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ABSTRACT

In the present thesis a laterally-constrained (LCI) scheme is presented for the
inversion of the electrical resistivity tomography (ERT) data. Initially, a detailed
review of the basic theory of the resistivity method, the surveying methods, the
resistivity arrays and the instrumentation is given. The forward problem and
techniques for its solution are addressed. In addition, the inversion theory and the
inversion methods are presented, with emphasis given on the LCI technique.

The LCI algorithm which was developed uses the smoothness-constrained
inversion to find the correction of the model. The ERT data are divided into
soundings and the forward problem is calculated using the filter method as 1-D
forward solver for each sounding. The data are inverted as one system by introducing
lateral constraints between adjacent soundings in order to produce a 2-D geoelectrical
image of the subsurface. The lateral constraints were implemented using a 2-D
smoothness matrix with the modification that it changes throughout the inversion
procedure as the final solution converges. The perturbation technique was used to
calculate the Jacobian matrix for the total system. The software was developed in a
graphical user interface (GUI) using Matlab.

The performance and efficiency of the algorithm is tested using both synthetic
and real data acquired from different applications. Numerical modeling is used to
provide the synthetic data for realistic models. The evaluation shows that the laterally-
constrained approach is efficient and can be successfully used to locate layer
boundaries. On the contrary, the results clearly show that this method cannot resolve
small targets that are within greater structures due to the 1-D formulation of the
problem.

In addition, these data are used to make comparisons between the finite
element and the laterally-constrained method and to address the benefits and
drawbacks of the latter. By comparing the two schemes, it is obvious that both the
laterally-constrained and the 2-D smooth-structure methods are able to provide an
accurate approximation of the subsurface, while their combination yields a model

even closer to the real one.
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[NEPIAHYH

H mopovoa dratpifny emkevipdveTon otny avamtuén TEXVIKOV OVTICTPOPNS
TV dedopuévov niektpikng topoypoeiog (ERT) pe t ypnon g pebodov tov
mievpikav meplopicpmv (LCI).  Apywkd, mopovoidalovior ot Pacikég apyéc ™G
NAEKTPIKNG HeBAS0L, Ot TEYVIKEG O100KOTNONG, Ol SUTAEEIS TV NAEKTPOSIWV KOl O
eEomMopndg mov ypnowonoleiton. I'ivetar avagopd oto v TPOPANUO Kol OTIG
TEYVIKEG eMAVONG TOL. AKOUT, TOPOVGLALETOL OVOAVTIKA 1 Bempia TG AVTICTPOPNS
Kot ot péBodot avtiotpoeng divovtag Eugocn oty HEB0do TV TAELPIK®V
TEPLOPIGUAV.

O aAy6piBpog mov avamthybnke ypnowonolel ) péBodo g eopaivpévng
OVTIGTPOPNG Yo TNV €vpeon g O0W0pbwong tov povtédov. Ta dedopéva g
topoypapiog yopilovror oe fubBocskomnoelg kot 1 Avon tov 1-D gvBéog mpoPAnatog
vroAoyileton yio kéOe pio amd avtéc ypnotponoldvtog ™ uébodo twv eidtpaov. Ta
dedopéva evdvovtal G€ €vo CGUOGTNUO YL TNV  OVIIGTPOPY, YPNOLLOTOLOVTOG
TAELPIKOVG  TEPLOPICUOVG  UETOEDL  YeETOVIKOV  PvBookomicewv, ©CTE Vo
kataokevoaotel pia 2-D ewdvo g yeonAEKTPIKNG doung Ttov vmeddeovs. Ot
TAEVPIKOL TEPLOPIGHOL EVeOpOTOONKAY pe T ¥pnom evog 2-D wivaka eEopdAivvong
pHe tnv tpomomoinon 0Tt o mivaxag avtdg petofdAietol Kotd T SAPKEWL TNG
avtioTpoeng. I'a tov vroroyioud tov lakmpPravov mivaka ypnoyLomomOnke n texvikn
dwrapaydv. To Aoyopikd ovamtdydnke oe ypaeikd mepPAAAOV YPTCILOTOUDVTOG
v Matlab.

H enidoon «oar mn omoteleopotikotnto Tov  aiyopiBuov  eAdyyeton
YPNOYLOTOIDVTAG GLVOETIKG OALG KO TPOYHOTIKG OedOUEVA TOV GLAAEYOMKAY amd
dpopes ePapproyés. Me KotdAANAN apOuntik) mpocopoiwon mopdydnkav To
ovvBeTikd dedopéva Yo peaoTikd povtéda. H aglohdynon oeiyvel 6Tt n pébodog pe
TAEVPIKOVG TEPLOPIOUOVE EIVOIL ATOTEAEGUOTIKN KOl UTOPEL VO EVTOTIGEL EMTLYMG TIG
OTTOTOLES EMAPES TOV OTPOUATOV. Avtifeta, To amoteAéspota £01&av 0Tt 1 néBodog
dev umopel vo, evtomicel PiKpoHg 6TOYOVG LEGH GE PEYOADTEPA GTPOMATO AdY® TNg -
D popeomoinong tov mpofAnuartoc.

Emniéov, avtd to dedouéva ypnoyomombnkoyv yio v ocOYKPIon TGV
HeBOOMV TV TEMEPAGUEVOV GTOLEIDOV KOl TOV TAELPIKAOV TEPLOPICUADV KoL Yo TNV

HEAET TOV  TAEOVEKTNUOTOV KOL  TOV  UEOVEKTNUATOV TG  TeAELTOinG.
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Yvykpivovtoc Tic 2 puebodovg eivar govepd 0Tt kot n pEB0SOG TV TAELPIKDV
TEPLOPIoU®V Kal TG 2-D e€opaivpévng doung umopodv vo dmcovv pio aSlomot
TPOGEYYION TN TPUYUOTIKNG EIKOVOS TOV LRESAPOVS, EVAD WE TOV GLVOVAGUO TOVG

eMTLYYaveTaL peyolvutepn axpifetia.
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1. INTRODUCTION

1.1 Motivations and aims of this thesis

Electrical Resistivity Tomography (ERT) is a popular geophysical technique
with a wide range of applications. Geophysics, engineering, hydrology and
archaeology are some of the fields in which the ERT method has been successfully
used. The ERT method uses the geoelectrical characteristics of the subsurface in order
to find its structure. This is achieved by acquiring measurements of the electrical
resistivity of the subsurface and generating a 2-D image of its distribution.

As with any geophysical method, due to the fact that the earth is non-
homogeneous, the measurements do not represent the true resistivity distribution of
the subsurface and therefore, the interpretation cannot be performed directly. In
contrast, they require complex processing in order to provide a 2-D image of the
subsurface’s true resistivity. The technological advances gave rise to many different
processing methods. In most methods, the processing is handled using the inversion
theory. For decades, the 2-D smooth-structure inversion schemes are used to interpret
the data. These schemes provide a smooth geoelectrical model of the survey area.
Despite the impressive results of the smooth-structure method, it cannot resolve
accurately sharp layer boundaries. Thus, different schemes were in need, in order to
overcome this limitation.

Recently, the laterally-constrained technique (LCI) has been proposed by
Auken et al. (2002). This technique makes the assumption that the earth is consisted
of horizontal layers and uses an 1-D scheme to locate sharp interfaces. Although, this
method can resolve the sharp layer boundaries, it should not be consider as a
substitute of the smooth-structure but as a supplement, which can provide significant
information to the interpretation by combining the results and therefore, a better
resolved geological model.

The LCI technique has been successfully used in sedimentary environments
and other areas with a layered appearance (Auken et al., 2005; Wisén et al., 2005).
Although, the LCI is mostly used for layered cases, it has been effectively used even

in cases with significant 2-D structures (Auken and Christiansen, 2004). As this is a




1.1 Motivations and aims of this thesis

relative new technique, improvements and developments of the existing schemes can

be made.

This thesis deals with inversion schemes of ERT data using the 1-D laterally-

constrained method. The goal of this work is to provide an approach that will increase

the accuracy of the inversion results.

The key objectives of the present thesis are:

Present the inversion theory and review the existing techniques with focus
given on the laterally-constrained scheme.

Create a scheme for the LCI method which will increase the accuracy of the
inversion results.

Develop software for the proposed scheme.

Use this software to evaluate the efficiency of the LCI scheme by processing

real and synthetic data.

The methodology that was followed throughout this work is presented as

follows:

A detailed review of the basic principles of the electrical resistivity method
and the surveying techniques with emphasis given on the electrical
tomography.

Study of the numerical modelling of ERT data, which is one of the most
important tools for this project. Numerical modeling is essential not only for
solving the inverse problem, but also to assess the performance of the ERT
method and furthermore to evaluate the efficiency of the interpretation
schemes. The algorithms can be tested using a wide range of different models
and in different conditions. Also it is a means to explore the link between
subsurface properties and the ERT data.

In-depth examination of the inversion theory and techniques. Emphasis was
given to the laterally-constrained inversion and the schemes that were
proposed so far.

Development of the software based on the existing LCI schemes.




CHAPTER 1. INTRODUCTION

e Formulation of a different approach for the LCI scheme and implementation
into the previous algorithm. In particular, modifications were made in the way
the constraints are imposed in the problem and also in the calculation of the
lagrange multiplier.

e Testing of this new scheme with both synthetic and real data to find possible
limitations and evaluate its efficiency.

e Comparison of the results from the LCI software with the DC2DPRO
software, which uses a 2-D smooth structure scheme.

e Interpretation of the results and final assessment of the accuracy of the

algorithm.

1.2 Structure of this thesis

The structure of this thesis is comprised of the following chapters:

Chapter 2: This chapter introduces the fundamental concepts that are
necessary in order to understand the work behind the present thesis. The basic
principles of the electrical resistivity method are presented. The equations that govern
the flow of the electrical current into the earth are discussed and the concept of the
apparent resistivity is introduced. Furthermore, the resistivity arrays and data
acquisition techniques are explained. Finally, the instrumentation used to gather the
resistivity measurements is descripted.

Chapter 3: The aim of this chapter is to provide the basic background of the
inversion theory. The forward problem is addressed and ways of solving it are
presented. A detailed description of the inversion procedure is given, as well as its key
elements and problems. In addition, the inversion methods are discussed with
emphasis given on the smoothness constrained scheme. First, the basic theory and the
equations that lead to the correction of the model are presented. Then, the smoothness
matrix and its formulation are described. Moreover, the lagrange multiplier and its
role in constrained problems are introduced and the active constrained balancing
method for finding its value is explained. Furthermore, the laterally-constrained

inversion method, which is the main subject of this thesis, is descripted in detail.




1.2 Structure of this thesis

Chapter 4: The modifications that were made to the LCI scheme are
described and examples are used for justification. Also, the algorithm behind the
software that was constructed is analytically descripted and every step of the
procedure is explained. The algorithm is tested using both synthetic and real data in
order to evaluate its efficiency. Numerical modeling is used to provide the synthetic
data. The results are presented as images and discussed. Also, they are compared with
the results acquired using a 2-D smooth-structure inversion scheme.

Chapter 5: This chapter summarizes the conclusions of this thesis and

suggests future work.




2. BASIC PRINCIPLES OF THE ELECTRICAL RESISTIVITY
METHOD

This chapter is a brief introduction of the basic theory of electrical resistivity
method. The principles regarding the flow of the electric current into the earth are
presented and the concepts of geometrical factor and apparent resistivity are
introduced. In addition, the resistivity measuring techniques and the resistivity arrays
are demonstrated. Finally, the instrumentation used for the acquisition of electrical

resistivity data is described.

2.1 Introduction

Electrical Resistivity Method is one of the most widely used techniques
belonging to a group called applied geophysics. Applied geophysics is a term used to
describe a number of geophysical methods (Electrical Resistivity Method, GPR,
Seismic Refraction-Reflection, Potential Field Methods and so on.) that are used to
acquire information about the distribution of the subsurface’s physical properties
(electrical resistivity, dielectric properties etc.). Electrical Resistivity Method has a
wide range of applications as it is extensively used for geophysical, geological,
hydrological, environmental and engineering problems, as well as for archaeological
investigations. For instance, it has been used in order to map mineral deposits and
groundwater distribution, to locate fault zones etc.

The resistivity technique is used to map the distribution of the electrical
resistivity (or conductivity) of the subsurface. This method belongs to a category
called “active” methods, since the field, that is used, is created artificially, in contrast
with “passive” methods, which use an existing field. An electric current is introduced
into the ground and the potential difference due to this current is measured giving an
indication of the resistivity of the subsurface. The interpretation of these
measurements can reveal the subsurface’s structure and the nature of the targets
found.

When compared to other methods, the resistivity method has many
advantages. The rapid data acquisition and the lower cost of the instruments than

other methods are two of its benefits. Furthermore, the modern algorithms can provide




2.2 Ohm’s law

an image of the resistivity distribution really fast, even in the field directly after

gathering the measurements, while the interpretation of these results is relatively easy.

2.2 Ohm’s law

In 1827, Georg Simon Ohm defined the relationship between the potential
difference AV and the electric current | by using a parameter characteristic of a
conductor called resistance R. This relationship describes the flow of electricity
through a single conductor with two ends and is given by the mathematical equation:

[=— (2.1)

Ohm's law states that the current passing through a conductor is directly
proportional to the voltage across the two ends. The parameter R is defined as the
ratio of the voltage to the current and its SI unit is Ohm (Q).

The resistance of a material depends not only on its nature but also on its
shape and size. It is convenient to introduce a quantity that depends only on the nature
of the material. This quantity is called electrical resistivity p. The electrical resistivity

of a cylinder with cross section A, length L and resistance R is given by the equation:

p=— (2.2)

where L is in meters, A is in square meters and R is in Ohms. The SI unit of resistivity
is Ohm-meter (Q-m).

As mentioned above, the aim of the resistivity method is to find the
distribution of the geoelectrical resistivity of the subsurface by measuring the
potential difference due to flow of electric current into the ground. The measured
voltage reflects the difficulty with which the current flows through the subsurface and
thus gives an indication of the ground’s electrical resistivity p. The reciprocal of
resistivity (1/p) is called conductivity and represents the ease with which the current

flows through the earth and is measured in Siemens per meter (S/m).




CHAPTER 2. BASIC PRINCIPLES OF THE ELECTRICAL RESISTIVITY
METHOD

L

Figure 2.1: Electrical resistivity of a cylinder with resistance R, length L and cross
section A.

The potential difference is given by the equation:

AV = EL (2.3)

where E is the intensity of the electric field. By substituting this equation to

equation (2.1), Ohm’s law becomes:

[=— (2.4)

The current density J is defined as the electric current per unit area of cross

section:
= ! 2.5
J= A (2.5)
The substitution of equation (2.4) to this equation yields:
_ EL 26
J == (2.6)

From this equation and the equation for electrical resistivity the generalized

Ohm’s law is derived:
J=0E (2.7)

The intensity of the electric field E is the gradient of the electric potential V

and thus can be written as:




2.2 Ohm’s law

E=-w (2.8)
The minus sign denotes that the potential rise occurs when moving against the electric

field. Ohm’s law is now written as:
J=—aVV (2.9)
By taking the divergence on both sides of this equation:
V-] =V-(=aWV) (2.10)

Assuming that there are no sources or sinks into the medium, which is

generally true for the earth’s case, the divergence of the current density is zero:

V-]=0 (2.11)
And thus:

V- (=aVV)=0 (2.12)
From vector analysis, equation (2.12) can be written as:

a(aVV) B a(aVV) B a(aVV)

Vo (zoWW) = - dx ady dz

=—(VWW:Vo+0oV?V)=0 (2.13)
This equation is one form of the so called Poisson’s equation and governs the flow of
electric current in an inhomogeneous ground. In case of an electrically homogeneous
ground, where Vo = 0, the equation becomes:

V2V =0 (2.14)

This is called Laplace’s equation and it applies only to homogeneous earth.




CHAPTER 2. BASIC PRINCIPLES OF THE ELECTRICAL RESISTIVITY
METHOD

2.3 Poisson’s equation for homogeneous earth

As mentioned above Poisson’s equation yields Laplace’s equation for
homogeneous earth. This equation can be used to find the potential at every point of
the space while having a current point source on the surface of a homogeneous
ground. Because of the spherical symmetry of the current flow, it is convenient to

write the equation in spherical coordinates (r,0,¢):

16(20V)+ 1 0( 96V> 1 OZV_O -
2or\" ar) " 72sin6 96 sin 90)  r2sin20d¢p? (215)

where r is the distance from the source point. Also due to the spherical symmetry the
derivatives with respect to the angles 6 and y can be eliminated and thus the equation

is reduced to:

i(rza—v) =0 (2.16)

By integrating:

[ (55 ar = [ oar =
(')rr(')r r= r

,0V C o av C 217
"or T ar 12 (217)
With further integration:
—dr = f—dr =
C
V=- - +D (2.18)




2.3 Poisson’s equation for homogeneous earth

where C,D are constants.

Constant D equals zero because V should be zero when r reaches infinity.
Since the medium is homogeneous, the current flows radially away from the point
source. The equipotential lines form a hemisphere surface and the current flow is
perpendicular to the equipotential surface. The current density J crossing the

hemisphere surface of radius r is given by:

J=5—=0E (2.19)
v
- or r?
J
P e
Ip C
==
2mr? r?
1
C= —% (2.20)

The substitution of C to equation (2.18) yields the equation of the potential at
every point of a homogeneous space with a point source on surface:

_Ir

= 2.21
2mr ( )

Thus, the potential varies inversely with the distance from the source. The
equipotential lines and the direction of the electrical current for a point source in a
homogeneous ground are shown in figure (2.2).

When the point source is within the homogeneous ground and not on the

surface, the equation becomes:

v = (2.22)

10
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For more than one source the potential is given as the sum of the individual

potentials due to all the current sources:

V= Zn: Iip, (2.23)

In practice, at least two current electrodes are required, a positive and a
negative current source, as a single electrode cannot introduce current into the ground.
The positive electrode A sends current | into the earth and the negative B receives the
returning current. The potential measured at a point P is thus the algebraic sum of the
individual potentials due to each one of the two current sources:

I -1 Ip/1 1
=ty L =—p(———) (2.24)
2nry,  2mrg  2m\1ry Tg
where rp, rg are the distances from point P to electrodes A and B, respectively.
Current
Source
Air
Earth
Equipotential

lines

L J
Direction of
current flow

Figure 2.2: The equipotential surfaces and the direction of the electrical current in

case of a point source.

In order to measure the potential difference due to current flow two electrodes
are needed as well. The two current electrodes could be used also to measure the
potential but due to high contact resistances between current electrodes and the

ground, two different electrodes are used. The contact resistance is the resistance that

11
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current faces in order to be inserted into the ground due to small air gaps and is
different from the resistivity, which is a physical property of the ground.

Therefore, in a resistivity survey four electrodes are used, two current (A and
B) and two potential electrodes (M and N). The potential difference between M and N
due to A and B will be:

AV =V, V—Ip<1 ! 1+1>—I/OG 2.25
~ M N7 on\AM BM AN ' BN) T 2nm (2.25)
Solving the equation (2.25) for p:
=2 AVl—Z R 2.26
p =2m T C- nG (2.26)

where:
AV = the potential difference
R = the resistance
| = the intensity of the current
p = the resistivity
AM, BM, AN, BN = the distances between the electrodes
G = the geometrical factor

The first term (R=AV/I) shows the resistivity’s dependence on the
geoelectrical structure of the subsurface, while the second term, called geometrical
factor, shows its dependence on the way the electrodes are arranged. In case of a

homogeneous ground, the equation (2.26) yields the true resistivity of the subsurface.

2.4 Apparent Resistivity

Equation (2.26) is valid only when the ground is homogeneous. However, in
reality the earth is non-homogeneous and thus, this equation does not yield the true

electrical resistivity of the subsurface but an “apparent” value of the resistivity, which

12
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would be equal to the true resistivity if the ground was geoelectrically homogeneous.
This value is called apparent resistivity and is denoted by p,. Robinson (1988)
describes the apparent resistivity as a weighted average of the true resistivities of the
formations that constitute the subsurface. Although, this definition is by no means
mathematically true, it is accepted when it comes to the interpretation of simple
problems.

Therefore, this quantity does not represent the real but a distorted image of the
geoelectrical structure of the subsurface and thus, the interpretation should not be
made using the measurements of apparent resistivity, directly. Instead, the apparent
resistivity measurements are used to retrieve the true resistivity distribution. This is
achieved by a complex process called inversion, which is described in a later chapter.
After inversion, the results can then be interpreted and information about the

subsurface’s structure can be acquired.

2.5 Electrical properties of materials

The electric current can be conducted into the earth via three ways:

e Electronic conduction: In this conduction the electric current is flowing via
the crystalline structure (free electrons) of some materials, such as metals. This
conduction is important when conductive minerals are present.

e Electrolytic conduction: The electric current is propagating through the ions
of the groundwater which fills the pores of the rocks or soil. It is the most
common mechanism of conduction of the electric current in the ground.

e Dielectric conduction: An alternating electric current can cause a cyclic
movement in the ions of the crystalline structure of an electrical insulator. This
movement produces secondary alternating current. This conduction is

considered to be negligible.

The electrical resistivity is one of the most variable geophysical quantities due
to the fact that it is dependent on a large number of factors. The most important

factors are:

13
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a) The porosity of the rocks and the possible fractures
b) The amount of water
¢) The chemical composition and salinity of water

d) Temperature and pressure

Since these parameters are very variable, a certain rock type can have a wide
range of resistivity values, from a few Ohm-m to millions. Thus, similar formations
can appear with completely different resistivities and different formations with similar
resistivities, making it difficult to distinguish different rock types. Therefore,
resistivity values cannot be correlated with certain lithological types and only relative
conclusions should be made when interpreting the data. Prior information, such as
geological data or data from other geophysical methods, should be used in order to

achieve better interpretations.

Material Resistivity (Ohmem) Conductivity (S/m)
Clay 1-100 0.01-1
Alluvium 10-10° 10°-10™
Sandstone 10-10° 10°-10"
Limestone 10°-10" 10™-10"
Granite 5-10°-10° 10°-10°
Basalt 10°-10’ 107-10°

Table 2.1: Typical resistivity values of different rock types.

Typically, igneous and metamorphic rocks have high resistivities, whilst
sedimentary rocks have lower values due to the fact that they are more porous and
have larger quantities of water. Unconsolidated sediments have even lower
resistivities because the porosity is higher. Typical resistivity values of different rock
types are shown in Table (2.1).

The resistivity of water ranges from about 0.1 to 200 Ohm-m depending on its
salt content. Generally, low resistivities (<10 Ohm-m) are indicative of salted water,
while 20-100 Ohm'm are typical values of potable water. Metallic minerals have

extremely low resistivity values, usually lower than 1 Ohm-m.

14
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2.6 Resistivity Arrays

There are many different ways to arrange the electrodes in a resistivity survey.
The main feature of each array is its geometrical factor, which is uniquely related to
the distances between the electrodes. In practice, only a few of them are being used as
they have both theoretical and practical benefits, in contrast to others that have
practical drawbacks despite their theoretical advantages. Most of the arrays offer an
internal symmetry and the electrodes are placed across a line.

In each case, the choice of a specific array depends on the survey
requirements, the targeted depth of investigation and resolution and the environmental
setting of the area that the survey is taking place. The most widely used arrays are

presented below:

a) Wenner: In this array the potential electrodes M, N are placed between the
current electrodes A,B. The distances between adjacent probes are equal (). Thus,

the geometrical factor equals:

G=<—————+—>=— 2.27
a 2a 2a a a ( )

By substituting this in equation (2.26) we get the apparent resistivity for the Wenner

array:

AV
Pa = ZHaT (2.28)

b) Schlumberger: The Schlumberger configuration is similar to Wenner. The
potential probes are again placed between the current electrodes, but the distance
between the current probes is much greater than the separation between the potential
probes. If the distance between the current probes is 2L, then the distance between
potential electrodes is 21 with L>>I and the apparent resistivity equals:

wL? AV

T (2.29)
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c) Dipole-Dipole: In this configuration the dipole with the current electrodes
is placed at a large distance from the dipole with the potential electrodes. The
separation of each dipole equals a, whereas the distance between them equals na. This
yields the following apparent resistivity:

av
Po = —mn(n+ D(n+ Z)aT (2.30)

d) Pole-Dipole: In Pole-Dipole the potential electrodes are between the
current electrodes, but one of the current electrodes is placed at a great distance from
the other three. For instance, if the remote current electrode is B, then the distances
BM, BN are considered to be infinite and as a result the terms 1/BM and 1/BN in the
geometrical factor are considered to be negligible and are set to zero. If the distance
between the potential probes MN is a and the distance AM between current probe A

and potential probe M is na, then the apparent resistivity equals:
AV
Pa = 2nn(n + l)aT (2.31)

e) Pole-Pole: This array is similar to Pole-Dipole and is achieved by placing
not only a current electrode but also a potential electrode, for example N, at a
sufficient far distance from the remaining two electrodes. Therefore, the distances
BM, BN and AN are considered to be infinite and if AM=a, the geometrical factor
becomes the 1/a. Thus, this array has the same geometrical factor as the Wenner array

and so, apparent resistivity is the same:

AV
Pa = 27sz (2.32)

f) Twin-probe: This is a variation of the Pole-Pole array and it is achieved by
placing the two remote electrodes B and N closely together. The distance between
these two electrodes is not considered infinite now and the apparent resistivity value

becomes:
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ab AV
a+b I

Po = 2T (2.33)

Where b = distance BN.

g) Multiple Gradient: This is a relatively new array (Dahlin and Zhou, 2006).
The potential electrodes are placed between the current electrodes. The current is
injected by two electrodes with spacing (s+2)a and the potential differences between
all the possible dipoles of potential electrodes with spacing o are measured
sequentially. As seen in Figure (2.3), the terms in geometrical factor for this array

are:

AM=na

AN=(n+1)a (2.34)
BM=(s+2-n)a

BN=(s+1-n)a

where s is the maximum number of potential measurements for a specific current
injection.

Each array has some benefits and some drawbacks when compared to the
others. Due to the fact that they have different internal geometry, they are sensitive to
different types of variation of the resistivity. For instance, Wenner and Schlumberger
arrays are more sensitive to variations with depth, while the dipole arrays are more
sensitive to lateral changes. Ward (1990) evaluated a number of resistivity arrays

based on 14 criteria. The most important of them are shown in Table (2.2).

Array S/N ratio Lateral Resolution | Resolution with depth
Wenner 1 4 1
Schlumberger 2 3 1
Dipole-Dipole 4 1 2
Pole-Dipole 3 2 2

Code: 1 = Best, 4 = Worst

Table 2.2: Evaluation of the most widely used arrays using three criteria (after Ward,
1990).
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Figure 2.3: Widely used resistivity arrays: a) Wenner, b) Schlumberger, c) Dipole-
Dipole, d) Pole-Dipole, e) Pole-Pole, f) Multiple Gradient

2.7 Measuring Modes

There are three measuring modes used to acquire the resistivity data,
depending on the desired type of resistivity variations (with depth, lateral or both).
These are: Vertical Electrical Sounding (VES), Lateral Profiling and Electrical
Resistivity Tomography (ERT).

a) Vertical Electrical Sounding (VES): With the VES technique the
variations of resistivity with depth are located, considering the ground to be consisted

of horizontal layers (1D survey). In this case the resistivity is assumed to change
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vertically but not in the harizontal direction. This method is achieved by taking a
series of measurements while keeping the distance between the potential electrodes,
as well as the center of the array, fixed and increasing gradually the spacing between
the current electrodes. While the spacing between the current electrodes is increased,
the penetration depth is also increased and therefore, information about how
resistivity changes in deeper parts of the subsurface, below the center point, is
obtained. It is really difficult to define an absolute value for the penetration depth. In
practice, it is assumed to be the 1/3-1/4 of the spacing AB between the current probes.
For this method arrays with internal symmetry are used, with the Schlumberger array

being the most common.

100

% p=10 Ohm-m | d=10m

80
p=100 Ohm-m
70

60

50
40 f -
30

Apparent resistivity(Ohm*m)

20

10 .

| L M PR T S T T |

10° 10’ 10°
AB/2
Figure 2.4: Example of an apparent resistivity curve constructed from VES data for a

two-layer model with resistivity p=10 Ohm-m and thickness d=10m for the first layer
and p=100 Ohm-m for the half-space.

While conducting a VES, the distance AB is constantly increasing, starting
from a few meters to hundreds of meters or even reaching above one kilometer. The
spacing between the potential electrodes remains fixed until the value of the potential

becomes very small due to sufficiently great distance between the current probes.
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Subsequently, the measured apparent resistivities are plotted versus the AB/2
distances and thus, the apparent resistivity curve is constructed.

An example of an apparent resistivity curve using the VES data is presented in
figure (2.4). This curve corresponds to a two-layer model or one layer and half-space
model. The resistivity and the thickness of the first layer are p=10 Ohmem and
d=10m, respectively and the resistivity of the half-space is p=100 Ohmem. The
penetration depth is approximately 60m, as shown from the graph. It is noted that this
curve might correspond to other models as well.

b) Lateral Profiling: In this method, a series of measurements are taken
while keeping the distance between all electrodes fixed and moving the entire array in
a lateral direction. Therefore, with profiling, only lateral changes in resistivity are
located, at a fixed depth, as the spacing between the current probes remains steady. In
this procedure the most frequently used arrays are Wenner, Dipole-Dipole and Pole-

Dipole.

200

150

Apparent resistivity(Ohm*m)
3

o
Q

0

o 10 20 30 40 50 60 70 80 90

Distance(m)
IV —

p=200

Ohm-m

p=30 Ohm-m

Figure 2.5: Example of an apparent resistivity curve constructed from lateral
profiling data for a medium with resistivity p=30 Ohm-m with a smaller buried body
with p=200 Ohm-m.
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An example of an apparent resistivity curve constructed from lateral profiling
data for a medium with resistivity p=30 Ohmem with a smaller buried body with
p=200 Ohmem is shown in figure (2.5). The curve starts with low resistivities
depicting the effect of the conductive medium. While moving towards the resistive
body, which is close to the center of the profile line, the resistivity values are
increasing, showing that the measurements are taking into account the effect of the
resistive body, too. When moving away from this body, the resistivity is decreasing.
The penetration depth is equal to the depth of the bottom surface of the resistive block
and remains constant.

c) Electrical Resistivity Tomography (ERT): The electrical resistivity
tomography is actually a combination of VES and profiling methods. With this mode
information about changes in resistivity with depth, as well as about lateral changes is
acquired and thus, the limitations of the previous measuring modes are overcome. The
geoelectrical model of the subsurface is now considered to be two-dimensional (2-D),
which is more accurate.

Figure (2.6) shows an example of a sequence of measurements using 20
electrodes and the Wenner array. First, all the possible measurements with a probe
spacing of “la” are made. The first measurement (data 1 in Figure 2.6) is collected
using the electrodes with number 1, 2, 3 and 4, as shown in the figure. Electrodes 1
and 4 are used as current electrodes, while electrodes 2 and 3 are used as potential
electrodes. For the second measurement, electrodes 2, 3, 4 and 5 are used as A, M, N,
and B, correspondingly. After collecting all the measurements with spacing “la”, the
next sequence with spacing “2a” is made. The electrodes 1, 3, 5 and 7 are used for the
first measurement (data 18 in Figure 2.6) with spacing 2a. This process is repeated
until all the possible measurements for all the possible spacings are obtained. It is
obvious that as the spacing between the electrodes increases, the number of data
decreases. In practice it is really important not to use an electrode that has been used
as a current electrode as a potential electrode in a short time frame, in order to avoid
electrode polarization effects. Thus, the sequence of measurements should be chosen
carefully.

ERT is the most widely used technique today. One of the main features of this
method is that a large number of data is obtained. The recent advances in the

instrumentation allowed the rapid collection of this large amount of measurements,
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which can be processed with the efficient interpretation algorithms that have also been

developed the last decades.

data 32
| 3o | 3o | 3o I
A M N B
data 13 Resistivity Meter
F2a T 24 2 |
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data 1
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= Q0.
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n=4 32 °
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Figure 2.6: Electrical Resistivity Tomography survey.

The interpretation of the ERT data is commonly carried out by advanced
algorithms called inversion schemes, which reconstruct reliably the image of the true
resistivity distribution. These schemes will be presented analytically in the following

chapters.

2.8 Resistivity Instrumentation

Electrical Resistivity Tomography surveys are usually carried out using a large
number of probes, 20 and more, which are connected to a multi-core cable. The
instruments used to measure the resistivity are called resistivity meters. These
instruments measure the resistance R, which is the ratio of the voltage to the intensity
of the inserted current. Subsequently, the apparent resistivity is found.

The resistivity meters contain an internal microprocessor, which along with a
switching unit is used to select the four (or more for modern instruments) electrodes
for each measurement. The type of the array, the sequence of measurements and other

parameters of the survey are transferred within the resistivity meter from a computer.
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The design of the measuring system is different on each instrument, depending on the
purpose of the survey. For instance, archaeological problems require a system with
different specifications from geological applications (e.g. small output voltage is
required for shallow surveys in archaeology, whereas large output voltage is required

to reach greater depths in geological applications).
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3. RESISTIVITY INVERSION PROBLEM

In this chapter the resistivity inversion problem is addressed. Inversion
schemes are used in order to find the true distribution of the subsurface’s resistivity
and provide an accurate interpretation of the data. The theoretical background and the
basic elements of the inversion are discussed. In addition, the limitations of this
method are presented.

Before addressing the inverse problem, the forward problem is introduced, as
the solution to the forward problem is essential for finding a solution to the inverse
problem.

3.1 Forward Problem

Generally, the forward problem (forward modelling) is the procedure of
obtaining the measurements, while the model is known. In case of resistivity, it is the
process of finding the potential differences, due to current injection, of a known
resistivity distribution. In other words, it is the solution of the equations that govern
the flow of the electrical current into the subsurface for a particular resistivity
distribution and current source in order to find the potential distribution and thus, the
apparent resistivities that respond to this specific model. The model is an idealized
mathematical representation of a part of the earth. It has a set of parameters, which are
physical quantities. For the resistivity method, these parameters are the resistivity and
thickness of each layer.

Many different methods of solving the forward model have been developed.

These are divided into two categories, the analytical and the numeric approach:

a) Analytical approach: In the analytical approach, the field equations are
directly solved. The formulation of these equations is difficult due to their complexity
and thus they are not used in practice. Fully analytical methods have been used only

for simple cases, such as a sphere in a homogeneous medium.

b) Numerical approach: For an arbitrary resistivity distribution, which exists

in reality, numerical approaches are used. The numerical techniques are subdivided
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into two categories. The first one is based on differential methods and the other on
integration methods.

In case of 1-D survey, the filter method (Koefoed, 1979) is used to solve the
forward problem, whereas for the 2-D and 3-D cases, the finite element method and
the finite difference method are used.

The forward problem can be denoted as:

d =T(x) (3.1)

where: d={d1,d,...,dw} is a vector with M elements, which contains the observed
apparent resistivities

X={X1,X2,...,Xxn} IS a vector with N elements, which contains the model
parameters, that is resistivity and thickness for the resistivity case and

T is the transformation equation used to find the response to the model x.

Forw,,, d

Model space

Figure 3.1: Forward Problem.

3.1.1. 1-D Resistivity Forward Modeling

For the 1-D case, where the subsurface is assumed to be consisted of
horizontal layers, Stefanesco (1930) expressed the potential due to a point source of
current in the form of a Hankel integral, which is a product of a Bessel function and a

function dependent on the layer parameters called the kernel function. Koefoed (1968)

26



CHAPTER 3. RESISTIVITY INVERSION PROBLEM

modified his solution by introducing a new function called the resistivity transform,
which is related to the kernel function. Using the Schlumberger array in Koefoed’s
method, as it is the most commonly used in soundings, the apparent resistivity p, is

given by the equation:
AB\* [® AB
pe=(5) | T (GA) 22 (32)
0

where AB is half the electrode spacing
J1 is the first-order Bessel’s function of the first kind
A is a Hankel transform variable and

T is the resistivity transform

The resistivity transform, which is a function of the layer parameters only, can

be calculated recursively as:

Ty + pi_stanh(At;_4)
1+ Titanh(At;_1) /pi—1

Ti—1 (3.3)

where p; and t; are the resistivity and the thickness of the i layer, respectively. For the
half-space Tx=pn, Where N is the number of layers.

It is common to use the linear filter method (Ghosh, 1971; Koefoed, 1979) in
order to evaluate the equation for the apparent resistivity and thus equation (3.2) can

be rewritten as:
pa= ) T fi (34)
K

where fk are the coefficients of the filter and K is the number of coefficients.

3.1.2 2-D Resistivity Forward Modeling

In the 2-D case, the forward problem needs to be discretized and solved at

certain points. The most popular methods, which achieve this, are the Finite Element
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Method (Pridmore et al, 1981; Sasaki, 1994; LaBrecque et al, 1996; Tsourlos and
Ogilvy, 1999; Pain et al, 2002; Yi et al, 2001) and the Finite Difference Method (Ellis
and Oldenburg, 1994; Park and Van, 1991). Both methods subdivide the subsurface
into different regions.

In the Finite Difference Method (FDM) the subsurface is subdivided into
rectangular cells. Each cell is related to a point to which a resistivity value is
attributed. Therefore, a grid of distinct points is formed at which the potential must be
calculated.

In the Finite Element Method (FEM) the area is subdivided into elements, in
which the unknown potential is approximated by simple interpolation functions linked

to specific points of the element called nodes.

Finite Element Mesh

(\ F oY F oY F oY f)
L ¢ D)
Element
Node > ( D)
(J N N N’ \.)

Figure 3.2: Example of a finite element mesh.

One advantage of this method compared to FD is that FEM can handle
structures with irregular shape, which is of great importance as the resistivity is
sensitive to topography. The elements share common nodes and thus, the element
equations can be combined into a single set of linear equations, which will have the

form:

K-V=F (3.5)
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where K is the stiffness matrix (which contains the nodal coordinates)
V iIs matrix containing the nodal potential, and

F contains the current sources and boundary terms.

By solving this system of equations, the vector V with the potential at each

node, can be obtained.

3.2 Inversion Procedure

Now that the forward problem has been introduced, the inverse problem can

be defined. Inversion is exactly the inverse process of the forward problem: to find a

model that responds to given measurements. In case of resistivity, that is to find the

true resistivity distribution of the subsurface given the data-set with the apparent

resistivity measurements that are collected through a geophysical survey. The inverse
problem can be defined as:

x =T 1(d) (3.6)

where T is the inverse transformation function.

The purpose of inversion is to find a geoelectrical model that gives a response
that best fits the observed apparent resistivities. The model generates synthetic
measurements by solving the forward problem and thus having a robust way of
solving it, is needed.

Equation (3.6) cannot be solved with inversion directly due to its non-
linearity. In order to handle this problem, the inversion schemes use an iterative
process. A typical algorithm starts by defining an initial resistivity model x,, which is
consecutively corrected through the iterative process until the synthetic data that
correspond to this model f(x) fit the observed data d. Assuming a really small change

in resistivity, dx, we can expand f(x) in Taylor series:

fOg+dx) = f(x) + %dxi +0((dx)*) i=12,..,N (37)

where O((dx;)?) represents the higher order terms and N is the number of the model

parameters. Because dx is considered to be a very small change, the higher order
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terms can be neglected. The term oOf(x;)/0x; expresses the Jacobian matrix with
dimensions MxN, which will be discussed in a following section. Hence, equation

(3.7) can be rewritten as:

flx+dx) = f(x)+]dx (3.8)

Thus, an iterative scheme can be defined as: At first an initial model X, is
chosen and its forward response is calculated. Afterwards, the degree of fit between
the observed and the calculated data is found. If this degree is satisfying or any of the
other stopping criteria is met, the iteration procedure terminates. Otherwise, the
correction of the model dxi is calculated, where k is the iteration number, and this
correction is added to the previous model, that is Xx+1=Xk+dXx. Then, the forward is
calculated for the new model and the iterations continue until one of the stopping

criteria is satisfied.

Fomar d—

Model space

&Inveme

Figure 3.3: Graphical representation of the inverse problem. An initial model, X, is
corrected through iterations until an optimal model, x*, is reached, which produces
synthetic data, d®, that best fit the observed data, d®®. The observed data is the

response of the unknown true model x.

3.3 Problems in inversion

Most inverse problems in geophysics belong to the category of ill-posed

problems. According to Hadamard (1902) a problem is well-posed if:
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e It hasasolution
e The solution is unique

e The solution changes proportionally to the initial conditions

Based on these three conditions, the inversion schemes have to handle the

following three problems:

a) Existence of a solution: It is possible there is no model that can fit the data,
that is that the forward calculation cannot result to similar apparent resistivities with
the observed data. This might be due to noise in the data and the error of the model or
due to the method used to find the model.

b) Uniqueness of the solution: If a solution exists, this might not be the only
one. Many models could fit the same data-set.

c) Instability of the solution: Inversion is an ill-posed procedure, meaning
that small changes in the data could lead to great changes in the model obtained by the

solution. As a result, the acquisition of accurate data is of great importance.

3.4 Stopping criteria

As mentioned above, in the inversion procedure the degree of fit between the
observed and the synthetic apparent resistivities needs to be found. This is done by
calculating the relative Root Mean Square (RMS) error, which is given by the

following equation:

1 M (dpbs _dgaLC)z
RMS = —z : : (3.9)
obs\2
M i=1 (@™)
where d® are the real measurements, di® are the synthetic measurements and M is
the number of data. In an iterative process, like inversion, the RMS error can be used
as a stopping criterion. Specifically, the inversion terminates if one of the following

criteria is met;

a) Divergence: The iteration algorithm terminates if the relative RMS error

between the synthetic data resulting from the inversion and the real data increases in
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the next iteration. Divergence is observed rarely, mostly in cases where the noise in
the data is great or due to very wrong choice of lagrange multiplier, which is used to

control the constraints in the inverse problem and will be discussed in a later chapter.

b) Small improvement: The procedure stops if there is no significant
improvement in the error between calculated and observed data in the next iteration,
meaning that the RMS decreases at a small rate. It is true that the iteration procedure
could be continued, but it is possible for the synthetic data to fit the noise and not the

actual useful information.

c) Maximum number of iterations: Inversion terminates if the predefined

maximum number of iterations is reached.

3.5 Jacobian Matrix

From equation (3.8), it is obvious that the use of a matrix with first-order
derivatives is necessary. This matrix is called Jacobian matrix J and it is necessary for
most inversion schemes. Jacobian matrix relates the changes in the model parameters
with the changes of the observed data. It is also called sensitivity matrix, as it depicts
the sensitivity of the apparent resistivity measurements to small variations in the
model parameters.

If M is the number of measurements, d, and N is the number of the model
parameters, X, then the Jacobian matrix J has MxN dimensions and its i,j elements are
given by:

ad;
Jij = a—x] (3.10)
If the observed data are apparent resistivities, equation (3.10) can be rewritten

as:

_0pgi  O0pgi 2w 0AV;

ap; do; Gl Og;

Jij (3.11)
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where p,, is the apparent resistivity
p Is the model parameter
G the geometrical factor
| the current intensity
AV the potential difference and

o the conductivity.

In matrix form, equation (3.11) can be written as:

[0pa1 0Pa1 0pa1 ]
dp, dp2 0pjn
apaz . apaz
J=| ap, ' dpn (3.12)
apch apotM apocM
L dpy 0p; dpn -

Generally, there are three methods that can be used to calculate the Jacobian
matrix (McGillivray and Oldenburg, 1990): a) The sensitivity method, b) The adjoint
equation method and, c) The perturbation technique. In this thesis the perturbation

method, which is presented in the following section, was used.

3.5.1 The Perturbation Technique

The perturbation approach gives an approximation of the sensitivities using a
finite-difference formula. The computation of this approximation of the Jacobian is
simple and gives an indication of how the model parameters affect the measurements.

At first, in order to calculate the Jacobian, a resistivity model p is assumed and
the forward response for this model is calculated p,. Then, one of the model
parameters is changed by a very small amount Ap, while the others are kept as it is,
and the forward response p.i(p+Ap) for this model is calculated. This shows the
degree to which the synthetic measurements will change due to changes in the model
parameter. This procedure is repeated for every parameter, changing only one

parameter each time, until all the elements of the matrix have been calculated.
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3.6. Inversion Methods

Afterwards, the Jacobian matrix can be used for the correction of the previous model.

The ij element of J is given by the equation:

_0pai_ Paip +4p;) = pai(p)

Jij (3.13)

The amount of change Ap is chosen arbitrary but it should be chosen carefully
in order to avoid errors and to meet the conditions of the first derivative.
Geometrically, the derivative can be viewed as the slope of the tangent of a function
at a point. The slope of the tangent is very close to the slope of the line passing
through this point and a nearby point at a distance Ap from the former point. The
closer the point, the better the approximation to the derivative and thus a small Ap is
required for an accurate approximation.

Figure (3.4) illustrates an example of a Jacobian matrix for the 1D resistivity
case. The 1-D model consists of 2 layers and the half-space and therefore, the model
parameters are 5; 3 resistivities and 2 thicknesses, as the half-space is considered to

have infinite thickness and thus, is not accounted for as a model parameter.

1D Model P1 P> o t t,
p: b Pa1 | 0.880 0.025 0.004 -0.080 -0.001
P2 & P> | 0.817 0.077 0.003 -0.214 -0.004

Paz | 0.745 0.135 0.008 -0.329 -0.008

& Pas | 0.678 0.188 0.016 -0.397 -0.015

Pas | 0.621 0.230 0.025 -0.425 -0.022

Figure 3.4: Example of the Jacobian matrix for a 1-D model with 3 layers (2 layers

and half-space) and five parameters.

3.6. Inversion Methods

Several schemes have been suggested for solving the resistivity inversion.
These are divided into two categories, the approximate and the accurate inversion

techniques:
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a) Approximate inversion methods: These methods simplify the inverse
problem by assuming that it is linear. Some of them are the pseudosection technique,
the Zhody method (1975) and back-projection techniques. As these algorithms have
been overcome by more accurate techniques and also due to their weaknesses since
they are approximate methods, they are no longer used.

b) Accurate inversion methods: These schemes treat the inversion as a
nonlinear problem, which is actually the case. The most widely used are: the non-
linear least-squares method (Lines kot Treitel, 1984), the SVD technique (Lanczos,
1960; Lawson and Hanson, 1974), the weighted least-squares method, Marquadt’s
method (Levenberg, 1944, Marquadt, 1969) and the smoothness constrained (Occam)
method. These techniques use the least-squares method to solve the inverse problem
but there are other schemes, such as the L1-norm minimization, that do not use the
least-squares method.

In this thesis, the smoothness constrained (Occam) inversion, which is the

most popular, was used. This method is presented in detail in the following section.

3.7 Smoothness Constrained (Occam) Inversion

3.7.1 Basic Principles

The smoothness constrained inversion (also called Occam) was proposed by
Constable et al. (1987), who applied it to 1D VES and magnetotelluric (MT) data.
This method imposes the smoothness of the solution as a constraint to the inverse
problem. The use of that kind of constraint belongs to a category of techniques known
as regularization techniques of the ill-posed problems, and more specifically it
belongs to the Tikhonov regularization (Tikhonov, 1963).

This method generates the solution with the smallest possible roughness.
Meaning that the smoothest model is sought, which would depart from the simplest
case only as much as it needs in order to fit the data. The major advantage of this
technique, when compared to other methods, is that it does not depend on the choice
of the initial model. The smoothness inversion might not yield the best solution, but
its solution will have a physical meaning and thus, it will be a reasonable
representation of the earth. In addition, smoothness guarantees the stability of the
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3.7 Smoothness Constrained (Occam) Inversion

solution and the solution is dependent on the predefined characteristics that were
chosen.

The non-linear problem of the resistivity can be defined as:

fx)=y (3.14)

where y are the observed data, that is the apparent resistivities, x is the unknown
resistivity distribution and f(x) is the forward problem, which is a known function of
the model. As mentioned in a previous section, the function f(x) can be expanded in

Taylor series and ignoring the higher-order terms, the following equation is derived:
fx+dx)=f(x)+]dx (3.15)
where dx is the model correction and J is the Jacobian matrix.
The regularization procedure aims to minimize the error between the observed
and the synthetic data. The least-squares method seeks to find the resistivity

correction dx for which the sum of squared errors, e, becomes minimum. The e is

given by the relationship:

e=(y-r@) (y-r@) (3.16)

In order to achieve the minimization of e, its derivative with respect to dx is

set equal to zero:

ae—O 3.17
adx (3.17)

The differentiation with respect to dx yields the equation:
JTjdx = J"dy (3.18)

Assuming that the matrix J'J is non-singular, that is it has an inverse matrix,

the correction of the model is given by the equation:
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dx = (7))~ dy (3.19)

This correction is given by the method known as least-squares method or
Gauss-Newton method. In the smoothness constrained method, where the model
roughness must be also minimized, a constraint is imposed to the problem and thus,

the following quantity is minimized:

e = lly —Jdx|l* + 22[ICxI|? (3.20)

where C is the smoothness matrix, A is the lagrange multiplier and x is the matrix with
the resistivity model parameters. The second term accounts for the smoothness
sought, while the degree of smoothness is controlled by A which will be described in a
later section.

Including the smoothness term, the correction of the model is given by the

relationship:

dx = (JT] + ACTC)~YTdy (3.21)

where dy is the difference between the observed and the calculated data (d°°-d*).
Therefore, the new model is obtained by adding the correction of each
iteration to the previous model:

Xk41 = Xk + dxk (322)

where K is the iteration number.

Equation (3.21) yields the model correction with smoothness applied only to
the model changes. This is the standard smoothness constrained inversion. Another
type of inversion is applying smoothness, not only to the model changes, but also to
the model itself. This is similar to the previous type, but includes an additional

smoothness term. For this type, the new model is given by the equation:

Xk+1 = Xk + dxk = Xk + (]T] + /‘{CTC)_ledyk - ACTka (323)
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3.7 Smoothness Constrained (Occam) Inversion

This type of model correction produces a smoother model than the first option but it

converges to higher RMS error. It is suitable only in cases of extremely noisy data.

3.7.2 Smoothness matrix

The minimization of the roughness is achieved using the smoothness matrix C.
This matrix defines the relationships between adjacent parameters in the model. If N
is the number of the model parameters, then the smoothness matrix has NxN
dimensions.

For the 1D case the model roughness can be expressed as:

R = ||Cx]|? (3.24)

where the smoothness matrix C differences the model parameters vertically. This
equation corresponds to a first derivative penalty. Every row in the smoothness matrix
refers to one specific parameter and how that parameter is related to its adjacent

parameters and is given by:

[0 0 o - 0]
|—1 1 o - 0|

c=10 -1 1 - 0 (3.25)
[0 0 - -1 1J

The elements of the matrix take value -1 for the parameter itself and 1 for the
parameters on which it depends, whereas all the other elements are set to zero. For the
2D case where the resistivity is considered to change both laterally and with depth,

the model roughness can be expressed as (deGroot and Constable, 1990):
2
R = ||Cexll*> + ||Cyx|| (3.26)

where Cy and Cy are NxN smoothness matrices that difference the model parameters

laterally and vertically, respectively. Again, this expression is for a first derivative
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1|6
2 | 7 X
3|8 |
.
4 N,-1
5 N,

Figure 3.5: Example of a regularization mesh of the model parameters. N, denotes the

number of parameters.

penalty. An example of the Cy and Cy matrices, based on the regularization mesh of
the model parameters shown in figure (3.5) and numbering the parameters from top to

bottom as shown in the figure, is given by:

0 0 0
-1 0 0 1 0 w+| =———> 6" parameter
Cc=]l0 -1 0 01 0
0 0 -1 0 1
[Cy 0 ] [0 0 0 0 0y
| Cya |—1 1 0 0 0|
C, = ,with C,; =10 -1 1 0 0| (3.27)
[ 0 0 -1 1 0
0 Cyp 0o 0 0 -1 1

where yP is the number of columns in the mesh. These two matrices can be combined
to form the total smoothness matrix C. Using a second derivative penalty, the model

roughness for the 2-D case is expressed as:
2 112 2 112
R = |lcx| + ||c, x| (3.28)

Figure (3.6) illustrates an example of the total smoothness matrix using a second
derivative penalty and a model of 9 parameters. In each row, corresponding to a

specific parameter, the element that refers to this parameter will have a value of -4,
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3.7 Smoothness Constrained (Occam) Inversion

while its neighbors will have value of 1 and all other elements will be equal to zero.
For instance line 5 corresponds to the 5th parameter and has value -4 for itself and 1

for its adjacent parameters.

Parameter mesh Smoothness matrix
1 4 7 o0 . . . . ..0]
2 5 8 . . _
C=(010141010|1lines
3 6 9
l—’x o ... . ... o]
£

Figure 3.6: An example of a smoothness matrix using a second derivative penalty for
the 2-D case and a model with 9 parameters (Tsourlos, 1995).

3.7.3 Lagrange Multiplier

When a constraint must be imposed to a problem, the lagrange multiplier A is
used. In this case it is used to controls the degree of smoothness in the solution. One
of the problems in the smoothness inversion procedure is to decide the suitable value
of A in order to balance the minimization of the error and the amount of smoothing.
Large values lead to very smooth models, whereas very small values make the effect
of smoothness small and as a result the solution becomes unstable.

Many methods of finding the value of the lagrange multiplier have been
suggested. One of these methods is to start the inversion with a relatively high value,
in order to avoid instability, and to decrease it gradually at each iteration as the
solution converges. Another approach is the L-curve method (Lawson kot Hanson,
1974), which uses the angle of a curve to calculate A. Specifically, the solution for
many values of A is calculated and then a plot of the IxI® versus IJx-yl?, in log scale, is
made. The resultant curve has a shape similar to the letter L. The value corresponding
to the angle of L is considered to be a suitable lagrange multiplier for the given

problem. Here the symbol |-l denotes the Euclidean norm.
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The Active Constrained Balancing method (ACB) by Yi et al. (2003) follows
a different approach and treats the lagrange multiplier as a spatial variable. In order to
achieve this, the resolution matrix and the Backus-Gilbert spread function are used.

The resolution matrix R shows how well resolved or not, the parameters of the

model are and it defined as:
R=("]+ACTC)"YT) (3.29)

Each row of R corresponds to a single model parameter. If this parameter is
perfectly resolved, the matrix element for that parameter should have value of one and
zero for all the other elements on the row corresponding to his parameter. In contrast,
if a parameter is not well-resolved, there will be values different from zero in other
elements in the corresponding row. In any case, the sum of all the matrix elements in
one row should be equal to one. An example of the resolution matrix for a model with

four parameters is shown below:

1 0 0 0

R = 01 0.7 01 01
01 02 06 0.1

0.1 01 03 0.5

where the first parameter is perfectly resolved as shown in the first row, whereas the
others are not that well resolved.

In practice, the resolution of the model is satisfactory if the entries in the main
diagonal take values close to one and the other elements close to zero. Figure (3.7)
shows a graphical representation of the divergence of the synthetic model from the
real model. Great divergence of the peaks from the main diagonal depicts a model
with poor resolution.

The Backus-Gilbert spread function is used in order to evaluate the spatial
distribution of each row, corresponding to one parameter, of the resolution matrix.

The spread function SP for the ith parameter is given by:

N
j=1
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where N is the number of parameters

w_is a weighting factor depending on the spatial distance between two
parameters i and j

Sis a matrix used to incorporate the effect of smoothness
The element Sj; of the matrix S takes value of one if the corresponding element Cj; in
the smoothness matrix C is nonzero, and zero otherwise. A large value of the SP
function for a parameter means that it is poorly resolved and vice versa.

Using the lagrangian multiplier as spatial variable results from the fact that the
model parameters are not equally resolvable and thus, different smoothness constraint
needs to be applied to each parameter. In ACB, first the minimum and maximum
values, that the multipliers can take, are chosen. Next, the spread function is
calculated for a very small value of the lagrange multiplier. The spatially varying

lagrangian multipliers A (Xi, Vi, zi) using the spread function are given by the equation:

log(/lmax) - log(/lmin)
log(SPnax) — 10g(SPmin)

log(ﬂi) = log(ﬂmin) + X {log(SPi) - log(SPmin)} (3-31)

where ; is the lagrange multiplier for the ith parameter, Amin and Amax are the min and
max limits of the multiplier, correspondingly and SP,i, and SPmax are the lower and

upper limits of the SP function, respectively. If the SP function has a large value for a

- ~ /" ‘\ s '
SO\
.\\

drre — X\r dobs

N

A—

Y
Y

\= A .

Figure 3.7: Graphical representation of selected rows of the resolution matrix. This

o .

plot indicates how well the data can be resolved. Peaks occurring near the main

diagonal (dashed line) of the matrix show a good resolution (after Menke, 1989).
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specific parameter, meaning that it is poorly resolved, the ACB method assigns a

large value of A to that parameter.

3.8 2D Inversion Schemes

Most 2D inversion techniques use the smoothness-constrained method, as
mentioned above, and the FEM or FDM as forward solvers. The area is subdivided in
a large number of regions. The positions of the regions remain fixed and only the
resistivities are allowed to vary in the inversion and therefore, the resistivities are the
parameters of the model. In this case a 2D smoothness matrix is used, defining
relationships between a parameter and its north, south, west and east adjacent
parameters. One of the limitations of the 2D smoothness inversion, which is an L2-
norm method, is its inability to resolve sharp layer interfaces, as it produces models
with smooth structure. Using a robust inversion technique (L1-norm), the model takes
a blocky appearance but still the layer interfaces are not clearly resolved.

Recently, the laterally constrained inversion (LCI) method (Auken and
Christiansen, 2004) has been suggested, in order to overcome the limitation of the
previous methods to resolve sharp layer boundaries. The LCI method is the subject of

this thesis and it is presented in the following section.

3.9 Laterally Constrained Inversion (LCI)

In the Laterally Constrained Inversion (LCI) the electrical resistivity
tomography is subdivided into soundings based on the spatial sensitivity of each
apparent resistivity measurement. The LCI inverts the series of soundings as one
system and produces a series of 1-D models through the inversion. The neighboring
models are connected together using lateral constraints between the parameters of the
models, as shown in figure (3.8) for a system with 3 models. Due to these constraints,
information from one model will spread to the adjacent ones. The parameters of the

whole system are the resistivities and thicknesses of the layers of each model.
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Model 1 Model 2 Model 3
Cpl! Ctl cpl! Ctl
P11 ti1 o> P21 ta1 > P31 t31
Cp2! Ct2 Cp2! Ct2
P12 ti ¢ > P22 oo ¢ > P32 t32
Cos Coa
P1,3 > P2,3 > P3,3

Figure 3.8: The LCI scheme for a system with three 1-D models. The data-sets are
inverted as one system simultaneously by imposing lateral constraints (C,1, Cu, ...,

C,3) between the models.

This method is robust to the choice of the initial model and results to a
pseudo-2D section with sharp layer interfaces. Although the LCI technique has
overcome the limitation of the 2D smooth-structure inversion to resolve sharp
boundaries, it should not be considered as a substitute to this method, but as a
supplement which can provide valuable information. Therefore, the combination of
these two techniques will enhance the accuracy of the interpretation of the data and

result to a better resolved model.

3.9.1 Methodology

Consider a set of ERT data divided into Ns soundings. Concatenating the data

belonging to each sounding, the vector dqps is formed:

dops = (pal' Pa2, ---'paNs) (3'32)

where p,; is the data-set of apparent resistivities corresponding to the ith sounding.

Each sounding corresponds to a 1-D model with equal number of parameters. The full

m=| ms (3.33)
M

model is presented as:
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The m; corresponds to a specific ith model and is represented as:

m; = (pil yPi2 » - » PiN » til ’ tiZ )y ti(N—l))T (334)

where p is the resistivity, t is the thickness, N is the number of layers and T denotes
the transpose matrix.

The LCI scheme solves the forward problem for each one of the 1-D models
separately with 1-D calculations using the filter method, as previously described.
Using this 1-D formulation, this scheme can locate sharp layer boundaries by making
the assumption of the layered earth. This solution is very effective in sedimentary
environments. In cases where the subsurface is disturbed by geological phenomena or
a layered appearance exists but with significant 2-D structures, the 1-D solution will
not produce the optimum results. To reconstruct these complex structures a
modification to this scheme must be made. This is achieved by using a 2-D forward
solver such as FEM or FD.

Then, the jacobian matrix, for each one of the models, is calculated, and all the
separate matrices are combined to a single matrix J for the total system. This matrix
has the individual jacobian matrices on its main diagonal and zero in every other

element. It is given by:

JE
f (3.35)

]Ns

—
Il

where Jj is the Jacobian matrix for the ith model.

Similar to the smoothness constrained method, the smoothness matrix is used
to connect the adjacent 1-D models by imposing lateral constraints between the
parameters of the separate 1-D models. Figure (3.9) demonstrates four cases of
applying constraints. These cases are the vertical, the lateral, both vertical and lateral
and the last case also includes diagonal constraints, which will have as a result for the
center parameter to be dependent on its 8 adjacent parameters. Normally, only lateral
constraints are used in the LCI scheme, but vertical can be used as well to connect
parameters in the same model. When only lateral constraints in the x direction are

implemented, a single smoothness matrix Cy is used, which can take the form:
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0 0 0
-1 0 0 1 0

C,=]10 -1 0 0 1 0 (3.36)
0 0 -1 0 1

If Ns is the number of models, N is the number of layers at each model and assuming
the parameters of the model are both resistivities and thicknesses, then Cy has
dimensions Ns(2N-1) x Ns(2N-1). Each row of this matrix corresponds to one model
parameter and takes 1 for the parameter itself and -1 for the laterally adjacent
parameter. If vertical constraints in the z direction are also applied, a second

smoothness matrix C; is required, which may be given by:

€«—— N
€«—— N

X —>
X —>

€<—— N

Figure 3.9: Cases of imposing constraints: a) Vertical, b) Lateral, c) Both vertical and

lateral, d) Including diagonal constraints.

46



CHAPTER 3. RESISTIVITY INVERSION PROBLEM

[czl 0 ] 0 0
sz [_1 1 ]

C, =| | ,with C,; = l 0 -1 1 - j (3.37)
l 0 CzNSJ 0 -1 1

where C;; corresponds to the smoothness matrix with the vertical constraints for the
ith model and has dimensions (2N-1)x(2N-1).
The models are inverted as one system and in this case, the correction dx of

the full model for the system would be given by:
dx =[]+ A(C,C, +C,"C,) 174 dy (3.38)

Different weight can be applied for the horizontal and vertical constraints by
introducing two constant factors oy and az resulting in the following model

correction:

dx = [JT] + MaxC,"Cx + a,C,"C,) 7Y dy (3.39)

In this case, all horizontal constraints have equal weight oy and all vertical constraints
have equal weight o,. Different weight on each horizontal and vertical constraint can
be applied using the weighting matrices Wy and W, that contain the weights for each

component of the lateral and the vertical smoothness matrix, respectively:
dx = [JT] + A(C," W, Gy + C,"W,C,) 7Y dy (3.40)
For the LCI scheme a small or even zero weight should be given to the vertical

components. Finally, the output of the LCI is a profile of multiple models, which are

plotted to produce a pseudo-2D graph.
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4. MODIFIED LATERALLY CONSTRAINED INVERSION
SCHEME

In this chapter a description of a modified LCI scheme, which was developed
through this thesis and implemented in code, is presented. Modifications were made
to the LCI scheme compared to previous work, which resulted in a more accurate
inversion solution. The changes, the algorithm that lies behind the LCI software and
its capabilities, as well as, its limitations will be discussed and examples of testing the
scheme with both real and synthetic data will be presented. The results of the LCI
method will be compared with the results from a 2-D smooth-structure algorithm
using the software DC2DPRO (Kim 2017). All synthetic data in this thesis were
produced using DC2DPRO.

4.1 Discard low-information VES

Figure (4.1a) shows an example of a typical sequence of ERT measurements.
At first, these data are divided into soundings based on the center of each
measurement, as illustrated in figure (4.1b), resulting in 18 different soundings for
this example.

As the spacing between the electrodes increases, the number of measurements
decreases and thus, the soundings which are closer to the center of the profile will
have a greater number of data, whereas those that are close to the boundaries of the
profile will have limited data. It is obvious that at the boundaries of the tomography,
the small number of measurements is not adequate to form a sounding. These data
represent a small part of information which cannot be used to give accurate inversion
results and therefore, they are discarded and only the remaining are used for the
inversion as shown in figure (4.1c). Although this means that smaller part of
information and therefore, smaller covered area, than the original will be used, this
part will produce more accurate results through the inversion.

Before applying the scheme the algorithm was tested without removing any of
the data and although the inversion produced correct results for most of the profile
area, the final models acquired for the soundings near the boundaries were erroneous
due to the lack of information at great depths in this area. An example is shown in

figure (4.2). Synthetic data were produced for a model that consists of 2 layers and
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half-space with 50, 10 and 100 Ohm-m, respectively. Figure (4.2b) illustrates the

results using all data in the inversion, while figure (4.2c) when discarding VES with

small number of measurements. It is obvious that at the boundaries of the domain the

solution is incorrect when using all data due to the lack of information, whereas after

discarding the VES, the inversion resulted in a more accurate model showing clearly

the layered structure.

a)

t)) VES 1 2 3 4 5 6 7 8 9 10 11

1z 13 14 15 16 17 18

C) VES 5 6 7 8 9 10

11

1z

13

14

Figure 4.1: a) A typical sequence of ERT measurements b) ERT divided into

soundings c) Discard VES with low-information.

After removing these data, the column vectors with the electrode spacings and the

apparent resistivity measurements are reformed and sorted by sounding order such as:

Pa = (Pa1sPazs - Pans)

AB2 = (AB2,,AB2,, ... ,AB2y;,)

(4.1)

MN2 = (MN2y, MN2,, ... ,MN2y;)

50



CHAPTER 4. MODIFIED LATERALLY CONSTRAINED INVERSION SCHEME

where p,s denotes the data-set for the 1 sounding, pa for the 2™ and so on, and AB2
and MNZ2, are the distances between current and potential electrodes, respectively,
which are formed in the same concept as the apparent resistivities. All datasets used in
the following chapters have been processed to discard the VES with a small number

of measurements before inversion.

a) Model

0

50 Ohm'm

100 200 300 400 500 600 700 800

b) LCl using all data

50 —_
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Figure 4.2: a) Model used to produce the synthetic data. b) LCI using all data. c) LCI

without including soundings with low-information/small number of measurements.
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4.2 Modification of smoothness matrix

The second change was a modification of the smoothness matrix. In the
inversion method not only the resistivities but also the thicknesses of each layer
change through the iterations. The thicknesses can also remain fixed and therefore, no
changes will be required in the smoothness matrix and only the resistivities will vary
through the inversion. But, in the case the thicknesses change, the constraints between
the parameters, for both resistivities and thicknesses, can also change and therefore
the smoothness matrix will be updated.

An example with two different cases of smoothness constraints, using five
models with 6 layers each, is shown in figure (4.3). Case (a) shows that the parameter
with number 15, which belongs to model 3, depends on its north, south, east and west
adjacent parameter (number 9, 14, 15 and 21) since all the parameters have equal
thickness. The constraints in this case are 4, one for each side. In case (b), parameter
15 has greater thickness than its lateral neighbors from models 2 and 4, and as a result
it is dependent on more parameters. In this case, the constraints are 6; one for north
and south parameters, whereas east and west are accounted for two, as shown in the

figure.

System with 5 models
b)

Y
N
w

4 5 1 2 3 4 5

I, 19 | 25 1
I, 26 2
I, 27 3
l4 28 4
I5 29 5
le 30 6

Figure 4.3: A five model system with 6 layers, where |; represents the ith layer, is
used to demonstrate two different cases of smoothness constraints and give a
justification for the modification of the smoothness matrix: a) All parameters for all
models have equal thicknesses, b) Parameters between models have varying

thicknesses.
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Since the lateral constraints are the ones that are changing, the smoothness
matrix Cy will be updated at each iteration of the inversion loop, while the C, matrix,
with the vertical constraints, will remain fixed. An example of the smoothness
matrices using second order derivatives is shown in figure (4.4) for a 3-model system
and 4 layers for each model. It is clear that the 6™ parameter depends on four lateral
parameters, two from the model that is on its left and two from the model on its right.
Therefore, the smoothness matrix Cy has to account for these dependencies and takes
the value of -4 for the 6" parameter itself and 1 for the lateral parameters.

In order to update the smoothness matrix, the algorithm compares the layer
thicknesses and depths of neighboring models at each iteration and then adjusts the
constraints accordingly. This comparison can be demonstrated using figure (4.5) for 2
models with 4 layers each, where [; represents the ith layer and A-E represent the
layer interfaces. Consider the first case and the lateral constraints for the 2™ layer of
the first model. The depth of interface C is the same as of interface A, so the 2" layer
of the first model does not depend on the 1% layer of the 2" model. Next, interface D
is examined. This interface is at a greater depth from A and at a smaller depth from B
s0, the 2" layer of the first model will depend on both the 2" and 3™ layer of the
second model and constraints will be applied for both. Finally, interface E is at a
greater depth from both A and B and thus, no lateral constraint between the 4™ layer
of the second model and the 2™ layer of the first will be applied. Similarly for case b,

where the 2™ layer of the first model depends on the 3 top layers of the second.

Model system

0 0 0
.., 0
G=|0 1100 4 000110
L0
0 0 0
G =0 1 21 0 0
L0

Figure 4.4: Example of smoothness matrices using second order derivatives for a 3-

model system with 4 layers.
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2
|
C 1
I
D
I5
E
|4 I4 |4 |4

Figure 4.5: Layers with greater thickness affect more than one lateral adjacent
parameters: Example using two models with 4 layers, where |; represents the ith layer
and A-E represent the layer interfaces. a) Layer I, (red color) of the first model
depends on layers I, I3 (blue color) of the second model. b) Layer |, of the first model

depends on layers I, — I3 of the second model.

As mentioned previously, usually in the LCI scheme only lateral constraints
are imposed. In case both vertical and lateral are applied, it is of great importance to
find the optimal ratio of the weight given to the vertical versus the weight given to the
lateral. Small weight should be given to the vertical constraints, otherwise the
resultant scheme will start to resemble the 1-D inversion of each VES separately with
increasing weight to the vertical constraints. To demonstrate this, consider again the
model in figure (4.2a). Figure (4.6) illustrates the resultant inversion pseudo-2D
images for a) the 1-D inversion of each VES separately and combining to form the
pseudo-2D graph, b) LCI with equal weights on vertical and lateral constraints and
fixed smoothness matrix, ¢) LCI with 1:5 ratio of the vertical versus the lateral weight
and fixed smoothness matrix and d) LCI with 1:5 ratio and varying smoothness
matrix. It is obvious from figures a) and b) that large weight given to the vertical
constraints leads to similar results as performing the 1-D inversion of each VES
separately. In the latter, only vertical constraints are used between the parameters of
each model and as the vertical weight is increasing in the LCI, it has a greater impact
than the horizontal weight and therefore, the scheme tends to resemble the 1-D
inversion more. When smaller vertical weight is used, the accuracy of the solution is

increasing as shown in case (c). Finally, when using the LCI with varying smoothness
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a) 1-D inversion of each VES separately
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Figure 4.6: Example used to justify the modification of the smoothness matrix using
synthetic data for model in figure (4.2a): a) 1-D inversion of each VES separately. b)
LCI with equal weights on vertical and lateral constraints and fixed smoothness
matrix. ¢) LCI with 1:5 ratio of the vertical versus the lateral weight and fixed

smoothness matrix. d) LCI with 1:5 ratio and varying smoothness matrix.
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matrix based on thickness changes, as described earlier, the inversion results in a very
accurate solution as illustrated in case (d).

The example presented above is used to show the improvement of the solution
using a modified smoothness matrix. Although this example represents a simple case

of horizontal layers, the same applies for more complex models.

4.3 ACB Implementation

In previous work on the LCI method, a constant value was used as lagrange
multiplier A. In the present thesis, we implement the ACB method to assign lagrange
values to each parameter of the full model. Using ACB resulted in more accurate
solutions in most cases, while in some cases there were minor differences between
inversion using ACB and when using a constant lagrange value and therefore a
constant A was sufficient in the latter.

A case where ACB improved the inversion results is demonstrated in figure
(4.7). The model used to produce the synthetic data is shown in figure a), while b) and
c) display the outputs of the LCI using a constant lagrange value of 0.01 and LCI
using ACB, resepctively. It is clear that using ACB resolved more accurately the
interfaces between the layers of the model compared to the solution using a constant
lagrange, which failed to resolve the boundaries of the resistive half-space with p =

400 Ohm'm that exists at 20 m depth and at distance 35-120 m along the profile.

4.4 LCI Algorithm Description

LCI is a software that was developed through this thesis and performs laterally
constrained inversion of electrical resistivity tomography data and includes the
modifications described above. In this section, the algorithm behind the software will
be described, whereas images of the program, instructions on how it can be used and
parts of the code are included in the appendix.

In order for the program to function properly, the data must have been
acquired using the Schlumberger or Wenner arrays during the survey due to their
symmetry. For other arrays, like the dipole-dipole and multiple gradient, which are
asymmetrical, a sensitivity analysis is required for this method of inversion. The

sensitivity analysis was not part of this thesis.
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a) Model
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Figure 4.7: Improvement of inversion results using ACB: a) True model used. b) LCI

using a constant lagrange value A = 0.01. c) LCI using ACB.

After loading the ERT data file, the dataset is processed before inversion. At
first these data are divided into soundings based on the center of each measurement.
Then, the VES with small number of measurements are removed and the data are
sorted by sounding order. Specifically, this algorithm is designed to keep only the
soundings which have more than four data.

The next step is the calculation of the geometrical factors and the choice of the
initial model. The program chooses by default an initial model, where both
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resistivities and thicknesses are varying, and inversion parameters, which can be
altered by the user. The number of parameters of each 1-D model must be the same.
The resistivities of all layers of each individual model are initialized to the median of
each sounding. Based on the maximum separation distance of the current electrodes,
the maximum penetration depth is calculated as the Y4 of this distance. Based on this
depth and the number of layers, thicknesses are assigned to each layer. At this stage,
all models are assumed to share equal thickness of each layer. For instance, the 1°
layer of all models will have the same thickness t;, the 2" layer of all models will
have t,, etc. For each model, the thicknesses of the layers can be equal or increasing
for deeper layers to account for the decreasing resolution with increasing depth. The
latter is the default choice.

A default value of 0.01 for the lagrange multiplier is also assigned in case
that the constant value option is enabled. The active constrained balancing, as
mentioned above can also be enabled by providing two values that specify the lower
and upper limits of values that lagrange can take. The default values used are 0.01 and
1 for lower and upper limits, respectively. Next, the smoothness matrix with the
vertical constraints for the whole system is calculated. The default weight given to the
vertical constraints is 0.2.

After defining the above, the iteration procedure begins. First, the forward
model is solved separately for every 1-D model. Then, the RMS error between the
observed data and the calculated data is computed. If one of the stopping criteria is
satisfied the iterations stop, the model is saved and the results are presented in the
screen. Otherwise, the inversion procedure continues with the calculation of the
Jacobian matrix for each data-set. These matrices are merged in one matrix, which is
the Jacobian for the whole system and has the separate matrices on its main diagonal.
Due to the fact that this matrix has many zero elements, it is converted to a sparse
matrix. The sparse matrix is a compressed matrix that keeps only the non-zero
elements and their corresponding indeces in the initial matrix and this way the
memory requirements by the software are reduced. Therefore, it is used in order to
speed up the calculations. The Jacobian matrix is calculated using the perturbation
technique, which was described in a previous chapter.

The process continues with the calculation of the modified smoothness matrix
with the lateral constraints, which is calculated inside the loop because by default not
only the resistivities but also the thicknesses of each layer change through the
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iterations and thus, the constraints between the parameters. After the calculation of C,
if the ACB method is enabled, the spatially varying lagrange multipliers are
calculated. Subsequently, the correction of the model is calculated and added to the
previous model. The forward problem for the new model is calculated and this
process continues as described in the previous chapter, until one of the stopping
criteria is satisfied. Finally, the inversion results are displayed and a pseudo-2D plot is
created.

Figure (4.8) demonstrates the initial steps that are followed before the iterative
procedure starts in the form of a flow chart, whereas in figure (4.9) a flow chart

describing the inversion procedure is presented.
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Figure 4.8: Flowchart of the initial steps which are followed to prepare the ERT data

for the LCI inversion.
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Figure 4.9: Flowchart of the inversion procedure.
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4.5 Application to synthetic data

The algorithm, which was introduced above, was tested with a large number of
synthetic data in order to evaluate its effectiveness with different geoelectrical
models. The results were compared to a standard 2D smoothness inversion scheme
using the software DC2DPRO (Kim, 2017). This software was also used to create the
synthetic data. The same inversion parameters, such as the number of layers, the ACB
method for calculating the lagrange multiplier and the maximun depth, were used in
both programs. The number of layers was set to 7, while the maximum depth used is
shown in each plot.

Although the running times are not directly comparable since LCI was coded
in MATLAB, which is a slower programming environment than the C language,
which was used for the development of DC2DPRO, in all cases the LCI proved to be
faster due to the 1-D formulation of the forward problem. As an example, for a dataset
of 408 points using 48 electrodes and 7 model layers, the running times of
convergence, for 6 iterations, were 9.75s for the LCI and 29.43s for the DC2DPRO
inversion on a Intel Core i7-7700 CPU, making the LCI 3 times faster in this case. For
longer profiles, this difference will be more pronounced, and therefore LCI would be
the preferable choice for long profiles with a layered structure.

Figure (4.10) shows a set of the models which were used to produce the
synthetic data. Both simple and complex models were created and tested. These
models are realistic and can be encountered in real-life problems. Different number of
electrodes, spacings and as a result penetration depth was used. Furthermore, some
noise was added to the data to make them more realistic. The synthetic data were
inverted and the inversion results are presented as 2D plots in figure (4.11). For each
model (a)-(h) the top side of the figure represents the inversion results using the LCI
software, while the bottom shows the results using DC2DPRO. The color scale of the
plots was chosen to be as similar as possible in both programs, in order for the results
to be comparable. Attention should be given to the area covered by the LCI software,
as it is smaller than the one used in DC2DPRO, for reasons that were stated earlier,
and therefore, the boundaries are not the same. The boundaries of the domain that was

used by LCI are shown with black lines in the graph for each dataset.
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Figure 4.10: Models used to produce the synthetic data for evaluation.
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Figure 4.11: Inversion results of the synthetic data using the LCI program (top) and
the DC2DPRO software (bottom).
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All in all, the two different inversion schemes produced similar results, as
illustrated in the figure (4.11). The results were compared with the true models used
and proved to be accurate, as both simple and complex models were able to be
reconstructed effectively with the LCI algorithm. Regarding the models with a layered
structure and sharp interfaces (cases a and d-h), the layer interfaces and the depths of
the layers in most of the models were resolved better using the LCI scheme, as this is
the main feature of this method. Also, the resultant resistivities from LCI are realistic
and a good approximation of the true resistivity distribution of each model.

Layered models with 2-D structures inside a layer were used to assess the
response of the 1-D formulation with 2-D structures in cases b) and c¢). The results
showed that the LCI scheme was not able to detect the presence of these targets and
also that the 2-D structure greatly affected its surrounding area and distorted the final
model. These results were expected as the inability of any 1-D scheme to locate 2-D
or 3-D variations is known.

The RMS error using the LCI method was low (<5%) and the data converged
after a few iterations (< 12). Moreover, the apparent resistivity curves of each VES of
the data used for the inversion and the calculated data were used as another means to
test the effectiveness of the algorithm. The curves were very similar for all models

and thus, showed that the results were reliable.

4.6 Application to real data

The results from the laterally constrained inversion using synthetic data
showed that the algorithm is accurate and effective. However, it is necessary to test
this scheme with real data. In this section, the results using the LCI algorithm with
real data, which were collected in the field, are presented. The software DC2DPRO
software was used not only to compare the inversion results, but also to exterminate
bad data points due to high noise level.

The real data were acquired as part of various geophysical projects using the
Schlumberger and Wenner arrays. The surveys were conducted in different
environments and conditions using different number of electrodes and spacings in
each case. The inversion results are presented in figure (4.15). For each model the top

section corresponds to the LCI solution, while the bottom to the DC2DPRO solution.
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In cases (a)-(c), the existence of 2-D resistivive structures is clear, whereas the last
two cases have a more layered appearance.

The data in the first three cases were collected during a survey for the
detection of Bauxite residues in galleries (Tsourlos et al, 2005). The measurements
took place in Anw Varianh, that belongs to the Parnassus—Ghiona geotectonic zone in
central Greece. The measurements were collected inside the gallery using 24
electrodes with a spacing of 4m. The location of the tomographies is illustrated in
figure (4.12). Tomographies T1 and T2 were conducted on the floor of the gallery,
while T3 was conducted on the wall. The inversion results are demonstrated in figures
(4.15a, b, ¢) for T1, T2 and T3 respectively. T4 represents a GPR survey line and not
an ERT. Based on the DC2DPRO results, case (a) shows resistive areas close to the
surface along the tomography and in the region 4-14 m distance and depth up to 12m,
which are attributed to the bauxite residues. In the T2 inverted image, two highly
resistive bodies exist between 10-30m and 40-60m along the profile and extend from
3 to 10m depth. These can be also attributed to the bauxite lenses. Similarly for T3,

where a large resistive area is visible between 20-64m distance and 6-24m depth.
| | | | | \ \ | | \

7520 — Ti
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Figure 4.12: Location of ERT survey lines in Parnassus. The blue lines represent the

gallery’s outline. T1 (red line) and T2 (yellow line) were conducted on the floor of the
gallery, while T3 (green dashed line) was conducted on the wall. T4 (purple line)

represents a GPR survey line.

69



4.6 Application to real data

512000 513000 514000 515000 516000 519?00 520000

4521000

4521000

4520000
4520000

4519000
4519000

4518000

4518000

4517000
4517000

4516000
4516000

4515000
4515000

S NG LRy T
: 1000 Meters ' \KH
W ie .‘k&'
Eloc, T SN

i - 3 -
512000 513000 514000 515000 516000 517000 518000 519000 520000
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measurements were collected.
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The comparison of these results with the LCI solution showed that the LCI scheme
was not able to provide an accurate solution for T1 and T2 due to the 2-D nature of
the bauxite lenses, while the resistivity distribution is more similar between the two
outputs for T3, probably due to the larger dimensions of the resistive structure.

The fourth case shows the inverted data of a survey located in Mirtofito. The
area of the survey is shown in figure (4.13). It is consisted of boulders, conglomerates,
pebbles, red clay and other fine-grained material. The bedrock is expected to be made
of granite.

During the survey, 21 electrodes were used with 50m spacing. Two electrical
tomographies, with a length of 1000m each and maximum penetration depth of
~200m, were conducted. The survey lines are shown in figure (4.14), but only the
inversion of line MYRL is shown in figure (4.15), as the inversion results for the two
lines were very similar. The low resistivity values (<50 Ohm'm) at shallow depths
represent the sedimentary deposits, whereas resistivities in the range of 50-160
Ohm'm are attributed to the weathering mantle of the granite. Below the depth of 50
m and from 150 to 650m of the survey line, the granite is expected to be found, with
high resistivity values. After the 650th metre there is a transition zone to lower
resistivity values, which was attributed to the existence of a vertical fault at the 650th
metre. The LCI scheme was able to resolve both the granite and the fault accurately.
The lower resistivity values at the left section of the LCI pseudo-2D between 250-
400m can be justified by the lack of information at greater depths that affects the
solution.

The last case is from Mygdonia basin, which is situated between the two lakes
Volvi and Lagada around 45 km northeast of Thessaloniki, with significant seismic
activity. Mygdonia basin consists of thick (~200-500m) sediments lying on a gneiss-
schist basement. During the survey, 48 electrodes were used with a spacing of 5m. In
figure (4.15e), two distinct regions are noticed extending along the profile, a resistive
area at depth 0-12m and a conductive at 12-60m depth. The resistive layer can be
interpreted as coarse deposits, such as gravel, while the conductive layer as finer
deposits having silty sand, sand or clay. The outputs of the two different schemes
proved to be similar. In this case, the LCI software did provide accurate results due to
the fact that the subsurface had a layered structure, in contrast with previous examples
that demonstrated the inability of the laterally constrained inversion to resolve 2D
targets, which are better resolved with the 2-D smooth structure scheme.
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4.6 Application to real data

The data fit rms error between the observed and the calculated dataset was at
an acceptable level with values of ~3-6% and ~4-10% for the DC2DPRO and the LCI
software, respectively.
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CHAPTER 4. MODIFIED LATERALLY CONSTRAINED INVERSION SCHEME
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4.6 Application to real data
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Figure 4.15: Inversion results of the real data using the LCI program (top) and the
DC2DPRO software (bottom).
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The main aim of this thesis was to develop schemes for the laterally-
constrained inversion of electrical resistivity tomography data and to evaluate the
effectiveness of this method. The reason for developing LCI schemes was to provide a
tool that can resolve sharp layer interfaces and thus, enhance the accuracy of the
interpretation. The conclusions, which were drawn from this study, are presented

below:

e The laterally constrained inversion scheme can locate sharp layer interfaces in
contrast to the 2-D smooth-structure schemes. The two different techniques
should be used in conjunction to improve the interpretation. Given a priori
geological data, the joint interpretation of these methods can lead to a precise
geological model.

e The LCI algorithm proved to be faster compared to a 2-D smooth-structure
algorithm due to the 1-D formulation of the forward problem, as mentioned in
paragraph 4.5 and from additional tests that were not presented in the thesis
for the sake of brevity.

e Following section 4.1, removing the soundings with a small number of
measurements at the boundaries resulted to more accurate models. Using all
the soundings could lead to erroneous models due to lack of information at
greater depths at the boundaries of the tomography (Figure 4.2).

e The modification of the smoothness matrix to change at each iteration
depending on the thicknesses (see paragraph 4.2), which are allowed to vary
throughout the inversion, proved to give more accurate results than using the
same constraints in the smoothness matrix during the iterative procedure
(Figure 4.6d). The thicknesses change and as a result the adjacent parameters
and therefore, this change should be taken into account in order to provide the
appropriate constraints.

e The choice of the vertical to horizontal smoothness ratio plays an important
role in the LCI inversion. This ratio should be small with minor weight given
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5.2 Recommendations

to the vertical constraints between parameters in order to achieve the optimum
results (see section 4.2 and Figures 4.6b and c).

e The synthetic data showed that the LCI scheme was able to locate effectively
the formation boundaries in cases of layered subsurface and even more
accurately than the 2-D smoothness scheme, which produced a smoother
image of the interfaces. A large number of different models were used and the
LCI resulted to a very good approximation of the true model at each case
(Figure 4.11).

e The synthetic data also showed that it is not possible to resolve models with
significant 2-D structures with the laterally-constrained inversion due to the
inability of any 1-D scheme to resolve 2-D or 3-D variations. In this case a 2-
D formulation of the forward problem should be used or a smooth-structure
technique.

e The application of the LCI scheme in real data proved that the algorithm
cannot resolve accurately 2-D structures but can provide accurate results when

the subsurface is almost layered (Figure 4.15).

5.2 Recommendations

The present thesis studied inversion schemes of ERT data, which are able to
detect sharp layer boundaries. Useful conclusions were drawn by this study, but
further research is required.

Acquisition of real data and modelling with more complex layered structures
is necessary in order to evaluate the proposed laterally-constrained inversion scheme.
The scheme should be tested with dipping structures within the layers to find the
ability of the algorithm to detect them and the maximum slope that the 1-D code can
resolve.

Regarding the configurations, a numerical integration of the 2-D sensitivity
distributions should be implemented in this scheme, in order for the algorithm to be
able to run with different and more common ERT arrays. This way the lateral focus
point of each measurement can be found and thus, the algorithm will overcome the

limitation of the asymmetrical arrays. In addition, the forward model should be
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

modified to include different arrays, as this filter method applies to Schlumberger data
only.

Regarding the laterally-constrained scheme, improvements should be made to
make it capable of handling both sharp layer interfaces and 2-D structures more
accurately.

Applications of the LCI scheme on large datasets should be examined in order
to test the speed of the algorithm compared to a 2-D smooth inversion. LCI can
significantly speed the inversion running times when dealing with large number of
electrodes and data points. One such application would be the inversion of marine

ERT survey data.
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APPENDIX A

LCI SOFTWARE DESCRIPTION

LCI is a software that performs laterally-constrained inversion of electrical
resistivity tomography (ERT) data. The program was created as a graphical user
interface (GUI) and the code was written using the MATLAB environment. The
2015a MATLAB version was used. The only requirement to execute the program is
the installation of the MATLAB platform. The LCI software was tested in every
operating system supported by MATLAB (Windows, Linux, Mac, Solaris).

The main functions included in the LCI program and their functionality are
listed in table (A.1). All functions contain MATLAB code and have .m extension. The
code was organized to separate functions to improve its readability and maintenance
and also to enable the portability of the functions. The LCI.m file along with its figure

(LCL.fig) is the main program.

Lal - - IEN
File Edit Export View Inversion Options Help >

50RO E

Figure A.1: The main window of the LCI program.

In figures (A.1) and (A.2) the main window of the program and the menu are

illustrated. From the File option in the menu, the ERT data are selected. The data file
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formats used for DC2DPRQO and Res2dinv software are supported by the program and
the original binary files can be used as input as well. The default data file format is
shown in figure (A.3). The 5 columns correspond to the positions of electrodes A, B,
M and N and the apparent resistivity, respectively.

Function

Description

app_res
calc_ini_model

calc_jac

calc_rms

calculate_dx

calculate_geom

colorbar

forward_fun

LCI

resolution_matrix

smooth_matrix

spead

Calculates the apparent
resistivity.

Sets initial resistivity model.
Calculates the Jacobian matrix
using the perturbation
technique.

Calculates the RMS error.
Calculates the model
correction using the
smoothness-constrained
method.

Calculates the geometrical
factor.

Auxiliary function that
generates a colorbar similar to
the one used in DC2DPRO.
Solves the forward problem
using the filter method.

Main program (GUI).
Calculates the resolution
matrix.

Constructs the smoothness
matrix.

Calculates the Backus-Gilbert

spread function.

Table A.1: List of the main functions included in the LCI software.
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Open data

R Open
, "|  DC2DPRO
—> File
> Exit
—> Edit

—> Save File

—> Export

——» | Save Image

Jacobian
Menu _ ’ Matrix
—> View
Resolution
_b .
Matrix
— | Inversion > Inversion

—{ Options

Y

Help

Figure A.2: Menu of the LCI software.

In addition, a typical DC2DPRO file with .A2D extension, is shown in figure
(A.4), as the data files used in this work had this format. The first line shows the
version of the software, the second is the filename and the third is the number of
boreholes. The fourth line shows the number of electrodes used and is followed by a

series of lines with the number and the X, y, z position of each electrode. The next line
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includes the number of topography data and is followed by the number of
measurements and the data format, i.e. if the file contains apparent resistivity,
potential or both values. Afterwards, each line corresponds to a specific measurement

showing which electrodes were used and the value of the measurement.

475.00 525.00 495.00 505.00 27.799
470.00 530.00 495.00 505.00 30.700
460.00 540.00 495.00 505.00 31.700
450.00 550.00 495.00 505.00 32.400
450.00 550.00 490.00 510.00 32.700
435.00 565.00 495.00 505.00 31.799
435.00 565.00 490.00 510.00 32.700
420.00 580.00 490.00 510.00 35.900
400.00 600.00 490.00 510.00 40.400

Figure A.3: Sample of the default data file format that is supported by the program.

1000
Filel.bin
0
10
1 0.00 0.00 0
2 50.00 0.00 0
3 100.00 0.00 0
4 150.00 0.00 0
5 200.00 0.00 0
6 250.00 0.00 0
7 300.00 0.00 0
8 350.00 0.00 0
9 400.00 0.00 0
10 450.00 0.00 0
0
170 0
1 9 4 0 170.233
1 7 3 5 164.398
1 5 2 4 155.417
1 10 5 6 168.751
1 8 4 5 170.060
1 6 3 4 161.245
1 4 2 3 153.370
2 10 5 7 161.793
2 8 4 6 162.353
2 6 3 5 155.058
2 9 5 6 165.535
2 7 4 5 160.228
2 5 3 4 153.206

Figure A.4: Example of DC2DPRO data file format.
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The inversion results can be saved to a text file with the format shown in
figure (A.5).

Data File: Modell.A2D

Path: C:\Users\User\Desktop\models\

Array: Schlumberger

Number of electrodes: 21

Occam Inversion: Smoothness on model changes
2D smoothness: Vertical-to-Horizontal: 0.5
Lagrange multiplier: From ACB

Number of soundings: 13

Number of data: 250

Number of layers: 7

Max Depth: 230 m

RMS error: 1.450 %
Number of iterations: 12

VES 1 - Center: 275.00 m

Res (Ohm*m) Thick (m)

129.430000 6.890000

143.390000 14.230000
164.400000 21.740000
161.040000 28.890000
142.330000 35.240000
148.720000 40.830000
176.190000 999.000000

VES 2 - Center: 300.00 m

Res (Ohm*m) Thick (m)

129.080000 6.850000

148.580000 14.250000
164.980000 21.800000
147.950000 28.930000
129.470000 35.240000
143.890000 40.600000
191.560000 999.000000

Figure A.5: Example of an output file with the inversion results.
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The first section of the output file, after the title, presents information about
the input file and the inversion options. The sequence of elements included in each

line is given above:

Name of input data file.
Path of the data file.

The type of array.

The number of electrodes.

o > w0 e

The inversion option:
-Smoothness on model changes
-Smoothness on model
6. The type of smoothness:
-1D smoothness
-2D smoothness: If 2D is selected, the vertical-to-horizontal smoothness ratio
is also given.
7. The lagrange multiplier:
-Constant value
-Active Constrained Balancing
8. The number of soundings
9. The number of data
10. The number of layers used for each VES

11. The maximum depth used.

The next section shows the RMS error of the inversion and the number of
iterations required for the solution to converge. The following lines represent the
resultant model of each VES. The section starts with the number of the first VES,
which is given along with the position of its center. This is followed by the resistivity
and thickness of each layer. Then, the model of the second VES is given and so on.

After opening the input file, two panels appear on the screen, as shown in figure
(A.6). The first panel (“Options”) includes a number of inversion options. These
options can be adjusted depending on user’s choice. In the second panel (“Block
parameters”), a sketch of the initial model is presented, showing the position of each
VES, the number of parameters, the number of layers and their thicknesses. Changing

one of the inversion parameters will update the initial model dynamically.
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4 LCI - o IEN

File Edit Export View Inversion Options Help k)
g0RKOE
Options
Filename :
Model2 A2D

Lagrange Multiplier
() Select 0.01
(@ ACB
From : 0.01
To B 1
Max Iterations 10
No. of Layers 5
Max Depth 200
[] Equal Thickness
Select Initial Model
Smoothness Options
(®) Smaooth on correction

(_) Smooth on model

() 1D Smoothness Block parameters

(@ 2D Smoothness 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725
- 0

Vertical/Horizontal | 4
ratio 50

Inversion 100

150

200

Figure A.6: The inversion parameters that can be modified and a graphical

representation of the initial model.

From the options panel, user can define if the lagrange will have a single value
or it will be calculated through ACB (Figure A.7a). Choosing ACB will enable the
“from” and “to” text boxes, in order to choose the upper and lower limit of the
lagrange multiplier. Also, the maximum number of iterations can be selected;
otherwise the default value of 10 iterations will be used. In addition, there are options
regarding the initial model, as displayed in figure (A.7b). These options are the
number of layers, the max depth of investigation and a choice to determine if the
layers will have equal thickness or their thickness will be increased gradually from

top to bottom. Initial values for the model parameters can also be assigned.
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a) | Lagrange Multiplier c)

() Select 0.01 Smoothness Options
@ ACB (®) Smooth on correction
Fram : 0.01 .
(_) Smooth on model
To 1
D) | No. of Layers . () 1D Smoothness
Max Depth 200

(® 2D Smoothness

[] Equal Thickness

Vertical/Horizontal = 4
Select Initial Model ratio ‘

Figure A.7: Inversion options regarding: a) The lagrange multiplier, b) The initial

model, ¢) The smoothness.

There are different smoothness options (Figure A.7c). The smoothness can be
applied only to the model changes or it can include an extra term which also applies
smoothness to the model. The first option is considered as the standard option,
whereas the second is safer to use it only in cases of very noisy data. Apart from the
2-D smoothness, 1-D smoothness can be applied, which will produce the same results
as if the soundings where inverted separately. In addition, the ratio of vertical to
horizontal smoothness can be assigned. The smoothness can be applied only vertically
or horizontally by creating two different smoothness matrices. If both are chosen,
these two matrices are merged into one and the weight of each one is specified by
their ratio. For instance, if 1 is chosen as the ratio, then both will contribute equally to
the total smoothness in the inversion, whereas if 0.2 is chosen, then the horizontal
smoothness will contribute five times the contribution of the vertical smoothness. For
the laterally constrained method it is recommended that the weight of the horizontal
smoothness is at least twice the weight of the vertical or even only lateral smoothness
to be applied.

After all the inversion parameters have been chosen, the inversion can be
executed from the Inversion menu — Inversion. An example with the results of
running inversion is shown in figure (A.8). At the center of the window the pseudo-

2D plot appears and a table containing the final model for each sounding. The values
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for the parameters are denoted as Res_1 and Thick_1 for resistivities and thicknesses
of the first sounding, Res_2 and Thick_2 for the second sounding and so on. The units
for resistivity and thickness are Ohm-m and meters, respectively. Next to this table a
panel appears contained information about the inversion. It shows the RMS error, the
value of the lagrange multiplier if it is a constant or the string ‘ACB’ if the active
constrained balancing is on, the number of iterations required to converge, the number

of data used and the number of soundings.

« Lal - B
File Edit Eqport View Inversion Options Help El
gDRAOE
Options Pseudo 2D VES
Filename : s
: 365 10°
Model1.A2D £
—_ aE
Lagrange Multiplier 22 *E 5
Oselect | 001 £z
- Qo =
@ACB 2|2 e
C 1% 5| T 102
Fom : | 001 3|0
. 2| =
To - 1 A
8 8| 5
Max lterations | 30 5
<
No. of Layers 3 2 10!
300 350 400 450 500 550 600 650 700 10! 102 10°
Max Depth | 230 Distance(m) AB/2(m)
[ Equal Thickness Model Inversion Results Data
Select Initial Made! Res 1 Thick 1 Res 2 Thick 2 Res 3 Thick 3 Res 4 Thick 4 Res RMS % 2615 AB/2 MN/2 Obs.App.Res
1 15098 878 185,02 3889 16278 3890 17212 3798 1 1 275 25 1535690 A
Smoothness Options 2 15641 7636 14269 7664 12395 7589 10520 7419 Lagrange | ACB z 25 %5 1560860
_ 3 16324 98,00 17278 959.00 207.3% 98,00 25032 99.00 2 3 175 5 1579140
(® Smooth on corection Iterations i 1
4 125 5 1557850
) Smooth on model Noofdata | 130 5 ] 3151989
________________________________________ a > 6 300 S0 1625600
Noof VES | 19 7 20 50 1516130
)10 Block p g 200 S0 1500210
® 2D Smoothness 275 300 325 350 375 400 425 450 475 500 525 650 575 600 625 650 675 700 725 9 150 0 1819
0 10 100 50 1519580
VerticalHorizontal | 4 VES plot n 325 B AT4ITa
ratio 50 12 15 5 1582430
T VES 1 13 25 5 1475900
Inversion 1 175 5 1468630
150 15 125 % 1505630
& = 16 75 % 1507830
200 17 350 S0 1854570 v
< >

Figure A.8: An example of the window with the results after running the inversion
with the LCI software.

On the right side of the window there is a plot showing the apparent resistivity
curve of the real data, compared with the one from the calculated data for a certain
sounding. The soundings can be switched using the two arrows on the bottom right of
the screen, but only one sounding can be displayed at a time. Moreover a table with 6
columns, representing the AB/2 spacing, the MN/2 spacing, the geometrical factors,
the observed and calculated apparent resistivities and the difference and the relative
difference between the observed and calculated data, is given on the right side of the

screen.
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A Dbetter view of the inversion results and the way the VES are switched in the
second plot is illustrated in the example in figure (A.9), whereas in figures (A.10) and
(A.11) the final models and the full table containing with the 6 columns stated above,

respectively, are shown.

VES 8
Inversion Results ‘i h “
RMS % 4439 « - - i

Lagrange = ACB 3 VES 9

Plot Apres,

Plot Ap.res

Iterations 10
No.of data 388

No.of VES = 16

Apparent resistivity(Ohm'm)
s

10!
AB/2(m)

<
m
)]
[
(=]

<
8
)

(] Equal Thickaess Model Plot Ap.res

Seect il Model Rel | Thdkl

Smoothness Options 18 I E: fifange

® Smacth on comection

Rerains

Snocthon mocel v Meddda | B

Apparent resistivity(Ohm'm)

HoofVES

VES plot i AB2(m)
VES 8 g

Figure A.9: Displaying apparent resistivity curves for different soundings using the

left and right arrows.

The inversion results can be saved to an output file, with the format specified
above and the pseudo-2D plot as an image. This is done by selecting from the Export
menu — Save File and — Save image, respectively. The resolution matrix can also be
displayed from the View menu — Resolution Matrix and thus, the accuracy of the
parameters can be checked. Also, the Jacobian Matrix can be displayed from the same
menu by choosing — Jacobian Matrix. An example of a resolution and a jacobian

matrix is illustrated in figure (A.12).
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Model

Res_1 Thick_1 Res_2 Thick_2 Res_3 Thick_3 Res_4 Thick_4
1 205.51 1.05 22455 1.07 197.04 1.08 181.73 1.1
2 150.45 1.88 173.43 188 170.14 1.9 175.55 1.92
3 167.81 248 157 68 245 20257 252 217 H 256
4 168.24 3.09 190.66 3N 178.89 315 173.50 3.20
5 TBET 402 86.04 404 7218 409 5968 415
6 31.10 562 3328 5.65 26.28 5.76 20.40 5.89
7 22.58 S99.00 23.73 999.00 17.96 9900 13.69 999.00
< >

Figure A.10: Final model for each sounding.

Data
ABS2 MIN/2 Obs.App.Res | Calc.App.Res Ap Ap% Geom

1 27.5000 2.5000 51.5610 55.5012 -3.8402 §.4004 4712389 »~
2 22.5000 2.5000 81.3000 83.8954 -2.5554 3.1924 314.1593
3 17.5000 2.5000 105.1000 107.5935 -2.4935 23725 188.4955
4 12.5000 2.5000 129.9090 133.7413 -3.8323 2.9500 04.2473
5 7.5000 2.5000 148.6830 1552522 -5.5682 37207 31.4158
7] 32.5000 2.5000 55.3040 57.5367 22327 4.0371 659.7345
7 27.5000 2.5000 T3.6130 T2.9304 0.5825 0.9273 471.2388
a 22.5000 2.5000 57.5990 045217 3.0773 3.1530 314.1593
k] 17.5000 2.5000 128.5840 1225179 4.0781 3.21538 1334958
10 12.5000 2.5000 156.5980 153.5551 3.0425 1.8431 542478
11 7.5000 2.5000 1781320 178.45834 0.5385 0.3565 31.4158
12 37.5000 2.5000 37.5210 39.1452 -1.8242 4.3289 879.5459
13 32.5000 2.5000 49.8870 49,5001 0.3859 0.7755 §59.7345
14 27.5000 2.5000 66.9260 654 9266 1.9994 28874 4712389
15 22.5000 2.5000 89.5430 86.9483 26547 3.0050 314.1583
16 17.5000 2.5000 117.8950 115.9623 1.9327 1.6393 188.49586
17 12.5000 2.5000 148.7050 148.4204 0.2245 01511 042473
18 7.5000 2.5000 1742750 173.3985 0.8765 0.5025 31.4159
19 42 5000 2.5000 24 8530 264352 -1.4712 58822 1.1310e+03
20 37.5000 2.5000 33.3030 33.0535 0.2444 0.7337 879.5459
21 32.5000 2.5000 44,8400 43,4275 1.4125 31501 §59.7345
22 27.5000 2.5000 60.7970 592958 1.5012 24682 471.2389
23 22.5000 2.5000 828220 B82.5278 0.0844 0.1143 314.1583
24 17.5000 2.5000 111.0860 113.8486 -2. 7526 2.4859 188.4956

a5 12 &nnn < &N 144 1790 149 5501 5 4371 2 77IR a4 sa7m ¥
£ >

Figure A.11: The results include a table with 6 columns, representing the AB/2,
MNY/2, the geometrical factors, the observed and calculated apparent resistivities and
the difference and the relative difference between the observed and calculated data.
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Figure A.12: An example showing the resolution and the jacobian matrix.
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APPENDIX B

CODE OF THE SOFTWARE

In this section, the code of a number of functions, which were developed for

the LCI inversion, is introduced. The parameters that were used are explained above:

e centres : center of each VES

e num_meas : number of measurements

e num_layers : number of layers

e ab2 : spacing between current electrodes

e mn2 : spacing between potential electrodes

e oldapres : observed apparent resistivity

e apres: calculated apparent resistivity

e max_spacing : max distance between current probes
e depthmax : penetration depth

e oldrt : model from previous iteration

e m :initial model

e num_param: number of total system parameters
e geom : geometrical factor

e lagrange : lagrange multiplier

e SP: spread function

e rms: RMS error

e R :resolution matrix

e jac: jacobian matrix

e C:smoothness matrix

e dx : model correction

e param : new model
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[name,path]=uigetfile("*.*"); %open data file
y=load(fullfile(path,name));
oldr_param=[];
thick_param=[];
xa=y(:,1); %a electrode positions
xb=y(:,2); %b electrode positions
xm=y(:,3); %m electrode positions
xn=y(:,4); %n electrode positions
old_apres=y(:,5); %measured apparent resistivities
centres=unique((xm+xn)/2); %find centres of each VES
for w=1:length(centres)
s=1;
for j=1:length(xn)
if ((xm(j)+xn(j))/2)==centres(w)
ab2(s,w)=abs(xb(j)-xa(j))/2;
mn2(s,w)=abs(xn(j)-xm(j))/2;
oldapres(s,w)=old_apres(j);
S=s+1,
end
len_ves(w)=s-1;
end
max_spacing(w,1)=max(ab2(:,w));
data.(strcat('ab2_',num2str(w)))=nonzeros(ab2(:,w));

data.(strcat('mn2_',num2str(w)))=nonzeros(mn2(:,w));

data.(strcat(‘oldapres_',num2str(w)))=nonzeros(oldapres(:,w));

[data.(strcat('geom ',num2str(w))),data.(strcat('r _',num2str(w)))]...

=calculate_geom(nonzeros(ab2(:,w)),nonzeros(mn2(:,w)));

end

Figure B.1: Code that loads the data file and divides the data-set into soundings.
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function [geom,r]=calculate_geom(ab2,mn2)

z=1,

num_meas=Ilength(ab2);

for i=1:num_meas

r(z,1)=ab2(i)-mn2(i);
r(z+1,1)=ab2(i)+mn2(i);
geom(i,1)=3.14159265359*(((ab2(i)"2)-(mn2(i)"2))/(2*mn2(i)));
72=7+2;

end

Figure B.2: Function that calculates the geometrical factor.

% First checks if equal thickness for all layers is on
if get(handles.eq_thick_check, "Value)==1,
a=depthmax/num_layers;
for I=1:num_layers
thick(l,1)=a;
end
else
num_a=1;
for i=2:num_layers
num_a=num_a+2*i-i;
end
a=depthmax/num_a;
b=0;
for I=1:num_layers
thick(l,1)=I*a; %matrix with initial thickness for 1 VES
end
end
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for j=1:ves_num
m(1:num_layers,j)=median(data.(strcat('oldapres_',numz2str(j))));
m(num_layers+1:2*num_layers-1,j)=thick(1:num_layers-1);

end

Figure B.3: Initial model chosen by default.

if iter ==
lagrange = 0.005;
else
%Take lagrange min and max values
Imin = str2num(get(handles.from_ach,'String"));
Imax = str2num(get(handles.to_ach,'String"));
%Calculate resolution matrix
R = resolution_matrix(jac, cTc, lagrange);
%Calculate spread function
SP = spead(R, Cnew, X,depth, max_spacing);
%Calculate lagrange values
for i=1:length(SP)
log_lag(i) = log10(Imin)+((log10(Imax)-log10(Imin))...
/(log10(max(SP))-log10(min(SP))))*(log10(SP(i))-log10(min(SP)));
lag(i) = 10"og_lag(i);
end
%Diagonal matrix with lagrange values
lagrange = diag(lag);
end

Figure B.4: Active constrained balancing code.
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The algorithms are written in MATLAB and can be executed directly
providing the appropriate data file. The codes for the calculation of the forward
solution and the jacobian matrix are not presented as they can be solved with any
known forward problem algorithm with different sets of filters that have been

proposed and perturbation schemes.

for i=1:size_smooth(1)
sum=0;
for j=1:size_smooth(1)
%Calculate weights
W(i,j)=((XX(1)-XX(3))"2) +(YY([)-YY(§)"2;
%Calculate S matrix based on smoothness matrix
if Cnew(i,j)~=0
S(i.j)=1;
else
S(i.))=0;
end
%Sum for SP value
sum=sum-+(w(i,j)*(1-S@i.)))*R(1,j))"2;
end
%Calculate SP
SP(i)=sum;

end

Figure B.5: Backus-Gilbert Spread function.

function rms=calc_rms(apres,oldapres)
sum=0;

num_meas=length(apres);
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for i=1:num_meas
sum=sum-+((oldapres(i,1)-apres(i,1))/(oldapres(i,1)))"2;
end

rms=(sqrt(sum/num_meas))*100;

Figure B.6: Function that calculates the RMS error.

function param=calculate_dx(jac,iter_num,apres,oldrt,oldapres,cTc,lagrange,

num_layers,ves_num,handles)

if length(lagrange)==1
if iter_num>1 && iter_num<4
lagrange=lagrange/2;
end
end
oldrt=reshape(oldrt,[],1);
num_param=Ilength(oldrt);

num_meas=length(apres);

%Calculate difference between observed and calculated data

for i=1:num_meas
dy(i,1)=log10(oldapres(i,1))-log10(apres(i));
end

ss=lagrange*cTc;
%Calculate model correction
if get(handles.smooth_corr,"Value)~=0

dx=inv(jac*jac+ss)*jac™*dy;

else
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dx=inv(jac*jac+ss)*jac*dy-(ss*log10(oldrt));

end

%New model parameters

for i=1:num_param
param_all(i,1)=10"(log10(oldrt(i))+dx(i,1));

end

w=1,

for i=1:ves_num
param(:,i)= param_all(w:w+2*num_layers-2,1);
w=w+2*num_layers-1;

end

Figure B.7: Function that calculates the correction of the model.
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