00107
	365	0,001106
	366	0,0004431
	367	0,0001048
	368	0,0002116
	369	0,001438

Landslides 2015	ENCLOSED_A (km²)
370	0,002243
371	0,002072
372	0,001701
373	0,00604
374	0,000634
375	0,001704
376	0,000942
377	0,001209
378	0,001386
379	0,000904
380	0,001222
381	0,001273
382	0,001015
383	0,00522
384	0,00691
385	0,00477
386	0,002016
387	0,003023
388	0,001044
389	0,000527
390	0,0002987
391	0,001013
392	0,002308
393	0,00112
394	0,0108
395	0,002771
396	0,002183
397	0,00243
398	0,000642
399	0,02669
400	0,00106
401	0,002175
402	0,0003077
403	0,004264
404	0,00954
405	0,002359
406	0,001116
407	0,002351
408	0,000763
409	0,000802
410	0,001459

Landslides 2015	ENCLOSED_A (km²)
411	0,003998
412	0,003099
413	0,00052
414	0,001037
415	0,003699
416	0,001828
417	0,000919
418	0,002046
419	0,00015
420	0,000691
421	0,0003422
422	0,003292
423	0,00512
424	0,0004868
425	0,004378
426	0,000299
427	0,0003581
428	0,0003395
429	0,0004154
430	0,000265
431	0,000633
432	0,001035
433	0,000333
434	0,000798
435	0,00964
436	0,001526
437	0,001519
438	0,000749
439	0,03128
440	0,001213
441	0,000766
442	0,000269
443	0,001469
444	0,000622
445	0,003198
446	0,00074
447	0,001602
448	0,000568
449	0,001092
450	0,004305
451	0,001549

Landslides 2015	ENCLOSED_A (km²)
452	0,001046
453	0,0003909
454	0,002334
455	0,001461
456	0,0004876
457	0,003063
458	0,004713
459	0,001234
460	0,0001342
461	0,0000534
462	0,001167
463	0,002517
464	0,002454
465	0,0003083
466	0,000522
467	0,002094
468	0,003556
469	0,00524
470	0,000607
471	0,001002
472	0,002385
473	0,001311
474	0,001878
475	0,01227
476	0,000945
477	0,001152
478	0,000836
479	0,0004956
480	0,0265
481	0,000993
482	0,001098
483	0,000833
484	0,0005
485	0,002897
486	0,02038
487	0,000738
488	0,000514
489	0,000795
490	0,001987
491	0,04294
492	0,002274

OBDASTOS"			
Landslides 2015	ENCLOSED_A (km ²)		
493	0,003477		
494	0,001106		
495	0,02408		
496	0,002157		
497	0,0004577		
498	0,0003183		
499	0,0003359		
500	0,0003456		
501	0,0001245		
502	0,001427		
503	0,000878		
504	0,0001714		
505	0,000593		
506	0,00542		
507	0,000853		
508	0,000908		
509	0,000849		
510	0,000984		
511	0,0004954		
512	0,0002565		
513	0,001071		
514	0,001236		
515	0,00242		
516	0,000686		
517	0,0004906		
518	0,0003916		
519	0,0001486		
520	0,000669		
521	0,0004527		
522	0,000171		
523	0,00056		
524	0,0004211		
525	0,000264		
526	0,000978		
527	0,0001848		
528	0,0003769		
529	0,003118		
530	0,0004187		
531	0,000768		
532	0,000235		
533	0,0003289		

Landslides 2015	ENCLOSED_A (km²)
534	0,0003367
535	0,0003652
536	0,000368
537	0,0003183
538	0,000282
539	0,0001862
540	0,001449
541	0,000729
542	0,0002805
543	0,0004187
544	0,0004305
545	0,0001034
546	0,000919
547	0,001268
548	0,0003376
549	0,0002415
550	0,001661
551	0,0003777
552	0,000812
553	0,0002702
554	0,000789
555	0,000596
556	0,001032
557	0,0003175
558	0,002399
559	0,0000775
560	0,000154
561	0,0001126
562	0,0002538
563	0,0002196
564	0,000902
565	0,0004378
566	0,000773
567	0,00078
568	0,0000936
569	0,0004671
570	0,001816
571	0,000902
572	0,0002854
573	0,0003099
574	0,000742

Ψηφιακή συλλογή Βιβλιοθήκη			
	Landslides 2015	ENCLOSED_A (km ²)	
2	575	0,00051	
	576	0,003314	
	577	0,0002842	
	578	0,0004486	
	579	0,000852	
	580	0,000249	
	581	0,001453	
	582	0,0003725	
	583	0,001566	
	584	0,001053	
	585	0,0003761	
	586	0,000302	
	587	0,0003691	
	588	0,0002642	
	589	0,002706	
	590	0,000564	
	591	0,0002232	
	592	0,0004468	
	593	0,00083	
	594	0,0002431	
	595	0,0002829	
	596	0,000646	

Πίνακας 2: Έκταση κατολισθήσεων 2003.

E	Landslides 2003	ENCLOSED_A (km²)
	1	0,00296
	2	0,005
	3	0,001357
	4	0,002968
	5	0,0003906
	6	0,002906
	7	0,00923
	8	0,001036
	9	0,001745
	10	0,000955
	11	0,002082
	12	0,001134
	13	0,0001495
	14	0,000614
	15	0,0003955
	16	0,0002948
	17	0,001372
	18	0,00762
	19	0,002522
	20	0,000735
	21	0,0177
	22	0,001816
	23	0,0121
	24	0,00573
	25	0,000594
	26	0,004976
	27	0,001237
	28	0,002556
	29	0,001328
	30	0,1128
	31	0,002273
	32	0,000557
	33	0,001506
	34	0,001291
	35	0,004843
	36	0,003595
	37	0,002334
	38	0,001985
	39	0,000507
	40	0,00144
	41	0,001362

Ψηφιακή συλλογή Βιβλιοθήκη

121

Landslides	ENCLOSED_A (km ²)
42	0.000787
43	0.001995
43	0.000887
45	0.001051
46	0.0004012
40	0.000655
48	0.000713
40	0.00052
50	0.001536
51	0.000779
52	0.004011
53	0.01634
54	0.002204
55	0.002254
56	0.002426
57	0.00111
58	0.01229
59	0.002874
60	0.00778
61	0.004192
62	0.002747
63	0.002139
64	0,001315
65	0,0004025
66	0,0004167
67	0,000741
68	0,00697
69	0,001716
70	0,00183
71	0,000524
72	0,000711
73	0,001015
74	0,0068
75	0,002882
76	0,001921
77	0,00722
78	0,0004589
79	0,0001298
80	0,000279
81	0,000441
82	0,0003287

Landslides	
2003	
83	0,001241
84	0,000714
85	0,0001902
86	0,000533
87	0,000526
88	0,001299
89	0,0004202
90	0,0001918
91	0,000548
92	0,0002374
93	0,002268
94	0,0003132
95	0,0003215
96	0,001166
97	0,000877
98	0,003381
99	0,001831
100	0,000739
101	0,000545
102	0,0004437
103	0,0003073
104	0,01786
105	0,000708
106	0,001587
107	0,01275
108	0,00155
109	0,001335
110	0,000826
111	0,002172
112	0,00887
113	0,000688
114	0,003197
115	0,003455
116	0,001352
117	0,0003667
118	0,001225
119	0,001765
120	0,001949
121	0,0002874
122	0,001505
123	0,003956

Landslides	ENCLOSED_A (km ²)
2003	0.001106
124	0,001196
125	0,000949
126	0,01789
127	0,002121
128	0,001656
129	0,000784
130	0,001182
131	0,000909
132	0,003976
133	0,001792
134	0,000601
135	0,000623
136	0,0004845
137	0,000863
138	0,000592
139	0,001524
140	0,000889
141	0,004754
142	0,001158
143	0,000859
144	0,000942
145	0,000758
146	0,001811
147	0,001597
148	0,00127
149	0,000822
150	0,004645
151	0,00954
152	0,001173
153	0,01932
154	0,001746
155	0,000794
156	0,00085
157	0,00619
158	0,000617
159	0,001126
160	0,000669
161	0,001236
162	0,000585
163	0,000878
164	0,003235

OPVZ	
Landslides 2003	ENCLOSED_A (km²)
165	0,003957
166	0,00838
167	0,003787
168	0,002767
169	0,004062
170	0,000565
171	0,0002861
172	0,00777
173	0,00558
174	0,00743
175	0,001864
176	0,000534
177	0,0001792
178	0,001294
179	0,00126
180	0,01528
181	0,0003002
182	0,004565
183	0,001289
184	0,001296
185	0,002585
186	0,0329
187	0,003655
188	0,003767
189	0,01717
190	0,0983
191	0,03801
192	0,03801
193	0,00562
194	0,0021
195	0,004482
196	0,002679
197	0,02005
198	0,001154
199	0,03701
200	0,001002
201	0,00896
202	0,00591
203	0,001996
204	0,000865
205	0,002353

Landslides 2003	ENCLOSED_A (km²)
206	0,02696
207	0,0068
208	0,002702
209	0,002623
210	0,01813
211	0,00119
212	0,001186
213	0,00581
214	0,002425
215	0,001482
216	0,01706
217	0,01124
218	0,004616
219	0,01123
220	0,004017
221	0,01562
222	0,00513
223	0,02312
224	0,004347
225	0,02796
226	0,00738
227	0,00931
228	0,01609
229	0,004264
230	0,00722
231	0,002532
232	0,002453
233	0,004451
234	0,01564
235	0,01276
236	0,00993
237	0,001629
238	0,00521
239	0,00574
240	0,001369
241	0,002538
242	0,001477
243	0,00388
244	0,002253
245	0,00173
246	0,002872

OBDASTOS"			
Landslides 2003	ENCLOSED_A (km²)		
247	0,002731		
248	0,0136		
249	0,00256		
250	0,001241		
251	0,01631		
252	0,004673		
253	0,00236		
254	0,000939		
255	0,00157		
256	0,00512		
257	0,00635		
258	0,004323		
259	0,00976		
260	0,002867		
261	0,00625		
262	0,002749		
263	0.003923		
264	0,00637		
265	0,00753		
266	0,002241		
267	0,002054		
268	0,02335		
269	0,01314		
270	0,004311		
271	0,01326		
272	0,0221		
273	0,00512		
274	0,0164		
275	0,02548		
276	0,00691		
277	0,00768		
278	0,004853		
279	0,003108		
280	0,003149		
281	0,003947		
282	0,00876		
283	0,01633		
284	0,02697		
285	0,002182		
286	0,00509		
287	0,002692		

Landslides 2003	ENCLOSED_A (km ²)
288	0,003224
289	0,01633
290	0,00851
291	0,02403
292	0,004484
293	0,03183
294	0,01133
295	0,01524
296	0,002489
297	0,03077
298	0,00125
299	0,001551
300	0,001558
301	0,001484
302	0,002434

		-			
	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
11	1	24,224882	290,008301	260,643711	65,631844
~	2	51,287674	264,001373	222,46573	28,989234
	3	141,228058	236,710876	105,646226	29,712273
	4	53,527088	108,088364	74,738174	14,097171
	5	9,465448	243,285095	254,213273	60,8311
	6	17,970249	223,815567	246,373334	66,673252
	7	1,949109	204,835052	283,784506	99,777755
	8	72,54332	217,028244	154,199212	59 <i>,</i> 069988
	9	160,160538	220,760147	153,631331	61,154533
	10	198,519302	216,098312	75,098284	36,182232
	11	73,698105	163,488815	103,194049	43,915184
	12	14,458415	81,278969	143,088728	29,438694
	13	0	23,043251	90,731777	48,17092
	14	24,290987	60,650879	51,505672	23,199351
	15	230,866776	257,395813	65,336733	30,969986
	16	254,705368	267,200043	54,240831	17,465339
	17	0	87,583733	74,779283	42,961101
	18	2,08396	101,818153	75,353249	38,461768
	19	0	107,652969	70,588789	23,293238
	20	137,272614	157,86348	49,4244	21,8764
	21	34,497486	108,900787	104,523824	10,326424
	22	31,012009	95,805161	78,184551	34,715809
	23	71,558952	138,668137	68,472408	40,497215
	24	38,512394	72,687485	58,061499	12,541249
	25	30,631573	81,571777	56,91273	7,915713
	26	12,107576	265,452454	307,323545	56,174917
	27	10,475122	282,632813	322,849846	136,399981
	28	252,684952	284,407196	51,186717	25,788402
	29	247,662872	287,181732	62,129971	14,700007
	30	2,548841	245,045074	248,610505	104,23133
	31	11,481795	150,795898	145,002589	62,752225
	32	143,858749	213,81485	91,669415	43,428951
	33	122,431709	187,942932	66,693512	33,365588
	34	6,048145	111,949371	129,369693	35,557723
	35	77,81823	168,087173	100,781496	17,202681
	36	149,152069	224,627396	73,889666	18,533339
	37	7,578958	120,247536	91,753193	32,971423
	38	17,131056	258,69812	277,20429	27,023023
	39	81,080406	279,783936	238,111469	43,158952
	40	155,086914	245,304672	104,054164	51,349873
	41	2,325326	86,620216	66,101683	19,666012

B	^{φιακή} συλλογή βλιοθήκη	19			
5	TOT ZA DA	- 88			
27	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
T_{μ}	42	201,464233	314,691254	127,096946	54,967397
2	43	1,754489	107,423912	51,500687	44,995571
	44	12,586677	144,438171	69,256322	19,829476
	45	144,684296	206,244675	62,914068	15,944286
	46	257,822296	288,502045	40,249146	21,710311
	47	242,084976	289,661835	56,365913	31,963932
	48	241,258484	284,786102	53,814763	31,401626
	49	199,473923	284,730347	78,142435	25,592071
	50	53,894379	132,093781	95,488105	23,372676
	51	129,41333	162,999588	45,444939	28,264502
	52	128,335983	281,309448	149,082046	68,764781
	53	6,898949	146,965195	156,154944	56,130801
	54	208,095337	250,797791	37,086557	12,582165
	55	175,598969	241,547821	84,293208	17,304589
	56	48,683762	100,371841	60,742168	34,042991
	57	47,488155	149,862717	119,919692	28,075574
	58	193,717773	254,459564	80,63011	37,822769
	59	36,952202	214,967438	192,797337	74,62283
	60	115,626312	158,015167	53,308063	25,291952
	61	157,629181	219,22023	55,363152	38,110205
	62	31,235855	68,725349	42,486809	18,761116
	63	11,600451	158,340302	130,897735	85,640784
	64	130,888214	234,788132	126,026107	33,185328
	65	32,00573	54,189896	27,948334	12,852331
	66	97,224373	134,310272	35,175049	7,607988
	67	51,809841	169,789337	129,562054	58,383903
	68	25,135153	124,234886	110,635325	107,347895
	69	5,391712	93,443398	108,146642	44,62265
_	70	82,763947	140,920685	91,34944	27,849871
	71	147,054382	213,494904	124,409154	37,662998
	72	157,077881	179,746674	56,583032	18,576352
	73	107,554459	138,692932	88,394759	28,451409
	74	1,11627	157,733322	174,583143	81,680833
	75	1,628911	99,470474	103,513891	27,194312
	76	3,200002	72,874046	65,834566	19,37235
	77	179,284683	186,195999	22,8378	11,649317
	78	0,217541	181,142166	229,610685	164,587327
	79	189,345367	196,343842	44,300957	13,917917
_	80	30,205376	198,506638	155,004534	49,270661
	81	17,671465	195,844467	165,448375	65,83758
	82	216,097336	218,156494	35,131159	14,391034

DAT	φιακή συλλογή ΙΒλιοθήκη	8			
E	AD A STOS	- 11			
15 Y	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
The	83	101,919418	135,642502	43,2623	28,046298
2	84	136,344543	157,434052	29,20735	20,00446
	85	3,914172	172,144257	210,158127	71,809099
	86	113,438118	168,136353	80,442732	20,773878
	87	91,84816	178,119812	104,247706	23,069402
	88	167,74057	183,220718	36,87715	16,279323
	89	72,442139	116,572525	45,188834	24,823859
	90	16,919744	65,92836	37,122034	12,042268
	91	78,264114	97,991196	24,821733	10,873907
	92	128,274292	176,285248	52,0219	13,391036
	93	0	175,86644	222,981461	127,494938
	94	8,682223	69,921867	45,422846	15,831794
	95	91,775452	145,377975	80,910254	25,373432
	96	71,904739	145,639145	89,984387	74,654459
	97	7,842104	39,370911	27,835958	18,648519
	98	12,916587	47,721344	25,483933	14,165555
	99	41,476376	118,903175	89,863036	32,232087
	100	8,30905	29,606955	31,293668	24,676716
	101	15,709908	40,337025	22,759123	16,323973
	102	162,2686	174,506775	33,290878	12,813785
	103	120,013847	148,005493	46,041202	15,93283
	104	122,557495	153,821594	41,105914	27,672634
	105	11,004036	77,673172	75,435371	14,194945
	106	63,842991	77,166405	22,496841	7,306466
	107	5,156154	239,098145	308,801767	132,699419
	108	5,159783	201,384506	246,000817	142,331115
	109	10,463167	74,388115	68,151344	48,750536
	110	147,378067	192,991241	52,658425	16,442328
	111	110,970764	173,342316	94,304778	22,831683
	112	5,399856	97,703033	95,123499	52,282386
	113	16,489075	166,381287	151,089107	37,420144
	114	14,090821	93,270287	120,07026	20,300936
	115	242,164581	256,691162	37,242654	27,285632
	116	214,666931	229,282043	32,992497	14,471483
	117	226,194336	231,082016	17,153944	12,650105
	118	149,563354	181,042557	45,902931	10,808645
	119	189,195282	191,409195	18,860962	9,358782
	120	156,51181	206,995285	77,892142	32,597707
	121	6,414247	156,815521	170,555676	51,630779
	122	170,607132	230,741821	73,385085	39,000233
	123	45,538948	84,951408	71,624609	21,868269

B	ιφιακή συλλογή Ι βλιοθήκη	10			
50	ADATTOS	- 00			
	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
Tμr	124	118,794868	205,639954	88,198716	69,870441
1-	125	110,367599	153,758514	53,499184	23,752008
	126	182,866074	216,035355	35,504424	22,84653
	127	219,609375	251,720322	56,469806	14,885664
	128	225,412994	247,946854	37,317702	15,564981
	129	217,079697	235,424164	32,636353	19,950165
	130	59,231865	157,00296	77,834777	44,044125
	131	182,350998	208,013489	35,009171	20,424646
	132	10,110303	47,625454	85,623717	26,797559
	133	6,39767	241,428131	280,288479	138,005406
	134	229,011322	239,120636	25,5542	8,0448
	135	7,047091	156,105148	233,172729	85,349076
	136	6,017527	246,360245	347,053629	179,821006
	137	13,33346	144,109222	176,500733	55,978365
	138	15,302071	120,289902	130,424725	68,361739
	139	125,151794	185,036987	75,452414	21,789457
	140	81,452148	181,07045	128,187412	50,285139
	141	208,423477	276,893799	86,935742	18,930635
	142	207,189301	273,791595	75,554225	33,236323
	143	163,619476	201,681168	66,027925	11,889058
	144	15,806685	148,887268	202,745887	33,023498
	145	58,634571	105,707848	86,099803	37,335272
	146	158,768387	237,680939	104,669302	45,355495
	147	81,359154	104,177246	46,151735	23,010971
	148	37,51329	48,755981	44,83425	9,791945
	149	165,279556	234,823288	88,540666	48,800246
	150	248,804398	269,554504	27,439019	19,742647
	151	248,343781	262,758789	28,197204	17,316498
	152	222,257782	257,389038	42,600814	10,849974
	153	84,382195	143,609756	71,033717	59 <i>,</i> 846025
	154	70,538315	164,059113	116,917135	51,506973
	155	60,488239	99,838554	55,217583	32,964888
	156	118,151421	206,432327	125,578336	34,96134
	157	7,526747	16,677364	40,205519	35,592618
	158	59,451275	84,130844	40,047715	34,479024
	159	43,954475	97,53685	103,746164	39,395158
	160	61,93124	126,014679	98,191473	48,627537
	161	206,522629	282,120209	125,714255	53,251594
	162	208,003387	257,380493	68,617274	33,452916
	163	266,201447	271,940186	31,7061	17,5093
	164	87,958076	271,531677	257,285389	193,634623

WI	φιακή συλλογή	8			
	SD ASTOS	- 11			
ĒC	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
Tμi	165	87,778397	127,874664	66,751594	17,435206
2-1	166	113,514336	188,659348	98,892264	35,98575
	167	84,318771	295,049713	320,066713	87,242872
-	168	121,199364	181,734222	82,511959	36,749748
•	169	186,568405	226,899826	49,687539	22,673713
•	170	203,770096	228,060532	43,524782	28,401181
•	171	160,773422	188,504349	40,229908	19,067678
	172	137,575104	185,969208	72,079582	16,404339
-	173	202,885376	248,730042	83,738177	44,797194
	174	174,855606	247,28215	101,049335	31,675029
-	175	266,272217	290,969879	43,313845	30,990178
	176	309,440277	331,678253	43,572041	11,672891
	177	345,582733	349,540009	39,684789	15,686378
	178	313,054138	335,956909	40,538763	20,868373
	179	264,666901	283,464172	32,648504	18,060357
	180	277,961853	287,647369	33,372894	14,946399
	181	276,884705	284,388214	22,713671	9,824771
	182	166,417313	174,188416	20,601466	10,816823
	183	165,642212	175,4841	22,141602	14,868043
	184	157,590927	162,798523	22,081481	8,380046
	185	204,543793	222,65683	37,051583	14,009547
	186	44,695873	149,116684	207,898334	58,953387
-	187	55,379627	146,754379	148,27772	46,484916
	188	172,520676	195,273605	39,085538	15,327424
	189	112,523201	183,359711	85 <i>,</i> 356398	32,156643
	190	244,437271	349,36026	147,852453	43,207725
	191	261,341827	351,969452	106,638793	37,257742
	192	226,675354	356,768036	175,408811	64,097029
	193	350,390076	361,040619	35,999668	19,568894
	194	204,056854	238,9841	59,060585	34,69476
-	195	194,277267	242,497681	75,913904	38,044408
	196	189,064133	235,537125	58,92993	29,441477
	197	233,320251	250,338348	35,57568	19,867459
-	198	240,349762	279,996704	74,648875	36,405924
	199	239,835251	248,710983	27,24247	15,846535
	200	182,305756	245,08226	91,688282	34,810147
	201	172,66629	236,326279	77,562269	18,91224
	202	126,115776	150,250519	58,886447	17,206017
	203	414,54776	432,937317	35,126328	13,654604
	204	148,525787	436,209045	392,887153	63,966729
	205	363,846313	391,750671	36,854234	30,036315

Di P	φιακή συλλογή	10			
	Ipvioeliki				
ΈQ	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
Thi	206	209,303802	359,283783	186,172595	20,202747
2	207	161,054565	271,554626	146,204063	55,51484
	208	139,133331	187,60141	65,258257	48,699653
	209	458,883087	474,804016	79,287716	41,95912
	210	364,123871	378,195313	42,330469	21,604148
	211	466,371918	469,688019	20,010867	6,851721
	212	471,086243	476,494659	27,056662	4,470697
	213	450,13739	453,347229	22,49335	12,181992
	214	397,881531	412,564972	31,667549	14,818907
	215	395,67276	409,548523	26,459325	14,126641
	216	423,43869	428,100342	17,554903	15,029341
	217	345,645782	384,622986	76,700068	33,119573
	218	346,878967	366,448822	35,958946	12,304333
	219	339,288391	388,068939	88,232322	38,810846
	220	353,008118	384,670532	46,558733	30,29953
	221	349,309021	389,549103	64,049365	28,594808
	222	362,381927	368,59613	36,476816	7,213378
	223	345,854675	355,040771	18,843139	10,903192
	224	367,42395	378,244537	32,266757	15,04871
	225	376,579224	381,103455	19,969271	6,083169
	226	393,231689	393,894653	20,451152	6,150367
	227	486,448883	488,900604	17,393546	12,926476
	228	429,52771	435,307861	19,030781	10,619919
	229	397,416077	407,169922	32,978582	21,518854
	230	342,589935	352,98407	58,855434	43,020307
	231	416,232178	448,842499	59,746631	17,177827
	232	395,325195	405,508667	30,534536	11,256378
	233	416,790131	420,478455	18,194022	8,506448
	234	432,356476	440,304901	18,718561	7,783336
	235	381,515228	390,506927	24,198505	14,937559
	236	383,339081	388,542908	25,371635	13 <i>,</i> 896357
	237	423,893036	428,483734	12,555491	6,440996
	238	406,856628	415,201782	36,504869	23,109148
	239	416,638489	471,54361	78,399766	45,784178
	240	378,922821	414,199432	59,234325	26,427055
	241	453,775299	455,479156	11,585607	6,620394
	242	366,328522	389,49353	41,304969	15,529775
	243	369,385437	435,3927	84,159608	24,238116
	244	374,831024	424,867706	67,714015	47,156744
	245	178,731033	266,907684	112,23951	30,770906
	246	200,899551	373,13266	186,354515	47,393804

Di Wa	φιακή συλλογή Βλιοθήκη	8			
The second	SD A STOS	- 11			
59	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
Thi	247	351,088013	411,797852	75,008383	38,630158
2	248	369,001526	390,87674	25,650613	16,21104
	249	257,480164	308,781372	71,18036	23,877431
	250	147,995346	222,079971	115,620038	31,404579
	251	93,955627	133,99707	111,207847	50,212286
	252	209,371841	246,028015	47,415327	16,396067
	253	140,616516	189,974167	83,075106	20,049694
	254	415,136688	456,861053	52,879047	17,082112
	255	287,413544	427,380127	156,053305	51,995588
	256	382,859741	460,702942	103,425853	55,29193
	257	396,095825	450,897583	78,023291	27,695025
	258	384,264557	418,519806	56,032659	15,964743
	259	97,897964	137,28891	94,578424	22,017436
	260	175,315613	256,772827	117,808591	25,920255
	261	154,765182	304,231384	203,164217	79,574943
	262	273,973053	448,305878	227,881525	73,686684
	263	375,426758	414,891144	54,354368	26,600977
	264	432,876709	449,803802	19,644129	18,171948
	265	418,043671	430,206451	19,192047	15,272844
	266	349,403687	378,795959	45,394591	25,414091
	267	298,663635	327,535706	35,265615	22,864643
_	268	334,183533	345,272858	24,026959	17,597441
-	269	124,535728	228,696152	161,977894	27,606878
	270	60,09708	125,776367	151,483797	26,810027
_	271	72,378967	84,197197	41,149033	25,180292
-	272	25,37241	29,921661	22,403489	13,400508
	273	80,223732	84,510956	16,684584	9,110803
	274	89,028351	93,891647	18,507008	10,542846
_	275	198,161316	220,568802	39,026348	31,400083
-	276	85,885658	107,842735	50,466843	17,517723
-	277	114,149086	154,177383	86,626094	48,821646
-	278	48,462944	106,982445	144,773586	28,047333
-	279	31,11414	43,066971	47,510077	18,967216
-	280	49,751816	69,471024	44,996842	15,364706
-	281	97,18676	116,392624	28,909163	24,862771
-	282	97,756332	111,483482	29,073132	12,257917
	283	101,707909	105,833054	25,39913	10,655923
-	284	45,786572	94,70475	82,266521	18,73161
-	285	7,967838	28,304026	86,161448	34,455399
-	286	23,575491	37,351028	47,409699	25,603793
	287	67,942551	96,459808	59,651131	9,645774

De P	φιακή συλλογή	2			
		- 11			
泊の	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
Thi	288	39.818665	83.98127	188.86161	21.440663
24	289	66.334007	88.059875	45,191066	18,414615
	290	22,621405	52,344666	39.461442	34,115941
	291	27.598677	71.993988	76.781646	20.822545
	292	15.412372	19.253368	36.405246	15.867039
	293	31.76335	51,732941	37,764637	27.030794
	294	126.186073	162.703491	61.809863	37.738815
	295	42.172222	46.868946	20.290141	10.194566
	296	28.759186	35.452648	18.598952	13.626942
	297	52.573112	54.899906	17.409514	12.671141
	298	22.589184	33.676647	50.551205	20.982299
	299	27.059538	35.660313	19.967832	13.670322
	300	27.012384	37.98045	37.038265	16.806566
	301	27.910961	33.937481	24.936367	14.167347
	302	29.805208	37.323318	26.502872	15.33893
	303	234.866211	280.22644	62.528844	17.719585
	304	241,235031	340,069275	123,82275	18,534877
	305	393,710327	443,381409	76,543931	21,26917
	306	423,24942	454,149689	35,956761	19,110269
	307	148,73111	355,758087	249,790316	73,125537
	308	363,624023	434,241486	110,844011	51,329003
	309	358,02655	450,554688	112,766182	58,107351
	310	146,191437	369,927246	275,816255	105,933177
	311	124,009445	235,540741	147,087159	54,714098
	312	74,984406	134,049225	91,211073	30,235345
	313	10,68985	68,971016	144,083819	25,379603
	314	346,773987	410,546448	91,440924	32,716792
	315	370,557983	404,580688	43,860962	19,958966
	316	44,72541	314,69165	320,511475	169,375232
	317	64,593056	171,321457	137,972364	43,687552
	318	9,716203	45,9091	70,620546	28,985794
	319	260,466034	333,137878	101,138739	47,313354
	320	309,875214	301,980084	85,007524	23,233024
	222	219 517922	373,208324	49,247802	21 / 20211
	322	201 221252	304,188440	226 9/10738	87 87/658
	323	128 88623	218 417053	139 750187	27 324868
	325	191 199265	327,709869	198,623465	50,798386
	326	291,995361	358,838104	98.893652	70.126722
	327	286,047455	362,847748	118,878598	99,078119
	328	320,998291	364,06778	53,422867	17,153634
	329	318,695679	379,972626	84,06526	72,400981
	330	235,812347	296,045502	91,914219	17,378504

B	ιφιακή συλλογή Ι Βλιοθήκη	8			
MOED	TZADA	- 11			
SEC	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
J	331	130,440872	242,621262	144,282175	22,555939
	332	40,230217	193,935944	163,93793	60,844401
	333	44,201557	128,467773	91,690671	37,218799
	334	226,758926	253,588974	40,862897	25,492009
	335	352,452789	393,705597	36,129762	30,849301
	336	407,207916	410,701019	66,062422	4,704476
	337	413,439697	422,610138	52,513312	8,10533
	338	433,665527	436,828735	24,84132	12,795487
	339	294,369232	296,641754	25,737159	15,448378
	340	14,478887	53,81525	49,291655	43,308894
	341	26,770977	47,721588	33,323495	14,771222
	342	17,179173	156,766693	167,76914	35,718873
	343	143,990524	269,554321	146,685807	61,54607
	344	72,89315	180,902664	133,397776	71,576626
	345	56,729301	97,807327	52,106174	24,246407
	346	194,747147	270,7901	120,094761	76,533737
	347	367,604218	417,327698	69,67614	43,336442
	348	289,340118	373,946442	104,72425	28,469158
	349	282,427612	344,625702	90,513548	33,407459
	350	283,104065	352,552094	68,568562	30,512345
	351	9,140729	132,738342	156,458658	75,853023
	352	86,567993	138,727646	69,283994	29,285611
	353	156,868896	218,300537	83,67711	29,855366
	354	10,30839	185,542099	270,765152	56,698001
	355	117,100189	168,143585	65,778607	32,072237
	356	72,167168	145,791916	122,421795	48,596994
	357	180,338654	303,747284	156,317793	84,309642
	358	171,892654	262,084625	127,138875	38,511041
	359	211,701889	289,777893	109,20455	26,577594
	360	70,11338	185,823608	160,129605	66,716427
	361	183,401077	238,667007	58,693244	37,044081
	362	283,800964	299,612183	30,368943	19,484205
	363	5,33245	200,70993	318,15703	145,599451
	364	217,805359	286,245941	90,49947	20,813852
	365	8,597085	50,282417	113,50849	21,667257
	366	198,19249	220,358459	27,08371	22,626804
	367	281,26709	295,828186	28,270564	/,416/91
	368	278,17749	296,21/773	27,597292	15,331885
	369	261,756561	298,907227	93,631096	25,991086
	370	188,023727	258,485657	82,417741	38,524636
	371	16,74197	105,010643	106,668806	34,053795
	372	24,/18851	124,180931	143,049604	30,747733
	373	11,714682	182,125275	232,538878	88,623982

2 DAY	ιβλιοθήκη	6			
Noth	TTTA DAL	- 00			
OEC	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
Plantpi	374	239,514099	271,251892	44,030078	22,951323
2	375	9,319269	153,956314	188,197154	27,84133
	376	17,799662	117,937805	137,346527	18,646131
	377	111,247162	157,787384	55,523277	27,258364
	378	199,04715	257,463928	61,416443	36,575696
	379	275,41864	320,798645	66,872907	29,822473
	380	262,184509	312,025208	73,417357	21,427647
	381	268,898651	311,625092	64,510503	33,290832
	382	288,994537	347,276031	97,287415	32,201195
	383	244,247208	324,180206	119,056539	88,624675
	384	271,172516	389,814209	203,602309	87,768867
	385	215,225174	341,715393	161,4782	78,971764
	386	58,189281	170,898987	130,55364	27,350961
	387	47,809418	186,17186	163,347777	29,24947
	388	253,022736	298,917328	67,352309	21,706102
	389	193,974915	248,036713	72,744739	9,289433
	390	202,508911	223,742706	49,959277	11,969838
	391	142,09259	190,560837	64,996941	29,952433
	392	150,514297	236,818344	109,968846	49,089738
	393	240,126541	280,432343	51,137175	36,288844
	394	18,553299	276,581085	273,31637	106,202167
	395	17,793707	134,529663	161,073447	35,774938
	396	65,081818	188,223328	158,897309	35,492481
	397	86,200478	167,897766	110,001187	40,301058
	398	281,724152	302,345795	30,788	26,680876
	399	12,935824	274,495331	289,98025	164,779098
	400	245,588211	316,719482	88,941651	22,697747
	401	217,624207	329,793823	146,697924	38,852769
	402	265,436615	304,074249	57,728087	12,346116
	403	207,211227	318,735229	150,566339	70,715042
	404	150,487915	330,179657	229,544531	97,630579
	405	14,886681	136,440338	158,678774	30,716473
	406	13,989305	88,964386	106,430801	19,30/303
	407	25,769766	127,11908	126,213865	43,964453
	408	153,424744	188,342545	48,615019	30,100858
	409	20,216158	105,056053	118,831959	12,440425
	410	37,4101 95 107500	104,531204	125 071564	57,085409
	411	18/ 121226	2/18 001 200	123 91/621	18 920561
	412	233 632507	240,301338	38 / 2122	73 366604
	415	193 200668	203,141002	9/ 160261	25,500094
	414 <u>/</u> 15	7 806/17	98 226883	118 471501	60 022807
	416	493 235992	510 / 17/ 8	96 711515	35 218657
	410		510,71740	50,711515	55,210057

Ω.Ψn	φιακή συλλογή	2			
		- 00			
15 Y	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
Thi	417	220,991089	308,963776	102,836366	16,718599
21-	418	485,461761	541,59021	94,556068	44,081437
	419	556,769531	566,698181	20,463717	11,974994
	420	32,568348	93,580215	84,852044	14,419587
	421	111,713203	132,074783	27,7466	22,127
	422	7,398256	117,119873	116,524356	51,739983
	423	15,228274	134,231796	143,012173	55,524196
	424	11,398283	52,450031	61,292577	14,684925
	425	50,595482	142,238571	134,527279	69,576543
	426	114,144035	130,889114	31,593002	18,892255
-	427	132,733444	145,273727	30,491713	20,834831
	428	11,585697	28,656231	34,097455	18,13232
	429	22,24345	36,57497	41,601465	15,093921
	430	50,190311	72,383224	37,068456	17,74459
	431	93,918411	139,234589	69,334509	17,524
	432	3,901512	49,75069	82,696461	29,69505
-	433	114,53289	140,955582	33,673391	14,870162
-	434	166,072586	210,666733	52,933284	42,175961
-	435	3,948496	140,148331	196,381949	135,491858
	436	196,962006	276,345123	78,294795	44,79567
	437	10,08077	84,737785	97,259345	39,378654
-	438	134,761795	176,00621	62,689489	25,270161
-	439	48,890446	367,667084	342,570986	156,632268
-	440	254,088226	331,565796	83,220766	28,464976
-	441	19,110655	64,176048	50,540309	24,29419
-	442	256,53244	271,13678	26,702095	13,194009
	443	318,725433	348,705292	56,720676	38,670424
	444	359,963959	375,473328	48,872218	23,795265
-	445	105,062622	275,672668	217,015207	49,343799
-	446	216,677811	274,385681	48,287719	26,943399
-	447	28,113203	133,615128	132,917399	29,716891
-	448	21,51/559	69,65049	44,293305	25,384013
	449	245,251984	269,53598	64,277795	28,160618
-	450	22,42396	202,734909	208,033336	64,790839
	451	178,8582	262,158752	95,776092	29,257212
	452	273,863403	285,024292	58,139415	28,667432
	453	276,233185	287,940796	40,222973	12,943468
-	454	294,01123	355,033752	67,311922	43,481879
-	455	136,91//4	276,283295	142,489908	39,141264
-	456	279,43338	294,278748	36,821161	22,793011
	457	108,311012	223,66/313	101,620061	49,2359
ľ	458	263,426025	376,117218	134,304405	107,512877
	459	335,653198	386,240662	66,65422	37,3430/1

Ψηφιακή συλλογή Βιβλιοθήκη					
-0	BDASTOS	- 11			
41.	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
1 pro	460	349,215729	369,597382	31,308089	8,573634
1	461	357,644836	367,556152	18,080203	5,90846
	462	305,856415	363,573517	90,021096	26,668438
	463	404,722961	457,540833	84,99267	54,579855
	464	362,830444	467,121887	140,079104	33,176472
	465	243,44072	272,84491	37,675444	10,549699
	466	263,66864	314,116486	46,355859	16,373018
	467	16,955221	145,286926	142,475156	37,645682
	468	388,029633	524,667236	159,036542	47,336546
	469	198,47197	412,575348	200,381501	59,089571
	470	449,840179	494,598938	53,193887	16,38789
	471	18,52655	61,756958	119,124958	15,80278
	472	104,963173	243,956238	151,760517	39,088768
	473	306,754272	352,173737	58,065549	32,745862
	474	310,195068	386,440735	89,978685	49,405521
	475	26,11146	203,251266	220,045263	153,70687
	476	402,577057	485,674347	91,672653	16,597569
	477	295,934937	365,902557	95,799769	29,413711
	478	335,983704	394,731079	62,939831	19,966506
	479	271,531525	308,366516	41,272856	26,285857
	480	32,168503	320,989716	396,270899	324,877258
	481	241,967896	289,217438	68,2241	23,1549
	482	231,205078	279,17688	69,577932	33,81043
	483	340,005249	399,178864	65,718194	21,988864
	484	255,953796	290,531067	49,132739	20,641357
	485	48,329048	104,711143	68,881501	55,490245
	486	19,79273	278,305878	331,561537	170,139873
	487	317,518219	343,05838	33,834398	29,408472
	488	296,930389	343,755463	62,388311	9,226475
	489	228,624908	273,772339	62,759231	23,980832
	490	160,980621	269,400269	148,241761	33,954452
	491	0,360513	491,551056	565,749229	216,460966
	492	2,144094	137,518112	167,531676	27,114867
	493	80,81794	220,986206	185,35499	24,20079
	494	86,717491	152,248428	94,233307	15,747903
	495	5,165416	426,625977	509,250176	147,096994
	496	50,119251	212,984177	225,667343	41,425411
	497	33,275688	54,622406	44,761094	18,54385
	498	23,935034	45,450588	33,277245	13,363534
	499	14,696458	19,899448	27,432987	15,994562
	500	137,071823	191,663986	67,41517	7,621749
	501	161,396912	178,936752	37,674463	6,713031
	502	141,201065	188,65625	50,358392	35,352904

Ψηφιακή συλλογή Βιβλιοθήκη						
Ö	BPASTOS	- 81				
hin	Landslides 2015	IVIIN (M)	IVIAX (m)	Length (m)		
['	503	144,136459	200,110474	62,841323	22,10906	
-	504	289,222/1/	292,568787	22,282775	14,084559	
	505	254,937927	284,425049	46,521043	26,46754	
	506	182,160477	253,994141	112,225695	94,345761	
	507	122,646416	140,360977	56,813489	28,3652	
	508	118,763466	136,745621	60,37475	37,694558	
	509	160,714798	211,296616	63,979054	25,676774	
	510	95,575035	114,541122	49,394464	37,062929	
	511	82,530914	91,102661	37,906278	24,580214	
	512	85,072861	100,627716	29,463842	13,192457	
	513	174,059555	191,96489	71,219672	28,995722	
	514	243,955643	310,776001	88,450909	31,205284	
	515	17,947571	82,450409	81,909125	50,256239	
	516	23,979031	52,889278	49,485244	26,753671	
	517	62,707836	91,803261	37,62318	30,139342	
	518	430,623016	459,788147	42,322887	15,497985	
	519	355,624908	361,752808	16,768072	12,022347	
	520	514,129822	537,305908	65,986213	20,03304	
	521	302,607239	317,373322	26,926103	20,713095	
	522	286,172852	295,596466	29,610941	16,359782	
	523	263,769867	283,969849	64,72207	20,230657	
	524	509,403442	523,195801	34,036842	16,567413	
	525	510,428589	519,709351	22,246802	20,147131	
	526	532,971313	546,481995	70,56353	23,474954	
	527	525,229309	526,266357	22,107497	13,663764	
	528	527,931885	535,813721	48,117189	13,405155	
	529	172,749557	322,707367	194,889152	38,922569	
	530	245,520065	299,70517	59,728978	15,198087	
	531	142,43956	201,55368	86,473004	25,209372	
	532	145,098373	169,915207	65,241774	7,203681	
	533	415,548126	434,410828	35,2458	18,3007	
	534	381,185303	396,933014	31,852488	16,26769	
	535	439,032684	457,464386	39,953349	16,370375	
	536	299,164032	321,672974	34,550721	17,627314	
	537	329,363739	385,792694	71,26422	7,835522	
	538	336,303986	376,092224	64,060469	8,331688	
	539	306,823792	316,241302	21,812371	13,871071	
	540	359,595947	448,938965	100,360523	28,296097	
	541	339,301666	422,754395	108,892729	15,249292	
	542	433,717468	464,312592	54,637096	11,600148	
	543	362,980316	385,409149	36,750012	19,132825	
	544	350,149231	370,112946	34,594526	18,471796	
	545	303,882141	310,327881	18,04919	12,125969	
			,	, -	,	

Ψηφιακή συλλογή Βιβλιοθήκη					
"TOTTATA					
2	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
μη	546	308,548065	353,645111	51,523975	29,855132
-	547	329,943817	371,947968	65,167565	38,303334
	548	380,726959	403,762238	29,513826	22,054493
	549	175,846024	197,38858	34,923963	17,848101
	550	1,878608	42,945477	59,888504	43,457182
	551	10,44765	31,535147	34,139273	21,980088
	552	54,885136	70,609657	35,332626	28,320817
	553	151,580032	173,801636	36,704193	14,537264
	554	124,067253	159,01326	34,358249	28,203535
	555	64,275909	112,158897	65,262084	21,273464
	556	113,685951	168,763	94,088821	19,647394
	557	136,627533	169,142685	55,295645	11,482514
	558	74,380585	131,69162	105,49418	33,054914
	559	47,585354	49,628273	16,437109	9,427435
	560	28,395193	45,826351	25,628237	12,020745
	561	170,038589	179,706467	19,188045	15,049236
	562	163,281723	180,467499	26,311588	15,0588
	563	279,169159	292,490845	40,822056	8,691663
	564	1,212186	44,700382	68,741017	20,752313
	565	28,836863	50,374592	26,963588	23,261409
	566	15,529881	87,714172	86,483299	17,621084
	567	129,26358	184,613434	54,171682	38,461036
	568	134,112854	137,408768	26,122619	6,436072
	569	121,047165	172,138947	60,321492	15,41067
	570	107,543777	197,116119	100,155236	33,950873
	571	111,332191	163,697266	52,623568	34,851179
	572	120,669258	146,651627	27,485933	16,836479
	5/3	109,172935	120,542458	32,836903	17,77973
	574	102,335793	141,159882	46,01124	30,792968
	5/5	95,85025	118,529106	31,757711	26,270725
	5/6	77,078751	151,629318	84,631894	58,77791
	5//	81,866096	97,467552	32,119677	20,198105
	578	38,134209	59,287762	47,448894	29,351652
	579	38,362659	61,832455	89,231584	16,828294
	580	27,441376	45,869049	31,835056	15,481915
	581	128,393814	175,909058	47,991292	42,083853
	582	30,849098		52,28/458	10,41535
	583	200,206604	242,207993	50,781231	30,915/80
	204 E0E	205,049423	222,448/3	50,02597	20,39/04/
	565	104 711722	200,004932	29 676612	16 5 4 7 7 0
	200	27 206005	71 502509	20,070012	12 001127
	20/	37,30095	71,592598	52,797740	11 762002
	588	39,333862	8505/1,10	44,921884	11,703993

ל	BDASTOS	- 88			
1	Landslides 2015	Min (m)	Max (m)	Length (m)	Width (m)
ŋ	589	65,303642	320,892303	308,234378	35,293565
-	590	122,179688	157,248383	38,157246	18,92159
	591	41,15778	56,82716	29,667679	15,045814
	592	95,814194	121,567818	36,567469	17,590721
	593	146,831985	172,358368	41,530543	35,790844
	594	99 <i>,</i> 569588	119,38765	23,932899	13,615436
	595	32,965561	37,763302	51,668099	8,241132
	596	37,907055	48,658218	34,215774	29,047458

Αναφορικά με τις κατολισθήσεις του 2003:

Ψηφιακή συλλογή Βιβλιοθήκη

Landslides 2003	Min (m)	Max (m)	Length (m)	Width (m)
1	66,425423	159,83	132,8712	50,88373
2	122,632317	210,503	104,838	90,31253
3	133,261032	159,749	75,85238	38,05286
4	102,871559	216,865	122,7329	59,26458
5	116,892105	146,661	39,83796	12,35294
6	21,426012	69,6472	71,3097	54,39579
7	27,3288	138,65	163,7019	94,01538
8	54,087963	107,569	62,49282	22,38914
9	50,705685	150,611	116,15	25,41935
10	91,688019	127,842	65,0799	22,39234
11	70,998901	107,554	81,9031	40,69259
12	56,491558	80,4131	61,18486	24,58117
13	42,000969	51,627	22,56879	10,72817
14	30,864294	77,0556	51,37073	18,72553
15	32,931362	52,6933	29,40414	17,37875
16	89,220673	123,269	43,37451	12,33279
17	77,635948	122,737	43,95879	38,92699
18	12,586825	146,075	181,9124	67,32539
19	72,777763	142,916	80,48011	52,9232
20	3,450893	50,1098	61,6844	25,74778
21	0,524224	113,168	220,9551	125,2846
22	7,482242	81,5204	105,7208	28,07225
23	6,072672	122,412	180,0189	127,5318
24	10,590159	72,4313	204,8514	64,7302
25	0,688229	6,10029	57,20884	23,55271
26	146,319717	297,54	206,8861	63,50769
27	289,865356	334,098	62,26689	33,68375

Πίνακας 4: Στοιχεία κατολισθήσεων 2003.

Ψηφιακή συλλογή Βιβλιοθήκη						
:0	Landslides 2003	Min (m)	Max (m)	Length (m)	Width (m)	
Τμή	28	215.167999	275.065	74.55115	50.46639	
-	29	156.408905	180.514	95.05546	24.05228	
	30	1.450058	230.783	562.4096	306.2974	
	31	6.573496	110.994	140.9837	20.13674	
-	32	66,722687	103,994	55,51672	17,4347	
-	33	7,794532	85,3158	105,2236	23,05571	
·	34	7,527527	42,439	66,75257	32,95519	
	35	34,761028	98,6552	128,7788	78,64159	
	36	112,074753	174,157	110,2116	57,24699	
-	37	22,362003	95,2548	123,3791	26,25154	
	38	94,309464	138,454	93,32876	31,18358	
-	39	103,127663	134,957	41,60267	27,52273	
	40	95,85025	123,602	65,87876	32,25071	
-	41	7,025328	19,811	80,0969	29,39877	
	42	8,806204	31,3137	60,55611	17,68794	
	43	5,562694	28,769	156,4365	27,08124	
	44	42,855663	85,2017	66,55792	21,92592	
	45	290,906097	343,884	53,14106	32,79427	
	46	338,079254	377,385	44,62989	22,08736	
	47	237,041595	261,507	44,1619	26,26822	
	48	369,872498	409,262	71,95042	18,16856	
	49	289,993866	313,576	44,10997	15,84844	
	50	7,575306	47,1995	55,03238	39,14667	
	51	6,215977	17,8638	46,17079	26,87258	
	52	379,234253	433,355	97,11022	69,45501	
	53	266,873108	379,978	249,5334	132,0261	
	54	333,628235	425,358	150,3121	25,25113	
	55	180,000793	212,785	74,67819	41,42507	
	56	187,087448	236,271	80,88879	50,79304	
	57	195,902298	257,55	78,85126	23,73148	
	58	16,938864	352,789	426,2828	74,42575	
	59	16,805958	50,8795	109,1626	55,31851	
	60	15,455304	92,3361	150,8557	101,1837	
	61	115,912987	201,559	90,52968	59,75109	
	62	113,641792	164,092	82,22965	41,38912	
	63	43,327782	109,292	76,65576	51,7477	
	64	106,106934	173,177	78,74267	31,14226	
	65	16,860355	43,6109	40,72103	14,23013	
	66	19,667473	37,8373	39,08057	21,45747	
	67	133,709183	156,362	34,37006	28,73297	
	68	10,206471	146,297	209,6312	83,64873	
Ψηφιακή συλλογή Βιβλιοθήκη						
-------------------------------	-----------------	------------	---------	------------	-----------	--
:0	Landslides 2003	Min (m)	Max (m)	Length (m)	Width (m)	
Τμή	69	14,333522	46,1255	54,9899	43,06847	
5	70	13,361752	99,2263	119,8367	41,94966	
	71	146,223785	196,9	92,27354	8,874715	
	72	13,395409	35,5789	37,55805	33,27978	
	73	12,064026	34,2703	45,21823	31,20052	
	74	8,151834	100,857	162,1429	115,1754	
	75	23,091997	110,914	130,2662	75,65807	
	76	94,59584	156,832	67,72378	46,53594	
	77	503,712799	536,589	191,4941	51,36555	
	78	495,328674	499,724	75,25349	11,80143	
	79	496,742828	498,563	27,8372	7,799765	
	80	487,808472	500,941	27,2148	17,52181	
	81	442,030304	455,434	40,37312	19,96465	
	82	362,548431	376,966	24,76449	17,24526	
	83	355,644531	387,363	64,21876	32,5491	
	84	509,396545	518,966	74,85166	16,4692	
	85	510,58902	513,884	36,30888	8,379658	
	86	516,017456	522,351	93,94312	11,08162	
	87	524,439636	537,386	65,97278	14,72061	
	88	479,277771	518,795	70,71177	30,09301	
	89	493,419312	512,204	39,01055	14,2575	
	90	558,56488	573,212	24,07647	13,55522	
	91	11,75957	25,1875	39,60186	16,34931	
	92	15,149799	25,4244	27,22454	12,93018	
	93	14,729033	43,6972	105,8902	46,63675	
	94	99,983749	109,055	37,27081	11,12898	
	95	121,547005	134,692	39,93347	13,00533	
	96	6,213301	104,045	60,10974	34,83619	
	97	63,304649	120,312	63,8663	20,00315	
	98	38,901211	138,947	100,5796	53,09292	
	99	15,013523	67,3102	85,80075	39,57223	
	100	6,885968	38,1125	63,07033	20,48176	
	101	50,414886	76,3198	49,15586	16,90235	
	102	352,003418	354,85	50,17134	21,99515	
	103	236,986618	244,839	34,33524	13,9822	
	104	2,344392	139,556	286,9757	123,4695	
	105	3,939682	38,3886	66,12415	14,33353	
	106	12,117393	91,3724	122,9456	24,93378	
	107	30,268341	179,011	201,9956	93,75763	
	108	123,647156	177,693	81,78886	29,10735	
	109	132,349045	169,737	58,00033	36,61998	

Ψη	φιακή συλλογή	0			
Bı	βλιοθήκη				
FO	TTT AG	511			
ET.	Landslides 2003	Min (m)	Max (m)	Length (m)	Width (m)
app	110	9,688818	22,0386	41,0428	33,9605
3	111	48,747738	129,405	134,2494	22,92976
	112	87,976807	202,176	175,0112	102,6096
	113	146,24736	166,744	36,5235	27,16749
	114	65,058319	133,353	125,0031	34,78734
	115	174,451019	239,536	106,0299	54,52501
	116	213,837234	249,777	65,93113	27,78648
	117	262,598755	269,44	28,6659	17,22545
	118	204,933533	231,078	41,7157	35,70579
	119	144,470367	174,29	71,83281	32,25142
	120	162,946976	208,19	81,01076	37,84292
	121	138,249939	165,157	38,0181	13,81326
	122	140,62529	168,678	63,19946	45,01991
	123	109,222137	197,94	139,637	57,33957
	124	143,063812	166,002	40,42477	37,04913
	125	258,76825	301,404	48,69713	33,45692
	126	142,68602	354,316	264,5362	140,5526
	127	9,630694	58,3841	78,32905	42,8463
	128	13,505513	50,6781	68,15951	47,11259
	129	20,213446	37,5648	43,82774	23,48649
	130	150,983734	187,455	53,06812	39,78954
	131	151,759247	181,488	38,7362	36,89707
	132	316,78772	369,475	95,71375	62,07397
	133	317,982178	349,887	76,06823	37,93109
	134	313,60556	332,981	48,61742	17,2486
	135	389,506439	415,458	37,76753	19,4532
	136	414,817719	435,417	34,82006	19,39431
	137	408,820435	441,427	51,58108	22,22738
	138	367,015045	396,122	32,42329	26,57247
	139	398,345276	428,457	66,63913	31,97417
	140	410,747101	442,331	41,14262	32,08976
	141	408,580933	447,086	162,8038	52,6943
	142	350,971619	379,659	63,024	35,26093
	143	221,320511	251,062	61,98758	21,42979
	144	223,192886	275,353	74,56769	18,66351
	145	227,068146	259,962	36,93446	25,23948
	146	214,12117	276,57	93,04667	30,04371
	147	227,575012	296,458	98,87503	36,28392
	148	353,610931	387,069	67,62805	33,13355
	149	358,87973	387,512	47,14562	28,23463
	150	128,475006	260,133	171,4895	50,89077

Ψηφιακή συλλογή Βιβλιοθήκη					
5h	TO T CA STO	5-11			
	Landslides 2003	Min (m)	Max (m)	Length (m)	Width (m)
τμη	151	125,610847	315,385	244,5773	61,17908
1-	152	135,982285	180,859	65,58656	22,41559
	153	90,18235	263,693	223,3292	213,4955
	154	92,549461	113,16	50,85169	44,45312
	155	74,019783	89,4376	35,47518	30,83258
	156	98,315285	114,714	43,91939	26,32066
	157	173,480637	257,45	114,0145	80,87283
	158	155,857422	164,483	33,76996	28,73251
	159	116,009659	136,663	58,22065	35,03997
	160	133,494614	151,778	34,99637	23,2007
	161	219,038177	252,314	86,08581	24,58124
	162	203,590195	242,659	47,75624	16,74533
	163	80,463043	102,85	44,94608	23,64679
	164	239,293228	335,288	128,793	37,45438
	165	4,295095	89,2346	106,2663	50,7346
	166	5,731135	134,611	148,1894	80,76592
	167	3,166448	76,2099	84,20344	63,26413
	168	10,768861	101,512	135,3649	50,80446
	169	8,286882	152,711	173,9848	52,21201
	170	351,758911	364,559	42,01478	25,14538
	171	327,968964	333,865	38,85128	12,08152
	172	2,751062	145,256	150,8695	73,9573
	173	5,487881	161,015	194,4635	54,03605
	174	19,657663	160,628	252,8442	82,53836
	175	31,171986	118,458	112,8581	23,03244
	176	469,056061	489,004	40,48967	22,38768
	177	534,892212	537,714	21,87389	16,38849
	178	325,268677	389,961	86,86587	19,41392
	179	329,30838	396,485	84,64852	21,09705
	180	317,646912	450,865	165,9925	125,9356
	181	448,829834	459,943	20,12563	18,94634
	182	347,469025	424,359	134,8623	66,94403
	183	294,01123	357,064	73,76636	24,27429
	184	327,79126	375,279	50,59162	40,12571
	185	246,064102	285,296	91,09215	50,98097
	186	7,003768	308,95	242,0404	196,8114
	187	19,611158	116,548	127,1912	51,8389
	188	61,369461	163,208	101,7616	53,53542
	189	22,72752	375,74	295,2361	99,29786
	190	9,490517	527,067	566,0366	367,7013
	191	14,857837	426,559	497,1812	118,5762

BI	^{φιακή} συλλογή βλιοθήκη	8			
50	Landslides 2003	Min (m)	Max (m)	Length (m)	Width (m)
Tμή	192	13,869084	454,584	526,287	156,2048
5	193	157,984177	272,689	119,7425	59,77504
	194	12,669349	67,4759	96,21766	37,85121
	195	3,11133	237,676	220,4285	42,91164
	196	18,641661	192,182	178,1476	41,15758
	197	3,605508	345,592	346,8228	136,3483
	198	167,110779	257,5	89,32575	20,62174
	199	8,649321	409,737	412,8677	182,3662
	200	9,334962	71,4753	50,17027	34,43257
	201	16,564606	237,403	180,7412	89,28623
	202	10,9037	268,995	228,9062	55,63359
	203	5,650692	104,332	94,91656	27,51187
	204	261,285095	276,908	48,23634	30,35462
	205	69,505295	241,65	159,5758	23,24131
	206	1,4769	383,468	394,6793	178,6245
	207	1,663409	160,647	137,3984	92,58826
	208	0,143294	147,287	120,9411	40,78594
	209	0	175,749	152,7219	33,89938
	210	0,809336	194,069	307,2338	118,3903
	211	2,368401	36,8843	101,8908	22,35867
	212	0,377623	103,213	45,03838	33,99123
	213	169,579651	196,688	99,65207	79,09342
	214	143,775238	178,204	85,88328	39,89108
	215	181,082718	196,902	54,65137	42,15334
	216	123,439606	217,998	169,8471	130,9665
	217	174,828064	227,568	183,6343	105,1269
	218	95,099472	185,597	113,5161	58,50642
	219	17,351349	201,518	252,4144	79,83966
	220	145,874435	236,141	98,18959	59,78724
	221	18,699202	218,501	218,5621	135,0537
	222	136,220001	276,506	150,2244	65,38223
	223	6,849414	296,048	344,7316	138,8674
	224	16,434641	276,65	257,3147	33,71051
	225	3,932909	247,075	278,8227	148,9952
	226	6,048145	225,545	202,6482	89,91556
	227	9,448723	136,205	145,4561	125,3487
	228	8,223799	257,746	214,7194	128,9405
	229	1,168549	173,132	165,8201	49,35206
	230	3,256332	325,861	347,4337	68,36958
	231	183,402222	302,288	146,5274	26,36588
	232	4,880612	56,239	94,04329	50,65625

Ψηφιακή συλλογή Βιβλιοθήκη						
éh	TOTTO	511				
Y.	Landslides 2003	Min (m)	Max (m)	Length (m)	Width (m)	
τμη	233	116,954697	218,01	111,3222	74,3707	
5	234	11,600451	218,123	198,3038	124,9291	
	235	2,318664	133,258	162,4003	119,6297	
	236	10,315031	154,052	133,4211	102,0346	
	237	26,357224	165,859	137,272	19,35652	
	238	82,237404	186,971	111,2992	99,36997	
	239	5,761331	143,971	132,0418	68,07492	
	240	138,148514	226,305	93,96478	30,46599	
	241	5,895409	176,096	181,2123	27,89935	
	242	67,064018	152,077	71,14516	30,01477	
	243	71,620361	193,425	99,71907	84,81315	
	244	6,91662	43,2668	96,03732	53,94474	
	245	22,801888	87,2913	67,25014	37,57615	
	246	119,542526	207,292	81,00639	50,95761	
	247	50,150303	120,696	70,15195	48,15058	
	248	6,914527	246,27	334,5958	136,8332	
	249	231,131485	262,033	95,69804	40,48337	
	250	100,495285	174,327	96,2366	16,5925	
	251	91,74147	260,139	184,3495	159,0927	
	252	57,166786	144,293	141,0973	55,43457	
	253	144,351654	277,029	168,0266	26,1984	
	254	195,385193	272,741	98,73275	14,15233	
	255	193,903717	235,537	60,27097	39,53984	
	256	10,201509	109,39	286,0194	35,51375	
	257	322,977875	446,128	156,9477	64,34582	
	258	112,260689	209,02	132,9945	59,48462	
	259	73,050652	218,062	187,6513	115,6425	
	260	117,206894	217,979	140,8765	37,77814	
	261	203,807739	366,891	179,7473	66,2569	
	262	349,652161	421,06	105,8334	36,99783	
	263	91,395683	188,73	131,8819	45,42243	
	264	145,42955	267,012	144,2173	67,0943	
	265	2,178131	126,3	139,6268	75,49814	
	266	325,482635	392,708	98,08815	43,44999	
	267	319,354706	379,472	116,1931	29,7213	
	268	12,303204	270,333	294,7908	123,8438	
	269	204,210052	424,896	261,2142	126,9181	
	270	220,864777	333,376	155,5809	53,3169	
	271	7,72837	230,747	307,5895	86,12883	
	272	133,412781	406,55	349,5216	161,6773	
	273	378,110626	425,237	154,0484	50,42563	

μη	^{φιακή συλλογή} βλιοθήκη	8			
)EO	BDASTO	5-11			
Tun	Landslides 2003		Iviax (m)	Length (m)	Width (m)
101	274	6,807717	315,635	412,4159	101,1743
	275	6,137293	303,732	392,9623	111,3166
	276	76,792595	210,023	175,8803	80,90501
	277	108,758194	291,314	229,7972	62,23582
	278	72,770218	208,868	173,2969	38,77609
	279	17,002445	151,598	184,0727	39,34272
	280	21,801805	140,514	152,967	36,20244
	281	18,330158	136,145	147,396	42,46852
	282	236,953339	345,955	127,4528	109,6724
	283	12,574306	242,194	287,7079	112,6937
	284	7,944783	319,642	361,2792	140,8474
	285	64,917603	164,457	117,7371	24,99025
	286	239,432892	352,979	130,7315	64,9645
	287	251,145081	333,423	102,488	52,86745
	288	89,288559	207,495	142,886	37,86863
	289	18,371387	329,604	343,9098	85,56339
	290	109,636414	307,048	239,3534	63,08242
	291	40,477985	285,617	301,069	116,357
	292	0,263677	161,138	182,0123	43,27932
	293	1,723899	326,647	410,6285	200,7902
	294	282,592438	428,235	176,53	162,6076
	295	49,890747	371,691	366,1662	68,66782
	296	389,252563	456,215	88,32059	39,6852
	297	8,209121	355,919	411,0053	181,2464
	298	380,936829	416,25	62,35262	26,06782
	299	353,239899	398,647	67,45296	42,07022
	300	351,653503	390,126	51,60819	46,73202
	301	352,55368	377,319	81,11065	36,32202
	302	312,257324	333,602	77,84537	61,74183

- Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey, Landslides, 9 (1), pp. 93-106.
- Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44.
- Amirahmadi A, Pourhashemi S, Karami M, Akbari E (2016) Modeling of landslide volume estimation. Open Geosci 8:360–370.
- Antonini G, Ardizzone F, Cardinali M, Galli M, Guzzetti (2001) Surface deposits and landslide inventory map of the area affected by the 1997 Umbria-Marche earthquakes
- Avallone A, Cirella A, Cheloni D, Tolomei C, Theodoulidis N, Piatanesi A, Briole P, Ganas A (2017) Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkas (Greece) Earthquake rupture history. Scientific Reports 7, doi:10.1038/s41598017-10431-w.
- Ayalew L, Yamagishi H (2004) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31.
- Aye ZC, Jaboyedoff M, Derron MH, van Westen CJ, Hussin HY, Ciurean RL, Frigerio S, Pasuto A, (2016) An interactive web-GIS tool for risk analysis: a case study in the Fella River basin, Italy. Nat Hazards Earth Syst Sci 16:85–101.
- Baeza C, Lantada N, and Moya J, (2010) Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain). Environmental Earth Sciences, 61 (3), pp. 507-523.
- Barbiani DG, Barbiani BA, (1864) Memoires sur les tremblements de terre dans l'ile de Zante. Presented by A. Perrey in Academic Imperiale des Sciences, pp. 1-112 (Dijon).
- **Barrier** E, Chamot-Rooke N, Giordano G, (2004). Geodynamic Map of the Mediterranean, Sheet 1: Tectonics and Kinematics. CGMW, France .

Benetatos C, Dreger D, Kiratzi A, (2007) Complex and segmented rupture associate with the 14 August 2003 M_w 6.2 Lefkada, Ionian Islands, Earthquake. Bull. Seismol. Soc. Am. 97 (1B), 35-51.

- Boncori J.P., Papoutsis I, Pezzo G, Tolomei C, Atzori S, Ganas A, Karastathis V, Salvi S, Kontoes C, Antonioli A, (2015) The February 2014 Cephalonia earthquake (Greece): 3D deformation field and source modeling from multiple SAR techniques. Seismol. Res. Lett. 86-1, 124-,137.
- Bornovas J (1964) Géologie de l'île de Lefkade, Geol Geoph Res. 10.

- **Boschi** E, Guidoboni E, Ferrari G, Valensise G, Gasperini P, (1997) Catalogo dei forti terremoti in Italia dal 461 a.C. al 1990, ING-SGA, Bologna, (in italian).
- Boschi E, Guidoboni E, Ferrari G, Valenise G, (1998) I terremoti dell'Appennino Umbro-Marchigaino. Area sud orientale dal 99 a.C. al 1984. Istituto Nazionale di Geoficica, SGA Soria Geoficica Ambiente, Editrice Compositori, Bologna. in Italian, 267 pp.
- Bozzano F, Gambino P, Prestinnizi A, Scarascia-Mugnozza G, Valentini G, (1998) Ground effects induced by the Umbria-Marche earthquakes of September-October 1997, Central Italy, Engineering Geology : A global view from the Pacific Rim. 1998, pp 825-830 ; Draft, Illustration, Table ; ref : 7 ref, ISBN 90-5410-990-4.
- Bui TD, Lofman O, Revhaug I, and Dick O, (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards, 59, 1413-1444.
- Caporali A, Bruyninx C, Fernandes R, Ganas A, Kenyeres A, Lidberg M, (2016) Stress drop at the Kephalonia Transform Zone estimated from the 2014 seismic sequence. Tectonophysics 666, 164-172.
- Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Landslide hazard map for the Upper Tiber River basin.CNR, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Publication n. 2116, scale 1:100,000.
- **Carrara** A (1983) Multivariate Models for Landslide Hazard Evaluation. Mathematical Geology, Vol. 15, No. 3, Plenum Pubfishing Corporation.
- Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P, (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Land – forms, 16, 427-445.

Carrara A, Cardinali M, Guzzetti F, Reichenbach P, (1995) Gis Technology in Mapping Landslide Hazard, Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 5), Geographical Information Systems in Assessing Natural Hazards pp 135-175.

- Chalkias Ch, Ferentinou M, Polykretis Ch, (2014): GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences, 176-190; doi:10.3390.
- Chousianitis K, Konca AO, Tselentis G, Papadopoulos G, Gianniou M, (2016) Slip model of the 17 November 2015 Mw = 6.5 Lefkada earthquake from the joint inver- sion of geodetic and seismic data. Geophys. Res. Lett. 43:7973– 7981. http://dx.doix. 10.1002/2016GL069764.
- **Chung** CJF, Fabbri A (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazard 30:451–472.
- Chyi-Tyi L, Chien-Cheng H, Jiin-Fa L, Kuo-Liang P, Ming-Lang L, Jia-Jyun D, (2008) Statistical approach to earthquake-induced landslide susceptibility. Elsevier, 43:58, doi:10.1016/j.enggeo.2008.03.004.
- **Clement** C, Hirn A, Charvis P, (2000) Seismic structure and the active Hellenic subduc- tion in the Ionian islands. Tectonics 329 (1-4), 141-156.
- Critikos NA, (1916) L'ile de Leucade et sismes du 23 et du 27 Novembre 1914. Ann. De l'observ. D' Athenes 7 pp. 62–81.
- Cruden D. M., Varnes D. J., (1996) Landslide types and processes. In: Turner A. K.; Shuster R. L. (eds) Landslides: Investigation and Mitigation. Transp Res Board, 1996, Spec. Rep. 247, pp 36–75.
- Cushing, EM (1985) Evolution sructurale de la marge nord-ouest hellenique dans l'ile de Levkas et ses envinors (Grece nord-occidentale), Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne).
- Dachroth WR (2002) Handbuch der Baugeologie und Geotechnik, 3rd edn. Springer, Heidelberg.
- Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228. https://doi.org/10.1016/S0169-555X(01)00087-3.

Damm B, Klose M, (2014) Landslide database for the federal republic of Germany: a tool for analysis of mass movement processes. In: Sassa K, Canuti P, Yang Y (eds) Landslide science for a safer geoenvironment. Springer, Berlin, pp 787–792.

- **Damm** B, Klose M, (2015) The landslide database for Germany: Closing the gap at national level. Geomorphology 249:82–93
- Dellow S, Massey Ch, Cox S, Archibald G, Begg J, Bruce Z, Carey J, Davidson J, Della Pasqua F, Glassey P, Hill M, Jones K, Lyndsell B, Lukovic B, McColl S, Rattenbury M, Read S, Rosser B, Singeisen C, Townsend D, Villamor P, Villeneuve M, Wartman J, Rathje E, Sitar N, Athanasopoulos-Zekkos A, Manousakis J, Little M (2017) Landslides caused by the MW 7.8 Kaikoura Earthquake and the immediate response, Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 50, No. 2, June 2017.
- Demir G, Aytekin M, Akgün A, Ikizler SB, and Tatar O, (2012) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods, Natural Hazards, pp. 1-26.
- Dietrich EW, Reiss R, Hsu ML, Montgomery DR (1995) A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol Process 9:383–400.
- Dou J, Yunus AP, Tien Bui D, Sahana M, Chen CW, Zhu Zh, Wang W, Thai Pham B, (2019) Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing, 11, 638; doi:10.3390/rs11060638.
- Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H, (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environmental Geology, Vol 51, pp 241-256.
- Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250. <u>https://doi.org/10.1016/j.enggeo.2004.06.001</u>.

Esposito E, Porfido S, Simonelli A.L., Mastrolorenzo G, Iaccarino G, (2000) Landslides and other surface effects induced by 1997 Umbria Marche seismic sequence. Engineering Geology, 58 (2000) 353–376, PII: S0013-7952 (00) 00035-1.

- Foster C, Pennington CVL, Culshaw MG, Lawrie K, (2011) The national landslide database of Great Britain: development, evolution and applications. Environ Earth Sci 66(3):941–953.
- Galanopoulos GA, (1955) Seismic geography of Greece. Ann. Géol. Pays Hellén. 6, 83-121.
- Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P, (2008) Comparing landslide inventory maps. *Geomorphology*, 94, 268–289, doi:10.1016/j.geomorph.2006.09.023
- Ganas A, Marinou A, Anastasiou D, Paradissis D, Papazissi K, Tzavaras P, Drakatos G, (2013) GPS-derived estimates of crustal deformation in the central and north Ionian Sea, Greece: 3-yr results from NOANET continuous network data. J. Geod. 6, 62–71.
- Ganas A, Elias P, Bozionelos G, Papathanassiou G, Avallone A, Papastergios A, Valkaniotis S, Parcharidis I, Briole P, (2016) Coseismic deformation field observations and seismic fault of the 17 November 2015 M=6.5, Lefkada Island, Greece earthquake. Tectonics 687:210-222 (ISSN 0040-1951). <u>http://dx.doi.org/10.1016/jtecto.2016.08.012</u>.
- Gordo C, José Luís Z, Rui M, (2019) Landslide Susceptibility Assessment at the Basin Scale for Rainfall- and Earthquake-Triggered Shallow Slides. Geosciences, 9, 268; doi:10.3390/geosciences9060268.
- Gorsevski P, Gessler P, Foltz R, (2000) Spatial Prediction of Landslide Hazard Using Discriminant Analysis and GIS, GIS in the Rockies 2000 Conference and Workshop Applications for the 21st Century. Denver, Colorado. September 25 - 27, 2000.
- Grendas N, Marinos V, Papathanassiou G, Ganas A, Valkaniotis S, (2018) Engineering geological mapping of earthquake-induced landslides in South Lefkada Island, Greece: evaluation of the type and characteristics of the slope failures. Environmental Earth Sciences, 77:425, https://doi.org/10.1007/s12665-018-7598-9.

Guirong W, Xinxiang L, Wei Ch, Himan Sh, Ataollah Shi, (2020) Hybrid Computational Intelligence Methods for Landslide Susceptibility Mapping. Symmetry 12, 325; doi:10.3390/sym1203032.

- Guirong W , Xi Ch, Wei Ch, (2020) Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions. International Journal of Geo-Information, 9, 144; doi:10.3390/ijgi9030144.
- Guzzetti F, Carrara Al, Cardinalia M, Reichenbach P, (1997) Landslide hazard evaluation: a review of current techniques andtheir application in a multi-scale study, Central Italy. Elsevier, 181–216, PII: S0169-555X9900078 – 1.
- Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31: 181–216. DOI:10.1016/S0169-555X(99)00078-1.
- Guzzetti F, Reichenbach P, Cardinali M, Ardizzone F, Galli M (2003) The impact of landslides in the Umbria region, central Italy, Natural Hazards and Earth System Sciences (2003) 3: 469–486, HAL Id: hal-00299056, <u>https://hal.archivesouvertes.fr/hal-00299056</u>.
- Guzzetti F, Cardinali M, Reichenbach P, Cipolla F, Sebastiani C, Galli M, Salvati P (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology, 73 (3-4): 229 245. DOI: 10.1016/j.enggeo.2004.01.006.
- Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72: 272 – 299. DOI:10.1016/j.geomorph.2005.06.002.
- Hack R, Huisman M (2002) Estimating the intact rock strength of a rock mass by simple means. Eng Geol Dev Countries. In: Proceedings of 9th congress of the International Association for Engineering Geology and the Environment. Durban, South Africa, 16–20 Sept 2002, pp 1971–1977.
- Harp E, Jibson R (1995) Seismic instrumentation of landslides: building a better model of dynamic landslide behavior. Bull Seismol Soc Am 85(1):93–99

Hatzfeld D, Kassaras I, Panagiotopoulos D., Amorese D, Makropoulos K, Karakaisis GF, Coutant O, (1995) Microseismicity and strain pattern in Northwestern Greece. Tectonics 14, 773–785/.

- Härder T, Hübel C, Meyer-Wegener K, Mitschang B, (1988) Processing and transaction concepts for cooperation of engineering workstations and a database server. Data Knowl Eng 3(2):87–107.
- He S, Pan P, Dai L, Wang H, and Liu J, (2012) Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China, Geomorphology, 171-172, pp. 30-41.
- Hervás J, Bobrowsky P, (2009) Mapping: inventories, susceptibility, hazard and risk. In Sassa, K., and Canuti, P. (eds.), *Landslides Disaster Risk Reduction*. Heidelberg Berlin: Springer, pp. 321–349.
- **Hoek E** (2006): Practical rock engineering. https://www.rocsc ience.com/learn ing/hoek-s-corner.
- Ilieva M, Briole P, Ganas A, Dimitrov D, Elias P, Mouratidis A, Charara R, (2016) Fault plane modelling of the 2003 August 14 Lefkada Island (Greece) earthquake based of the analysis of ENVISAT SAR interferograms. Tectonics 693:47-65. http://dx.doi.org/ 10.1016/j.tecto.2016.10.021.
- **ISRM** (1981) Rock characterization, testing and monitoring. In: Brown ET (ed) ISRM suggested methods. Pergamon Press, Oxford, p 211.
- Jäger D, Kreuzer T, Wilde M, Bemm S, Terhorst B, (2015) A spatial database for landslides in northern Bavaria: a methodological approach. Geomorphology. doi:10.1016/j.geomorph.2015.10.008.
- Kaafarani R, Abou-Jaoude G, Wartman J, Tawk Mi, (2019) Landslide susceptibility mapping based on triggering factors using a multi-modal approach, 02002, https://doi.org/10.1051/matecconf /201928MATECWebofConferences281INCER 2019102020002.
- Kalantoni D, Pomonis A, Kassaras I, Kouskouna V, Pavlou K, Vassilopoulou S, Karababa F, Makropoulos K, (2013) Vulnerability assessment in Lefkada old town (W. Greece) with the use of EMS-98; comparison with the 14-8-2003, Mw= 6.2, earthquake effects. First results, Proc. Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics (VEESD 2013), C. Adam, R.

Heuer, W. Lenhardt & C. Schranz (eds), 28-30 August 2013, Vienna, Austria, Paper No. 356.

- Kassaras I, Kazantzidou-Firtinidou D, Ganas A, Tonna S, Pomonis A, Karakostas Ch, Papadatou-Giannopoulou Ch, Psarris D, Lekkas E, Makropoulos K, (2018) On the Lefkas (Ionian Sea) November 17, 2015 Mw=6.5 Earthquake Macroseismic Effects, Journal of Earthquake Engineering, 1559-808X, https://doi.org/10.1080/13632469.2018.1488776.
- **Kavoura** K, Sabatakakis N (2019) Investigating landslide susceptibility procedures in Greece. Springer, 17:127–145, DOI 10.1007/s10346-019-01271-y.
- Kazantzidou-Firtinidou D, Kassaras I, Tonna S, Ganas A, Vintzileou E, Chesi C, (2016) The November 2015 Mw6.4 earthquake effects in Lefkas Island, 1st International Conference on Natural Hazards & Infrastructure 28-30 June, 2016, Chania, Greece.
- Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406-421. <u>https://doi.org/10.1130/0016-</u> <u>7606(1984)95<406:LCBE>2.0.CO;2</u>.
- Keefer, D. K. (2000). Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta, California event. Engineering geology, 58(3-4), 231-249. <u>https://doi.org/10.1016/S0013-7952(00)00037-5</u>.
- Keefer, D. K. (2002). Investigating landslides caused by earthquakes—a historical review. Surveys in geophysics, 23(6), 473-510. <u>https://doi.org/10.1023/A:1021274710840</u>.
- Kokinou E, Papadimitriou E, Karakostas V, Kamberis E, Vallianatos F, (2006) The Kefalonia transform zone (offshore western Greece) with special emphasis to its prolongation towards the Ionian abyssal plain. Mar. Geophys. Res. 27 (4), 241-252. http://dx.doi.org/10.1007/s11001-006-9005-2.
- Kreuzer TM, Wilde M, Terhorst B, Damm B, (2017) A landslide inventory system as a base for automated process and risk analyses. Earth Sci Inform 10:507–515DOI 10.1007/s12145-017-0307-5.

Lee S, Evangelista DG, (2006) Earthquake-induced landslide-susceptibility mapping using an artificial neural network. Nat. Hazards Earth Syst. Sci., 6, 687–695, 2006www.nat-hazards-earth-syst-sci.net/6/687/2006/.

- Lee S (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf Process Landf 32:2133–2148. https://doi.org/10.1002/esp.1517.
- Lekkas E, Mavroulis S, Alexoudi V, (2016) Field observations of the 2015 (November 17, MW 6.4) Lefkas (Ionian sea, Western Greece) earthquake impact on natural environment and building stock of Lefkas island, Bulletin of the Geological Society of Greece, vol. L, p. 499-510 Proceedings of the 14th International Congress, Thessaloniki, May 2016.
- Lombardo L, Mai P. M, (2018) Presenting logistic regression-based landslide susceptibility results». Elsevier, 0013-7952/, https://doi.org/10.1016/j.enggeo.2018.07.019.
- Louvari E, Kiratzi A, Papazachos B.C., (1999) The CTF and its extension to western Lefkada Island. Tectonophysics 308, 223–236.
- Lynch C, (2008): «Big data: How do your data grow?», Nature 455:28–29.
- Malamud B, Turcotte D, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29:687–711.
- Marinos P, Hoek E (2000) Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnel Tunnell Int.
- Marinos V (2010) New proposed GSI classification charts for weak or complex rock masses. Bull Geol Soc Greece 4(3):1248–1258.
- Martino S, Battaglia S, D'Alessandro F, Della Seta M, Esposito C, Martini G, Pallone F, Troiani F, (2019) Earthquake-induced landslide scenarios for seismic microzonation: application to the Accumoli area (Rieti, Italy), Bulletin of Earthquake Engineeringhttps://doi.org/10.1007/s10518-019-00589-1.
- Menard S (1995): Applied Logistic Regression Analysis. Sage University Paper Series on Qualtitative Applications in the Social Sciences, 07-106, Thousand Oaks, CA: Sage. DOI: https://dx.doi.org/10.4135/9781412983433.n4.

Mitchell T, Christl A, Emde A., (2008) Web-mapping Mit Open sourceGIS-tools. O'Reilly Koln.

- Nandi A, Shakoor A, (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, Vol 110 (No 1 2), pp 11-20. doi: 10.1016/j.enggeo.2009.10.001.
- Neuhäuser B, Damm B, Terhorst B, (2011) GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model. Springer, 9:511– 528DOI 10.1007/s10346-011-0305-5.
- Newmark NM (1965) Effects of earthquakes on dams and embank-ments. Geotechnique 15:139–160.
- **Obe** R, Hsu LS, (2011) PostGIS in action. Manning Publications, Greenwich (Connecticut).
- Ozioko O H, Igwe O, (2020) GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria. Springer, 192: 119, https://doi.org/10.1007/s10661-019-7951-9.
- Papadimitriou P, Karakonstantis A, Bozionelos G, Kapetanidis V, Kaviris G, Spingos I, Millas Ch, Kassaras I, Voulgaris N, (2016) Preliminary report on the Lefkada 17 November 2015 Mw=6.4 earthquake, report released to EMSC-CSEM.
- Papaioannou Ch, Karakostas Ch, Makra K, Lekidis V, Theodoulidis N, Zacharopoulos S, Margaris V, Rovithis M, Salonikios Th, Morfidis K, (2018) The November 17, 2015 MW 6.4 Lefkas, Greece earthquake: Source characteristics, ground motions, ground failures and structural response, 16th European conference on Earthquake Engineering, Thessaloniki, 18-21 June 2018.
- Papathanassiou G, Pavlides S, Ganas A, (2005) The 2003 Lefkada earthquake: Field observations and preliminary microzonation map based on liquefaction potential index for the town of Lefkada». Engineering Geology 82 (2005) 12–31 doi:10.1016/j.enggeo.2005.08.006.
- Papathanassiou G, Valkaniotis S, Ganas A, Pavlides S, (2013) GIS-based statistical analysis of the spatial distribution of earthquake-induced landslides in the island of Lefkada, Ionian Islands, Greece. Landslides, 10:771–783 . <u>https://doi.org/10.1007/s10346-012-0357-1</u>

Papathanassiou G, Valkaniotis S, Ganas A, Grendas N, Kollia E, (2017a) The November 17th, 2015 Lefkada (Greece) strike-slip earthquake: Field mapping of generated failures and assessment of macroseismic intensity ESI-07. Engineering Geology 220 (2017) 13 – 30), http://dx.doi.org/10.1016/j.enggeo.2017.01.019.

- Papathanassiou G, Valkaniotis S, Ganas A, Pavlides S, (2017b) Earthquake-induced landslides in the island of Lefkada, Ionian Islands, Greece, 10.5066/F79G5K96. In: Schmitt, R., Tanyas, H., Nowicki Jessee, M.A., Zhu, J., Biegel, K.M., Allstadt, K.E., Jibson, R.W., Thompson, E.M., van Westen, C.J., Sato, H.P., Wald, D.J., Godt, J.W., Gorum, T., Xu, C., Rathje, E.M., Knudsen, K.L. (Eds.), An Open Repository of Earthquake-triggered Ground FailureInventories. U.S.Geological Survey data release collection. https://doi.org/10.5066/F7H70DB4.
- Papathanassiou et al. (2020) Spatial patterns, controlling factors and characteristics of landslides triggered by strike-slip faulting earthquakes; case study of Lefkada island, Greece, submitted to Bulletin of Engineering Geology and the Environment).
- **Papazachos** BC, Papazachou K, (1997) The Earthquakes of Greece». Ziti Publ, Thessaloniki (356 pp).
- Papazachos BC, Comninakis P, Karakaisis G, Karakostas B, Papaioannou C, Papazachos CB, Scordilis E, (2000) A Catalogue of Earthquakes in Greece and Surounding Area for the Period 550 BC-1999». Publ. Geoph.Lab., Univ. of Thessaloniki.
- **Parsons MA**, (2011) Making data useful for modelers to understand complex earth systems. Earth Sci Inf 4(4):197–223.
- Pérouse E, Chamot-Rooke N, Rabaute A, Briole P, Jouanne F, Georgiev I, Dimitrov D, (2012) Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: implications for crustal dynamics and mantle flow. Geochem. Geophys. Geosyst. 13, Q09013. http://dx.doi.org/10.1029/2012GC004289.
- **Polykretis** Ch, Ferentinou M, Chalkias Ch (2014) A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural

networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Springer, 74:27–45 DOI 10.1007/s10064-014-0607-7.

- Pradhan B, Youssef A (2010) Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3:319–326. https://doi.org/10.1007/s12517-009-0089-2.
- **Provost** F, Fawcett T, (2013) Data science and its relationship to big data and data-driven decision making. Big Data 1(1):51–59.
- **Raymond** ES, (2001) The Cathedral & the Bazaar. Musings on Linux and open source by an accidental revolutionary. O'Reilly, Cambridge.
- Rondoyannis GP, (1995) The seismicity of Lefkada (1469-1971). Society of Lefkada's study, H., (in Greek).
- Rondoyanni Tsiambaou T, (1997) Les seismes et l'environnement géologique de l'ile de Lefkade, Gréce: Passe et Futur. In: Marinos et. al., Engineering Geology and the Environment. 1469-1474, Balkema.
- Rondoyanni Th, Mettos A, Paschos P, Georgiou Ch, (2007) Neotectonic map of Greece, scale 1:100.000, Lefkada sheet. I.G.M.E., Athens.
- **Rondoyanni,** Tsiambaos, (2008) The Aghios Nikitas-Athani active fault and the geological hazard of Lefkada island.
- Rondoyanni T, Sakellariou M, Baskoutas J, Christodoulou N, (2012) Evaluation of active faulting and earthquake secondary effects in Lefkada Island, Ionian Sea, Greece: an overview. Nat Hazards (2012) 61:843–860DOI 10.1007/s11069-011-0080-6.
- **Royden** L.H. and Papanikolaou D.J. (2011) Slab segmentation and late Cenozoic disruption of the Hellenic arc, Geochem. Geophys. Geosyst., vol. 12(3).
- Rui-Xuan Tang, Pinnaduwa H. S. W. Kulatilake, E-Chuan Yan, Jing-Sen Cai (2020): « Evaluating landslide susceptibility based on cluster analysis, probabilistic methods, and artificial neural networks». Springer. https://doi.org/10.1007/s10064-019-01684-y.
- Sabatakakis N, Koukis G, Vassiliades E, Lainas S (2013) Landslide susceptibility zonation in Greece. Natural Hazards 65(1):523-543. DOI: 10.1007/s11069-012-0381-4.

Sachpazi M, Hirn A, Clement C, Haslinger F, Laigle M, Kissling E, Charvis P, Hello W, Lepine J-C, Sapin M, Ansorge J, (2000) Western Hellenic subduction and Cephalonia Transform: local earthquakes and plate transport and strain. Tectonophysics 319, 301–319.

- Sandmeier C, Budel C, Schwindt D., (2013) Multi-methodological "investigation of a mass movement in the cuesta landscape of the Northeastern Franconian Alb, Germany. In: EGU general assembly conference abstracts, vol 15. Vienna, p 3298. EGU2013-3298.
- Schäfer A, Pomonis A, Mühr B, Wenzel F, (2015) CEDIMM Forensic Disaster Analysis – 2015 Lefkada, Greece Earthquake», Report No.1, CATDAT, CATNews&Earthquake-report.com.
- Schicker R, Moon V, (2012) Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale, Geomorphology, 161-162, pp. 40-57.
- Sclögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet J-P (2017) Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Elsevier, 0169-555X, https://doi.org/10.1016/j.geomorph.2017.10.018.
- Scordilis E.M., Karakaisis G.F., Karakostas B.G., Panagiotopoulos D.G., Comninakis P.E., Papazachos B.C., (1985) Evidence for Transform Faulting in the Ionian Sea: the Cephalonia Island Earthquake Sequence of 1983. Pure Appl. Geophys. 123, 388-397.
- Soeters R, van Westen CJ (1996) Slope Instability Recognition, Analysis and Zonation. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation, Transportation Research Board, National Research Council, Special Report 247. National Academy, Washington D.C, pp 129–177.
- Sokos E, Zahradník J, Gallovič F, Serpetsidaki A, Plicka V, Kiratzi A, (2016) Asperity break after 12 years: the Mw 6.4 2015 Lefkada (Greece) earthquake. Geophys. Res. Lett. 43:6137-6145. <u>http://dx.doi.org/10.1002/2016GL069427</u>.
- Suhua Z, Yunqiang Z, Jingkang X, Changfu Ch, Ligang F, (2019) Earthquakeinduced landslide susceptibility mapping: Application and Comparison of

- Tilmes C, Yesha Y, Halem M, (2010) Tracking provenance of earth science data.
 Earth Sci Inf 3(1):59–65.
- **Touliatos** P, Vintzileou E, (2006) Seismic behavior of the structural system in the historic town of Lefkada, 15th RFC Congress, TEE, ETEK, 25-27 October 2006, Alexandroupolis, Greece, 1-12.
- Van Den Eeckhaut M, Hervas J, Jaedicke C, Malet J-P, Montanarella ´ L, Nadim F, (2012) Statistical modelling of europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369.
- Van Den Eeckhaut M, Hervas J, (2012a): Landslide inventories in 'Europe and policy recommendations for their interoperability and harmonization. Technical report, European Comission, Ispra, Italy.
- Van Den Eeckhaut M, Hervás J, (2012b) State of the art of national ' landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139- 140:545–558.
- van Westen CJ (1997) Statistical landslide hazard analysis. ILWIS 2.1 for windows application guide. ITC Publication, Enschede, pp 73–84.
- Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: transportation research board. National Academy of Sciences, Washington, DC, pp 11–33.
- Wei Ch, Zenghui S, Jichang H, (2019) Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence with Logistic Regression and Random Forest Models. Applied sciences, 9, 171, doi:10.3390/app9010171.
- Wieczorek GF, (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Environ Eng Geosci 21(3):337–342.
- Wotherspoon L, Palermo A, Holden C (2017) The 2016 Kaikoura earthquake: an introduction, Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 50, No. 2.
- Xu ZQ, Ji SC, Li HB, Hou LW, Fu XF, Cai ZH (2008a) Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes 31(3):291–301.

Xu XW, Wen XZ, Ye JQ, Ma BQ, Chen J, Zhou RJ, He HL, Tian QJ, He YL, Wang ZC, Sun ZM, Feng XJ, Yu GH, Chen LC, Chen GH, Yu SE, Ran YK, Li XG, Li CX, An YF (2008b) The Ms 8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismol Geol 30(3):597–629 (In Chinese).

- Xu XW, Wen XZ, Yu GH, Chen GH, Klinger Y, Hubbard J, Shaw J (2009b) Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology 37(6):515–518. doi:10.1130/G25462A.1
- Xu XW, Yu GH, Chen GH, Ran YK, Li CX, Chen YG, Chang CP (2009c) Parameters of coseismic reverseand oblique-slip surface ruptures of the 2008 Wenchuan Earthquake, Eastern Tibetan Plateau. Acta Geol Sin 83(4):673–684. doi:10.1111/j.1755-6724.2009.00091.x.
- Xu Ch, Xu Xi, Dai F, Wu Zh, He H, Shi F, Wu Xi, Xu Sun (2013): «Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China». Nat Hazards 68:883-900. doi: 10.1007/s11069-013-0661-7.
- Yeung AKW, Hall GB, (2007) Spatial database systems. Springer, Dordrech.
- Yu Zh, Zeng H, Zhenlei W, Jun Zh, Kazuo K, (2020) The assessment of earthquaketriggered landslides susceptibility with condidering coseismic ground deformation, Natural Hazards and Earth System Sciences, https://doi.org/10.5194/nhess-2020-63.

Ελληνική

- Γρένδας, (2016) Τεχνικογεωλογική χαρτογράφηση και αποτύπωση κατολισθήσεων στο δυτικό τμήμα της Λευκάδας.
- Κόλλια (2019) Ανάλυση της ακολουθίας του σεισμού της Λευκάδας της 17ης
 Νοεμβρίου, 2015 και συσχέτιση με γεωλογικές-τεκτονικές παρατηρήσεις πεδίου.
- Μουντράκης, (2010) Γεωλογία και γεωτεκτονική εξέλιξη του ελληνικού χώρου.
 Θεσσαλονίκη: University Studio Press.
- Μπουκουβάλα, (2018) Εκτίμηση κατολισθητικής επιδεκτικότητας στην ορεινή περιοχή των Τζουμέρκων με τη χρήση του μοντέλου λογιστικής παλινδρόμησης.
 Η περίπτωση της λεκάνης απορροής του Καλαρρύτικου ποταμού.

Παντελόπουλος, (2014) Σχέδιο Διαχείρισης των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Δυτικής Στερεάς Ελλάδας (GR04), Υπουργείο Περιβάλλοντος και Ενέργειας, Ειδική Γραμματεία Υδάτων, Αθήνα.

- Πολυκρέτης, (2013) Ανάπτυξη μοντέλων εκτίμησης της επιδεκτικότητας για εκδήλωση κατολίσθησης με τη χρήση μεθόδων γεωπληροφορικής και τεχνητής νοημοσύνης.
- Φ.970/ΑΔ:7753/Σ1863/22-11-2012

Ιστοσελίδες

• www.gein.noa.gr

- https://www.oasp.gr/node/2391
- <u>https://blogs.egu.eu/divisions/nh/2018/10/08/earthquake-induced-landslides-and-the-strange-case-of-the-hokkaido-earthquake/</u>
- <u>https://earthquake.usgs.gov/earthquakes/events/alaska1964/</u>
- <u>http://geophics.geo.auth.gr</u>
- http://www.emsc-csem.org/Earthquake/mtfull.php?id=470390
- <u>http://www.itsak.gr/uploads/news/earthquake_reports/Lefkas_M6.0_17-11-</u> 2015.pdf
- <u>http://sdgee.civil.auth.gr/images/downloads/lefkas_2015.pdf</u>
- http://physiclessons.blogspot.com/2012/03/k.html
- <u>https://rizosdimitris.blogspot.com/2012/01/4.html</u>
- http://www.charim.net/datamanagement/43
- <u>https://www.theguardian.com/international</u>
- <u>https://www.statisticssolutions.com/conduct-interpret-logistic-regression/</u>
- <u>https://www.usgs.gov/media/images/damage-2008-great-sichuan-earthquake-</u> china
- https://www.sciencemag.org/news/2018/09/slippery-volcanic-soils-blameddeadly-landslides-during-hokkaido-earthquake
- https://mainichi.jp/english/articles/20180907/p2a/00m/0na/004000c
- http://meteosearch.meteo.gr/data/lefkada/2015-11.txt