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ABSTRACT 

 In the present thesis a laterally-constrained (LCI) scheme is presented for the 

inversion of the electrical resistivity tomography (ERT) data. Initially, a detailed 

review of the basic theory of the resistivity method, the surveying methods, the 

resistivity arrays and the instrumentation is given. The forward problem and 

techniques for its solution are addressed. In addition, the inversion theory and the 

inversion methods are presented, with emphasis given on the LCI technique.  

The LCI algorithm which was developed uses the smoothness-constrained 

inversion to find the correction of the model. The ERT data are divided into 

soundings and the forward problem is calculated using the filter method as 1-D 

forward solver for each sounding. The data are inverted as one system by introducing 

lateral constraints between adjacent soundings in order to produce a 2-D geoelectrical 

image of the subsurface. The lateral constraints were implemented using a 2-D 

smoothness matrix with the modification that it changes throughout the inversion 

procedure as the final solution converges. The perturbation technique was used to 

calculate the Jacobian matrix for the total system. The software was developed in a 

graphical user interface (GUI) using Matlab.   

 The performance and efficiency of the algorithm is tested using both synthetic 

and real data acquired from different applications. Numerical modeling is used to 

provide the synthetic data for realistic models. The evaluation shows that the laterally-

constrained approach is efficient and can be successfully used to locate layer 

boundaries. On the contrary, the results clearly show that this method cannot resolve 

small targets that are within greater structures due to the 1-D formulation of the 

problem.  

In addition, these data are used to make comparisons between the finite 

element and the laterally-constrained method and to address the benefits and 

drawbacks of the latter. By comparing the two schemes, it is obvious that both the 

laterally-constrained and the 2-D smooth-structure methods are able to provide an 

accurate approximation of the subsurface, while their combination yields a model 

even closer to the real one.  
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ΠΔΡΙΛΗΨΗ  

 Η παξνύζα δηαηξηβή επηθεληξώλεηαη ζηελ αλαπηπμε ηερληθώλ αληηζηξνθήο 

ησλ δεδνκέλσλ ειεθηξηθήο ηνκνγξαθίαο (ERT) κε ηε ρξήζε ηεο κεζόδνπ ησλ 

πιεπξηθώλ πεξηνξηζκώλ (LCI).  Αξρηθά, παξνπζηάδνληαη νη βαζηθέο αξρέο ηεο 

ειεθηξηθήο κεζόδνπ, νη ηερληθέο δηαζθόπεζεο, νη δηαηάμεηο ησλ ειεθηξνδίσλ θαη ν 

εμνπιηζκόο πνπ ρξεζηκνπνηείηαη. Γίλεηαη αλαθνξά ζην επζύ πξόβιεκα θαη ζηηο 

ηερληθέο επίιπζεο ηνπ. Αθόκε, παξνπζηάδεηαη αλαιπηηθά ε ζεσξία ηεο αληηζηξνθήο 

θαη νη κέζνδνη αληηζηξνθήο δίλνληαο έκθαζε ζηελ κέζνδν ησλ πιεπξηθώλ 

πεξηνξηζκώλ. 

Ο αιγόξηζκνο πνπ αλαπηύρζεθε ρξεζηκνπνηεί ηε κέζνδν ηεο εμνκαιπκέλεο 

αληηζηξνθήο γηα ηελ εύξεζε ηεο δηόξζσζεο ηνπ κνληέινπ. Σα δεδνκέλα ηεο 

ηνκνγξαθίαο ρσξίδνληαη ζε βπζνζθνπήζεηο θαη ε ιύζε ηνπ 1-D επζένο πξνβιήκαηνο 

ππνινγίδεηαη γηα θάζε κία από απηέο ρξεζηκνπνηώληαο ηε κέζνδν ησλ θίιηξσλ. Σα 

δεδνκέλα ελώλνληαη ζε έλα ζύζηεκα γηα ηελ αληηζηξνθή, ρξεζηκνπνηώληαο 

πιεπξηθνύο πεξηνξηζκνύο κεηαμύ γεηηνληθώλ βπζνζθνπήζεσλ, ώζηε λα 

θαηαζθεπαζηεί κία 2-D εηθόλα ηεο γεσειεθηξηθήο δνκήο ηνπ ππεδάθνπο. Οη 

πιεπξηθνί πεξηνξηζκνί ελζσκαηώζεθαλ κε ηε ρξήζε ελόο 2-D πίλαθα εμνκάιπλζεο 

κε ηελ ηξνπνπνίεζε όηη ν πίλαθαο απηόο κεηαβάιιεηαη θαηά ηε δηάξθεηα ηεο 

αληηζηξνθήο. Γηα ηνλ ππνινγηζκό ηνπ Ιαθσβηαλνύ πίλαθα ρξεζηκνπνηήζεθε ε ηερληθή 

δηαηαξαρώλ. Σν ινγηζκηθό αλαπηύρζεθε ζε γξαθηθό πεξηβάιινλ ρξεζηκνπνηώληαο 

ηελ Matlab. 

 Η επίδνζε θαη ε απνηειεζκαηηθόηεηα ηνπ αιγνξίζκνπ ειέγρεηαη 

ρξεζηκνπνηώληαο ζπλζεηηθά αιιά θαη πξαγκαηηθά δεδνκέλα πνπ ζπιιέρζεθαλ από 

δηάθνξεο εθαξκνγέο. Με θαηάιιειε αξηζκεηηθή πξνζνκνίσζε παξάρζεθαλ ηα 

ζπλζεηηθά δεδνκέλα γηα ξεαιηζηηθά κνληέια. H αμηνιόγεζε δείρλεη όηη ε κέζνδνο κε 

πιεπξηθνύο πεξηνξηζκνύο είλαη απνηειεζκαηηθή θαη κπνξεί λα εληνπίζεη επηηπρώο ηηο 

απόηνκεο επαθέο ησλ ζηξσκάησλ. Αληίζεηα, ηα απνηειέζκαηα έδεημαλ όηη ε κέζνδνο 

δελ κπνξεί λα εληνπίζεη κηθξνύο ζηόρνπο κέζα ζε κεγαιύηεξα ζηξώκαηα ιόγσ ηεο 1-

D κνξθνπνίεζεο ηνπ πξνβιήκαηνο. 

 Δπηπιένλ, απηά ηα δεδνκέλα ρξεζηκνπνηήζεθαλ γηα ηελ ζύγθξηζε ησλ 

κεζόδσλ ησλ πεπεξαζκέλσλ ζηνηρείσλ θαη ησλ πιεπξηθώλ πεξηνξηζκώλ θαη γηα ηελ 

κειέηε ησλ πιενλεθηεκάησλ θαη ησλ κεηνλεθηεκάησλ ηεο ηειεπηαίαο.         
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πγθξίλνληαο ηηο 2 κεζόδνπο είλαη θαλεξό όηη θαη ε κέζνδνο ησλ πιεπξηθώλ 

πεξηνξηζκώλ θαη ηεο 2-D εμνκαιπκέλεο δνκήο κπνξνύλ λα δώζνπλ κία αμηόπηζηε 

πξνζέγγηζε ηεο πξαγκαηηθήο εηθόλαο ηνπ ππεδάθνπο, ελώ κε ηνλ ζπλδπαζκό ηνπο 

επηηπγράλεηαη κεγαιύηεξε αθξίβεηα. 
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1. INTRODUCTION      

 

1.1 Motivations and aims of this thesis 

   

Electrical Resistivity Tomography (ERT) is a popular geophysical technique 

with a wide range of applications. Geophysics, engineering, hydrology and 

archaeology are some of the fields in which the ERT method has been successfully 

used. The ERT method uses the geoelectrical characteristics of the subsurface in order 

to find its structure. This is achieved by acquiring measurements of the electrical 

resistivity of the subsurface and generating a 2-D image of its distribution. 

As with any geophysical method, due to the fact that the earth is non-

homogeneous, the measurements do not represent the true resistivity distribution of 

the subsurface and therefore, the interpretation cannot be performed directly. In 

contrast, they require complex processing in order to provide a 2-D image of the 

subsurface‘s true resistivity. The technological advances gave rise to many different 

processing methods. In most methods, the processing is handled using the inversion 

theory. For decades, the 2-D smooth-structure inversion schemes are used to interpret 

the data. These schemes provide a smooth geoelectrical model of the survey area.  

Despite the impressive results of the smooth-structure method, it cannot resolve 

accurately sharp layer boundaries. Thus, different schemes were in need, in order to 

overcome this limitation.  

Recently, the laterally-constrained technique (LCI) has been proposed by 

Auken et al. (2002). This technique makes the assumption that the earth is consisted 

of horizontal layers and uses an 1-D scheme to locate sharp interfaces. Although, this 

method can resolve the sharp layer boundaries, it should not be consider as a 

substitute of the smooth-structure but as a supplement, which can provide significant 

information to the interpretation by combining the results and therefore, a better 

resolved geological model. 

The LCI technique has been successfully used in sedimentary environments 

and other areas with a layered appearance (Auken et al., 2005; Wisén et al., 2005). 

Although, the LCI is mostly used for layered cases, it has been effectively used even 

in cases with significant 2-D structures (Auken and Christiansen, 2004). As this is a 
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relative new technique, improvements and developments of the existing schemes can 

be made. 

This thesis deals with inversion schemes of ERT data using the 1-D laterally-

constrained method. The goal of this work is to provide an approach that will increase 

the accuracy of the inversion results.  

 

 The key objectives of the present thesis are:  

 

 Present the inversion theory and review the existing techniques with focus 

given on the laterally-constrained scheme.  

 Create a scheme for the LCI method which will increase the accuracy of the 

inversion results. 

 Develop software for the proposed scheme.  

 Use this software to evaluate the efficiency of the LCI scheme by processing 

real and synthetic data. 

 

 The methodology that was followed throughout this work is presented as 

follows: 

 

 A detailed review of the basic principles of the electrical resistivity method 

and the surveying techniques with emphasis given on the electrical 

tomography. 

 Study of the numerical modelling of ERT data, which is one of the most 

important tools for this project. Numerical modeling is essential not only for 

solving the inverse problem, but also to assess the performance of the ERT 

method and furthermore to evaluate the efficiency of the interpretation 

schemes. The algorithms can be tested using a wide range of different models 

and in different conditions. Also it is a means to explore the link between 

subsurface properties and the ERT data. 

 In-depth examination of the inversion theory and techniques. Emphasis was 

given to the laterally-constrained inversion and the schemes that were 

proposed so far. 

 Development of the software based on the existing LCI schemes. 
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 Formulation of a different approach for the LCI scheme and implementation 

into the previous algorithm. In particular, modifications were made in the way 

the constraints are imposed in the problem and also in the calculation of the 

lagrange multiplier.  

 Testing of this new scheme with both synthetic and real data to find possible 

limitations and evaluate its efficiency. 

 Comparison of the results from the LCI software with the DC2DPRO 

software, which uses a 2-D smooth structure scheme. 

 Interpretation of the results and final assessment of the accuracy of the 

algorithm. 

 

1.2 Structure of this thesis 

 

 The structure of this thesis is comprised of the following chapters: 

 

 Chapter 2: This chapter introduces the fundamental concepts that are 

necessary in order to understand the work behind the present thesis. The basic 

principles of the electrical resistivity method are presented. The equations that govern 

the flow of the electrical current into the earth are discussed and the concept of the 

apparent resistivity is introduced. Furthermore, the resistivity arrays and data 

acquisition techniques are explained. Finally, the instrumentation used to gather the 

resistivity measurements is descripted.   

 Chapter 3: The aim of this chapter is to provide the basic background of the 

inversion theory. The forward problem is addressed and ways of solving it are 

presented. A detailed description of the inversion procedure is given, as well as its key 

elements and problems. In addition, the inversion methods are discussed with 

emphasis given on the smoothness constrained scheme. First, the basic theory and the 

equations that lead to the correction of the model are presented. Then, the smoothness 

matrix and its formulation are described. Moreover, the lagrange multiplier and its 

role in constrained problems are introduced and the active constrained balancing 

method for finding its value is explained. Furthermore, the laterally-constrained 

inversion method, which is the main subject of this thesis, is descripted in detail. 
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 Chapter 4: The modifications that were made to the LCI scheme are 

described and examples are used for justification. Also, the algorithm behind the 

software that was constructed is analytically descripted and every step of the 

procedure is explained. The algorithm is tested using both synthetic and real data in 

order to evaluate its efficiency. Numerical modeling is used to provide the synthetic 

data. The results are presented as images and discussed. Also, they are compared with 

the results acquired using a 2-D smooth-structure inversion scheme. 

 Chapter 5: This chapter summarizes the conclusions of this thesis and 

suggests future work.  
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2.  BASIC PRINCIPLES OF THE ELECTRICAL RESISTIVITY 

METHOD  

 

 This chapter is a brief introduction of the basic theory of electrical resistivity 

method. The principles regarding the flow of the electric current into the earth are 

presented and the concepts of geometrical factor and apparent resistivity are 

introduced.  In addition, the resistivity measuring techniques and the resistivity arrays 

are demonstrated. Finally, the instrumentation used for the acquisition of electrical 

resistivity data is described. 

  

2.1 Introduction 

  

 Electrical Resistivity Method is one of the most widely used techniques 

belonging to a group called applied geophysics. Applied geophysics is a term used to 

describe a number of geophysical methods (Electrical Resistivity Method, GPR, 

Seismic Refraction-Reflection, Potential Field Methods and so on.) that are used to 

acquire information about the distribution of the subsurface‘s physical properties 

(electrical resistivity, dielectric properties etc.). Electrical Resistivity Method has a 

wide range of applications as it is extensively used for geophysical, geological, 

hydrological, environmental and engineering problems, as well as for archaeological 

investigations. For instance, it has been used in order to map mineral deposits and 

groundwater distribution, to locate fault zones etc.  

 The resistivity technique is used to map the distribution of the electrical 

resistivity (or conductivity) of the subsurface. This method belongs to a category 

called ―active‖ methods, since the field, that is used, is created artificially, in contrast 

with ―passive‖ methods, which use an existing field. An electric current is introduced 

into the ground and the potential difference due to this current is measured giving an 

indication of the resistivity of the subsurface. The interpretation of these 

measurements can reveal the subsurface‘s structure and the nature of the targets 

found.  

 When compared to other methods, the resistivity method has many 

advantages. The rapid data acquisition and the lower cost of the instruments than 

other methods are two of its benefits. Furthermore, the modern algorithms can provide 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

2.2 Ohm‘s law 

 

6 

 

an image of the resistivity distribution really fast, even in the field directly after 

gathering the measurements, while the interpretation of these results is relatively easy. 

 

2.2 Ohm’s law 

 

In 1827, Georg Simon Ohm defined the relationship between the potential 

difference ΓV and the electric current I by using a parameter characteristic of a 

conductor called resistance R. This relationship describes the flow of electricity 

through a single conductor with two ends and is given by the mathematical equation:    

        

  
  

 
                                                                     

                                       

Ohm's law states that the current passing through a conductor is directly 

proportional to the voltage across the two ends. The parameter R is defined as the 

ratio of the voltage to the current and its SI unit is Ohm (Ω).  

The resistance of a material depends not only on its nature but also on its 

shape and size. It is convenient to introduce a quantity that depends only on the nature 

of the material. This quantity is called electrical resistivity ξ. The electrical resistivity 

of a cylinder with cross section A, length L and resistance R is given by the equation:

  

  
  

 
                                                                   

 

where L is in meters, A is in square meters and R is in Ohms. The SI unit of resistivity 

is Ohm·meter (Ω·m).  

As mentioned above, the aim of the resistivity method is to find the 

distribution of the geoelectrical resistivity of the subsurface by measuring the 

potential difference due to flow of electric current into the ground. The measured 

voltage reflects the difficulty with which the current flows through the subsurface and 

thus gives an indication of the ground‘s electrical resistivity ξ. The reciprocal of 

resistivity (1/ξ) is called conductivity and represents the ease with which the current 

flows through the earth and is measured in Siemens per meter (S/m). 
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Figure 2.1: Electrical resistivity of a cylinder with resistance R, length L and cross 

section A. 

The potential difference is given by the equation: 

 

                                                                    

 

where E is the intensity of the electric field. By substituting this equation to 

equation (2.1), Ohm‘s law becomes: 

     

  
  

 
                                                                

The current density J is defined as the electric current per unit area of cross 

section: 

  
 

 
                                                                  

The substitution of equation (2.4) to this equation yields: 

  
  

  
                                                                

From this equation and the equation for electrical resistivity the generalized 

Ohm‘s law is derived: 

                                                                     

 The intensity of the electric field E is the gradient of the electric potential V 

and thus can be written as: 
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The minus sign denotes that the potential rise occurs when moving against the electric 

field. Ohm‘s law is now written as: 

      

                                                                    

 

By taking the divergence on both sides of this equation: 

 

                                                              

 

 Assuming that there are no sources or sinks into the medium, which is 

generally true for the earth‘s case, the divergence of the current density is zero: 

 

                                                                    

And thus: 

 

                                                                

 

From vector analysis, equation (2.12) can be written as: 

 

           
      

  
 

      

  
 

      

  
 

 

                                                           

 

This equation is one form of the so called Poisson‘s equation and governs the flow of 

electric current in an inhomogeneous ground. In case of an electrically homogeneous 

ground, where  ζ = 0, the equation becomes: 

 

                                                                 

 

This is called Laplace‘s equation and it applies only to homogeneous earth.  
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2.3 Poisson’s equation for homogeneous earth 

 

 As mentioned above Poisson‘s equation yields Laplace‘s equation for 

homogeneous earth. This equation can be used to find the potential at every point of 

the space while having a current point source on the surface of a homogeneous 

ground. Because of the spherical symmetry of the current flow, it is convenient to 

write the equation in spherical coordinates (r,ζ,θ): 

 

  

 

  
(  

  

  
)  

 

      

 

  
(    

  

  
)  

 

       

   

   
                    

where r is the distance from the source point. Also due to the spherical symmetry the 

derivatives with respect to the angles ζ and ς can be eliminated and thus the equation 

is reduced to: 

  

 

  

 

  
(  

  

  
)      

 

 

  
(  

  

  
)                                                               

By integrating: 

    

∫
 

  
(  

  

  
)    ∫      

 

  
  

  
   

  

  
 

 

  
                                                      

 

With further integration: 

∫
  

  
   ∫
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where C,D are constants.  

 Constant D equals zero because V should be zero when r reaches infinity. 

Since the medium is homogeneous, the current flows radially away from the point 

source. The equipotential lines form a hemisphere surface and the current flow is 

perpendicular to the equipotential surface. The current density J crossing the 

hemisphere surface of radius r is given by: 

 

  
 

    
                                                             

   
  

  
  

 

  
  

 

 
  

 

  
     

 

  
  

  

    
  

 

  
  

   
  

  
                                                                

 

 The substitution of C to equation (2.18) yields the equation of the potential at 

every point of a homogeneous space with a point source on surface: 

 

  
  

   
                                                                

 

Thus, the potential varies inversely with the distance from the source. The 

equipotential lines and the direction of the electrical current for a point source in a 

homogeneous ground are shown in figure (2.2). 

When the point source is within the homogeneous ground and not on the 

surface, the equation becomes: 
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For more than one source the potential is given as the sum of the individual 

potentials due to all the current sources: 

  ∑
   

    

 

   

                                                            

 

 In practice, at least two current electrodes are required, a positive and a 

negative current source, as a single electrode cannot introduce current into the ground. 

The positive electrode A sends current I into the earth and the negative B receives the 

returning current. The potential measured at a point P is thus the algebraic sum of the 

individual potentials due to each one of the two current sources: 

 

   
  

    
 

   

    
 

  

  
(
 

  
 

 

  
)                                    

 

where rA, rB are the distances from point P to electrodes A and B, respectively. 

 

 
Figure 2.2: The equipotential surfaces and the direction of the electrical current in 

case of a point source. 

 

 In order to measure the potential difference due to current flow two electrodes 

are needed as well. The two current electrodes could be used also to measure the 

potential but due to high contact resistances between current electrodes and the 

ground, two different electrodes are used. The contact resistance is the resistance that 
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current faces in order to be inserted into the ground due to small air gaps and is 

different from the resistivity, which is a physical property of the ground. 

 Therefore, in a resistivity survey four electrodes are used, two current (A and 

B) and two potential electrodes (M and N). The potential difference between M and N 

due to A and B will be: 

 

         
  

  
(

 

  
 

 

  
 

 

  
 

 

  
)  

  

  
                       

 

Solving the equation (2.25) for ξ: 

 

    
  

 

 

 
   

 

 
                                               

where: 

 ΓV = the potential difference 

 R = the resistance 

 I = the intensity of the current 

 ξ = the resistivity  

 AM, BM, AN, BN = the distances between the electrodes 

 G = the geometrical factor 

 The first term (R=ΓV/I) shows the resistivity‘s dependence on the 

geoelectrical structure of the subsurface, while the second term, called geometrical 

factor, shows its dependence on the way the electrodes are arranged. In case of a 

homogeneous ground, the equation (2.26) yields the true resistivity of the subsurface. 

 

2.4 Apparent Resistivity 

 

 Equation (2.26) is valid only when the ground is homogeneous. However, in 

reality the earth is non-homogeneous and thus, this equation does not yield the true 

electrical resistivity of the subsurface but an ―apparent‖ value of the resistivity, which 
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would be equal to the true resistivity if the ground was geoelectrically homogeneous. 

This value is called apparent resistivity and is denoted by ξα. Robinson (1988) 

describes the apparent resistivity as a weighted average of the true resistivities of the 

formations that constitute the subsurface. Although, this definition is by no means 

mathematically true, it is accepted when it comes to the interpretation of simple 

problems.   

 Therefore, this quantity does not represent the real but a distorted image of the 

geoelectrical structure of the subsurface and thus, the interpretation should not be 

made using the measurements of apparent resistivity, directly. Instead, the apparent 

resistivity measurements are used to retrieve the true resistivity distribution. This is 

achieved by a complex process called inversion, which is described in a later chapter. 

After inversion, the results can then be interpreted and information about the 

subsurface‘s structure can be acquired. 

 

2.5 Electrical properties of materials 

 

 The electric current can be conducted into the earth via three ways: 

 

 Electronic conduction: In this conduction the electric current is flowing via 

the crystalline structure (free electrons) of some materials, such as metals. This 

conduction is important when conductive minerals are present. 

 Electrolytic conduction: The electric current is propagating through the ions 

of the groundwater which fills the pores of the rocks or soil. It is the most 

common mechanism of conduction of the electric current in the ground. 

 Dielectric conduction: An alternating electric current can cause a cyclic 

movement in the ions of the crystalline structure of an electrical insulator. This 

movement produces secondary alternating current. This conduction is 

considered to be negligible.  

 

 The electrical resistivity is one of the most variable geophysical quantities due 

to the fact that it is dependent on a large number of factors. The most important 

factors are: 
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a) The porosity of the rocks and the possible fractures 

b) The amount of water 

c) The chemical composition and salinity of water 

d) Temperature and pressure 

 

 Since these parameters are very variable, a certain rock type can have a wide 

range of resistivity values, from a few Ohm·m to millions. Thus, similar formations 

can appear with completely different resistivities and different formations with similar 

resistivities, making it difficult to distinguish different rock types. Therefore, 

resistivity values cannot be correlated with certain lithological types and only relative 

conclusions should be made when interpreting the data. Prior information, such as 

geological data or data from other geophysical methods, should be used in order to 

achieve better interpretations.  

 

Material Resistivity (Ohm•m) Conductivity (S/m) 

Clay 1-100 0.01-1 

Alluvium 10-10
3
 10

-3
-10

-1
 

Sandstone 10-10
3
 10

-3
-10

-1
 

Limestone 10
2
-10

4
 10

-4
-10

-2
 

Granite 5·10
3
-10

6
 10

-6
-10

-3
 

Basalt 10
3
-10

7
 10

-7
-10

-3
 

Table 2.1: Typical resistivity values of different rock types. 

 

 Typically, igneous and metamorphic rocks have high resistivities, whilst 

sedimentary rocks have lower values due to the fact that they are more porous and 

have larger quantities of water. Unconsolidated sediments have even lower 

resistivities because the porosity is higher. Typical resistivity values of different rock 

types are shown in Table (2.1).  

 The resistivity of water ranges from about 0.1 to 200 Ohm·m depending on its 

salt content. Generally, low resistivities (<10 Ohm·m) are indicative of salted water, 

while 20-100 Ohm·m are typical values of potable water. Metallic minerals have 

extremely low resistivity values, usually lower than 1 Ohm·m. 
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2.6 Resistivity Arrays   

  

 There are many different ways to arrange the electrodes in a resistivity survey. 

The main feature of each array is its geometrical factor, which is uniquely related to 

the distances between the electrodes. In practice, only a few of them are being used as 

they have both theoretical and practical benefits, in contrast to others that have 

practical drawbacks despite their theoretical advantages. Most of the arrays offer an 

internal symmetry and the electrodes are placed across a line. 

 In each case, the choice of a specific array depends on the survey 

requirements, the targeted depth of investigation and resolution and the environmental 

setting of the area that the survey is taking place. The most widely used arrays are 

presented below: 

 

 a) Wenner: In this array the potential electrodes M, N are placed between the 

current electrodes A,B. The distances between adjacent probes are equal (α). Thus, 

the geometrical factor equals: 

 

  (
 

 
 

 

  
 

 

  
 

 

 
)  

 

 
                                          

 

By substituting this in equation (2.26) we get the apparent resistivity for the Wenner 

array: 

 

      
  

 
                                                        

 

 b) Schlumberger: The Schlumberger configuration is similar to Wenner. The 

potential probes are again placed between the current electrodes, but the distance 

between the current probes is much greater than the separation between the potential 

probes. If the distance between the current probes is 2L, then the distance between 

potential electrodes is 2l with L>>l and the apparent resistivity equals: 
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c) Dipole-Dipole: In this configuration the dipole with the current electrodes 

is placed at a large distance from the dipole with the potential electrodes. The 

separation of each dipole equals α, whereas the distance between them equals nα. This 

yields the following apparent resistivity: 

 

                 
  

 
                                        

 

 d) Pole-Dipole: In Pole-Dipole the potential electrodes are between the 

current electrodes, but one of the current electrodes is placed at a great distance from 

the other three. For instance, if the remote current electrode is B, then the distances 

BM, BN are considered to be infinite and as a result the terms 1/BM and 1/BN in the 

geometrical factor are considered to be negligible and are set to zero.  If the distance 

between the potential probes MN is α and the distance AM between current probe A 

and potential probe M is nα, then the apparent resistivity equals: 

  

            
  

 
                                              

 

 e) Pole-Pole: This array is similar to Pole-Dipole and is achieved by placing 

not only a current electrode but also a potential electrode, for example N, at a 

sufficient far distance from the remaining two electrodes. Therefore, the distances 

BM, BN and AN are considered to be infinite and if AM=a, the geometrical factor 

becomes the 1/α. Thus, this array has the same geometrical factor as the Wenner array 

and so, apparent resistivity is the same: 

 

      
  

 
                                                        

 

 f) Twin-probe: This is a variation of the Pole-Pole array and it is achieved by 

placing the two remote electrodes B and N closely together. The distance between 

these two electrodes is not considered infinite now and the apparent resistivity value 

becomes:
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Where b = distance BN. 

 

 g) Multiple Gradient: This is a relatively new array (Dahlin and Zhou, 2006). 

The potential electrodes are placed between the current electrodes. The current is 

injected by two electrodes with spacing (s+2)α and the potential differences between 

all the possible dipoles of potential electrodes with spacing α are measured 

sequentially.  As seen in Figure (2.3), the terms in geometrical factor for this array 

are:  

 

AM=nα                       

ΑΝ=(n+1)α                                                 (2.34) 

ΒΜ=(s+2-n)α 

ΒΝ=(s+1-n)α 

 

where s is the maximum number of potential measurements for a specific current 

injection.  

Each array has some benefits and some drawbacks when compared to the 

others. Due to the fact that they have different internal geometry, they are sensitive to 

different types of variation of the resistivity. For instance, Wenner and Schlumberger 

arrays are more sensitive to variations with depth, while the dipole arrays are more 

sensitive to lateral changes. Ward (1990) evaluated a number of resistivity arrays 

based on 14 criteria. The most important of them are shown in Table (2.2).   

 

Array S/N ratio Lateral Resolution Resolution with depth 

Wenner 1 4 1 

Schlumberger 2 3 1 

Dipole-Dipole 4 1 2 

Pole-Dipole 3 2 2 

Code: 1 = Best, 4 = Worst 

Table 2.2: Evaluation of the most widely used arrays using three criteria (after Ward, 

1990).  
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Figure 2.3: Widely used resistivity arrays: a) Wenner, b) Schlumberger, c) Dipole- 

Dipole, d) Pole-Dipole, e) Pole-Pole, f) Multiple Gradient 

 

2.7 Measuring Modes 

   
 There are three measuring modes used to acquire the resistivity data, 

depending on the desired type of resistivity variations (with depth, lateral or both). 

These are: Vertical Electrical Sounding (VES), Lateral Profiling and Electrical 

Resistivity Tomography (ERT).  

 

 a) Vertical Electrical Sounding (VES): With the VES technique the 

variations of resistivity with depth are located, considering the ground to be consisted 

of horizontal layers (1D survey). In this case the resistivity is assumed to change 
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vertically but not in the horizontal direction. This method is achieved by taking a 

series of measurements while keeping the distance between the potential electrodes, 

as well as the center of the array, fixed and increasing gradually the spacing between 

the current electrodes. While the spacing between the current electrodes is increased, 

the penetration depth is also increased and therefore, information about how 

resistivity changes in deeper parts of the subsurface, below the center point, is 

obtained. It is really difficult to define an absolute value for the penetration depth. In 

practice, it is assumed to be the 1/3-1/4 of the spacing AB between the current probes. 

For this method arrays with internal symmetry are used, with the Schlumberger array 

being the most common.  

Figure 2.4: Example of an apparent resistivity curve constructed from VES data for a 

two-layer model with resistivity ξ=10 Ohm·m and thickness d=10m for the first layer 

and ξ=100 Ohm·m for the half-space. 

 

While conducting a VES, the distance AB is constantly increasing, starting 

from a few meters to hundreds of meters or even reaching above one kilometer. The 

spacing between the potential electrodes remains fixed until the value of the potential 

becomes very small due to sufficiently great distance between the current probes. 
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Subsequently, the measured apparent resistivities are plotted versus the AB/2 

distances and thus, the apparent resistivity curve is constructed. 

An example of an apparent resistivity curve using the VES data is presented in 

figure (2.4). This curve corresponds to a two-layer model or one layer and half-space 

model. The resistivity and the thickness of the first layer are ξ=10 Ohm•m and 

d=10m, respectively and the resistivity of the half-space is ξ=100 Ohm•m. The 

penetration depth is approximately 60m, as shown from the graph. It is noted that this 

curve might correspond to other models as well.  

 b) Lateral Profiling:  In this method, a series of measurements are taken 

while keeping the distance between all electrodes fixed and moving the entire array in 

a lateral direction. Therefore, with profiling, only lateral changes in resistivity are 

located, at a fixed depth, as the spacing between the current probes remains steady. In 

this procedure the most frequently used arrays are Wenner, Dipole-Dipole and Pole-

Dipole.  

 
Figure 2.5: Example of an apparent resistivity curve constructed from lateral 

profiling data for a medium with resistivity ξ=30 Ohm·m with a smaller buried body 

with ξ=200 Ohm·m. 
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 An example of an apparent resistivity curve constructed from lateral profiling 

data for a medium with resistivity ξ=30 Ohm•m with a smaller buried body with 

ξ=200 Ohm•m is shown in figure (2.5). The curve starts with low resistivities 

depicting the effect of the conductive medium. While moving towards the resistive 

body, which is close to the center of the profile line, the resistivity values are 

increasing, showing that the measurements are taking into account the effect of the 

resistive body, too. When moving away from this body, the resistivity is decreasing. 

The penetration depth is equal to the depth of the bottom surface of the resistive block 

and remains constant.  

 c) Electrical Resistivity Tomography (ERT): The electrical resistivity 

tomography is actually a combination of VES and profiling methods. With this mode 

information about changes in resistivity with depth, as well as about lateral changes is 

acquired and thus, the limitations of the previous measuring modes are overcome. The 

geoelectrical model of the subsurface is now considered to be two-dimensional (2-D), 

which is more accurate. 

 Figure (2.6) shows an example of a sequence of measurements using 20 

electrodes and the Wenner array. First, all the possible measurements with a probe 

spacing of ―1a‖ are made. The first measurement (data 1 in Figure 2.6) is collected 

using the electrodes with number 1, 2, 3 and 4, as shown in the figure. Electrodes 1 

and 4 are used as current electrodes, while electrodes 2 and 3 are used as potential 

electrodes. For the second measurement, electrodes 2, 3, 4 and 5 are used as A, M, N, 

and B, correspondingly. After collecting all the measurements with spacing ―1a‖, the 

next sequence with spacing ―2a‖ is made. The electrodes 1, 3, 5 and 7 are used for the 

first measurement (data 18 in Figure 2.6) with spacing 2a. This process is repeated 

until all the possible measurements for all the possible spacings are obtained. It is 

obvious that as the spacing between the electrodes increases, the number of data 

decreases. In practice it is really important not to use an electrode that has been used 

as a current electrode as a potential electrode in a short time frame, in order to avoid 

electrode polarization effects. Thus, the sequence of measurements should be chosen 

carefully. 

ERT is the most widely used technique today. One of the main features of this 

method is that a large number of data is obtained. The recent advances in the 

instrumentation allowed the rapid collection of this large amount of measurements, 
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which can be processed with the efficient interpretation algorithms that have also been 

developed the last decades.  

 

 
Figure 2.6: Electrical Resistivity Tomography survey. 

  

 The interpretation of the ERT data is commonly carried out by advanced 

algorithms called inversion schemes, which reconstruct reliably the image of the true 

resistivity distribution. These schemes will be presented analytically in the following 

chapters. 

 

2.8 Resistivity Instrumentation  

 

 Electrical Resistivity Tomography surveys are usually carried out using a large 

number of probes, 20 and more, which are connected to a multi-core cable. The 

instruments used to measure the resistivity are called resistivity meters. These 

instruments measure the resistance R, which is the ratio of the voltage to the intensity 

of the inserted current. Subsequently, the apparent resistivity is found. 

 The resistivity meters contain an internal microprocessor, which along with a 

switching unit is used to select the four (or more for modern instruments) electrodes 

for each measurement. The type of the array, the sequence of measurements and other 

parameters of the survey are transferred within the resistivity meter from a computer. 
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The design of the measuring system is different on each instrument, depending on the 

purpose of the survey. For instance, archaeological problems require a system with 

different specifications from geological applications (e.g. small output voltage is 

required for shallow surveys in archaeology, whereas large output voltage is required 

to reach greater depths in geological applications). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

2.8 Resistivity Instrumentation  

 

24 

  

  



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

    

25 
 

3. RESISTIVITY INVERSION PROBLEM 

 

 In this chapter the resistivity inversion problem is addressed. Inversion 

schemes are used in order to find the true distribution of the subsurface‘s resistivity 

and provide an accurate interpretation of the data. The theoretical background and the 

basic elements of the inversion are discussed. In addition, the limitations of this 

method are presented. 

 Before addressing the inverse problem, the forward problem is introduced, as 

the solution to the forward problem is essential for finding a solution to the inverse 

problem.  

 

3.1 Forward Problem 

 

 Generally, the forward problem (forward modelling) is the procedure of 

obtaining the measurements, while the model is known. In case of resistivity, it is the 

process of finding the potential differences, due to current injection, of a known 

resistivity distribution. In other words, it is the solution of the equations that govern 

the flow of the electrical current into the subsurface for a particular resistivity 

distribution and current source in order to find the potential distribution and thus, the 

apparent resistivities that respond to this specific model. The model is an idealized 

mathematical representation of a part of the earth. It has a set of parameters, which are 

physical quantities. For the resistivity method, these parameters are the resistivity and 

thickness of each layer. 

 Many different methods of solving the forward model have been developed. 

These are divided into two categories, the analytical and the numeric approach: 

 

 a) Analytical approach: In the analytical approach, the field equations are 

directly solved. The formulation of these equations is difficult due to their complexity 

and thus they are not used in practice.  Fully analytical methods have been used only 

for simple cases, such as a sphere in a homogeneous medium. 

 

 b) Numerical approach: For an arbitrary resistivity distribution, which exists 

in reality, numerical approaches are used. The numerical techniques are subdivided 
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into two categories. The first one is based on differential methods and the other on 

integration methods. 

 In case of 1-D survey, the filter method (Koefoed, 1979) is used to solve the 

forward problem, whereas for the 2-D and 3-D cases, the finite element method and 

the finite difference method are used.  

 The forward problem can be denoted as: 

 

                                                                       

 

where: d={d1,d2,…,dM} is a vector with M elements, which contains the observed 

apparent resistivities 

           x={x1,x2,…,xN} is a vector with N elements, which contains the model 

parameters, that is resistivity and thickness for the resistivity case and 

 T is the transformation equation used to find the response to the model x. 

 

 

 
Figure 3.1: Forward Problem. 

 

3.1.1. 1-D Resistivity Forward Modeling  

 

 For the 1-D case, where the subsurface is assumed to be consisted of 

horizontal layers, Stefanesco (1930) expressed the potential due to a point source of 

current in the form of a Hankel integral, which is a product of a Bessel function and a 

function dependent on the layer parameters called the kernel function. Koefoed (1968) 
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modified his solution by introducing a new function called the resistivity transform, 

which is related to the kernel function. Using the Schlumberger array in Koefoed‘s 

method, as it is the most commonly used in soundings, the apparent resistivity ξα is 

given by the equation: 

 

   (
  

 
)
 

∫        (
  

 
 )                                        

 

 

 

 

where AB is half the electrode spacing 

 J1 is the first-order Bessel‘s function of the first kind 

 ι is a Hankel transform variable and  

 T1 is the resistivity transform 

  

 The resistivity transform, which is a function of the layer parameters only, can 

be calculated recursively as: 

 

     
                   

                    
                                        

 

where ξi and ti are the resistivity and the thickness of the i layer, respectively. For the 

half-space TΝ=ξN, where N is the number of layers. 

 It is common to use the linear filter method (Ghosh, 1971; Koefoed, 1979) in 

order to evaluate the equation for the apparent resistivity and thus equation (3.2) can 

be rewritten as: 

  

   ∑                                                            

 

 

 

where fK are the coefficients of the filter and K is the number of coefficients. 

 

3.1.2 2-D Resistivity Forward Modeling  

 

 In the 2-D case, the forward problem needs to be discretized and solved at 

certain points. The most popular methods, which achieve this, are the Finite Element 
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Method (Pridmore et al, 1981; Sasaki, 1994; LaBrecque et al, 1996; Tsourlos and 

Ogilvy, 1999; Pain et al, 2002; Yi et al, 2001) and the Finite Difference Method (Ellis 

and Oldenburg, 1994; Park and Van, 1991). Both methods subdivide the subsurface 

into different regions.  

 In the Finite Difference Method (FDM) the subsurface is subdivided into 

rectangular cells. Each cell is related to a point to which a resistivity value is 

attributed. Therefore, a grid of distinct points is formed at which the potential must be 

calculated.  

In the Finite Element Method (FEM) the area is subdivided into elements, in 

which the unknown potential is approximated by simple interpolation functions linked 

to specific points of the element called nodes. 

 

 

Figure 3.2: Example of a finite element mesh. 

 

One advantage of this method compared to FD is that FEM can handle 

structures with irregular shape, which is of great importance as the resistivity is 

sensitive to topography. The elements share common nodes and thus, the element 

equations can be combined into a single set of linear equations, which will have the 

form: 
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where K is the stiffness matrix (which contains the nodal coordinates)  

           V is matrix containing the nodal potential, and  

           F contains the current sources and boundary terms. 

 

 By solving this system of equations, the vector V with the potential at each 

node, can be obtained. 

  

3.2 Inversion Procedure 

 

 Now that the forward problem has been introduced, the inverse problem can 

be defined. Inversion is exactly the inverse process of the forward problem: to find a 

model that responds to given measurements. In case of resistivity, that is to find the 

true resistivity distribution of the subsurface given the data-set with the apparent 

resistivity measurements that are collected through a geophysical survey. The inverse 

problem can be defined as: 

                                                                   

 

where T
-1

 is the inverse transformation function.  

 The purpose of inversion is to find a geoelectrical model that gives a response 

that best fits the observed apparent resistivities. The model generates synthetic 

measurements by solving the forward problem and thus having a robust way of 

solving it, is needed.  

 Equation (3.6) cannot be solved with inversion directly due to its non-

linearity. In order to handle this problem, the inversion schemes use an iterative 

process. A typical algorithm starts by defining an initial resistivity model xo, which is 

consecutively corrected through the iterative process until the synthetic data that 

correspond to this model f(x) fit the observed data d. Assuming a really small change 

in resistivity, dx, we can expand f(x) in Taylor series: 

 

                
      

   
           

                              

  

where O((dxi)
2
) represents the higher order terms and N is the number of the model 

parameters. Because dx is considered to be a very small change, the higher order 
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terms can be neglected. The term ∂f(xi)/∂xi expresses the Jacobian matrix with 

dimensions MxN, which will be discussed in a following section. Hence, equation 

(3.7) can be rewritten as: 

 

                                                                    

 

Thus, an iterative scheme can be defined as: At first an initial model xo is 

chosen and its forward response is calculated. Afterwards, the degree of fit between 

the observed and the calculated data is found. If this degree is satisfying or any of the 

other stopping criteria is met, the iteration procedure terminates. Otherwise, the 

correction of the model dxk is calculated, where k is the iteration number, and this 

correction is added to the previous model, that is xk+1=xk+dxk. Then, the forward is 

calculated for the new model and the iterations continue until one of the stopping 

criteria is satisfied.  

 
Figure 3.3: Graphical representation of the inverse problem. An initial model, xo, is 

corrected through iterations until an optimal model, x*, is reached, which produces 

synthetic data, d
calc

, that best fit the observed data, d
obs

. The observed data is the 

response of the unknown true model x. 

 

3.3 Problems in inversion  

 

 Most inverse problems in geophysics belong to the category of ill-posed 

problems. According to Hadamard (1902) a problem is well-posed if: 
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 It has a solution 

 The solution is unique 

 The solution changes proportionally to the initial conditions 

 Based on these three conditions, the inversion schemes have to handle the 

following three problems: 

 

 a) Existence of a solution: It is possible there is no model that can fit the data, 

that is that the forward calculation cannot result to similar apparent resistivities with 

the observed data. This might be due to noise in the data and the error of the model or 

due to the method used to find the model.  

 b) Uniqueness of the solution: If a solution exists, this might not be the only 

one. Many models could fit the same data-set.  

 c) Instability of the solution: Inversion is an ill-posed procedure, meaning 

that small changes in the data could lead to great changes in the model obtained by the 

solution. As a result, the acquisition of accurate data is of great importance.  

 

3.4 Stopping criteria 

 

 As mentioned above, in the inversion procedure the degree of fit between the 

observed and the synthetic apparent resistivities needs to be found. This is done by 

calculating the relative Root Mean Square (RMS) error, which is given by the 

following equation: 

    √
 

 
∑

   
      

      

   
     

 

   

                                        

where di
obs

 are the real measurements, di
calc

 are the synthetic measurements and M is 

the number of data. In an iterative process, like inversion, the RMS error can be used 

as a stopping criterion. Specifically, the inversion terminates if one of the following 

criteria is met: 

 a) Divergence: The iteration algorithm terminates if the relative RMS error 

between the synthetic data resulting from the inversion and the real data increases in 
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the next iteration. Divergence is observed rarely, mostly in cases where the noise in 

the data is great or due to very wrong choice of lagrange multiplier, which is used to 

control the constraints in the inverse problem and will be discussed in a later chapter. 

 b) Small improvement: The procedure stops if there is no significant 

improvement in the error between calculated and observed data in the next iteration, 

meaning that the RMS decreases at a small rate. It is true that the iteration procedure 

could be continued, but it is possible for the synthetic data to fit the noise and not the 

actual useful information. 

 c) Maximum number of iterations:  Inversion terminates if the predefined 

maximum number of iterations is reached.  

 

3.5 Jacobian Matrix  

 

 From equation (3.8), it is obvious that the use of a matrix with first-order 

derivatives is necessary. This matrix is called Jacobian matrix J and it is necessary for 

most inversion schemes. Jacobian matrix relates the changes in the model parameters 

with the changes of the observed data. It is also called sensitivity matrix, as it depicts 

the sensitivity of the apparent resistivity measurements to small variations in the 

model parameters. 

 If M is the number of measurements, d, and N is the number of the model 

parameters, x, then the Jacobian matrix J has M×N dimensions and its i,j elements are 

given by: 

    
   

   
                                                             

 

 If the observed data are apparent resistivities, equation (3.10) can be rewritten 

as: 
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where ξα is the apparent resistivity 

ξ is the model parameter 

G the geometrical factor 

I the current intensity 

ΓV the potential difference and  

ζ the conductivity. 

 

In matrix form, equation (3.11) can be written as: 

 

  

[
 
 
 
 
 
 
 
    

   

    

   
 

    

    

    

   
  

    

   

    
    

   

    

   
 

    

   ]
 
 
 
 
 
 
 

                                    

 

 Generally, there are three methods that can be used to calculate the Jacobian 

matrix (McGillivray and Oldenburg, 1990): a) The sensitivity method, b) The adjoint 

equation method and, c) The perturbation technique. In this thesis the perturbation 

method, which is presented in the following section, was used. 

 

3.5.1 The Perturbation Technique 

 

 The perturbation approach gives an approximation of the sensitivities using a 

finite-difference formula. The computation of this approximation of the Jacobian is 

simple and gives an indication of how the model parameters affect the measurements. 

 At first, in order to calculate the Jacobian, a resistivity model ξ is assumed and 

the forward response for this model is calculated ξαi. Then, one of the model 

parameters is changed by a very small amount Γξ, while the others are kept as it is, 

and the forward response ξαi(ξ+Γξ) for this model is calculated. This shows the 

degree to which the synthetic measurements will change due to changes in the model 

parameter. This procedure is repeated for every parameter, changing only one 

parameter each time, until all the elements of the matrix have been calculated. 
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Afterwards, the Jacobian matrix can be used for the correction of the previous model. 

The ij element of J is given by the equation: 

 

    
    

   
 

   (     )        

   
                                      

 

The amount of change Γξ is chosen arbitrary but it should be chosen carefully 

in order to avoid errors and to meet the conditions of the first derivative. 

Geometrically, the derivative can be viewed as the slope of the tangent of a function 

at a point. The slope of the tangent is very close to the slope of the line passing 

through this point and a nearby point at a distance Γξ from the former point. The 

closer the point, the better the approximation to the derivative and thus a small Γξ is 

required for an accurate approximation. 

Figure (3.4) illustrates an example of a Jacobian matrix for the 1D resistivity 

case. The 1-D model consists of 2 layers and the half-space and therefore, the model 

parameters are 5; 3 resistivities and 2 thicknesses, as the half-space is considered to 

have infinite thickness and thus, is not accounted for as a model parameter. 

 
Figure 3.4: Example of the Jacobian matrix for a 1-D model with 3 layers (2 layers 

and half-space) and five parameters. 

  

3.6. Inversion Methods  

 

 Several schemes have been suggested for solving the resistivity inversion. 

These are divided into two categories, the approximate and the accurate inversion 

techniques: 
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 a) Approximate inversion methods: These methods simplify the inverse 

problem by assuming that it is linear. Some of them are the pseudosection technique, 

the Zhody method (1975) and back-projection techniques. As these algorithms have 

been overcome by more accurate techniques and also due to their weaknesses since 

they are approximate methods, they are no longer used. 

 b) Accurate inversion methods: These schemes treat the inversion as a 

nonlinear problem, which is actually the case. The most widely used are: the non-

linear least-squares method (Lines θαη Treitel, 1984), the SVD technique (Lanczos, 

1960; Lawson and Hanson, 1974), the weighted least-squares method, Marquadt‘s 

method (Levenberg, 1944, Marquadt, 1969) and the smoothness constrained (Occam) 

method. These techniques use the least-squares method to solve the inverse problem 

but there are other schemes, such as the L1-norm minimization, that do not use the 

least-squares method.  

 In this thesis, the smoothness constrained (Occam) inversion, which is the 

most popular, was used. This method is presented in detail in the following section. 

 

3.7 Smoothness Constrained (Occam) Inversion 

 

3.7.1 Basic Principles 

 

 The smoothness constrained inversion (also called Occam) was proposed by 

Constable et al. (1987), who applied it to 1D VES and magnetotelluric (MT) data. 

This method imposes the smoothness of the solution as a constraint to the inverse 

problem. The use of that kind of constraint belongs to a category of techniques known 

as regularization techniques of the ill-posed problems, and more specifically it 

belongs to the Tikhonov regularization (Tikhonov, 1963).  

 This method generates the solution with the smallest possible roughness. 

Meaning that the smoothest model is sought, which would depart from the simplest 

case only as much as it needs in order to fit the data. The major advantage of this 

technique, when compared to other methods, is that it does not depend on the choice 

of the initial model. The smoothness inversion might not yield the best solution, but 

its solution will have a physical meaning and thus, it will be a reasonable 

representation of the earth. In addition, smoothness guarantees the stability of the 
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solution and the solution is dependent on the predefined characteristics that were 

chosen.  

 The non-linear problem of the resistivity can be defined as: 

 

                                                                     

 

where y are the observed data, that is the apparent resistivities, x is the unknown 

resistivity distribution and f(x) is the forward problem, which is a known function of 

the model. As mentioned in a previous section, the function f(x) can be expanded in 

Taylor series and ignoring the higher-order terms, the following equation is derived: 

 

                                                                

 

where dx is the model correction and J is the Jacobian matrix. 

 The regularization procedure aims to minimize the error between the observed 

and the synthetic data. The least-squares method seeks to find the resistivity 

correction dx for which the sum of squared errors, e, becomes minimum. The e is 

given by the relationship: 

 

  (      )
 
(      )                                           

 

 In order to achieve the minimization of e, its derivative with respect to dx is 

set equal to zero: 

  

  

   
                                                              

 

 The differentiation with respect to dx yields the equation: 

 

                                                                   

 

 Assuming that the matrix J
T
J is non-singular, that is it has an inverse matrix, 

the correction of the model is given by the equation: 
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 This correction is given by the method known as least-squares method or 

Gauss-Newton method. In the smoothness constrained method, where the model 

roughness must be also minimized, a constraint is imposed to the problem and thus, 

the following quantity is minimized: 

 

   ‖     ‖     ‖  ‖                                               

 

where C is the smoothness matrix, ι is the lagrange multiplier and x is the matrix with 

the resistivity model parameters. The second term accounts for the smoothness 

sought, while the degree of smoothness is controlled by ι which will be described in a 

later section. 

 Including the smoothness term, the correction of the model is given by the 

relationship: 

  

                                                                

 

where dy is the difference between the observed and the calculated data (d
obs

-d
calc

). 

 Therefore, the new model is obtained by adding the correction of each 

iteration to the previous model: 

 

                                                                   

 

where k is the iteration number. 

 Equation (3.21) yields the model correction with smoothness applied only to 

the model changes. This is the standard smoothness constrained inversion. Another 

type of inversion is applying smoothness, not only to the model changes, but also to 

the model itself. This is similar to the previous type, but includes an additional 

smoothness term. For this type, the new model is given by the equation: 
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This type of model correction produces a smoother model than the first option but it 

converges to higher RMS error. It is suitable only in cases of extremely noisy data. 

 

3.7.2 Smoothness matrix 

 

 The minimization of the roughness is achieved using the smoothness matrix C. 

This matrix defines the relationships between adjacent parameters in the model. If N 

is the number of the model parameters, then the smoothness matrix has NxN 

dimensions. 

  For the 1D case the model roughness can be expressed as: 

 

   ‖  ‖                                                                 

 

where the smoothness matrix C differences the model parameters vertically. This 

equation corresponds to a first derivative penalty. Every row in the smoothness matrix 

refers to one specific parameter and how that parameter is related to its adjacent 

parameters and is given by: 

 

  

[
 
 
 
 

     
      
      
     
      ]

 
 
 
 

                                          

 

The elements of the matrix take value -1 for the parameter itself and 1 for the 

parameters on which it depends, whereas all the other elements are set to zero. For the 

2D case where the resistivity is considered to change both laterally and with depth, 

the model roughness can be expressed as (deGroot and Constable, 1990): 

 

   ‖   ‖   ‖   ‖
 
                                               

 

where Cx and Cy are NxN smoothness matrices that difference the model parameters 

laterally and vertically, respectively. Again, this expression is for a first derivative 
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Figure 3.5: Example of a regularization mesh of the model parameters. Np denotes the 

number of parameters. 

 

penalty. An example of the Cx and Cy matrices, based on the regularization mesh of 

the model parameters shown in figure (3.5) and numbering the parameters from top to 

bottom as shown in the figure, is given by: 
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      ]

 
 
 
 

            

 

where yP is the number of columns in the mesh. These two matrices can be combined 

to form the total smoothness matrix C. Using a second derivative penalty, the model 

roughness for the 2-D case is expressed as: 

 

       ‖  
  ‖

 
  ‖  

  ‖
 
                                                

 

Figure (3.6) illustrates an example of the total smoothness matrix using a second 

derivative penalty and a model of 9 parameters. In each row, corresponding to a 

specific parameter, the element that refers to this parameter will have a value of -4, 

6
th

 parameter 
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while its neighbors will have value of 1 and all other elements will be equal to zero. 

For instance line 5 corresponds to the 5th parameter and has value -4 for itself and 1 

for its adjacent parameters. 

 

 
Figure 3.6: An example of a smoothness matrix using a second derivative penalty for 

the 2-D case and a model with 9 parameters (Tsourlos, 1995). 

 

3.7.3 Lagrange Multiplier 

 

 When a constraint must be imposed to a problem, the lagrange multiplier ι is 

used. In this case it is used to controls the degree of smoothness in the solution. One 

of the problems in the smoothness inversion procedure is to decide the suitable value 

of ι in order to balance the minimization of the error and the amount of smoothing. 

Large values lead to very smooth models, whereas very small values make the effect 

of smoothness small and as a result the solution becomes unstable. 

Many methods of finding the value of the lagrange multiplier have been 

suggested. One of these methods is to start the inversion with a relatively high value, 

in order to avoid instability, and to decrease it gradually at each iteration as the 

solution converges. Another approach is the L-curve method (Lawson θαη Hanson, 

1974), which uses the angle of a curve to calculate ι. Specifically, the solution for 

many values of ι is calculated and then a plot of the ǁxǁ
2 

versus ǁJx-yǁ
2
, in log scale, is 

made. The resultant curve has a shape similar to the letter L. The value corresponding 

to the angle of L is considered to be a suitable lagrange multiplier for the given 

problem. Here the symbol ǁ·ǁ denotes the Euclidean norm. 
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The Active Constrained Balancing method (ACB) by Yi et al. (2003) follows 

a different approach and treats the lagrange multiplier as a spatial variable. In order to 

achieve this, the resolution matrix and the Backus-Gilbert spread function are used. 

The resolution matrix R shows how well resolved or not, the parameters of the 

model are and it defined as: 

 

                                                                

 

 Each row of R corresponds to a single model parameter. If this parameter is 

perfectly resolved, the matrix element for that parameter should have value of one and 

zero for all the other elements on the row corresponding to his parameter. In contrast, 

if a parameter is not well-resolved, there will be values different from zero in other 

elements in the corresponding row. In any case, the sum of all the matrix elements in 

one row should be equal to one. An example of the resolution matrix for a model with 

four parameters is shown below: 

 

  [

    
            
            
            

] 

 

where the first parameter is perfectly resolved as shown in the first row, whereas the 

others are not that well resolved. 

In practice, the resolution of the model is satisfactory if the entries in the main 

diagonal take values close to one and the other elements close to zero. Figure (3.7) 

shows a graphical representation of the divergence of the synthetic model from the 

real model. Great divergence of the peaks from the main diagonal depicts a model 

with poor resolution. 

 The Backus-Gilbert spread function is used in order to evaluate the spatial 

distribution of each row, corresponding to one parameter, of the resolution matrix. 

The spread function SP for the ith parameter is given by: 

 

    ∑{             }
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where N is the number of parameters 

          w is a weighting factor depending on the spatial distance between two 

parameters i and j 

          S is a matrix used to incorporate the effect of smoothness 

The element Sij of the matrix S takes value of one if the corresponding element Cij in 

the smoothness matrix C is nonzero, and zero otherwise. A large value of the SP 

function for a parameter means that it is poorly resolved and vice versa.  

 Using the lagrangian multiplier as spatial variable results from the fact that the 

model parameters are not equally resolvable and thus, different smoothness constraint 

needs to be applied to each parameter. In ACB, first the minimum and maximum 

values, that the multipliers can take, are chosen. Next, the spread function is 

calculated for a very small value of the lagrange multiplier. The spatially varying 

lagrangian multipliers ι (xi, yi, zi) using the spread function are given by the equation: 

 

                   
                   

                     
 {                   }        

 

where ιi is the lagrange multiplier for the ith parameter, ιmin and ιmax are the min and 

max limits of the multiplier, correspondingly and SPmin and SPmax are the lower and 

upper limits of the SP function, respectively. If the SP function has a large value for  a 

 
Figure 3.7: Graphical representation of selected rows of the resolution matrix. This 

plot indicates how well the data can be resolved. Peaks occurring near the main 

diagonal (dashed line) of the matrix show a good resolution (after Menke, 1989). 
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specific parameter, meaning that it is poorly resolved, the ACB method assigns a 

large value of ι to that parameter.  

 

3.8 2D Inversion Schemes 

 

 Most 2D inversion techniques use the smoothness-constrained method, as 

mentioned above, and the FEM or FDM as forward solvers. The area is subdivided in 

a large number of regions. The positions of the regions remain fixed and only the 

resistivities are allowed to vary in the inversion and therefore, the resistivities are the 

parameters of the model. In this case a 2D smoothness matrix is used, defining 

relationships between a parameter and its north, south, west and east adjacent 

parameters. One of the limitations of the 2D smoothness inversion, which is an L2-

norm method, is its inability to resolve sharp layer interfaces, as it produces models 

with smooth structure. Using a robust inversion technique (L1-norm), the model takes 

a blocky appearance but still the layer interfaces are not clearly resolved. 

 Recently, the laterally constrained inversion (LCI) method (Auken and 

Christiansen, 2004) has been suggested, in order to overcome the limitation of the 

previous methods to resolve sharp layer boundaries. The LCI method is the subject of 

this thesis and it is presented in the following section. 

 

3.9 Laterally Constrained Inversion (LCI) 

 

 In the Laterally Constrained Inversion (LCI) the electrical resistivity 

tomography is subdivided into soundings based on the spatial sensitivity of each 

apparent resistivity measurement. The LCI inverts the series of soundings as one 

system and produces a series of 1-D models through the inversion. The neighboring 

models are connected together using lateral constraints between the parameters of the 

models, as shown in figure (3.8) for a system with 3 models. Due to these constraints, 

information from one model will spread to the adjacent ones. The parameters of the 

whole system are the resistivities and thicknesses of the layers of each model. 
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Figure 3.8: The LCI scheme for a system with three 1-D models. The data-sets are 

inverted as one system simultaneously by imposing lateral constraints (Cξ1, Ct1, …, 

Cξ3) between the models. 

 This method is robust to the choice of the initial model and results to a 

pseudo-2D section with sharp layer interfaces. Although the LCI technique has 

overcome the limitation of the 2D smooth-structure inversion to resolve sharp 

boundaries, it should not be considered as a substitute to this method, but as a 

supplement which can provide valuable information. Therefore, the combination of 

these two techniques will enhance the accuracy of the interpretation of the data and 

result to a better resolved model.  

 

3.9.1 Methodology 

 

 Consider a set of ERT data divided into Ns soundings. Concatenating the data 

belonging to each sounding, the vector dobs is formed: 

 

                                                               

 

where ξαi is the data-set of apparent resistivities corresponding to the ith sounding. 

Each sounding corresponds to a 1-D model with equal number of parameters. The full 

model is presented as: 

  

(

 
 

  

  

  

 
   )
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The mi corresponds to a specific ith model and is represented as: 

 

                                           
                       

 

where ξ is the resistivity, t is the thickness, N is the number of layers and T denotes 

the transpose matrix. 

The LCI scheme solves the forward problem for each one of the 1-D models 

separately with 1-D calculations using the filter method, as previously described. 

Using this 1-D formulation, this scheme can locate sharp layer boundaries by making 

the assumption of the layered earth. This solution is very effective in sedimentary 

environments. In cases where the subsurface is disturbed by geological phenomena or 

a layered appearance exists but with significant 2-D structures, the 1-D solution will 

not produce the optimum results. To reconstruct these complex structures a 

modification to this scheme must be made. This is achieved by using a 2-D forward 

solver such as FEM or FD.  

Then, the jacobian matrix, for each one of the models, is calculated, and all the 

separate matrices are combined to a single matrix J for the total system. This matrix 

has the individual jacobian matrices on its main diagonal and zero in every other 

element. It is given by: 

  

[
 
 
 
  

  
 

   ]
 
 
 
                                              

 

where Ji is the Jacobian matrix for the ith model. 

Similar to the smoothness constrained method, the smoothness matrix is used 

to connect the adjacent 1-D models by imposing lateral constraints between the 

parameters of the separate 1-D models. Figure (3.9) demonstrates four cases of 

applying constraints. These cases are the vertical, the lateral, both vertical and lateral 

and the last case also includes diagonal constraints, which will have as a result for the 

center parameter to be dependent on its 8 adjacent parameters.  Normally, only lateral 

constraints are used in the LCI scheme, but vertical can be used as well to connect 

parameters in the same model. When only lateral constraints in the x direction are 

implemented, a single smoothness matrix Cx is used, which can take the form: 
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[
 
 
 
 
 
 

        
        

          
         
        
        
         ]

 
 
 
 
 
 

                                           

 

If Ns is the number of models, N is the number of layers at each model and assuming 

the parameters of the model are both resistivities and thicknesses, then Cx has 

dimensions Ns∙(2N-1) x Ns∙(2N-1). Each row of this matrix corresponds to one model 

parameter and takes 1 for the parameter itself and -1 for the laterally adjacent 

parameter. If vertical constraints in the z direction are also applied, a second 

smoothness matrix Cz is required, which may be given by: 

 

 
 

Figure 3.9: Cases of imposing constraints: a) Vertical, b) Lateral, c) Both vertical and 

lateral, d) Including diagonal constraints. 
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[
 
 
 
 
      
      
    
    
        ]

 
 
 
 

                

[
 
 
 
 

      
      
      
      
       ]

 
 
 
 

             

 

where Czi corresponds to the smoothness matrix with the vertical constraints for the 

ith model and has dimensions (2N-1)x(2N-1). 

The models are inverted as one system and in this case, the correction dx of 

the full model for the system would be given by:  

 

          (  
      

   )  
                                     

 

Different weight can be applied for the horizontal and vertical constraints by 

introducing two constant factors αx and αz, resulting in the following model 

correction: 

          (    
        

   )  
                                  

 

In this case, all horizontal constraints have equal weight αx and all vertical constraints 

have equal weight αz. Different weight on each horizontal and vertical constraint can 

be applied using the weighting matrices Wx and Wz, that contain the weights for each 

component of the lateral and the vertical smoothness matrix, respectively: 

 

          (  
        

     )  
                                 

 

For the LCI scheme a small or even zero weight should be given to the vertical 

components. Finally, the output of the LCI is a profile of multiple models, which are 

plotted to produce a pseudo-2D graph. 
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4. MODIFIED LATERALLY CONSTRAINED INVERSION 

SCHEME 

 

 In this chapter a description of a modified LCI scheme, which was developed 

through this thesis and implemented in code, is presented. Modifications were made 

to the LCI scheme compared to previous work, which resulted in a more accurate 

inversion solution. The changes, the algorithm that lies behind the LCI software and 

its capabilities, as well as, its limitations will be discussed and examples of testing the 

scheme with both real and synthetic data will be presented. The results of the LCI 

method will be compared with the results from a 2-D smooth-structure algorithm 

using the software DC2DPRO (Kim 2017). All synthetic data in this thesis were 

produced using DC2DPRO. 

 

4.1 Discard low-information VES 

 

Figure (4.1a) shows an example of a typical sequence of ERT measurements. 

At first, these data are divided into soundings based on the center of each 

measurement, as illustrated in figure (4.1b), resulting in 18 different soundings for 

this example. 

As the spacing between the electrodes increases, the number of measurements 

decreases and thus, the soundings which are closer to the center of the profile will 

have a greater number of data, whereas those that are close to the boundaries of the 

profile will have limited data. It is obvious that at the boundaries of the tomography, 

the small number of measurements is not adequate to form a sounding. These data 

represent a small part of information which cannot be used to give accurate inversion 

results and therefore, they are discarded and only the remaining are used for the 

inversion as shown in figure (4.1c). Although this means that smaller part of 

information and therefore, smaller covered area, than the original will be used, this 

part will produce more accurate results through the inversion. 

Before applying the scheme the algorithm was tested without removing any of 

the data and although the inversion produced correct results for most of the profile 

area, the final models acquired for the soundings near the boundaries were erroneous 

due to the lack of information at great depths in this area. An example is shown in 

figure (4.2). Synthetic data were produced for a model that consists of 2 layers and 
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half-space with 50, 10 and 100 Ohm∙m, respectively. Figure (4.2b) illustrates the 

results using all data in the inversion, while figure (4.2c) when discarding VES with 

small number of measurements. It is obvious that at the boundaries of the domain the 

solution is incorrect when using all data due to the lack of information, whereas after 

discarding the VES, the inversion resulted in a more accurate model showing clearly 

the layered structure. 

 

Figure 4.1: a) A typical sequence of ERT measurements b) ERT divided into 

soundings c) Discard VES with low-information.  

After removing these data, the column vectors with the electrode spacings and the 

apparent resistivity measurements are reformed and sorted by sounding order such as: 
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where ξα1 denotes the data-set for the 1
st
 sounding, ξα2 for the 2

nd
 and so on, and AB2 

and MN2, are the distances between current and potential electrodes, respectively, 

which are formed in the same concept as the apparent resistivities. All datasets used in 

the following chapters have been processed to discard the VES with a small number 

of measurements before inversion. 

 

Figure 4.2:  a) Model used to produce the synthetic data. b) LCI using all data. c) LCI 

without including soundings with low-information/small number of measurements. 
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4.2 Modification of smoothness matrix 

 

The second change was a modification of the smoothness matrix. In the 

inversion method not only the resistivities but also the thicknesses of each layer 

change through the iterations. The thicknesses can also remain fixed and therefore, no 

changes will be required in the smoothness matrix and only the resistivities will vary 

through the inversion. But, in the case the thicknesses change, the constraints between 

the parameters, for both resistivities and thicknesses, can also change and therefore 

the smoothness matrix will be updated. 

An example with two different cases of smoothness constraints, using five 

models with 6 layers each, is shown in figure (4.3). Case (a) shows that the parameter 

with number 15, which belongs to model 3, depends on its north, south, east and west 

adjacent parameter (number 9, 14, 15 and 21) since all the parameters have equal 

thickness. The constraints in this case are 4, one for each side.  In case (b), parameter 

15 has greater thickness than its lateral neighbors from models 2 and 4, and as a result 

it is dependent on more parameters. In this case, the constraints are 6; one for north 

and south parameters, whereas east and west are accounted for two, as shown in the 

figure.  

 

Figure 4.3: A five model system with 6 layers, where li represents the ith layer, is 

used to demonstrate two different cases of smoothness constraints and give a 

justification for the modification of the smoothness matrix: a) All parameters for all 

models have equal thicknesses, b) Parameters between models have varying 

thicknesses.  
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Since the lateral constraints are the ones that are changing, the smoothness 

matrix Cx will be updated at each iteration of the inversion loop, while the Cz matrix, 

with the vertical constraints, will remain fixed. An example of the smoothness 

matrices using second order derivatives is shown in figure (4.4) for a 3-model system 

and 4 layers for each model. It is clear that the 6
th

 parameter depends on four lateral 

parameters, two from the model that is on its left and two from the model on its right. 

Therefore, the smoothness matrix Cx has to account for these dependencies and takes 

the value of -4 for the 6
th

 parameter itself and 1 for the lateral parameters.  

In order to update the smoothness matrix, the algorithm compares the layer 

thicknesses and depths of neighboring models at each iteration and then adjusts the 

constraints accordingly. This comparison can be demonstrated using figure (4.5) for 2 

models with 4 layers each, where li represents the ith layer and A-E represent the 

layer interfaces. Consider the first case and the lateral constraints for the 2
nd

 layer of 

the first model. The depth of interface C is the same as of interface A, so the 2
nd

 layer 

of the first model does not depend on the 1
st
 layer of the 2

nd
 model. Next, interface D 

is examined. This interface is at a greater depth from A and at a smaller depth from B 

so, the 2
nd

 layer of the first model will depend on both the 2
nd

 and 3
rd

 layer of the 

second model and constraints will be applied for both. Finally, interface E is at a 

greater depth from both A and B and thus, no lateral constraint between the 4
th

 layer 

of the second model and the 2
nd

 layer of the first will be applied. Similarly for case b, 

where the 2
nd

 layer of the first model depends on the 3 top layers of the second. 

 

Figure 4.4: Example of smoothness matrices using second order derivatives for a 3-

model system with 4 layers. 
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Figure 4.5: Layers with greater thickness affect more than one lateral adjacent 

parameters: Example using two models with 4 layers, where li represents the ith layer 

and A-E represent the layer interfaces. a) Layer l2 (red color) of the first model 

depends on layers l2, l3 (blue color) of the second model. b) Layer l2 of the first model 

depends on layers l1 – l3 of the second model. 

As mentioned previously, usually in the LCI scheme only lateral constraints 

are imposed. In case both vertical and lateral are applied, it is of great importance to 

find the optimal ratio of the weight given to the vertical versus the weight given to the 

lateral. Small weight should be given to the vertical constraints, otherwise the 

resultant scheme will start to resemble the 1-D inversion of each VES separately with 

increasing weight to the vertical constraints. To demonstrate this, consider again the 

model in figure (4.2a). Figure (4.6) illustrates the resultant inversion pseudo-2D 

images for a) the 1-D inversion of each VES separately and combining to form the 

pseudo-2D graph, b) LCI with equal weights on vertical and lateral constraints and 

fixed smoothness matrix, c) LCI with 1:5 ratio of the vertical versus the lateral weight 

and fixed smoothness matrix and d) LCI with 1:5 ratio and varying smoothness 

matrix. It is obvious from figures a) and b) that large weight given to the vertical 

constraints leads to similar results as performing the 1-D inversion of each VES 

separately. In the latter, only vertical constraints are used between the parameters of 

each model and as the vertical weight is increasing in the LCI, it has a greater impact 

than the horizontal weight and therefore, the scheme tends to resemble the 1-D 

inversion more. When smaller vertical weight is used, the accuracy of the solution is 

increasing as shown in case (c). Finally, when using the LCI with varying smoothness 
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Figure 4.6: Example used to justify the modification of the smoothness matrix using 

synthetic data for model in figure (4.2a): a) 1-D inversion of each VES separately. b) 

LCI with equal weights on vertical and lateral constraints and fixed smoothness 

matrix. c) LCI with 1:5 ratio of the vertical versus the lateral weight and fixed 

smoothness matrix. d) LCI with 1:5 ratio and varying smoothness matrix. 
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matrix based on thickness changes, as described earlier, the inversion results in a very 

accurate solution as illustrated in case (d).  

The example presented above is used to show the improvement of the solution 

using a modified smoothness matrix. Although this example represents a simple case 

of horizontal layers, the same applies for more complex models.  

 

4.3 ACB Implementation 

 

 In previous work on the LCI method, a constant value was used as lagrange 

multiplier ι. In the present thesis, we implement the ACB method to assign lagrange 

values to each parameter of the full model. Using ACB resulted in more accurate 

solutions in most cases, while in some cases there were minor differences between 

inversion using ACB and when using a constant lagrange value and therefore a 

constant ι was sufficient in the latter.  

 A case where ACB improved the inversion results is demonstrated in figure 

(4.7). The model used to produce the synthetic data is shown in figure a), while b) and 

c) display the outputs of the LCI using a constant lagrange value of 0.01 and LCI 

using ACB, resepctively. It is clear that using ACB resolved more accurately the 

interfaces between the layers of the model compared to the solution using a constant 

lagrange, which failed to resolve the boundaries of the resistive half-space with ξ = 

400 Ohm∙m that exists at 20 m depth and at distance 35-120 m along the profile. 

 

4.4 LCI Algorithm Description  

 

 LCI is a software that was developed through this thesis and performs laterally 

constrained inversion of electrical resistivity tomography data and includes the 

modifications described above. In this section, the algorithm behind the software will 

be described, whereas images of the program, instructions on how it can be used and 

parts of the code are included in the appendix.  

In order for the program to function properly, the data must have been 

acquired using the Schlumberger or Wenner arrays during the survey due to their 

symmetry. For other arrays, like the dipole-dipole and multiple gradient, which are 

asymmetrical, a sensitivity analysis is required for this method of inversion. The 

sensitivity analysis was not part of this thesis. 
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Figure 4.7: Improvement of inversion results using ACB: a) True model used. b) LCI 

using a constant lagrange value ι = 0.01. c) LCI using ACB. 

 

 After loading the ERT data file, the dataset is processed before inversion. At 

first these data are divided into soundings based on the center of each measurement. 

Then, the VES with small number of measurements are removed and the data are 

sorted by sounding order. Specifically, this algorithm is designed to keep only the 

soundings which have more than four data.  

The next step is the calculation of the geometrical factors and the choice of the 

initial model. The program chooses by default an initial model, where both 
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resistivities and thicknesses are varying, and inversion parameters, which can be 

altered by the user. The number of parameters of each 1-D model must be the same. 

The resistivities of all layers of each individual model are initialized to the median of 

each sounding. Based on the maximum separation distance of the current electrodes, 

the maximum penetration depth is calculated as the ¼ of this distance. Based on this 

depth and the number of layers, thicknesses are assigned to each layer. At this stage, 

all models are assumed to share equal thickness of each layer. For instance, the 1
st
 

layer of all models will have the same thickness t1, the 2
nd

 layer of all models will 

have t2, etc. For each model, the thicknesses of the layers can be equal or increasing 

for deeper layers to account for the decreasing resolution with increasing depth. The 

latter is the default choice. 

  A default value of 0.01 for the lagrange multiplier is also assigned in case 

that the constant value option is enabled. The active constrained balancing, as 

mentioned above can also be enabled by providing two values that specify the lower 

and upper limits of values that lagrange can take. The default values used are 0.01 and 

1 for lower and upper limits, respectively. Next, the smoothness matrix with the 

vertical constraints for the whole system is calculated. The default weight given to the 

vertical constraints is 0.2. 

 After defining the above, the iteration procedure begins. First, the forward 

model is solved separately for every 1-D model. Then, the RMS error between the 

observed data and the calculated data is computed. If one of the stopping criteria is 

satisfied the iterations stop, the model is saved and the results are presented in the 

screen. Otherwise, the inversion procedure continues with the calculation of the 

Jacobian matrix for each data-set. These matrices are merged in one matrix, which is 

the Jacobian for the whole system and has the separate matrices on its main diagonal. 

Due to the fact that this matrix has many zero elements, it is converted to a sparse 

matrix. The sparse matrix is a compressed matrix that keeps only the non-zero 

elements and their corresponding indeces in the initial matrix and this way the 

memory requirements by the software are reduced. Therefore, it is used in order to 

speed up the calculations. The Jacobian matrix is calculated using the perturbation 

technique, which was described in a previous chapter.  

 The process continues with the calculation of the modified smoothness matrix 

with the lateral constraints, which is calculated inside the loop because by default not 

only the resistivities but also the thicknesses of each layer change through the 
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iterations and thus, the constraints between the parameters. After the calculation of C, 

if the ACB method is enabled, the spatially varying lagrange multipliers are 

calculated. Subsequently, the correction of the model is calculated and added to the 

previous model. The forward problem for the new model is calculated and this 

process continues as described in the previous chapter, until one of the stopping 

criteria is satisfied. Finally, the inversion results are displayed and a pseudo-2D plot is 

created.  

Figure (4.8) demonstrates the initial steps that are followed before the iterative 

procedure starts in the form of a flow chart, whereas in figure (4.9) a flow chart 

describing the inversion procedure is presented. 
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Figure 4.8: Flowchart of the initial steps which are followed to prepare the ERT data 

for the LCI inversion.  
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Figure 4.9: Flowchart of the inversion procedure. 
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4.5 Application to synthetic data 

 

 The algorithm, which was introduced above, was tested with a large number of 

synthetic data in order to evaluate its effectiveness with different geoelectrical 

models. The results were compared to a standard 2D smoothness inversion scheme 

using the software DC2DPRO (Kim, 2017). This software was also used to create the 

synthetic data. The same inversion parameters, such as the number of layers, the ACB 

method for calculating the lagrange multiplier and the maximun depth, were used in 

both programs. The number of layers was set to 7, while the maximum depth used is 

shown in each plot. 

Although the running times are not directly comparable since LCI was coded 

in MATLAB, which is a slower programming environment than the C language, 

which was used for the development of DC2DPRO, in all cases the LCI proved to be 

faster due to the 1-D formulation of the forward problem. As an example, for a dataset 

of 408 points using 48 electrodes and 7 model layers, the running times of 

convergence, for 6 iterations, were 9.75s for the LCI and 29.43s for the DC2DPRO 

inversion on a Intel Core i7-7700 CPU, making the LCI 3 times faster in this case. For 

longer profiles, this difference will be more pronounced, and therefore LCI would be 

the preferable choice for long profiles with a layered structure. 

Figure (4.10) shows a set of the models which were used to produce the 

synthetic data. Both simple and complex models were created and tested. These 

models are realistic and can be encountered in real-life problems. Different number of 

electrodes, spacings and as a result penetration depth was used. Furthermore, some 

noise was added to the data to make them more realistic. The synthetic data were 

inverted and the inversion results are presented as 2D plots in figure (4.11). For each 

model (a)-(h) the top side of the figure represents the inversion results using the LCI 

software, while the bottom shows the results using DC2DPRO. The color scale of the 

plots was chosen to be as similar as possible in both programs, in order for the results 

to be comparable. Attention should be given to the area covered by the LCI software, 

as it is smaller than the one used in DC2DPRO, for reasons that were stated earlier, 

and therefore, the boundaries are not the same. The boundaries of the domain that was 

used by LCI are shown with black lines in the graph for each dataset. 
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Figure 4.10: Models used to produce the synthetic data for evaluation. 
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Figure 4.11: Inversion results of the synthetic data using the LCI program (top) and 

the DC2DPRO software (bottom).  
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All in all, the two different inversion schemes produced similar results, as 

illustrated in the figure (4.11). The results were compared with the true models used 

and proved to be accurate, as both simple and complex models were able to be 

reconstructed effectively with the LCI algorithm. Regarding the models with a layered 

structure and sharp interfaces (cases a and d-h), the layer interfaces and the depths of 

the layers in most of the models were resolved better using the LCI scheme, as this is 

the main feature of this method. Also, the resultant resistivities from LCI are realistic 

and a good approximation of the true resistivity distribution of each model. 

Layered models with 2-D structures inside a layer were used to assess the 

response of the 1-D formulation with 2-D structures in cases b) and c). The results 

showed that the LCI scheme was not able to detect the presence of these targets and 

also that the 2-D structure greatly affected its surrounding area and distorted the final 

model. These results were expected as the inability of any 1-D scheme to locate 2-D 

or 3-D variations is known. 

 The RMS error using the LCI method was low (<5%) and the data converged 

after a few iterations (< 12). Moreover, the apparent resistivity curves of each VES of 

the data used for the inversion and the calculated data were used as another means to 

test the effectiveness of the algorithm. The curves were very similar for all models 

and thus, showed that the results were reliable. 

 

 

4.6 Application to real data 

 

 The results from the laterally constrained inversion using synthetic data 

showed that the algorithm is accurate and effective. However, it is necessary to test 

this scheme with real data. In this section, the results using the LCI algorithm with 

real data, which were collected in the field, are presented. The software DC2DPRO 

software was used not only to compare the inversion results, but also to exterminate 

bad data points due to high noise level. 

The real data were acquired as part of various geophysical projects using the 

Schlumberger and Wenner arrays. The surveys were conducted in different 

environments and conditions using different number of electrodes and spacings in 

each case. The inversion results are presented in figure (4.15). For each model the top 

section corresponds to the LCI solution, while the bottom to the DC2DPRO solution. 
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In cases (a)-(c), the existence of 2-D resistivive structures is clear, whereas the last 

two cases have a more layered appearance.   

 The data in the first three cases were collected during a survey for the 

detection of Bauxite residues in galleries (Tsourlos et al, 2005). The measurements 

took place in Anw Varianh, that belongs to the Parnassus–Ghiona geotectonic zone in 

central Greece. Σhe measurements were collected inside the gallery using 24 

electrodes with a spacing of 4m. The location of the tomographies is illustrated in 

figure (4.12). Tomographies T1 and T2 were conducted on the floor of the gallery, 

while T3 was conducted on the wall. The inversion results are demonstrated in figures 

(4.15a, b, c) for T1, T2 and T3 respectively. T4 represents a GPR survey line and not 

an ERT. Based on the DC2DPRO results, case (a) shows resistive areas close to the 

surface along the tomography and in the region 4-14 m distance and depth up to 12m, 

which are attributed to the bauxite residues. In the T2 inverted image, two highly 

resistive bodies exist between 10-30m and 40-60m along the profile and extend from 

3 to 10m depth. These can be also attributed to the bauxite lenses. Similarly for T3, 

where a large resistive area is visible between 20-64m distance and 6-24m depth.

 

Figure 4.12:  Location of ERT survey lines in Parnassus. The blue lines represent the 

gallery‘s outline. T1 (red line) and T2 (yellow line) were conducted on the floor of the 

gallery, while T3 (green dashed line) was conducted on the wall. T4 (purple line) 

represents a GPR survey line. 
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Figure 4.13: Mirtofito survey area. The red square shows the location where the 

measurements were collected. 

 

Figure 4.14: Survey lines in Mirtofito area. 
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The comparison of these results with the LCI solution showed that the LCI scheme 

was not able to provide an accurate solution for T1 and T2 due to the 2-D nature of 

the bauxite lenses, while the resistivity distribution is more similar between the two 

outputs for T3, probably due to the larger dimensions of the resistive structure. 

The fourth case shows the inverted data of a survey located in Mirtofito. The 

area of the survey is shown in figure (4.13). It is consisted of boulders, conglomerates, 

pebbles, red clay and other fine-grained material. The bedrock is expected to be made 

of granite. 

During the survey, 21 electrodes were used with 50m spacing. Two electrical 

tomographies, with a length of 1000m each and maximum penetration depth of 

~200m, were conducted. The survey lines are shown in figure (4.14), but only the 

inversion of line MYR1 is shown in figure (4.15), as the inversion results for the two 

lines were very similar. The low resistivity values (<50 Ohm·m) at shallow depths 

represent the sedimentary deposits, whereas resistivities in the range of 50-160 

Ohm·m are attributed to the weathering mantle of the granite. Below the depth of 50 

m and from 150 to 650m of the survey line, the granite is expected to be found, with 

high resistivity values. After the 650th metre there is a transition zone to lower 

resistivity values, which was attributed to the existence of a vertical fault at the 650th 

metre. The LCI scheme was able to resolve both the granite and the fault accurately. 

The lower resistivity values at the left section of the LCI pseudo-2D between 250-

400m can be justified by the lack of information at greater depths that affects the 

solution.  

The last case is from Mygdonia basin, which is situated between the two lakes 

Volvi and Lagada around 45 km northeast of Thessaloniki, with significant seismic 

activity. Mygdonia basin consists of thick (~200-500m) sediments lying on a gneiss-

schist basement. During the survey, 48 electrodes were used with a spacing of 5m. In 

figure (4.15e), two distinct regions are noticed extending along the profile, a resistive 

area at depth 0-12m and a conductive at 12-60m depth. The resistive layer can be 

interpreted as coarse deposits, such as gravel, while the conductive layer as finer 

deposits having silty sand, sand or clay. The outputs of the two different schemes 

proved to be similar. In this case, the LCI software did provide accurate results due to 

the fact that the subsurface had a layered structure, in contrast with previous examples 

that demonstrated the inability of the laterally constrained inversion to resolve 2D 

targets, which are better resolved with the 2-D smooth structure scheme. 
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The data fit rms error between the observed and the calculated dataset was at 

an acceptable level with values of ~3-6% and ~4-10% for the DC2DPRO and the LCI 

software, respectively.  
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Figure 4.15: Inversion results of the real data using the LCI program (top) and the 

DC2DPRO software (bottom).  
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

 The main aim of this thesis was to develop schemes for the laterally-

constrained inversion of electrical resistivity tomography data and to evaluate the 

effectiveness of this method. The reason for developing LCI schemes was to provide a 

tool that can resolve sharp layer interfaces and thus, enhance the accuracy of the 

interpretation. The conclusions, which were drawn from this study, are presented 

below: 

  

 The laterally constrained inversion scheme can locate sharp layer interfaces in 

contrast to the 2-D smooth-structure schemes. The two different techniques 

should be used in conjunction to improve the interpretation. Given a priori 

geological data, the joint interpretation of these methods can lead to a precise 

geological model. 

 The LCI algorithm proved to be faster compared to a 2-D smooth-structure 

algorithm due to the 1-D formulation of the forward problem, as mentioned in 

paragraph 4.5 and from additional tests that were not presented in the thesis 

for the sake of brevity. 

 Following section 4.1, removing the soundings with a small number of 

measurements at the boundaries resulted to more accurate models. Using all 

the soundings could lead to erroneous models due to lack of information at 

greater depths at the boundaries of the tomography (Figure 4.2). 

 The modification of the smoothness matrix to change at each iteration 

depending on the thicknesses (see paragraph 4.2), which are allowed to vary 

throughout the inversion, proved to give more accurate results than using the 

same constraints in the smoothness matrix during the iterative procedure 

(Figure 4.6d). The thicknesses change and as a result the adjacent parameters 

and therefore, this change should be taken into account in order to provide the 

appropriate constraints. 

 The choice of the vertical to horizontal smoothness ratio plays an important 

role in the LCI inversion. This ratio should be small with minor weight given 
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to the vertical constraints between parameters in order to achieve the optimum 

results (see section 4.2 and Figures 4.6b and c).  

 The synthetic data showed that the LCI scheme was able to locate effectively 

the formation boundaries in cases of layered subsurface and even more 

accurately than the 2-D smoothness scheme, which produced a smoother 

image of the interfaces. A large number of different models were used and the 

LCI resulted to a very good approximation of the true model at each case 

(Figure 4.11). 

 The synthetic data also showed that it is not possible to resolve models with 

significant 2-D structures with the laterally-constrained inversion due to the 

inability of any 1-D scheme to resolve 2-D or 3-D variations. In this case a 2-

D formulation of the forward problem should be used or a smooth-structure 

technique. 

 The application of the LCI scheme in real data proved that the algorithm 

cannot resolve accurately 2-D structures but can provide accurate results when 

the subsurface is almost layered (Figure 4.15).  

 

5.2 Recommendations 

 

 The present thesis studied inversion schemes of ERT data, which are able to 

detect sharp layer boundaries. Useful conclusions were drawn by this study, but 

further research is required. 

  Acquisition of real data and modelling with more complex layered structures 

is necessary in order to evaluate the proposed laterally-constrained inversion scheme. 

The scheme should be tested with dipping structures within the layers to find the 

ability of the algorithm to detect them and the maximum slope that the 1-D code can 

resolve.  

 Regarding the configurations, a numerical integration of the 2-D sensitivity 

distributions should be implemented in this scheme, in order for the algorithm to be 

able to run with different and more common ERT arrays. This way the lateral focus 

point of each measurement can be found and thus, the algorithm will overcome the 

limitation of the asymmetrical arrays. In addition, the forward model should be 
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modified to include different arrays, as this filter method applies to Schlumberger data 

only.  

 Regarding the laterally-constrained scheme, improvements should be made to 

make it capable of handling both sharp layer interfaces and 2-D structures more 

accurately.   

 Applications of the LCI scheme on large datasets should be examined in order 

to test the speed of the algorithm compared to a 2-D smooth inversion. LCI can 

significantly speed the inversion running times when dealing with large number of 

electrodes and data points. One such application would be the inversion of marine 

ERT survey data. 
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APPENDIX A 
 

LCI SOFTWARE DESCRIPTION 

 

 LCI is a software that performs laterally-constrained inversion of electrical 

resistivity tomography (ERT) data. The program was created as a graphical user 

interface (GUI) and the code was written using the MATLAB environment. The 

2015a MATLAB version was used. The only requirement to execute the program is 

the installation of the MATLAB platform. The LCI software was tested in every 

operating system supported by MATLAB (Windows, Linux, Mac, Solaris). 

 The main functions included in the LCI program and their functionality are 

listed in table (A.1). All functions contain MATLAB code and have .m extension. The 

code was organized to separate functions to improve its readability and maintenance 

and also to enable the portability of the functions. The LCI.m file along with its figure 

(LCI.fig) is the main program. 

 

 
Figure Α.1: The main window of the LCI program. 

In figures (A.1) and (A.2) the main window of the program and the menu are 

illustrated.  From the File option in the menu, the ERT data are selected. The data file 
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formats used for DC2DPRO and Res2dinv software are supported by the program and 

the original binary files can be used as input as well. The default data file format is 

shown in figure (A.3). The 5 columns correspond to the positions of electrodes A, B, 

M and N and the apparent resistivity, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.1: List of the main functions included in the LCI software. 

 

 

Function Description 

app_res Calculates the apparent 

resistivity. 

calc_ini_model Sets initial resistivity model. 

calc_jac Calculates the Jacobian matrix 

using the perturbation 

technique. 

calc_rms Calculates the RMS error. 

calculate_dx Calculates the model 

correction using the 

smoothness-constrained 

method. 

calculate_geom Calculates the geometrical 

factor. 

colorbar Auxiliary function that 

generates a colorbar similar to 

the one used in DC2DPRO. 

forward_fun Solves the forward problem 

using the filter method. 

LCI Main program (GUI). 

resolution_matrix Calculates the resolution 

matrix. 

smooth_matrix Constructs the smoothness 

matrix. 

spead Calculates the Backus-Gilbert 

spread function. 
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Figure A.2: Menu of the LCI software. 

 

 In addition, a typical DC2DPRO file with .A2D extension, is shown in figure 

(A.4), as the data files used in this work had this format. The first line shows the 

version of the software, the second is the filename and the third is the number of 

boreholes. The fourth line shows the number of electrodes used and is followed by a 

series of lines with the number and the x, y, z position of each electrode. The next line 
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includes the number of topography data and is followed by the number of 

measurements and the data format, i.e. if the file contains apparent resistivity, 

potential or both values. Afterwards, each line corresponds to a specific measurement 

showing which electrodes were used and the value of the measurement. 

 

475.00 525.00 495.00 505.00 27.799 

470.00 530.00 495.00 505.00 30.700 

460.00 540.00 495.00 505.00 31.700 

450.00 550.00 495.00 505.00 32.400 

450.00 550.00 490.00 510.00 32.700 

435.00 565.00 495.00 505.00 31.799 

435.00 565.00 490.00 510.00 32.700 

420.00 580.00 490.00 510.00 35.900 

400.00 600.00 490.00 510.00 40.400 

 Figure A.3: Sample of the default data file format that is supported by the program. 

1000 

File1.bin 

0 

10 

    1       0.00       0.00          0 

    2      50.00       0.00          0 

    3     100.00       0.00          0 

    4     150.00       0.00          0 

    5     200.00       0.00          0 

    6     250.00       0.00          0 

    7     300.00       0.00          0 

    8     350.00       0.00          0 

    9     400.00       0.00          0 

   10     450.00       0.00          0 

0 

       170         0 

     1    9    4    6         170.233 

     1    7    3    5         164.398 

     1    5    2    4         155.417 

     1   10    5    6         168.751 

     1    8    4    5         170.060 

     1    6    3    4         161.245 

     1    4    2    3         153.370 

     2   10    5    7         161.793 

     2    8    4    6         162.353 

     2    6    3    5         155.058 

     2    9    5    6         165.535 

     2    7    4    5         160.228 

     2    5    3    4         153.206 

… 

Figure A.4: Example of DC2DPRO data file format. 
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 The inversion results can be saved to a text file with the format shown in 

figure (A.5). 

--------------------------------------------------- 

   Laterally Constrained Inversion of ERT data 

--------------------------------------------------- 

 

Data File: Model1.A2D 

Path: C:\Users\User\Desktop\models\ 

Array: Schlumberger 

Number of electrodes: 21 

Occam Inversion: Smoothness on model changes 

2D smoothness: Vertical-to-Horizontal: 0.5 

Lagrange multiplier: From ACB 

Number of soundings: 13 

Number of data: 250 

Number of layers: 7 

Max Depth: 230 m 

--------------------------------------------------- 

 

RMS error: 1.450 % 

Number of iterations: 12 

--------------------------------------------------- 

 

VES 1 - Center: 275.00 m 

Res(Ohm*m) Thick(m)  

129.430000 6.890000 

143.390000 14.230000 

164.400000 21.740000 

161.040000 28.890000 

142.330000 35.240000 

148.720000 40.830000 

176.190000 999.000000 

 

VES 2 - Center: 300.00 m 

Res(Ohm*m) Thick(m)  

129.080000 6.850000 

148.580000 14.250000 

164.980000 21.800000 

147.950000 28.930000 

129.470000 35.240000 

143.890000 40.600000 

191.560000 999.000000 

 

       … 

Figure A.5: Example of an output file with the inversion results. 
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 The first section of the output file, after the title, presents information about 

the input file and the inversion options. The sequence of elements included in each 

line is given above: 

 

1. Name of input data file. 

2. Path of the data file. 

3. The type of array. 

4. The number of electrodes. 

5. The inversion option: 

-Smoothness on model changes 

-Smoothness on model 

6. The type of smoothness: 

-1D smoothness 

-2D smoothness: If 2D is selected, the vertical-to-horizontal smoothness ratio 

is also given. 

7. The lagrange multiplier: 

-Constant value 

-Active Constrained Balancing 

8. The number of soundings 

9. The number of data 

10. The number of layers used for each VES 

11. The maximum depth used. 

 

The next section shows the RMS error of the inversion and the number of 

iterations required for the solution to converge. The following lines represent the 

resultant model of each VES. The section starts with the number of the first VES, 

which is given along with the position of its center. This is followed by the resistivity 

and thickness of each layer. Then, the model of the second VES is given and so on. 

After opening the input file, two panels appear on the screen, as shown in figure 

(A.6). The first panel (―Options‖) includes a number of inversion options. These 

options can be adjusted depending on user‘s choice. In the second panel (―Block 

parameters‖), a sketch of the initial model is presented, showing the position of each 

VES, the number of parameters, the number of layers and their thicknesses. Changing 

one of the inversion parameters will update the initial model dynamically.  
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Figure A.6: The inversion parameters that can be modified and a graphical 

representation of the initial model. 

 

From the options panel, user can define if the lagrange will have a single value 

or it will be calculated through ACB (Figure A.7a). Choosing ACB will enable the 

―from‖ and ―to‖ text boxes, in order to choose the upper and lower limit of the 

lagrange multiplier. Also, the maximum number of iterations can be selected; 

otherwise the default value of 10 iterations will be used. In addition, there are options 

regarding the initial model, as displayed in figure (A.7b). These options are the 

number of layers, the max depth of investigation and a choice to determine if the 

layers will have equal thickness or their thickness will be increased gradually from 

top to bottom. Initial values for the model parameters can also be assigned.   



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

 

86 

  

 
Figure A.7: Inversion options regarding: a) The lagrange multiplier, b) The initial 

model, c) The smoothness. 

 

There are different smoothness options (Figure A.7c). The smoothness can be 

applied only to the model changes or it can include an extra term which also applies 

smoothness to the model. The first option is considered as the standard option, 

whereas the second is safer to use it only in cases of very noisy data. Apart from the 

2-D smoothness, 1-D smoothness can be applied, which will produce the same results 

as if the soundings where inverted separately. In addition, the ratio of vertical to 

horizontal smoothness can be assigned. The smoothness can be applied only vertically 

or horizontally by creating two different smoothness matrices. If both are chosen, 

these two matrices are merged into one and the weight of each one is specified by 

their ratio. For instance, if 1 is chosen as the ratio, then both will contribute equally to 

the total smoothness in the inversion, whereas if 0.2 is chosen, then the horizontal 

smoothness will contribute five times the contribution of the vertical smoothness. For 

the laterally constrained method it is recommended that the weight of the horizontal 

smoothness is at least twice the weight of the vertical or even only lateral smoothness 

to be applied. 

After all the inversion parameters have been chosen, the inversion can be 

executed from the Inversion menu → Inversion. An example with the results of 

running inversion is shown in figure (A.8). At the center of the window the pseudo-

2D plot appears and a table containing the final model for each sounding. The values 
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for the parameters are denoted as Res_1 and Thick_1 for resistivities and thicknesses 

of the first sounding, Res_2 and Thick_2 for the second sounding and so on. The units 

for resistivity and thickness are Ohm·m and meters, respectively. Next to this table a 

panel appears contained information about the inversion. It shows the RMS error, the 

value of the lagrange multiplier if it is a constant or the string ‗ACB‘ if the active 

constrained balancing is on, the number of iterations required to converge, the number 

of data used and the number of soundings. 

 

 
Figure A.8: An example of the window with the results after running the inversion 

with the LCI software. 

 On the right side of the window there is a plot showing the apparent resistivity 

curve of the real data, compared with the one from the calculated data for a certain 

sounding.  The soundings can be switched using the two arrows on the bottom right of 

the screen, but only one sounding can be displayed at a time. Moreover a table with 6 

columns, representing the AB/2 spacing, the MN/2 spacing, the geometrical factors, 

the observed and calculated apparent resistivities and the difference and the relative 

difference between the observed and calculated data, is given on the right side of the 

screen.  
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 A better view of the inversion results and the way the VES are switched in the 

second plot is illustrated in the example in figure (A.9), whereas in figures (A.10) and 

(A.11) the final models and the full table containing with the 6 columns stated above, 

respectively, are shown.  

 

Figure A.9: Displaying apparent resistivity curves for different soundings using the 

left and right arrows.  

 

 The inversion results can be saved to an output file, with the format specified 

above and the pseudo-2D plot as an image. This is done by selecting from the Export 

menu → Save File and → Save image, respectively. The resolution matrix can also be 

displayed from the View menu → Resolution Matrix and thus, the accuracy of the 

parameters can be checked. Also, the Jacobian Matrix can be displayed from the same 

menu by choosing → Jacobian Matrix. An example of a resolution and a jacobian 

matrix is illustrated in figure (A.12). 
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Figure A.10: Final model for each sounding. 

 

 
Figure A.11: The results include a table with 6 columns, representing the AB/2, 

MN/2, the geometrical factors, the observed and calculated apparent resistivities and 

the difference and the relative difference between the observed and calculated data. 
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Figure A.12: An example showing the resolution and the jacobian matrix.  
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APPENDIX B 
 

CODE OF THE SOFTWARE 

 

 In this section, the code of a number of functions, which were developed for 

the LCI inversion, is introduced.  The parameters that were used are explained above: 

 

 centres : center of each VES 

 num_meas : number of measurements 

 num_layers : number of layers 

 ab2 : spacing between current electrodes 

 mn2  :  spacing between potential electrodes 

 oldapres : observed apparent resistivity 

 apres: calculated apparent resistivity 

 max_spacing : max distance between current probes 

 depthmax : penetration depth 

 oldrt : model from previous iteration 

 m  : initial model 

 num_param: number of total system parameters 

 geom  : geometrical factor 

 lagrange : lagrange multiplier 

 SP : spread function 

 rms : RMS error 

 R : resolution matrix 

 jac : jacobian matrix 

 c : smoothness matrix 

 dx : model correction 

 param : new model 
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%------------------------------Load data and separate to VES------------------------- 

 

[name,path]=uigetfile('*.*'); %open data file 

y=load(fullfile(path,name)); 

oldr_param=[]; 

thick_param=[]; 

xa=y(:,1); %a electrode positions 

xb=y(:,2); %b electrode positions 

xm=y(:,3); %m electrode positions 

xn=y(:,4); %n electrode positions 

old_apres=y(:,5); %measured apparent resistivities 

centres=unique((xm+xn)/2); %find centres of each VES 

for w=1:length(centres) 

   s=1; 

    for j=1:length(xn) 

        if ((xm(j)+xn(j))/2)==centres(w) 

            ab2(s,w)=abs(xb(j)-xa(j))/2; 

            mn2(s,w)=abs(xn(j)-xm(j))/2; 

            oldapres(s,w)=old_apres(j); 

            s=s+1; 

        end 

        len_ves(w)=s-1; 

    end 

    max_spacing(w,1)=max(ab2(:,w)); 

    data.(strcat('ab2_',num2str(w)))=nonzeros(ab2(:,w)); 

    data.(strcat('mn2_',num2str(w)))=nonzeros(mn2(:,w)); 

    data.(strcat('oldapres_',num2str(w)))=nonzeros(oldapres(:,w)); 

    [data.(strcat('geom_',num2str(w))),data.(strcat('r_',num2str(w)))]... 

     =calculate_geom(nonzeros(ab2(:,w)),nonzeros(mn2(:,w))); 

end 

 

 Figure B.1: Code that loads the data file and divides the data-set into soundings. 
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%----------------------------Calculate Geometrical Factor------------------------------ 

 

function [geom,r]=calculate_geom(ab2,mn2) 

z=1; 

num_meas=length(ab2); 

    for i=1:num_meas 

        r(z,1)=ab2(i)-mn2(i); 

        r(z+1,1)=ab2(i)+mn2(i); 

        geom(i,1)=3.14159265359*(((ab2(i)^2)-(mn2(i)^2))/(2*mn2(i))); 

        z=z+2; 

 end 

 

 Figure B.2: Function that calculates the geometrical factor. 

 

%---------------------------Calculate thickness of each layer---------------------------- 

 

% First checks if equal thickness for all layers is on 

if get(handles.eq_thick_check, 'Value')==1;    

     a=depthmax/num_layers; 

     for l=1:num_layers 

     thick(l,1)=a; 

     end 

else     

 num_a=1;    

 for i=2:num_layers 

    num_a=num_a+2*i-i;    

 end 

    a=depthmax/num_a; 

    b=0; 

    for l=1:num_layers 

    thick(l,1)=l*a; %matrix with initial thickness for 1 VES        

    end 

end 
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%---------------------------------------------------------------------------------------------- 

%--------------------------------------Set initial model------------------------------------ 

 

 for j=1:ves_num 

     m(1:num_layers,j)=median(data.(strcat('oldapres_',num2str(j)))); 

     m(num_layers+1:2*num_layers-1,j)=thick(1:num_layers-1); 

end 

 Figure B.3: Initial model chosen by default. 

 

%-----------------------------Active Constrained Balancing----------------------------- 

 

if iter == 1 

   lagrange = 0.005; 

else 

   %Take lagrange min and max values 

   lmin = str2num(get(handles.from_acb,'String')); 

   lmax = str2num(get(handles.to_acb,'String')); 

   %Calculate resolution matrix 

   R = resolution_matrix(jac, cTc, lagrange); 

   %Calculate spread function 

   SP = spead(R, Cnew, X,depth, max_spacing); 

   %Calculate lagrange values 

   for i=1:length(SP) 

    log_lag(i) = log10(lmin)+((log10(lmax)-log10(lmin))… 

            /(log10(max(SP))-log10(min(SP))))*(log10(SP(i))-log10(min(SP))); 

            lag(i) = 10^log_lag(i); 

   end 

   %Diagonal matrix with lagrange values 

   lagrange = diag(lag); 

end 

Figure B.4: Active constrained balancing code. 
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 The algorithms are written in MATLAB and can be executed directly 

providing the appropriate data file. The codes for the calculation of the forward 

solution and the jacobian matrix are not presented as they can be solved with any 

known forward problem algorithm with different sets of filters that have been 

proposed and perturbation schemes.  

 

%-------------------- CALCULATE SPREAD FUNCTION -------------------------- 

 

 for i=1:size_smooth(1) 

      sum=0; 

      for j=1:size_smooth(1) 

          %Calculate weights 

          w(i,j)=((XX(i)-XX(j))^2) +(YY(i)-YY(j))^2; 

          %Calculate S matrix based on smoothness matrix 

          if Cnew(i,j)~=0 

              S(i,j)=1; 

          else 

              S(i,j)=0; 

          end 

          %Sum for SP value 

          sum=sum+(w(i,j)*(1-S(i,j))*R(i,j))^2; 

      end 

      %Calculate SP 

      SP(i)=sum; 

 end 

Figure B.5: Backus-Gilbert Spread function. 

 

%----------------------Code to calculate to calculate RMS error--------------------- 

 

function rms=calc_rms(apres,oldapres) 

sum=0; 

num_meas=length(apres); 
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for i=1:num_meas 

    sum=sum+((oldapres(i,1)-apres(i,1))/(oldapres(i,1)))^2; 

end 

rms=(sqrt(sum/num_meas))*100; 

 

 Figure B.6: Function that calculates the RMS error. 

 

%-----------------------------------Model Correction---------------------------------- 

 

function param=calculate_dx(jac,iter_num,apres,oldrt,oldapres,cTc,lagrange, 

num_layers,ves_num,handles) 

 

if length(lagrange)==1 

  if iter_num>1 && iter_num<4 

           lagrange=lagrange/2; 

  end 

end 

 oldrt=reshape(oldrt,[],1); 

 num_param=length(oldrt); 

 num_meas=length(apres); 

 

 %Calculate difference between observed and calculated data 

 

 for i=1:num_meas 

     dy(i,1)=log10(oldapres(i,1))-log10(apres(i)); 

 end   

 ss=lagrange*cTc;  

 

 %Calculate model correction  

 

 if get(handles.smooth_corr,'Value')~=0 

 dx=inv(jac'*jac+ss)*jac'*dy; 

 else 
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 dx=inv(jac'*jac+ss)*jac'*dy-(ss*log10(oldrt));   

 end 

 

 %New model parameters 

 

 for i=1:num_param 

    param_all(i,1)=10^(log10(oldrt(i))+dx(i,1));  

 end 

 w=1; 

 for i=1:ves_num 

    param(:,i)= param_all(w:w+2*num_layers-2,1); 

    w=w+2*num_layers-1; 

 end   

 

 Figure B.7: Function that calculates the correction of the model. 
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