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Abstract 
 

 

The COVID-19 epidemic has troubled both medicinal and STEM personnel for more than one 
year. This epidemic has proven most resilient to medicinal and social measures undertaken worldwide. 
Trying to model this epidemic is an arduous task, both because of the virus’ mutability and due to the 
fact that each government trying different measures with a varying degree of success. In this work, we 
will try to achieve two things. The first one is to create an “umbrella” dynamic system, which can be 
adjusted to make predictions for all cases, while the second is to transfer this model to a mesoscopic 
equivalent, in order to make predictions that fit the specificities of smaller populations more accurately. 
Finally, there will be presented a novel idea for examining whether or not an epidemiological system is 
closed or open, i.e., the epidemic will end or not. 
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Σύνοψη 
 

 

Η επιδημία COVID-19 έχει προβληματίσει ιατρικό και επιστημονικό προσωπικό για 
παραπάνω από ένα έτος . Αυτή η επιδημία αποδείχθηκε πολύ ανθεκτική στα ιατρικά και κοινωνικά 
μέρα πρόληψης που έχουν ληφθεί διεθνώς. Η προσπάθεια να γίνει μοντελοποίηση της επιδημίας 
είναι ένας απαιτητικός άθλος, τόσο λόγω της γρήγορης τάσης ιού να μεταλλάσεται αλλά και του 
γεγονότος ότι κάθε κυβέρνηση παγκοσμίως έχει λάβει διαφορετικά μέτρα , με διαφορετικό βαθμό 
επιτυχίας. Στη παρούσα διατριβή, θα γίνει μια απόπειρα να επιτευχθούν δυο στόχοι. Ο πρώτος είναι 
να σχεδιαστεί ένα δυναμικό σύστημα «πασπαρτού», το οποίο μπορεί να προσαρμοστεί για εκάστοτε 
περίπτωση, ενώ ο δεύτερος είναι η μεταφορά του μοντέλου στο μεσοσκοπικό ανάλογο του, ώστε 
να γίνονται πιο ακριβείς προβλέψεις για περιπτώσεις μικρών πλυθησμών βάση των ιδιαιτεροτήτων 
τους . Τέλος, θα παρουσιαστεί μια νεα ιδέα, η οποία μας επιτρέπει να εξετάζουμε εαν ένα 
επιδημιολογικό σύστημα είναι ανοιχτό ή κλειστό. Αυτό σημαίνει αν προβλέπεται λήξη μιας 
επιδημίας ή όχι 

 

Λέξεις Κλειδιά 
 

COVID-19, Επιδημιολογία, Επιδημιολογικά Δίκτυα, Δυναμικά Συστήματα, Πολυπλοκότητα 
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Summary in Greek (Περίληψη) 
 

Στη παρούσα εργασία θα επιχειρήσουμε να μοντελοποιήσουμε την επιδημία COVID-19 που έχει 
τεράστιο κόστος σε ανθρώπινες ζωές , από το Δεκέμβρη του 2019 εώς και σήμερα (Αύγουστος 2021). Με 
τη χρήση στοιχειώδων γνώσεων θεωρίας δικτύων, δυναμικών συστημάτων και στατιστικής θα 
προσπαθήσουμε να μοντελοποιήσουμε την επιδημία με τη χρήση εργαλείων που μέχρι πρόσφατα δεν 
είχαν εφαρμοστεί με το τρόπο που θα παρουσιάσουμε ή δεν είχαν εφαρμοστεί καθόλου. 

Το πρώτο κεφάλαιο μας προσφέρει μια συνοπτική ιστορική διαδρομή μέσα από την 
επιδημιολογία, τόσο τη μαθηματικοποιημένη και φορμαλισμένη εκδοχή της , αλλά και την ερευνητική 
ιατρική σκοπιά. Εξοικειωνόμαστε με τις τεχνικές της επιδημιολογίας και το τρόπο που 
πραγματοποιούνται έρευνες πάνω στο αντικείμενο. 

Το δευτερο κεφάλαιο είναι μια συμπυκνωμένη ανάλυση των βασικ΄ν ενοιών των δυναμικών 
συστημάτων και των ιδιοτήτων τους που θα μας απασχολήσουν κατά την υπόλοιπη εργασία. 

Το τρίτο κεφάλαιο είναι ομοίως με το δεύτερο, μια συμπυκνωμένη εισαγωγή στα δίκτυα και 
περιγράφει κάποια δίκτυα που θα χρειαστούμε αργότερα στη μελέτη μας. 

Το τέταρτο κεφάλαιο είναι μια συνοπτική περιγραφική αναφορά στην έννοια της εντροπίας και 
κάποιες χρήσεις της, για να διαχωρίσει την εντροπία που ήδη μελετάτε από το τρόπου θα την 
εφαρμόσουμε εμείς. 

Το πέμπτο κεφάλαιο είναι μια εις βάθος ανάλυση της μεθοδολογίας μας . Πως σχεδιάσαμε το 
σύστημα βασιζόμενοι μονάχα στις βασικές μαθηματικές αρχές και σταδιακά το εμπλουτίσαμε με τη 
χρήση υπάρχωντων γνώσεων στο αντικείμενο, πραγματικών δεδομένων αλλά και με προτωτυπες και 
ασυνήθιστες λύσεις στα προβλήματα που εμφανίστηκαν. Ολο το πρώτο μέρος του κεφαλαίου ασχολείται 
αποκλειστικά με τη διαδικασία αυτή, την παρουσίαση των ευρυμλατων κάθε μεθόδου και αξιολόγηση 
τους. Τέλος αναφέρονται τρόποι βελτίωσης του ίδιου του μοντέλου, μιας και η επιδημιολογία είναι 
δυναμική και πρέπει να προσαρμόζεται στο περιβάλλον. 

Το δέυτερο μέρος του πέμπτου κεφαλαίου είναι η εφαρμογή του δυναμικού συστήματος  σε 3 
διαφορετικά αρχετυπικά δίκτυα. Συγηρίνονται τα αποτελέσματα αυτά με τα αποτλέσματα ενός toy 
model του τελικού μοντέλου από το 5.1. και αξιολογούνται τα αποτελέσματα. Πρατηρούμε πως το 
μέγεθος του δικτύου παίζει καθοριστικό ρόλο στη μελέτη, μιας και η μελέτη με τη χρήση προσομοιώσεων 
έχει διαφορετικούς χρόνους ολοκλήρωσης. Στο τέλος του αναλύουμε μερικούς λόγους που οδηγολύν 
στην απόκλιση των αποτελεσμάτων. 

Το τρίτο και τελευταίο μέρος του πέμπτου κεφαλαίου είναι αρχικά μια συζήτηση για την χρήση 
διαγνωστικών μεθόδων ου μας επιτρέπουν να βρούμε εαν ένα επιδημιολογικό σύστημα θα οδηγηθεί σε 
μια κατάσταση ηρεμίας ή όχι, καθώς επίσης πως ο ρυθμός μόλυνσης είναι αναξιόπιστος για συστήμα 
περίπλοκα όπως το δικό μας. Προτείνουμε μια νεα χρήση της εντροπίας ως διαγνωστικό εργαλείο για το 
ευρύτερο σύνολο των επιδημιολογικών μοντέλων, μιας και εξαρτάται μόνο από τα αποτελέσματα της 
λύσης του συστήματος (ή δικτύου) που έχουμε αναλύσει. Αυτή η χρήση της εντροπίας μπορεί να 
βοηθήσει να βρεθεί αν υπάρχει κάποιο τέλος στην επιδημία ή όχι. 
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Στο τέλος της εργασίας υπάρχει μια σύνοψη των αποτελεσμάτων μας, αναφορές και μερικοί από 
τους κώσικες μας , ώστε να μπορούν να επαναλγφθούν τα αποτελέσματα μας. 
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Purpose 
 

The purpose of this dissertation is to design a mathematical model which has high predictive 
capabilities and is easily adjustable to any specific case of an epidemic similar to the COVID-19 
pandemic, that currently has engulfed the world. This means that we have to create a flexible model of 
equations that can be adjusted accordingly.  

We are also going to expand the model to a network equivalent, in order to simulate more 
intricate cases. The pandemic of COVID-19 has cost a lot of lives and resources to all the countries 
around the globe and the humanitarian efforts were never enough. Any classical predictive tool, based 
only on the available statistical data was not very successful at helping governments prevent the spread 
of the disease.  

The final step of this work is to try to find a tool that will help us predict whether or not the 
disease reaches an end or if the virus is here to stay. This is tricky for a virus that mutates this quickly, 
therefore a proper tool would solve the problem. 
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1. History of Epidemiology 
 

Epidemiology through the lens of mathematics can be traced back to Daniel Bernoulli and 
d’Alambert1. Bernoulli was curious about how effective the process of inoculation was, when used to 
fight smallpox. In order to model it properly he created a set of equations that describe the survival of 
an individual from a sickness. The model is one of two populations, the susceptible S and the immune 
I. One susceptible that lives long enough is transferred to the group I. The age of a person is one of the 
two variables that affect the evolution of the system. Both groups have a mortality rate 𝜇(𝛼)- where 
α the age of a person- that is independent of the disease that is studied, and the susceptible group has 
an additional parameter 𝜆(𝛼) that is the force of infection. The transition from susceptible to immune   
is based on a probability 𝑤(𝛼) which is found from the equation: 

(1.1)         
𝑑𝑤

𝑑𝑎
= 𝑠(𝛼)𝜆(𝛼)𝑢(𝛼) − 𝜇(𝛼)𝑤 

 

𝑢(𝛼) is the probability that a newborn individual is alive and susceptible at the age α.  

 

This model was highly opposed by d’Alambert, who published a critique to Bernoulli’s model 
before it was even officially published by the royal academy of France, in 1760. His model was quite 
different than Bernoulli’s. He approached the problem using function analysis. Like Bernoulli he also 
modeled his functions based on the age of the individual. He is considering that the death rate for each 
disease, event or natural causes can be deduced as a different function, and with a formula similar to 
signal theory derives the form of the mortality rates. 

However, those models are too general and complex. In the early 20th century two English 
colonial officers, a physician and a mathematician2, tried to model the spreading of an infectious disease 
at a local population. Their work was later adapted and formalized by Kermack and McKendrick. They 
studied the spread of an infectious disease by separating the populace into susceptible and infected. 
They then expanded on their model, which like Bernoulli’s and d’Alambert’s , was dependent on the 
age of each individual . However in this model, integrating the equations we can have a set of equations 
that are only time dependent and the parameters (mortality rate, recovery rate, etc) are a real number. 

This first model was a simple SIS model, in which a person of age α, had a possibility to become infected 
by the disease rampant. The individual was then transferred in the infected group from where he would 
either die or be cured and return to the main populace. The general mortality rate and birth rate could 
also be taken into account in order to be able to more accurately find the expected number of deaths 
caused by the disease. However , being age specific would mean that for each group, a number of 
subgroups equal to the age existed, which would mean that instead of a 2x2 system, we would be faced 
with a 2*n x 2*n system of equations. For that purpose, modern epidemiology avoids modeling age 
specifically and prefers the macroscopic approach.  
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1.1. Non Mathematical Epidemiology 
 

1.1.1. John Snow, the father of epidemiology 

In Victorian England , there was the first case of pathological and investigative research about 
the source and transmission of a disease3.  During that era, London was plagued by cholera outbreaks. 
Some prominent physicians of that time supported the theory that “miasma” – a form of bad air was 
behind the epidemic. During this period, the germ theory of disease had not yet been developed, 
therefore a new way to study the source of this disease should be found. With the help of local 
authorities, John Snow managed to map the household inflicted by the disease and time stamp them. 
He then found out that the common link between the houses was the fresh water source, that they 
shared, in the form of a public water pump. Using statistics and appropriate sampling techniques, John 
Snow made it clear that water quality and cholera were connected. 

The idea of mapping and tracing the spread of an epidemic disease (whether viral or not) was at 
a time an innovation, one that influenced later scientists to incorporate the mathematical methods 
proposed by the previously mentioned scientists.  

  

1.1.2. Variables 

When managing data of epidemics, some variables appear to play important roles on the way a 
disease is spread. Those factors can be biological like sex, genetics, other infections or conditions etc, or 
environmental, like habits, nutrition, climate etc. Those factors are important when we try to identify 
and understand the way a virus works. Unfortunately, those factors cannot be easily inserted into our 
generalized mathematical models. They increase the complexity of the systems. Unlike age, they are 
usually binary, if one person belong to category A or B (high or low risk), and instead of creating a two 
variables system, they are better represented by splitting a dimension (ie group of people in the 
competitive population model) into 2 other subspaces. In the case of networks, they add more 
information that must be dealt and makes any process more complicated, increasing both mathematical 
and computational complexity. 

When trying to map a disease or the characteristics of the germ 4behind it , those variables are 
extremely useful and vital. Physicians and health scientists not only require those information , but 
actively seek them. This is clear distinction between natural scientists and health scientists when 
approaching an epidemic. 
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1.2. Types of epidemiological research 

There are 5 prevalent types of epidemiological research5 : 

Table 1 : Epidemiological research methods 

Name Characteristics 

Case series and population case series The researcher counts cases and relate to 
population data in order to produce rates and 
find patterns. 

Cross-sectional The researcher studies the state of the 
population’s health and disease rate at a defined 
place and time and then measures the burden of 
disease. 

Case–control The researcher compares the data in a series of 
cases and a control group. 

Cohort The researcher is trying to relate information on 
risk factor patterns and health states. 

Trial The researcher intervenes with some measure 
designed to improve health, then collects data  to 
see the effect. 

 

Our research is a cross-sectional one, as we only use data from one country and try to model the 
behaviour of the virus. 

One important factor we must take into considerations is researcher bias. Selective sampling, 
biased interpretation of the data are some of the ways the researcher might be mislead into a biased 
result and erroneously downgrade or emphasize some aspects of the epidemic. 

 

1.3. Infection Rate 

An infection rate 6 is the probability or risk of an infection spreading out of control in a 
population. It is used to measure the frequency with which new instances of the infection appear within 
a selected population during the time period under study. This number is equal to:  

(1.1) 𝑅 = 𝑐𝑡
𝐼

𝑁
 

Where ct is a constant, I is the number of infected people and N the total population or the total 
number of susceptible. This formula adapts to the equations used. One common change made to the 
above equation is :  

(1.2) 𝑅 =
𝛽

𝜌
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Where β is the spreading rate and ρ is the recovery rate. This version of the infection rate 
calculates whether the infection spreads faster than people are healed. If this number is greater than 1, 
then we might be unable to control the pandemic.  

For our model we will calculate the values of R for some model, since it is a stiff tool and has 
accuracy only for a short time. 

One more important information is that the infection rate can be equivalently be described as : 

(1.3) 𝑅 =
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑟𝑒 − 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑐𝑒
 

This formulation enables to calculate the effects of mortality rate as well as other external 
factors, like prevention measures, vaccines or quarantines. 
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2. Dynamical Systems 
 

A dynamical system is a mathematical construct that allows us to study natural systems, whose 
state can be described by a countable set of discrete variables. Those time dependent variables are called 
dynamic variables. A dynamical system could then be described 7 as a map in the phase space of a point 
x, from time t to time 𝑡′.   

If the system is free of random parameters, it is known as a deterministic system. Deterministic 
systems appear to have the same evolution every time. This means that for every starting point, for a 
time 𝑡, the coordinates of the point at the time 𝑡′ are always the same, if we do not change the initial 
conditions of the system. On the contrary, a system where a parameter has random values, means that 
a point will not always reach the same destination after every run, even if the starting conditions are 
the same. Systems like this are called stochastic.  

Dynamic systems can also be described by whether or not its parameters are static or time 
dependent. Although a system with time dependent parameters is mostly predictable, it is quite 
complex and hard to map. Systems that ae not explicitly dependent on time are known as autonomous. 

The most common type of dynamical systems are the ones where we use differential equations to 
map describe the process. This allows us to study a space of N+n  dimensions, where N is the number 
of different variables and n are the independent variables.  For a dynamical system , n usually equal 1, 
and represents time.  

The equations describing the behaviour of the system, as an interaction between the different 
variables and not the time, is known as a vector field. By examining the divergence of the vector field 
f, we can examine the behaviour of the system.  

 For a divergence equal to 0, the system is area preserving (does not expand). 
 For a divergence less than 0, the system is area is dissipative (the system collapses within 

some  boundaries) 
 For a divergence greater than 0, the system is explosive  (expands outside towards infinity) 

 
2.1. System Stability 

When studying time evolving systems, we usually need to find whether or not an equilibrium 
point exists, that remains stable. This however is not always achievable. Only a small portion of 
systems (always autonomous, most of the times linear) can be studied in this manner. Thankfully, the 
polyonymic nature of most epidemiology models means that for autonomous cases a solution can be 
reached eventually. A solution found this way can describe the system’s stability 8 9 10.  In order for us 
to find those solutions and their stability, we first assume that any derivative of the vector field has no 

dynamical effect in the equations (ௗ

ௗ௧
= 0 => 𝑓 = 0 ). Then we linearize the equations and solve the 

system. After doing so, with use of a Jacobian matrix, we find the eigenvalues corresponding for each 
solution. Notice that for many systems we have to deal with an unknown number of variables n, where 
𝑛 > 2.  W will use the eigenvalues to determine the stability of the system.  
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The stability can be :  

 Stable sink (all perturbation will lead back to the point, dissipative system) 
 Unstable source (all perturbation will sent the point into a trajectory away from this point, 

explosive system) 
 Spiral Sink 
 Spiral Source 
 Center (all perturbation lead to closed trajectories- Metastable) 
 Saddle (unstable) 

 

2.2. Chaos  

Sometimes a system is so complex that is very hard to predict its behaviour. Sometimes the 
trajectory a point follows is based heavily on the initial conditions of the system. Stochastic 
parameters or big distances between two consecutive time points are also sign of chaotic behaviour.  
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3. Network Theory11 
 

The combination of discrete objects and their relations, represented through a matrix or graphic 
representation is a rough definition for a graph. When those objects (both the nodes and/or the edges) 
have additional information (names, conditions, weight etc) we have a network. When those 
information are changing through time we have a dynamic network.  

The way a network is wired , ie the nodes and edges are connected, is called network topology. 
The density of the edges or the grand total of connected nodes can affect the properties of a network. 
A human society is a  complex social network that is hard to properly mirror. Therefore we will present 
3 different models for random network models.  

1. Barabasi- Albert 

Networks of this type are scale free (follow a power law when it comes to degree distribution) 
that use preferential attachment. This type of random network creates a number of socially “rich” and 
“poor” nodes.  

2. Erdos- Renyi 

The typical random network, where the edges are randomly determined. The number of nodes 
and edges per node are predetermined. 

3. Watts-Strogatz 

This model creates a random network that has the small world property. This property means 
that for the network the typical distance L between two randomly selected nodes grows proportionally 
to the logarithm of the number of nodes N in the network. This type of network has a short average 
path length and high clustering. 

 

3.1. Epidemiology and networks 

In recent times, networks are used for a plethora of sciences. Biology, sociology, physics etc. The 
use of networks is also prevalent in epidemiology. Networks are used in 2 ways 12in this case. Either to 
map the viral mass travelling through geographic locations (cities, countries, airports, etc) or to find 
patient zero. The first type uses well defined networks, made with data from flights, trains and generally 
people using transportation crossing borders or buying tickets. The second type requires to find the 
interactions between a specific person and its inner circle, and then expand it up to the nth neigbhour, 
depending on the researcher’s precaution. 

Using networks that describe a society as a whole is a challenge of increased complexity, since we 
neither have a preferable network type to describe human societies in big scale, neither the amount of 
information is easily manageable. 
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4. Entropy  
 

Entropy is a concept in natural and information science, that is most commonly associated with 
a state of disorder, randomness, system complexity, or uncertainty. Entropy can be used as property 
of any system and be used for studying a system’s predictability, excess of energy or internal disorder.  

Entropy arose from Clausius’ effort to formalize the intuition of when a process is possible or not, 
due to energy conservation, this however meant that entropy as not a well-defined concept. Entropy’s 
ability to describe transitions as possible or not, and find the preferable processes led to entropy being 
used outside thermodynamical systems or even be extended mathematically. 

The first well defined statistical entropy (ie a statistical property of a system) was defined by 
Boltzmann , through the use of combinatronics. This model was expanded by Gibbs and from that time 
it is mostly unchanged.1 

Entropy is extensively used in other fields of physics and in information science, as a way to 
calculate the complexity created by the information within a system. There are many types of entropy 
used for that purpose, all stemming from Shannon’s 1314 entropy for studying information transferred 
from a message. 

Entropy is a malleable term, therefore many times it is used interdisciplinary15 to describe other 
properties, outside thermodynamics and information theory. 

  

                                                      
1 There exist some generalized versions of entropy, from which the Boltzmann -Gibbs model arises, like 

Tsallis entropy, but it is of no concern to our current work. 
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5. Methodology 
 

 

5.1. Modelling the epidemic using dynamical systems 
 

Modeling the epidemic is not an easy task. The process that we will demonstrate starts from the 
initial stages of more simplistic approaches to our extended model. The process was arduous and time 
consuming, especially when we consider the fact that the epidemic’s characteristics were not fully 
understood until the 12-month threshold. Mirroring closely this lack of knowledge, our model adapts 
to the environmental conditions and new information per version of it. 

 

5.1.1.  Basic  Models (SIR/SEIR/SEIRS) 
 

Based on the basic theory and mathematics presented in the previous chapters, the process of 
modeling an epidemic using those tools will be described below. The first assumption was that we have 
a SEIR model where a patient that falls ill cannot be infected again. The SEIR model was also the 
preferred model used at the start of the pandemic  16 17 18 .  The carriers either fall sick or have a little 
to no symptoms. This would mean that we either have to create 3 groups or assume that the “carriers” 
group 𝑒[𝑡] includes those who get over the disease without any obvious symptom.  The simple solution 
would be to avoid using more groups, as it increases the dimensions of the system increasing its 
complexity.  

The system will create is not linear, however all its constituents are of first degree power only, 
based on systems that show bifurcations.1920 

The first step was determining the value of some parameters. The SEIR model used was the 
following: 

(5.1)         𝑠ᇱ = 𝑃 − 𝑚 𝑠 − 𝑇
భ ାమ 

௦ାାା
 𝑠[𝑡] 

   𝑒ᇱ =  −(𝑚 + 𝜎 + 𝑘ଵ)𝑒 +  𝑇
భ ାమ 

௦ାାା
  𝑠 

   𝑖ᇱ = 𝜎𝑒 − (𝑚 + 𝑎)𝑖 − 𝑘ଶ𝑖  

  𝑟ᇱ = 𝑘ଵ𝑒ᇱ + 𝑘ଶ𝑖 − 𝑚 𝑟 

 

Where:  

P: is the population increase rate per day. 

𝑚: is the mortality rate based on effects non related to the epidemic. 
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T: is a dampening effect, which we will see in detail later. 

𝑏ଵ& 𝑏ଶ: is the spreading rate of the infection, we theorize that for infected and carriers do not 
have the same parameter, but they can be assigned an equal value, This will be examined later in more 
depth. 

𝜎: is the rate that carrier falls sick. 

𝑘ଵ& 𝑘ଶ: is the of inverse of approximate time a person is a carrier or sick. 

𝑎 ∶ is the mortality rate of the epidemic . 

Here we used two methods to calculate the values of parameters, the first was for localized values, 
like spreading rate and mortality rate, where we estimated the value based on statistical data 21 22 23, 
while the second was bibliographical.  

The following table shows the initially assigned value for each parameter: 

 

Table 2: SEIR model parameter values 

Parameter value source 
P 0.00002925 Hellenic Statistical Authority 
m 0.00003047 Hellenic Statistical Authority 
T 0.01 Estimation based on NPHO2 

advertisements 
σ 0.03333 Estimation based on 

Worldmeters Data 
𝑏ଵ 66.6667 Estimation based on NPHO 

data 
𝑏ଶ 66.6667 Estimation based on NPHO 

data 
𝑘ଵ 0.333333 Based on other coronaviruses 

epidemics (SARS, MERS)2425 26 
𝑘ଶ 0.99 Estimation based on NPHO 

data 
a 0.01 Estimation based on NPHO 

data 
 

For this simulation we used as initial condition the total population of Greece and we considered 
that there is only one infected person at the start of the epidemic. 

Now a comparison between estimated infected cases and data will be assessed. 

                                                      
2 National Public Health Organization (Greece) 
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We can immediately recon that the duration of the epidemic and the magnitude is quite 
obviously in disagreement with the actual data. This calls for improvements on the initial model. 

One information that changed the model’s structure was the revelation that people who 
have undergone the disease can fall sick again. This led to changing the model to SEIR-S type of model, 
where there is a “loop”, resupplying the populace with susceptible people. 

One important parameter was the dampening effect T. Initially the T parameter was 
aimed to describe the reduced effectiveness of the virus and would affect the infection rate R. However, 
no matter the value of R resulting from the simple SEIR model, it appeared that T was not completely 
describing the effectiveness of the measures undertaken. 

This led into two options, the examination of other models where quarantine was 
implemented or the modelling of a time dependent T. 

For the time dependent dampening parameter T, a number of different models we used, 
harmonic equations, reverse gaussians or step functions. The results were unfortunately not very 
realistic and this lead to the implementation of quarantine. 

Based on work for past epidemics, most models use the following logic: 

Figure 1 : Comparison for data and initial SEIR model 
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The figure above shows a simplified version of the SEIR-S models used so far when 
quarantine is included. Iq and Eq represent quarantined infected and carriers. 27It shows that we will 
need at least one additional dimension (usually two, since E and Eq are not the same group but are 
closely related28, since a carrier usually transfers from E to Eq. 

This model however does not describe the social distancing measures, since a quarantine 
is only used on people who exhibit or are suspect of being infected. For that reason a new model was 
required from us. 

 

5.1.2. Advanced Models (SEIDR/S) 
 

The problem of properly simulating the effectiveness of the countermeasures taken by the Greek 
government appears to lead into an unavoidable fifth dimension (ie a new group of people) added in 
the system. This is a problem since:  

A. It increases the complexity29 
B. We must define its properties accurately 
C. It adds internal dissonance in the system’s topology, making harder for the simulation to be 

replicated in a micro/mesoscopic level (for examples through dynamic networks) 

 

We went forth with the creation of a super group known as Distanced (D). This supergroup 
includes three subgroups, the aforementioned Iq and Eq , as well a new group, that is prevalent in the 

Figure 2: Classical Quarantine in SEIR models 
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measure taken by most countries, 30limited interaction and mobility for susceptibles, people who are 
practicing social distancing (Sd).  

 

As we can see, the D super group absorbs people and by putting them through a process of social 
isolation 31reduces their interactions to the least amount possible. For this reason, even though carriers 
and infected are absorbed, the mean time required for them to be reintroduced to the main population 
is longer than the process of recuperation, therefore the D group is not transferring people to R but 
instead they are sent directly back to S. 

Based on the above thoughts the group D interacts as following with the other groups:  

A. From S and E it randomly drains people, since for most carriers, they are usually not 
discovered in order to be lead to a quarantine. 

B. From I it drains a big number of people who are either in hospitals or in home isolation. 
C. It has no interaction with R 
D. At a specific rate, people form D, are reintroduced to S 

 

Having made those observations, we made the first models. 

(5.2)  𝑠ᇱ = 𝑃 − 𝑚 𝑠 − 𝑇
𝑏ଵ 𝑒 + 𝑏ଶ 𝑖

𝑠 + 𝑒 + 𝑖 + 𝑟
 𝑠 − dis 𝑠

𝑖

𝑠 + 𝑖 + 𝑒 + 𝑟 + 𝑑 
+ ttq 𝑑 

Figure 3 :SEIDR-S model  logic 
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𝑒ᇱ = −(𝑚 + σ + kଵ) 𝑒 + 𝑇
𝑏ଵ 𝑒 + 𝑏ଶ 𝑖

𝑠 + 𝑒 + 𝑖 + 𝑟
 𝑠 − dis 𝑒

𝑖

𝑠 + 𝑖 + 𝑒 + 𝑟 + 𝑑
 

𝑖ᇱ = σ 𝑒 − (𝑚 + 𝑎)𝑖 − kଶ 𝑖 − qu 𝑖 

𝑟ᇱ = kଵ 𝑒 + kଶ𝑖 − 𝑚 𝑟 

𝑑ᇱ = dis 
(𝑠 + 𝑒)𝑖

𝑠 + 𝑖 + 𝑒 + 𝑟 + 𝑑
+ qu 𝑖 − ttq 𝑑 

  

This is a crude model and the parameters used are not optimized, since the effect of any process 
has a different result from the traditional model, due to the different effects on the population density 
and cohesion. The return rate from R to S is still small relative to the duration of the epidemic in Greece 
(~60 days since day 1) and is not taken into consideration, although it was used for modeling initially. 

The new parameters are :  

dis : the rate though which people are slowly removing themselves from the society, practicing 
social distancing. 

Ttq: the rate that approximately a person returns to the society actively or has an interaction 
without safety. 

T: here this parameter describes the safety from using masks, gloves and other measures for 
prevention. 

qu: the rate percentage of people who are certainly infected and properly isolated. 

 

The simulation was repeated, and the new results were still too overwhelming. For this reason, 
we made a comparison for approximate characteristics of the epidemic. As we could easily extrapolate, 
the duration of the epidemic lasts approximately ~60 days for the initial model (we are only using the 
data of March to June 2020, therefore a second or third wave are still speculations). 

We have assigned the following values: 

 𝜎 is now equal to 1/28 which equates to a carrier having a 50% possibility per 14 days to fall 
ill ( The cycle of the COVID-19 virus was estimated to last 10-14 days at that point, therefore 
we used the upper limit) 

 T is now 0.025,  since we have a relative 75 % chance to prevent the virus from entering our 
bodies if we take proper prevention measures and the infection process is reduced by 1/10 due 
to reduced social transport. 

 dis is equal to 0.9, as we consider that the social distancing was imposed our voluntarily 
followed by 90% of the population in relation with the percentage of the infected. 

 ttq is equal to 1/60, since the initial duration of the measures was expected to last 
approximately 60 days.  
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We can see that there is still a temporal displacement present (~7 days),  however the behaviour 
is much smoother, as the main body of the epidemic lasts approximately as long as the real data show 
(~40 days). This means that we must adapt the values assigned to the parameters, since social 
distancing appears to have an effect on the length of the epidemic. 

After  some pondering the following assumptions were made: 

 𝑏ଵ and 𝑏ଶ are not longer equal. Since an infected person is avoided by others, we assigned to 
the infected a smaller spreading rate equal to 1/5 of the one assigned to the carrier. The new 
values are 𝑏ଵ = 2.415 & 𝑏ଶ = 0.483 . 

 qu is increased to 0.95 .  
 dis is adjusted to 1000. 
 T is increased to 0.3,  since the social transport is part of the distancing and not prevention 

and the prevention effectiveness we re-evaluated to 70%. 
 𝜎 is increased to 1/14 

One more interesting fact is that we start simulations from day 10, in order to reduce the time 
displacement, using as initial condition the existence of 10 (based on available data) infected 
people instead of 1. 

 

Figure 4 : Comparison of normalized number of infected with real data 
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After the new simulation we notice the following characteristics: 

 The number of total deaths for the duration of 6 month is ~270 which at the time was 
realistic. 

 There is a second wave, starting at June. 
 The epidemic flat lines, which is worrisome. 
 The summer would include incoming tourists or returning locals from other infected 

countries, meaning there would be a “kick” in the system. 

Taking those problems under consideration some new ideas were implemented and lead to a new 
model which will be described in the next part.  

We should mention that when we make the move from static parameters to dynamic ones, we 
cannot study the stability of the system. However, the stability of the system will be seen in more depth 
in part 5.3. The same is true to with the infection rate derived from each version of our model. Those 
infection rates unfortunately have no use, since those models failed to predict the epidemic properly. 

Figure 5: Expected number of infected people after improving the model 
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5.1.3. Dynamically evolving parameters 
 

Most parameters were turned into functions with time and location localization. This can explain 
why the pandemic spreads with different rate for most countries.  

The first change made was the adjustment of the virus characteristics. The rate that a carrier 
falls sick was adjusted. The same has happened to the social distancing factor, since it is not static and 
changes depending on how severely the measures were imposed. We cannot predict how long the 
measures are imposed, therefore we initially tried to replicate the period that has passed (start of 
epidemic up until September’s 30th ,2020). Finally, we added 2 new functions. The influx of tourists or 
outside carriers in the system (tt(t) ) 32and the seasonal effectiveness of the virus (tp(t)) , since the virus 
appears to prefer the winter period and is less effective during summertime. This might be due to 
difference in population density, but we should use other countries, that are not major holiday 
destination in order to test this hypothesis.  We have also incorporated the rate through which 
recovered individuals are reintroduced to the main populace, as rec. 

The new model therefore is :  

(5.3) 

𝑠ᇱ =  𝑃 +  1000 𝑡𝑡(𝑡) −  𝑚𝑠 −  𝑇 𝑡𝑝(𝑡)
𝑏ଵ 𝑒 + 𝑏ଶ 𝑖

𝑠 + 𝑒 + 𝑖 + 𝑟
 𝑠 −  dis 𝑠

𝑖

𝑠 + 𝑖 + 𝑒 + 𝑟 + 𝑑
+ 𝑟𝑒𝑐 𝑟 +   𝑡𝑡𝑞 𝑑, 

𝑒ᇱ =  50 𝑡𝑡(𝑡)  −  (𝑚 +  𝑘ଵ  +  𝜎(𝑡))𝑒 +   𝑇 𝑡𝑝(𝑡)
𝑏ଵ 𝑒 + 𝑏ଶ 𝑖

𝑠 + 𝑒 + 𝑖 + 𝑟
 𝑠 −  dis 𝑒

𝑖

𝑠 + 𝑖 + 𝑒 + 𝑟 + 𝑑
 

𝑖ᇱ =  𝜎(𝑡)𝑒 −  (𝑚 +  𝑎)𝑖 −  𝑘ଶ 𝑖 −  𝑞𝑢 𝑖 

𝑟ᇱ =  𝑘ଵ𝑒 +  𝑘ଶ 𝑖 −  𝑚𝑟 −  𝑟𝑒𝑐 𝑟  

𝑑ᇱ = dis(𝑠 +  𝑒)
𝑖

𝑠 + 𝑖 + 𝑒 + 𝑟 + 𝑑
+  𝑞𝑢 𝑖 −  𝑡𝑡𝑞 𝑑 

 

This new model is quite more complex and has many more details that we should properly model. 
In the appendix A.5. one can see the initial form of the functions. They were shaped based on the 
current events, severity of measures, public transportation, and internal population migration. We will 
see in depth the final functions; however, some intermediate forms can be visited in the Appendix. 
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As we can see from the above figure, this new model looks more like the real data, but is compact. 
This led into the introduction of some new ideas. 

Figure 7 : First model with time dependent parameters 

Figure 6 : Adjusted model for mortality and internal migration 
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For the second iteration two changes were made. The first was the change of the mortality rate 
into a function as well, since the most lethal strains survived during the appearance of the British and 
South African strains. We also tried to adjust the mutation of the virus, so that it spread more as time 
goes by, since the most infectious strains survived. However, there is an imbalance in the aggressiveness 
of the virus and the parameter function were reevaluated. 

After a revaluation of those functions, we decided to add a factor describing the reduced 
effectiveness of the measure of social distances due to riots and civil unrest during the February of 2021. 

 

 

Figure 8 : Rios including model initial version 

 From what we can see the new social distancing parameter creates a problem with the intensity 
and the duration of each wave. We also have a problem with the fact that although the third wave 
should be during the peak of the virus’s spreading rate, it is shorter. Therefore, the model was 
readjusted. 

The final adjustments lead to the final model which will be presented later in this work.  
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5.1.4. Final Model 
 

For the final model we have made one interesting change from (5.3). The rate of mutation was 
made a different function, which can be separately studied. Therefore, the seasonality function 
describes the difference in population density related to the time of the year. It is a repetitive process 
with a one-year period. In depth: 

 

(5.4)  𝑎𝑡𝑟[𝑡]  =  (0.215) (
1 + ቀ

𝑡
1825ቁ

10
) 

The mortality rate slowly increases from 2.15% and doubles within 6 years. 

 

(5.5) 𝑡𝑡𝑞[𝑡] =  ൬
1

𝑡𝑞𝑢𝑎𝑟
൰  +

ቀ𝐸𝑥𝑝 ቂ
𝑡 −  210

60 ቃቁ

10ଽ
  

The rate that people return from the distanced group to the susceptible populace. It is initially 
ଵ


 people per day (rough estimation) and slowly increases, to show that people got tired of staying 

inside. 

(5.6)  𝑑𝑖𝑠[𝑡]  =  1000 

⎝

⎛𝐴𝑏𝑠 ቈ𝐶𝑜𝑠 ൬
𝑡

900
൰ ∗ 2 ∗ 𝑃𝑖൨ ∗ ቌ

1

𝐸𝑥𝑝 ቂ
𝑡 −  275

30 ቃ +  1
ቍ

⎠

⎞ 

The social distancing parameter function is quite a trickier one. The first part (blue) describes a 
reduction of measures severity during summertime while the second part (green) shows the gradual  non 
conformity by the people, starting during the end of January 2021, right before the first riots. This 
however can be adjusted because it creates a small knee, as we see later. 

 

(5.7)  𝑡𝑡[𝑡] =  𝐴𝑏𝑠[𝑆𝑖𝑛[𝑃𝑖 ∗ ൬
𝑡

365
൰]] ∗ ቌ

1

𝐸𝑥𝑝 ቂ
𝑡 −  450

15
ቃ +  1

ቍ  

The tourist and invading carriers parameter is a crude numerical estimation, which describes the  
rate with which  new people enter the country (some may be carriers). The exponential in the last part 
serves as a dampening effect, in order to study the behavior of the system until the next October and 
not further. The issue with the dampening factor is that by this September (2021) the vaccinated group 
will have complete or partial immunity and be a new factor to add. Thusly any long-time prediction 
should include the vaccinated group. 
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(5.8) 𝑚𝑡[𝑡]  =  𝐸𝑥𝑝 
𝑡

2500
൨ 

The mutation function is a slow (relatively) exponential process. Most biological processes follow 
power laws and for that reason we decided to adapt a simple version of it. 

 

(5.9) 𝑡𝑝[𝑡] =  𝑚𝑡[𝑡] ∗ ൬1 +  𝐶𝑜𝑠 2 ∗ 𝑃𝑖 ∗ ൬
𝑡 +  106

455
൰൨൰  

 

The seasonality parameter includes the mutation strength and has a cosine to describe the 
approximately yearly changes in population density. Due to the quarantine these changes where 
shifted, due to people returning to their family houses for financial and personal reasons. 

 

 

Figure 9: Final model comparison with real data 
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We can see that this model is quite a close fit to the actual data. There is the exception of the 
knee, which as we discussed was caused due to the complexity of properly including the civil unrest 3 
alongside the distancing parameter. 

For the initial days of the pandemic the model is quite accurate as well. 

 

As we can see the only issue is the severity of the epidemic seems undermined, however properly 
adjusting the exponential part of 𝑑𝑖𝑠[𝑡] , would increase the initial aggressiveness of the virus. 

As a last fact we should mention that as of the 5th of July 2021 the death toll in Greece was 12716 
people. Our model predicted 12496. This is a divergence of 1.7%. The model as it is (not adjusted to 
increased tourism of 2021, starting July and not including vaccinated) caps approximately at 12700 
deaths by September, due to design limitations. 

 
5.1.5. The Vaccinated Group and expansions on the model 
 

The model we have presented (5.3), is quite an accurate approach to the COVID-19 epidemic. 
However, as the process of expounding its final form showed, there are many changes and outside 
factors that require special attention. Some of those include: 

 Civil Unrest and rioting or protests, which work as superspreading events. 

                                                      
3 This includes all acts that go against the measures. From non-compliance to rioting. This is corrective 

post script note, in order to ensure that this work is purely scientific and not politically coloured, 

Figure 10: Final Model initial wave 
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 Uncontrolled or limited control of people entering the country. 
 The introduction of vaccines and new mutations. 

We would like to improve our model to better simulate the above issues, however this process requires 
a lot of time and resources. We have made however the following observations:  

A. All social unrest and disobedience can be simulated with trigonometric or harmonic functions, 
in order to simulate peaks and valleys. 

B. Tourism influx can have a stochastic parameter to simulate random superspreading events at 
airports, tolls, and ports. 

C. The vaccines races against mutations, therefore complete immunity is hard to come by, we can 
test if the vaccination can be used as a parameter function instead of an additional group, which 
would inevitably increase complexity of the system. 

 

5.2. Modelling the epidemic using networks  
 

For the next part of our work, we will compare the results from a dynamical network following the 
process described in our dynamical system model. 

 

5.2.1. Model properties 
 

For our comparison between networks and the dynamical system, we will use 3 types of random 
networks. The Erdos- Renyi, Basarabi -Albert and small world (Watts -Strogatz) random networks. 
They were all set up using commands in the igraph library in R.  

 We did decide to use the following characteristics: 

 There is no influx of new people in the network (either births or tourists) in order to try to 
keep the network’s topology stable. 

 The network’s topology should remain stable, therefore any person that is isolated, is not 
removed, but is inactive, i.e., does not allow viral transference through them, whether they 
are infected or carriers. 

 The network is not dense, meaning that people interact with 3-4 other people daily. We will 
try to keep this as a stable and not interchangeable element. 

The biggest problem in the network approach lies in the fact that people are malleable to social 
interactions, which means that a person interacts with many people with different frequency. This 
would then mean, we must create weighted networks or networks that rewire with preferences, which 
would increase the complexity to a level of non-computability.   
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For the initial comparison we chose the simplest possible structure for our networks. As we will 
see in the next chapter, size and network density play quite an important role when it comes to 
calculation time. 

One last interesting note is that in our model, since everything happens in steps, we first added 
the death step and then the spreading. This might affect the way the network behaves, but we will talk 
about it more when we compare the toy models. 

 

 

 

5.2.2. Network size and Properties 
 

For the simulations we will make, we used networks with the sizes 100 and 1000 people. The more 
populous a network the more it increases the complexity therefore the time and resources required to 
solve it. The more the complexity increases the problem tends to a NP problem. This led to us using 
smaller size networks. This might be because our algorithm uses a lot of nested functions in order to 
keep track of different groups (Isolated, Carriers and Infected) during each step. The algorithm also 
makes an ego network for each carrier and slowly spreads the virus. Based on the density of the 
networks (low density) the time required differed for each network type depending on their density. 
For 50 runs of maximum 730 steps, we approximately had: 

Table 3 : required time for each network type 

Network Type/ Number 
of people 

100 1000 10000 

Erdos-Renyi ~5hours >168 h >168 h 
Barabasi-Albert ~1 hour ~24 hours ~130 h 
Watts-Strogatz ~30 min ~1 hour ~48 h 

    

As we can see the time required for a complete simulation is extremely demanding for one core and 
in order for us to complete it , we should use parallel programming for networks of greater size. 

The characteristics of each network are:  

 Watts-Strogatz: dimensions of the starting lattice= 1, the neighborhood within which the 
vertices of the lattice will be connected =1 and the rewiring probability =0.1 

 Erdos -Renyi: density=0.35 
 Barabasi-Albert: mean number of connections=5  

 

  



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

A novel approach to the spreading of COVID-19 with the use of networks. 
 

37 
 

5.2.3. Comparison of toy models  
 

In this section we are going to compare the 100 and 1000 people model for networks and the 
adjusted ones from the dynamical system.  

Figure 12: Comparison for population of 100 people 

Figure 11: Comparison for population of 1000 people 
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As we can see the results differ a lot. For both cases the Watts-Strogatz model fails to predict a 
second wave at all. The Barabasi-Albert model for 1000 people comes closer to the predicted behaviour 
during the second wave but is still quite off. 

The reason the results between networks and dynamical system might be a result of the following 
reasons: 

1. The population plays a pivotal role in determining the behaviour of the epidemic. A severe 
lock down or social isolation measures. 

2. The social distancing acts in a way that disturbs the interhuman relationships, meaning that 
a network with static topology (non-interchangeable vertices) is not well equipped to 
simulate the dynamical model. 

3. Maybe the number of realizations is small, since they are uneven in size and there might be 
the need to adjust our sampling methods. 

 

 

5.3. Application of Entropy  
 

As was mentioned in part 5.1, there is a way to study the evolution of an epidemic and whether 
or not it reaches an end, or the virus remains active in the population. This is done usually by studying 
the system’s stability. 

5.3.1. System Stability and Epidemiology 
 

The stability of a system as we have seen, is a useful tool that allows us to predict whether a 
dynamic process reaches a condition where its components remain stable33. For an epidemic a desired 
outcome is a stable point 34where all groups except the recovered (or susceptibles in case of 
reintroduction) are equal to zero. A saddle point is worrisome, since any introduction of carriers would 
lead to a new epidemic cycle. 

For the initial modeling (Simple SEIR model, we did study the system’s stability. The results 
were not pleasing. We found 2 points in the 4-dimensional space. The first was the case that the infected 
person was healed during the first step, and the number of infected started to decline so fast (i<1) , so 
that almost all of population was unaffected. This version was a recuring result in the network 
simulations. The second solution is a perpetual cycle of epidemic, where an unstable point is defined as 
by the existence of infected and carriers. Such a grim result could mean that the new COVID cannot 
be removed from the human population. 

Then we tried to solve the SEIDR-S system with static parameters. In a similar manner, the first 
two solutions mirrored the previous results (with unstable solution for the case of everyone returning 
to susceptibles), while a new third solution included negative population sizes, something that has no 
meaning.  
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5.3.2. Entropy comparison between networks and dynamical systems 
 

We have decided to use a concept from statistical physics to try to predict whether the system 
reaches an eventual equilibrium point where the epidemic no longer persists, at least without invading 
carriers.  

As we have seen, there are many types of entropy. We will use the classic Boltzmann- Gibbs 
entropy, however other types of entropy could have equally interesting results. 

For this case we tried to make the following ansatz, each group of people is a different state where 
their total is a ground state. The entropy of each state is equal to 𝑃 = log (

ೖ

ே
) , where 𝑝 is the group 

we study. The percentage of people in each state shows that there is a dynamic process of diffusion. The 
system will reach its equilibrium when all people belong to one state, or the entropy stabilizes to one 
non-zero value. Those two states have the following properties: 

 All people are in the same state means a system entropy equal to zero. This would mean that 
the system cannot evolve further from that condition, as all the people are in a final 
condition. The only group for which this is possible, is if everyone is in the susceptible group, 
since leaving this group is density based. 

 The entropy is a stable non-zero point if all groups have at least some people in them. This 
would mean a permanent of the epidemic going through cycles of high  and low spreading 
rates. 

The way the system is modeled, we have only one possible equilibrium point which is covid-free 
for this system, when everyone is back at the susceptible group. This cannot tell us about whether that 
point is stable or unstable, however it can tell us if the epidemic cycle ends. If we have a system without 
mass transference (ie new viral content entering the system through tourists or immigration) then we 
may have new cycles begin after the entropy reaches 0. Every time the total entropy of the system 
reaches the stable point (population entropy 𝑃௧௧ = 0 ) a cycle ends. 
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Figure 14: Entropy and Change of Entropy for the SEIDR-S model per day of the epidemic 

Figure 13: A closer look toward the cycle's end 
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As we see in the above figures, the entropy of the epidemic reaches zero for the first time around 
day 790 (approximately 2 years after the epidemic started, and reaches its first zero, close to day 1150. 
This would mean that based on our current epidemiological model, the COVID-19 epidemic (not taking 
vaccination under consideration) has a lifetime of ~3 and a half years.  

After day 1150, we see that the systems entropy is hard to define. This is because the population 
of carriers and infected is only some decimals below 0.1, therefore a small but not strong enough to start 
the epidemic again. In a discreet system, this numerical problem would not be present. 
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Conclusions 
 

Overall our  model works as a flexible tool which if localized properly for the country-area of 
interest can yield incredible results. The model can be adjusted as to: 

 How quickly the virus mutates. 
 The effect that seasons and internal migration have to the spreading rate. 
 The results severity of social distancing, civil unrest and prevention measures have. 
 The size of the population and yearly fluctuations of it. 
 Tourism and immigration effects, when carriers cross the borders. 

We could expand the model with varying degrees of restriction as people enter the main 
population, add vaccinated group either as a group or as a dampening factor. 

When it comes to the use of networks, the problem requires refinement of the algorithm used in 
order to reduce calculation time. Parallel programming might offer a little help, however the problem 
tends to be a NP problem, therefore any position cannot be supported until new versions of the 
algorithm are used. This means that models using networks in this scale are inconclusive. 

For smaller size networks the results between networks and dynamical systems differ greatly. 
This is due to the fact that the distancing parameter was not destructive to the vertices and rewiring 
was not allowed (for Erdos-Renyi and Barabasi-Albert type of networks). The small world network did 
not adjust well to the social distancing, since although it rewired often, the number of links did not 
adjust to low social “mobility”. It appears that we need to make more dynamic the vertices for a long-
term simulation, however this would add to the complexity of the problem. We do not have data for 
smaller groups of people, therefore we cannot know whether the dynamic system or the networks 
provide more realistic data, however we make guesses about ways to improve the networks algorithms 
for future use. 

Finally entropy  appears to be a concept which could if properly prepared and studied across 
many models, provide an alternative to study stability in dynamical systems with time dependent 
parameters. 

As a closing note, I would like to mention that all ideas about improving the model and the 
network equivalent, as well as the use of entropy as a tool for dynamical system diagnostics will be 
worked further by our team and any assistance would be welcome. 
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Appendices 
 

Appendix A: Mathematica Model 
 

The models used in the Wolfram Mathematica environment for simulating the epidemic. 
Comments will be highlighted in Green. Any piece of code can be copied and pasted into a Mathematica 
notebook (.nb , .m ) and reproduce our results. In case of errors or results that make no sense, either 
check version sensibility or contact us at vvachtse@physics.auth.gr .  

Appendix A.1. : Mathematica Model #1 
 

(*Greece Pops *) 

t0 = 14; 

N0 = 10816286; (*total population (2011)*) 

P = ((86440/tmax) + 79.554)/ 

  N0; (*Births (2018) and legal immigration (2011)*) 

m = 120297/(N0*tmax); (*deaths (2018) *) 

 

(*COVID-19 characteristics (world statistic\[Rule] we expect normal 
\distribution due to the central limitation theorem *) 

 

tsic = 30;(*coronavirus is present in Greece for 30 days as of today 
\28/3/202*) 

(*for our first estimate we will consider that the attack rate for 
\all 3 types of infectants is the same *) 

a = (0.01); (*mortality : https://coronavirus.jhu.edu/map.html \ 

28-03-2020)*) 

 

(*At 28-03-2020 we had 966 confirmed cases, we suppose that there \ 

were at least 2000 sick people, either infected or asymptomatic*) 

 

sig = 2000/60000;(*carriers who fall sick*)  
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b1 = (2000/tsic);(* carrier spreading rate*)(*cases for the first 
month*) 

b2 = b1;(* infected spreading rate*) 

k2 = 1 - a;(*cured infected *) 

k1 = (1/3); (* cured carriers*) (* From sars *) 

T=0.01; 

(* Initial Conditions*) 

i0 = 1; 

e0 = 0; 

s0 = N0 - i0 - e0; 

tmax = 365; 

 

 

ivs = {deq1, deq2, deq3, deq4, s[1] == s0, e[1] == e0, i[1] == i0,  

   r[1] == 0}; 

 

sol = NDSolve[{s'[t] == P - m*s[t] - T[t]*(b1*e[t] + 
b2*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t]),  

    e'[t] == -(m + sig + k1)*e[t] + T[t]*(b1*e[t] + 
b2*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t]),  

    i'[t] == sig*e[t] - (m + a)*i[t] - k2*i[t],  

    r'[t] == k1*e[t] + k2*i[t] - m*r[t], s[1] == s0, e[1] == e0,  

    i[1] == i0, r[1] == 0}, {s[t], e[t], i[t], r[t]}, {t, 1, tmax}]; 

 

R0:=(T[t]*(b1+b2)/(2*m+k1+a+k2)); 

Print["R0 ="] 

R0//N; 

Print["Number of Deaths:"] 

Integrate[a*isol[t],{t,1,tmax}]//N  
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Appendix A.2. : Mathematica Model #2 
 

The following model describes a reverse bell distribution for the T parameter, and the parameters 
based on the previous model. 

 

(*Greece Pops *) 

t0 = 14; 

N0 = 10816286; (*total population (2011)*) 

P = ((86440/tmax) + 79.554)/ 

  N0; (*Births (2018) and legal immigration (2011)*) 

m = 120297/(N0*tmax); (*deaths (2018) *) 

 

(*COVID-19 characteristics (world statistic\[Rule] we expect normal 
\distribution due to the central limitation theorem *) 

 

tsic = 30;(*coronavirus is present in Greece for 30 days as of today 
\28/3/202*) 

(*for our first estimate we will consider that the attack rate for 
\all 3 types of infectants is the same *) 

 

(*We we will use the upper limit proposed by WHO, 2.5 R0  *) 

 

a = (0.01); (*mortality : https://coronavirus.jhu.edu/map.html \ 

28-03-2020)*) 

 

(*At 28-03-2020 we had 966 confirmed cases, we suppose that there \ 

were at least 2000 sick people, either infected or asyptomatic*) 

 

sig = 2000/60000;(*carriers who fall sick*)  
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b1 = (2000/tsic);(* carrier spreading rate*)(*cases for the first 
month*) 

b2 = b1;(* infected spreading rate*) 

k2 = 1 - a;(*cured infected *) 

k1 = (1/3); (* cured carriers*) (* From sars *) 

 

(* Our Estimate for the Greek Quarantine \[Rule] 1/4 of cases*) 

tquar = 90; 

solpdf = Solve[(220/(Pi*Sqrt[14 t*(tquar - t)])) - 0.39 == 1, t]; 

t1 = t /. solpdf[[1]]; 

t2 = t /. solpdf[[2]]; 

T[t_] := If[t2 > t > t1, (220/(Pi*Sqrt[14 (t)*(tquar - t)])) - 
0.39,1] ; 

 

(* Initial Conditions*) 

i0 = 1; 

e0 = 0; 

s0 = N0 - i0 - e0; 

tmax = 365; 

 

 

ivs = {deq1, deq2, deq3, deq4, s[1] == s0, e[1] == e0, i[1] == i0,  

   r[1] == 0}; 

 

sol = NDSolve[{s'[t] == P - m*s[t] - T[t]*(b1*e[t] + 
b2*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t]),  

    e'[t] == -(m + sig + k1)*e[t] + T[t]*(b1*e[t] + 
b2*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t]),  

    i'[t] == sig*e[t] - (m + a)*i[t] - k2*i[t],  

    r'[t] == k1*e[t] + k2*i[t] - m*r[t], s[1] == s0, e[1] == e0,  

    i[1] == i0, r[1] == 0}, {s[t], e[t], i[t], r[t]}, {t, 1, tmax}]; 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

A novel approach to the spreading of COVID-19 with the use of networks. 
 

47 
 

Appendix A.3. : Mathematica Model #3 
 

(*Greece Pops *) 

t0 = 14; 

N0 = 10816286; (*total population (2011)*) 

P = ((86440/tmax) + 79.554)/ 

  N0; (*Births (2018) and legal immigration (2011)*) 

m = 120297/(N0*tmax); (*deaths (2018) *) 

 

(*COVID-19 characteristics (world statistic\[Rule] we expect normal 
\ 

distribution due to the central limitation theorem *) 

 

tsic = 30; 

 

a = (0.01);(*mortality 28-03-2020)*) 

 

(*At 28-03-2020 we had 966 confirmed cases, we suppose that there \ 

were at least 2000 sick people, either infected or asyptomatic*) 

 

sig = 1/28;(*carriers who fall sick*) (**) 

 

b1 = 966/tsic;(* carrier spreading rate*)(*cases for the first 
month*) 

b2 = b1;(* infected spreading rate*) 

k2 = 1 - a;(*cured infected *) 

k1 = (1/3);(* cured carriers*) (* From sars *) 

tquar = 60;(*quarantine/isolation duration*) 

rec = 1/t0; 

qu = 9/10; (*quarantined patients*) 
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 ttq = 1/tquar; 

dis = 9/10;(*social distancing*) 

 

(* Our Estimate for the Greek Quarantine \[Rule] 1/4 of cases*) 

T = 0.025; 

 

i0 = 1; 

e0 = 0; 

s0 = 0; 

s0 = N0 - i0 - e0; 

 

tmax = 365; 

 

 

sol = NDSolve[{s'[t] ==  

     P - m*s[t] -  

      T*(b1*e[t] + b2*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) 
-  

      dis*s[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) + ttq*d[t], 

    e'[t] == -(m + sig + k1)*e[t] +  

      T*(b1*e[t] + b2*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) 
-  

      dis*e[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]), 

    i'[t] == sig*e[t] - (m + a)*i[t] - k2*i[t] - qu*i[t], 

    r'[t] == k1*e[t] + k2*i[t] - m*r[t],  

    d'[t] ==  

     dis*(e[t] + s[t])*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) +  

      qu*i[t] - ttq*d[t], 

     s[1] == s0, e[1] == e0, i[1] == i0, r[1] == 0, d[1] == 0}, 
{s[t], 

     e[t], i[t], r[t], d[t]}, {t, 1, tmax}]; 
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R0 = (T*(b1 + b2)/(2 m + sig + k1 + dis + 1 + qu)); 

Print["R0 ="] 

R0 // N 

Print["Number of Deaths:"] 

Integrate[a*isol[t], {t, 1, tmax}] // N 

 

Appendix A.4. : Mathematica Model #4 
 

(*Greece Pops *) 

 

t0 = 14; (*Life cyrcle of COVID19*) 

N0 = 10816286; (*total population (2011)*) 

P = ((86440/tmax) + 79.554)/ 

  N0; (*Births (2018) and legal immigration (2011)*) 

m = 120297/(N0*tmax); (*deaths (2018) *) 

 

(*COVID-19 characteristics (world statistic\[Rule] we expect normal 
\distribution due to the central limitation theorem *) 

 

tsic = 30;(*coronavitus is present in Greece for 30 days as of today 
\28/3/202*) 

(*for our first estimate we will consider that the attack rate for 
\all 3 types of infectants is the same *) 

(*We we will use the upper limit proposed by WHO, 2.5 R0  *) 

 

a = (0.01);(*mortality : https://coronavirus.jhu.edu/map.html \ 

28-03-2020)*) 

 

(*At 28-03-2020 we had 966 confirmed cases, we suppose that there \ 

were at least 2000 sick people, either infected or asyptomatic*) 
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sig = 1/t0;(*carriers who fall sick*) (*one per day for a 14 day \ 

cycle*) 

 

b1 = 2.415;(* carrier spreading rate*)(*for the period that the 
daily cases where rising, the linear approximation had the inclination 
a=2.415*) 

b2 = 2.415/5;(* infected spreading rate*)(* infected spreading rate 
is the 1/5 of the carriers, due to people avoiding them ,on the basis 
of their symptoms*) 

k2 = 1 - a;(*cured infected *) 

k1 = 1/3; (* based on SARS models*) 

tquar = 60;(*quarantine/isolation/social distancing duration*) 

rec = 1/t0; (*each individual is considered susceptible after one 
life cycle of COVID*) 

qu = 9.5/10; (*quarantined patients*) 

ttq = 1/tquar;(* one person per tquar days returns to the 
susceptibles team*) 

 

dis = 1000;(*social distancing [Rule] 1000 people per percentage of 
sick people in the whole populace*) 

 

(* Our estimate of the safety parameter due to prevention from the 
use of masks, gloves etc *) 

 

T = 0.30; 

  

(* initial conditions*) 

i0 = 10; 

e0 = 0; 

s0 = 0; 

s0 = N0 - i0 - e0; 
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(*one year*) 

tmax = 365; 

 

sol = NDSolve[{s'[t] ==  

     P - m*s[t] -  

      T*(b1*e[t] + b2*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) 
- dis*s[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) + rec*r[t] +  ttq*d[t], 

    e'[t] == -(m + k1 + sig)*e[t] + T*(b1*e[t] + b2*i[t])*s[t]/(s[t] 
+ i[t] + e[t] + r[t] + d[t]) -   dis*e[t]*i[t]/(s[t] + i[t] + e[t] + 
r[t] + d[t]), 

    i'[t] == sig*e[t] - (m + a)*i[t] - k2*i[t] - qu*i[t], 

    r'[t] == k1*e[t] + k2*i[t] - m*r[t] - rec*r[t],  

    d'[t] == dis*(e[t] + s[t])*i[t]/(s[t] + i[t] + e[t] + r[t] + 
d[t]) +  qu*i[t] - ttq*d[t], 

     s[1] == s0, e[1] == e0, i[1] == i0, r[1] == 0, d[1] == 0}, 
{s[t], 

     e[t], i[t], r[t], d[t]}, {t, 1, 500}, MaxStepSize -> 1]; 

 

(*spreading rate without prevention*) 

R0 = ((b1 + b2)/(2 m + sig + 1 + k1)); 

Print["R0 ="] 

R0 // N 

 

(*spreading rate with prevention*) 

RT = (T (b1 + b2)/(2 m + sig + 1 + k1)); 

Print["RT ="] 

RT // N 

 

Print["Number of Deaths (Yearly):"] 

Integrate[a*isol[t], {t, 1, tmax}] // N 
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Appendix A.5. : Mathematica Model #5 
 

(*Greece Pops *) 

t0 = 14; (*Life cyrcle of COVID19*) 

N0 = 10816286; (*total population (2011)*) 

P = ((86440/tmax) + 79.554)/ 

   N0; (*Births (2018) and legal immigration (2011)*) 

m = 120297/(N0*tmax); (*deaths (2018) *) 

(*COVID-19 characteristics (world statistic\[Rule] we expect normal 
dis[t]tribution due to the central limitation theorem *) 

 

tsic = 30 

a = (0.01); 

 

sig[t_] :=  

  1/t0 *(1 + t/120);(*carriers who fall sick*) (*one per day for a 
14 day cycle*) 

 

b1 = 2.415; 

b2 = 2.415/5   5; 

k2 = 1 - a;(*cured infected *) 

k1 = 1/3; (* based on SARS models*) 

 

tquar = 60;(*quarantine/isolation/social dis[t]tancing duration*) 

rec = 1/t0; (*each individual is considered susceptible after on 
life cycle od COVID*) 

qu = 9.5/10; (*quarantined patients*) 

ttq = 1/tquar;(* one person per tquar days returns to the 
susceptibles team*) 
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dis[t_] :=  1000 (Abs[(175 - t)/175] Abs[(1 - (t/300))]);(*social 
dis[t]tancing \[Rule] 1000 people per percentage of sick people in the 
whole populace*) 

T = 0.30; 

 

(* Tourist influx parameter*) 

tt[t_] := Abs[Sin[Pi*(t/365)]]; 

 

(*Seasonality*) 

tp[t_] := (1 + (1/2)*Abs[Sin[Pi*(t/175)]]); 

 

sol = NDSolve[{s'[t] == P + 1000*tt[t] - m*s[t] -      
T*(b1*tp[t]*e[t] + b2*tp[t]*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) 
- dis[t]*s[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) + rec*r[t] + 
ttq*d[t],e'[t] == 50*tt[t] - (m + k1 + sig[t])*e[t] +      
T*(b1*tp[t]*e[t] + b2*tp[t]*i[t])*s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) 
-  dis[t]*e[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]),i'[t] == 
sig[t]*e[t] - (m + a)*i[t] - k2*i[t] - qu*i[t],r'[t] == k1*e[t] + k2*i[t] 
- m*r[t] - rec*r[t],  d'[t] == dis[t]*(e[t] + s[t])*i[t]/(s[t] + i[t] + 
e[t] + r[t] + d[t]) + qu*i[t] - ttq*d[t],s[1] == s0, e[1] == e0, i[1] 
== i0, r[1] == 0, d[1] == 0}, {s[t], e[t], i[t], r[t], d[t]}, {t, 1, 
500}, MaxStepSize -> 1]; 

(*spreading rate without prevention*) 

R0 = ((b1 + b2)/(2 m + sig[t] + 1 + k1)); 

Print["R0 ="] 

R0 // N 

(*spreading rate with prevention*) 

 

RT = (T (b1 + b2)/(2 m + sig[t] + 1 + k1)); 

Print["RT ="] 

RT // N 

 

Print["Number of Deaths (Yearly):"] 

Integrate[a*isol[t], {t, 1, 365}] // N 
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Appendix A.6. : Mathematica Model #6 
 

(*Greece Pops *) 

t0 = 14; (*Life cyrcle of COVID19*) 

N0 = 10816286; (*total population (2011)*) 

P = ((86440/tmax) + 79.554)/N0; (*Births (2018) and legal 
immigration (2011)*) 

m = 120297/(N0*tmax); (*deaths (2018) *) 

tsic = 30; 

 

atr[t_] := 2*((1 + (t/1460))/100);(*mortality : 
https://coronavirus.jhu.edu/map.html \28-03-2020)*) 

sig[t_] :=   1/t0 *(1 + t/120);(*carriers who fall sick*) (*one per 
day for a 14 day \cycle*) 

 

b1 = 2.415 

b2 = 2.415/ 5 

 

k2 = 1 - atr[t];(*cured infected *) 

k1 = 1/3; (* based on SARS models*) 

 

tquar = 60;(*quarantine/isolation/social dis[t]tancing duration*) 

rec = 1/t0; (*each individual is considered susceptible after on 
life \cycle of COVID*) 

qu = 9.5/10; (*quarantined patients*) 

ttq = 1/tquar;(* one person per tquar days returns to the 
susceptibles *) 

 

dis[t_] :=  1000 (Abs[(175 - t)/175] Abs[(1 - (t/300))]); 

(*social dis[t]tancing \[Rule] 1000 people per percentage of sick 
people in the whole populace*) 
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T = 0.30; 

 

(* Tourist influx parameter*) 

tt[t_] := Abs[Sin[Pi*(t/365)]]; 

 

(*Seasonality*) 

tp[t_] := (1 + (2/5)*Sin[Pi*((t - 14)/(160))])*(1 +  

     Cos[Pi*((t + 35)/(222))]); 

 

(* initial conditions*) 

i0 = 10; 

e0 = 0; 

s0 = 0; 

s0 = N0 - i0 - e0; 

 

(*one year*) 

tmax = 365; 

 

sol = NDSolve[{s'[t] ==  

     P + 1000*tt[t] - m*s[t] -  

      T*(b1*tp[t]*e[t] + b2*tp[t]*i[t])* 

       s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) -  

      dis[t]*s[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) + rec*r[t] 
+  ttq*d[t], 

    e'[t] ==  

     50*tt[t] - (m + k1 + sig[t])*e[t] +  

      T*(b1*tp[t]*e[t] + b2*tp[t]*i[t])* 

       s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) -  

      dis[t]*e[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]), 

    i'[t] == sig[t]*e[t] - m*i[t] - atr[t]*i[t] - k2*i[t] - qu*i[t], 
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    r'[t] == k1*e[t] + k2*i[t] - m*r[t] - rec*r[t],  

    d'[t] ==  

     dis[t]*(e[t] + s[t])*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) +  

      qu*i[t] - ttq*d[t], 

     s[1] == s0, e[1] == e0, i[1] == i0, r[1] == 0, d[1] == 0}, 
{s[t], 

     e[t], i[t], r[t], d[t]}, {t, 1, 5000}, MaxSteps -> Infinity]; 

 

(*spreading rate without prevention*) 

R0 = ((b1 + b2)/(2 m + sig[t] + 1 + k1)); 

Print["R0 ="] 

R0 // N 

(*spreading rate with prevention*) 

 

RT = (T (b1 + b2)/(2 m + sig[t] + 1 + k1)); 

Print["RT ="] 

RT // N 

 

Print["Number of Deaths (Yearly):"] 

Integrate[atr[t]*isol[t], {t, 1, 365}] // N 
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Appendix A.7. : Mathematica Model #7 
 

(*Greece Pops *) 

t0 = 7; (*Life cyrcle of COVID19*) 

N0 = 10816286;  

P = ((86440/tmax) + 79.554)/ N0;  

m = 120297/(N0*tmax);  

tsic = 30; 

 

atr[t_] := (0.215) ((1 + (t/1825))/ 10); 

 

sig[t_] :=1/t0 *(1 +  t/120); 

 

b1 = 2.415; 

b2 = 2.415/5; 

 

k2 = 1 - atr[t]; 

k1 = 1/3;  

tquar = 60; 

rec = 1/t0;  

qu = 9.5/10;  

ttq[t_] := (1/tquar) + ((Exp[(t - 210)/60]))/(10^9) ; 

 

dis[t_] := 1000 (Abs[ Cos[(t/900)*2* Pi]]*(1/(Exp[(t - 275)/30] +  
1))); 

T = 0.30; 

 

(* Tourist influx parameter*) 

tt[t_] := Abs[Sin[Pi*(t/365)]]*(1/(Exp[(t - 450)/15] + 1)); 
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(*Seasonality*) 

mt[t_] := Exp[t/2500]; (* Mutation*) 

tp[t_] := mt[t]*(1 + Cos[2*Pi*((t + 106)/(455))]);   

 

i0 = 1; 

e0 = 0; 

s0 = 0; 

s0 = N0 - i0 - e0; 

tmax = 365; 

 

sol = NDSolve[{s'[t] ==  

     P + 1000*tt[t] - m*s[t] -  

      T*(b1*tp[t]*e[t] + b2*tp[t]*i[t])* 

       s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) -  

      dis[t]*s[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) + rec*r[t] 
+ 

       ttq[t]*d[t], 

    e'[t] ==  

     50*tt[t] - (m + k1 + sig[t])*e[t] +  

      T*(b1*tp[t]*e[t] + b2*tp[t]*i[t])* 

       s[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) -  

      dis[t]*e[t]*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]), 

    i'[t] == sig[t]*e[t] - m*i[t] - atr[t]*i[t] - k2*i[t] - qu*i[t], 

    r'[t] == k1*e[t] + k2*i[t] - m*r[t] - rec*r[t],  

    d'[t] ==  

     dis[t]*(e[t] + s[t])*i[t]/(s[t] + i[t] + e[t] + r[t] + d[t]) +  

      qu*i[t] - ttq[t]*d[t], 

     s[1] == s0, e[1] == e0, i[1] == i0, r[1] == 0, d[1] == 0}, 
{s[t], 

     e[t], i[t], r[t], d[t]}, {t, 1, 1000}, MaxSteps -> Infinity]; 
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Appendix B: R Code/ Model 
 

library(stats) 

library(igraph) 

#network characteristics 

netsize=1000 #network size 

iin=1 #infected cases at the start 

tsteps=730 #2 years approximately 

runs=5 # number of simulations 

#We can use barabasi.game or erdos.renyi.game for different network, 
but for  

#this instance we consider that the small world approach works better 
for a real 

#society. We will not take into consideration the dynamics of social 
interaction 

# where new people meet or people stop interacting 

#We set new attributes that beter describe the Infected of the people 
and later, 

#their isolation 

#dead V(netg) will be removed, based on the attribute "alive" 

#1. Create the network based on the chosen specs. 

#Here we use a barabasi-albert 

netg <- barabasi.game(netsize, m = 5, directed=FALSE) 

#2.Create the attributes required, Infected, Alive and Isolation 

set_vertex_attr(netg, "Infected", index = V(netg), value = TRUE) 

set_vertex_attr(netg, "Carrier", index = V(netg), value = TRUE) 

set_vertex_attr(netg, "Alive", index = V(netg), value = TRUE) 

set_vertex_attr(netg, "Isolation", index = V(netg), value = TRUE) 

 

#3. Initialise the attributes accordingly 

V(netg)$Infected=FALSE 
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V(netg)$Carrier=FALSE 

V(netg)$Alive=TRUE 

V(netg)$Isolation=FALSE 

#The next step is to create functions that will make the dynamic 
process 

#of simulating the spread of the virus 

netmulation<-function(netg,netsize,iin,runs,tsteps){ 

  linf<- c() 

  lcaf<- c() 

  lisf<- c() 

  for (runt in 1:runs) {     

    V(netg)$Infected=FALSE 

    V(netg)$Carrier=FALSE 

    V(netg)$Alive=TRUE 

    V(netg)$Isolation=FALSE 

  #Initialization 

    n1<-sample(1:netsize,iin) 

    V(netg)$Infected[n1]<-TRUE 

    V(netg)$Carrier[n1]<-TRUE 

    lin<-c() 

    lca<-c() 

    lis<-c() 

    for (t in 1:tsteps) {  

    #Probabilities 

      p1<-(1 + (2/5)*sinpi(((t - 14)/134)))*(1 + cospi((t + 14)/168 
))/20 #Infection rate 

      p11<-(1 + (2/5)*sinpi(((t - 14)/134)))*(1 + cospi((t + 14)/168 
))/4 #Infection rate for carriers 

     

      p2<-1/14 #Healing factor 

      p22<-1/14 #Healing factor for carriers 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

A novel approach to the spreading of COVID-19 with the use of networks. 
 

61 
 

     

      p3<-0.0013*((1 + (t/1460))/100) #Mortality 

     

      p4<-1/3 #Isolation 

      p41<-1/4#Getting out of the isolation 

     

      p5<-1/3 #Carrier falling sick 

     

      lister<-c() 

      lister2<-c() 

      lister3<-c() 

     

      for (i in 1:netsize) { 

        if(V(netg)$Alive[i]==TRUE){ 

        #List of infected people 

          if(V(netg)$Carrier[i]==TRUE){ 

            lister2<-append(lister2,i) 

            if(V(netg)$Infected[i]==TRUE) 

              lister<-append(lister,i) 

        } 

      } 

    } 

     

    #Isolated People 

     

      for (iii in 1:netsize) { 

        if(V(netg)$Isolation[iii]==TRUE) 

          lister3<-append(lister3,iii) 

    } 
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      eg1<-ego(netg,order=1,lister) #First neigbhours for each 
infected person 

      eg2<-ego(netg,order=1,lister2) #First neigbhours for each 
carrier person 

     

      l1<- length(eg1) #Number of Infected per step 

      l11<- length(eg2) #Number of Carriers per step 

     

      l2<- length(lister) 

      l22<- length(lister2) 

     

      l3<-length(lister3) #Number of Isolated people 

     

     

     

      if(l22<1){ 

        break 

    } 

     

    #Death Process 

      for (n in 1:l1){ 

        if(runif(1,0,1)<p3) 

          V(netg)$Alive[i]==FALSE } 

    #Healing Process 

     

      for (k in 1:l22) { 

        if(V(netg)$Infected[lister2[k]]==TRUE){ 

          if(runif(1,0,1)<p2){ 

            V(netg)$Carrier[lister2[k]]=FALSE 
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            V(netg)$Infected[lister2[k]]=FALSE 

        }} 

        else 

          if(runif(1,0,1)<p22){ 

            V(netg)$Carrier[lister2[k]]=FALSE 

        } 

    } 

     

    #Carrier fallin sick 

     

      for (jj in 1:l22) {#Check if person is sick or not 

        counter2<-lister2[jj] 

        if(V(netg)$Infected[counter2]==FALSE){# If not isolated the 
spread of the disease goes on as normal 

          if(V(netg)$Carrier[counter2]==TRUE){ 

            if(runif(1,0,1)<p5){ 

              V(netg)$Infected[counter2]=TRUE 

          }}}} 

     

     

    #Infection Spreading 

    

      for (j in 1:l22) {#Check if person is isolated or not 

        counter1<-lister2[j] 

        if(V(netg)$Isolation[counter1]==FALSE){# If not isolated 
the spread of the disease goes on as normal 

          if(V(netg)$Carrier[counter2]==TRUE){ 

            if(V(netg)$Infected[counter1]==TRUE){#If a person is 
infected 

              egon_net<-eg2[[j]] 

              le<-length(egon_net) 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Vasileios Vachtsevanos 

64 
 

              for (j1 in 1:le) { 

                if(runif(1,0,1)<p1){ 

                  V(netg)$Carrier[egon_net[j1]]=TRUE 

              }}} 

            else { #From Carriers 

              egon_net<-eg2[[j]] 

              le<-length(egon_net) 

              for (j1 in 1:le) { 

                if(runif(1,0,1)<p11){ 

                  V(netg)$Carrier[egon_net[j1]]=TRUE 

              }}} 

        }}} 

     

     

    #Isolation Process 

     

      for (ii in 1:netsize) { 

        if(runif(1,0,1)<p4) 

          V(netg)$Isolation[ii]=TRUE 

    } 

     

      for (jk in 1:l3) { 

        if(runif(1,0,1)<p41) 

          V(netg)$Isolation[lister3[jk]]=FALSE 

    } 

     

      lin<-append(lin,l1) 

      lin2<-list(lin) 
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      lca<-append(lca,l11) 

      lca2<-list(lca) 

     

      lis<-append(lis,l3) 

      lis2<-list(lis) 

     

    } 

     

    linf<- append(linf,lin2) 

    lcaf<- append(lcaf,lca2) 

    lisf<- append(lisf,lis2) 

     

     

  } 

   

  Results <- list("Infected" = linf, "Carriers" = 
lcaf,"Isolated"=lisf) 

   

  return(Results) 

   

} 

#Execution 

 

tt1<-netmulation(netg,netsize,iin,runs,tsteps) 

 

Ison<-as.data.frame.vector(tt1$Infected) 

Rson<-as.data.frame.vector(tt1$Infected) 

Isson<-as.data.frame.vector(tt1$Isolated) 

 

sink("Results_Infected07.csv",append = F) 
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Ison 

sink() 

 

sink("Results_Carriers07.csv",append = F) 

Rson 

sink() 

 

sink("Results_Isolated07.csv",append = F) 

Isson 

sink() 
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