

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΦΥΣΙΚΗΣ

ΝΙΚΟΛΑΟΣ Ι. ΤΣΟΡΜΠΑΤΖΟΓΛΟΥ

ΜΕΛΕΤΉ ΤΗΣ ΙΣΧΥΡΗΣ ΣΕΙΣΜΙΚΗΣ ΚΙΝΗΣΗΣ ΤΗΣ ΜΕΤΑΣΕΙΣΜΙΚΗΣ ΑΚΟΛΟΥΘΙΑΣ ΤΟΥ ΣΕΙΣΜΟΥ ΤΗΣ ΖΑΚΥΝΘΟΥ στις 25/10/18

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΘΕΣΣΑΛΟΝΙΚΗ 2021

Ψηφιακή βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

ΝΙΚΟΛΑΟΣ Ι. ΤΣΟΡΜΠΑΤΖΟΓΛΟΥ Φοιτητής Τμήματος Γεωλογίας, ΑΕΜ: 5483

ΜΕΛΕΤΉ ΤΗΣ ΙΣΧΥΡΗΣ ΣΕΙΣΜΙΚΗΣ ΚΙΝΗΣΗΣ ΤΗΣ ΜΕΤΑΣΕΙΣΜΙΚΗΣ ΑΚΟΛΟΥΘΙΑΣ ΤΟΥ ΣΕΙΣΜΟΥ ΤΗΣ ΖΑΚΥΝΘΟΥ στις 25/10/18

Υποβλήθηκε στο Τμήμα Γεωλογίας, Τομέα Γεωφυσικής, Εργαστήριο Γεωφυσικής

Επιβλέποντες Παπαζάχος Κωνσταντίνος, Καθηγητής Γεωφυσικής ΑΠΘ Μάργαρης Βασίλειος, Διευθυντής Ερευνών ΙΤΣΑΚ

© Νικόλαος Ι. Τσορμπατζόγλου, Τμήμα Γεωλογίας Α.Π.Θ., Τομέας Γεωφυσικής, 2021 Με επιφύλαξη παντός δικαιώματος.

ΜΕΛΕΤΗ ΤΗΣ ΙΣΧΥΡΗΣ ΣΕΙΣΜΙΚΗΣ ΚΙΝΗΣΗΣ ΤΗΣ ΜΕΤΑΣΕΙΣΜΙΚΗΣ ΑΚΟΛΟΥΘΙΑΣ ΤΟΥ ΣΕΙΣΜΟΥ ΤΗΣ ΖΑΚΥΝΘΟΥ στις 25/10/18 – Διπλωματική Εργασία

© Nikolaos I. Tsormpatzoglou, School of Geology, Dept. of Geophysics, 2021 All rights reserved. STUDY OF THE STRONG GROUND MOTION OF THE AFTERSHOCK SEQUENCE OF THE ZAKINTHOS 25/10/18 MAINSHOCK – Bachelor Thesis

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευτεί ότι εκφράζουν τις επίσημες θέσεις του Α.Π.Θ.

ΕΥΧΑΡΙΣΤΙΕΣ

Αρχικά θα ήθελα να ευχαριστήσω, τον κύριο επιβλέποντα της διπλωματικής μου εργασίας κ. Παπαζάχο Κωνσταντίνο, Καθηγητή Γεωφυσικής ΑΠΘ και Πρόεδρο του τμήματος Γεωλογίας ΑΠΘ για την πολύτιμη βοήθειά του και τη διαρκή καθοδήγησή του σε όλη τη διάρκεια της έρευνας, που πραγματοποιήθηκε, ώστε να περατωθεί με επιτυχία η πτυχιακή εργασία μου.

Επιπλέον, θα ήθελα να ευχαριστήσω θερμά τον κ. Μάργαρη Βασίλειο Δ/ντή Ερευνών του ΙΤΣΑΚ για την αμέριστη υποστήριξή του σε εκπαιδευτικό αλλά και ψυχολογικό επίπεδο, καθώς και την κα Κυριακή Κωνσταντινίδου Πληροφορικό του ΙΤΣΑΚ για τη βοήθειά της στα τεχνικά θέματα κατά την εκπόνηση της πρακτικής μου άσκησης στο Ινστιτούτο και τη συγγραφή της διπλωματικής εργασίας μου.

Τέλος, θα ήθελα να ευχαριστήσω το συνάδελφο και συμφοιτητή κ. Στέργιο Καρκαλά για την συμβολή του σε μεγάλο κομμάτι της επεξεργασίας των δεδομένων, που χρησιμοποιήθηκαν, κατά την περίοδο πραγματοποίησης της πρακτικής του εργασίας στο ΙΤΣΑΚ.

Περίληψη	7
Abstract	8
Κεφάλαιο 1°: Εισαγωγή	9
1.1. Κύριος Σεισμός και Μετασεισμική Ακολουθία Ζακύνθου	9
1.2. ΙΤΣΑΚ και Ελληνικό Δίκτυο Επιταχυνσιογράφων1	٤4
1.3. Σχέσεις Πρόβλεψης Εδαφικής Κίνησης (GMPE) Skarlatoudis et al. (2003, 2007) 1	16
Κεφάλαιο 2°: Δεδομένα και Επεξεργασία1	18
2.1. Συλλογή Δεδομένων και Κατάλογος Σεισμών1	18
2.2. Επεξεργασία Καταγραφών Επιτάχυνσης και Υπολογισμός τιμών PGA 2	21
2.3. Επιλογή Επιθυμητών Φίλτρων Αποκοπής και Υπολογισμός των Φιλτραρισμένων τιμών PGA και PGV	25
Κεφάλαιο 3°: Αποτελέσματα Ανάλυσης Δεδομένων 3	31
3.1. Επίδραση Φιλτραρίσματος3	32
3.2. Επίδραση Επιφανειακών Κυμάτων στους Μεγάλους Σεισμούς της Ακολουθίας (Μ≥5.0) κατά την Επιλογή των Κατάλληλων Φίλτρων	34
3.3. Εδαφικές Συνθήκες	39
3.4. Αποτελέσματα σχέσεων GMPE Skarlatoudis et al. (2003, 2007), Συγκρίσεις 4	12
3.4.1. Εδαφικές Επιταχύνσεις μη φιλτραρισμένων καταγραφών (PGA _{unfilt.})	13
3.4.2. Εδαφικές Ταχύτητες φιλτραρισμένων καταγραφών (PGV _{filt.})	18
Κεφάλαιο 4°: Συμπεράσματα – Σύνοψη5	53
Ιστοσελίδες που χρησιμοποιήθηκαν5	55
Βιβλιογραφία5	56
Παράρτημα Ι5	57
Παράρτημα ΙΙ6	52
	6

Η ισχυρή σεισμική δόνηση που σημειώθηκε στις 25 Οκτωβρίου 2018 23:54:51 GMT (26 Οκτωβρίου 2018 01:54:51 ώρα Ελλάδος) νοτιοδυτικά της Ζακύνθου, με μέγεθος M=6.8 και εστιακό βάθος h~10Km, είχε σημαντικές συνέπειες στο φυσικό και ανθρωπογενές περιβάλλον του νησιού. Παρουσίασε μία έντονη μετασεισμική ακολουθία, η οποία οφείλεται σε ανάστροφα ρήγματα ΒΔ-ΝΑ διεύθυνσης με ιδιαίτερα μικρή γωνία κλίσης. Τα παραπάνω ρήγματα σχετίζονται με τη ζώνη ανάστροφων ρηγμάτων, που συναντάται κατά μήκος της Ελληνικής Τάφρου (Παπαζάχος και Παπαζάχου 2003).

Για τη μελέτη της ακολουθίας χρησιμοποιήθηκαν δεδομένα από τις ψηφιακές καταγραφές των επιταχυνσιογράφων τύπου Guralp CMG-5TDE του ελληνικού δικτύου επιταχυνσιογράφων, από τις 25/10/2018 22:54:51.6 (χρόνος γένεσης κύριου σεισμού) μέχρι τις 30/04/2019 για τους 134 σεισμούς με μέγεθος Μ≥4.0 και απόστασης R≤100Km από το επίκεντρο του κυρίου σεισμού. Αρχικά, έγινε ένας διαχωρισμός των καταγραφών των σεισμών και για τις τρεις συνιστώσες (Ε, Ν και Ζ) και εν συνεχεία, υπολογίστηκαν οι μέγιστες τιμές εδαφικής επιτάχυνσης (PGA) για κάθε καταγραφή (συνολικά 7976).Τέλος, για τις 858 καταγραφές των μεγαλύτερων σεισμών (M≥5.0) της ακολουθίας (9 μαζί με τον κύριο σεισμό), πραγματοποιήθηκε η επιλογή κατάλληλων φίλτρων αποκοπής, με σκοπό να περιοριστεί η επίδραση πηγών θορύβου στις καταγραφές. Από τις νέες φιλτραρισμένες καταγραφές υπολογίστηκαν οι διορθωμένες τιμές μέγιστης εδαφικής επιτάχυνσης (PGA_{filt}) και ταχύτητας (PGV_{filt}).

Από την παραπάνω επεξεργασία, υπολογίστηκαν διάφορες παράμετροι και εξήχθησαν σημαντικά αποτελέσματα, τα οποία παρουσιάζονται με τη συνοδεία επεξηγηματικών σχημάτων. Πραγματοποιήθηκαν συγκρίσεις μεταξύ των μη φιλτραρισμένων και των φιλτραρισμένων τιμών PGA, σχολιάστηκε η επίδραση των επιφανειακών κυμάτων σε αρκετούς σταθμούς για τους μεγαλύτερους σεισμούς της ακολουθίας, διερευνήθηκε η συσχέτιση των εδαφικών συνθηκών (κατά UBC 1997) με τις υπολογισμένες τιμές PGA, λαμβάνοντας υπόψη τις εκτιμώμενες ταχύτητες των S κυμάτων (Vs30) για κάθε σταθμό. Τέλος, έγινε μία προσπάθεια σύγκρισης των τιμών PGA και PGV_{filt}, που υπολογίστηκαν για την ακολουθία, με τις εκτιμώμενες τιμές, που προκύπτουν από τις υπάρχουσες σχέσεις πρόβλεψης εδαφικής κίνησης (GMPE) των Skarlatoudis et al. (2003, 2007) για τον ελληνικό χώρο, με σκοπό να προσδιοριστεί η επίδραση των παραμέτρων του μεγέθους M, της επικεντρικής απόστασης R και των εδαφικών συνθηκών S, στις υπολογισμένες και τις θεωρητικές τιμές από τις σχέσεις των Skarlatoudis et al. (2003, 2007).

The strong earthquake, which took place on 25th October 2018 23:54:51 GMT (26th October 2018 01:54:51 in Greek time) southwest of Zakynthos, with magnitude M=6.8 and focal depth h~10Km, caused severe damage to the island's natural and man-made environment. It is defined by a strong post-earthquake sequence. This sequence is caused by thrust faults with NW-SE strike and extremely small dipping angle. Those faults are associated with the thrust fault zone, which is located along the Greek trench (Papazachos and Papazachou 2003).

Data from the digital recordings from the accelerograms (Guralp CMG-5TDE type) from the Greek accelerogram network were used in the study of the sequence, for the time period from 25/10/2018 22:54:51.6 (origin time of the main earthquake) until 30/04/2019 for 134 earthquakes with magnitude M≥4.0 and distance R≤100Km from the main earthquake's epicenter. First of all, a separation of the available recordings from the earthquakes for all three components (E, N and Z) was performed. Subsequently, the values of peak ground acceleration (PGA) for every recording (7976 in total) were calculated. In the final step, a choice for the optimal resolution filters of the 858 recordings of the sequence's strongest (9, including the main earthquake) quakes (M≥5.0) was performed, to control the noise. The corrected values of peak ground acceleration (PGA_{filt.}) and velocity (PGV_{filt.}) were estimated from these new filtered recordings.

Several parameters were evaluated and important results were extracted, which are presented through several figures, from the data processing mentioned before. Comparisons between the unfiltered and the corrected PGA values were performed, while the impact of the surface waves for the sequence's strongest earthquakes, which were recorded in several stations, was identified. Furthermore, the correlation between the local site conditions (according to UBC 1997) and the calculated PGA values was examined, taking into consideration the average velocity of the S-waves (Vs30) for each station. Finally, an attempt to compare the PGA and PGV_{filt} values to the estimated values that were derived from the Skarlatoudis et al. (2003, 2007) ground motion prediction equations (GMPE) for the area of Greece, took place, in order to define the effect of several parameters (magnitude M, epicentral distance R and local site conditions S) between the ground motion values observed for the sequence and the expected values for the Skarlatoudis et al. (2003,2007) GMPE.

1.1. Κύριος Σεισμός και Μετασεισμική Ακολουθία Ζακύνθου

Στις 25 Οκτωβρίου 23:54:51 GMT (26 Οκτωβρίου 2018 01:54:51 ώρα Ελλάδος) σημειώθηκε μία ιδιαίτερα ισχυρή σεισμική δόνηση στην περιοχή του Νοτίου Ιονίου Πελάγους στη θαλάσσια περιοχή νοτιοδυτικά του νησιού της Ζακύνθου, με μέγεθος M=6.8 και εστιακό βάθος h~10Km. Σύμφωνα με τις μελέτες του EMSC (European Mediterranean Seismological Centre) οι ακριβείς γεωγραφικές συντεταγμένες του επικέντρου προσδιορίστηκαν 37.530[°] B και 20.620[°]A.

Σχήμα 1.1.1: Ο χρόνος γένεσης, οι γεωγραφικές συντεταγμένες, το εκτιμώμενο βάθος και μέγεθος, όπως αυτά προσδιορίστηκαν από το EMSC και διάφορα άλλα ερευνητικά σεισμολογικά κέντρα για τον κύριο σεισμό. (Πηγή: https://www.emsc-csem.org) Ιδιαίτερο χαρακτηριστικό της ευρύτερης περιοχής του επικέντρου του σεισμού, αποτελεί η κατάδυση (σύγκλιση) της Αφρικανικής πλάκας κάτω από την Ευρασιατική και η εφίππευση της μικροπλάκας του Αιγαίου πάνω στην Αφρικανική πλάκα. Οι λύσεις του μηχανισμού γένεσης του σεισμού (όπως φαίνεται και στο σχήμα 1.1.2) καταδεικνύουν ότι η δόνηση οφείλεται στην δράση ενός ανάστροφου ρήγματος ΒΔ-ΝΑ διεύθυνσης με ιδιαίτερα μικρή γωνία κλίσης και μήκος περίπου 55Km. Το παραπάνω ρήγμα σχετίζεται με τη ζώνη ανάστροφων ρηγμάτων, που συναντάται κατά μήκος της Ελληνικής Τάφρου (Παπαζάχος και Παπαζάχου 2003) και χαρακτηρίζεται από ανάστροφα ρήγματα βορειοδυτικής-νοτιοανατολικής παράταξης και βορειοανατολικής κλίσης.

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 1.1.2: Οι μηχανισμοί γένεσης, τα εκτιμώμενα μεγέθη ροπής και βάθη, όπως αυτά προσδιορίστηκαν από τα διάφορα ερευνητικά σεισμολογικά κέντρα για τον κύριο σεισμό. (Πηγή: https://www.emsc-csem.org)

Tectonic plates boundaries

Όπως επισημαίνεται και περιγράφεται στην έκθεση του ΙΤΣΑΚ με τίτλο: 'Σεισμός Ν. Ιονίου Μ 6.8 της 26/10/2018', ο σεισμός, λόγω του μεγάλου μεγέθους του και του μικρού του εστιακού βάθους, επέφερε ορισμένες σημαντικές επιπτώσεις στο φυσικό περιβάλλον, αλλά και στις ανθρώπινες κατασκευές του νησιού. Αξίζει να σημειωθεί ότι σε διάφορες περιοχές του νησιού (κυρίως σε παραλίες) αναφέρθηκαν κατολισθήσεις μεγάλων όγκων αμμωδών μαργαϊκών και ασβεστολιθικών σχηματισμών. Επιπλέον, ιδιαίτερα σημαντικό είναι το γεγονός ότι σε πολλά κτήρια μεγάλης ηλικίας (κυρίως μοναστήρια και εκκλησίες) εντοπίστηκαν αποκολλήσεις σοβάδων από τους τοίχους (σχήμα 1.1.3). Ακόμη, παρατηρήθηκαν αστοχίες με τη μορφή επιμηκών ρωγμώσεων στις προβλήτες, μέσω μετάθεσης και στροφής των κρηπιδότοιχων και καθίζησης του υλικού επίχωσης σε δύο λιμάνια του νησιού (σχήμα 1.1.4), στα οποία όμως δεν επηρεάστηκε η λειτουργικότητά τους.

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 1.1.3: Οι ζημιές στο μοναστήρι των Στροφάδων (Πηγή:http://www.itsak.gr/uploads/news/earthquake_reports/EQ_ZAKYNTHOS_20181026_M6.8_v2_e l.pdf)

Σχήμα 1.1.4: Οι ζημιές στο λιμάνι της πόλης της Ζακύνθου(Πηγή:http://www.itsak.gr/uploads/news/earthquake_reports/EQ_ZAKYNTHOS_20181026_ M6.8_v2_el.pdf)

Ο σεισμός χαρακτηρίστηκε από μία μεγάλης διάρκειας (περίπου 7-8 μηνών) μετασεισμική ακολουθία, όπου καταγράφηκαν εκατοντάδες μικροί και μεγάλοι μετασεισμοί, οι οποίοι οφείλονται στην ίδια ομάδα ανάστροφων ρηγμάτων με τον κύριο και θα αναλυθούν με λεπτομέρεια στην παρούσα εργασία. Παρακάτω παρατίθενται ενδεικτικά οι μηχανισμοί γένεσης για δύο από τους μεγαλύτερους σεισμούς της μετασεισμικής ακολουθίας, όπως υπολογίστηκαν από το EMSC (σχήματα 1.1.5 και 1.1.6).

Ψηφιακή συλλογή Βιβλιοθήκη

100 km

Political boundaries
Tectonic plates boundaries

Σχήμα 1.1.5: Οι μηχανισμοί γένεσης, τα εκτιμώμενα μεγέθη ροπής και βάθη και γεωγραφικές συντεταγμένες, όπως αυτά προσδιορίστηκαν από τα διάφορα ερευνητικά σεισμολογικά κέντρα για το μετασεισμό με μέγεθος M5.7 στις 30/10/2018 15:12:01. (Πηγή: https://www.emsc-csem.org)

Political boundaries
Tectonic plates boundaries

Σχήμα 1.1.6: Οι μηχανισμοί γένεσης, τα εκτιμώμενα μεγέθη ροπής και βάθη και γεωγραφικές συντεταγμένες, όπως αυτά προσδιορίστηκαν από τα διάφορα ερευνητικά σεισμολογικά κέντρα για το μετασεισμό με μέγεθος M5.1 στις 19/11/2018 13:05:56. (Πηγή: https://www.emsc-csem.org)

Το Ινστιτούτο Τεχνικής Σεισμολογίας & Αντισεισμικών Κατασκευών (ΙΤΣΑΚ) ιδρύθηκε με έδρα τη Θεσσαλονίκη το 1979 ως ερευνητικό κέντρο και το 2011 συγχωνεύτηκε στον Οργανισμό Αντισεισμικού Σχεδιασμού και Προστασίας (ΟΑΣΠ) ως Μονάδα Έρευνας ΙΤΣΑΚ. Τέλος, το Δεκέμβρη του 2013 το ΙΤΣΑΚ, απέκτησε τις δικές του κτιριακές εγκαταστάσεις (σχήμα 1.2.1) στους Ελαιώνες της Πυλαίας Θεσσαλονίκης, όπου στεγάζεται έως σήμερα (2021).

Σχήμα 1.2.1: Κτηριακές εγκαταστάσεις του ΙΤΣΑΚ στη σημερινή (2021) τοποθεσία, όπου στεγάζεται (Πηγή: http://www.itsak.gr/uploads/files/Leaflet2017.pdf)

Αποτελεί το μοναδικό ερευνητικό κέντρο στον Ελλαδικό χώρο που ειδικεύεται στην ταυτόχρονη μελέτη των σεισμών και των επιπτώσεων τους στο δομημένο περιβάλλον, με στόχο τη μείωση της σεισμικής διακινδύνευσης και είναι ένα από τα λίγα ερευνητικά κέντρα πάνω στον τομέα αυτό στην Ευρώπη. Οι κύριες ερευνητικές του δραστηριότητες σχετίζονται με την εφαρμοσμένη έρευνα στους τομείς της Τεχνικής Σεισμολογίας, της Γεωτεχνικής Σεισμικής Μηχανικής και των Αντισεισμικών Κατασκευών.

Το ΙΤΣΑΚ διαθέτει εγκατεστημένο ένα πυκνό δίκτυο επιταχυνσιογράφων ελεύθερου πεδίου σε ολόκληρη την Ελλάδα (όπως φαίνεται στο χάρτη του σχήματος 1.2.2), με σκοπό την καταγραφή της ισχυρής σεισμικής κίνησης. Το δίκτυο αποτελείται από 220 επιταχυνσιογράφους ψηφιακής τεχνολογίας εγκατεστημένους σε μεγάλες πόλεις και νησιά του Ελληνικού χώρου. Από αυτούς περίπου οι 130 είναι πιο σύγχρονης τεχνολογίας, τύπου Guralp CMG-5TDE. Είναι εξοπλισμένοι με επιταχυνσιόμετρα μεγάλου φάσματος, ψηφιοποιητές με ανάλυση 24 bits και σύστημα απόλυτου χρόνου (GPS). Η μεταφορά δεδομένων από τους επιταχυνσιογράφους αυτούς, στο Κέντρο δεδομένων του ΙΤΣΑΚ, γίνεται σε πραγματικό χρόνο, μέσω διαδικτύου. Το δίκτυο του Ινστιτούτου αποτελεί μέλος της Διεθνούς Ομοσπονδίας Σεισμολογικών Δικτύων.

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 1.2.2: Οι θέσεις των επιταχυνσιογράφων του δικτύου του ΙΤΣΑΚ στον Ελλαδικό χώρο. Κάτω αριστερά, στο υπόμνημα, αναγράφονται και τα ερευνητικά προγράμματα, στα οποία ανήκει ο κάθε σταθμός. (Πηγή: http://www.itsak.gr/page/infrastructures/networks/acc_network)

1.3. Σχέσεις Πρόβλεψης Εδαφικής Κίνησης (GMPE) Skarlatoudis et al. (2003, 2007)

Ψηφιακή συλλογή Βιβλιοθήκη

Διάφοροι ερευνητές, όπως οι Joyner and Boore (1981) και οι Fukushima and Tanaka (1990), συλλέγοντας στοιχεία για τις παραμέτρους των σεισμών, όπως αυτές έχουν καταγραφεί από τα Ινστιτούτα Σεισμολογίας ανά τον κόσμο, προσπάθησαν να δημιουργήσουν διάφορες σχέσεις, οι οποίες να προβλέπουν για κάθε μελλοντικό σεισμό τις εδαφικές κινήσεις (επιτάχυνση, ταχύτητα και μετατόπιση), λαμβάνοντας υπόψη διάφορες παραμέτρους του. Μία από τις επικρατέστερες πρώτες σχέσεις, που χρησιμοποιήθηκαν, είχε τη μορφή που πρότεινε ο Campbell (1985), η οποία δίνεται από τη σχέση:

$$\log Y = C_0 + C_1 M + C_2 \log (R^2 + h^2)^{1/2} + C_3 F + C_5 S$$
 (1.3.1)

όπου Y είναι η προβλεπόμενη εδαφική επιτάχυνση (PGA), ταχύτητα (PGV) και μετατόπιση (PGD) σε cm/s², cm/s και cm αντίστοιχα, M το μετρούμενο μέγεθος, R η επικεντρική απόσταση (σε Km), h το εστιακό βάθος (σε Km) για κάθε σεισμό, S οι μεταβλητές σχετικά με τις τοπικές εδαφικές συνθήκες και F οι μεταβλητές σχετικά με τους μηχανισμούς ρήγματος του κάθε σεισμού. Οι παράμετροι C₀, C₁, C₂, C₃ και C₅ θα προσδιοριστούν από την εκάστοτε μελέτη σεισμικής κίνησης, εφαρμόζοντας μια σχετική μεθοδολογία παλινδρόμησης.

Για τον ελληνικό χώρο προσδιορίστηκε ότι μία ανάλογη σχέση με την 1.3.1, μπορεί να χρησιμοποιηθεί για τον υπολογισμό των τιμών PGA, PGV και PGD, αντίστοιχα, ως εξής: (Skarlatoudis *et al.* (2003, 2007))

logPGA= 0.86 + 0.45 M - 1.27 log(
$$R^2$$
+ h^2)^{1/2} + 0.1 F + 0.065 S ± 0.286 (1.3.2)

 $logPGV= -1.66 + 0.65 M - 1.224 log(R²+h²)^{1/2} + 0.03 F + 0.15 S \pm 0.321$ (1.3.3)

$$\log PGD = -4.08 + 0.88 \text{ M} - 1.27 \log (R^2 + h^2)^{1/2} - 0.02 \text{ F} + 0.25 \text{ S} \pm 0.424$$
(1.3.4)

Αξίζει να σημειωθεί ότι στις σχέσεις 1.3.2-1.3.4 ο παράγοντας S καθορίζεται από τις εδαφικές συνθήκες του εκάστοτε σταθμού καταγραφής και χαρακτηρίζεται από τις εδαφικές κατηγορίες κατά UBC 1997 (βλέπε Πίνακα 3.3.1). Για τον Ελλαδικό χώρο χρησιμοποιήθηκαν μόνο οι κατηγορίες B, C και D, για τις οποίες το S 'παίρνει' τιμές 0, 1 και 2, αντιστοίχως. Επιπλέον, η μεταβλητή F, που καθορίζεται από τους μηχανισμούς ρήγματος του σεισμού, μπορεί να πάρει τις τιμές F=0 για κανονικά ρήγματα και F=1 για ανάστροφα ρήγματα και ρήγματα οριζόντιας μετατόπισης. Για κάθε μία από τις παραπάνω τρεις σχέσεις έχει υπολογιστεί ο παράγοντας C₀, με σκοπό να συμπεριληφθούν οι μη γραμμικές επιδράσεις των μεγάλων σεισμών στην πρόβλεψη των εδαφικών συνθηκών (Boore *et al.*, 1993), παρόλο που στα δεδομένα μελέτης της χώρας μας ο αριθμός των μεγάλων σεισμών δεν είναι ικανοποιητικά επαρκής. Τέλος, ο τελευταίος παράγοντας καθορίζει την απόκλιση (περιθώριο σφάλματος) για τις σχέσεις πρόβλεψης εδαφικής κίνησης.

Οι παραπάνω σχέσεις βασίστηκαν σε δεδομένα, που συλλέχθηκαν από το Ινστιτούτο Τεχνικής Σεισμολογίας και Αντισεισμικών Κατασκευών (ΙΤΣΑΚ) και το Γεωδυναμικό Ινστιτούτο του Εθνικού Αστεροσκοπείου Αθηνών (ΕΑΑ-Π) για συνολικά 1000 τιμές μέγιστης εδαφικής κίνησης, από 225 σεισμούς, που σχετίζονται με κανονικά, οριζόντιας μετατόπισης και ανάστροφα ρήγματα, με μέγεθος 4.5≤Μ≤7.0, τιμές PGA≥0.05g και επικεντρικές αποστάσεις R μικρότερες των 160Km για το χρονικό διάστημα 1973-1999. Έτσι, χρησιμοποιώντας τις σχέσεις 1.3.2-1.3.4, υπολογίστηκαν τα υπόλοιπα (διαφορές) των προβλεπόμενων τιμών από τις παρατηρημένες. Όπως φαίνεται και στο σχήμα 1.3.1., συμπεραίνεται ότι οι τιμές PGA, PGV και PGD, αντίστοιχα, δεν παρουσιάζουν εξάρτηση με την επικεντρική απόσταση R.

Ψηφιακή συλλογή Βιβλιοθήκη

DOPAS

Σχήμα 1.3.1: Παρουσιάζονται οι διαφορές των παρατηρημένων τιμών PGA, PGV και PGD με αυτές, που προσδιορίστηκαν μέσω των σχέσεων GMPE Skarlatoudis et al. (2003, 2007), σε συνάρτηση με την επικεντρική απόσταση R (σε Km) (Skarlatoudis et al., (2003)).

Κεφάλαιο 2°: Δεδομένα και Επεξεργασία

Ψηφιακή συλλογή Βιβλιοθήκη

Α.Π.Θ

ΕΟΦΡΑΣ

2.1. Συλλογή Δεδομένων και Κατάλογος Σεισμών

Για την περίοδο από 25/10/2018 22:54:51.6 (χρόνος γένεσης κύριου σεισμού) μέχρι 30/04/2019 συλλέχθηκαν δεδομένα από τους καταλόγους σεισμών του Σεισμολογικού Δικτύου του Σεισμολογικού Σταθμού του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης και του Γεωδυναμικού Ινστιτούτου του Εθνικού Αστεροσκοπείου Αθηνών και δημιουργήθηκε σε ένα αρχείο Excel, ένας συνοπτικός κατάλογος (βλέπε Παράρτημα Ι), όπου περιέχονται οι σεισμοί μεγέθους μεγαλύτερου ή ίσου του 4.0 (Μ≥4.0), που καταγράφηκαν από το σύνολο του ελληνικού σεισμογραφικού δικτύου. Σε αυτόν αναγράφονται η ημερομηνία, ο χρόνος γένεσης, οι γεωγραφικές συντεταγμένες του επικέντρου, το εστιακό βάθος και το μέγεθος για κάθε σεισμό, όπως αυτά υπολογίστηκαν από τα παραπάνω ερευνητικά σεισμολογικά κέντρα. Συνολικά στον κατάλογο περιέχονται 201 σεισμοί, συμπεριλαμβανομένου και του κύριου σεισμού.

Σε ένα δεύτερο στάδιο, σύμφωνα με τις γεωγραφικές συντεταγμένες που προσδιορίστηκαν, δημιουργήθηκε ένας νέος κατάλογος (βλέπε Παράρτημα ΙΙ), που περιέχει τους σεισμούς, των οποίων τα επίκεντρα βρίσκονται σε απόσταση μικρότερη ή ίση των 100Km από το επίκεντρο του κυρίου σεισμού (σχήματα 2.1.1 και 2.1.2). Σε αυτόν περιέχονται 134 σεισμοί, συμπεριλαμβανομένου και του κύριου σεισμού.

Εικόνα 2.1.1α: Οι σεισμοί με Μ≥4, που πραγματοποιήθηκαν σε ακτίνα 100χλμ από τον Κύριο Σεισμό (κέντρο κύκλου) το διάστημα από 25/10/18 22:54:51.6 (χρόνος γένεσης Κύριου Σεισμού) έως και 31/4/19 23:59:59.9, όπως αυτοί καταγράφηκαν και υπολογίστηκαν από το Γεωδυναμικό Ινστιτούτο Αθηνών.

Εικόνα 2.1.1β: Υπόμνημα με τα μεγέθη Μ (1^η Στήλη) και τα εστιακά βάθη h σε Km (2^η Στήλη) του χάρτη 2.1.3α, όπως υπολογίστηκαν από το Γεωδυναμικό Ινστιτούτο Αθηνών.

Εικόνα 2.1.2: Απεικονίζονται οι αποστάσεις των επικέντρων των σεισμών της ακολουθίας με Μ≥4 από το επίκεντρο του κυρίου σεισμού σε συνάρτηση με το μέγεθός τους.

2.2. Επεξεργασία Καταγραφών Επιτάχυνσης και Υπολογισμός τιμών PGA

Ψηφιακή συλλογή Βιβλιοθήκη

Α.Π.Θ

FOOP ΔΣ

Για κάθε έναν από τους σεισμούς του παραρτήματος ΙΙ εντοπίστηκαν οι αντίστοιχες καταγραφές (συνολικά 7976) με τις τρεις συνιστώσες (μια κατακόρυφη(Ζ) και 2 οριζόντιες(Ε,Ν)) ανά σταθμό στη βάση δεδομένων επιταχυνσιογράφων τύπου Guralp CMG-5TDE του ΙΤΣΑΚ. Οι καταγραφές είναι συνεχόμενες και αποθηκεύονται σε τμήματα της μιας ώρας (σχήμα 2.2.1). Στη συνέχεια, γνωρίζοντας το χρόνο γένεσης του κάθε σεισμού εντοπίζεται η χρονική περίοδος, στην οποία καταγράφεται η εκάστοτε σεισμική δόνηση, και διαχωρίζεται το επιθυμητό διάστημα «παράθυρο» για πιο λεπτομερή μελέτη των κυματομορφών, το οποίο αποθηκεύεται σε αρχείο GCF (σχήμα 2.2.2). Η διαδικασία αυτή, πραγματοποιείται, μέσω του προγράμματος Guralp (Scream ver 4.6) και γίνεται ταυτόχρονα και στις τρεις συνιστώσες, συμπεριλαμβάνοντας ένα διάστημα 10-20s πριν (pre-event time interval) και ένα άλλο 40-60s μετά (post-event time interval) την σεισμική δόνηση (Margaris et al., 2002).

Η τελική επεξεργασία (σχήματα 2.2.3. και 2.2.4) των παραπάνω μη φιλτραρισμένων καταγραφών για κάθε αρχείο GCF γίνεται, μέσω του προγράμματος ART (version 3) Strong Motion Analysis and Research Tool, το οποίο λειτουργεί με βάση το περιβάλλον της γλώσσας προγραμματισμού Matlab. Τέλος, τα δεδομένα εξάγονται σε αρχείο μορφής SMC και δίνεται η δυνατότητα του αυτοματοποιημένου υπολογισμού των μέγιστων τιμών εδαφικής επιτάχυνσης PGA, σε συνάρτηση με την παγκόσμια σταθερά βαρύτητας 'g' για κάθε σταθμό (σχήμα 3.2.5) (Boore 2005 & 2009), οι οποίες είναι ένα ιδιαίτερο χαρακτηριστικό της εκάστοτε καταγραφής και αποτελούν εργαλείο για περαιτέρω υπολογισμούς από τους ερευνητές, ώστε να εξαχθούν τα επιθυμητά αποτελέσματα και συμπεράσματα για κάθε σεισμό, που μελετάται.

Παρακάτω ακολουθεί μία συνοπτική σχηματική περιγραφή (βήμα προς βήμα) της διαδικασίας της επεξεργασίας, παραθέτοντας τα αντίστοιχα σχήματα για την καταγραφή του μετασεισμού της ακολουθίας της Ζακύνθου στις 30/10/2018 15:12:01,4 με συντεταγμένες επικέντρου 37.470°B και 20.510°A και μέγεθος M=5.7 για το σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας, ώστε να γίνει πιο εύκολα αντιληπτή η περιγραφή, που περιλαμβάνεται στις δύο προηγούμενες παραγράφους.

Σχήμα 2.2.1: Αρχική μη επεξεργασμένη καταγραφή δεδομένων μίας ώρας (διάστημα 15:00-16:00) για τις 30/10/2018 στο σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας.

Σχήμα 2.2.2: Επιλογή και αποθήκευση σε αρχείο GCF του επιθυμητού χρονικού παραθύρου (που περιλαμβάνεται ο σεισμός) για τις 30/10/2018 στο σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας.

Σχήμα 2.2.3: Χρήση του λογισμικού προγράμματος ART3 στην επιλεγμένη καταγραφή για τις 30/10/2018 στο σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας.

Σχήμα 2.2.4: Επιλογή της εντολής για υπολογισμό των τιμών μέγιστης εδαφικής επιτάχυνσης για τις αφιλτράριστες καταγραφές, μέσω του λογισμικού ART3 για τις 30/10/2018 στο σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας.

1 UNCORREC	TED	ACCEI	EROGRAM		
*					
*					
2018	10	30	1511		
Moment Mag	r=		Ms=	M1=	
station =V	SK1				component=
epicentral	dis.	t=		pk acc =	0.0022307g
inst type=	5T	data	source =		

Σχήμα 2.2.5: Εμφάνιση των τιμών PGA (pk acc) σε συνάρτηση με την παγκόσμια σταθερά παγκόσμιας έλξης g, σε αρχείο SMC για τις 30/10/2018 για τη συνιστώσα Z (ενδεικτικά) στο σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας.

Αξίζει να τονιστεί ότι στις καταγραφές, που χρησιμοποιήθηκαν για την επεξεργασία, που μόλις περιγράφηκε, πέραν από τις κυματομορφές των σεισμών, περιέχονται και τοπικοί εδαφικοί μικρο-θόρυβοι, οι οποίοι πολλές φορές λαμβάνονται υπόψην από το μελετητή, με αποτέλεσμα να επιδρούν (έστω και ελάχιστα) στους υπολογισμούς των τιμών μέγιστης εδαφικής επιτάχυνσης (PGA). Για το λόγο αυτό, πραγματοποιείται η επιλογή φίλτρων αποκοπής στις καταγραφές, μία διαδικασία που θα περιγραφεί αναλυτικά στο υποκεφάλαιο 2.3.

2.3. Επιλογή Επιθυμητών Φίλτρων Αποκοπής και Υπολογισμός των Φιλτραρισμένων τιμών PGA και PGV

Ψηφιακή συλλογή Βιβλιοθήκη

ΕΟΦΡΑΣΤ

Όπως αναφέρθηκε παραπάνω, στις καταγραφές των επιταχυνσιογράφων πολύ συχνά παρατηρείται «ψηφιακός θόρυβος», ο οποίος μπορεί να οφείλεται σε μία τοπική ανθρωπογενή πηγή (π.χ. εργοστάσιο, μηχάνημα σε λειτουργία) ή σε εδαφικό θόρυβο στην περίπτωση μεγάλης απόστασης του επικέντρου από τον εκάστοτε σταθμό καταγραφής (επικεντρική απόσταση R). Για το λόγο αυτό, χρησιμοποιούνται κάποια φίλτρα αποκοπής, προκειμένου να 'διορθωθούν' οι καταγραφές, με σκοπό να περιοριστεί ο θόρυβος και να οδηγηθούμε στην επιθυμητή σαφή εικόνα των καταγραφών του σεισμού για την εξαγωγή πιο ακριβών αποτελεσμάτων.

Στο επόμενο στάδιο της επεξεργασίας πραγματοποιήθηκε η διαδικασία επιλογής των κατάλληλων φίλτρων για κάθε μία από τις καταγραφές (858) στους σταθμούς του σεισμολογικού δικτύου για τους 9 σεισμούς με μέγεθος Μ≥5.0 (βλέπε σχήμα 2.1.2), συμπεριλαμβανομένου και του κύριου σεισμού, της μετασεισμικής ακολουθίας της Ζακύνθου. Χρησιμοποιήθηκαν 3 διαφορετικά εύρη συχνοτήτων στα φίλτρα αποκοπής (0.05-0.5Hz, 0.1-1Hz και 0.5-5Hz) για κάθε μία συνιστώσα και επιλέχθηκε η μικρότερη τιμή φίλτρου από τις τρεις, με σκοπό να προκύψει η όσο το δυνατό πλέον απαλλαγμένη από το θόρυβο εικόνα, ενώ παράλληλα να μη χαθεί πληροφορία από την καταγραφή του σεισμού. Η παραπάνω εργασία έγινε σε προγραμματιστικό περιβάλλον, με έτοιμους κώδικες, οι οποίοι μου παρασχέθηκαν από το ΙΤΣΑΚ. Συνεπώς, δουλεύοντας οπτικά, έγινε η επιλογή των κατάλληλων φίλτρων. Τέλος, υπολογίζονται αυτοματοποιημένα οι μέγιστες τιμές εδαφικής επιτάχυνσης (PGA_{filt.}) και ταχύτητας (PGV_{filt.}) των φιλτραρισμένων καταγραφών.

Παρακάτω ακολουθεί μία συνοπτική σχηματική περιγραφή (βήμα προς βήμα) της διαδικασίας της επεξεργασίας, παραθέτοντας τα αντίστοιχα σχήματα για την καταγραφή του μετασεισμού της ακολουθίας της Ζακύνθου στις 30/10/2018 15:12:01,4 με συντεταγμένες επικέντρου 37.470°B και 20.510°A και μέγεθος M 5.7 για το σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας, ώστε να γίνει πιο εύκολα αντιληπτή η περιγραφή, που περιλαμβάνεται στις δύο προηγούμενες παραγράφους.

Σχήμα 2.3.1: Κυματομορφές της συνιστώσας Ε των εδαφικών επιταχύνσεων (1^η σειρά), ταχυτήτων (2^η σειρά) και μετατοπίσεων με τα φίλτρα της η καθεμιά (3^η -12^η σειρά) για το εύρος φίλτρων 0.05-0.5Hz, που καταγράφηκαν στο σεισμολογικό σταθμό των Βασιλικιάδων Κεφαληνίας (VSK1) για το μετασεισμό με συντεταγμένες επικέντρου 37.470°B και 20.510°A και M5.7 στις 30/10/2018 15:12:01.4. Σημειώνεται και το κατάλληλο φίλτρο (0.083Hz), που επιλέχθηκε.

Σχήμα 2.3.2: Κυματομορφές της συνιστώσας Ν των εδαφικών επιταχύνσεων (1^η σειρά), ταχυτήτων (2^η σειρά) και μετατοπίσεων με τα φίλτρα της η καθεμιά (3^η -12^η σειρά) για το εύρος φίλτρων 0.05-0.5Hz, που καταγράφηκαν στο σεισμολογικό σταθμό των Βασιλικιάδων Κεφαληνίας (VSK1) για το μετασεισμό με συντεταγμένες επικέντρου 37.470°B και 20.510°A και M5.7 στις 30/10/2018 15:12:01.4. Σημειώνεται και το κατάλληλο φίλτρο (0.05Hz), που επιλέχθηκε.

Σχήμα 2.3.3: Κυματομορφές της συνιστώσας Ζ των εδαφικών επιταχύνσεων (1^η σειρά), ταχυτήτων (2^η σειρά) και μετατοπίσεων με τα φίλτρα της η καθεμιά (3^η -12^η σειρά) για το εύρος φίλτρων 0.05-0.5Hz, που καταγράφηκαν στο σεισμολογικό σταθμό των Βασιλικιάδων Κεφαληνίας (VSK1) για το μετασεισμό με συντεταγμένες επικέντρου 37.470°B και 20.510°A και M5.7 στις 30/10/2018 15:12:01.4. Σημειώνεται και το κατάλληλο φίλτρο (0.1Hz), που επιλέχθηκε.

Όπως αναφέρθηκε, η κοινή τιμή του κατάλληλου ενιαίου φίλτρου για τις καταγραφές είναι η μικρότερη από τις τρεις συνιστώσες και πιο συγκεκριμένα για τις καταγραφές των σχημάτων 2.3.1-2.3.3 είναι αυτή των 0.05Hz (βλέπε σχήμα 2.3.4).

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 2.3.4: Νέες διορθωμένες κυματομορφές των συνιστωσών Ε (1ⁿ Στήλη), Ν (2ⁿ Στήλη) και Ζ (3ⁿ Στήλη) των εδαφικών επιταχύνσεων, ύστερα από τη χρήση του φίλτρου με την μικρότερη τιμή (0.05Hz), που καταγράφηκαν στο σεισμολογικό σταθμό των Βασιλικιάδων Κεφαληνίας (VSK1) για το μετασεισμό με συντεταγμένες επικέντρου 37.470°B και 20.510°A και M5.7 στις 30/10/2018 15:12:01.4.

Από αυτές τις νέες διορθωμένες καταγραφές για κάθε συνιστώσα και κάθε σταθμό καταγραφής, υπολογίστηκαν οι νέες φιλτραρισμένες τιμές PGA και PGV, όπως φαίνεται και στα σχήματα 2.3.5 και 2.3.6., που ακολουθούν.

Ψηφιακή συλλογή Βιβλιοθήκη	8			
ΘΕΟΦΡΑΣΤΟ Τμήμα Γεωλογίας	Σ"			
2 CORRECTED 2	ACCELER	OGRAM		
*				
2018 10	0 30	1512		
Moment Mag=		Ms=	M1=	
station =VSK	1		componen	t=
epicentral d	ist=		pk mtn = 3.939E+0	
inst type=5T	data	source =		

Σχήμα 2.3.5: Τιμές PGA (pk mtn) σε cm/s² σε αρχείο SMC για το σεισμό στις 30/10/2018 για τη συνιστώσα N στο σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας.

Σχήμα 2.3.6: Τιμές PGV (pk mtn) σε cm/s σε αρχείο SMC για το σεισμό στις 30/10/2018 για τη συνιστώσα N στο σταθμό VSK1 στους Βασιλικιάδες Κεφαληνίας.

Με τα δεδομένα αυτά, αφαιρώντας αυτά που σχετίζονται με τις κατακόρυφες συνιστώσες Ζ, πραγματοποιήθηκαν περαιτέρω υπολογισμοί στο Excel, δημιουργήθηκαν αρκετά διαγράμματα, μέσω του σχεδιαστικού εργαλείου Grapher 16 και εξήχθησαν διάφορα αποτελέσματα και συμπεράσματα, τα οποία παρατίθενται και περιγράφονται στη συνέχεια (Κεφάλαια 3 και 4).

Στο κεφάλαιο που ακολουθεί, μέσα από αρκετά πολύ χρήσιμα και παραστατικά σχήματα, από τα οποία δίνεται η δυνατότητα εξαγωγής αρκετών συμπερασμάτων θα γίνει αρχικά μία λεπτομερής παρουσίαση των κυριότερων αποτελεσμάτων σχετικά με τη χρησιμότητα της επιλογής των κατάλληλων φίλτρων αποκοπής για τις καταγραφές των μετασεισμών. Επιπλέον, θα μελετηθεί η συμβολή των επιφανειακών κυμάτων, κατά το φιλτράρισμα και η επίδρασή τους στις τιμές εδαφικών επιταχύνσεων και ταχυτήτων. Ακόμη, θα εξετασθεί η σημασία των εδαφικών συνθηκών των σταθμών καταγραφής, που υπολογίστηκαν ύστερα από την επεξεργασία, που περιγράφηκε στο προηγούμενο κεφάλαιο. Τέλος, θα συζητηθούν οι σχέσεις εξάρτησης των παραγόντων του μεγέθους Μ, των εδαφικών συνθηκών S και της υποκεντρικής απόστασης D για τον εκάστοτε σταθμό καταγραφής με τις τιμές επιτάχυνσης και ταχύτητας του συνόλου των σεισμών της μετασεισμικής ακολουθίας της Ζακύνθου, πραγματοποιώντας τις απαραίτητες συγκρίσεις με ήδη υπάρχουσες και υπολογισμένες σχέσεις (σχέσεις πρόβλεψης εδαφικής κίνησης Skarlatoudis et al. (2003, 2007)) για τον ελληνικό χώρο, τόσο σε μη φιλτραρισμένες τιμές καταγραφών (PGA_{unfil.}), όσο και σε φιλτραρισμένες (PGV_{filt}).

Στα σχήματα 3.1.1 και 3.1.2, που παρατίθενται, απεικονίζεται η επίδραση της επιλογής των κατάλληλων φίλτρων για κάθε μία καταγραφή για τους σεισμούς με μέγεθος Μ≥5.0. Όπως μπορεί να γίνει εύκολα αντιληπτό, η αξία που έχει η διαδικασία της αποκοπής του θορύβου για σεισμούς με τόσο μεγάλες τιμές εδαφικών επιταχύνσεων (PGA≥10mg), πρέπει να θεωρηθεί απειροελάχιστη (βλέπε τιμή απόκλισης καμπύλης Gauss στο σχήμα 3.1.1), καθώς ο θόρυβος σε σύγκριση με τις καταγραφές των σεισμών είναι ουσιαστικά αμελητέος και δεν επηρεάζει τις τιμές των επιταχύνσεων.

Ιστόγραμμα PGA/PGA filter

Σχήμα 3.1.1:. Απεικονίζεται ο λόγος τιμών PGA των μη φιλτραρισμένων καταγραφών προς τις τιμές PGA των φιλτραρισμένων καταγραφών των σεισμών της Ακολουθίας με Μ≥5.0. Για την καμπύλη Gauss, που έχει προσαρμοστεί στα δεδομένα, ισχύουν οι παρακάτω τιμές: Μέση Τιμή = 1.002 και Απόκλιση = 0.011

Σχήμα 3.1.2: Απεικονίζεται ο λόγος του λογαρίθμου των τιμών PGA των μη φιλτραρισμένων καταγραφών προς το λογάριθμο των τιμών PGA των φιλτραρισμένων καταγραφών των σεισμών της ακολουθίας με Μ≥5.0

3.2. Επίδραση Επιφανειακών Κυμάτων στους Μεγάλους Σεισμούς της Ακολουθίας (Μ≥5.0) κατά την Επιλογή των Κατάλληλων Φίλτρων

Ψηφιακή συλλογή Βιβλιοθήκη

ΕΟΦΡΑΣΤ

Γνωρίζουμε ότι στις σεισμικές καταγραφές το μέγιστο πλάτος της εδαφικής επιτάχυνσης συναντάται κατά την άφιξη των S κυμάτων και σπανιότερα των επιφανειακών (Rayleigh) κυμάτων. Στο σχήμα 3.2.1, που ακολουθεί, μπορούμε να διαπιστώσουμε ότι στους μεγαλύτερους μετασεισμούς (κυρίως με M≥5.6) της ακολουθίας της Ζακύνθου και ιδιαίτερα στον κύριο σεισμό, εντοπίζονται αποκλίσεις (πολύ μεγάλες τιμές) σε αρκετά σημαντικό αριθμό καταγραφών, όπου ο λόγος των τιμών PGA των μη φιλτραρισμένων καταγραφών ως προς τις τιμές PGA των φιλτραρισμένων, σε συνάρτηση με τις τιμές του λογαρίθμου PGA, που υπολογίστηκαν πριν τη διαδικασία επιλογής των κατάλληλων φίλτρων σε σύγκριση με τις υπόλοιπες καταγραφές, οι οποίες εμφανίζουν ένα κοινό εύρος τιμών (1 ± 0.05).

PGA/PGA filter-PGA

Σχήμα 3.2.1: Παρουσιάζεται ο λόγος των τιμών PGA των μη φιλτραρισμένων καταγραφών ως προς τις τιμές PGA των φιλτραρισμένων, σε λογαριθμική συνάρτηση με τις τιμές PGA πριν το φιλτράρισμα για τους ισχυρούς σεισμούς (M≥5.0) της ακολουθίας (κόκκινο χρώμα) και του κύριου σεισμού (μπλε χρώμα). Ξεχωρίζουν κάποιες καταγραφές σε συγκεκριμένους σταθμούς για τους μεγαλύτερους από αυτούς (M≥5.6).

Ενδεικτικά, παρουσιάζονται παρακάτω κάποιες καταγραφές (σχήματα 3.2.2-3.2.7) μεγάλων σεισμών (Μ≥5.6), που επισημάνθηκαν στο σχήμα 3.2.1 (σταθμοί THS1, SEIS και KRL1) πριν από, κατά τη διάρκεια και ύστερα από τη διαδικασία επιλογής του κατάλληλου φίλτρου (0.065, 0.065 και 0.083 αντίστοιχα) για τυχαίες συνιστώσες (Ε, Ν και Ε αντίστοιχα).

Ψηφιακή συλλογή Βιβλιοθήκη

Σχήμα 3.2.2: Κυματομορφές της συνιστώσας Ε των εδαφικών επιταχύνσεων (1^η σειρά), ταχυτήτων (2^η σειρά) και μετατοπίσεων με τα φίλτρα της η καθεμιά (3^η και 4^η σείρα), από τις οποίες προήλθε και η επιλογή του κατάλληλου φίλτρου, που καταγράφηκαν στο σεισμολογικό σταθμό της Θάσου (THS1) για τον κύριο σεισμό (M6.8) στις 25/10/18 στις 22:53:55.

Σχήμα 3.2.3: Κυματομορφή της συνιστώσας Ε της εδαφικής επιτάχυνσης, ύστερα από τη χρήση του επιθυμητού φίλτρου (0.065), που καταγράφηκε στο σεισμολογικό σταθμό της Θάσου (THS1) για τον κύριο σεισμό (M6.8) στις 25/10/18 στις 22:53:55.

Σχήμα 3.2.4: Κυματομορφές της συνιστώσας Ν των εδαφικών επιταχύνσεων (1^η σειρά), ταχυτήτων (2^η σειρά) και μετατοπίσεων με τα φίλτρα της η καθεμιά (3^η και 4^η σείρα), από τις οποίες προήλθε και η επιλογή του κατάλληλου φίλτρου, που καταγράφηκαν στο σεισμολογικό σταθμό της Θεσσαλονίκης (SEIS) για τον κύριο σεισμό (M6.8) στις 25/10/18 στις 22:54:54.

Σχήμα 3.2.5: Κυματομορφή της συνιστώσας Ν της εδαφικής επιτάχυνσης, ύστερα από τη χρήση του επιθυμητού φίλτρου (0.065), που καταγράφηκε στο σεισμολογικό σταθμό της Θεσσαλονίκης (THS1) για τον κύριο σεισμό (M6.8) στις 25/10/18 στις 22:53:55.

Σχήμα 3.2.6: Κυματομορφές της συνιστώσας Ε των εδαφικών επιταχύνσεων (1ⁿ σειρά), ταχυτήτων (2ⁿ σειρά) και μετατοπίσεων με τα φίλτρα της η καθεμιά (3ⁿ και 4ⁿ και 5ⁿ σείρα), από τις οποίες προήλθε και η επιλογή του κατάλληλου φίλτρου, που καταγράφηκαν στο σεισμολογικό σταθμό στο Καρλόβασι της Σάμου (KRL1) για έναν από τους μεγαλύτερους μετασεισμούς της ακολουθίας (M5.6) στις 30/10/18 στις 03:00:39.

Σχήμα 3.2.7: Κυματομορφή της συνιστώσας Ε της εδαφικής επιτάχυνσης, ύστερα από τη χρήση του επιθυμητού φίλτρου (0.083), που καταγράφηκε στο σεισμολογικό σταθμό στο Καρλόβασι της Σάμου (KRL1) για έναν από τους μεγαλύτερους μετασεισμούς της ακολουθίας (M5.6) στις 30/10/18 στις 03:00:39.

Συνεπώς, όπως μπορεί να γίνει εύκολα αντιληπτό (από τα παραπάνω σχήματα), τα επιφανειακά κύματα εμφανίζουν (σε σχετικά μεγάλες επικεντρικές αποστάσεις R) εξαιρετικά υψηλές τιμές εδαφικών επιταχύνσεων, οι οποίες είναι και αυτές που επηρεάζουν και τους υπολογισμούς των τιμών PGA για τα αφιλτράριστα δεδομένα. Αυτό οφείλεται στο γεγονός, ότι η όλη διαδικασία υπολογισμού των τιμών PGA γίνεται αυτοματοποιημένα, μέσω προγραμμάτων στον υπολογισμού των τιμών PGA γίνεται πρακτικά αδύνατο να μη ληφθούν υπόψη οι μέγιστες τιμές επιταχύνσεων, όταν αυτές σχετίζονται με την άφιξη των επιφανειακών κυμάτων. Έτσι, οδηγούμαστε στο συμπέρασμα ότι για τον κύριο σεισμό και για ορισμένους από τους μεγαλύτερους σεισμούς της ακολουθίας (με Μ≥5.6) τα επιφανειακά κύματα επιδρούν σε σημαντικό βαθμό στον υπολογισμό των τιμών PGA και PGV στις καταγραφές αρκετών σταθμών (όπως φάινεται και στο σχήμα 3.2.8) σε μεγάλες επικεντρικές αποστάσεις R. Παρατηρείται λοιπόν, ότι ο λόγος PGV/PGA_{filt}αύξανεται με το μέγεθος M, παρουσιάζοντας ανώμαλες τιμές για τους μεγαλύτερους σεισμούς.

Ψηφιακή συλλογή Βιβλιοθήκη

ΞΟΦΡΔΣ

Σχήμα 3.2.8: Κατανομές συγκέντρωσης (για 858 σταθμούς) του λόγου των τιμών PGV προς τις τιμές των PGA των φιλτραρισμένων δεδομένων σε συνάρτηση με το μέγεθος M για τους μεγάλους σεισμούς (M≥5.0) της ακολουθίας και η καμπύλη που τα διέπει δίνεται από τη γραμμική σχέση: PGV/PGA_{filt.} = 0.1912658 * M - 0.855052.

38

Ένα ακόμη χαρακτηριστικό, που μελετήθηκε για τους σεισμούς της ακολουθίας και αξίζει να αναλυθεί περαιτέρω, καθώς εμφανίζει ιδιαίτερο ενδιαφέρον, είναι η επίδραση των εδαφικών συνθηκών (είδος, ηλικία, ταχύτητα πετρωμάτων κ.ά.) για κάθε σταθμό καταγραφής στον υπολογισμό των μεγίστων εδαφικών επιταχύνσεων PGA και ταχυτήτων PGV.

Ο Αντισεισμικός Κανονισμός UBC το 1997, ύστερα από πολλές εργαστηριακές και υπαίθριες μελέτες, πρότεινε την ομαδοποίηση, ονομασία και χαρακτηρισμό διάφορων τύπων σχηματισμών, ανάλογα με τις υπολογισμένες τιμές των ταχυτήτων (σε m/s) των S κυμάτων (Vs30), όπως φαίνεται και στον πίνακα, που ακολουθεί.

Πίνακας 3.3.1: Κατηγοριοποίηση εδαφών κατά UBC, όπου περιλαμβάνονται οι 6 κατηγορίες (Class A-F) σχηματισμών, οι σταθερές τιμές (S), με τις οποίες συμμετέχουν σε γνωστές σχέσεις, μία γενική περιγραφή των πετρογραφικών τους χαρακτηριστικών, σε σχέση με τις υπολογισμένες τιμές των ταχυτήτων των S κυμάτων σε m/s, Vs30.

Προτιμητέες τιμές	Κατηγορία (κατά	S (τιμή)	Χαρακτηρισμός
Vs30 (m/s)	UBC)		Πετρώματος
Vs30>1500	Class A		Σκληρό πέτρωμα
760≤Vs30≤1500	Class B	0	Πέτρωμα
360≤Vs30≤760	Class C	1	Μαλακό πέτρωμα/Πολύ πυκνό έδαφος
180≤Vs30≤360	Class D	2	Σκληρό έδαφος
Vs30≤180	Class E		Χαλαρό έδαφος
Δε δύναται για μετρήσεις	Class F		Εδάφη για ειδική πειραματική μελέτη

Αξίζει να σημειωθεί, ότι για τους σταθμούς καταγραφής του ελλαδικού χώρου, οι σχηματισμοί που συναντώνται, ανήκουν στις κατηγορίες B,C (κυρίως) και D με τις τιμές Vs30 να κυμαίνονται μεταξύ του εύρους 197-1183 m/s (όπως φαίνεται στο σχήμα 3.3.2).

Όπως αναφέρθηκε στο υποκεφάλαιο 3.2., στους μετασεισμούς με Μ≥5.6, οι τιμές των εδαφικών επιταχύνσεων σε ορισμένους σταθμούς καταγραφής καθορίζονται από τα επιφανειακά κύματα. Αντιθέτως, η μελέτη των εδαφικών συνθηκών (όπως περιγράφηκε στις προηγούμενες παραγράφους του τρέχοντος υποκεφαλαίου) γίνεται με βάση τις υπολογισμένες πειραματικά ταχύτητες των S κυμάτων. Συνεπώς, γίνεται αντιληπτό το γεγονός ότι για τα δεδομένα που προέρχονται από μικρότερους σεισμούς, τα αποτελέσματα δε θα επηρεάζονται τόσο από την επίδραση των επιφανειακών κυμάτων. Παρακάτω παρατίθεται το εν λόγω σχήμα, που αναφέρεται σε σεισμούς με μέγεθος 5.0≥Μ≥5.2.

Ψηφιακή συλλογή Βιβλιοθήκη

DOPAS

PGV/PGA filter-logVs30

Σχήμα 3.3.2: Παριστάνεται (για 350 καταγραφές) ο λόγος των τιμών PGV προς τις τιμές PGA των φιλτραρισμένων δεδομένων, σε συνάρτηση με το δεκαδικό λογάριθμο του Vs30 για τους σεισμούς με 5.0≥M≥5.2 (6 σεισμοί) της ακολουθίας. Ακόμη, αναφέρονται τα ονόματα των σταθμών με ακραίες τιμές Vs30. Υπολογίστηκε ότι για το PGV/PGA_{filt.} η μέση τιμή είναι 0.117 και για το logVs30 ίση με 403.6.

Από το σχήμα 3.3.2, που χαρακτηρίζει τις καταγραφές (σημεία) των σταθμών για τους 6 σεισμούς που μελετήθηκαν, προκύπτει πως ο λόγος τιμών PGV προς PGA για τα φιλτραρισμένα δεδομένα κυμαίνεται σε σχετικά χαμηλές τιμές (όπως ήταν αναμενόμενο, λαμβάνοντας υπόψη το μέγεθος των σεισμών, που συμπεριλήφθηκαν και τη γνώση των γεωλογικών σχηματισμών στο σύνολο του ελληνικού χώρου) μεταξύ του εύρους 0.0-0.35 (με μέση τιμή 0.117). Επιπλέον, γίνεται φανερό ότι οι 'κανονικές' τιμές του logVs30 περιέχονται στο διάστημα 2.48-2.81 (με μέση τιμή 2.606), το οποίο αντιστοιχεί σε τιμές 304.7-652 (403.6 για τη μέση τιμή αντιστοίχως) για τις εκτιμώμενες τιμές των S κυμάτων (Vs30). Συνεπώς, η επικρατέστερη ομάδα για το χαρακτηρισμό των σχηματισμών στους σταθμούς του ελληνικού δικτύου επιταχυνσιογράφων είναι η C και εν συνεχεία σε μικρότερο βαθμό η D. Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι σταθμοί με εξαιρετικά χαμηλές (PYR3, LXR1, LEO1) και υψηλές (VSK1) τιμές Vs30 και αξίζει να γίνει μία σύντομη περιγραφή για τον καθένα από αυτούς (Πίνακας 3.3.3).

Ψηφιακή συλλογή Βιβλιοθήκη

Πίνακας 3.3.3: Ο πίνακας των σταθμών PYR3, LXR1, LEO1 και VSK1 του δικτύου επιταχυνσιογράφων του ΙΤΣΑΚ-ΟΑΣΠ, όπου δίνεται η τοποθεσία τους στον ελλαδικό χώρο, οι τύποι πετρώματος που συναντώνται σε αυτήν, οι πειραματικές τιμές Vs30 μαζί με το δεκαδικό λογάριθμό τους, καθώς και η ομάδα (κατά UBC), που ανήκουν, σε συνδυασμό με τις σταθερές τιμές (S) που συμμετέχουν σε σχέσεις απόσβεσης, όπως αυτά υπολογίστηκαν από το ΙΤΣΑΚ.

Ονομασία Σταθμού	Τοποθεσία	Σχηματισμοί που Εντοπίζονται (κατά ITSAK)	Προτιμητέες τιμές Vs30 (m/s)	logVs30 (σχήμα)	Κατηγορία (κατά UBC)	S (τιμή)
PYR3	Πύργος Ηλείας	Ολοκαινικά ανώτερα στρώματα ιζημάτων	225	2.35	Class D	2
LXR1	Ληξούρι Κεφαλονιά	Πλειοκαινικοί συμπαγοποιημένοι ψαμμίτες και ασβεστόλιθοι	249	2.4	Class D	2
LEO1	Λεωνίδιο Αρκαδίας	Τεταρτογενή αλλουβιακά ιζήματα	250	2.4	Class D	2
VSK1	Βασιλικιάδες Κεφαλονιά	Α. Κρητιδικοί ασβεστόλιθοι	1183	3.07	Class B	0

Βιβλιοθήκη **ΟΓΟΦΡΑΣΤΟΣ''** 3.4. Αποτελέσματα σχέσεων GMPE Skarlatoudis et al. (2003, 2007), Συγκρίσεις

Ψηφιακή συλλογή

Στο υποκεφάλαιο 1.3 έγινε μία εκτενής αναφορά στις σχέσεις πρόβλεψης εδαφικής κίνησης Skarlatoudis et al., οι οποίες έχουν υπολογιστεί πειραματικά (με δεδομένα γνωστών σεισμών του Ελληνικού χώρου) και έχουν εφαρμογή σε αυτόν. Οι σχέσεις αυτές συσχετίζουν τις τιμές PGA, PGV και PGD με το μέγεθος (M), την υποκεντρική απόσταση (D= (R² + h²)^{1/2}, όπου R η επικεντρική απόσταση του σταθμού και h το βάθος του σεισμού), τον εκάστοτε μηχανισμό γένεσης (F) και τις εδαφικές συνθήκες του κάθε σταθμού καταγραφής (S).

Ο αυτόματος υπολογισμός των εδαφικών μετατοπίσεων PGD είναι μία διαδικασία, ή οποία διέρχεται από πολλά στάδια επεξεργασίας και είναι αρκετά πιθανό να υποστεί διάφορες τροποποιήσεις με μεγάλο κίνδυνο για πιθανά σφάλματα. Συνεπώς, η χρήση τους δεν ενδείκνυται για τη συλλογή αξιόπιστων αποτελεσμάτων και για αυτό πολλές φορές αποφεύγεται. Έτσι, οι σχέσεις που μελετήθηκαν για την εξαγωγή συμπερασμάτων, αφορούν τις τιμές των εδαφικών επιταχύνσεων και ταχυτήτων (σχέσεις 1.3.2 και 1.3.3, αντίστοιχα).

Σε ένα πρώτο στάδιο μελετήθηκαν οι πραγματικές τιμές PGA των μη φιλτραρισμένων δεδομένων (7796 καταγραφές για 134 σεισμούς με M≥4.0) και PGV των φιλτραρισμένων δεδομένων (858 καταγραφές για 9 σεισμούς με M≥5.0) σε σχέση με τις θεωρητικές τιμές που θα προέκυπταν από τις γνωστές σχέσεις απόσβεσης. Στη συνέχεια, έγινε η προσπάθεια υπολογισμού (διόρθωση) για κάθε μια από τις παραμέτρους M, R και S, θεωρώντας σταθερές τις υπόλοιπες. Η παράμετρος F παίρνει την τιμή '1', καθώς όλη η ακολουθία σχετίζεται με μηχανισμό ανάστροφων ρηγμάτων στην Ελληνική Τάφρο, όπως παρουσιάστηκε στο υποκεφάλαιο 1.1. Στη συνέχεια, ακολουθούν διάφορα σημαντικά σχήματα, τα οποία θα περιγραφούν και θα αναλυθούν ξεχωριστά.

Σχήμα 3.4.1.1: Απεικονίζεται ο λόγος του δεκαδικού λογαρίθμου των τιμών PGA των μη φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥4.0 της ακολουθίας προς το δεκαδικό λογάριθμο των θεωρητικών τιμών PGA, που θα προέκυπταν από τις γνωστές GMPE Skarlatoudis et al. (2003, 2007).

Από το παραπάνω σχήμα μπορούμε να συμπεράνουμε ότι οι GMPE Skarlatoudis et al. (2003, 2007) ικανοποιούν μονάχα τους σεισμούς, όπου ισχύει: logPGA>0.5, δηλ. PGA>5mg. Για τους σεισμούς με μικρότερες εδαφικές επιταχύνσεις η σχέση 1.3.2 παρουσιάζει μεγάλες αποκλίσεις από τις πραγματικές τιμές που καταγράφηκαν, καθώς υπερεκτιμάει τις τιμές των μεγίστων εδαφικών επιταχύνσεων PGA.

Σχήμα 3.4.1.2: Παριστάνονται οι κατανομές συγκέντρωσης του δεκαδικού λογαρίθμου των τιμών PGA των μη φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥4.0 της ακολουθίας διορθωμένες ως προς D και S, σε συνάρτηση με το μέγεθός τους M, σύμφωνα με τις GMPE Skarlatoudis et al. (2003, 2007). Η γραμμική σχέση που τα διέπει δίνεται από την εξίσωση: log(PGA corr. D & S) = 0.5640187 * M - 0.6081120.

Από το σχήμα γίνεται αντιληπτό ότι οι τιμές PGA διορθωμένες ως προς D και S αυξάνονται με ρυθμό ανάλογο του μεγέθους M. Επιπλέον, παρατηρείται ότι ο συντελεστής του μεγέθους M για την ακολουθία (0.5640187) είναι σημαντικά μεγαλύτερος από αυτόν στις GMPE για τον ελλαδικό χώρο (0.45) και έτσι καταλήγουμε στο συμπέρασμα ότι για την ακολουθία της Ζακύνθου το μέγεθος των σεισμών επηρεάζει σε μεγαλύτερο βαθμό τις τιμές PGA συγκριτικά με τις σχέσεις απόσβεσης του Skarlatoudis et al. (2003, 2007).

Σχήμα 3.4.1.3: Απεικονίζεται ο δεκαδικός λογαρίθμος των τιμών PGA των μη φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥4.0 της ακολουθίας διορθωμένες ως προς M και S, σε συνάρτηση με την υποκεντρική απόσταση D, σύμφωνα με τις GMPE Skarlatoudis et al. (2003, 2007). Η λογαριθμική σχέση που τα διέπει δίνεται από την εξίσωση: log(PGA corr. M & S) = -0.9792456 * log(D) + 2.0430043.

Από το σχήμα γίνεται αντιληπτό ότι οι τιμές PGA διορθωμένες ως προς M και S είναι ανάλογες του logD. Επιπλέον, παρατηρείται ότι η απόλυτη τιμή του συντελεστή της υποκεντρικής απόστασης D για την ακολουθία (0.9792456) είναι σημαντικά μικρότερη από αυτή στις GMPE για τον ελλαδικό χώρο (1.27) και έτσι καταλήγουμε στο συμπέρασμα ότι για την ακολουθία της Ζακύνθου η γεωμετρική απόσβεση για τις τιμές PGA είναι μικρότερη συγκριτικά με τις σχέσεις απόσβεσης του Skarlatoudis et al. (2003, 2007).

logPGA corr. M & D-logVs30 2 1.6 1.2 0.8 logPGA corr. M & D 0.4 0 -0.4 -0.8 -1.2 -1.6 2.5 2.6 2.7 2.2 2.3 2.4 2.9 3 3.1 2.8 logVs30

Σχήμα 3.4.1.4: Απεικονίζεται ο δεκαδικός λογαρίθμος των τιμών PGA των μη φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥4.0 της ακολουθίας διορθωμένες ως προς Μ και D, σε συνάρτηση με τις πειραματικά υπολογισμένες τιμές ταχύτητας των S κυμάτων (Vs30) για τους σταθμούς καταγραφής, σύμφωνα με τις GMPE Skarlatoudis et al. (2003, 2007). Η γραμμική σχέση που τα διέπει δίνεται από την εξίσωση: log(PGA corr. M & D) = -0.6499925 * logVs30 + 1.6732042

Σχήμα 3.4.1.5: Παριστάνονται οι κατανομές συγκέντρωσης του δεκαδικού λογαρίθμου των τιμών PGA των μη φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥4.0 της ακολουθίας διορθωμένες ως προς Μ και D, σε συνάρτηση με την τιμή S των σταθμών, που καθορίζεται από τις εδαφικές συνθήκες του εκάστοτε σταθμού (βλέπε πίνακα 3.3.1), σύμφωνα με τις GMPE Skarlatoudis et al. (2003, 2007). Η γραμμική σχέση που τα διέπει δίνεται από την εξίσωση: log(PGA corr. M & D) = 0.2601242 * S -0.3663393

Από τα σχήματα γίνεται αντιληπτό ότι οι τιμές PGA διορθωμένες ως προς M και D αυξάνονται με ρυθμό ανάλογο του S (και αντίστοιχα αντιστρόφως ανάλογο των τιμών logVs30). Επιπλέον, παρατηρείται ότι ο συντελεστής S, που ορίζεται από τις εδαφικές συνθήκες των σταθμών καταγραφής, για την ακολουθία (0.2601242), είναι σημαντικά μεγαλύτερος από αυτόν στις GMPE για τον ελλαδικό χώρο (0.06) και έτσι καταλήγουμε στο συμπέρασμα ότι για την ακολουθία της Ζακύνθου οι εδαφικές συνθήκες καθορίζουν σε πολύ μεγαλύτερο βαθμό τις τιμές PGA συγκριτικά με τις σχέσεις απόσβεσης του Skarlatoudis et al. (2003, 2007).

47

Σχήμα 3.4.2.1: Απεικονίζεται ο λόγος του δεκαδικού λογαρίθμου των τιμών PGV των φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥5.0 της ακολουθίας προς το δεκαδικό λογάριθμο των θεωρητικών τιμών PGA, που θα προέκυπταν από τις γνωστές GMPE Skarlatoudis et al. (2003, 2007).

Από το παραπάνω σχήμα μπορούμε να συμπεράνουμε ότι οι GMPE Skarlatoudis et al. (2003, 2007) ικανοποιούν μονάχα τους σεισμούς, όπου ισχύει: logPGV>|-1|, δηλ. PGV>10⁻²cm/s. Για τους σεισμούς με μικρότερες εδαφικές ταχύτητες η σχέση 1.3.3 παρουσιάζει μεγάλες αποκλίσεις από τις πραγματικές τιμές που καταγράφηκαν, καθώς υπερεκτιμάει τις τιμές των μεγίστων εδαφικών ταχυτήτων PGV.

Σχήμα 3.4.2.2: Παριστάνονται οι κατανομές συγκέντρωσης του δεκαδικού λογαρίθμου των τιμών PGV των φιλτραρισμένων καταγραφών για τους σεισμούς με M≥5.0 της ακολουθίας διορθωμένες ως προς D και S, σε συνάρτηση με το μέγεθός τους M, σύμφωνα με τις GMPE Skarlatoudis et al. (2003, 2007). Η γραμμική σχέση που τα διέπει δίνεται από την εξίσωση: log(PGV corr. D & S) = 0.9367433 * M -3.6857746.

Από το σχήμα γίνεται αντιληπτό ότι οι τιμές PGV διορθωμένες ως προς D και S αυξάνονται με ρυθμό ανάλογο του μεγέθους M. Επιπλέον, παρατηρείται ότι ο συντελεστής του μεγέθους M για την ακολουθία (0.9367433) είναι σημαντικά μεγαλύτερος από αυτόν στις GMPE για τον ελλαδικό χώρο(0.65) και έτσι καταλήγουμε στο συμπέρασμα ότι για την ακολουθία της Ζακύνθου το μέγεθος των σεισμών καθορίζει σε πολύ μεγαλύτερο βαθμό τις τιμές PGV συγκριτικά με τις σχέσεις απόσβεσης του Skarlatoudis et al. (2003, 2007).

Σχήμα 3.4.2.3: Απεικονίζεται ο δεκαδικός λογαρίθμος των τιμών PGV των φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥5.0 της ακολουθίας διορθωμένες ως προς Μ και S, σε συνάρτηση με την υποκεντρική απόσταση D, σύμφωνα με τις GMPE Skarlatoudis et al. (2003, 2007). Η λογαριθμική σχέση που τα διέπει δίνεται από την εξίσωση: log(PGV corr. M & S) = -0.6689899 * log(D) -1.3205671.

Από το σχήμα γίνεται αντιληπτό ότι οι τιμές PGV διορθωμένες ως προς M και S είναι ανάλογες του logD. Επιπλέον, παρατηρείται ότι η απόλυτη τιμή του συντελεστή της υποκεντρικής απόστασης D για την ακολουθία (0.6689899) είναι σημαντικά μικρότερη από αυτή στις GMPE για τον ελλαδικό χώρο (1.224) και έτσι καταλήγουμε στο συμπέρασμα ότι για την ακολουθία της Ζακύνθου η γεωμετρική απόσβεση για τις τιμές PGV είναι μικρότερη συγκριτικά με τις σχέσεις απόσβεσης του Skarlatoudis et al. (2003, 2007).

Σχήμα 3.4.2.4: Απεικονίζεται ο δεκαδικός λογαρίθμος των τιμών PGV των φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥5.0 της ακολουθίας διορθωμένες ως προς Μ και D, σε συνάρτηση με τις πειραματικά υπολογισμένες τιμές ταχύτητας των S κυμάτων (Vs30) για τους σταθμούς καταγραφής, σύμφωνα με τις GMPE Skarlatoudis et al. (2003, 2007). Η γραμμική σχέση που τα διέπει δίνεται από την εξίσωση: log(PGV corr. M & D) = -0.6142112 * logVs30 - 0.2619493.

Σχήμα 3.4.2.5: Παριστάνονται οι κατανομές συγκέντρωσης του δεκαδικού λογαρίθμου των τιμών PGAV των φιλτραρισμένων καταγραφών για τους σεισμούς με Μ≥5.0 της ακολουθίας διορθωμένες ως προς Μ και D, σε συνάρτηση με την τιμή S των σταθμών, που καθορίζεται από τις εδαφικές συνθήκες του εκάστοτε σταθμού (βλέπε πίνακα 3.3.1), σύμφωνα με τις GMPE Skarlatoudis et al. (2003, 2007). Η γραμμική σχέση που τα διέπει δίνεται από την εξίσωση: log(PGV corr. M & D) = 0.1816199 * S -2.0940337.

Από τα σχήματα γίνεται αντιληπτό ότι οι τιμές PGV διορθωμένες ως προς M και D αυξάνονται με ρυθμό ανάλογο του S (και αντίστοιχα αντιστρόφως ανάλογο των τιμών logVs30). Επιπλέον, παρατηρείται ότι ο συντελεστής S, που ορίζεται από τις εδαφικές συνθήκες των σταθμών καταγραφής, για την ακολουθία (0.1816199), είναι μεγαλύτερος από αυτόν στις GMPE για τον ελλαδικό χώρο(0.15) και έτσι καταλήγουμε στο συμπέρασμα ότι για την ακολουθία της Ζακύνθου οι εδαφικές συνθήκες καθορίζουν σε μεγαλύτερο βαθμό τις τιμές PGV συγκριτικά με τις σχέσεις απόσβεσης του Skarlatoudis et al. (2003, 2007).

Κεφάλαιο 4°: Συμπεράσματα – Σύνοψη

6

Ψηφιακή συλλογή Βιβλιοθήκη

ΓΟΦΡΑΣΤΟΣ

Α.Π.Θ

Ανακεφαλαιώνοντας, όσα προαναφέρθηκαν για τη μελέτη της ισχυρής σεισμικής κίνησης της μετασεισμικής ακολουθίας του σεισμού της Ζακύνθου στις 25 Οκτωβρίου 2018 23:54:51 GMT, μπορεί να εξαχθεί το συμπέρασμα ότι η διαδικασία εφαρμογής του κατάλληλου φίλτρου για την αποκοπή του θορύβου στις καταγραφές, επηρεάζει σε πολύ μικρό βαθμό τον υπολογισμό των τιμών PGA, όταν αφορά μεγάλους σεισμούς (Μ≥5.0) και επιταχύνσεις μεγαλύτερες των 10mg. Αντιθέτως, σε μικρότερους σεισμούς, όπου ο θόρυβος δεν μπορεί να θεωρηθεί αμελητέος, το φιλτράρισμα επηρεάζει (περιορισμένα) τις τιμές των διορθωμένων τιμών επιτάχυνσης.

Ένα ακόμη χαρακτηριστικό που παρατηρήθηκε για τους σεισμούς της ακολουθίας, είναι η μεγάλη επίδραση των επιφανειακών κυμάτων στον υπολογισμό των τιμών των εδαφικών επιταχύνσεων των καταγραφών για τους σεισμούς με μέγεθος Μ≥5.6. Έτσι, συναντώνται εξαιρετικά μεγάλες τιμές επιταχύνσεων σε αρκετές καταγραφές (σε μεγάλες επικεντρικές αποστάσεις R), κάτι το οποίο οφείλεται στην αυτοματοποιημένη διαδικασία υπολογισμού των μέγιστων τιμών PGA και PGV.

Όπως είναι γνωστό, τα είδη των γεωλογικών σχηματισμών και γενικότερα οι εδαφικές συνθήκες, που χαρακτηρίζουν τον κάθε σταθμό του δικτύου επιταχυνσιογράφων του ελληνικού χώρου, ομαδοποιούνται (κατά UBC) και καθορίζονται σύμφωνα με τις τιμές των ταχυτήτων των S κυμάτων (Vs30) στους σταθμούς, που σε αρκετές περιπτώσεις έχουν υπολογιστεί πειραματικά. Με εξαίρεση κάποιες ακραίες τιμές, προσδιορίστηκε ότι για τους σταθμούς καταγραφής της ακολουθίας προκύπτει ότι 305≤Vs30≤650. Επομένως, η πλειοψηφία των σταθμών αυτών ανήκει στην ομάδα C (κατά UBC), η οποία χαρακτηρίζεται από μαλακά πετρώματα ή/και πολύ πυκνά εδάφη.

Τέλος, πραγματοποιήθηκε μία σύγκριση των τιμών εδαφικών επιταχύνσεων (PGA) και ταχυτήτων (PGV) των καταγραφών με τις αντίστοιχες τιμές τους σύμφωνα με τις GMPE των Skarlatoudis et al. (2003, 2007). Παρατηρήθηκε ότι οι σχέσεις δεν ικανοποιούνται πλήρως για μικρούς σεισμούς, ιδίως για επιταχύνσεις a<5mg και ταχύτητες PGV<10⁻²cm/s, καθώς οι παραπάνω GMPE υπερεκτιμούν τις τιμές μεγίστων εδαφικών επιταχύνσεων και ταχυτήτων. Προσδιορίστηκε ότι οι παράγοντες του μεγέθους M του σεισμού και των εδαφικών συνθηκών S των σταθμών καταγραφής για τα δεδομένα της ακολουθίας, εμφανίζουν σημαντικά μεγαλύτερη βαρύτητα στον προσδιορισμό των τιμών PGA και PGV σε σχέση με τις GMPE των Skarlatoudis et al. (2003, 2007). Αντιθέτως, η γεωμετρική απόσβεση για τις τιμές PGA (κυρίως) και PGV είναι μικρότερη συγκριτικά από τις GMPE των Skarlatoudis et al. (2003, 2007). Η παρατήρηση αυτή είναι σε συμφωνία με το ότι ο σεισμός της Ζακύνθου έγινε στο όριο της μικροπλάκας της Αν. Μεσογείου με το Αιγαίο και το γεγονός ότι η μικροπλάκα αυτή έχει

- https://www.emsc-csem.org
- http://www.gein.noa.gr/el/seismikotita/katalogoi-seismwn
- http://www.geophysics.geo.auth.gr/ss
- https://www.guralp.com
- http://www.itsak.gr/uploads/news/earthquake_reports/EQ_ZAKYNTHOS_20181026_M6.8_ v2_el.pdf
- http://www.itsak.gr/main
- http://www.itsak.gr/page/infrastructures/networks/acc_network
- http://www.itsak.gr/uploads/files/Leaflet2017.pdf
- https://www.researchgate.net/figure/UBC-Site-Classification_tbl1_258743822
- SCREAM-ART4.0 (2001). Guralp Systems e-Manual

55

- A. A. Skarlatoudis, C. B. Papazachos, B. N. Margaris, N. Theodulidis, Ch. Papaioannou, I. Kalogeras, E. M. Scordilis, and V. Karakostas (2003). Empirical Peak Ground-Motion Predictive Relations for Shallow Earthquakes in Greece.
- A. A. Skarlatoudis, C. B. Papazachos, B. N. Margaris, N. Theodulidis, Ch. Papaioannou, I. Kalogeras, E. M. Scordilis, and V. Karakostas (2007). Erratum to Empirical Peak Ground-Motion Predictive Relations for Shallow Earthquakes in Greece.
- Boore D.M. (2005). On pads and filters: Processing strong-motion data. Bull. Seism. Soc. Am., 95,745-750.
- Boore D.M. (2009). TSPP--- A Collection of FORTAN Programs for Processing and Manipulating Time Series, U.S. Geological Survey Open File rept 2008-1111, V2.0, 10 Dec. 2009, pp52.
- Boore, D.M., W.B. Joyner, and T.E. Fumal (1993). Estimation of response spectra and peak accelerations from western North American earthquakes: an interim report, U.S. Geol. Surv. Open-File Rept. 93-509, 72pp.
- Campbell, K. W. (1985). Strong motion attenuation relations: a ten years perspective, Earthquake Spectra 1, 759-804.
- Fukushima, Y., and T. Tanaka (1990). A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan, Bull. Seism. Soc. Am. 80, 757-778.
- Joyner, W.B., and D. M. Boore (1981) Peak horizontal acceleration and velocity from strongmotion records including records from the 1979 Imperial Valley, California, Earthquake, Bull. Seism. Soc. Am. 71, 2011-2038.
- Margaris B (1986) Digitizing errors and filters. Report ITSAK, Report: 86-03.
- Margaris, B.N., C.B., Papazachos, C.H., Papaioanou, N., Theodoulidis, I., Kalogeras, A.A., Skarlatoudis, (2002). Empirical attenuation relations for the horizontal strong ground motion parameters of shallow earthquakes in Greece, *in the Proc. of 12th European Conference on Earthquake Engineering*, London.
- Παπαζάχος, Β.Κ. και Κ.Β. Παπαζάχου (2003). Σεισμοί της Ελλάδας Γ Έκδοση, Εκδόσεις Ζήτη, Θεσσαλονίκη 67-91.

Παράρτημα Ι

Παράρτημα Ι: Ο κατάλογος σεισμών, όπου παρουσιάζονται η ημερομηνία, ο χρόνος γένεσης, οι γεωγραφικές συντεταγμένες του επικέντρου, το εστιακό βάθος και το μέγεθος για κάθε σεισμό, όπως αυτά υπολογίστηκαν από το Σεισμολογικό Σταθμό Θεσσαλονίκης και το Γεωδυναμικό Ινστιτούτο Αθηνών. Σημειώνεται ο κύριος σεισμός της Ακολουθίας (1^η Σειρά).

HMEPA	ΜΗΝΑΣ	ΕΤΟΣ	ΧΡΟΝΟΣ	Γ.ΠΛΑΤΟΣ	Γ. ΜΗΚΟΣ	ΒΑΘΟΣ	ΜΕΓΕΘΟΣ	HMEPA	ΜΗΝΑΣ	ετοΣ	ΧΡΟΝΟΣ	Γ.ΠΛΑΤΟΣ	Γ. ΜΗΚΟΣ	ΒΑΘΟΣ	ΜΕΓΕΘΟΣ
25	ОСТ	18	22:54:51.60	37,530	20,620	0.00	6.8	25	OCT	2018	22 54 49.6	37.34	20.51	10	6.6
25	OCT	18	23:09:21.70	37,193	20,684	4.50	5.1	25	OCT	2018	23 09 20.2	37.11	20.64	3	5.1
25	OCT	18	23:17:21.50	37,301	20,576	2.10	4.2	25	OCT	2018	23 17 24.6	37.33	20.74	4	4.2
25	OCT	18	23:19:46.90	37,620	20,480	0.10	4.1								
25	OCT	18	23:23:09.40	37,421	20,665	6.00	4.1								
26	OCT	18	00:03:03.70	37,513	20,620	9.10	4.0								
26	OCT	18	00:13:38.20	37,489	20,668	29.00	4.5	26	OCT	2018	00 13 39.6	37.47	20.67	6	4.5
26	OCT	18	00:22:41.00	36,566	19,715	0.60	5.0								
26	OCT	18	00:23:12.80	37,374	20,852	0.00	4.7	26	OCT	2018	00 23 13.4	37.39	20.94	4	4.3
26	OCT	18	00:32:54.00	37,666	20,370	0.00	4.6	26	OCT	2018	00 32 55.9	37.73	20.38	10	4.4
26	OCT	18	01:06:01.00	37,309	20,672	0.00	4.6	26	OCT	2018	01 06 03.9	37.39	20.86	6	4.5
26	OCT	18	01:36:47.10	37,344	20,759	8.60	4.0	26	OCT	2018	01 16 33.6	37.32	20.66	6	4.1
26	OCT	18	01:46:42.00	37,444	20,678	12.60	4.1								
26	OCT	18	02:09:30.60	37,407	20,472	0.10	4.1	26	OCT	2018	02 09 31.5	37.44	20.52	8	4.0
26	OCT	18	02:17:34.40	37,583	20,556	4.10	4.3	26	OCT	2018	02 17 33.5	37.48	20.54	8	4.1
								26	OCT	2018	02 28 42.8	37.36	20.65	13	4.0
26	OCT	18	03:25:49.00	37,533	20,555	0.20	4.0	26	OCT	2018	02 36 07.4	37.50	20.71	8	4.0
26	OCT	18	04:00:47.40	37,405	20,827	25.10	4.0	26	OCT	2018	04 00 47.9	37.40	20.81	8	4.0
								26	OCT	2018	05 40 57.1	37.19	20.53	10	4.0
26	OCT	18	05:48:36.90	37,379	20,543	0.00	4.9	26	OCT	2018	05 48 36.4	37.36	20.51	3	4.8
								26	OCT	2018	06 00 56.6	37.50	20.52	10	4.1
26	OCT	18	06:20:51.00	37,455	20,403	0.70	4.6	26	OCT	2018	06 20 51.7	37.47	20.44	5	4.4
26	OCT	18	06:32:13.80	37,456	20,761	0.50	4.0	26	OCT	2018	06 32 13.4	37.43	20.68	3	4.2
26	OCT	18	06:44:08.30	37,462	20,540	0.10	4.2	26	OCT	2018	06 44 08.9	37.48	20.52	10	4.2
26	OCT	18	07:36:13.30	37,439	20,565	5.10	4.1	26	OCT	2018	07 36 15.3	37.46	20.68	6	4.1
26	OCT	18	08:03:11.10	37,395	20,557	3.80	4.0	26	OCT	2018	08 03 10.1	37.37	20.67	7	4.1
26	OCT	18	08:40:58.10	37,432	21,106	2.00	4.3	26	OCT	2018	08 40 51.8	37.42	20.56	8	4.2
26	OCT	18	09:45:55.70	37,343	20,652	0.50	4.2	26	OCT	2018	09 45 56.2	37.33	20.67	6	4.1
								26	OCT	2018	09 54 11.5	37.62	20.86	18	4.0
								26	OCT	2018	10 50 13.4	37.60	20.46	6	4.0
26	ОСТ	18	10:57:08.90	37,438	20,475	4.70	4.0	26	ОСТ	2018	10 57 09.2	37.47	20.45	9	4.0

26	OCT	18	11:26:34.00	37,596	20,818	18.70	4.2	26	OCT	2018	11 26 33.4	37.58	20.81	10	4.0
26	OCT	18	12:03:16.70	38,930	22,451	5.50	4.5	26	OCT	2018	12 03 16.6	38.91	22.45	6	4.4
26	OCT	18	12:11:16.70	37,437	20,709	4.60	4.5	26	OCT	2018	12 11 16.3	37.43	20.71	10	4.4
26	ОСТ	18	12:41:11.30	37.369	20.453	0.00	4.7	26	OCT	2018	12 41 13.4	37.38	20.54	7	4.6
26	OCT	18	13.56.48 70	37 484	20 528	0.00	4 2	26	OCT	2018	13 56 48 5	37 51	20.54	18	4 1
26	000	18	16:07:10.20	37 / 85	20,655	7 20	15	26	000	2018	16 07 09 3	37.02	20.59	7	15
20	001	10	16.25.26.00	27,405	20,033	2.20	4.0	20	001	2010	16 49 29 E	27.42	20.55	,	4.5
20	001	10	10.33.30.90	37,477	20,587	2.20	4.0	20	001	2018	10 40 20.5	57.44	20.07	5	4.0
26	001	18	18:37:46.00	36,126	30,892	7.80	4.1							_	
26	001	18	18:39:45.50	37,453	20,483	0.10	4.0	26	OCT	2018	18 39 44.8	37.42	20.48	/	4.0
26	OCT	18	19:27:37.00	37,311	20,569	0.20	4.2	26	OCT	2018	19 27 37.6	37.33	20.58	4	4.0
26	OCT	18	19:34:28.30	37,149	20,689	0.10	4.0								
26	OCT	18	20:21:04.00	37,454	20,483	5.40	4.4	26	OCT	2018	20 21 03.9	37.48	20.50	3	4.3
26	OCT	18	21:58:56.60	37,038	20,624	3.60	4.3	26	OCT	2018	21 58 57.2	37.10	20.68	5	4.2
26	OCT	18	23:51:35.60	37,409	20,804	0.10	4.3	26	OCT	2018	23 51 34.9	37.37	20.78	7	4.4
27	OCT	18	00:05:36.00	37,513	20,668	6.90	4.2	27	OCT	2018	00 05 36.1	37.54	20.71	5	4.1
27	ОСТ	18	00:21:15.60	37.424	20.514	0.10	4.0								
27	OCT	18	05.28.47.20	37 516	20.676	4 50	4.8	27	OCT	2018	05 28 46 4	37 47	20.64	5	46
27	000	18	06:10:09 10	37/18	20,593	9.80	4.0	_,	001	2010	00 20 1011	0,,	20101	5	
27	000	10	10.12.42.00	27 405	20,555	1.80	4.0	27	ОСТ	2018	10 12 /2 7	27.28	20.61	5	4.1
27	001	10	14.22.26 20	37,403	20,031	1.80	4.1	27	001	2010	14 22 26 5	37.38	20.01	1	4.1
27	001	10	14.33.20.20	37,432	20,407	0.00	4.1	27	001	2018	14 55 20.5	57.44	20.47	4	4.1
27	001	18	23:39:49.20	37,259	20,660	12.10	4.0								
28	001	18	03:24:14.80	37,427	20,350	0.00	4.0	28	OCI	2018	05 32 52.7	37.43	20.45	11	4.0
28	OCT	18	10:02:27.80	35,680	21,712	8.60	4.0	28	OCT	2018	10 02 27.1	35.62	21.53	12	4.0
28	OCT	18	13:59:38.10	37,486	20,500	1.10	4.3	28	OCT	2018	11 34 45.9	37.43	20.44	7	4.0
28	OCT	18	15:44:37.00	37,340	20,740	1.10	4.0								
28	OCT	18	19:00:08.50	37,448	20,524	6.50	4.1								
28	OCT	18	20:34:10.40	37,379	20,745	9.30	4.1	28	OCT	2018	20 34 10.3	37.39	20.75	8	4.0
28	OCT	18	20:40:21.10	37,309	20,746	2.60	4.1	28	OCT	2018	20 40 20.8	37.29	20.72	3	4.1
29	OCT	18	04:52:12.10	37,493	20.610	10.80	4.3	29	OCT	2018	04 52 11.8	37.50	20.59	7	4.1
29	OCT	18	11.29.33.20	37 570	20 280	0.10	4 1	29	OCT	2018	11 29 33 4	37 60	20.37	8	4 1
20	00.	10	11125100120	07,070	20,200	0.10		29	OCT	2018	12 30 16 3	37.36	20.77	8	4.0
20	ОСТ	19	15.01.20 20	27 219	20 522	5 20	12	20	000	2010	15 01 20 7	27 22	20.77	5	4.0
29	OCT	10	13.01.39.30	37,318	20,552	7.20	4.3	29	OCT	2018	22 22 14 1	37.32	20.50	7	4.3
29	001	10	22.22.14.30	37,440	20,551	7.50	4.0	29	001	2018	22 22 14.1	57.42	20.55	/	4.1
30	001	18	00:25:42.90	36,400	28,734	0.00	4.1							_	
30	001	18	02:59:58.50	37,557	20,409	0.10	5.3	30	OCI	2018	02 59 59.8	37.59	20.51	/	5.4
30	OCT	18	05:17:25.00	37,524	20,678	10.40	4.0								
30	OCT	18	06:34:13.10	37,646	20,539	0.10	4.2	30	OCT	2018	06 34 13.7	37.66	20.53	14	4.2
30	OCT	18	07:16:55.30	37,440	20,726	8.40	4.0								
30	OCT	18	08:32:24.50	37,429	20,403	4.70	4.8	30	OCT	2018	08 32 26.3	37.48	20.43	11	4.8
30	OCT	18	11:25:21.00	37,648	20,379	0.00	4.0								
30	OCT	18	12:49:04.40	37,480	20,455	5.10	4.5	30	OCT	2018	12 49 06.1	37.51	20.53	7	4.4
30	ОСТ	18	14:33:15.40	37.423	20.370	8.00	4.3	30	OCT	2018	14 33 16.0	37.41	20.41	4	4.1
30	OCT	18	15:12:01.40	37,465	20,467	4,70	5.4	30	OCT	2018	15 12 02.0	37.46	20.45	6	5.5
30	007	18	15.59.23 00	37 459	20,508	0 10	4.2	30	0ст	2018	16 39 21 1	37 41	20.13	7	4 3
30	001	10	18.04.22.80	37,435	20,303	0.10	4.2	20	001	2010	18 0/ 22 7	37 /2	20.47	, 7	4.5 1 2
50	001	10	10.04.23.00	57,440	20,400	0.10	4.5	50	001	2010	10 04 23.7	57.45	20.40	'	4.5
31	OCT	18	10:25:11.60	37,334	20,788	7.70	4.1	31	OCT	2018	10 25 11.9	37.39	20.81	12	4.0
1	NOV	18	02:44:48.30	37.419	20.504	10.10	4.7	1	NOV	2018	02 44 48.6	37.37	20.57	11	4.6
-				0.,.20	20,007	20.20		-		2010	32	0.10.	20.07		

1	NOV	18	05:34:30.20	37,167	20,600	0.00	4.3	1	NOV	2018	05 34 30.3	37.17	20.61	9	4.3
1	NOV	18	07:03:09.20	37,455	20,569	0.10	4.0								
1	NOV	18	10:01:52.40	37,300	20,551	0.10	4.0								
1	NOV	18	10:41:09.80	37,166	20,595	0.00	4.0								
2	NOV	18	01:45:39.90	37,590	20,414	25.70	4.4								
2	NOV	18	02:33:10.80	37,428	20,531	12.20	4.3								
2	NOV	18	07:53:14.10	37,546	20,403	0.10	4.3	2	NOV	2018	07 53 14.3	37.58	20.39	13	4.3
3	NOV	18	01:10:05.20	37,164	20,571	6.90	4.7	3	NOV	2018	01 10 06.1	37.20	20.60	4	4.3
3	NOV	18	04:02:27.30	37,363	20,580	10.60	4.1								
3	NOV	18	08:05:54.30	37,638	20,372	15.90	4.5	3	NOV	2018	08 05 53.1	37.57	20.28	8	4.3
4	NOV	18	03:04:30.10	37.156	20,569	2.70	4.5	4	NOV	2018	03 04 30.2	37.16	20.57	7	4.3
4	NOV	18	03:12:46.00	37.431	20.517	8.40	5.0	4	NOV	2018	03 12 44.4	37.38	20.41	5	4.9
5	NOV	18	02.44.39.20	37 213	20.651	10.00	4 4	5	NOV	2018	02 44 38 0	37.16	20.62	12	4.4
5	NOV	18	06:46:13 90	37 671	20 532	10.00	4 5	5	NOV	2018	06 46 12 7	37.63	20.49	8	4 5
5	NOV	18	08.31.12.10	37 527	20,687	0.10	4 5	5	NOV	2018	08 31 12 1	37.53	20.68	10	43
5	NOV	18	12:21:54 80	37 407	20,007	10.00	4.0	5	NOV	2010	12 21 54 3	37.38	20.00	8	4.5
5	NOV	18	16:19:57 10	37 / 15	20,562	1 30	4.0	5	1101	2010	12 21 54.5	57.50	20.74	0	4.0
6	NOV	18	20.22.28.60	37 / 13	20,502	6.10	4.1								
7	NOV	10	10.28.15 70	29 790	26,545	6.50	4.0								
2 2	NOV	10	22:46:01 10	27 621	20,537	11 20	4.1	0	NOV	2018	22.46.00.4	27 50	20.47	7	12
0	NOV	10	17:52:01 50	27 560	20,318	0.10	4.2	8	NOV	2018	22 40 00.4	37.33	20.47	,	4.2
9	NOV	10	10.53.01.30	37,309	20,390	0.10	4.1								
9 10	NOV	10	19.57.11.50	37,373	20,369	0.00	4.0	10	NOV	2010	01 11 10 1	27.65	20.40	0	4.2
10	NOV	10	02:13:37:50	37,017	20,449	0.10	4.1	10	NOV	2018	02 13 38.2	37.05	20.49	0	4.2
10	NOV	18	02:31:51.70	37,531	20,368	0.00	4.0								
11	NOV	18	18:04:32.10	37,600	20,326	0.00	4.0		101	2010	22.20.25.0	27.62	20.54	-	
11	NOV	18	23:38:34.10	37,605	20,465	2.00	4.8	11	NOV	2018	23 38 35.0	37.63	20.51	/	4.8
12	NOV	18	06:50:28.10	37,166	20,567	3.70	4.5	12	NOV	2018	06 50 27.6	37.13	20.55	10	4.7
13	NOV	18	13:47:54.30	41,813	19,210	9.30	4.0								
15	NOV	18	01:57:42.30	37,439	20,567	12.60	4.0								
15	NOV	18	09:02:05.30	37,506	20,690	1.20	5.0	15	NOV	2018	09 02 05.3	37.52	20.68	17	4.9
15	NOV	18	09:09:26.90	37,528	20,720	3.00	4.4	15	NOV	2018	09 09 26.3	37.49	20.65	7	4.5
15	NOV	18	11:00:05.40	37,697	20,574	12.00	4.3	15	NOV	2018	11 00 04.4	37.63	20.48	8	4.4
15	NOV	18	14:07:22.10	37,672	20,553	15.90	4.0								
17	NOV	18	09:15:46.70	37,519	20,692	13.80	4.0								
17	NOV	18	20:33:18.80	37,540	21,712	9.50	4.2	17	NOV	2018	20 33 18.0	37.53	21.74	32	4.1
18	NOV	18	05:18:02.50	37,391	20,516	0.00	4.3	18	NOV	2018	05 18 02.8	37.42	20.49	14	4.1
18	NOV	18	06:06:44.40	37,556	20,268	0.00	4.3	18	NOV	2018	06 06 44.8	37.56	20.31	8	4.3
19	NOV	18	05:56:51.40	37,565	20,678	14.60	4.2	19	NOV	2018	05 56 51.2	37.54	20.67	16	4.1
19	NOV	18	13:05:56.10	37,179	20,580	6.10	5.1	19	NOV	2018	13 05 54.8	37.15	20.50	10	5.1
19	NOV	18	16:16:41.90	37,167	20,571	0.10	4.0								
20	NOV	18	00:11:57.50	37,314	20,651	0.10	4.0	22	NOV	2018	11 11 29.7	37.16	20.46	13	4.4
22	NOV	18	11:11:30.00	37,172	20,500	0.10	4.4								
25	NOV	18	02:40:17.70	36,109	28,308	17.60	4.0	25	NOV	2018	02 40 08.6	35.88	28.63	34	4.1
								25	NOV	2018	16 40 39.0	36.39	29.17	30	4.1
26	NOV	18	02:31:10.40	37,654	20,532	4.60	4.1								
27	NOV	18	23:16:11.70	36,675	25,709	7.70	4.5	27	NOV	2018	23 16 10.5	36.65	25.72	33	4.7
27	NOV	18	23:46:03.70	36,677	25,715	7.30	4.0	27	NOV	2018	23 46 02.2	36.67	25.71	36	4.0
29	NOV	18	00:22:59.20	37,599	20,210	0.10	4.1	29	NOV	2018	00 22 59.8	37.63	20.26	10	4.2
				,	,										

29	NOV	18	19:59:57.50	37,578	20,353	7.20	4.1								
30	NOV	18	02:36:35.40	40,590	28,970	6.40	4.1	30	NOV	2018	02 36 33.9	40.63	28.97	3	4.2
30	NOV	18	15:04:42.00	34,494	26,022	2.90	4.0								
1	DEC	18	04:54:17.10	40,443	20,075	8.80	4.1								
8	DEC	18	19:00:01.40	34,357	26,165	0.00	4.1	8	DEC	2018	19 00 00.0	34.28	26.07	13	4.2
								11	DEC	2018	04 11 43.3	39.52	24.25	41	4.0
13	DEC	18	06:26:41.10	37,507	20,627	0.00	4.8	13	DEC	2018	06 26 41.3	37.52	20.64	5	4.4
16	DEC	18	09:24:30.20	39,554	24,286	4.00	4.1	16	DEC	2018	09 24 29.6	39.53	24.26	37	4.1
19	DEC	18	19:35:54.40	36.616	21,440	19.00	4.8	19	DEC	2018	19 35 52.3	36.60	21.46	43	4.8
20	DEC	18	06:34:16.10	40.900	29.744	0.10	4.4								
25	DEC	18	01:41:28.30	37.369	20.855	9.70	4.5	25	DEC	2018	01 41 27.8	37.32	20.80	12	4.6
26	DEC	18	07:37:53.60	37.382	20.808	8.70	4.0	26	DEC	2018	07 37 52.3	37.34	20.73	10	4.1
27	DEC	18	14.30.12.00	37 489	20 756	14 20	4 1								
1	IAN	19	11.40.04 90	34 633	23 820	9 50	4 7								
4	IAN	19	19.27.36.70	40 257	19 711	4 60	4.6	4	IAN	2019	19 27 38 0	40.21	19 82	10	46
8	IAN	19	07:06:09 50	36 044	25 939	23 50	4.0		57.01	2015	10 27 0010	10121	10102	10	
10	IAN	19	17:30:15:00	37 288	20,605	0.80	4 3	10	IAN	2019	17 30 15 3	37 30	20.60	13	44
10	IAN	19	18.24.41.20	34 649	26,600	0.00	4.6	10	IAN	2019	18 24 40 1	34 67	26.61	44	4.6
	57.114	10	1012 11 1120	0 1,0 15	20,027	0.00		11	IAN	2019	18 54 09 4	37.64	20.86	15	4.0
15	IAN	19	01.11.47 80	38 287	20 274	0.10	43	15	IAN	2019	01 11 49 3	38.29	20.41	11	4.2
15	IAN	19	01.25.04.90	38 989	20 645	4 20	4.4	15	IAN	2019	01 25 05 1	38 94	20.62	19	4 3
				00,505	20,010			10		2015		00.01	20.02		
1/	JAN	19	03:36:31.20	36,458	22,401	0.00	4.4	1/	JAN	2019	03 36 30.9	36.45	22.34	11	4.3
17	JAN	19	21:46:39.60	37,659	20,681	0.80	4.3	17	JAN	2019	21 46 39.3	37.65	20.67	15	4.3
								18	JAN	2019	17 14 12.4	37.27	20.88	8	4.0
								19	JAN	2019	17 42 00.0	37.49	20.78	16	4.0
20	JAN	19	15:49:54.30	35,760	28,311	12.80	4.7	20	JAN	2019	15 49 50.2	35.54	28.18	10	4.7
21	JAN	19	18:16:58.70	37,654	20,663	10.20	4.1								
22	JAN	19	20:12:07.60	36,827	28,072	69.20	4.4	22	JAN	2019	20 12 02.9	36.78	28.00	82	4.3
24	JAN	19	14:30:54.90	36,012	28,119	41.80	5.2	24	JAN	2019	14 30 50.2	36.04	28.03	64	5.2
25	JAN	19	20:20:35.10	38,599	27,161	24.50	4.4	25	JAN	2019	20 20 31.7	38.62	27.30	12	4.4
27	JAN	19	01:21:09.80	39,539	20,529	3.20	4.0								
27	JAN	19	03:15:44.20	39,038	27,793	25.10	4.2								
1	FEB	19	10:29:46.90	35,809	27,299	0.00	4.4	1	FEB	2019	10 29 44.1	35.88	27.30	82	4.5
2	FEB	19	00:14:58.30	36,498	21,418	0.10	4.1								
2	FEB	19	14:09:28.80	34,732	23,903	20.60	4.0								
4	FEB	19	17:41:09.20	37,718	21,178	16.60	4.2	4	FEB	2019	17 41 09.3	37.72	21.18	26	4.3
5	FEB	19	02:26:08.90	38,967	20,569	15.10	5.3	5	FEB	2019	02 26 09.4	38.98	20.59	13	5.2
15	FEB	19	16:14:27.20	40,768	28,151	31.60	4.0								
16	FEB	19	17:52:03.70	35,719	25,830	3.70	4.0								
17	FEB	19	19:07:42.30	36,606	23,133	1.20	4.5	17	FEB	2019	19 07 41.8	36.57	22.98	16	4.5
17	FEB	19	21:40:01.10	37,377	20,922	0.00	4.1	17	FEB	2019	21 40 01.1	37.37	20.87	12	4.3
19	FEB	19	19:48:43.80	40,421	27,128	7.40	4.0								
19	FEB	19	21:33:56.00	40,414	27,128	6.80	4.2								
20	FEB	19	10:43:27.70	34,770	24,144	43.70	4.3	20	FEB	2019	10 43 28.7	34.95	24.17	33	4.0
				-											

29

NOV

2018

13 17 52.5

37.66

20.29

2

4.0

20	FEB	19	18:23:29.30	39,566	26,414	16.70	5.2	20	FEB	2019	18 23 29.7	39.55	26.40	21	4.9
24	FEB	19	01:22:25.70	40,402	27,141	6.60	4.0								
26	FEB	19	10:05:59.90	38,855	20,610	4.70	4.1	26	FEB	2019	10 05 59.5	38.86	20.61	5	4.1
28	FEB	19	20:09:27.20	37,553	20,912	12.90	4.5	28	FEB	2019	20 09 27.9	37.63	20.93	13	4.4
4	MAR	19	21:07:25.20	40,434	28,720	0.10	4.3								
15	MAR	19	21:54:19.70	39,701	25,628	13.90	4.1	15	MAR	2019	21 54 19.5	39.70	25.61	16	4.2
								16	MAR	2019	08 50 17.3	34.54	26.46	19	4.1
16	MAR	19	06:42:18.80	37,375	20,819	0.40	4.0								
17	MAR	19	11:49:39.30	37,759	21,055	23.50	4.5	17	MAR	2019	11 49 39.5	37.76	21.06	23	4.5
20	MAR	19	06:34:27.80	37,520	29,545	0.10	5.6								
20	MAR	19	06:51:58.20	37,548	29,685	0.00	4.2								
20	MAR	19	12:45:43.10	37,535	29,659	0.00	4.1								
20	MAR	19	17:04:14.90	37,708	29,881	0.00	4.2								
20	MAR	19	17:42:54.80	37,557	29,702	0.00	4.2								
25	MAR	19	06:15:29.80	37,433	29,531	6.90	4.0	25	MAR	2019	06 15 28.6	37.40	29.49	5	4.0
28	MAR	19	09:13:01.20	38,002	21,944	6.10	4.1	28	MAR	2019	09 13 01.1	38.00	21.94	10	4.1
30	MAR	19	10:46:19.20	38,334	22,310	10.80	5.2	30	MAR	2019	10 46 18.7	38.35	22.29	16	5.3
31	MAR	19	11:30:17.50	37,531	29,383	0.00	4.9								
31	MAR	19	11:45:33.30	37,593	29,526	0.10	4.2								
								2	APR	2019	08 00 18.2	35.67	23.57	10	4.0
4	APR	19	15:01:19.30	37,503	29,390	0.00	4.3								
								18	APR	2019	09 25 31.5	37.60	20.64	8	4.0
25	APR	19	02:51:46.80	35,453	25,879	17.50	4.0								
25	APR	19	11:04:22.90	37,331	22,126	6.10	4.1	25	APR	2019	11 04 22.7	37.34	22.10	11	4.1
27	APR	19	15:07:58.70	37,568	20,374	2.00	4.2	27	APR	2019	15 07 58.2	37.54	20.35	6	4.3
								29	APR	2019	04 43 15.9	35.29	27.82	7	4.9
29	APR	19	18:02:44.30	39,410	26,260	8.70	4.2	29	APR	2019	18 02 44.0	39.35	26.28	17	4.2

Παράρτημα ΙΙ

Παράρτημα ΙΙ: Ο κατάλογος σεισμών με φθίνουσα κατά μέγεθος σειρά, όπου παρουσιάζονται η ημερομηνία, ο χρόνος γένεσης, οι γεωγραφικές συντεταγμένες του επικέντρου, το εστιακό βάθος, το μέγεθος, το ερευνητικό κέντρο καταγραφής και η απόσταση του επικέντρου από το επίκεντρου του κύριου σεισμού, για κάθε σεισμό, όπως αυτά υπολογίστηκαν από το Σεισμολογικό Σταθμό Θεσσαλονίκης και το Γεωδυναμικό Ινστιτούτο Αθηνών (ΕΑΑ-Π), στις περιπτώσεις που το πρώτο δεν παρείχε δεδομένα. Σημειώνονται οι σεισμοί με Μ≥5.0 (οι 9 πρώτες σειρές).

HMEPA	ΜΗΝΑΣ	ετοΣ	ΧΡΟΝΟΣ	Γ. ΠΛΑΤΟΣ	Γ. ΜΗΚΟΣ	ΒΑΘΟΣ	ΜΕΓΕΘΟΣ	ΦΟΡΕΑΣ	Αποστάσεις (Km)
25	ОСТ	18	22:54:51.60	37.53	20.62	10	6.8		
30	ОСТ	18	15:12:01.40	37.47	20.51	10	5.7		11.776
30	ОСТ	18	02:59:58.50	37.52	20.43	10	5.6		<i>16.792</i>
25	ОСТ	18	23:09:21.70	37.2	20.65	10	5.2		36.790
19	NOV	18	13:05:56.10	37.27	20.63	10	5.1		28.924
26	ОСТ	18	05:48:36.90	37.42	20.55	10	5.1		13.7
26	ОСТ	18	12:41:11.30	37.46	20.58	10	5.1		8.5
30	ОСТ	18	08:32:24.50	37.46	20.4	10	5		20.9
26	ОСТ	18	01:06:01.00	37.37	20.79	10	5		23.3
4	NOV	18	03:12:46.00	37.431	20.517	10	4.9		14.275
15	NOV	18	09:02:05.30	37.506	20.69	10	4.9		6.726
13	DEC	18	06:26:41.10	37.507	20.627	10	4.9		2.6
1	NOV	18	02:44:48.30	37.419	20.504	10	4.9		16.0
26	OCT	18	00:32:54.00	37.666	20.37	10	4.9		26.7
26	OCT	18	00:13:38.20	37.489	20.668	10	4.9		6.2
28	FEB	19	20:09:27.20	37.553	20.912	12	4.9		25.9
17	MAR	19	11:49:39.30	37.759	21.055	12	4.9		46.0
11	NOV	18	23:38:34.10	37.605	20.465	10	4.8		16.0
5	NOV	18	06:46:13.90	37.671	20.532	10	4.8		17.5
25	DEC	18	01:41:28.30	37.369	20.855	10	4.8	<mark>ЕАА-П</mark>	27.4

10	JAN	19	17:30:15.00	37.288	20.605	10	4.8		26.9
27	OCT	18	05:28:47.20	37.516	20.676	10	4.7		5.2
26	ОСТ	18	00:23:12.80	37.374	20.852	10	4.7		26.8
26	ОСТ	18	12:11:16.70	37.437	20.709	10	4.7	<mark>ЕАА-П</mark>	13.0
26	ОСТ	18	16:07:10.20	37.485	20.655	10	4.7		5.9
30	ОСТ	18	12:49:04.40	37.48	20.455	10	4.7		15.6
4	NOV	18	03:04:30.10	37.156	20.569	10	4.7		41.8
12	NOV	18	06:50:28.10	37.166	20.567	10	4.7	ΕΑΑ-Π	40.7
26	ОСТ	18	20:21:04.00	37.454	20.483	10	4.7		14.7
15	NOV	18	09:09:26.90	37.528	20.72	10	4.7		8.8
26	OCT	18	02:17:34.40	37.583	20.556	10	4.7		8.2
3	NOV	18	01:10:05.20	37.164	20.571	10	4.6	<mark>ЕАА-П</mark>	40.9
26	OCT	18	06:20:51.00	37.455	20.403	10	4.6	<mark>ЕАА-П</mark>	20.9
30	OCT	18	18:04:23.80	37.44	20.486	10	4.6		15.5
2	NOV	18	01:45:39.90	37.59	20.414	10	4.6		19.3
5	NOV	18	02:44:39.20	37.213	20.651	10	4.6		35.4
22	NOV	18	11:11:30.00	37.172	20.5	10	4.6		41.2
15	NOV	18	11:00:05.40	37.697	20.574	10	4.6		19.0
26	OCT	18	21:58:56.60	37.038	20.624	10	4.5		54.7
26	OCT	18	23:51:35.60	37.409	20.804	10	4.5		21.1
1	NOV	18	05:34:30.20	37.167	20.6	10	4.5		40.4
2	NOV	18	07:53:14.10	37.546	20.403	10	4.5		19.2
17	JAN	19	21:46:39.60	37.659	20.681	5	4.5		15.3
5	NOV	18	08:31:12.10	37.527	20.687	10	4.4		5.9
29	OCT	18	15:01:39.30	37.318	20.532	10	4.4		24.8
3	NOV	18	08:05:54.30	37.638	20.372	10	4.3		24.9
26	OCT	18	08:40:58.10	37.432	21.106	10	4.3		44.2
28	OCT	18	13:59:38.10	37.486	20.5	2	4.3		11.7

30	OCT	18	14:33:15.40	37.423	20.37	10	4.3		25.1
18	NOV	18	05:18:02.50	37.391	20.516	10	4.3		18.0
18	NOV	18	06:06:44.40	37.556	20.268	10	4.3		31.2
29	OCT	18	04:52:12.10	37.493	20.61	10	4.2		4.2
25	OCT	18	23:17:21.50	37.301	20.576	2.10	4.2		25.8
26	OCT	18	06:44:08.30	37.462	20.54	0.10	4.2		10.3
26	OCT	18	09:45:55.70	37.343	20.652	0.50	4.2		21.0
26	OCT	18	11:26:34.00	37.596	20.818	18.70	4.2		18.9
26	OCT	18	13:56:48.70	37.484	20.528	0.00	4.2	<mark>ЕАА-П</mark>	9.6
26	OCT	18	19:27:37.00	37.311	20.569	0.20	4.2		24.8
27	OCT	18	00:05:36.00	37.513	20.668	6.90	4.2		4.6
30	OCT	18	06:34:13.10	37.646	20.539	0.10	4.2		14.7
30	OCT	18	15:59:23.00	37.459	20.508	0.10	4.2		12.6
8	NOV	18	22:46:01.10	37.631	20.518	11.20	4.2		14.4
19	NOV	18	05:56:51.40	37.565	20.678	14.60	4.2		6.4
4	FEB	19	17:41:09.20	37.718	21.178	16.60	4.2		53.4
27	APR	19	15:07:58.70	37.568	20.374	2.00	4.2		22.1
25	OCT	18	23:19:46.90	37.62	20.48	0.10	4.1		15.9
25	OCT	18	23:23:09.40	37.421	20.665	6.00	4.1		12.8
26	OCT	18	01:46:42.00	37.444	20.678	12.60	4.1		10.8
26	OCT	18	02:09:30.60	37.407	20.472	0.10	4.1		18.9
26	OCT	18	06 00 56.6	37.5	20.52	10	4.1		9.4
26	OCT	18	07:36:13.30	37.439	20.565	5.10	4.1		11.2
27	OCT	18	10:13:42.90	37.405	20.651	1.80	4.1		14.2
28	OCT	18	19:00:08.50	37.448	20.524	6.50	4.1		12.4
28	OCT	18	20:34:10.40	37.379	20.745	9.30	4.1		20.1
28	OCT	18	20:40:21.10	37.309	20.746	2.60	4.1		27.0
29	OCT	18	11:29:33.20	37.57	20.28	0.10	4.1		30.3

31	OCT	18	10:25:11.60	37.334	20.788	7.70	4.1	26.4
3	NOV	18	04:02:27.30	37.363	20.58	10.60	4.1	18.9
5	NOV	18	16:19:57.10	37.415	20.562	1.30	4.1	13.8
9	NOV	18	17:53:01.50	37.569	20.39	0.10	4.1	20.7
10	NOV	18	02:13:37.50	37.617	20.449	0.10	4.1	17.9
22	NOV	18	16:00:16.20	37.559	20.375	3.30	4.1	21.8
26	NOV	18	02:31:10.40	37.654	20.532	4.60	4.1	15.8
29	NOV	18	00:22:59.20	37.599	20.21	0.10	4.1	36.9
29	NOV	18	19:59:57.50	37.578	20.353	7.20	4.1	24.1
27	DEC	18	14:30:12.00	37.489	20.756	14.20	4.1	12.8
21	JAN	19	18:16:58.70	37.654	20.663	10.20	4.1	14.3
17	FEB	19	21:40:01.10	37.377	20.922	0.00	4.1	31.6
26	ОСТ	18	00:03:03.70	37.513	20.62	9.10	4.0	1.9
26	ОСТ	18	01:36:47.10	37.344	20.759	8.60	4.0	24.0
26	OCT	18	02 28 42.8	37.36	20.65	13	4	19.1
26	OCT	18	03:25:49.00	37.533	20.555	0.20	4.0	5.7
26	OCT	18	04:00:47.40	37.405	20.827	25.10	4.0	23.0
26	OCT	18	05 40 57.1	37.19	20.53	10	4	38.6
26	OCT	18	06:32:13.80	37.456	20.761	0.50	4.0	14.9
26	OCT	18	08:03:11.10	37.395	20.557	3.80	4.0	16.0
26	OCT	18	09 54 11.5	37.62	20.86	18	4	23.4
26	OCT	18	10 50 13.4	37.6	20.46	6	4	16.1
26	OCT	18	10:57:08.90	37.438	20.475	4.70	4.0	16.4
26	OCT	18	16:35:36.90	37.477	20.587	2.20	4.0	6.6
26	OCT	18	18:39:45.50	37.453	20.483	0.10	4.0	14.8
26	OCT	18	19:34:28.30	37.149	20.689	0.10	4.0	42.8
27	OCT	18	00:21:15.60	37.424	20.514	0.10	4.0	15.0
27	OCT	18	06:10:09.10	37.418	20.593	9.80	4.0	12.7

27	OCT	18	23:39:49.20	37.259	20.66	12.10	4.0		30.3
28	OCT	18	03:24:14.80	37.427	20.35	0.00	4.0		26.4
28	OCT	18	15:44:37.00	37.34	20.74	1.10	4.0		23.6
29	OCT	18	12 30 16.3	37.36	20.77	8	4		23.1
29	OCT	18	22:22:14.50	37.446	20.531	7.30	4.0		12.2
30	OCT	18	05:17:25.00	37.524	20.678	10.40	4.0		5.2
30	OCT	18	07:16:55.30	37.44	20.726	8.40	4.0		13.7
30	OCT	18	11:25:21.00	37.648	20.379	0.00	4.0		25.0
1	NOV	18	07:03:09.20	37.455	20.569	0.10	4.0		9.5
1	NOV	18	10:41:09.80	37.166	20.595	0.00	4.0		40.5
5	NOV	18	12:21:54.80	37.407	20.766	10.00	4.0		18.8
6	NOV	18	20:22:28.60	37.413	20.543	6.10	4.0		14.7
9	NOV	18	19:57:11.30	37.575	20.389	0.00	4.0		21.0
10	NOV	18	02:31:51.70	37.531	20.368	0.00	4.0		22.2
11	NOV	18	18:04:32.10	37.6	20.326	0.00	4.0		27.1
15	NOV	18	01:57:42.30	37.439	20.567	12.60	4.0	<mark>ЕАА-П</mark>	11.1
15	NOV	18	14:07:22.10	37.672	20.553	15.90	4.0		16.9
17	NOV	18	09:15:46.70	37.519	20.692	13.80	4.0	<mark>ЕАА-П</mark>	6.5
19	NOV	18	16:16:41.90	37.167	20.571	0.10	4.0	<mark>ЕАА-П</mark>	40.6
20	NOV	18	00:11:57.50	37.314	20.651	0.10	4.0		24.2
29	NOV	18	13 17 52.5	37.66	20.29	2	4		32.5
26	DEC	18	07:37:53.60	37.382	20.808	8.70	4.0		23.4
11	JAN	19	18 54 09.4	37.64	20.86	15	4		24.4
18	JAN	19	17 14 12.4	37.27	20.88	8	4		36.9
19	JAN	19	17 42 00.0	37.49	20.78	16	4	<mark>ЕАА-П</mark>	14.8
16	MAR	19	06:42:18.80	37.375	20.819	0.40	4.0	<mark>ЕАА-П</mark>	24.6
18	APR	19	09 25 31.5	37.6	20.64	8	4		8.0