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Abstract

This project’s goal was to look at the prediction of the undersaturated oil
viscosity of various resevoir fluids. Our first action was to determine whether
or not existing correlations could actually predict the undersaturated oil vis-
cosity at pressures above the bubble point. To do this we used 18 correlations
from the literature and used statistics such as average absolute error and
graphical error analysis, in order to find the ones the better fit our dataset.
Our next goal was to build our own models using machine learning algorithms.
To do this, we first had to process our data and then, we fitted those algo-
rithms for a reduced set of inputs (P,Pb,µob) plus the full set of inputs from
our PVT report (P,Pb,µob,GOR,API,T). We then shuffled our data 100 times
and fitted every algorithm again in order to make a final comparison between
our models and the literature. In the end we managed to not only fit algo-
rithms that perform well, but actually tune them so as to perform better than
the ones existing in the literature.
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1 Introduction

Viscosity is defined as the quantity that describes a fluid’s resistance to flow. Fluids
resist the relative motion of immersed objects through them as well as to the motion
of layers with differing velocities within them. Dynamic viscosity is defined as the
ratio of the shearing stress (F/A) to the velocity gradient (∆νx/∆y).

Figure 1: dynamic viscosity

η =
(F/A)

(∆νx/∆y)

This is called Newton’s equation and it states that the shear of a fluid is directly
proportional to the force applied to it and inversely proportional to its viscosity.

There is a second quantity called viscosity. It is called kinematic viscosity and
is the ration of the viscosity of a fluid to its density.

ν =
η

ρ

It is a measure of the resistive flow of a fluid under the influence of gravity.

The fluids that obey the equations above with constant viscosity are called Newto-
nian fluids. There are also the non-newtonian ones. The viscosity of those fluids is
a function of some mechanical variable like shear stress or time.

Oil is generally considered to be a Newtonian fluid. However, its viscosity varies
with changes in pressure, density and temperature, but not in such an extent as to
be considered non-newtonian.

The term undersaturated oil viscosity is used to define the viscosity of the oil for
pressures above the bubble point. Bubble point pressure is the point where the first
trace of gas forms. Below the bubble point, the reservoir fluid enters the multi-phase
region and many properties among viscosity start behaving in a different manner.
In this work, only the undersaturated part of the fluid, will be examined. What
this means regarding viscosity, is that as pressure drops, viscosity drops as well,
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as long as pressure stays above the bubble point. This is a general trend among
all undersaturated reservoir fluids, no matter what the initial pressure, viscosity,
gravity or other properties are. Viscosity is a very important fluid property, since
its measurement or even a good prediction is essential in many calculations in the
field of reservoir and production engineering. It is needed for estimating reserves
(OOIP), planning for secondary and tertiary recovery methods, calculating flowrate
etc. (Kulchanyavivat, 2005)

Viscosity is also needed to determine the pressure drop associated with flow. Darcy’s
known equation for cylindrical (radial) flow through porous media is presented be-
low.

P − Pwf =

qoµoBo

[
ln

(
re
rw

)
− 0.75 + S

]
7.0815 · 10−3kh

For undersaturated reservoirs, temperature and composition are constant and vis-
cosity changes only with pressure change. Viscosity changes from 5% to 35%/1000
psi, oil formation volume factor (Bo) changes from 0.5% to 2.8%/1,000 psi. This
indicates that pressure change is impacted directly and pretty significantly from
viscosity drop.

Fluid flow in pipes needs to be calculated as well. It is calculated as a combi-
nation of the continuity equation for the conservation of mass and the equation of
momentum conservation, where the rate of momentum difference plus the momen-
tum accumulation in a pipe segment must equal the sum of all forces on the fluids.
(Mukherjee & Brill, 1999)

Fluid flow in pipes is given by:

∆P

∆L
=

1

144

[
ρo cos(θ) +

fρoν
2

2gd
+
ρoν∆ν

g∆L

]
where ρo is the oil density,ν is the viscosity, θ is the angle between the starting and
ending points of a small pipe segment ∆L and the gravitational direction. The first
three parts of the equation describe the hydrostatic, frictional and kinetic energy
losses in the system, respectively. The frictional factor f , is defined by the Moody
Friction factor chart as a function of Reynolds Number and pipe roughness. The
Reynolds Number is calculated as:

Re =
1488 · d · ν · ρ

µ

where d is the pipe diameter. For laminar flow at Reynolds numbers less than 2,000,
the friction factor is defined as:

f =
64

Re

Once again, pressure drop is directly proportional to changes in viscosity and den-
sity. (Bergman & Sutton, 2006)
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Viscosity of oil is usually given by the laboratory (PVT report) and/or correlat-
ing equations. The problem that arises from a PVT report is that the time and cost
it requires is big. Numerical correlations are frequently used when PVT reports are
not available, in order to provide an idea of what the viscosity of the reservoir oil is.
These correlations use many properties as inputs, however the most important ones
are pressure drop and bubble point viscosity. Others include GOR, API gravity and
dead oil viscosity.

It is important to clarify here that for the next chapters Pressure (P) and bub-
ble point pressure (Pb) will be measured in Psi, GOR may be written as Rsob (Rs
at the bubble point) and it will be given in scf/STB units, µo will be the same as µ
and it indicates undersaturated oil viscosity measured in centipoise (cp), while bub-
ble point viscosity (µob) and dead oil viscosity (µod) are also be measured in cp. API
and γAPI refer to the API gravity and are the same thing and finally temperature
(T or Tr) is given in ◦F .

This work consists of two parts. The first part was simply reviewing literature
correlations on a completely new dataset and extracting various conclusions from it.
Then, there was an effort for machine learning regression models to be developed
on this dataset, for the prediction of undersaturated oil viscosity. Several of the
most popular methods were utilized but first manual feature engineering had to be
performed. This task was not trivial, engineering and physics concepts had to be
translated into data driven for machine learning algorithms to work in an optimal
way. Finally, the methods developed in this work were compared to the literature
ones extensively.
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2 Literature review

In this section several of the most important correlations that are used to predict un-
dersaturated oil viscosity will be presented. There are of course many more available
in the literature, but those fourteen were chosen due to their historic significance
and/or popularity. It is by no means implied that the dozens that were not included
here are inferior in any way. The methods chosen, either use the pressure ratio
or pressure differential as a primary correlating parameter along with bubble point
viscosity. Some correlations use additional PVT properties such as solution GOR,
API gravity and dead oil viscosity.

2.1 Beal (1946)

In 1946 Beal correlated 52 viscosity observations taken from 26 crude oil samples
representing 20 individual oil pools, 11 of which are in California. These observations
include viscosity at the bubble point and viscosity at some higher pressure. It was
indicated that the viscosity increase was greater when the absolute bubble-point
viscosity increased. The viscosity of all samples was noted to increase with pressure
above the bubble point.
Beal’s correlating mathematical formula is the following:

µo = µob + 10−5 · (P − Pb)
(
2.4 · µ1.6

ob + 3.8 · µ0.56
ob

)
Beal’s prediction of the viscosity in his 26 undersaturated samples showed an average
error of 2.7%. The range of viscosity values measured in his experiment were (0.142
to 127 cp) at the bubble point and (0.16 to 315 cp) for the undersaturated point.
(Beal, 1946)(M. Standing & Katz, 1981)

2.2 Kouzel (1965)

Kouzel used Barus’ equation and correlated α with bubble point viscosity. Kouzel
used 95 data points with bubble point viscosity ranging from 1.22 to 134 cp and
undersaturated viscosity from 1.78 to 202 cp. bubble point pressure range was just
14.7 psi and undersaturated pressure range was 423 to 6,015 psi. The viscosity-
pressure coefficient is calculated from the following equation.

α = 5.50318 · 10−5 + 3.77163 · 10−5µ0.278
ob

(Kouzel, 1965)
We can also find an API modified Kouzel correlation in the literature

α = −2.34864 · 10−5 + 9.30705 · 10−5µ0.181
ob

(API, 1997)

2.3 Vazquez and Beggs (1976)

Vazquez and Beggs considered that many correlations used up to that point were
developed many years ago from limited data and were being used beyond the range

8
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2.4 Labedi (1982)

for which they were intended to. They gathered more than 600 laboratory PVT
analyses from fields all over the world and included more than 6,000 measurements.
The data exhibited a wide range of oil properties. They used regression analysis
techniques to correlate the laboratory data. Undersaturated oil viscosity was cor-
related as a function of bubble point viscosity, pressure and bubble point pressure.
The viscosity of the oil at Pb was obtained from the Beggs and Robinson correlation.

µo = µob

(
P

Pb

)m
where

m = C1 · PC2 · exp(C3 + C4P )

and C1 = 2.6, C2 = 1.187, C3 = −11.513 and C4 = −8.98 · 10−5

(Vazquez & Beggs, 1980)

2.4 Labedi (1982)

Labedi in his 1982 PhD thesis collected a large number of PVT analyses on the oil
and gas reservoirs of Libya, Nigeria and Angola. He used multiple linear regres-
sion techniques and tested many possible mathematical models and also studied the
effect of each independent variable in order to produce a mathematical method of
predicting the dependent variable with the least error and as a function of easily
measurable field data.
He noted that for all samples there exists a linear relationship between the oil vis-
cosity and the reservoir pressure above the bubble point. He wrote,

µo = µob +m (P − Pb)⇒

µo − µob = m · Pb
(
P

Pb
− 1

)
⇒

∆µ = Mµ a

(
P

Pb
− 1

)
= −Mµ a

(
1− P

Pb

)
This function is generally a straight line with an intercept equal to zero. He obtained
the following relationships for estimating the slope.

� Libyan Crude

Mµ a = 10−2.488 · µ0.9036
od · P 0.6151

b /100.01976·γAPI

� Nigerian and Angolan crudes

Mµ a = 0.0483 · µ0.7374
od

For this estimation 91 data points were used for Libyan crude and 31 for Nigerian.
Bubble point viscosity range was 0.115 to 3.72 cp for Libyan and 0.098 to 10.9 cp
for Nigerian crudes. Bubble point pressure range was 60-6,358 psi for Libyan and
715-4,794 psi for Nigerian crudes.

(Labedi, 1982)
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2.5 Khan (1987)

In this study viscosity data for 75 samples taken from 62 Saudi Arabian oil reservoirs
were utilized. A total of 150 data points were used for bubble point oil viscosity and
1,503 for oil viscosity above the bubble point. Bubble point oil viscosity range was
0.13-17.9 cp. Viscosity above the bubble point had a range of 0.13-71 cp. Bubble
point pressure was between 107 and 4,315 psi. GOR 24-1,901 SCF/STB, API 14.3-
44.6, and finally pressure was between 14.7(including saturated measurements) to
5,015 psi. Viscosity correlations were obtained by nonlinear multiple regression
analysis utilizing two regression criteria: common least squares and least absolutes.
The correlation is the following:

µo = µob exp(9.6 · 10−5 (P − Pb))

They also used Barus’ relation but instead of a function α was determined as a
constant. (Khan, Al-Marhoun, Duffuaa, & Abu-Khamsin, 1987)

2.6 Al-Khafaji (1987)

In 1987 Al-Khafaji, Abdul-Majeed, and Hassoon developed correlations in order
to predict undersaturated oil viscosity by using 210 oil samples from the Middle
East. Their new equation was created as a function of API gravity, bubble point
pressure and reservoir pressure. Bubble point viscosity range was 0.093-7.139 cp.
The equation is as follows:

µo = µob + 10F

F = −0.3806−0.1845·γAPI+0.004034·γ2API−3.716·10−5·γ3API+1.11 log(0.07031(P−Pb))

(Al-Khafaji, Abdul-Majeed, Hassoon, et al., 1987)

2.7 Abdul-Majeed (1990)

In 1990 Abdul-Majeed,Kattan and Salman developed a new equation using 253 ex-
perimentally obtained oil viscosities on 41 different oil samples from North America
and Middle East. Undersaturated viscosity range was 0.096-28.5 cp and bubble
point viscosity range was 0.093-20.5 cp. Bubble point pressure ranges from 498 to
4,864 psi. This correlation was derived from plotting ∆P vs ∆µ on a log-log paper.
The plot revealed a series of straight lines of a constant slope. The interecepts of
the resulting lines could be given as a function of stock tank gravity and solution
GOR at the bubble point. The equation has the following form:

µo = µob + 10G−5.2106+1.11·log(6.894757(P−Pb))

G = 1.9311− 0.89941 ln(Rs)− 0.001194 · γ2API + 9.2545 · 10−3 · γAPI · ln(Rs)

(Abdul-Majeed, Kattan, & Salman, 1990)
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2.8 Petrosky (1990)

2.8 Petrosky (1990)

In 1990 Petrosky presented an updated review of the published correlations and
provided his own based on 81 laboratory PVT analyses and 404 total data points
from the Gulf of Mexico. Bubble point viscosity ranged from 0.211 to 3.546 cp and
undersaturated visvosity ranged from 0.22 to 4.09 cp. Bubble point pressure was
between 1,574 to 9,552 psi and undersaturated from 1,600 to 10,250 psi. His formula
is the following:

µo = µob + 1.3449 · 10−3(P − Pb) · 10X2

X1 = log(µob)

X2 = −1.0146 + 1.3322 ·X1 − 0.4876 ·X2
1 − 1.15036 ·X3

1

(Petrosky, 1990)

2.9 Kartoatmodjo and Schmidt (1991)

In 1991, Kartoatmodjo and Schmidt used many PVT reports from multiple geo-
graphical locations such as the Southeast Asia, Latin America, the Middle East, and
North America,totaling 3,588 points, to modify Standing’s correlation (M. B. Stand-
ing, 1977) for undersaturated oil viscosity. Bubble point viscosity ranged from 0.168
to 184.86 cp while the undersaturated one reached the value of 517.03 cp. bubble
point pressure range was from 25 to 4,775 psi and the maximum pressure in their
dataset reached 6,015 psi. The equation is as follows:

µo = 1.00081µob + 1.127 · 10−3(P − Pb)
(
−6.517 · 10−3 · µ1.8148

ob + 0.038 · µ1.59
ob

)
(Kartoatmodjo, Schmidt, et al., 1991)

2.10 Orbey and Sandler (1993)

Orbey and Sandler presented a sequence of empirical models for calculating the
viscosity of hydrocarbons and their mixtures (including these with carbon dioxide)
at both atmospheric and high pressures over a wide range of temperatures. They
used 377 data points in pressure range of 740 to 14,504 psi, bubble point viscosity
from 0.217 to 3.1 cp and undersaturated viscosity from 0.225 to 7.3 cp.

µo = µob · exp(α(P − Pb))

� Parriffinic hydrcarbons
α = 6.76 · 10−5

� akylbenzes and cyclic hydrocarbons

α = 7.24 · 10−5

� average
α = 6.89 · 10−5

(Orbey & Sandler, 1993)
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2.11 De Ghetto (1994)

In 1994, De Ghetto, Paone, and Villa introduced a new strategy to produce oil
viscosity equations based on 4 different classes of API gravity. The best correlations
both for each class and for the whole range of API gravity were evaluated using
195 oil samples and a total of 3,700 measured data. The functional forms of the
correlations that gave the best results for undersaturated oil viscosity have been
used for finding a better correlation with average errors reduced by 5-10%. The
authors mentioned that ”the Non-Newtonian behavior of a highly viscous fluid could
affect the reliability of laboratory measurement and the performance of viscosity
correlation equations”. The modified viscosity correlation equations are provided
below:

� Extra heavy oil γAPI ≤ 10 (Labedi)

Mµ a = 10−2.19 · µ1.055
od · P 0.3132

b /100.0099·γAPI

� Heavy oil 10 ≤ γAPI ≤ 22.3 (Kartoatmodjo)

µo = 0.9886µob + 2.763 · 10−3(P −Pb)
(
−11.53 · 10−3 · µ1.7933

ob + 0.0316 · µ1.5939
ob

)
� Medium oil 22.3 ≤ γAPI ≤ 31.1 (Labedi)

Mµ a = 10−3.8055 · µ1.4131
od · P 0.6957

b /100.00288·γAPI

� Agip (Labedi)

Mµ a = 10−1.9 · µ0.7423
od · P 0.5026

b /100.0243·γAPI

(De Ghetto & Villa, 1994)

2.12 Almehaideb (1997)

In 1997 Almehaideb used data sets form over 15 different reservoirs in the UAE and
generated PVT correlations. He claimed that the improvement in the accuracy of
his correlation compared to the one of Vazquez and Beggs ,which is similar in form,
may be due to the fact that solution GOR in addition to pressure was included. His
crudes had the following ranges:

30.9 ≤ γAPI ≤ 48.6

190 ≤ T (◦F ) ≤ 306

501 ≤ Pb ≤ 4822

128 ≤ Rs ≤ 3871

As already mentioned he used Beggs and Robinson correlation which utilizes the
ratio of Pressure to bubble point pressure. Almehaideb found the exponent to be
the following:

m = 0.134819 + 1.94345 · 10−4 ·Rs − 1.93106 · 10−9 ·R2
s

(Almehaideb, 1997)
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2.13 Elsharkawy and Alikhan (1999)

2.13 Elsharkawy and Alikhan (1999)

In 1999 Elsharkawy and Alikhan developed new empirical models for predicting
Middle East oil viscosity. They used 254 crude oil samples. They found that the
slopes of the lines ∆P and ∆µ are a function of deadoil viscosity and bubble point
pressure. Oil viscosity range was 0.2 to 5.7 cp and oil pressure range was 1,287 to
10,000 psi. The model is the following:

µo = µob +
10−2.0771(P − Pb)µ1.19279

od

µ0.40712
ob P 0.7941

b

(Elsharkawy & Alikhan, 1999)

2.14 Dindoruk and Christman (2004)

In 2004 these two researchers used more than 100 PVT reports with bubble point
pressure range between 926 and 12,230 psia and GOR range from 133 to 3,050
scf/STB. For their correlation the used the Solver tool built in Microsoft Excel. For
the purpose of finding the viscosity correlation they used 95 data points. Some more
data ranges are as follows:

17.4 ≤ γAPI ≤ 40

121 ≤ T (◦F ) ≤ 276

202 ≤ P − Pb ≤ 10, 140

0.161 ≤ µob ≤ 8.7

0.211 ≤ µo ≤ 10.6

Their best regression analysis results were obtained with the following equation

µo = µob + α6(P − Pb)10A

A = α1 + a2 log µob + α3 logRs+ α4µob logRs + α5(P − Pb)

where α1 = 0.776644115, α2 = 0.987658646, α3 = −0.190564677, α4 = 0.009147711,
α5 = −0.000019111, α6 = 0.00006334

(Dindoruk & Christman, 2004)

2.15 Hossain (2005)

In 2005 Hossain et al evaluated the existing correlations against a dataset of heavy
oils (10 ≤ γAPI ≤ 22.3) and developed a new correlation. They derived their
correlation from performing Quasi-Newtonian non linear regression analysis of their
dataset with Beal’s equation. The dataset’s bubble point viscosity range was 3.6 to
360 cp and the undersaturated was 3 to 517. Bubble point pressure range 222 to
1,458 psi and undersaturated pressure ranged from 300 to 5,000 psi.

µo = µob + 0.004481(P − Pb) ·
(
0.555955µ1.068099

ob − 0.527737µ1.063547
ob

)
(Hossain, Sarica, Zhang, Rhyne, & Greenhill, 2005)
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3 Dataset and literature evaluation

3.1 Dataset

The dataset utilized in this work consists of viscosity datasets on more than 500
reservoir fluids from various published sources and inhouse measurements around
the world. There are only a few missing values of Temperature, GOR and API grav-
ity. About 100 datasets don’t have compositional and density data but that is not
important for the purposes of this work. Pressure and viscosity data are available
for all fluids in our database.

The dataset has no fluids with inconsistent viscosity shape, which implies that all
data points of every fluid are sort of continuous and smooth and there are no abrupt
jumps in measured viscosity values for neighboring points. There are also no out-
liers and every fluid exhibits increasing viscosity with pressure. Two fluids exhibited
first few viscosity measurements after the bubble point less than the bubble point
viscosity, but it’s only marginal and viscosity quickly ascends afterwards. It should
also be pointed out that for every fluid there exist many viscosity measurements
that go from the bubble point up to a maximum value of pressure, totaling more
than 11000 data points.

The aim of this work is not to just review the known correlations with this new
dataset, but also for new correlations to be developed using machine learning tech-
niques. For machine learning algorithms to work properly, as many data points as
possible need to be introduced to them. Unfortunately most of the fluids in our
dataset are Newtonian like, meaning that their bubble point viscosity is less than 10
cp. To be precise, 89% of fluids have bubble point viscosity of less than 10 cp, 7.8%
of them have a viscosity value between 10 and 50 cp and only 3.2% have a value
greater than 50, ranging from 59 up to 1,760 cp. It is also known that viscosity
values that are this high tend to produce oil that is highly viscous and behaves very
differently compared to low viscosity oils. This means that for our models to be
developed properly the removal of these very heavy fluids was deemed necessary.
The literature’s correlations’ score against these fluids will still be shown, but our
models will not be developed, tested and judged against those points.

It’s time to for the maximum and minimum values of our dataset’s undersaturated
properties to be given and also for the histograms to be plotted to show where most
values of each property are concentrated. The y axis is given in percentage value.
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� For the whole dataset

Figure 2: 0 ≤ GOR ≤ 17, 118.6 10.58 ≤ γAPI ≤ 56.84 255.37 ≤ T ≤
464.25 0.0416 ≤ µo ≤ 2, 455.5 0.0416 ≤ µob ≤ 1, 714.17 36.25 ≤ P ≤
12, 750.02 36.25 ≤ Pb ≤ 7, 303.01
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� when µob ≤ 50

Figure 3: 0 ≤ GOR ≤ 17, 118.6 13.82 ≤ γAPI ≤ 56.84 255.37 ≤ T ≤
464.25 0.0416 ≤ µo ≤ 100.1 0.0416 ≤ µob ≤ 48.15 36.25 ≤ P ≤ 12, 750.02 36.25 ≤
Pb ≤ 7, 303.01
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3.2 Literature evaluation on our dataset

In this section all literature correlation equations will be evaluated when applied to
our dataset. As mentioned before, the evaluation will be done both on the whole
dataset and on the subset consisting only of bubble point viscosities less than 50 cp.
The evaluation will be run using statistical error analysis function. The graphical
error analysis and more specifically predicted versus measured values of viscosity,
as well as average absolute error vs Pressure differential will be presented in the
appendix for each and every literature correlation.

3.2.1 Statistical and Graphical Error Analysis Methods

Statistical and graphical error analyses are the two sole methods used to evaluate
the efficiency of oil viscosity correlation equations. In fact, every paper cited in
this work, has had its correlation evaluated with these methods. Statistical error
analysis determines the overall accuracy of predicted oil viscosity by using basic
statistics. In this work average relative error, ARE (or AE as seen in some tables)
and average absolute relative error, AARE (or AAE as seen in some tables) will be
used. They were considered to be sufficient since ARE is a measure of systematic
error or bias and AARE is a measure of random error. A high percentage value
of ARE indicates that the correlation under evaluation has a tendency to predict
values that are either lower or higher than the measured value. A high value of
AARE on the other hand indicates that the predicted values are very far apart from
the measured ones. Ideally, both of them need to be close to zero and specifically
ARE should be way closer to zero than AARE.

ARE =
100

N

N∑
i=1

µ̂− µ
µ

AARE =
100

N

N∑
i=1

∣∣∣∣ µ̂− µµ
∣∣∣∣

where µ̂ is the predicted value of viscosity and µ is the measured value of viscosity.

One method of graphical error analysis is plotting predicted vs experimentally mea-
sured oil viscosity. The perfect correlation line is a straight with a 45◦ angle. The
better the correlation, the more the points on the graph lie closer to this line. An-
other graphical error analysis tool that will be used is plotting ARE against oil
features such as pressure differential, bubble point viscosity, GOR and API gravity.
All of them are available in the appendix a at the end of this thesis.
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3.2.2 Correlations with bubble point viscosity and pressure

Due to the increased number of correlations studied, they will be divided into two
categories. The first includes those who only utilize bubble point viscosity and
pressures as input, and the other category being the ones with correlations using in
addition GOR, API gravity and dead oil viscosity, or a combination of them. In the
appendix many more graphs will be provided along with statistical error analysis
tables but only on points where µob ≤ 50 because this is the cut-off point where our
models will be compared against those of the literature.

Figure 4: Statistical error analysis on full dataset

Figure 5: Statistical error analysis on points with µob ≤ 50
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3.2.3 Correlations with additional input

The same statistical error analysis will now be performed on the correlations that
utilize additional PVT properties as input. Caution needs to be taken here, since
dead oil viscosity hasn’t been measured or provided in our dataset at all. For this
reason Glaso’s correlation (Glaso, 1980) will be used for the estimation of dead
oil viscosity’s values. This means that there is some uncertainty about the true
performance of correlations that utilize dead oil viscosity as input. Furthermore,
reports that have missing values for GOR, API and Temperature will be removed
when a correlating equation that uses them has to be applied.

Figure 6: Statistical error analysis on full dataset

Figure 7: Statistical error analysis on points with µob ≤ 50
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3.2.4 Conclusions

Figure 8: Statistical error analysis by category on points with µob ≤ 50

Figure 9: Statistical error analysis by category on points with µob ≤ 50

where Pdif stands for Pressure differential (P-Pb) and BP V stands for bubble point
viscosity. The values next to them indicate the variable’s range in which the AAE
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was calculated. The colored bars show the mean value of the variable’s error inside
this range.

In this chapter, the efficiency of the existing correlations on our dataset was
briefly examined. More graphs are available for a more detailed examination in the
appendices A and B. The following can be concluded:

1. It is clear, yet somewhat surprising that the simpler correlations, that don’t
utilize additional inputs, have better overall performance. Especially Beal’s
and (Modified) Kouzel’s correlations, which are some of the oldest ones in the
literature perform the best.

2. From the eye test it seems that lower values of AARE are exhibited from
correlations which utilize pressure differential rather than pressure ratio.

3. As Pressure difference and bubble point viscosity is increased, the errors are
increased as well, at almost every correlation.

4. Extremely high values of error are produced by few value ranges in some
correlations. Abdul-Majeed’s correlation error is very high when GOR and
Bubble point pressure’s values are close to zero. The same can be said for
Dindoruk and Christman ’s correlation regarding those values, albeit to a much
lesser extent. Furthermore the latter’s correlation generalizes very poorly to
high values of bubble point viscosity, with the ARE reaching up to 25!! orders
of magnitude more than it should. It is somewhat understandable since it was
produced for way lower values of bubble point viscosity, but it still remains
remarkable. Furthermore,a very high error for oils with high GOR is produced
from Almehaideb’s equation.

5. For other notable patterns, some form of systematic error within the analysis
needs to be looked into. Viscosity as pressure differential increases is overesti-
mated by Vazquez and Beggs, Abdul-Majeed, Almehaideb and Dindoruk. On
the other hand,the opposite happens with Kartoatmodjo and Schmidt, Obey
and Sandler, Labedi, Al-Khajafi and Elsharkawy , and the viscosity’s values
are constantly underestimated. Most of those that underestimate it, tend to
give better values as the oil becomes lighter. The use of dead oil viscosity
from a predictive model needs to be considered here, which plays a part in
painting a worse picture for the correlations that use it (Labedi,De Ghetto,
Elsharkawy and Alikhan). However, the way that those 3 correlations pro-
vide similar forms of systematic error, makes us think that this error may be
attributed to the way dead oil viscosity was calculated. ARE seems to be
decreasing the higher the bubble point pressure is. This can be seen in the
ARE plot of Vazquez and Beggs, Dindoruk, Kouzel and Hossain.

6. Finally, regarding the graphical error analysis, when plotting calculated vs
experimentally measured oil viscosity, where the ideal expectation was for
lines that go straight with an inclination of 45◦, there are a few important
things to be said. As expected the correlations with the best AARE seem
to be closer to the ideal. Straight lines are not exactly provided by other
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correlations, but instead upwards or downwards curves are seen. Finally some
correlations resemble a collection of straight lines. When this occurs, it can be
concluded that the value of the undersaturated oil viscosity is increased only
marginally by the correlation compared to what is needed as pressure changes.
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In this chapter the machine learning methods that were used in order to create our
very own regression models will be presented. These methods were developed on
our dataset. Some of the most popular machine learning libraries such as scikit-
learn, TensorFlow Keras and others were used to build our models. These models
will not be presented in terms of an explicit functional form like the ones from the
literature, due to their complexity. However, enough information will be given on
their structure, training and implementation.

Following the literature’s correlations, only the bubble point viscosity and pressure
differential will be used as inputs to our models at first. This will give us the chance
to have our models fairly compared to those from the literature using these exact
inputs. Extra inputs will then be added to our models to examine if they actually
perform better on this dataset. Dead oil viscosity is not given on our list of data
so considering Temperature is predominantly used as an input in dead oil viscosity
correlations, reservoir Temperature will be used as input in our models. We need
to be reminded that generally the literature models’ performance was better on this
dataset when they were simpler in form, i.e. bubble point viscosity and pressure
differential or ratio were only used as inputs.

4.1 Feature Engineering

By far the hardest part of working on this project was the feature selection and
engineering. While working several sources of possible errors were identified, that
if left untreated would cause our models to either be unable to generalize to new
datapoints or just be outright bad regression models. Furthermore, features needed
to be transformed in a way that would grant the best overall results among most
regression models fitted.

4.1.1 Train-Test split

To avoid overfitting, when machine learning methods are utilized, it is common
practice for its performance to be judged on a new set. Furthermore many machine
learning algorithms get fitted on an original set and tuned on another set to make
them able to generalize better. This means that our original dataset needs to be
split into three sets. The one against which fitting happens is called the Train set,
the one where the tuning happens is called Validation set and finally the one against
which the model is evaluated is called the Test set. The dataset was split following
some of the most commonly used rules. 20% of the original set was kept as a test
set, 16% as the validation set and 64 % as the training set.

At first, the AARE of our models exhibited such an abnormally low value, that
would be deemed alarming by even the most optimistic person. The issue was that
when splitting thousands of data points, it needs to be ascertained that every single
point that belongs to a certain fluid, must be part of a set. For example, 20 points
from a fluid report can’t be split between the sets because that defeats the purpose
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of this work. The goal is to find out how undersaturated viscosity will change start-
ing from the bubble point and up to a maximum pressure (presumably the reservoir
pressure). The problem can be summed up to the images below.

(a) all pressure data points of a single fluid

(b) selected pressure data points of a single fluid in train set

Figure 10: The result of incorrect data splitting

It’s very easy to see that the missing data points from the figure on the bottom
could be effortlessly found by even a not so efficient machine learning algorithm.
This small issue, although easy to find out, goes on to show the caution needed
when dealing with Machine Learning and not getting excited without seeking out
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all possible missteps made along the way.

The process of splitting is not done yet. It is already mentioned that the ma-
jority of our points (more than 85%) have a bubble point pressure viscosity of less
than 5 cp. Splitting is done randomly, so we could fall into the trap of getting one
of our smaller sets to have an unrepresentative amount of fluids with bubble point
pressure viscosity of more than 5 cp. This means that our test or validation sets
could potentially have few, or even no fluids across a big range of viscosities where
the oil is more viscous and its viscosity changes with pressure in an abnormal way.
In order to avoid this a technique called stratified split was used, where the sets were
specifically split into groups having the same percentage of points with viscosities
over 5 cp.

4.1.2 Missing Values

Another important issue that arose during this work was the treatment of missing
features’ values. Specifically, around 40 fluid reports provided no value for either the
GOR or the API gravity or both. In the previous chapter those reports were simply
dumped (where those properties were not utilized), because what was needed was
the evaulation of the performance of literature correlations. Now that new models
of our own need to be developed, dumping around seven percent of the data points
might not be the most optimal idea, especially since those features don’t seem to
be the most important ones. The importance of each feature can be measured in
a plethora of ways, however in this work Pearson’s correlation coefficient was used,
since the need to transition into another and possibly better one didn’t arise. Pear-
son’s correlation coefficient will be presented in subsection (4.1.3).

Back to the missing values issue. We identified 3 possible strategies to overcome
the problem of missing values.

� Remove all data points that have missing values. As said before, this option
is the most conservative and technically the most correct, but removing a big
part of our dataset would not work in our favor. Indeed this method produced
worse results when tried.

� Resort to a simple imputing strategy. This usually works quite well in machine
learning models. If a value is missing, then a value that is representative of
the population we can just be introduced in its place, such as the average, the
median, etc. But we felt like there was a better treatment available at our
disposal.

� Use simple machine learning tools to impute values. In our case a Random
forest regressor was used to impute the missing values. There is no metric to
judge whether the model worked well or not but the values predicted from the
models were well within the range of the feature. This method produced the
best results overall, hence we decided to stick with it.
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The imputed values and the original ones will now be plotted against bubble
point viscosity to see if the imputed values follow the trend or distribution of the
population.

Figure 11: Imputed values of GOR

Figure 12: Imputed values of oil gravity
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Figure 13: Imputed values of temperature

The imputed values fit seamlessly with the original values when plotted against
bubble point viscosity which gives us confidence about our strategy regarding the
imputing of missing values.

4.1.3 Feature optimization

Now is the time to tackle the hardest part of feature engineering. The optimization
of our features and targets before introducing them to the machines in order to pro-
duce the best possible result. Our data need to be transformed in a way that makes
them optimally correlated to the target, which is of course the undersaturated oil
viscosity. This is very important because the higher the correlation, the better the
efficiency of the models.

It has already been mentioned that the metric in which the features will be judged is
Pearson’s correlation coefficient. This is a measure of linear correlation between two
sets of data. It is defined by the ratio between the covariance of two variables and
the product of their standard deviations. Essentially, it is a normalized measure of
the covariance, as its value ranges from -1 to 1. Mathematically it can be expressed
with the following formula

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY

where

� ρX,Y is the Pearson’s correlation coefficient

� E is the expected value
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� µ is the mean of the variable that is underscored

� σ is the standard deviation of the variable that is underscored

At first our original data exhibit the following correlation coefficient with under-
saturated oil viscosity.

Figure 14: correlation coefficient table to viscosity

A very high correlation with our target and bubble point viscosity is observed as
expected. However pressure difference has the lowest correlation of them all. This is
bad news since pressure difference (and Pressure) is the only feature that changes as
viscosity changes for a certain fluid. Furthermore API gravity has a strong negative
correlation with viscosity. We need to elaborate further to see why this happens.

Firstly, we will look into the scatter plots of the features and the viscosity.

Figure 15: scatter plot: viscosity to bubble point viscosity
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Figure 16: scatter plot: viscosity to API

Figure 17: scatter plot: viscosity to GOR
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Figure 18: scatter plot: viscosity to Pressure

Figure 19: scatter plot: viscosity to bubble point pressure
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Figure 20: scatter plot: viscosity to pressure difference

Figure 21: scatter plot: viscosity to temperature

Even though API gravity has a highly negative correlation to viscosity, it doesn’t
directly impact how viscosity increases from the bubble point up to the maximum
pressure. There is however a trend that fluids with a low API (heavy fluids) tend to
be more viscous and also that their viscosity increases more rapidly as the pressure
increases. Same thing seems to happen for the GOR. While pressure has a low
correlation we can see that for every fluid there is an almost linear (slightly curved
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at most) relationship with pressure differential and viscosity and furthermore, the
higher the viscosity the bigger its gradient with pressure difference gets.

While these trends were good enough to give us some respectable models it seemed
as though a better optimization could be done. Another reason to feel this way was
the correlation matrix of bubble point viscosity and the other features.

Figure 22: correlation coefficient table to µob

It seems as though most features are better correlated to bubble point viscosity
than viscosity in general. Another issue that was expressed in many models was that
the viscosities that they predicted had high AARE at pressures close to the bubble
point. It needs to be reminded that bubble point viscosity is assumed to be known,
so a wrong prediction close to it is a sign of the model or the data optimization being
not optimal. A suspected reason for this failure is the vast variation in viscosity.
The models need to predict viscosity values varying from 0.1 cp up to 100 cp. This
is a variation of 3 orders of magnitude.

This issue was worked around by changing the target. Instead of trying to pre-
dict the viscosity, the viscosity over bubble point viscosity was instead the next

target being predicted, a form of normalized viscosity
(

µ
µob

)
. This greatly altered

our data’s correlation coefficients and it uncovered the correlation of our target and
pressure difference. It needs to be kept in mind that many of the literature’s re-
gression methods are of the form µ ∝ µob · f(∆P ) or µ ∝ µob + f(∆P ) so this way
of working is supported by the existing methods as well. Additionally, the normal-
ization affects the correlation coefficients which now express the linearity of µ with
∆P provided that µob is known, that is by incorporating the dependent rather than
the direct probability.

Figure 23: correlation coefficient table to µ/µob

One would think that in the current form correlations are actually worse than
before. However scale is important here. Pearson’s correlation coefficient ρX,Y
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depends on the X,Y scale. Before this change, correlations were better, yet the
target that was predicted varied in a range of three orders of magnitude. Now, data’s
correlation to the target is worse, but the target’s values range from 1 to 2.5. There
was a huge improvement with every model fitted, so it was a no brainer to continue
with this change. The only issue that remains now, is that for a certain fluid there
is still no direct impact between its viscosity and variables such as Pb,T,API, GOR.
Even if some trends are seen just like before in the scatter plots, our models could
hurt from it. Those features needed to be transformed in a way so they would change
with viscosity. The simplest solution thought of was multiplying every feature with
pressure difference. The features were then optimized by using a function of them
as opposed to their original values. So for example instead of creating the feature
∆P ·GOR, ∆P · ln(GOR) was created. It was then just a matter of finding the best
function of every feature for the best correlation coefficient to be produced.

Figure 24: correlation coefficient table to µ/µob with modified features and target

This is the final correlation coefficient table that was created. A good indicator
that our models are going to perform well is that in this feature shape, almost all
features have a good normal like distribution, if the spike at point 0 is to be excluded
which happens due to the bubble point data. Machine learning models tend to work
better on data that are normally distributed. This last step concludes our feature
selection and optimization procedure. It should be mentioned the exact procedure
followed was not as straightforward as it appears in this chapter. It took many steps
back and forth to judge our models, optimize them, optimize the features, repeat
for the optimal result along most regression models.

This last step can be thought of as the data scientist’s approach. It is a vastly
different approach to the reservoir engineer’s one that was used before, when chang-
ing our target. The reservoir’s engineer approach was essential in transforming the
problem in a physically sound way in order to uncover what can be seen as the true
relation that governs the task in question. When introduced, it instantly changed
the potential of machine learning algorithms’s usage in this work from barely ade-
quate to the go to method. Before tackling the problem as a reservoir engineering
one, only using the data scientist’s approach, the results were limited partly due
to the small amount of data available at our disposal and partly due to not trans-
forming them in thinking of the problem as engineers. Just to be clear, the data
scientist’s approach should not be underestimated. Given enough time, effort and
data, the results could have been similar even when used on its own. It is however
undeniable, that the most important factor in succeeding in this task was taking a
step back and thinking around the issues in a different manner than a pure data
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scientist would. That is, the ability for engineering and physics driven concepts to
be combined with data driven, machine learning approaches.

4.2 Linear models

Speaking of the data scientist’s approach, now comes the part where our models will
be introduced by category. They will then be evaluated on the test set and finally,
the top performers will be selected and judged against the top literature performers
to see if our models perform better on our test set. It needs to be reminded that
our models will be evaluated on a set that they have not been trained before so
they should in theory have no advantage against the correlations from the litera-
ture. Furthermore any AARE presented in this chapter should not provide an exact
proof of the superiority or the inferiority of our models, since they are evaluated
on a subset of the original set. It will just give us a fair understanding of which
regression model performs best so that it will be chosen and then evaluated against
the literature’s correlations in the next chapter.

Linear models are used when a linear relationship between the output and the fea-
tures is targeted to be found. They usually perform worse than other more powerful
regression models, but they are still included due to their popularity and ability to
be tweaked into obtaining non linear better models.

4.2.1 Linear Regression

Having cleared this up, the simplest linear regression method will be presented. In
general, linear regression is a method that fits a linear model to minimize the residual
sum of squares between the observed targets in the dataset and the targets predicted
by the linear model. Since multiple input variables are available, our models can be
characterized as multiple linear regression models. The model will now be described
below.

ŷ = θ0 + θ1x1 + θ2x2 + · · ·+ θnxn

where ŷ is the predicted value, n is the number of features, θi are the coefficients
and xi are the feature values. This equation can be written in a compressed vector
formula:

ŷ = hθ(x) = θᵀ · x

To optimize the model the values of θi that minimize the MSE or the RMSE of
the model need to be obtained. The MSE of a linear regression hypothesis hθ on a
training set X is

MSE(X, hθ) =
1

m

m∑
i=1

(
y(i) − θᵀx(i)

)2
where X is the matrix of all feature values of all instances in the training set.

Every row contains an instance transposed, meaning that the ith row contains the
transpose of x(i). In short it looks like this:
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X =


(
x(1)
)ᵀ(

x(2)
)ᵀ

...(
x(L)

)ᵀ


where L is the number of training pairs. To find the value of θ that minimizes the
MSE (cost function), there exists a closed form solution called the normal equation

θ̂ = (XᵀX)−1Xᵀy

where θ̂ contains the values that minimize the MSE, y is the vector containing
all of the targets and (XᵀX)−1Xᵀ is the Moore-Penrose inverse matrix.

4.2.2 Gradient Descent

Gradient descent is an optimization method that firstly measures at the current
estimate the local gradient of the cost function with respect to the parameter vec-
tor and secondly makes a step towards the direction where the gradient descents.
When the gradient goes to zero, a minimum has been found. It starts by a ran-
dom initialization of θ and improves on it gradually, atempting to decrease the cost
function, until the algorithm converges. Learning rate is a hyperparameter of the
algorithm and it actually determines the size of each step. If the value is too low,
then the algorithm might take many iterations to converge. If it is too high, then it
might surpass the minimum, making the algorithm diverge. To implement gradient
descent, the partial derivative of the cost funtion with respect to each parameter θi
needs to be computed. Just to be clear, gradient descent isn’t of any use in linear
regression since a closed form solution already exists. However, it will be used later
on for manifestations where the objective function is not linear any more.

∂

∂θi
MSE(θ) =

2

m

m∑
j=1

(
θᵀx(j)iy(j)

)
x
(j)
i

This can be written in vector form as

∇θMSE(θ) =
2

m
Xᵀ(Xθ− y)

Once the gradient vector, that points uphill, is calculated, the step is taken to the
opposite direction.

θ′ = θ− η∇θMSE(θ)

where η is the learning rate and θ′ contains the updated value of the coefficients.
This method has a problem however. In order to compute the gradient at every
step, the whole training set needs to be used. This makes the algorithm very slow.
So instead of that, stochastic gradient descent (SGD) can be used. This method
picks at every step, a random instance in the set and then measures the gradient
using this instance only. This algorithm is faster, but its problem is that it will
not reach the minimum of the cost function smoothly. It will bounce up and down,
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decreasing only on average and once it finds the minimum, it will not stay there, it
will bounce around it but stay close to it as well. In our implementation of it no
penalty function was chosen, since its use would perform Ridge or Lasso regression
which wasn’t our objective at this point of the research.

4.2.3 Polynomial Regression

In this model the total number of our features was expanded by using products of
two of our features to create new ones. A polynomial model of higher degree could
be tried, but their worse performance, plus the exponential increase in features and
the risk of overfitting were reasons to deter the work from going to this direction.
A way of reducing overfitting even in a second degree polynomial model is its regu-
larization, meaning to reduce its degrees of freedom. Some polynomial models with
regularization created will now be looked at.

4.2.4 Ridge Regression

Ridge regression is a constrained version of linear regression. The regularization term
α
∑n

i=1 θ
2
i is added to the cost function. This is called `2 regularization because the

regularization term is actually the `2 norm of the weight vector θ. The regularization
term α that was chosen in our model was 0.2, which indicates our belief that not
much regularization was needed in our polynomial model. The cost function is

J(θ) = MSE(θ) + 0.2
1

2

n∑
i=1

θ2i

Just like linear regression, Ridge regression can be performed either by using the
closed form equation or by SGD. The closed form was chosen since the quantity of
our data is not that big to make the process slow. The closed form solution is as
follows:

θ̂ = (XᵀX + 0.2A)−1Xᵀy

with A being the (n+ 1)× (n+ 1) identity matrix, except with a zero in the top
left cell corresponding to the bias term.

A =


0 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .

0 0 0 · · · 1


4.2.5 Lasso Regression

Just like Ridge, this method adds a regularization term, this time by using the `1
norm.

J(θ) = MSE(θ) + α
n∑
i=1

|θi|
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Lasso doesn’t allow for a closed form solution so instead it uses stochastic gradi-
ent descent. The cost function is still not differentiable at θi = 0, but the following
subgradient vector g is used when this happens.

g(θ, J) = ∇θMSE(θ) + α · sign(θ)

α = 0.001 was used in our Lasso model.

4.2.6 Elastic Net

Elastic net is a method that combines both regularization parameters and the mix
ratio can be controlled. When set to zero, Elastic net is equivalent to Ridge and
when set to one, it is equivalent to Lasso.

J(θ) = MSE(θ) + rα
n∑
i=1

|θi|+
1− r

2
α

n∑
i=1

θ2i

In our model Lasso’s regularization parameter of 0.001 plus a ratio r value of 0.4
was used. (Géron, 2019)

Figure 25: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 26: µ = f(µob,∆P, P, Pb)
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Figure 27: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 28: µ = f(µob,∆P, P, Pb)

A few conclusions can be made here. First of all results are consistently a bit
better when using the full set of features. Ridge regression is the top performer
among all regression models in almost every value range that the results are shown.
There is a big outlier with large pressure differentials’ AARE in the full dataset in
polynomial regression on the full feature set that drops to a better value when using
the reduced feature set. All in all most regression models perform similarly, with
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small values of AARE being seen at the smallest bubble point viscosity values and
the smallest pressure differentials.

4.3 Support Vector Machines

At first support vector machines were developed for handling classification problems.
First of all, it will be explained how they are developed and then their extension
into regression. For the explanation below (Fletcher, 2009) will strictly be followed

4.3.1 Theory

Let’s say there are L points (xi, yi) for training purposes, with every input xi having
D features, meaning it is D-dimensional and yi = ±1 denoting the class of each point.
Now let’s assume that the data is linearly separable, meaning that we can draw a
(D-1) dimensional hyperplane to separate the data that belong to different classes.

Figure 29: Discriminating Hyperplane

This hyperplane can be described by

wᵀ · xi + b = 0

where w is a vector normal to the hyperplane and b
||w|| is the perpendicular distance

from the hyperplane to the origin. Support vectors are the points of each class that
are closer to this hyperplane. Implementing an SVM means that b and w need to
be selected in a way that our model predicts a value of yi = +1 beyond a margin
on one side of the hyperplane and a value of yi = −1 beyond a margin on the other
side of the hyperplane.
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Figure 30: Margin and parallel Hyperplanes

This is because SVM’s is developed to predict classes in which new cases are
assigned to. The value of yi indicates the class in which the new instance is a part
of. Suppose that this margins are two hyperplanes parallel to the first one. So what
is needed is to find the abovementioned variables such that:

wᵀxi + b ≥ +1 for yi = +1

wᵀxi + b ≤ −1 for yi = −1

This can be written into a more concise form

yi(w
ᵀxi + b)− 1 ≥ 0

It follows that the support vectors are the points that lie on those margin hyper-
planes, which are called H1 and H2 and are parallel to the discriminating hyperplane.

wᵀxi + b = +1 for H1

wᵀxi + b = −1 for H2

Let d1 be the distance from H1 to the discriminating hyperplane and d2 the
distance from H2 to the discriminating hyperplane. The hyperplane’s margin is a
quantity equal to the sum of those distances.

d1 =
wᵀxi + b

||w||
=

1

||w||
=

1

||w||

d2 =
wᵀxi + b

||w||
=
−1

||w||
=

1

||w||

The total margin is equal to 2
||w|| . The hyperplane needs to oriented to be as far

away as possible from the points of each class. In order to do that the margin needs
to be maximized. This is equal to minimizing ||w||, or minimizing L = 1

2
||w||2 on

the condition that yi(w
ᵀxi + b)− 1 ≥ 0
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In order to minimize ||w|| while respecting the constraints, Lagrange multipliers
α need to be allocated, where αi ≥ 0 because this is a minimization constraint
and we will assign a negative sign to the Lagrangian, so the multipliers need to
be positive. If the Lagrange multiplier is zero, then this point plays no role in the
classification. If it is greater than zero, then this data point is a support vector and
plays a role in deciding the value of w. Applying the KKT condition, the augmented
cost function to be minimized is now given by

LP ≡
1

2
||w||2 − α[yi(w

ᵀxi + b)− 1]

≡ 1

2
||w||2 −

L∑
i=1

αi[yi(w
ᵀxi + b)− 1]

≡ 1

2
||w||2 −

L∑
i=1

αiyi(w
ᵀxi + b) +

L∑
i=1

αi

The w and b that minimize LP , need to be found. The above cost function is
differentiated and set to zero.

∂LP
∂w

= 0⇒ w =
L∑
i=1

αiyixi

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0

Those two equations are substituted into the previous one, and this new expres-
sion now needs to be maximized:

LD ≡
L∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjx
ᵀ
ixj subject to αi ≥ 0,

L∑
i=1

αiyi = 0

≡
L∑
i=1

αi −
1

2

∑
i,j

αiHijαj where Hij ≡ yiyjx
ᵀ
ixj

≡
L∑
i=1

αi −
1

2
αᵀHα subject to αi ≥ 0,

L∑
i=1

αiyi = 0

This new formulation LD is called the dual form of the primary cost function
LP . It is important to note here that this formulation only needs the dot product
of the input vectors and that the parameters to be determined in the dual form are
the αi rather than the wi. We need to maximize LD. This is a convex quadratic
optimization problem. If we run a QP solver, which will return α, then we can find
w from the first constraint equation. Any support vector point satisfying the second
constraint will have the form

ys(w
ᵀxs + b) = 1
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and if we substitute into w the value of the first constraint we get

ys(
∑
m∈S

αmymxᵀ
m · xs + b) = 1

S denotes the set of indices of the Support vectors. S is determined by finding
the indices i where αi > 0, that is datapoints which lie exactly on margin and the
corresponding constraint is active. Multiplying through by ys and then using y2s = 1

y2s(
∑
m∈S

αmymxᵀ
mxs + b) = ys ⇒

b = ys −
∑
m∈S

αmymxᵀ
m · xs

which provides the offset value. An average over all of the support vectors in S can
also be taken

b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

αmymxᵀ
m · xs)

When data is not fully linearly separable, the first constraints are relaxed to
allow for misclassified points. A positive slack variable ξi is introduced:

wᵀxi + b ≥ +1− ξi for yi = +1

wᵀxi + b ≤ −1 + ξi for yi = −1

as before this is expressed better as:

yi(w
ᵀxi + b)− 1 + ξi ≥ 0

In this soft margin SVM, points on the wrong side of the margin boundary receive
an increasing with the distance penalty. The number and the intensity of misclas-
sifications needs to be reduced, so our objective function needs to be adapted from
previously so as to try and find the minimum of:

L =
1

2
||w||2 + C

L∑
i=1

ξi subject to yi(w
ᵀxi + b)− 1 + ξi ≥ 0

The C hyperparameter controls the trade-off between the size of the margin and the
slack variable penalty. This is reformulated as a Lagrangian as before and now the
appropriate w,b and ξi need to be found to minimize LP .

LP =
1

2
||w||2 + C

L∑
i=1

ξi −
L∑
i=1

αi[yi(w
ᵀxi + b)− 1− ξi] +

L∑
i=1

µiξi

Differentiating w.r.t. w, b, ξi and setting to zero we get:
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∂LP
∂w

= 0⇒ w =
L∑
i=1

αiyixi

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0

∂LP
∂ξi

= 0⇒ C = αi + µi

Substituting like before, this has the same form with one extra constraint, α ≤ C.
b is then calculated just like before. (Fletcher, 2009)

4.3.2 SVM for Regression

Now, new unseen data points are not aimed to be classified into one of two categories
but the aim is to predict a real-valued output for y. The form of our training data
is the following:

{xi, yi} i = 1 . . . L, yi ∈ R, xi ∈ RD

It is understandable that regression SVM will need to use a more sophisticated
penalty function. It needs to allocate a penalty only if the predicted values yi is
more than a distance ε away from the target value, denoted ti. This can be expressed
as:

|ti − yi| < ε

The bounded region yi ± ε is an ε-insensitive tube. The other modification to the
penalty function is that output variables which are outside the tube are given one
of two slack variable penalties depending on whether they lie above (ξ+) or below
(ξ−).

ti ≤ yi + ε+ ξ+

ti ≥ yi − ε− ξ−

The error function for SVM regression can be written as

L =
1

2
||w||2 + C

L∑
i=1

(ξ+i + ξ−i )

This needs to be minimized subject to the constraints ξ+, ξ− ≥ 0 plus the two
constraints above. Lagrange multipliers α+

i ≥ 0, α−i ≥ 0, µ+
i ≥ 0, µ−i ≥ 0 are once

again introduced.

LP = C
∑

(ξ+i +ξ−i )+
1

2
||w||2−

L∑
i=1

(µ+
i ξ

+
i +µ−i ξ

−
i )−

L∑
i=1

α+
i (ε+ξ+i +yi−ti)−

L∑
i=1

α−i (ε+ξ−i −yi+ti)
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Substituting for yi, differentiating w.r.t. w, b, ξ+, ξ− and setting to zero:

∂LP
∂w

= 0⇒ w =
L∑
i=1

(α+
i − α−i )xi

∂LP
∂b

= 0⇒
L∑
i=1

(α+
i − α−i ) = 0

∂LP
∂ξ+i

= 0⇒ C = α+
i + µ+

i

∂LP
∂ξ−i

= 0⇒ C = α−i + µ−i

The first two equations are substituted into LP and now LD needs to be maximized
w.r.t. α+

i and α−i .

LD =
L∑
i=1

(α+
i − α−i )ti − ε

L∑
i=1

(α+
i − α−i )− 1

2

∑
i,j

(α+
i − α−i )(α+

i − α−i )xᵀ
ixj

plus the last two constraints.
Substituting the first constraint equation into yi = w · xi + b, new predictions

can be found using

y′ =
L∑
i=1

(α+
i − α−i )xᵀ

i · x′ + b

A set S of support vectors xs can be created, by finding the indices i where
0 < α < C and ξ+i , ξ

−
i = 0.

This gives rhe offset value:

b = ts − ε−
L∑

m∈S

(α+
m − α−m)xᵀ

mxs

and it’s better to average over all indices i in S

b =
1

Ns

∑
s∈S

[
ts − ε−

L∑
m∈S

(α+
m − α−m)xᵀ

mxs

]

(Fletcher, 2009)

4.3.3 Nonlinear SVMs

When LD was defined for the linearly separable data, a matrix H called the Gram-
mian matrix was created from the dot product of our input variables.

Hij = yiyjk(xixj) = xᵀ
ixj

Unfortunately, data points are not always linearly separable.
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Figure 31: Non linearly separable data points

However, they may be able to be separated linearly if for example they are
projected to a different and possibly higher dimensionality space. So for example if
we perform a simple transformation to radial coordinates in the previous example,
the data become linearly separable.

Figure 32: Data linearly separable in transformed space

The question now is how such a suitable transformation can be found in more
complex case. Usually the answer is projecting in higher dimensions. Guessing the
suitable transformation is not an easy task, nor is there a unique and correct way for
it to be done. Furthermore, in higher dimensions data can’t be visualized, so even if
they are linearly separable it can’t be seen to make certain. There comes the kernel
trick. The main target is to project the data to a space Z of very high dimension-
ality. It can be easily shown that for many transformations, the dot product in this
space Z can be computed in terms of the inner product in the original low dimen-
sionality space X. The computational complexity of an inner product is very low.
So instead of transforming the feature space into a higher dimensional one, inner
products of original data points can be calculated instead. Since the Gram matrix
is only a function of the dot product, then an SVM regression in higher dimensions
can be calculated easily without finding out what the exact transformation is, using
only functions of the dot product called kernel functions.
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k(xixj) is an example of a family of functions called Kernel functions. The function
that was used in the linearly separable data is known as the linear kernel, or the
simple dot product of the variables. Besides the linear kernel other popular ones
include

� Radial Basis Kernel (RBF)

k(xi,xj) = e
−
||xi − xj||2

2σ2

� Polynomial Kernel
k(xi,xj) = (xᵀ

i · xj + α)b

� Sigmoidal Kernel
k(xi,xj) = tanh(αxᵀ

i · xj − b)

(Fletcher, 2009) (Cortes & Vapnik, 1995) (Cristianini, Shawe-Taylor, et al., 2000)
(Shawe-Taylor, Cristianini, et al., 2004)

For our thesis many SVMs were trained but ultimately a certain set of values,
hyperparameters and kernels were decided to be better. These are the following

1. Linear kernel, ε = 0.001, C = 10

2. Polynomial kernel, degree = 2, ε = 0.001, C = 10

3. Polynomial kernel, degree = 3, ε = 0.001, C = 10

4. Linear kernel, polynomial features of degree 2, ε = 0.001, C = 10

5. RBF kernel, ε = 0.001, C = 1

6. RBF kernel, polynomial features of degree 2, ε = 0.001, C = 1

7. Grid optimized SVM

8. Grid randomly optimized SVM

Figure 33: µ = f(µob,∆P, P, Pb, GOR,API, T )
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Figure 34: µ = f(µob,∆P, P, Pb)

Figure 35: µ = f(µob,∆P, P, Pb, GOR,API, T )
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Figure 36: µ = f(µob,∆P, P, Pb)

Once again it is clear that the best regression models are attained when using
the full set of features. The best regression model trained was number five. The
huge increase in error for big pressure differentials when using the polynomial kernel
was very surprising. All in all results were as expected, with the lowest amount of
error being distributed among fluids with bubble point viscosity values of less than
1 cp.

4.4 Decision Trees

Decision trees are powerful ML algorithms that can perform regression and classifi-
cation tasks. Decision trees create nodes and predict a value in each node. So for
example, if a prediction needs to be made on a new data point, the tree has to be
traversed. The path starts at the root and then then follows a direction based on
where the features’ values lie. Finally a leaf node is reached that assigns a value to
the instance based on the training instances that are associated with the leaf node.
The decision trees trained, use the CART algorithm, that splits the training set in
a way that minimizes MSE. The CART cost function is the following

J(k, tk) =
mleft

m
MSEleft +

mright

m
MSEright

where mnode is the number of instances associated with the split, m is the total
number of instances, k is the single feature that the splitting is done at any point,
tk is the threshold value, J is the cost function, MSEnode =

∑
i∈node

(ŷnode − y(i))2 and

ŷnode = 1
mnode

∑
i∈node

y(i).

Overfitting is usually a very common issue when decision trees are trained. This
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can be limited by using a max depth regularization parameter. What this does is
it limits the number of times that features can be split thus it shortens the nodes,
hence the name maximum depth.

4.4.1 Random Forests

Random forest regressor, is an ensemble of decision trees. Ensemble methods are
analyzed in the next subsection. Random forests are trained with the bagging
method. Random forests train decision trees on random subsets of the training set.
Sampling is performed with replacement.Then they simply aggregate the prediction
of all trees. This algorithm searches for the best features when it splits a node, but
it introduces a level of randomness to it. At the end there is greater tree diversity
and a better model overall.

It needs to be said here that a method called grid search will be used. It was
also used in the SVM section. A grid is basically a set of hyperparameter value
pairs that are combined and the model is trained many times. A complete grid was
used, meaning that every hyperparameter pair in our grid is selected and trained.
A random grid was also used. A random grid is similar to a normal grid but, its
hyperparameter values can lie in a spectrum rather than being discrete. Pairs are
selected randomly so not every hyperparameter combination is tested making the
search faster. The model obtained from the grid is then evaluated with k-fold cross
validation.

K-fold cross validation is a procedure that is mainly used when the dataset is quite
small so a separate validation set should not be created. What it does is it splits
randomly the training set into k separate groups called folds. Then for each group
it takes it as a holdout validation set and it trains the model on the other (k-1). It
retains every score and aggregates the result. (Géron, 2019)

For the purposes of this work the following models were trained

1. Decision Tree without any regularization

2. Random forest with 100 tree estimators

3. Random forest from Grid search

4. Random forest from random Grid search

5. Decision tree with polynomial features of degree=2

6. Random forest of 100 decision trees with polynomial features of degree=2
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Figure 37: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 38: µ = f(µob,∆P, P, Pb)

Figure 39: µ = f(µob,∆P, P, Pb, GOR,API, T )
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4.5 Ensemble Regression models

Figure 40: µ = f(µob,∆P, P, Pb)

Again the best results occur when the full feature set is used. The best regression
model is number two, the simple Random Forest. The worst is the simple decision
tree. The important issue to be concluded here is how an average regression model
(Decision Tree) can become so strong (Random Forest) using ensemble learning.

4.5 Ensemble Regression models

Ensemble regression models involve the combination of regression models. Random
forest is a form of an ensemble regressor.

4.5.1 Voting

Voting aggregates the predictions of many regression models of our choosing and
predict the value that is the average of the contributing models. Voting works great
even with weak learners, supposing that they are independent and that they produce
uncorrelated errors. We created two voting regression models, using the RBF SVM
from before and the random forest. One regression model used the normal features,
and the other used the polynomial ones.

4.5.2 Bagging

This method is a generalized random forest method. Contrary to the random forest
where the base estimator is a decision tree, Bagging can take any method of our
choosing as a base estimator. So how it works is already mentioned. One was
trained here with 200 estimators (Decision trees), with max sampling size of 5,000
and replacement.

51



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

4 MACHINE LEARNING METHODS

4.5.3 AdaBoostRegressor

Boosting is a method that combines several weak learners into a strong one. The
idea is to train models sequentially, and each models tries to correct its predecessor.
AdaBoost is one of the most popular boosting methods. Every new predictor pays
more and more attention to the instances that the predecessor underfitted. New
predictors focus more and more on the hard cases. Once all predictors are trained,
the ensemble makes predictions like bagging.

Initially every instance weight w1
i is set to 1

N
where N is the total number of in-

stances in the sample and i = 1, 2, . . . N . For j = 1, 2, . . . , T or while L̄j defined
below is less or equal to 0.5. A sample of size N is drawn from the data with
replacement and with probability wjn. A weak learner j is fitted to the resampled
data and the fitted values are calculated on the original dataset. These values are
denoted with f j(xi). The observation error Lji is calculated.

Lji =
|yi − f j(xi)|

max {|yi − f j(xi)|}

The model error is then calculated.

L̄j =
N∑
i=1

Ljiw
j
i

If the model error is greater than 0.5 the iteration is stopped at the j − 1 predictor.
Define:

βj =
L̄j

1− L̄j

The lower the βj the greater the confidence in our model. The model weights are
updated as:

wj+1
i =

wji (β
j)1−Li∑N

i=1w
j
i (β

j)1−Li

which increases the weights for observations with a grater error. Finally the overall
fitted value for observation i is set to the weighted median of f j(xi) using weights
log(1/βj) for model j.

For our purposes two hundred decision trees were trained for our AdaBoost re-
gressor.

4.5.4 Gradient Boosting

Gradient boosting works by adding predictors sequentially to an ensemble. Each
new predictor corrects its predecessor. However, unlike Adaboost that tweaks the
instance weights at every iteration, this method fits the new predictor to the residual
errors of the previous one.

A gradient boost regression model based on tree regression with a max depth of
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16 and a learning rate of 0.1 was trained in our work. LightGBM, a popular gradi-
ent boosting library that also uses tree regression was also utilized to create another
gradient boosting regression model. (Géron, 2019)

4.5.5 Stacking

Stacking is an ensemble method, that instead of using functions like voting to ag-
gregate the predictions of all predictors in an ensemble, it trains a model to perform
this task. In our case the same estimators as in the voting model were used, but the
aggregation estimator was set to a random forest regressor.

Figure 41: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 42: µ = f(µob,∆P, P, Pb)
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Figure 43: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 44: µ = f(µob,∆P, P, Pb)

Once again it’s clear that the full feature set produces the best results. Almost
all ensemble regression models produce great results with the best of the bunch
being the voting regression model.
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4.6 Neural Networks

Neural networks are machine learning algorithms with vast applications and diverse
architectures. Things will be kept simple in this work and only artificial neural
networks (ANNs) will be considered whereas deep learning algorithms will not be
examined. Our work involves a simple regression task after all, there is no need to
go into deep learning. The Perceptron architecture is introduced, which is the one
that Tensorflow uses. It is based on an artificial neuron called a threshold logic unit
(TLU). The inputs and output are scalars, and each input connection is associated
with a weight. The TLU computes a weighted sum of its inputs, then applies an
activation function to that sum and outputs a result. A Perceptron is simply com-
posed of a single layer of TLUs with each TLU connected to all inputs. When all
neurons in a layer are connected to every neuron in the previous layer, then this
layer is called dense or fully connected. All the input neurons form the input layer.
Moreover, an extra bias feature is generally added. It is typically represented using
a special type of neuron called a bias neuron, which outputs 1 all the time.

It is possible to efficiently compute the output of a layer of artificial neurons for
several instances at once.

hW,b(X) = φ(XW + b)

With X being the matrix of input features, W the matrix of weights and b is the
bias vector. φ is the activation function. The perceptron is trained using a variation
oh Hebb’s rule ”cells that fire together, wire together”. This takes into account the
error made by the network when it makes a prediction and reinforces connections
that try to reduce the error. Specifically we feed it with one instance at a time, and
for each instance it makes its predictions. For every output neuron that produced
a wrong prediction, it reinforces the connection weights from the inputs that would
have contributed to the correct prediction.

w′i,j = wi,j + η(yj − ŷj)xi

η is the learning rate, xi is the ith input value of the current training instance, wi,j
is the connection weight between the ith input neuron and the jth output neuron,
ŷj is the output neuron for the current training instance and yj is the target output
of this output neuron for the current training instance. The decision boundary
of each output neuron is linear, so Perceptrons are incapable of learning complex
patterns. However, if the training instances are linearly separable, this algorithm
would converge to a solution. This is called the Perceptron convergence theorem.
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Figure 45: Typical MLP

Some limitations of Perceptors can be eliminated by stacking multiple Percep-
tors. The resulting ANN is called Multilayer Perceptron (MLP). Its composition is
an input layer, one or more layers of TLUs called hidden layers, and one final layer
of TLUs (in or case for regression it’s just one TLU) called the output layer. (Géron,
2019)

In order to train an MLP the backpropagation training algorithm is used. Es-
sentially, this is gradient descent with an efficient technique for computing gradients
automatically. In just a forward and a backward pass through the network, the al-
gorithm is able to compute the gradient of the network’s error with regard to every
single model parameter. The result is that it is able to find how each bias and weight
need to be tweaked in order to minimize the error. Once it has these gradients, a
regular gradient descent step is performed, and the whole process is repeated until
convergence. The complete algorithm will now be shown.

1. The data is split in batches (mini-batches) and the algorithm goes through
the full training set (epoch) multiple times.

2. Each mini-batch is passed to the input layer. Subsequently this sends it to the
first hidden layer. The algorithm then computes all the outputs in this layer
for every instance in the mini-batch. The result is passed on to the next layer
and so on until we get the output of the last layer. This is the forward pass.

3. The algorithm measures the network’s output error using a loss function of
our choice.

4. It then computes how much each output connection contributed to the error.
This is done by applying the chain rule.

5. The algorithm then measures how much of these error contributions came
from each connection in the layer below working backward until the algorithm
reaches the input layer. The reverse pass efficiently measures the error gradient
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across all the connection weights in the network by propagating the error
gradient backward through the network

6. It finally performs gradient descent using the error gradients it just computed.

Figure 46: The algorithm summarized in one picture

(Rojas, 1996)
For the algorithm to work properly it was important to replace the step activation
function, into a continuous one like the sigmoid function, or the Rectified Linear
Unit function etc that have a gradient everywhere.

MLPs can be used for regression. If a single value is to be predicted, then just
one output neuron is needed. In general no activation function for the activation
layer for the output neuron should be used. In our case where the prediction of
only positive values is demanded, the ReLU activation function can be used in the
output layer.

For our purposes Neural networks with one, two, three and four hidden layers were
trained. A first layer of five hundred neurons was always initialized and then the
number decreased progressively at every next layer. The ReLU activation function
, a batch size of 16, twenty epochs and the Adam optimizer algorithm were used.
the ReLU is defined as follows:

R(z) = max(0, z)
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Figure 47: The rectified linear activation function

Adam (Kingma & Ba, 2014) is an optimization algorithm used instead of stochas-
tic gradient descent. It is a combination of the gradient descent with momentum
algorithm and the RMSP algorithm. The momentum algorithm is used to acceler-
ate the gradient descent algorithm by taking into consideration the exponentially
weighted average of the gradients. Using averages makes the algorithm converge
towards the minimum in a faster pace.

wt+1 = wt − αmt

where

mt = βmt−1 + (1− β)

[
∂L

∂wt

]
mt is the aggregate of the gradients at time t, wt are the weights at time t, α is the
learning rate, L is the Loss function and β is the moving average parameter.

Root mean square prop or RMSP is an adaptive learning algorithm that takes the
exponential moving average.

wt+1 = wt −
αt

(ut + ε)0.5
·
[
∂L

∂wt

]
where

ut = βut−1 + (1− β) ·
[
∂L

∂wt

]2
u is the sum of square of past gradients and ε is a small positive constant.

Adam Optimizer inherits the positives of the above two methods and builds upon
them to give a more optimized gradient descent. It is able to oscillate very little
close to the global minimum while taking big steps to pass local minimum.
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Figure 48: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 49: µ = f(µob,∆P, P, Pb)

Figure 50: µ = f(µob,∆P, P, Pb, GOR,API, T )
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Figure 51: µ = f(µob,∆P, P, Pb)

The best regression model is the one with one hidden layer. Perhaps more
complex nets are not needed in order to produce a better result. It seems as though
no deep information is to be revealed in this problem. It is also surprising that the
partial features work better on nets with more hidden layers. The key point here
is that a net of just one hidden layer produces a regression model that is of similar
performance to the best ones from before.

4.7 Symbolic Regression

Symbolic regression is a genetic programming machine learning technique that tries
to identify the mathematical expression that best describes a relationship. It starts
by building a population of naive random formulas to find relationships between
independent variables and their dependent variable targets in order to predict new
data. It uses mathematical relations of our choosing to do so. Each successive
generation of formulas is evolved from the previous one by selecting the fittest (we
need to define a fitness function) individuals from the population. Then the fittest
individuals undergo genetic operations. Genetic programming is a stochastic op-
timization process. Random individuals among the fittest ones from the current
generation are selected to undergo changes in order to enter the next generation.
This happens every time an initial population is conceived and with every step in
the process. Symbolic regression can be represented in many ways, like a LISP sym-
bolic expression that uses prefix notation (e.g. y = (+(−(×X0X0)(×3X1))0.5)) or
even in tree form. The term subtree will be used below to refer to any tree node or
part of a node that is going to be a part of mutation.

60



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

4.7 Symbolic Regression

Figure 52: tree form of symbolic regression

The set of arithmetic operators that the algorithm will try were chosen. In our
case addition, subtraction, multiplication, division were used.

In order to determine how well an algorithm performs a fitness function is used.
Mean absolute percent error was used to evaluate our symbolic regression algo-
rithms. It is also important for the features to be in the same order of magnitude
with the target.

In our case a population size of 5,000 was chosen. This is the number of func-
tion competing in every generation. In order to decide which ones get to evolve in
the next generation, tournaments are hosted. Smaller subsets from the population
are selected at random to compete. Large tournaments will find fitter expressions
quicker and the evolution process will tend to converge to a solution in less time.
Smaller tournaments will maintain more diversity in the population as more for-
mulas are given a chance to evolve. Evolution is using the fitness function to find
the fittest individual from the tournament to survive. This individual does not just
graduate to the next generation unchanged. There are several evolution parameters
to be chosen, each with a specified probability.

Now the evolution parameters have to be chosen. One of them is crossover (prob-
ability=0.8), the principle mixing method of genetic material between individuals
of the generation. A winner of a tournament is selected and a random subtree is
replaced by the winner of a second tournament who is called the donor. The donor
also has a subtree selected at random, then this is inserted into the original parent
to form an offspring in the next generation.

Another evolution parameter is subtree mutation (probability=0.1). This is an
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aggressive parameter because more genetic material will be replaced by naive and
random components. It is good to maintain diversity. Just like before the winner of
a tournament has a subtree replaced but at random this time.

Hoist mutation (probability=0.05) is another parameter that removes material from
tournament winners. Point mutation (probability=0.05) takes the winner of a tour-
nament and replaces random nodes from it. Terminals are replaced by other termi-
nals and functions are replaced by other functions that require the same number of
arguments as the original node. The resulting tree forms an offspring in the next
generation. (Introduction to GP¶, n.d.)

Our feature selection had to be changed for this regression model to be trained
well. Taking notes from the literature and it was clear that Beal’s model is the
one that fits our data the best. So its success was aimed to be repeated by finding
regression models of the form:

µ ∝ µob · (∆P )α · f(Pb, P,GOR,API, T )

After many runs 5 respectable models were found, that perform worse than our
previous regression models, but have the advantage of having an explicit mathemat-
ical formula unlike other machine learning models.

Model 1
µ = µob(1.133 + 0.114 · µ∗ob)

Model 2

µ = µob(1.091 + 0.011(2µ∗ob + 0.977)(µ∗ob + 2.931)+

0.011P ∗b (3.045 + 0.011(2µ∗ob + 0.977)(µ∗ob + 2.931)− 0.915 ∗GOR∗))

Model 3

µ = µob

1.168− 0.126 ∗GOR∗
0.126− Tr∗

(−0.842− P ∗ ·∆P ∗ + P ∗)(−0.842− Tr∗ ·∆P ∗)
− 1.089


Model 4

µ = µob(1.132 + 0.098 ∗GOR∗)

Model 5

µ = µob(1.143 + 0.066 ∗µ∗ob + 0.034 ∗GOR∗+ (0.034 ∗P ∗b + 1.143) ∗ 0.034 ∗µ∗ob)

where P ∗b = (∆P 0.85/ ln(Pb+60)−69)/2494.64, P ∗ = (∆P 0.85∗P−0.2−95.28)/3728.77,
∆P ∗ = (∆P 0.85 − 502.25)/122469.22, µ∗ob = (∆P 0.85 ∗ µ0.15

ob − 523.60)/159608.29,
GOR∗ = (∆P 0.85/ ln(GOR+20)−84.27)/3934.46, Tr∗ = (∆P 0.85∗Tr−1−1.36)/0.87.
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This unorthodox form of the features is due to the scaling done in order for the ge-
netic algorithm to work without issues.

Figure 53: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 54: µ = f(µob,∆P, P, Pb)

These results are not being shown on the test set, but the whole dataset (µob <
50) was used to evaluate. Since the formulas are mostly linear, there was no fear
of overfitting, so the whole set is used for evaluation. The results are not bad, but
they pale in comparison to Beal’s correlating equation.However they perform better
on the dataset than most correlations that utilize pressure difference and viscosity
ratio. No symbolic regression model will be selected for the comparison phase.
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5 Comparisons

In this chapter the best regressor from every category will be chosen (except sym-
bolic regression) along with the two best literature correlations in order to compare
them and find out if our models present an improvement over the literature. It is
already mentioned that just because AARE was lower in our trained regressors, it
doesn’t automatically mean that they are better fitted for the prediction of under-
saturated oil viscosity. Literature was judged on the whole dataset where µob was
below 50 cp, while our models where judged on a small subset of it called the test
set. What will now be done instead is that the original dataset will be split again
using five different random states, retrain our best regressors every time, predict the
values on the new test set and finally predict the values of the best literature models
on the test set as well.

The regressors chosen are the following:

� Ridge Regression

� SVM with RBF kernel

� Random Forest

� the voting regressor that votes among the SVM and the Random Forest

� ANN with 1 hidden layer and 500 neurons

For the literature correlations ”Beal” and” Kouzel modified” were chosen as the
representative when µ = f(µob,∆P, P, Pb) and ”Almehaideb” and ”Dindoruk and
Christman” when µ = f(µob,∆P, P, Pb, GOR,API, T ). The results of the five runs
will now be shown.

µ = f(µob,∆P, P, Pb, GOR,API, T ) µ = f(µob,∆P, P, Pb)

first run
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µ = f(µob,∆P, P, Pb, GOR,API, T ) µ = f(µob,∆P, P, Pb)

second run

µ = f(µob,∆P, P, Pb, GOR,API, T ) µ = f(µob,∆P, P, Pb)

third run

µ = f(µob,∆P, P, Pb, GOR,API, T ) µ = f(µob,∆P, P, Pb)

fourth run

µ = f(µob,∆P, P, Pb, GOR,API, T ) µ = f(µob,∆P, P, Pb)

fifth run
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It seems that our regressors are better but that is not always the case. Beal’s cor-
relation is the only one that can compete with our models in terms of performance.
More shuffles of our data need to be provided to make a complete case. Instead of
choosing five random states to shuffle, one hundred will now be used. The following
graphs result.

Figure 60: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 61: µ = f(µob,∆P, P, Pb)

This extended run confirms our previous suggestion. Out of the 4 best literature
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correlations, only Beal’s performance is similar to ours, to the point where it can’t be
easily differentiated from ours. Some statistics will now be shown for those models.

Figure 62: µ = f(µob,∆P, P, Pb, GOR,API, T )

Figure 63: µ = f(µob,∆P, P, Pb)

Our best regressor (voting) is on average a bit over 0.1% better than Beal’s, and
the improvement gets closer to 0.2% if the extra features are included. Out of the
one hundred instances that we run, the voting regressor was a better predictor 75%
of the time and this percentage goes up to 82% if the extra features are included. On
average, every one of our regressors except ridge and forest (for the simple inputs)
are better than Beal’s. This result is very important. The regressors were basically
trained with the same set of hyperparameters for different fluids one hundred times.
The results were always similar, and almost always better than every literature
correlation.
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6 Conclusions

This chapter concludes our analysis on machine learning methods for the prediction
of undersaturated oil viscosity. Our task of developing correlations that work bet-
ter than literature’s using machine learning techniques was a success. Despite not
always being the clear winner, machine learning models were very easy to introduce
and develop.

It was very interesting to see how easily could machine learning algorithms be de-
veloped. Even without feature engineering, random forest regression could train a
model with an AAE of just short of 4%. What this means is that even without
understanding the problem at all, simply by inserting a few features and a target,
a working model could be predicted in just minutes. Beal and the others probably
spent months studying their data and working on creating a correlation.

Instead of going through that process, a decision tree could be trained and then
by just using a boosting or bagging method, a great predictor would be created in
mere minutes. In this work the majority of the popular regression methods were
examined, all of them provided acceptable results and the process of developing
was very easy thanks to Python’s high level libraries that perform the complex al-
gorithms mentioned in the fourth chapter by simply running a few lines of code.
Not only that, but this is a machine learning application in a real life problem that
worked in practice and not just in theory. One can only imagine how much better
results could have been given a dataset ten times bigger than this one. No wonder
algorithms had on average a lower AAE when µob was less than 5 cp. Besides the
more predictable nature of the fluid’s viscosity change in this condition, the abun-
dance of data points was certainly a major factor for that.

The final code for this thesis can be found on ”https://github.com/flammmes/my-
thesis”.
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A.1 Literature correlations

0 ≤ µob ≤ 1

1 ≤ µob ≤ 5
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5 ≤ µob ≤ 20

20 ≤ µob ≤ 50
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0 ≤ µob ≤ 1

1 ≤ µob ≤ 5

5 ≤ µob ≤ 20
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B.1 Literature correlations
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