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A novel approach to the spreading of COVID-19 with the use of networks.

Abstract

The COVID-19 epidemic has troubled both medicinal and STEM personnel for more than one
year. This epidemic has proven most resilient to medicinal and social measures undertaken worldwide.
Trying to model this epidemic is an arduous task, both because of the virus’ mutability and due to the
fact that each government trying different measures with a varying degree of success. In this work, we
will try to achieve two things. The first one is to create an “umbrella” dynamic system, which can be
adjusted to make predictions for all cases, while the second is to transfer this model to a mesoscopic
equivalent, in order to make predictions that fit the specificities of smaller populations more accurately.
Finally, there will be presented a novel idea for examining whether or not an epidemiological system is

closed or open, i.e., the epidemic will end or not.

Key Words

COVID-19, Epidemiology, Epidemiological Networks, Dynamical Systems, Complexity



Vasileios Vachtsevanos

20uvoyn

H emdnuia COVID-19 éxel. mpofAnuatiosl LTplkd KOl EMOTUOVIKO TPOCWTIKO yla
TAPATAVW ATO Eva £TOG . AuTn 1) emdN i amodeixBnke TOAD AVOEKTIKI] OTA LATPIKAE KoL KOLVWVIKA
uépa TPOANYMG mou €xouvv An@Bel Siebvwg. H mpoormdBela va yivel povieAonoinon g emdnpiag
elval évag anatmtikds aBAog, T060 AdYw TG YP1yopns Tdong ol va PHETAAAACETAL OAAG KOl TOU
YEYOVOTOG OTL KAOE KUPBEPVNOT TAYKOO WG EXeEL AAPBEL SLAPOPETIKA HETPA , LE SLa@OopeTIKS Babud
emtuxiag. Ztn mTapovoa Statpifn, Ba yivel pa amomelpa va emteuyBovv Suo otoxol. O TpwTog ivat
va oxedlaotel éva SUVALKO CUOTN U «TAOTIAPTOV», TO OO0 UTOPEL VA TPOCAPUOCTEL YIa EKAOTOTE
TePITTWOT, EVW 0 SeUTEPOG elval 1) HETAPOPAE TOV HOVTEAOU GTO HEGOOCKOTLKO OVAAOYO TOU, WOTE
va yivovTtal o akplBeis TpoPALPELS YIX TEPITTWOELS PKPOV TAVONOUWVY BAOT TWV LSLAULTEPOTHTWV
toug . TéAog, Ba mapovolaotel gl vea 16€a, N omola pag emtpémel va efetalovpe eav €va
EMOMULOAOYIKO cVOTNUA €lval avolXTO N KAEloTO. AuTd onuaivel av mpofAgémetat ANén piag
eménpiag 1 6yt

NeEelc Kheldla

COVID-19, Emiénutoroyia, Emidnuiodoyika Aiktva, Avvauikd Xvotriuata, [loAvtAokdtnTta
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Summary in Greek (MepAnyn)

Ytn mapovoa epyacia Oa eMLXELPHOOUUE va HovTEAOTOLOOUNE TV ermidnuia COVID-19 mou €xel
TEPAOTLO KOGTOC o€ avOpwTTLveg {WEC , ard to AskéuPBpn tou 2019 sw¢ kat arpepa (Alyouotog 2021). Me
™ Xpnon oTtoelwdwy yvwoswv Bswpilag SIKTUWY, SUVAULKWY CUCTNUATWY KOl OTATIOTIKAG Ba
T(POOTIOONCOUE VA LOVIEAOTIOLHOOUHE TNV eTUdNUia UE TN Xpron epyaleiwv ou péxpL mpoodata dev
glyav edpappootel e to TPodMTO Mo Ba mapoucldcoupe R Sev sixav edappoaotel KabBoAou.

To mpwto keddAalo HaG TPOodEPEL ML CUVOMTIKA LOTOPLKH Sladpouny péoca amd tnv
erudnuioloyia, TOo0 TN pHaABNUATIKOMONUEVN Kol GOpUAALoUEVN €KEOXN TNC , GAAQ KOL TNV EPEUVNTLKN
LOTPLIK  OKoTild. EEolKElwVOUOOTE HE TG TEXVIKEG TNG emdnuioloyiag kal To TPOMO TOU
T(POYLOTOTIOLOUVTAL EPEVUVEC TIAVW OTO OVTLKELUEVO.

To &eutepo KedpaAalo €ival pLa CUMMUKVWHUEVN avOAUCH TwWV BACLK'V EVOLWV TWV SUVAULKWV
OUOCTNUATWY KaL TwV LOLOTATWVY TOUG TToU Ba pag amacXoAnoouy Katd tnv urtdAountn epyaocia.

To tpito KedAAalo sival opolwg pe To SEVUTEPO, ULA CUMIMUKVWHEVN €loaywyn ota Siktua kal
nieplypadel kamota Siktua mou Ba XPELOCTOUE OpyOTEPQ OTN HEAETN MOG.

To tétapto Kepalalo eival Lo CUVOTTIKA Teplypadikr avadopd otnv £vvola TNG EVIPOTILAG Kal
KATIOLEG XPNOELG TNG, ya va Slaxwploel Tnv evipomia mou nén peAetdte amd to tpomou Oa tnv
ebapudoou e epeic.

To méurmro kedpalato sival pia g Babog avaluon tng pebodoloyiag pag . Nwg oxedldoaue to
ouoTnUa BaollOuevol HoVAXO OTLG BAOLKEG MOBNUATIKEG OPXEG Kal oTASLAKA TO EUMAOUTIOANE LE TN
XPNon UTAPXWVIWY YVWOEWVY OTO QVTLKEIUEVO, TIPAYUOTIKWY deSopévwy oAAA KAl PE TIPOTWTUTIEG Kal
aouvnBloteg AUoelg ota mpoBAfuata tou epdavicotnkav. ONo To TpwTo PHEPOG Tou Kepalaiou acyoAeltat
OTTOKAELOTIKA pE TN Stadlkaoia autr, Thv tapouaciaon Twv evpupAatwy KaBe peBodou kat afloAoynon
Toug. TéAog avadépovtal Tpomol BeAtiwong Tou iSlou tou povtélou, pag kal n erudnuioloyia eival
SUVAULKH Kl TIPETIEL val TPooapUOleTal oto TteplBAaAAov.

To 6éutepo PéEPoG Tou TEUNTOU Kebahaiou sival n edappoyr tou duvaulkol cuoTHUOTOG OE 3
Sladopetikd apyetumikd Siktua. Tuynpivovtal To OIMOTEAECUATO QUTA HE TA OMOTAECHOTA €VOG toy
model Tou teAkoU povtélou amd to 5.1. kot aflodoyolvtal ta amoteAéopata. Mpatnpolue mMwe To
péyeBog Tou Siktlou mailel KaBoploTikd pONO TN LEAETN, LLAG KAL N LEAETN LLE TN XPrON TIPOCOUOLWOEWY
£xel 8LadopeTIKOUC XPOVOUG OAOKANPWONG. XTO TEAOG TOU avOAUOUUE HEPLKOUG AOyoug Ttou 08nyoAlv
OTNV OTTOKALON TWV OMOTEAECUATWV.

To tpito KL TEAEUTALO HEPOG TOU TIEUMTOU KePaAaiou elval apXlkd pia culntnon yla TV Xpnon
SLOYVWOTIKWV HEBOSWVY OU Pag EMLTPEMOUV Vo BpoUe av éva emdnuLoAoyiko cuotnua 6o 0dnynOei oe
plo Katdotaon npepiag 1 oxL, kabwg eniong mwe o pubuog woAuveng eivol avaLomioTtog ylo cuaTh o
rieplmhoka OTw¢ To SIKO PaC. MPOTEIVOUUE [La VEQ Xpron TNES EVTPOTiag WG SlayvwaTiko epyaleio ylo to
€UPUTEPO GUVOAO TWV ETUSNULOAOYLKWY HOVTEAWYV, ULOG KaLl €€apTATAL LOVO ATO TA ATMOTEAECUATA TNG
AUong tou cuotiuatog (i &iktvou) mou €xoupe avaAloesl. AUt n XPRon TNG EVIpoOmiag UMOpEl va
BonBnoet va Bpebel av umtapyel kamolo téAog atnv emdnuia n oxL.
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210 TEAOG TNG EPYACLAC UTTIAPXEL ULa cUVOYN TWV ANMOTEAECUATWY PG, avadopEG Kal UepLKol amo
TOUG KWOLKEG HOG , WOTE Va UImopouVv va enmavadydpBolv Ta anoteAéouata Hag.
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Purpose

The purpose of this dissertation is to design a mathematical model which has high predictive
capabilities and is easily adjustable to any specific case of an epidemic similar to the COVID-19
pandemic, that currently has engulfed the world. This means that we have to create a flexible model of
equations that can be adjusted accordingly.

We are also going to expand the model to a network equivalent, in order to simulate more
intricate cases. The pandemic of COVID-19 has cost a lot of lives and resources to all the countries
around the globe and the humanitarian efforts were never enough. Any classical predictive tool, based
only on the available statistical data was not very successful at helping governments prevent the spread
of the disease.

The final step of this work is to try to find a tool that will help us predict whether or not the
disease reaches an end or if the virus is here to stay. This is tricky for a virus that mutates this quickly,

therefore a proper tool would solve the problem.

12
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1. History of Epidemiology

Epidemiology through the lens of mathematics can be traced back to Daniel Bernoulli and
d’Alambert!. Bernoulli was curious about how effective the process of inoculation was, when used to
fight smallpox. In order to model it properly he created a set of equations that describe the survival of
an individual from a sickness. The model is one of two populations, the susceptible S and the immune
I. One susceptible that lives long enough is transferred to the group 1. The age of a person is one of the
two variables that affect the evolution of the system. Both groups have a mortality rate u(a)- where
o the age of a person- that is independent of the disease that is studied, and the susceptible group has
an additional parameter A(a) that is the force of infection. The transition from susceptible to immune

is based on a probability w(a) which is found from the equation:

dw
@y ——=s@i(@u(a) - plaw
u(a) is the probability that a newborn individual is alive and susceptible at the age a.

This model was highly opposed by d’Alambert, who published a critique to Bernoulli’s model
before it was even officially published by the royal academy of France, in 1760. His model was quite
different than Bernoulli’s. He approached the problem using function analysis. Like Bernoulli he also
modeled his functions based on the age of the individual. He is considering that the death rate for each
disease, event or natural causes can be deduced as a different function, and with a formula similar to

signal theory derives the form of the mortality rates.

However, those models are too general and complex. In the early 20 century two English
colonial officers, a physician and a mathematician?, tried to model the spreading of an infectious disease
at a local population. Their work was later adapted and formalized by Kermack and McKendrick. They
studied the spread of an infectious disease by separating the populace into susceptible and infected.
They then expanded on their model, which like Bernoulli’s and d’Alambert’s , was dependent on the
age of each individual . However in this model, integrating the equations we can have a set of equations
that are only time dependent and the parameters (mortality rate, recovery rate, etc) are a real number.

This first model was a simple SIS model, in which a person of age , had a possibility to become infected
by the disease rampant. The individual was then transferred in the infected group from where he would
either die or be cured and return to the main populace. The general mortality rate and birth rate could
also be taken into account in order to be able to more accurately find the expected number of deaths
caused by the disease. However , being age specific would mean that for each group, a number of
subgroups equal to the age existed, which would mean that instead of a 2x2 system, we would be faced
with a 2*n x 2*n system of equations. For that purpose, modern epidemiology avoids modeling age

specifically and prefers the macroscopic approach.

13
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1.1. "Non Mathematical Epidemiology

1.1.1.  John Snow, the father of epidemiology

In Victorian England , there was the first case of pathological and investigative research about
the source and transmission of a disease?. During that era, London was plagued by cholera outbreaks.
Some prominent physicians of that time supported the theory that “miasma” — a form of bad air was
behind the epidemic. During this period, the germ theory of disease had not yet been developed,
therefore a new way to study the source of this disease should be found. With the help of local
authorities, John Snow managed to map the household inflicted by the disease and time stamp them.
He then found out that the common link between the houses was the fresh water source, that they
shared, in the form of a public water pump. Using statistics and appropriate sampling techniques, John

Snow made it clear that water quality and cholera were connected.

The idea of mapping and tracing the spread of an epidemic disease (whether viral or not) was at
a time an innovation, one that influenced later scientists to incorporate the mathematical methods

proposed by the previously mentioned scientists.

1.1.2. Variables

When managing data of epidemics, some variables appear to play important roles on the way a
disease is spread. Those factors can be biological like sex, genetics, other infections or conditions etc, or
environmental, like habits, nutrition, climate etc. Those factors are important when we try to identify
and understand the way a virus works. Unfortunately, those factors cannot be easily inserted into our
generalized mathematical models. They increase the complexity of the systems. Unlike age, they are
usually binary, if one person belong to category A or B (high or low risk), and instead of creating a two
variables system, they are better represented by splitting a dimension (ie group of people in the
competitive population model) into 2 other subspaces. In the case of networks, they add more
information that must be dealt and makes any process more complicated, increasing both mathematical

and computational complexity.

When trying to map a disease or the characteristics of the germ ‘behind it , those variables are
extremely useful and vital. Physicians and health scientists not only require those information , but
actively seek them. This is clear distinction between natural scientists and health scientists when

approaching an epidemic.

14
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1.2. Types of epidemiological research

There are 5 prevalent types of epidemiological research? :

aole N )i! Pnli(} ()L"i(,'(l researcn metnods
Table 1 : Epidemiological h method.

Name Characteristics

Case series and population case series The researcher counts cases and relate to
population data in order to produce rates and
find patterns.

Cross-sectional The researcher studies the state of the
population’s health and disease rate at a defined
place and time and then measures the burden of
disease.

Case—control The researcher compares the data in a series of
cases and a control group.

Cohort The researcher is trying to relate information on
risk factor patterns and health states.

Trial The researcher intervenes with some measure
designed to improve health, then collects data to
see the effect.

Our research is a cross-sectional one, as we only use data from one country and try to model the
behaviour of the virus.

One important factor we must take into considerations is researcher bias. Selective sampling,
biased interpretation of the data are some of the ways the researcher might be mislead into a biased

result and erroneously downgrade or emphasize some aspects of the epidemic.

1.3. Infection Rate

An infection rate ¢ is the probability or risk of an infection spreading out of control in a
population. Itis used to measure the frequency with which new instances of the infection appear within
a selected population during the time period under study. This number is equal to:

I
1.1)R=ct—=
(LDR=ct

Where ct is a constant, I is the number of infected people and N the total population or the total
number of susceptible. This formula adapts to the equations used. One common change made to the

above equation is :

=

(12)R =2
p

15
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Where B is the spreading rate and p is the recovery rate. This version of the infection rate
calculates whether the infection spreads faster than people are healed. If this number is greater than 1,

then we might be unable to control the pandemic.

For our model we will calculate the values of R for some model, since it is a stiff tool and has
accuracy only for a short time.

One more important information is that the infection rate can be equivalently be described as :

rate of new infections

1.3)R =
(1:3) rate of people re — entering the main populace

This formulation enables to calculate the effects of mortality rate as well as other external

factors, like prevention measures, vaccines or quarantines.

16
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2. Dynamical Systems

A dynamical system is a mathematical construct that allows us to study natural systems, whose
state can be described by a countable set of discrete variables. Those time dependent variables are called
dynamic variables. A dynamical system could then be described 7 as a map in the phase space of a point

x, from time t to time t'.

If the system is free of random parameters, it is known as a deterministic system. Deterministic
systems appear to have the same evolution every time. This means that for every starting point, for a
time ty, the coordinates of the point at the time t’ are always the same, if we do not change the initial
conditions of the system. On the contrary, a system where a parameter has random values, means that
a point will not always reach the same destination after every run, even if the starting conditions are

the same. Systems like this are called stochastic.

Dynamic systems can also be described by whether or not its parameters are static or time
dependent. Although a system with time dependent parameters is mostly predictable, it is quite
complex and hard to map. Systems that ae not explicitly dependent on time are known as autonomous.

The most common type of dynamical systems are the ones where we use differential equations to
map describe the process. This allows us to study a space of N+n dimensions, where N is the number
of different variables and n are the independent variables. For a dynamical system , n usually equal 1,

and represents time.

The equations describing the behaviour of the system, as an interaction between the different
variables and not the time, is known as a vector field. By examining the divergence of the vector field
f, we can examine the behaviour of the system.

e For a divergence equal to 0, the system is area preserving (does not expand).
e For a divergence less than 0, the system is area is dissipative (the system collapses within
some boundaries)

e For a divergence greater than 0, the system is explosive (expands outside towards infinity)

2.1. System Stability

When studying time evolving systems, we usually need to find whether or not an equilibrium
point exists, that remains stable. This however is not always achievable. Only a small portion of
systems (always autonomous, most of the times linear) can be studied in this manner. Thankfully, the
polyonymic nature of most epidemiology models means that for autonomous cases a solution can be
reached eventually. A solution found this way can describe the system’s stability 8 * 10, In order for us

to find those solutions and their stability, we first assume that any derivative of the vector field has no

. . . da . . .
dynamical effect in the equations (d—j; =0 => f =0). Then we linearize the equations and solve the
system. After doing so, with use of a Jacobian matrix, we find the eigenvalues corresponding for each
solution. Notice that for many systems we have to deal with an unknown number of variables n, where

n > 2. W will use the eigenvalues to determine the stability of the system.
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The stability can be :

e Stable sink (all perturbation will lead back to the point, dissipative system)

e  Unstable source (all perturbation will sent the point into a trajectory away from this point,
explosive system)

e Spiral Sink

e Spiral Source

e  Center (all perturbation lead to closed trajectories- Metastable)

e Saddle (unstable)

2.2. Chaos

Sometimes a system is so complex that is very hard to predict its behaviour. Sometimes the
trajectory a point follows is based heavily on the initial conditions of the system. Stochastic

parameters or big distances between two consecutive time points are also sign of chaotic behaviour.
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3. Network Theory!!

The combination of discrete objects and their relations, represented through a matrix or graphic
representation is a rough definition for a graph. When those objects (both the nodes and/or the edges)
have additional information (names, conditions, weight etc) we have a network. When those

information are changing through time we have a dynamic network.

The way a network is wired , ie the nodes and edges are connected, is called network topology.
The density of the edges or the grand total of connected nodes can affect the properties of a network.
A human society is a complex social network that is hard to properly mirror. Therefore we will present
3 different models for random network models.

1. Barabasi- Albert

Networks of this type are scale free (follow a power law when it comes to degree distribution)
that use preferential attachment. This type of random network creates a number of socially “rich” and

“poor” nodes.
2. Erdos- Renyi

The typical random network, where the edges are randomly determined. The number of nodes

and edges per node are predetermined.
3. Watts-Strogatz

This model creates a random network that has the small world property. This property means
that for the network the typical distance L between two randomly selected nodes grows proportionally
to the logarithm of the number of nodes N in the network. This type of network has a short average

path length and high clustering.

3.1. Epidemiology and networks

In recent times, networks are used for a plethora of sciences. Biology, sociology, physics etc. The
use of networks is also prevalent in epidemiology. Networks are used in 2 ways %in this case. Either to
map the viral mass travelling through geographic locations (cities, countries, airports, etc) or to find
patient zero. The first type uses well defined networks, made with data from flights, trains and generally
people using transportation crossing borders or buying tickets. The second type requires to find the
interactions between a specific person and its inner circle, and then expand it up to the nth neigbhour,

depending on the researcher’s precaution.

Using networks that describe a society as a whole is a challenge of increased complexity, since we
neither have a preferable network type to describe human societies in big scale, neither the amount of

information is easily manageable.
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4. Entropy

Entropy is a concept in natural and information science, that is most commonly associated with
a state of disorder, randomness, system complexity, or uncertainty. Entropy can be used as property

of any system and be used for studying a system’s predictability, excess of energy or internal disorder.

Entropy arose from Clausius’ effort to formalize the intuition of when a process is possible or not,
due to energy conservation, this however meant that entropy as not a well-defined concept. Entropy’s
ability to describe transitions as possible or not, and find the preferable processes led to entropy being

used outside thermodynamical systems or even be extended mathematically.

The first well defined statistical entropy (ie a statistical property of a system) was defined by
Boltzmann , through the use of combinatronics. This model was expanded by Gibbs and from that time
it is mostly unchanged.!

Entropy is extensively used in other fields of physics and in information science, as a way to
calculate the complexity created by the information within a system. There are many types of entropy
used for that purpose, all stemming from Shannon’s 1314 entropy for studying information transferred

from a message.

Entropy is a malleable term, therefore many times it is used interdisciplinary'> to describe other
properties, outside thermodynamics and information theory.

! There exist some generalized versions of entropy, from which the Boltzmann -Gibbs model arises, like
Tsallis entropy, but it is of no concern to our current work.
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S. Methodology

5.1. Modelling the epidemic using dynamical systems

Modeling the epidemic is not an easy task. The process that we will demonstrate starts from the
initial stages of more simplistic approaches to our extended model. The process was arduous and time
consuming, especially when we consider the fact that the epidemic’s characteristics were not fully
understood until the 12-month threshold. Mirroring closely this lack of knowledge, our model adapts

to the environmental conditions and new information per version of it.

5.1.1. Basic Models (SIR/SEIR/SEIRS)

Based on the basic theory and mathematics presented in the previous chapters, the process of
modeling an epidemic using those tools will be described below. The first assumption was that we have
a SEIR model where a patient that falls ill cannot be infected again. The SEIR model was also the
preferred model used at the start of the pandemic 16 17 18 | The carriers either fall sick or have a little
to no symptoms. This would mean that we either have to create 3 groups or assume that the “carriers”
group e[t] includes those who get over the disease without any obvious symptom. The simple solution

would be to avoid using more groups, as it increases the dimensions of the system increasing its

complexity.

The system will create is not linear, however all its constituents are of first degree power only,

based on systems that show bifurcations.!920

The first step was determining the value of some parameters. The SEIR model used was the

following:

by e+l.)2 i S[t]
s+e+i+r

(5.1) s'=P—-ms—T

by e+by i

r—
e'=—-(m+o+ke+ Ts+e+i+r

i'=0e— (m+a)i—kyi

r'=ke' +kyi—mr

Where:
P: is the population increase rate per day.

m: is the mortality rate based on effects non related to the epidemic.
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T: is a dampening effect, which we will see in detail later.

b1& by: is the spreading rate of the infection, we theorize that for infected and carriers do not

have the same parameter, but they can be assigned an equal value, This will be examined later in more

depth.
o is the rate that carrier falls sick.
k1& k;: is the of inverse of approximate time a person is a carrier or sick.
a : is the mortality rate of the epidemic .

Here we used two methods to calculate the values of parameters, the first was for localized values,
like spreading rate and mortality rate, where we estimated the value based on statistical data 2! 22 23,
while the second was bibliographical.

The following table shows the initially assigned value for each parameter:

Table 2: SEIR model parameter values

Parameter value source

P 0.00002925 Hellenic Statistical Authority

m 0.00003047 Hellenic Statistical Authority

T 0.01 Estimation based on NPHO?2
advertisements

o 0.03333 Estimation based on
Worldmeters Data

by 66.6667 Estimation based on NPHO
data

b, 66.6667 Estimation based on NPHO
data

kq 0.333333 Based on other coronaviruses
epidemics (SARS, MERS)2425 26

k, 0.99 Estimation based on NPHO
data

a 0.01 Estimation based on NPHO
data

For this simulation we used as initial condition the total population of Greece and we considered
that there is only one infected person at the start of the epidemic.

Now a comparison between estimated infected cases and data will be assessed.

2 National Public Health Organization (Greece)
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100+

20 40 60 80 100

Figure 1 : Comparison for data and initial SEIR model

We can immediately recon that the duration of the epidemic and the magnitude is quite

obviously in disagreement with the actual data. This calls for improvements on the initial model.

One information that changed the model’s structure was the revelation that people who
have undergone the disease can fall sick again. This led to changing the model to SEIR-S type of model,
where there is a “loop”, resupplying the populace with susceptible people.

One important parameter was the dampening effect T. Initially the T parameter was
aimed to describe the reduced effectiveness of the virus and would affect the infection rate R. However,
no matter the value of R resulting from the simple SEIR model, it appeared that T was not completely

describing the effectiveness of the measures undertaken.

This led into two options, the examination of other models where quarantine was

implemented or the modelling of a time dependent T.

For the time dependent dampening parameter T, a number of different models we used,
harmonic equations, reverse gaussians or step functions. The results were unfortunately not very

realistic and this lead to the implementation of quarantine.

Based on work for past epidemics, most models use the following logic:
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Figure 2: Classical Quarantine in SEIR models

The figure above shows a simplified version of the SEIR-S models used so far when
quarantine is included. Iq and Eq represent quarantined infected and carriers. 2'It shows that we will
need at least one additional dimension (usually two, since E and Eq are not the same group but are
closely related?®, since a carrier usually transfers from E to Eq.

This model however does not describe the social distancing measures, since a quarantine
is only used on people who exhibit or are suspect of being infected. For that reason a new model was

required from us.

5.1.2. Advanced Models (SEIDR/S)

The problem of properly simulating the effectiveness of the countermeasures taken by the Greek
government appears to lead into an unavoidable fifth dimension (ie a new group of people) added in
the system. This is a problem since:

A. TItincreases the complexity?

B. We must define its properties accurately

C. It adds internal dissonance in the system’s topology, making harder for the simulation to be
replicated in a micro/mesoscopic level (for examples through dynamic networks)

We went forth with the creation of a super group known as Distanced (D). This supergroup
includes three subgroups, the aforementioned Iq and Eq , as well a new group, that is prevalent in the
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measure taken by most countries, **limited interaction and mobility for susceptibles, people who are

practicing social distancing (Sd).

4
/
\

D (Sd, Iq, Eq)

Figure 3 :SEIDR-S model logic

As we can see, the D super group absorbs people and by putting them through a process of social
isolation 3'reduces their interactions to the least amount possible. For this reason, even though carriers
and infected are absorbed, the mean time required for them to be reintroduced to the main population
is longer than the process of recuperation, therefore the D group is not transferring people to R but

instead they are sent directly back to S.
Based on the above thoughts the group D interacts as following with the other groups:

A. From S and E it randomly drains people, since for most carriers, they are usually not
discovered in order to be lead to a quarantine.

B. From I it drains a big number of people who are either in hospitals or in home isolation.

C. It has no interaction with R

D. At a specific rate, people form D, are reintroduced to S

Having made those observations, we made the first models.

bie+b,i ) i
(52) s"s=P—-ms—T——— s —diss - +ttqd
ste+i+r st+i+e+r+d
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, bie+b,i i [
el==(m+o+k)e+T— s —dise -
s+e+i+r s+i+e+r+d

i'=ce—(m+a)i—k,i—qui
r'=Kkje+kyi—mr

d' = di (s +e)i + | —ttq d
TS i etrtaq AUt

This is a crude model and the parameters used are not optimized, since the effect of any process
has a different result from the traditional model, due to the different effects on the population density
and cohesion. The return rate from R to S is still small relative to the duration of the epidemic in Greece

(~60 days since day 1) and is not taken into consideration, although it was used for modeling initially.
The new parameters are :

dis : the rate though which people are slowly removing themselves from the society, practicing

social distancing.

Ttq: the rate that approximately a person returns to the society actively or has an interaction
without safety.

T: here this parameter describes the safety from using masks, gloves and other measures for

prevention.

qu: the rate percentage of people who are certainly infected and properly isolated.

The simulation was repeated, and the new results were still too overwhelming. For this reason,
we made a comparison for approximate characteristics of the epidemic. As we could easily extrapolate,
the duration of the epidemic lasts approximately ~60 days for the initial model (we are only using the

data of March to June 2020, therefore a second or third wave are still speculations).

We have assigned the following values:

e 0 is now equal to 1/28 which equates to a carrier having a 50% possibility per 14 days to fall
ill (The cycle of the COVID-19 virus was estimated to last 10-14 days at that point, therefore
we used the upper limit)

e Tisnow 0.025, since we have a relative 75 % chance to prevent the virus from entering our
bodies if we take proper prevention measures and the infection process is reduced by 1/10 due
to reduced social transport.

e dis is equal to 0.9, as we consider that the social distancing was imposed our voluntarily
followed by 90% of the population in relation with the percentage of the infected.

e ttq is equal to 1/60, since the initial duration of the measures was expected to last

approximately 60 days.
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Figure 4 : Comparison of normalized number of infected with real data

We can see that there is still a temporal displacement present (~7 days), however the behaviour

is much smoother, as the main body of the epidemic lasts approximately as long as the real data show

(~40 days). This means that we must adapt the values assigned to the parameters, since social

distancing appears to have an effect on the length of the epidemic.

After some pondering the following assumptions were made:

b; and b, are not longer equal. Since an infected person is avoided by others, we assigned to
the infected a smaller spreading rate equal to 1/5 of the one assigned to the carrier. The new
values are b; = 2.415 & b, = 0.483.

qu is increased to 0.95 .

dis is adjusted to 1000.

T is increased to 0.3, since the social transport is part of the distancing and not prevention
and the prevention effectiveness we re-evaluated to 70%.

o is increased to 1/14

One more interesting fact is that we start simulations from day 10, in order to reduce the time

displacement, using as initial condition the existence of 10 (based on available data) infected

people instead of 1.
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Infected from Day 10
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800

400

200+

! ! ! ! Days after Day 10
100 200 300 400 500

Figure 5: Expected number of infected people after improving the model

After the new simulation we notice the following characteristics:

o The number of total deaths for the duration of 6 month is ~270 which at the time was
realistic.

e There is a second wave, starting at June.

e The epidemic flat lines, which is worrisome.

e The summer would include incoming tourists or returning locals from other infected

countries, meaning there would be a “kick” in the system.

Taking those problems under consideration some new ideas were implemented and lead to a new

model which will be described in the next part.

We should mention that when we make the move from static parameters to dynamic ones, we
cannot study the stability of the system. However, the stability of the system will be seen in more depth
in part 5.3. The same is true to with the infection rate derived from each version of our model. Those

infection rates unfortunately have no use, since those models failed to predict the epidemic properly.
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5.1.3. Dynamically evolving parameters

Most parameters were turned into functions with time and location localization. This can explain

why the pandemic spreads with different rate for most countries.

The first change made was the adjustment of the virus characteristics. The rate that a carrier
falls sick was adjusted. The same has happened to the social distancing factor, since it is not static and
changes depending on how severely the measures were imposed. We cannot predict how long the
measures are imposed, therefore we initially tried to replicate the period that has passed (start of
epidemic up until September’s 30t ,2020). Finally, we added 2 new functions. The influx of tourists or
outside carriers in the system (tt(t) ) 2and the seasonal effectiveness of the virus (tp(t)) , since the virus
appears to prefer the winter period and is less effective during summertime. This might be due to
difference in population density, but we should use other countries, that are not major holiday
destination in order to test this hypothesis. We have also incorporated the rate through which
recovered individuals are reintroduced to the main populace, as rec.

The new model therefore is :

(5.3)

ble+b2i
"= P + 1000 tt(t) — —Ttp(t) ———— s — di ttq d
s * O = ms = T i S S v e raa o7t tad
"= 50 ¢tt(t ok 4 o(D)e + Tip) 2ot b2t di :
¢ = O = (m + &y + o(®)e PO i e e v d

i'=o0t)e— (m+ a)i— kyi— qui

r'=kie+ kyi— mr—recr

d' =dis(s + e) + qui— ttqgd

st+i+e+r+d

This new model is quite more complex and has many more details that we should properly model.
In the appendix A.5. one can see the initial form of the functions. They were shaped based on the
current events, severity of measures, public transportation, and internal population migration. We will

see in depth the final functions; however, some intermediate forms can be visited in the Appendix.
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Figure 7 : First model with time dependent parameters

As we can see from the above figure, this new model looks more like the real data, but is compact.
This led into the introduction of some new ideas.

Infected from Day 10
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10000

8000 -

8000 -

4000

2000 .

| o i

100 20

Days after Day 10

Figure 6 : Adjusted model for mortality and internal migration
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For the second iteration two changes were made. The first was the change of the mortality rate
into a function as well, since the most lethal strains survived during the appearance of the British and
South African strains. We also tried to adjust the mutation of the virus, so that it spread more as time
goes by, since the most infectious strains survived. However, there is an imbalance in the aggressiveness

of the virus and the parameter function were reevaluated.

After a revaluation of those functions, we decided to add a factor describing the reduced

effectiveness of the measure of social distances due to riots and civil unrest during the February of 2021.

Infected from Day 10
Mumber of infected people per day
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Figure 8 : Rios including model initial version

From what we can see the new social distancing parameter creates a problem with the intensity
and the duration of each wave. We also have a problem with the fact that although the third wave
should be during the peak of the virus’s spreading rate, it is shorter. Therefore, the model was

readjusted.

The final adjustments lead to the final model which will be presented later in this work.

31



Vasileios Vachtsevanos
5.1.4. Final Model

For the final model we have made one interesting change from (5.3). The rate of mutation was
made a different function, which can be separately studied. Therefore, the seasonality function
describes the difference in population density related to the time of the year. It is a repetitive process
with a one-year period. In depth:

t
1 -
(5.4) atr[t] = (0.215) (%)

The mortality rate slowly increases from 2.15% and doubles within 6 years.

R G )
tquar) + 10°

(5.5) ttq[t] = (

The rate that people return from the distanced group to the susceptible populace. It is initially
1 . . . . .
p people per day (rough estimation) and slowly increases, to show that people got tired of staying

inside.

9(t)0> w2 Pi” i )

The social distancing parameter function is quite a trickier one. The first part (blue) describes a

(5.6) dis[t] = 1000 (Abs [Cos [(

reduction of measures severity during summertime while the second part (green) shows the gradual non
conformity by the people, starting during the end of January 2021, right before the first riots. This

however can be adjusted because it creates a small knee, as we see later.

1

£ = 450
Exp |5

(57) tele] = Abssin[Pi+ ()l |
+1

The tourist and invading carriers parameter is a crude numerical estimation, which describes the
rate with which new people enter the country (some may be carriers). The exponential in the last part
serves as a dampening effect, in order to study the behavior of the system until the next October and
not further. The issue with the dampening factor is that by this September (2021) the vaccinated group
will have complete or partial immunity and be a new factor to add. Thusly any long-time prediction
should include the vaccinated group.
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(5.8) mt[t] = Exp [2 5t00]

The mutation function is a slow (relatively) exponential process. Most biological processes follow

power laws and for that reason we decided to adapt a simple version of it.

(5.9) tp[t] = mt[t] *(1 + Cos [Z*Pi* (%)])

The seasonality parameter includes the mutation strength and has a cosine to describe the
approximately yearly changes in population density. Due to the quarantine these changes where
shifted, due to people returning to their family houses for financial and personal reasons.

Infected from Day 10
Mumber of infected people per day

4000 +
3000 +
2000 +
1000 +
: . ‘P-‘."."A.":'.
VS L R —— Days after Day 10
100 200 500

Figure 9: Final model comparison with real data
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We can see that this model is quite a close fit to the actual data. There is the exception of the
knee, which as we discussed was caused due to the complexity of properly including the civil unrest 3
alongside the distancing parameter.

For the initial days of the pandemic the model is quite accurate as well.

Infected from Day 10

Mumber of infected people per day

100 b i

Days after Day 10

Figure 10: Final Model initial wave

As we can see the only issue is the severity of the epidemic seems undermined, however properly
adjusting the exponential part of dis[t] , would increase the initial aggressiveness of the virus.

As alast fact we should mention that as of the 5t of July 2021 the death toll in Greece was 12716
people. Our model predicted 12496. This is a divergence of 1.7%. The model as it is (not adjusted to
increased tourism of 2021, starting July and not including vaccinated) caps approximately at 12700
deaths by September, due to design limitations.

5.1.5. The Vaccinated Group and expansions on the model

The model we have presented (5.3), is quite an accurate approach to the COVID-19 epidemic.
However, as the process of expounding its final form showed, there are many changes and outside

factors that require special attention. Some of those include:

e  (ivil Unrest and rioting or protests, which work as superspreading events.

3 This includes all acts that go against the measures. From non-compliance to rioting. This is corrective
post script note, in order to ensure that this work is purely scientific and not politically coloured,
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e  Uncontrolled or limited control of people entering the country.

o The introduction of vaccines and new mutations.

We would like to improve our model to better simulate the above issues, however this process requires

a lot of time and resources. We have made however the following observations:

A. All social unrest and disobedience can be simulated with trigonometric or harmonic functions,
in order to simulate peaks and valleys.

B. Tourism influx can have a stochastic parameter to simulate random superspreading events at
airports, tolls, and ports.

C. The vaccines races against mutations, therefore complete immunity is hard to come by, we can
test if the vaccination can be used as a parameter function instead of an additional group, which
would inevitably increase complexity of the system.

5.2. Modelling the epidemic using networks

For the next part of our work, we will compare the results from a dynamical network following the

process described in our dynamical system model.

5.2.1. Model properties

For our comparison between networks and the dynamical system, we will use 3 types of random
networks. The Erdos- Renyi, Basarabi -Albert and small world (Watts -Strogatz) random networks.

They were all set up using commands in the igraph library in R.
We did decide to use the following characteristics:

e There is no influx of new people in the network (either births or tourists) in order to try to
keep the network’s topology stable.

e The network’s topology should remain stable, therefore any person that is isolated, is not
removed, but is inactive, i.e., does not allow viral transference through them, whether they
are infected or carriers.

e The network is not dense, meaning that people interact with 3-4 other people daily. We will
try to keep this as a stable and not interchangeable element.

The biggest problem in the network approach lies in the fact that people are malleable to social
interactions, which means that a person interacts with many people with different frequency. This
would then mean, we must create weighted networks or networks that rewire with preferences, which

would increase the complexity to a level of non-computability.
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For the initial comparison we chose the simplest possible structure for our networks. As we will
see in the next chapter, size and network density play quite an important role when it comes to
calculation time.

One last interesting note is that in our model, since everything happens in steps, we first added
the death step and then the spreading. This might affect the way the network behaves, but we will talk
about it more when we compare the toy models.

5.2.2. Network size and Properties

For the simulations we will make, we used networks with the sizes 100 and 1000 people. The more
populous a network the more it increases the complexity therefore the time and resources required to
solve it. The more the complexity increases the problem tends to a NP problem. This led to us using
smaller size networks. This might be because our algorithm uses a lot of nested functions in order to
keep track of different groups (Isolated, Carriers and Infected) during each step. The algorithm also
makes an ego network for each carrier and slowly spreads the virus. Based on the density of the
networks (low density) the time required differed for each network type depending on their density.
For 50 runs of maximum 730 steps, we approximately had:

Table 3 : required time for each network type

Network Type/ Number 100 1000 10000
of people

Erdos-Renyi ~5hours >168 h >168 h
Barabasi-Albert ~1 hour ~24 hours ~130h
Watts-Strogatz ~30 min ~1 hour ~48 h

As we can see the time required for a complete simulation is extremely demanding for one core and

in order for us to complete it , we should use parallel programming for networks of greater size.

The characteristics of each network are:

e  Watts-Strogatz: dimensions of the starting lattice= 1, the neighborhood within which the
vertices of the lattice will be connected =1 and the rewiring probability =0.1
e FErdos -Renyi: density=0.35

e Barabasi-Albert: mean number of connections=5
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5.2.3. Comparison of toy models

In this section we are going to compare the 100 and 1000 people model for networks and the
adjusted ones from the dynamical system.
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Figure 12: Comparison for population of 100 people
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As we can see the results differ a lot. For both cases the Watts-Strogatz model fails to predict a
second wave at all. The Barabasi-Albert model for 1000 people comes closer to the predicted behaviour
during the second wave but is still quite off.

The reason the results between networks and dynamical system might be a result of the following

reasons:

1. The population plays a pivotal role in determining the behaviour of the epidemic. A severe
lock down or social isolation measures.

2. The social distancing acts in a way that disturbs the interhuman relationships, meaning that
a network with static topology (non-interchangeable vertices) is not well equipped to
simulate the dynamical model.

3. Maybe the number of realizations is small, since they are uneven in size and there might be

the need to adjust our sampling methods.

5.3. Application of Entropy

As was mentioned in part 5.1, there is a way to study the evolution of an epidemic and whether
or not it reaches an end, or the virus remains active in the population. This is done usually by studying
the system’s stability.

5.3.1. System Stability and Epidemiology

The stability of a system as we have seen, is a useful tool that allows us to predict whether a
dynamic process reaches a condition where its components remain stable’. For an epidemic a desired
outcome is a stable point **where all groups except the recovered (or susceptibles in case of
reintroduction) are equal to zero. A saddle point is worrisome, since any introduction of carriers would

lead to a new epidemic cycle.

For the initial modeling (Simple SEIR model, we did study the system’s stability. The results
were not pleasing. We found 2 points in the 4-dimensional space. The first was the case that the infected
person was healed during the first step, and the number of infected started to decline so fast (i<l) , so
that almost all of population was unaffected. This version was a recuring result in the network
simulations. The second solution is a perpetual cycle of epidemic, where an unstable point is defined as
by the existence of infected and carriers. Such a grim result could mean that the new COVID cannot

be removed from the human population.

Then we tried to solve the SEIDR-S system with static parameters. In a similar manner, the first
two solutions mirrored the previous results (with unstable solution for the case of everyone returning
to susceptibles), while a new third solution included negative population sizes, something that has no

meaning.
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5.3.2. Entropy comparison between networks and dynamical systems

We have decided to use a concept from statistical physics to try to predict whether the system
reaches an eventual equilibrium point where the epidemic no longer persists, at least without invading

carriers.

As we have seen, there are many types of entropy. We will use the classic Boltzmann- Gibbs

entropy, however other types of entropy could have equally interesting results.

For this case we tried to make the following ansatz, each group of people is a different state where
their total is a ground state. The entropy of each state is equal to P, = log(%") , where py, is the group

we study. The percentage of people in each state shows that there is a dynamic process of diffusion. The
system will reach its equilibrium when all people belong to one state, or the entropy stabilizes to one
non-zero value. Those two states have the following properties:

e All people are in the same state means a system entropy equal to zero. This would mean that
the system cannot evolve further from that condition, as all the people are in a final
condition. The only group for which this is possible, is if everyone is in the susceptible group,
since leaving this group is density based.

e The entropy is a stable non-zero point if all groups have at least some people in them. This
would mean a permanent of the epidemic going through cycles of high and low spreading

rates.

The way the system is modeled, we have only one possible equilibrium point which is covid-free
for this system, when everyone is back at the susceptible group. This cannot tell us about whether that
point is stable or unstable, however it can tell us if the epidemic cycle ends. If we have a system without
mass transference (ie new viral content entering the system through tourists or immigration) then we
may have new cycles begin after the entropy reaches 0. Every time the total entropy of the system
reaches the stable point (population entropy P,y = 0) a cycle ends.
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As we see in the above figures, the entropy of the epidemic reaches zero for the first time around
day 790 (approximately 2 years after the epidemic started, and reaches its first zero, close to day 1150.
This would mean that based on our current epidemiological model, the COVID-19 epidemic (not taking
vaccination under consideration) has a lifetime of ~3 and a half years.

After day 1150, we see that the systems entropy is hard to define. This is because the population
of carriers and infected is only some decimals below 0.1, therefore a small but not strong enough to start

the epidemic again. In a discreet system, this numerical problem would not be present.
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Conclusions

Overall our model works as a flexible tool which if localized properly for the country-area of

interest can yield incredible results. The model can be adjusted as to:

e How quickly the virus mutates.

e The effect that seasons and internal migration have to the spreading rate.

e The results severity of social distancing, civil unrest and prevention measures have.
e The size of the population and yearly fluctuations of it.

e Tourism and immigration effects, when carriers cross the borders.

We could expand the model with varying degrees of restriction as people enter the main
population, add vaccinated group either as a group or as a dampening factor.

When it comes to the use of networks, the problem requires refinement of the algorithm used in
order to reduce calculation time. Parallel programming might offer a little help, however the problem
tends to be a NP problem, therefore any position cannot be supported until new versions of the

algorithm are used. This means that models using networks in this scale are inconclusive.

For smaller size networks the results between networks and dynamical systems differ greatly.
This is due to the fact that the distancing parameter was not destructive to the vertices and rewiring
was not allowed (for Erdos-Renyi and Barabasi-Albert type of networks). The small world network did
not adjust well to the social distancing, since although it rewired often, the number of links did not
adjust to low social “mobility”. It appears that we need to make more dynamic the vertices for a long-
term simulation, however this would add to the complexity of the problem. We do not have data for
smaller groups of people, therefore we cannot know whether the dynamic system or the networks
provide more realistic data, however we make guesses about ways to improve the networks algorithms

for future use.

Finally entropy appears to be a concept which could if properly prepared and studied across
many models, provide an alternative to study stability in dynamical systems with time dependent

parameters.

As a closing note, I would like to mention that all ideas about improving the model and the
network equivalent, as well as the use of entropy as a tool for dynamical system diagnostics will be
worked further by our team and any assistance would be welcome.
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Appendices

Appendix A: Mathematica Model

The models used in the Wolfram Mathematica environment for simulating the epidemic.
Comments will be highlighted in Green. Any piece of code can be copied and pasted into a Mathematica
notebook (.nb , .m ) and reproduce our results. In case of errors or results that make no sense, either

check version sensibility or contact us at vvachtse@physics.auth.gr .

Appendix A.1. : Mathematica Model #1

(*Greece Pops *)
t0 = 14;

NO 10816286; (*total population (2011)%*)

P = ((86440/tmax) + 79.554)/
NO; (*Births (2018) and legal immigration (2011)*)

m = 120297/ (NO*tmax); (*deaths (2018) *)

(*COVID-19 characteristics (world statistic\[Rule] we expect normal
\distribution due to the central limitation theorem *)

tsic = 30; (*coronavirus is present in Greece for 30 days as of today
\28/3/202%)

(*for our first estimate we will consider that the attack rate for
\all 3 types of infectants is the same *)

a = (0.01); (*mortality : https://coronavirus.jhu.edu/map.html \

28-03-2020) *)

(*At 28-03-2020 we had 966 confirmed cases, we suppose that there \

were at least 2000 sick people, either infected or asymptomatic*)

sig = 2000/60000; (*carriers who fall sick*)

43



Vasileios Vachtsevanos

bl = (2000/tsic); (* carrier spreading rate*) (*cases for the first
month*)

b2 = bl; (* infected spreading rate¥*)

k2 =1 - a; (*cured infected *)
kl = (1/3); (* cured carriers*) (* From sars *)
T=0.01;

(* Initial Conditions¥*)

i0 = 1;
e0 = 0;
sO = NO - 10 - e0;

tmax = 365;

ivs = {deql, deqg2, deg3, deqg4, s[l] == s0, e[l] == e0, i[l] == iO0,
r(l] == 0};
sol = NDSolve[{s'[t] == P - m*s[t] - T[t]* (bl*e[t] +
b2*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t]),
e'[t] == -(m + sig + kl) *e[t] +  T[t]l*(bl*elt] +
b2*i[t])*s[t]l/(s[t] + i[t] + e[t] + r[t]),
i'[t] == sig*e[t] - (m + a)*i[t] - k2*i[t],
r'[t] == kl*e[t] + k2*i[t] - m*r[t], s[l] == s0, e[l] == €O,
if[1l] == i0, r[1] == 0}, {slt], elt], il[t], rltl}, {t, 1, tmax}];

RO:=(T[t]* (bl+b2)/ (2*mt+kl+a+k2)) ;
Print["RO ="]

RO/ /N;

Print ["Number of Deaths:"]

Integratela*isol[t], {t,1,tmax}]//N
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Appendix A.2. : Mathematica Model #2

The following model describes a reverse bell distribution for the T parameter, and the parameters
based on the previous model.

(*Greece Pops *)
t0 = 14;

NO

10816286; (*total population (2011)*)
P = ((86440/tmax) + 79.554)/
NO; (*Births (2018) and legal immigration (2011)*)

m = 120297/ (NO*tmax); (*deaths (2018) *)

(*COVID-19 characteristics (world statistic\[Rule] we expect normal
\distribution due to the central limitation theorem *)

tsic = 30; (*coronavirus is present in Greece for 30 days as of today
\28/3/202%)

(*for our first estimate we will consider that the attack rate for
\all 3 types of infectants is the same *)

(*We we will use the upper limit proposed by WHO, 2.5 RO *)

a = (0.01); (*mortality : https://coronavirus.jhu.edu/map.html \

28-03-2020) *)

(*At 28-03-2020 we had 966 confirmed cases, we suppose that there \

were at least 2000 sick people, either infected or asyptomatic*)

sig = 2000/60000; (*carriers who fall sick*)
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b17=" 4 2000/tsic)s (¥ carrier spreading rate*) (*cases for the first
month™)

b2 = bl; (* infected spreading rate¥*)
k2 =1 - a; (*cured infected *)

kl = (1/3); (* cured carriers*) (* From sars *)

(* Our Estimate for the Greek Quarantine \[Rule] 1/4 of cases*)

tquar = 90;

solpdf = Solve[ (220/(Pi*Sqgrt[14 t* (tgquar - t)])) - 0.39 == 1, t];

tl =t /. solpdf[[1]1];

t2 =t /. solpdf[[2]];

T[t 1 := If[t2 > t > tl, (220/(Pi*Sqgrt([l4 (t)*(tquar - t)1)) -
0.39,11 ;

(* Initial Conditions¥*)
i0 = 1;

el

0;
sO = NO - 10 - e0;

tmax = 365;

ivs = {deql, deqg2, deg3, deqg4, s[l] == s0, e[l] == e0, i[l] == iO0,
r[1] == 0};
sol = NDSolve[{s'[t] == P - m*s[t] - T[t]* (bl*e[t] +

b2*1i[t])*s[t]/(s[t] + 1[t] + e[t] + r[t]),

e'[t] == - (m + sig + kl)*e[t] + T[t]l*(bl*e[t] +
b2*i[t])*s[t]l/(s[t] + i[t] + el[t] + r[t]),

i'[t] == sig*e[t] - (m + a)*i[t] - k2*i[t],

r'[t] == kl*e[t] + k2*i[t] - m*r[t], s[l] == s0O0, e[l] == €O,

i[l] == 10, r[1l] == 0}, {s[t], elt]l, 1ilt], rlt]l}, {t, 1, tmax}];
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Appendix A.3. : Mathematica Model #3

(*Greece Pops *)
t0 = 14;

NO

10816286; (*total population (2011)%*)
P = ((86440/tmax) + 79.554)/
NO; (*Births (2018) and legal immigration (2011)¥*)

m = 120297/ (NO*tmax); (*deaths (2018) *)

(*COVID-19 characteristics (world statistic\[Rule] we expect normal

\
distribution due to the central limitation theorem *)
tsic = 30;
a = (0.01); (*mortality 28-03-2020)%*)
(*At 28-03-2020 we had 966 confirmed cases, we suppose that there \
were at least 2000 sick people, either infected or asyptomatic*)
sig = 1/28; (*carriers who fall sick*) (**)
bl = 966/tsic; (* carrier spreading rate*) (*cases for the first
month*)

b2 = bl; (* infected spreading rate*)

k2 =1 - a; (*cured infected *)

kl = (1/3); (* cured carriers*) (* From sars *)
tquar = 60; (*quarantine/isolation duration¥)
rec = 1/t0;

qu = 9/10; (*quarantined patients¥*)
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ttg = 1/tquar;

dis = 9/10; (*social distancing¥*)

(* Our Estimate for the Greek Quarantine \[Rule] 1/4 of cases*)

T = 0.025;
i0 = 1;
e0 = 0;
sO = 0;

sO = NO - 10 - e0;

tmax = 365;

sol = NDSolve[{s'[t] ==
P - m*s[t] -

T*(bl*e[t] + b2*i[t])*s[t]/(s[t] + 1i[t] + e[t] + r[t] + d[t])

dis*s[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) + ttg*d[t],
e'[t] == -(m + sig + kl)*elt] +

T*(bl*e[t] + b2*i[t])*s[t]/(s[t] + 1[t] + e[t] + xr[t] + d[t])

dis*e[t]*i[t]/(s[t] + 1i[t] + e[t] + r[t] + 4d[t]),

i'[t] == sig*elt] - (m + a)*il[t] - k2*i[t] - qu*i[t],
r'[t] == kl*e[t] + k2*i[t] - m*r[t],
ar[t] ==

{slt],
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RO = (T*(bl + b2)/(2 m + sig + k1 + dis + 1 + qu));
Print ["RO ="]

RO // N

Print ["Number of Deaths:"]

Integratel[a*isol[t], {t, 1, tmax}] // N

Appendix A.4. : Mathematica Model #4

(*Greece Pops *)

t0 = 14; (*Life cyrcle of COVID19%*)

NO

10816286; (*total population (2011)*)
P = ((86440/tmax) + 79.554)/
NO; (*Births (2018) and legal immigration (2011)¥*)

m = 120297/ (NO*tmax); (*deaths (2018) *)

(*COVID-19 characteristics (world statistic\[Rule] we expect normal
\distribution due to the central limitation theorem *)

tsic = 30; (*coronavitus is present in Greece for 30 days as of today
\28/3/202%)

(*for our first estimate we will consider that the attack rate for
\all 3 types of infectants is the same *)

(*We we will use the upper limit proposed by WHO, 2.5 RO *)

a = (0.01); (*mortality : https://coronavirus.jhu.edu/map.html \

28-03-2020) *)

(*At 28-03-2020 we had 966 confirmed cases, we suppose that there \

were at least 2000 sick people, either infected or asyptomatic*)
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sig = 1/t0; (*carriers who fall sick*) (*one per day for a 14 day \
cycle¥)
bl = 2.415; (* carrier spreading rate*) (*for the period that the

daily cases where rising, the linear approximation had the inclination
a=2.415%)

b2 = 2.415/5; (* infected spreading rate*) (* infected spreading rate
is the 1/5 of the carriers, due to people avoiding them ,on the basis
of their symptoms¥*)

k2 = 1 - a; (*cured infected *)

k1 1/3; (* based on SARS models*)
tquar = 60; (*quarantine/isolation/social distancing duration*)

rec = 1/t0; (*each individual is considered susceptible after one
life cycle of COVID¥*)

qu = 9.5/10; (*quarantined patients*)

ttg = 1/tquar; (* one person per tquar days returns to the
susceptibles team*)

dis = 1000; (*social distancing [Rule] 1000 people per percentage of
sick people in the whole populace*)

(* Our estimate of the safety parameter due to prevention from the
use of masks, gloves etc *)

T = 0.30;

(* initial conditions¥*)

i0 = 10;
e0 = 0;
sO = 0;

sO = NO - 10 - e0;
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(*one year™)

tmax = 365;

sol = NDSolve[{s'[t] ==
P - m*s[t] -

T* (bl*e[t] + b2*i[t])*s[t]/(s[t] + 1i[t] + e[t] + r[t] + d[t])
- dis*s[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) + rec*r[t] + ttg*d[t],

t] == —-(m + k1 + sig)*el[t] + T*(bl*e[t] + b2*i[t])*s[t]/(s[t]
e[t] + r[t] + d[t]) - dis*e[t]l*i[t]/(s[t] + 1i[t] + e[t] +

i'[t] == sig*e[t] - (m + a)*i[t] - k2*i[t] - qu*i[t],

r'[t] == kl*e[t] + k2*i[t] - m*r[t] - rec*r[t],

d'[t] == dis*(e[t] + s[t])*i[t]/(s[t] + i[t] + elt] + rlt] +
dft]) + qu*ift] - ttg*dlt],

s[l] == s0, e[l] == e0, 1i[1] == i0, r[l] == 0, d[1l] == 0},

{slt],

el[t], i[t], r[t], d[tl}, {t, 1, 500}, MaxStepSize -> 1];

(*spreading rate without prevention¥*)
RO = ((bl + b2)/(2 m + sig + 1 + k1));
Print ["RO ="]

RO // N

(*spreading rate with prevention*)
RT = (T (bl + b2)/(2 m + sig + 1 + kl1));
Print ["RT ="]

RT // N

Print ["Number of Deaths (Yearly) :"]

Integratela*isol([t], {t, 1, tmax}] // N
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Appendix A.5. : Mathematica Model #5

(*Greece Pops *)
t0 = 14; (*Life cyrcle of COVID19¥*)

NO 10816286; (*total population (2011)%*)

P = ((86440/tmax) + 79.554)/
NO; (*Births (2018) and legal immigration (2011)*)
m = 120297/ (NO*tmax); (*deaths (2018) *)

(*COVID-19 characteristics (world statistic\[Rule] we expect normal
dis[t]ltribution due to the central limitation theorem *)

tsic = 30
a = (0.01);
sig[t ] :=

1/t0 *(1 + t/120); (*carriers who fall sick*) (*one per day for a
14 day cycle*)

bl = 2.415;
b2 = 2.415/5 5;
k2 = 1 - a; (*cured infected *)

k1l = 1/3; (* based on SARS models¥*)

tquar = 60; (*quarantine/isolation/social dis[t]tancing duration*)

rec = 1/t0; (*each individual is considered susceptible after on
life cycle od COVID¥)

qu = 9.5/10; (*quarantined patients*)

ttg = 1/tquar;(* one person per tgquar days returns to the
susceptibles team*)
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dis{t 1 := 1000 (Abs[ (175 - t)/175] Abs[(1 - (t/300))1); (*social
dis[t]tancing \[Rule] 1000 people per percentage of sick people in the
whole populace*)

T = 0.30;

(* Tourist influx parameter*)

tt[t ] := Abs[Sin[Pi* (t/365)]1];

(*Seasonality>*)

tplt 1 := (1L + (1/2)*Abs[Sin[Pi*(t/175)11);

sol = NDSolve[{s'[t] == P + 1000*tt[t] - m*s[t] -
*(bl*tp[t]l*e[t] + b2*tp[t]l*i[t])*s[t]/(s[t] + 1[t] + e[t] + r[t] + d[t])
- dis[t]*s[t]l*1i[t]/(s[t] + i[t] + el [t]) + rec*r[t] +
_I_
)

t] + r[t] + d
ttg*d[t],e' [t] == 50*tt[t] - (m + k1l + siglt]) *elt]
*(bl*tp(tl*e[t] + b2*tp[tl*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t] +d[t]

- dis[tl*e[t]*1[t]/(s[t] + 4ilt] + elt] + r[t] + d[t]),i'[t] ==
sig[t]l*e[t] - (m + a)*i[t] - k2*1i[t] - qu*ift],r'[t] == kl*e[t] + k2*i[t]
- m*r[t] - rec*r[t], d'[t] == dis[t]l*(e[t] + s[ ]) i[t]/(s[t] + i[t] +
e[t] + r[t] + d[t]) + gqu*i[t] - ttg*d[t],s[l] == s0, e[l] == e0, i[1l]
== 10, r[l] == 0, d[1l] == 0}, {sltl, elt], i[t], rlt]l, d[tl}, {t, 1,
500}, MaxStepSize -> 1];

(*spreading rate without prevention¥*)

RO = ((bl + b2)/(2 m + sig[t] + 1 + k1))

Print ["RO ="]

RO // N

(*spreading rate with prevention*)

RT = (T (bl + b2)/(2 m + sig[t] + 1 + k1));

Print ["RT ="]

RT // N

Print ["Number of Deaths (Yearly) :"]

Integratel[a*isol[t], {t, 1, 365}] // N
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Appendix A.6. : Mathematica Model #6

(*Greece Pops *)
t0 = 14; (*Life cyrcle of COVID19¥*)
NO = 10816286; (*total population (2011)*)

P = ((86440/tmax) + 79.554) /NO; (*Births (2018) and legal
immigration (2011)*)

m = 120297/ (NO*tmax); (*deaths (2018) *)

tsic = 30;

atr[t ] 1= 2% ((1 + (t/1460))/100); (*mortality
https://coronavirus.jhu.edu/map.html \28-03-2020) *)

sig[t ] := 1/t0 *(1 + t/120); (*carriers who fall sick*) (*one per
day for a 14 day \cycle¥*)

bl 2.415

b2

2.415/ 5

k2 =1 - atr[t]; (*cured infected *)

kl = 1/3; (* based on SARS models*)
tquar = 60; (*quarantine/isolation/social dis[t]tancing duration¥*)
rec = 1/t0; (*each individual is considered susceptible after on

life \cycle of COVID¥*)
qu = 9.5/10; (*quarantined patients*)

ttg = 1/tquar; (* one person per tqguar days returns to the
susceptibles *)

dis[t ] := 1000 (Abs[(175 - t)/175] Abs[(1 - (t/300))1);

(*social dis[t]ltancing \[Rule] 1000 people per percentage of sick
people in the whole populace¥*)
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T ==0.307

(* Tourist influx parameter*)

tt[t ] := Abs[Sin[Pi* (t/365)]1];

(*Seasonality*)
tplt ] := (1 + (2/5)*Sin[Pi* ((t - 14)/(160))1)*(1 +

Cos[Pi* ((t + 35)/(222))1);

(* initial conditions¥*)

i0 = 10;
e0 = 0;
sO = 0;
sO = NO - 10 - eO0;

(*one year™)

tmax = 365;

sol = NDSolve[{s'[t] ==
P + 1000*tt[t] - m*s[t] -
T* (bl*tp[t]l*e[t] + b2*tp[t]*i[t])*
s[t]l/(slt] + 1i[t] + elt] + r[t] + d[t]) -

dis[t]*s[t]l*1[t]/ (s[t] + 1[t] + e[t] + r[t] + d[t]) + rec*r[t]
+  ttg*dlt],

e'[t] ==

50%tt[t] - (m + k1 + sig[t])*e[t] +
T* (bl*tp[t]*e[t] + b2*tp[t]*i[t])*
s[t]l/(s[t] + i[t] + elt] + r[t] + d[t]) -
dis[tl*el[t]*i[t]/(s[t] + il[t] + e[t] + r[t] + d[t]),

i'[t] == sigltl*el[t] - m*i[t] - atr[t]*i[t] - k2*i[t] - qu*i[t],
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r'"[t] == kl*e[t] + k2*i[t] - m*r[t] - rec*r[t],

s[1] == s0, e[l] == e0, i[1] == 10, r[l] == O, d[l] == 0},
{slt],

el[t], i[t], r[t], dltl}, {t, 1, 5000}, MaxSteps —-> Infinity];

(*spreading rate without prevention¥*)

RO = ((bl + b2)/(2 m + sig[t] + 1 + k1));
Print ["RO ="]

RO // N

(*spreading rate with prevention*)

ol
=3
I

(T (bl + b2)/(2 m + sig[t] + 1 + k1));

Print ["Number of Deaths (Yearly):"]

Integratelatr[t]*isol[t], {t, 1, 365}] // N
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Appendix A.7. : Mathematica Model #7

(*Greece Pops *)

t0 = 7; (*Life cyrcle of COVID19¥*)
NO = 10816286;

P = ((86440/tmax) + 79.554)/ NO;
m = 120297/ (NO*tmax) ;

tsic = 30;

atr[t ] := (0.215) ((1 + (t/1825))/ 10);

siglt 1 :=1/t0 *(1 + t/120);

bl = 2.415;

b2 = 2.415/5;

k2 =1 - atr[t];
k1l = 1/3;

tquar = 60;

rec = 1/t0;

qu = 9.5/10;

ttglt ] := (1/tquar) + ((Exp[(t - 210)/601))/(10%9) ;
dis[t_] := 1000 (Abs[ Cos[(t/900)*2* Pi]l*(1/(Exp[(t - 275)/30] +
T = 0.30;

(* Tourist influx parameter*)

tt(t ] := Abs[Sin[Pi* (t/365)]1]1*(1/(Expl[(t - 450)/15] + 1));
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(*Seasonality™*)

mt[t ] := Exp[t/2500]; (* Mutation®)

tplt ] = mt[t]*(1 + Cos[2*Pi*((t + 106)/(455))1);
i0 = 1;

e0 = 0;

sO = 0;

sO = NO - 10 - e0;

tmax = 365;

sol = NDSolve[{s'[t] ==
P + 1000*tt[t] - m*s[t] -
T* (bl*tp[t]l*e[t] + b2*tp[t]*i[t])*
s[tl/(slt] + 1i[t] + elt] + r[t] + d[t]) -

dis[t]*s[t]l*1[t]/ (s[t] + 1[t] + e[t] + r[t] + d[t]) + rec*r[t]

+
ttgltl*dlt],
e'[t] ==
50*tt[t] - (m + k1 + sig[t])*el[t] +
T* (bl*tp[t]*e[t] + b2*tp[t]*i[t])*
s[t]l/(slt] + i[t] + e[t] + r[t] + d[t]) -
disft]*e[t]*i[t]/(s[t] + 1[t] + elt] + rl[t] + d[t]),
i'[t] == sigltl*elt] - m*i[t] - atr[t]*i[t] - k2*i[t] - qu*i[t],
r'[t] == kl*e[t] + k2*i[t] - m*r[t] - rec*r[t],
d'[t] ==
dis[t]*(e[t] + s[t])*i[t]/(s[t] + 1[t] + elt] + rl[t] + dlt]) +
qu*i[t] - ttgltl*d[t],
s[1] == s0, e[l] == e0, i[l] == i0, r[l] == 0, d[1l] == 0},
{slt],

el[t], i[t], r[t]l, dltl}, {t, 1, 1000}, MaxSteps —-> Infinity];
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Appendix B: R Code/ Model

library(stats)

library (igraph)

A novel approach to the spreading of COVID-19 with the use of networks.

#network characteristics

netsize=1000 #network

iin=1 #infected cases

size

at the start

tsteps=730 #2 years approximately

runs=5 # number of simulations

#We can use barabasi.game or erdos.renyi.game for different network,

but for

#this instance we consider that the small world approach works better

for a real

#society. We will not take into consideration the dynamics of social

interaction
# where new people mee

#We set new attributes
and later,

#their isolation
#dead V(netg) will be
#1.

#Here we use a barabas

netg <- barabasi.game (netsize,

#2.Create the attributes required,

set vertex attr (netgqg,
set vertex attr (netgqg,
set vertex attr (netgqg,

set vertex attr (netgqg,

#3.

V(netg) $SInfected=FALSE

t or people stop interacting

that beter describe the Infected of the people

removed, based on the attribute "alive"

Create the network based on the chosen specs.

i-albert

m = 5, directed=FALSE)

Infected, Alive and Isolation

"Infected", index = V(netg), value = TRUE)

"Carrier", index = V(netg), value = TRUE)

"Alive", index = V(netg), value = TRUE)

"Isolation", index = V(netg), value = TRUE)

Initialise the attributes accordingly
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V (netqg) $Carrier=FALSE
V(netg) $SA1ive=TRUE
V(netg) $SIsolation=FALSE

#The next step is to create functions that will make the dynamic
process

#of simulating the spread of the virus

netmulation<-function (netg,netsize,iin, runs, tsteps) {

linf<- c{()
lcaf<- c()
lisf<- c()

for (runt in l:runs) {
V(netg) $Infected=FALSE
V (netqg) $Carrier=FALSE
V (netg) SAlive=TRUE
V(netg) $SIsolation=FALSE
#Initialization
nl<-sample (l:netsize,iin)
V(netg) $Infected[nl]<-TRUE
V(netg) $Carrier [nl]<-TRUE
lin<-c ()
lca<-c ()
lis<-c ()
for (t in 1l:tsteps) {
#Probabilities

pl<—(1 + (2/5)*sinpi (((t - 14)/134)))* (1 + cospi((t + 14)/168
))/20 #Infection rate

pll<-=(1 + (2/5)*sinpi (((t - 14)/134)))*(1 + cospi((t + 14)/168
))/4 #Infection rate for carriers

p2<-1/14 #Healing factor

p22<-1/14 #Healing factor for carriers
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p3<-0.0013* ((1 + (t/1460))/100) #Mortality

p4<-1/3 #Isolation

p4l<-1/4#Getting out of the isolation

p5<-1/3 #Carrier falling sick

lister<-c ()
lister2<-c{()

lister3<-c ()

for (i in l:netsize) {
if (V(netg)$Alive[1]==TRUE) {
#List of infected people
if (V(netg) $Carrier[1i]==TRUE) {
lister2<-append(lister2,i)
if (V(netg)$Infected[i]==TRUE)

lister<-append(lister, i)

#Isolated People

for (iii in l:netsize) {

if (V(netg)$Isolation[iii]==TRUE)

lister3<-append(lister3,iii)
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egl<-ego (netg,order=1,lister) #First neigbhours for
infected person

eg2<-ego (netg,order=1,1lister2) #First neigbhours for
carrier person

11<- length(egl) #Number of Infected per step

111<- length(eg2) #Number of Carriers per step

12<- length(lister)

122<- length(lister2)

13<-length(lister3) #Number of Isolated people

if(122<1) {

break

#Death Process
for (n in 1:11) {
if(runif (1,0,1)<p3)
V (netg) SAlive [i]==FALSE }

#Healing Process

for (k in 1:122) {
if (V(netg)S$Infected[lister2[k]]==TRUE) {
if(runif(1,0,1)<p2) {

V(netg) $SCarrier[lister2[k] ]=FALSE

each

each
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V(netg) $Infected[lister2[k]]=FALSE
H}
else
if (runif(1,0,1)<p22) {

V(netg) $Carrier[lister2[k]]=FALSE

#Carrier fallin sick

for (jj in 1:122) {#Check if person is sick or not
counter2<-lister2[jj]

if (V(netg) $Infected[counter2]==FALSE) {# If not isolated the
spread of the disease goes on as normal

if (V(netg) $SCarrier[counter2]==TRUE) {
if(runif(1,0,1)<pb5) {
V (netg) SInfected[counter2]=TRUE

FH)

#Infection Spreading

for (7 in 1:122) {#Check if person is isolated or not
counterl<-lister2[j]

if (V(netg)$Isolation[counterl]==FALSE) {# If not 1isolated
the spread of the disease goes on as normal

if (V(netg) $Carrier [counter2]==TRUE) {

if (V(netg)$Infected[counterl]==TRUE) {#1f a person 1is
infected

egon net<-eg2[[j]]

le<-length (egon net)
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for (jJ1 in 1l:1le) {
if(runif(1,0,1)<pl) {
V(netg) $Carrier[egon net[j1l]]=TRUE
b1}
else { #From Carriers
egon _net<-eg2[[]J]]
le<-length (egon net)
for (31 in 1l:1le) {
if(runif(1,0,1)<pll) {
V (netg) $Carrier[egon net[jl]]=TRUE
11}
1}

#Isolation Process

for (ii in l:netsize) {
if(runif (1,0,1)<p4)

V (netg) $Isolation[ii]=TRUE

for (jk in 1:13) {
if(runif(1,0,1)<p4l)

V(netg) $SIsolation[lister3[jk]]=FALSE

lin<-append(lin,11)

1lin2<-1ist(1lin)
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lca<-append(lca,111)

lca2<-1list (lca)

lis<-append(lis,13)

lis2<-list (lis)

linf<- append(linf,1lin2)
lcaf<- append(lcaf,lca?2)

lisf<- append(lisf,1lis2)

linf, "Carriers"

Results <- list ("Infected"
lcaf,"Isolated"=1isf)

return (Results)

}

#Execution

ttl<-netmulation(netg,netsize,iin, runs,tsteps)

Ison<-as.data.frame.vector (ttl$SInfected)

Rson<-as.data.frame.vector (ttl$SInfected)

Isson<-as.data.frame.vector (ttl$Isolated)

sink ("Results Infected07.csv",append = F)
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Ison

sink ()

sink ("Results Carriers(07.csv", append
Rson

sink ()

sink ("Results Isolated07.csv", append
Isson

sink ()
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