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1 Introduction

Land cover is the natural material that covers the land surface and constitutes an essential factor in formulating
the local and regional climate conditions. Land use is distinct from land cover and describes the activities through
which people interact with terrestrial ecosystems (Meyfroidt et al., 2018). Land use includes recreational,
agricultural or commercial purposes, such as the installation of city parks, the tillage and irrigation of farmlands,
the construction of shopping districts etc.

Deforestation is a common anthropogenic land cover change in the industrial era in order to meet the increasing
living needs. In the period 2000-2012, approximately 2.3 million km? of forest area lost on a global scale, mainly
due to increased deforestation in tropical latitudes (Hansen et al., 2013). In Brazil, which owns most of the
Amazon natural ecosystem, forest losses of over 40,000 km? were recorded for 2003. In Indonesia, the mean
annual rate of forest loss for the period 2000-2012 was about 1000 km?/year. Deforestation also takes place in the
boreal zone mainly due to fires which occur more frequently due to anthropogenic climate change (Potapov et
al., 2008). On the other hand, forest areas tend to increase in the temperate zone of the northern hemisphere. In
China, national targets for extensive reforestation have increased total forest area by 5.5% since the 1990s with
the ultimate goal of forests covering 30% of China's land by 2050 (Zhang et al., 2016). In addition, Europe has
seen a trend of forest regrowth in the period 1950-2010, mainly in eastern Europe at the expense of abandoned
crops due to social, economic and political factors, such as the collapse of the Soviet Union (Alcantara et al.,
2013; Huang et al., 2020; Kuemmerle et al., 2016; Fuchs et al., 2013).

In the future, changes to the land surface will continue. Recent evidence from modelling approaches suggests that
the magnitude of global anthropogenic warming may worsen by as much as 1 °C over areas converted from forest
to cropland (Bukovsky et al., 2021). Deforestation in the Amazon region could lead up to 0.5 °C warmer mean

annual temperatures and drier than present conditions (Lejeune et al., 2015).

According to the Intergovernmental Panel for Climate Change (IPCC) special report on climate change and land,
all land-use activities contributed to about a quarter of greenhouse gases emissions to the atmosphere over the
2007-2016 period (IPCC, 2019). The deployment of a broad range of land-based applications has been identified
that have multiple benefits for a sustainable future climate. Afforestation or reforestation has a high estimated
potential for carbon sequestration which amounts to 0.5 - 10 GtCO2 per year (IPCC, 2019), thus it has emerged
as a key land-based strategy in order to achieve the goals of Paris-Agreement towards the greenhouse gases

mitigation (Grassi et al., 2017).

1.1 Forest-climate relationships
An estimated 3 trillion trees cover almost 42 million km? or the 30% of global land surface, with most of them

inhabiting across the tropical latitudes (Pan et al., 2013; Crowther et al., 2015). The presence of forests provides



several benefits for natural systems and humankind, including refuges for biodiversity, protection of soil resources
and provision of food and medicinal products (Bonan, 2008; Hassan et al., 2005). In addition, forests act as an
important climate factor as they affect the carbon cycle in the climate system and modify the energy fluxes
between ground and atmosphere.

The efficiency of forests in absorbing carbon from the atmosphere is the best-known reason why afforestation is
promoted as a strategy to mitigate climate change. Recent studies which employed various land cover change
scenarios showed that large-scale afforestation could store up to 25% of the current atmospheric carbon pool
(Bastin et al., 2019,Veldman et al., 2019; Lewis et al., 2019). Arora and Montenegro, 2011 suggested that gradual
planting of trees on areas occupied at present by crops could attenuate the global warming up to 0.45 °C in 2100
due to GHG mitigation potential of afforestation.

1.2 Biophysical processes
Apart from biogeochemical forcing, forests affect climate through modifications of biophysical processes. In the
context of land cover change, as biophysical impact is considered any alteration of the water and energy

redistribution at the land surface and the resulting consequences in components of climate system.

Prominent biophysical effects of afforestation include changes in albedo, the latent heat flux and the surface
roughness (Figure 1.1). Forests have generally lower albedo than open lands (Figure 1.1a), especially in seasons
and regions where the ground is snow-covered (Betts, 2000). The latter is associated with the fact that the trees
remain exposed to solar radiation and mask the high reflectance of snow underneath whereas the open lands can
become entirely snow-covered (Bonan et al., 1992). Thus, the transition from open lands to forests decreases the
surface albedo leading to an increase of absorption of solar radiation at the surface and thus increasing surface
temperature. The albedo-induced warming of surface temperature following forestation can be offset by cooling
effects resulting from an increase in surface roughness and latent heat flux. The surface of tress is generally
rougher than open lands and therefore creates more turbulence in the surface layer facilitating the turbulent
exchange of energy and water vapor between the land surface and the overlying atmosphere (Figure 1.1b).
Therefore, the surface roughness change has a cooling effect at surface. This cooling could be further amplified
by an increase in evapotranspiration with forestation (Figure 1.1c). Forests have greater potential for
evapotranspiration than grasses due to their transpiration-facilitating characteristics such as their big leaf area and
deep rooting system, through which they have access to larger groundwater reserves. A potential increase of
evapotranspiration could reduce the surface temperature and increase water input to atmosphere, which may

enhance precipitation.
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Figure 1.1: Forest-climate biophysical feedbacks through modifications in a) surface albedo, b) surface roughness and c) latent
heat flux. Figure was retrieved from Bonan, 2016.

1.3 Observations and satellite approaches

Recent analyses based on in-situ observations adopted the space-for-time analogy to assess the biophysical impact
arising from spatial patterns of different terrestrial ecosystems on local climate. The observational method
concerns the difference in measurements between flux towers located in forests and nearby ground stations
located in open lands. Their differences can be interpreted as the climate signal of hypothetical land cover change
over time, assuming that the adjacent forests and open lands share the same background climate. Applying the
space-for-time analogy over North-America, Lee et al., 2011 reported that the open lands have a lower mean
annual temperature than forests. Following a similar approach, Zhang et al., 2014 reported contrasting results for
temperate zone, as they found that the mean annual air temperature at open lands is 0.67 °C warmer than adjacent
forests, which was mostly associated with daytime climate processes. In the boreal zone, open lands were 0.95
°C cooler than forests owing to cooler minimum temperatures throughout the year, in line with results from Lee
et al., 2011. Pairing FLUXNET sites, Chen et al., 2018 reported that open lands have less net radiation amounts

and turbulent fluxes at surface in summer with respect to forests. In the same context but focused on Europe,



Broucke et al., 2015 showed that open lands are cooler than forests at night, mostly in winter, whereas the daytime

temperatures are higher in open lands in summer and lower in winter.

Satellite products for albedo, evapotranspiration (ET) and land surface temperature (LST) have also assisted in
assessing the biophysical forcing of vegetation replacements across the world. Comparing satellite-retrieved
albedo, ET and LST between adjacent vegetation types in North America, Zhao and Jackson, 2014 confirmed the
general consensus that forests are darker than open lands, especially in locations with snow. Also, they found
greater evaporation amounts over forests with respect to croplands during the growing season. Furthermore,
forests had a smaller daily LST range in summer because of their warmer nighttime and cooler daytime
temperatures than open lands. In a similar context, Alkama and Cescatti, 2016 reported that forest loss amplifies
the diurnal LST range in summer, mostly increasing the maximum temperatures over arid zones. Conducting a
global-scale study, Li et al., 2015 showed that the biophysical impact of forests depends largely on latitude. In
the tropics, forests are cooler than open lands in all seasons, the temperate forests are cooler in summer and
warmer in winter compared to open lands, while over boreal zone the forests are much warmer in winter due to

snow-masking effect and slightly cooler in summer.

1.4 Climate models
The observation-driven assessment of biophysical forcing of forest cover change reflects only the local effects on
climate of specific small areas. Satellite analyses are also subject to restrictions as the data are retrieved only for

clear-sky conditions (Bonan, 2016).

1.4.1 Earth System Models (ESMs)
The most modern and comprehensive tool for exploring the underlying mechanisms behind the land cover
changes relies on Earth System Models (ESMs). These complex models use mathematical equations to represent

and quantify the processes which take place between the atmosphere, land surface, ocean and sea ice.

The most robust information about the biophysical effects of land cover changes on climate has been delivered
from ensembles of ESMs so far. A multi-model approach applied in the context of LUCID project to investigate
the impact of historical deforestation over North America and Eurasia between the period 1870-1992 (Pitman et
al., 2009; Noblet-Ducoudré et al., 2012). Among the robust model responses to deforestation were a systematic
increase of surface albedo and a decrease of total turbulent heat energy. However, significant uncertainties
emerged for the surface temperature response to deforestation, linked to diverging results for turbulent heat fluxes
partitioning. Divergent climate responses to historical land cover change in Northern America also emerged in
CMIP5 simulations (Kumar et al., 2013). Also, LUCID and CMIP5 models were not able to reproduce correctly
the changes in the diurnal temperature cycle identified in present-day observations of the effect of deforestation

over temperate regions (Lejeune et al., 2017). The wide divergence on the turbulent heat fluxes partitioning is



present even in more recent model intercomparison projects (CMIP6), producing a large spread in the sign of

global and regional temperature response to forest cover changes (Boysen et al., 2020; Pongratz et al., 2021).

ESMs have been also used individually to assess the global and regional temperature response to various forest
cover change experiments. Davin and Noblet-Ducoudré, 2010 showed that the net biophysical impact of
deforestation varies with latitude and depends on the competition between albedo, roughness and
evapotranspiration effects. In the tropics, deforestation causes a warming because the surface roughness and
evapotranspiration effects counteract the albedo-induced cooling. In temperate and boreal zone, deforestation
induces a cooling because the decreased albedo dominates over the warming effects of non-radiative processes.
Li et al., 2016 concluded that the temperature response to deforestation largely depends on the spatial extent of
deforestation and on background climate conditions. Winckler et al., 2019 suggested that non-local effects of
deforestation (impact on neighboring or remote regions from deforested area) have higher importance on global
mean temperature than local effects (impact on deforested regions), regardless of geographical area and the spatial

extent of deforestation.

1.4.2 Regional Climate Models (RCMs)

RCMs have also contributed to the understanding of land cover change impact at regional scale. RCMs downscale
global reanalysis or GCM results to simulate climate variability over limited-area domains accounting for high-
resolution topographical data (Rummukainen, 2016). Land cover change experiments over Europe with single
RCM showed that the frequency of cold extremes in winter could be reduced with afforestation (Cherubini et al.,
2018). Also, the increase in evapotranspiration efficiency due to maximum afforestation could reduce the summer
temperature mostly in regions with available soil water for evapotranspiration (Strandberg and Kjellstrom, 2019).
Moreover, precipitation extremes would be reduced in winter and mean summer precipitation would be likely

increased in southern Europe owing to larger evapotranspiration amounts with afforestation (Belusi¢ et al., 2019).

1.5 LUCAS initiative

Until now, climate information about land cover change impact has been delivered either from GMCs at global
scale or single RCM studies which apply different experimental setups. The Land Use and Climate Across Scales
(LUCAYS) initiative is the first model intercomparison project designed with the ultimate goal to assess the
biophysical impact of land cover changes on regional climate in Europe under a common experimental protocol.
In the first phase, an ensemble of ten RCMs undertakes two idealized experiments, which represent Europe as
fully covered by trees and grass respectively, in order to quantify the climate response to extreme land cover

change.

LUCAS ensemble produced a large spread in temperature response to forestation in summer, associated with
diverging results for turbulent heat fluxes partitioning, similar to previous intercomparison projects (Davin et al.,

2020). On the other hand, the increase in net radiation due to decreased albedo and the increase in sensible heat



due to increased roughness were common features in almost all LUCAS models. Forestation induced a decreased
diurnal temperature range at surface in summer because the increased net radiation amounts counteract the surface
energy loss from increased sensible heat flux, which amplified the diurnal range of overlying air temperature at
the same time (Breil et al., 2020). Furthermore, LUCAS models showed that forestation enhance snowmelt,
however the forestation effects during the snow-melt period emerged as the greatest challenge for the RCMs
(Mooney et al., 2021).

1.6 Outline

This study is focused on land cover changes impact on regional climate in Europe, as represented by WRF
regional climate model within the framework of LUCAS FPS. Four different WRF simulations are performed
under the common LUCAS experimental protocol, which combine different atmospheric and land surface

schemes for the representation of physical processes.

The main part of this analysis is divided into three sections. In the first part, the ability of WRF ensemble in
reproducing adequately the near-surface climate processes is evaluated. WRF simulations are compared to various
observational, reanalysis and satellite products for temperature, precipitation, cloudiness, radiation and heat

surface fluxes, in order to identify systematic biases and sources of uncertainty in model.

In the second part, the WRF configurations undertake the two idealized LUCAS experiments, FOREST and
GRASS, in order to investigate the impact of extreme land cover change on soil temperature profile across Europe.
Although the air and surface temperature responses to extreme forestation have been investigated in previous
LUCAS studies, the soil temperature sensitivity remains unexplored. According to MacDougall and Beltrami,
2017 a warming effect on subsurface temperature remains present even by 500 years after deforestation. In this

part, the analysis includes results from all LUCAS models.

In the third part, two WRF simulations which integrate realistic land cover maps for 1950 and 2015 respectively
are compared, in order to assess the effect of recent land cover changes over Europe on regional climate of the
reference period 1986-2015.

In summary, the questions that this dissertation intends to answer are:

e Is WRF RCM able to reproduce adequately the observed physical processes at surface, and what are the
sources of uncertainty in model simulation?
e What is the afforestation impact on soil temperature profile across Europe?

e How recent changes in land cover would affect regional climate in Europe for the period 1986-2015?



2 Regional climate simulations within LUCAS FPS- Evaluation of a WRF
multi-physics ensemble

2.1 Introduction

In the framework of FPS LUCAS Phase 1, ten climate simulations are performed for the time period 1986-2015
following the Euro-CORDEX intercomparison protocol for hindcast runs, in order to study the sensitivity of
regional climate to idealized scenarios of land cover change. Prior to this phase, the RCM ensemble should be
evaluated for its ability to correctly simulate the observed climate processes and not produce systematic errors
that will reduce the reliability of results of land cover change experiments. This chapter is focused on the
performance of a WRF mini ensemble included in LUCAS, which consists of four WRF simulations that share
different atmospheric and land surface schemes. The multi-physics ensemble around WRF model helps to identify
the role of land and atmospheric processes on the origin of model uncertainties.

The WRF performance has been assessed in the frame of multi-physics and multi-model intercomparison studies
within Euro-CORDEX. Garcia-Diez et al., 2015 found that a multi-physics ensemble of the WRF RCM can
produce a similar spread as a multi-model ensemble within EURO-CORDEX, and Garcia-Diez et al., 2013
confirm that no parameterization combination performs best for all applications. Precipitation overestimation has
been reported as a typical WRF behavior, which remains the same or worsens at higher spatial resolutions
(Kotlarski et al., 2014). In Kotlarski et al., 2014, the winter wet bias was closely related to the distinct negative
bias of mean sea-level pressure, indicating a too-high intensity of low pressure systems passing the continent.
Katragkou et al., 2015 suggested that WRF captures winter precipitation better than summer precipitation and
related the summer overestimation to the weakness of cumulus schemes to reproduce correctly the convection
processes on regional scale. Another common WRF feature was a winter cold bias over snow-covered areas in
north-eastern Europe, which has been related to longwave component in Mooney et al., 2013 and problematic
calculation of surface temperature over snow in Katragkou et al., 2015. The common WRF deficiencies should
be considered when interpreting the results of model experiments.

Below, the WRF simulations are evaluated against various reference products for 2-meter temperature,

precipitation, cloudiness, soil moisture, surface radiation and heat fluxes.
2.2 Data & Methods

2.2.1 WRF ensemble

Four WRF reanalysis-driven simulations performed as part of the LUCAS FPS. Table 1 depicts the model set-up
for each participating WRF simulation. The simulations share the same atmospheric configuration with different
land surface scheme or the same land component with different atmospheric schemes. WRFa-NoahMP and
WRFb-NoahMP share the same LSM but differ in cumulus and microphysics scheme. WRFb-NoahMP and



WRFc-NoahMP differ only in PBL and surface layer schemes, while WRFb-NoahMP and WRFb-CLM4.0 have

the same atmospheric set-up coupled with different LSMs.

Table 1: The characteristics of WRF multi-physics ensemble.

Simulation name WRFa-NoahMP WRFb-NoahMP | WRFc-NoahMP | WRFb-CLM4.0
Institute ID IDL UHOH BCCR AUTH
WRFv3.8.1(Skamarock
RCM WRFv3.8.1 WRFv3.8.1 WRFv3.8.1
et al., 2008)
NoahMP (Niu et al., CLMA4.0 (Oleson
LSM NoahMP NoahMP
2011) etal., 2010a)
MYNN Level 2.5
o y YSU (Hong et al.,
PBL (Nakanishi and Niino, MYNN Level 2.5 2006) MYNN Level 2.5
2006)
Surface layer MYNN (Nakanishi and MM5 (Jiménez et
y MYNN MYNN
scheme Niino, 2009) al., 2012)

Cumulus scheme

(Grell and Freitas, 2014)
for cumulus convection
and GRIMS Scheme

Kain and Fritsch

Kain and Fritsch

Kain and Fritsch

Microphysics

scheme (Lim and Hong,

(Thompson et al.,

(Thompson et al.,

(Kain, 2004)
(Hong et al., 2013) for
shallow convection.
o RRTMG (lacono et al.,
Radiation RRTMG RRTMG RRTMG
2008)
Two-moment 6-class

(Thompson et al.,

2004) 2004) 2004)
2010)
(Tegen et al., (Tegen et al., (Tegen et al.,
Aerosols (Tegen et al., 1997)
1997) 1997) 1997)

All simulations are performed over the EURO-CORDEX domain (Jacob et al., 2020) with a spatial resolution of
0.44° (~50 km), forced by ERA-Interim reanalysis data (Dee et al., 2011) at their lateral boundaries and at the
lower boundary over the sea. The analysis covers the 30-year period of 1986-2015 and focuses on the following

eight European subregions as described in Christensen and Christensen, 2007: the Alps (AL), the British Isles



(B1), eastern Europe (EA), France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), mid-Europe (ME)
and Scandinavia (SC) (Figure 2.1).
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Figure 2.1: Topography of the model domain. The outlined boxes with dashed lines correspond to the eight regions on which the
analysis focused: AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean),
ME (Mid-Europe), SC (Scandinavia).

2.2.2 Observational datasets

The various reference products used for evaluation are described in Table 2. The monthly averaged data of
gridded products used, which cover the full simulation period 1986-2015 for temperature, precipitation, cloud
fraction, surface radiation fluxes, heat fluxes and soil moisture. Data were regridded, using bilinear interpolation,
to model grid of 0.44°. When possible, different products are considered for a given variable in order to account

for uncertainties in observation-based datasets.

Table 2: Reference gridded datasets used for evaluation of WRF simulations.

_ Spatial Time
Dataset Variables ) ) Reference
resolution period
o 1986- (Cornes et al.,
E-OBS v25 2m temperature, precipitation 0.1°x0.1°
2015 2018)
CRU TS . 2m temperature, precipitation, cloud 1986- (Harris et al.,
_ 0.5°x0.5°
4.06 fraction 2015 2020)
CLARA- Shortwave & longwave radiation, cloud 1986- (Karlsson et al.,
_ 0.25° x 0.25°
A2.1 fraction 2015 2017)
Shortwave & longwave radiation, Latent 1986- (Mufioz-Sabater et
ERA5-Land _ ] ) 0.1°x0.1°
heat flux, sensible heat flux, soil moisture 2015 al., 2021)




Measured monthly data of latent and sensible heat flux are used from FLUXNET2015 Tier 2 dataset (Pastorello
et al., 2020) to complement the evaluation of simulations for evaporation fraction. In the search for FLUXNET
sites, the following criteria were defined: the sites 1) must be located inside the simulation domain, 2) have
available long-period measurements within the simulation time period 1986-2015 and 3) be geographically
dispersed to cover a large part of Europe. In total, 8 sites were found and their characteristics are described in
Table 3. For comparison with simulations, the observed mean monthly evaporation fraction over a site is

compared to the simulated evaporation fraction of the nearest model grid.
Table 3: Characteristics of the sites selected from FLUXNET?2015 dataset.

FLUXNET site ID Latitude, Longitude Elevation(m) Land cover Time period
BE-Vie (50.30,5.99) 493 Mixed Forest 1996-2014
CH-Fru (47.11,8.53) 982 Grassland 2005-2014
DE-Geb (51.09,10.91) 161 Cropland 2001-2014
ES-LJu (36.92, -2.75) 1600 Open shrubland 2004-2013
FI-Hyy (61.84,24.29) 181 Evergreen Needleleaf 1996-2014
FR-Gri (48.84,1.95) 125 Cropland 2004-2014
FR-LBr (44.71, -0.76) 61 Evergreen Needleleaf 1996-2008
IT-Col (41,84, 13.58) 1560 Deciduous Broadleaf 1996-2014

2.3 Results

2.3.1 Temperature

In this section, the simulated 2-meter temperature from four WRF simulations is evaluated using the E-OBS
gridded dataset for the 1986-2015 time period in Europe.

2.3.1.1 Mean winter temperature

Figure 2.2 depicts the mean 2-meter temperature bias (models minus observations) for winter, while the averaged
model bias over the sub-regions of this analysis is presented in Table 4. In maps and tables, MMM represents the
LUCAS multi-model ensemble mean including all simulations except WRF.

In winter, the sign of temperature bias among WRF configurations is mixed. WRFb-CLM4.0 and WRFb-NoahMP
share the same atmospheric component but different land surface models (LSMs). They exhibit a similar spatial
pattern of temperature bias in winter, indicating the minor contribution of LSMs on the simulation of winter
temperature. Their major difference is the colder bias of WRFb-CLM4.0 over the Alps region (-1 °C vs -0.2 °C).
The atmospheric set-up selected for WRFc-NoahMP produces a large winter cold bias over Scandinavia (-2 °C)
and Eastern Europe (-1.3 °C), while this is not the case for WRFb-NoahMP. The cold bias over North-Eastern
Europe is a well-known deficiency which has been reported in previous WRF inter-comparison studies

(Katragkou et al., 2015; Garcia-Diez et al., 2015; Mooney et al., 2013). In a recent research conducted in the
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context of LUCAS FPS (Daloz et al., 2021), the current WRF-NoahMP configurations were found to represent
reasonably the snow-cover climatology and the incoming shortwave radiation at surface over the northern-eastern
regions, implying also the realistic representation of cloud cover, when compared to satellite and reanalysis data.
Since WRFb-NoahMP and WRFc-NoahMP differ only in parameterization options for PBL and surface layer, it
could be suggested that the pronounced cold bias is related to problematic computation of skin temperature over
snow-covered grounds in MMD5 surface layer scheme, as reported in Mass, 2013. Last, the atmospheric settings

selected for WRFa-NoahMP produce a widespread warm bias over the greatest part of Europe exceeding 2 °C

over Alps and France.
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Figure 2.2: Mean 2-meter temperature bias (models minus observations) for winter (DJF) over the 1986-2015 time period.
Stippling indicates areas where model bias is within the E-OBS uncertainty range. The £1xSD is used as estimate of the
uncertainty range of E-OBS dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF configurations. The
characteristics of LUCAS simulations are reported in Table A 4 in Appendix.

Table 4: Mean winter (DJF) 2-meter temperature bias (°C) over the time period 1986-2015, averaged over eight European sub-
regions. AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean), ME
(Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS simulations excluding WRF configurations.

AL Bl EA FR IP MD ME SC

EOBS (°C) 0.2 4.2 -1.4 4.4 6.6 3.2 1.6 -6.6
WRFb-CLM4.0 minus EOBS -1 -0.2 -0.2 0 -0.2 -0.2 -0.4 -0.2
WRFa-NoahMP minus EOBS 2.6 1.8 1.4 2.2 1.6 0.5 1.9 1.7
WRFb-NoahMP minus EOBS -0.2 0 -0.3 0 -0.3 -0.4 -0.1 0.3
WRFc-NoahMP minus EOBS -0.2 -0.5 -1.3 -0.2 -0.1 -0.2 -0.7 -2
MMM minus EOBS 0 0.3 0 0.3 -0.1 -0.2 0.3 0.4
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2.3.1.2 Mean summer temperature

Figure 2.3 depicts the mean 2-meter temperature bias (models minus observations) for summer, while the
averaged model bias over the subregions of this analysis is presented in Table 5.

In summer, the 2-meter temperature regime is strongly controlled by the selection of atmospheric and land surface
schemes. WRFb-NoahMP suffers from large warm biases over Alps (2.5 °C), France (2.5 °C), Iberian Peninsula
(2.3 °C), Mediterranean (1.1 °C) and Mid-Europe (1.3 °C). These biases are to a great extend alleviated in WRFc-
NoahMP, except the remaining warm bias of 1.1 °C over the Mediterranean. WRFb-CLM4 performs well having
minor errors over all subregions. WRFa-NoahMP shows an unacceptable performance with extreme warm biases

greater than 3 °C across all regions.
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Figure 2.3: Mean 2-meter temperature bias (models minus observations) for summer (JJA) over the 1986-2015 time period.
Stippling indicates areas where model bias is within the E-OBS uncertainty range. The £1xSD is used as estimate of the
uncertainty range of E-OBS dataset. MMM : multi-model-mean of LUCAS simulations excluding WRF configurations.

Table 5: Mean summer (JJA) 2-meter temperature bias (°C) over the time period 1986-2015, averaged over eight European sub-
regions. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean), ME
(Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS simulations excluding WRF configurations.

AL Bl EA FR IP MD ME SC

EOBS (°C) 166 148 188 183 214 211 173 132
WRFb-CLM4.0 minus EOBS 0.1 -0.4 0.3 0.1 -0.1 0.6 -0.2 -0.3
WRFa-NoahMP minus EOBS 6.9 3.4 5.2 6.5 4.4 4.8 5.8 2.4
WRFb-NoahMP minus EOBS 2.5 0.2 0.2 2.5 2.3 1.1 1.3 -0.5
WRFc-NoahMP minus EOBS 0.7 -0.7 0.2 0.3 0.6 1.1 -0.1 0

MMM minus EOBS 0.7 0.2 1.4 0.7 0.4 1.5 0.7 -0.1
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2.3.1.3 Seasonal cycles

Figure 2.4 depicts the mean observed and simulated seasonal cycle of 2-meter temperature over the eight
subregions of analysis.

WRFb-CLM4 and WRFc-NoahMP capture adequately the observed seasonal cycle of 2-meter temperature over
all the subregions. Their small biases lie within the E-OBS uncertainty range, indicated with the grey shadow.
WRFb-NoahMP shows a prominent overestimation of mean temperature during the warm months over the
regions of Alps, France and Iberian Peninsula. Last, WRFa-NoahMP exhibits a constant and large overestimation
throughout the year over almost all subregions.
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Figure 2.4: Mean seasonal cycle of observed (EOBS) and simulated 2-meter temperature over the eight subregions of analysis:
AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean), ME (Mid-
Europe), SC (Scandinavia). The grey area represents the range of E-OBS uncertainty (£1xSD).
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To better understand the model errors in the estimation of mean temperature, the mean observed and simulated
seasonal cycle of minimum and maximum 2-meter temperature is also assessed in Figure 2.5 and Figure 2.6
respectively.

A combination of warm biases in minimum and mostly in maximum temperature results in an overestimation of
mean temperature over Alps, France, Iberian Peninsula and Mid-Europe for WRFb-NoahMP. The amplification
of warm bias in maximum temperature in the late summer is likely associated with positive feedbacks triggered
by soil dryness in WRFb-NoahMP and will be checked in the next sessions in combination with other variables,
such as the surface heat fluxes and soil moisture. Furthermore, WRFc-NoahMP captures well both the seasonal
cycles of minimum and maximum temperature. The maximum temperature is overestimated in late summer over
the regions of southern Europe (Iberian Peninsula, Mediterranean) for WRFc-NoahMP, while the minimum and
maximum temperatures are underestimated during the cold months over Eastern Europe and mostly in
Scandinavia, however these cold biases lie within the E-OBS uncertainty range. Moreover, WRFb-CLM4.0
represents well the observed seasonal cycle of minimum and maximum temperatures in almost all subregions,
showing small cold biases during the spring mostly in daytime temperatures over the regions of central and
northern Europe (France, Mid-Europe, Alps, Eastern Europe and Scandinavia). This feature could be linked to
findings from Daloz et al., 2021, in which WRFb-CLM4.0 was found to have an extended snow-cover period
over Eastern Europe and Scandinavia. Last, WRFa-NoahMP fails to capture the seasonal cycle of minimum and

mostly maximum temperatures, showing large overestimations in all subregions across seasons.
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Figure 2.5: Mean seasonal cycle of observed (EOBS) and simulated 2-meter minimum temperature over the eight subregions of
analysis: AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean), ME
(Mid-Europe), SC (Scandinavia). The grey area represents the range of E-OBS uncertainty (£1xSD).
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Figure 2.6: Mean seasonal cycle of observed (EOBS) and simulated 2-meter maximum temperature over the eight subregions of
analysis: AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean), ME
(Mid-Europe), SC (Scandinavia). The grey area represents the range of E-OBS uncertainty (+1xSD).

2.3.1.4 Taylor diagrams

Taylor diagrams are used to address the model performances in terms of the amplitude of temperature variability
(normalized standard deviation) and correlation with observations on temporal and spatial scale over the European
continent. Observed monthly temperature from CRU dataset is considered in addition to EOBS, in order to
account for uncertainty in observational data.

In winter (Figure 2.7), all WRF configurations except WRFa-NoahMP are found to be in high spatial and
temporal agreement with observations in terms of correlation (higher than 0.9). In terms of variability, WRFb-
NoahMP somewhat underestimates the spatial temperature variation, while the opposite is true on temporal scale.
WRFb-CLM4.0 overestimates the spatial and temporal variability of nighttime temperature but achieves high
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performance for daytime temperature. The different atmospheric set-up in WRFc-NoahMP degrades the quality
of simulation, producing considerable overestimation of temperature variability, especially for minimum
temperature on temporal scale (greater than 1.25). The results are almost the same when comparing either with

EOBS or CRU, implying good consistency between the observational datasets.
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Figure 2.7: Taylor diagrams for mean, minimum and maximum winter 2-meter temperature averaged over Europe for 1986-
2015 time period. The plots depict the spatial and temporal correlation and ratio of variance (normalized standard deviation)
between simulated and observed values from E-OBS and CRU, based on monthly means.

In summer (Figure 2.8), the results are more dispersed with respect to winter. It is noticed again a high spatial
and temporal correlation between the simulated (except WRFa-NoahMP on temporal scale) and observed values,
higher than 0.8. In terms of variability, the different atmospheric set-ups between WRFb-NoahMP and WRFc-
NoahMP do not affect the spatiotemporal variability of nighttime temperature (they both underestimate it),
although the temporal variation of daytime temperature is clearly improved in WRFc-NoahMP. The switch from
NoahMP to CLM4 upgrades the simulation of maximum temperature on spatial scale and changes the sign of bias
for minimum temperature variability from negative in WRFb-NoahMP to positive in WRFb-CLM4.0.
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Figure 2.8: Taylor diagrams for mean, minimum and maximum summer 2-meter temperature averaged over Europe for 1986-
2015 time period. The plots depict the spatial and temporal correlation and ratio of variance (normalized standard deviation)
between simulated and observed values from E-OBS and CRU, based on monthly means.

2.3.2 Precipitation

In this section, the simulated precipitation is compared to observations (E-OBS) across seasons and regions in
Europe over the 1986-2015 time period, following the same methodology applied for temperature.

2.3.2.1 Mean winter precipitation

Figure 2.9 depicts the mean precipitation bias (models minus observations) for winter, while the averaged model
bias over the sub-regions of analysis is presented in Table 6.

In winter, all WRF modelling systems, except WRFa-NoahMP, tend to overestimate the mean precipitation in
most regions, apart from the area of British Isles. WRFb-NoahMP and WRFc-NoahMP share a similar pattern of
precipitation bias, confirming the evidence from Mooney et al., 2013 where the sensitivity of winter precipitation
to two different PBL schemes was minor. Only over Eastern Europe, the use of YSU PBL scheme yields
somewhat wetter conditions for WRFc-NoahMP compared to WRFb-NoahMP. The wet conditions are also
reproduced in WRFb-CLM4.0 which shows larger errors across Europe especially over mountainous regions
(60% overestimation over Alps). In Jin et al., 2010, WRF simulations coupled to four different LSMs showed an
overestimation of winter precipitation and no close relationship with land surface processes, supporting the

general consensus that atmospheric circulation dominates the winter precipitation regime.
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Figure 2.9: Mean precipitation bias (models minus EOBS) for winter (DJF) over 1986-2015 period. Stippling indicates areas
where model bias is within the E-OBS uncertainty range. The £1xSD is used as estimate of the uncertainty range of E-OBS
dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF configurations.

Table 6: Mean model relative bias (%) for winter precipitation (mm/day) over 1986-2015 period compared to E-OBS, averaged
over eight European subregions. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD
(Mediterranean), ME (Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS simulations excluding WRF
configurations.

AL Bl EA FR IP MD ME SC

EOBS (mm/day) 2.3 3.5 1.2 2.3 2 1.9 1.9 1.9
WRFb-CLM4.0 minus EOBS 60% -4% 65% 38% 27% 26% 45%  21%
WRFa-NoahMP minus EOBS -65% -30% -47% -70% -66% -76% -60% 49%

WRFb-NoahMP minus EOBS 30% -1% 33% 12% 0% 0% 20%  15%

WRFc-NoahMP minus EOBS 30% -8% 42% 13% 0% 7% 19% 9%

MMM minus EOBS 30% -10%  39% 13% 7% 0% 19% 14%

2.3.2.2 Mean summer precipitation

In summer (Figure 2.10), the precipitation regime is strongly controlled by the selection of atmospheric and land
surface schemes. WRFb-CLM4.0 tends to underestimate the summer rainfall over the south-eastern part of
Europe, producing a dry bias of -38% of the absolute EOBS estimate over Mediterranean (Table 7). WRFb-
NoahMP yields a largely drier simulation than WRFb-CLM4.0 over regions of central Europe (-58% over Alps,

-74% over France, -61% over Mid-Europe), which is consistent with the warm summer bias over these regions.
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The better performance of WRFb-CLM4.0 with respect to WRFb-NoahMP highlights the significant role of
advanced LSMs in simulating summer climate with higher accuracy than simpler LSMs. Moreover, the different
PBL scheme used in WRFc-NoahMP dramatically reduces the dry bias produced by WRFb-NoahMP, however
it yields a wet bias over the north-eastern part of the domain which is not visible in WRFb-NoahMP. Last, the

selected atmospheric set-up in WRFa-NoahMP results in a widespread dry bias which likely explains the

extensive warm summer bias for this model.
EOBS WRFb-CLM4.0 minus EOBS WRFa-NoahMP minus EOBS
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Figure 2.10: Mean precipitation bias (models minus EOBS) for summer (JJA) over 1986-2015 period. Stippling indicates areas
where model bias is within the E-OBS uncertainty range. The £1xSD is used as estimate of the uncertainty range of E-OBS
dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF configurations.

Table 7: Mean model relative bias (%) for summer precipitation (mm/day) over 1986-2015 period compared to E-OBS, averaged
over eight European subregions. AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD
(Mediterranean), ME (Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS simulations excluding WRF
configurations.

AL  BI EA  FR P MD ME SC
EOBS (mm/day) 32 26 22 2 08 13 24 25
WRFb-CLM4.0 minus EOBS ~ -16%  -8%  -20% -18% -16% -38% -11% 8%

WRFa-NoahMP minus EOBS -716%  -73% -70% -84% -56% -48% -82% -40%

WRFb-NoahMP minus EOBS -58% -43% -39% -74% -67% -48% -61% -7%
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WRFc-NoahMP minus EOBS -12% 0% 10% -26% -18% -25%  -6% 22%

MMM minus EOBS 0% -12% -13%  -14% 0% -1% -1% 4%

Moreover, Katragkou et al., 2015 found that the high summer precipitation rates were overestimated across
Europe for an ensemble of WRF modelling systems. The current WRF ensemble does not confirm this finding
(Figure 2.11). WRFa-NoahMP fails to reproduce the climatological pattern of summer precipitation, showing
large deviations from the observed distribution over all subregions. WRFb-CLM4.0 and WRFc-NoahMP perform
acceptably in most regions with some exceptions; WRFc-NoahMP overestimates the high rainfall rates in
Scandinavia and Eastern Europe, while WRFb-CLM4.0 underestimates the large rainfall amounts in
Mediterranean and somewhat overestimates them in Scandinavia. Last, WRFb-NoahMP underestimates the

whole range of rainfall rates and mostly the high quantiles over Alps, France, Mid-Europe and Iberian Peninsula.
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Figure 2.11: Quantile-quantile plots for mean summer precipitation averaged over eight European sub-regions, based on daily
values for 1986-2015 time period. Summer precipitation distribution is divided into 20 quantiles, taking a quantile every 5%.
Only daily rainfall amounts greater than 1 mm are considered. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France),
IP (Iberian Peninsula), MD (Mediterranean), ME (Mid-Europe), SC (Scandinavia).

2.3.2.3 Seasonal cycles

Figure 2.12 depicts the simulated and observed seasonal cycle of mean precipitation over the eight different
regions of analysis.

WRFb-CLM4.0 and WRFc-NoahMP capture adequately the observed climatological pattern of precipitation
sharing a similar seasonal cycle. They both show a tendency for overestimation during the cold months, which is
more pronounced for WRFb-CLM4.0, and small dry biases which lie within the E-OBS uncertainty range during
the summer in most regions, apart from Scandinavia where they show a year-round wet bias. Their major
difference occurs over Eastern Europe in summer, where WRFb-CLM4.0 exhibits a dry bias in contrast to wet
conditions in WRFc-NoahMP. The switch from CLM4.0 to NoahMP or the change of PBL scheme in WRFb-

NoahMP, induces a prominent dry bias in summer months across all regions and mostly over Alps, France and
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Mid-Europe. WRFa-NoahMP: is not agreement with the observed seasonal cycle of precipitation across Europe,

showing a constant dry bias throughout the year in most regions.
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Figure 2.12: Observed and simulated seasonal cycle of mean precipitation (mm/day) averaged over eight European regions for
the period 1986-2015. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP (lberian Peninsula), MD
(Mediterranean), ME (Mid-Europe), SC (Scandinavia). The grey area represents the range of E-OBS uncertainty (+1xSD).

2.3.2.4 Taylor diagrams

Following the same methodology applied for temperature, Taylor diagrams are used to assess the model
performances in terms of the variability of precipitation (normalized standard deviation) and correlation with
observations on temporal and spatial scale over the European continent.

In winter (Figure 2.13), WRFb-NoahMP and WRFc-NoahMP modelling systems exhibit similar performances,
indicating the minor effect of PBL scheme selection on winter precipitation. In terms of correlation, they show a
high spatial and temporal agreement with observations close to 0.8. When compared to CRU, both modelling
systems capture adequately the spatial and temporal variability of winter precipitation, whereas they show a small

overestimation on temporal scale in reference to EOBS, revealing a small inconsistency between the observational
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datasets. Furthermore, WRFb-CLM4.0 achieves somewhat worse performance than WRFb-NoahMP and WRFc-
NoahMP overestimating the spatial and temporal variability of winter precipitation. Last, WRFa-NoahMP does
not perform suitably showing low spatial and temporal agreement with observations in terms of correlation and
variability.
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Figure 2.13: Taylor diagrams for mean winter precipitation (mm/day) averaged over Europe for 1986-2015 time period. The
plots depict the spatial and temporal correlation and ratio of variance (normalized standard deviation) between simulated and
observed values from E-OBS and CRU, based on monthly means.

In summer (Figure 2.14), the choice of atmospheric and land surface schemes affects the WRF performance for
precipitation. With respect to the spatial agreement, WRFb-CLM4.0 outperforms the other WRF modelling
systems, showing high correlation with observations around 0.9, and variability close to unity. The change of
PBL scheme does not improve the model accuracy, but changes the sign of bias for precipitation variability from
negative in WRFb-NoahMP to positive in WRFc-NoahMP. WRFa-NoahMP shows again a bad performance,
with large underestimation of precipitation variation and moderate correlation with observational datasets. On
temporal scale, all modelling systems exhibit a modest correlation with observations close to 0.6. Excluding
WRFa-NoahMP, the WRF configurations overestimate the precipitation variability, with WRFb-NoahMP having
the least bias after WRFb-CLM4.0 and WRFc-NoahMP sequentially.
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Figure 2.14: Taylor diagrams for mean summer precipitation (mm/day) averaged over Europe for 1986-2015 time period. The
plots depict the spatial and temporal correlation and ratio of variance (normalized standard deviation) between simulated and
observed values from E-OBS and CRU, based on monthly means.

2.3.3 Radiation and clouds

The variations of radiation fluxes at surface across seasons and latitude regulate to a great extent the surface
climate. In this section, monthly data from CLARA-A2.1 satellite-derived record are used in order to assess the
performance of WRF modelling systems in simulating the downwelling shortwave and longwave radiation at
surface over Europe. To verify the robustness of results, models are also compared to ERA5 reanalysis data,
which combine model data with observations across the world and cover the simulation time period 1986-2015.
2.3.3.1 Winter radiation fluxes

CLARA-A2.1 depict a south-north gradient in the spatial distribution of downwelling shortwave radiation at the
surface in winter (Figure 2.15). Maximum amounts are observed over Iberian Peninsula around 91 W m on
average (Table 8), with values gradually decreasing towards the northern Europe reaching up to 15 W m on
average over Scandinavia.

In winter, all modelling systems tend to overestimate shortwave radiation over the south-eastern part of the
domain. The LSM choice has a minor impact on shortwave radiation in winter, since WRFb-CLM4.0 and WRFb-
NoahMP exhibit a similar behavior with overestimation over Alps and the south-eastern Europe and an
underestimation over British Isles and the west coasts of Iberian Peninsula, France and Benelux. On the other
hand, the contribution of atmospheric component on winter radiation bias is considerable. The change of
convective and microphysics scheme in WRFa-NoahMP vyields a widespread positive bias over central and
southern Europe. Also, the change of PBL scheme in WRFc-NoahMP results in a more pronounced and extensive

positive bias over the southern and eastern regions, almost doubling the overestimation over Mediterranean (22%
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of the absolute CLARA-A2.1 estimate) and Eastern Europe (33%) with respect to WRFb-NoahMP. Moreover,
the results seem odd for all modelling systems over the high latitude areas, especially in Scandinavia where the
southern part has a negative sign of bias in contrast to the positive bias over the northern part. This feature is
probably related to low accuracy of the employed observational dataset over the high latitude areas, where there

is a difficulty for satellites to differentiate snow and cloud detection (Babar et al., 2018).
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Figure 2.15: Mean bias (models minus CLARA-A2.1) for downwelling shortwave radiation at surface in winter (DJF) over 1986-
2015 period. Stippling indicates areas where model bias is within the CLARA-A2.1 uncertainty range. The £1xSD is used as
estimate of the uncertainty range of CLARA-A2.1 dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF
configurations.

Table 8: Mean model relative winter bias for downwelling shortwave radiation at surface over 1986-2015 period compared to
CLARA-A2.1, averaged over eight European subregions. AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP
(Iberian Peninsula), MD (Mediterranean), ME (Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS
simulations excluding WRF configurations.

AL Bl EA FR IP MD ME SC

CLARA-A2.1 (W/m?) 58 36 42 55 91 81 40 15

WRFb-CLM4.0 minus CLARA-A2.1 21% -17% 24% 2% -2% 9% 3% 0%

WRFa-NoahMP minus CLARA-A2.1  57% 0% 64% 44% 24% 46% 50% 13%

WRFb-NoahMP minus CLARA-A2.1  16% -28% 17% -4% 0% 11% -5% -13%

WRFc-NoahMP minus CLARA-A2.1 28% -11% 33% 11% 12% 22% 10% 0%

MMM minus CLARA-A2.1 10% -11% 21% 0% -4% 5% 5% 7%

Evidence from comparison of models with ERA5 reanalysis data do not confirm the mixed results over
Scandinavia (Figure 2.16). Specifically, all WRF configurations perform suitably over Scandinavia when
comparing to ERA5. Over the rest domain, the spatial pattern of model biases is somewhat similar when

comparing either to CLARA-A2.1 or ERA5, however ERA5S provide larger amounts of shortwave radiation at
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surface than CLARA-A2.1. This inconsistency between the datasets largely reduces the model positive biases

when comparing to ERADS.
ERA5 WRFb-CLM4.0 minus ERAS WRFa-NoahMP minus ERAS
R A ] e [ N

—~— - P

o ) . g £ L /v-( ",. T ! ‘ - ':/:;4;
WRFb-NoahMP minus ERAS WRFc-NoahMP minus ERAS

S T wm | i T
W3 - R S e ! ) 77, o]
> D > . 7

Figure 2.16: Mean bias (models minus ERAS5) for downwelling shortwave radiation at surface in winter (DJF) over 1986-2015
period. Stippling indicates areas where model bias is within the ERA5 uncertainty range. The £1xSD is used as estimate of the
uncertainty range of ERA5 dataset. MMM : multi-model-mean of LUCAS simulations excluding WRF configurations.

The longwave component dominates over shortwave radiation in winter (Figure 2.17). The observed longwave
amounts range from 250 W/m? to 290 W/m? across Europe (Table 9) and are minimized over regions of high
altitude. All modelling systems generally perform suitably exhibiting minor errors which lie within the range of
observational (CLARA-A2.1) uncertainty over the major part of Europe. The LSM choice does not affect the
simulation of longwave radiation in winter, since both WRFb-CLM4.0 and WRFb-NoahMP exhibit similar
features with slight overestimation across Europe which does not exceed the 5% of the absolute CLARA-A2.1
estimate. The changes in atmospheric set-up do not greatly affect the performance for WRFc-NoahMP compared
to WRFb-NoahMP, although have impact on WRFa-NoahMP which yields a spatial dipole in the sign of bias
between south-eastern (negative) and north-western (positive) part of the domain, consistent to its temperature
bias regime. The results for the longwave component are robust, since the additional comparison to ERA5

produces the same results (Figure Al in Appendix).
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Figure 2.17: Mean bias (models minus CLARA-A2.1) for downwelling longwave radiation at surface in winter (DJF) over 1986-
2015 period. Stippling indicates areas where model bias is within the CLARA-A2.1 uncertainty range. The £1xSD is used as
estimate of the uncertainty range of CLARA-A2.1 dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF
configurations.

Table 9: Mean model relative winter bias for downwelling longwave radiation at surface over 1986-2015 period compared to
CLARA-A2.1, averaged over eight European subregions. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP
(Iberian Peninsula), MD (Mediterranean), ME (Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS
simulations excluding WRF configurations.

AL Bl EA FR IP MD ME SC

CLARA-A2.1 (W/m?) 257 290 268 286 283 270 281 253
WRFb-CLM4.0 minus CLARA-A2.1 2% 4% 2% 3% 3% 2% 3% 2%
WRFa-NoahMP minus CLARA-A2.1 0% 9% -1% 0% 1% -4% 1% 3%
WRFb-NoahMP minus CLARA-A2.1 2% 5% 1% 2% 2% 0% 2% 5%
WRFc-NoahMP minus CLARA-A2.1 1% 3% -1% 1% 0% -1% 1% 0%

MMM minus CLARA-A2.1 2% 2% 0% 1% 1% 0% 0% 0%

As aresult, the combination of downwelling shortwave and longwave radiation biases produces a radiative surplus
at surface in winter for all WRF configurations over the major part of Europe (Figure 2.18). The most pronounced
and widespread positive bias is noticed in WRFa-NoahMP due to its shortwave component. The rest modelling
systems share a similar pattern with positive biases spreading over the southern and eastern regions and
maximized over Alps. It’s worth noting that the simulated radiative surplus is not in agreement with the winter
cold biases. The results for Scandinavia are not considered reliable due to the low accuracy of CLARA-A2.1. The

comparison with ERAGS is taken into account, where the models show quite good performance over the specified
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areas. The fact that WRFc-NoahMP does not underestimate the incoming radiation at surface supports the view

that its cold bias over the north-eastern part of domain has not radiative origins.

CLARA-A2.1 WRFb-CLM4.0 minus CLARA-A2.1 WRFa-NoahMP minus CLARA-A2.1

Figure 2.18: Mean bias (models minus CLARA-A2.1) for the sum of downwelling shortwave and longwave radiation at surface
in winter (DJF) over 1986-2015 period. Stippling indicates areas where model bias is within the CLARA-A2.1 uncertainty range.
The +1xSD is used as estimate of the uncertainty range of CLARA-A2.1 dataset. MMM: multi-model-mean of LUCAS
simulations excluding WRF configurations.

2.3.3.2 Summer radiation fluxes

In summer, the observed downwelling shortwave radiation is maximized in southern regions (Figure 2.19), 283
W/m? in Iberian Peninsula on average, and gradually decreases towards the north reaching up to 187 W/m?in
Scandinavia (Table 10). The selection of atmospheric and land surface schemes strongly influences the WRF
performance in simulating the summer shortwave radiation. WRFb-CLM4.0 exhibits a south-north dipole in the
sign of bias, namely an overestimation close to 10% over Mediterranean, Alps and Eastern Europe and a slight
underestimation over British Isles and Scandinavia which does not exceed the -7%. The south-north dipole is also
reproduced in WRFb-NoahMP, but it’s more extensive and stronger in terms of magnitude with respect to WRFb-
CLMA4.0. Almost two or three times larger biases are noticed for WRFb-NoahMP over the Alps (23%), France
(21%) and Mid-Europe (17%). The change of PBL scheme for WRFc-NoahMP does not alleviate the
overestimation of shortwave radiation seen in WRFb-NoahMP, but changes the sign of bias to positive over the
northern regions. The atmospheric schemes selected for WRFa-NoahMP result in a bad performance with
widespread and large positive biases across Europe reaching almost the 50% of the absolute CLARA-A2.1
estimate over Mid-Europe. ERA5 and CLARA-A2.1 agree well for downwelling shortwave radiation at surface

(Figure A2 in Appendix), indicating the robustness of results.
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CLARA-A21 WRFb-CLM4.0 minus CLARA-A2.1 WRFa-NoahMP minus CLARA-A2.1

Figure 2.19: Mean bias (models minus CLARA-A2.1) for downwelling shortwave radiation at surface in summer (JJA) over
1986-2015 period. Stippling indicates areas where model bias is within the CLARA-A2.1 uncertainty range. The £1xSD is used
as estimate of the uncertainty range of CLARA-A2.1 dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF
configurations.

Table 10: Mean model relative summer bias for downwelling shortwave radiation at surface over 1986-2015 period compared
to CLARA-A2.1, averaged over eight European subregions. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP
(Iberian Peninsula), MD (Mediterranean), ME (Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS
simulations excluding WRF configurations.

AL Bl EA FR IP MD ME SC

CLARA-A2.1 (W/m?) 228 179 223 227 283 273 205 187

WRFb-CLM4.0 minus CLARA-A2.1 12% 7% 12% 6% 6% 10% 5% -4%

WRFa-NoahMP minus CLARA-A2.1 36% 46% 38% 40% 16% 19% 49% 27%

WRFb-NoahMP minus CLARA-A2.1 23% 0% 11% 21% 10% 10% 17% -6%

WRFc-NoahMP minus CLARA-A2.1 19% 12% 13% 20% 11% 11% 18% 4%

MMM minus CLARA-A2.1 4% 0% 7% 4% 0% 3% 5% -3%

According to CLARA-A2.1, the longwave amounts range from 320 W/m?to 350 W/m? (Table 11) across Europe
in summer, showing minimum values over the high-altitude areas (Figure 2.20). All WRF configurations capture
adequately the longwave component with biases lower than 3% of the absolute CLARA-A2.1 estimation. The
various physics schemes do not cause large differences between the simulations. In short, WRFb-CLM4.0 shows
a south-north dipole with underestimation in the southern regions and overestimation over British Isles and
Scandinavia. This dipole is reproduced but it’s somewhat weaker in the other WRF simulations, while slight

positive biases occur over the south-western part of the domain for WRFb-NoahMP and WRFa-NoahMP.
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CLARA-A21 WRFb-CLM4.0 minus CLARA-A2.1 WRFa-NoahMP minus CLARA-A2.1

Figure 2.20: Mean bias (models minus CLARA-A2.1) for downwelling longwave radiation at surface in summer (JJA) over
1986-2015 period. Stippling indicates areas where model bias is within the CLARA-A2.1 uncertainty range. The +1xSD is used
as estimate of the uncertainty range of CLARA-A2.1 dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF
configurations.

Table 11: Mean model relative summer bias for downwelling longwave radiation at surface over 1986-2015 period compared to
CLARA-A2.1, averaged over eight European subregions. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP
(Iberian Peninsula), MD (Mediterranean), ME (Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS
simulations excluding WRF configurations.

AL Bl EA FR IP MD ME SC

CLARA-A2.1 (W/m?) 335 340 349 345 345 348 344 327
WRFb-CLM4.0 minus CLARA-A2.1 1% 3% 1% 1% 1% 2% 0% 1%
WRFa-NoahMP minus CLARA-A2.1 1% 1% 0% 2% 2% 0% 0% 1%
WRFb-NoahMP minus CLARA-A2.1 1% 3% 1% 1% 2% 1% 0% 1%
WRFc-NoahMP minus CLARA-A2.1 1% 1% 1% 1% 0% -1% 1% 0%

MMM minus CLARA-A2.1 1% 2% 0% 1% 1% 0% 1% 2%

Finally, the shortwave bias largely offsets the longwave and regulates the incoming radiation regime at surface in
summer (Figure 2.21). That is, WRFb-NoahMP , WRFc-NoahMP and partly WRFb-CLM4.0 suffer from
radiative surplus over a major part of Europe which extends from Eastern Europe to Iberian Peninsula. The
radiative surplus regime is in agreement with the summer temperature biases in WRFb-NoahMP, which shows
prominent overestimation of shortwave radiation over Alps, France and Mid-Europe in correlation with its high
maximum temperatures in these regions. Strong radiation-temperature correlation is also noticed for WRFa-
NoahMP which largely overestimates the shortwave and consequently the total incoming radiation at surface, in
line with its widespread warm summer bias.
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CLARA-A2.1 WRFb-CLM4.0 minus CLARA-A2.1 WRFa-NoahMP minus CLARA-A2.1
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Figure 3: Mean bias (models minus CLARA-A2.1) for the sum of downwelling shortwave and longwave radiation at surface in
summer (JJA) over 1986-2015 period. Stippling indicates areas where model bias is within the CLARA-A2.1 uncertainty range.
The +1xSD is used as estimate of the uncertainty range of CLARA-A2.1 dataset. MMM: multi-model-mean of LUCAS
simulations excluding WRF configurations.

2.3.4 Cloud cover

The representation of cloud cover is a substantial factor for the accurate simulation of radiation fluxes. Figure
2.22 illustrates the differences in total cloud cover between models and CLARA-A2.1 in winter.

The observed cloud fraction is minimized over the south-western part of the domain and it gradually increases
towards the north-eastern regions. The simulation of winter cloudiness is not affected by the land surface
processes, as expected. WRFb-CLM4.0 and WRFb-NoahMP show a similar behavior with a general
overestimation of cloudiness across Europe, apart from Mediterranean region where they are in very good
agreement with CLARA-A2.1. Neither the change of PBL scheme greatly modify the simulation of winter cloud
cover in WRFc-NoahMP. Only the different atmospheric set-up of WRFa-NoahMP yields a different cloudiness
regime, with strong underestimation over the southern Europe and slight overestimation over British Isles and
Scandinavia. In addition, the magnitude of bias is substantially larger mostly over Scandinavia when comparing
to CRU dataset (Figure A3 in Appendix), but the sign of bias remains consistent.

32



CLARA-A21 WRFb-CLM4.0 minus CLARA-A2.1 WRFa-NoahMP minus CLARA-A2.1

. e
¥ Gt 5 20 20 20
55 e > 10 10 10
are- el r;‘;},,_ ,}’, __ﬁ_,x.—‘_\_m_j 0 3 0 o
.H} .;'E: BT S Qﬁf"g‘;ﬁé 10 TR .10 10
e «\;_ \5_;;;“'_*_';;" ] B | e S g dly -20 20
(i ? ,1‘/' > ﬁ (?_3\"5}1’3:&'? -30 4 g b @-f"g l\’g‘:-g( -30 - ) ’ -30
Y Siop] Be Do Y o] B DS 7 W

Figure 4: Mean bias (models minus CLARA-A2.1) for total cloudiness (%) in winter (DJF) over 1986-2015 period. Stippling
indicates areas where model bias is within the CLARA-A2.1 uncertainty range. The £1xSD is used as estimate of the uncertainty
range of CLARA-A2.1 dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF configurations.

The underestimation of cloud cover over the southern Europe in WRFa-NoahMP explains the overestimation of
winter shortwave radiation over these regions for this model. Also, the excess cloudiness in the other three WRF
configurations cause a general overestimation of winter longwave radiation, as discussed above. A corresponding
link cloudiness-shortwave radiation is not clearly detected (except from WRFa-NoahMP), for example the
overestimation of downwelling shortwave radiation over the south-eastern Europe in WRFb-CLM4.0, WRFb-
NoahMP and WRFc-NoahMP is not associated with an underestimation of cloudiness. Such inconsistency can be
related to the presence of different types of clouds in models and CLARA-A2.1 and their impact on shortwave
radiation. For example, thin cirrus clouds are greatly transparent to shortwave radiation, whereas the low thick
clouds largely reflect the incoming solar radiation back to space. Moreover, the consistent overestimation of
cloudiness over Scandinavia is not in agreement with the mixed sign of bias for shortwave radiation (or with the
almost zero bias when comparing with ERAS). Apart from the low accuracy of satellite data over the high-latitude
areas, this discrepancy is probably related to small amounts of incoming solar energy over these regions in winter.
Last, note that the current methodology does not differentiate between daytime and nighttime clouds which could
has great impact on the link shortwave radiation-cloudiness.

In summer, the observed cloudiness is minimized over the southern Europe and gradually increases towards the
north (Figure 2.23). Either the land or atmospheric component have an essential role in the simulation of summer
cloudiness. WRFb-CLMA4.0 exhibits a negative bias over Balkan Peninsula and around Black Sea which becomes
positive towards the western coasts and northern part of Europe. The change of LSM in WRFb-NoahMP extends
the negative bias from Balkan peninsula to Alps and expands the positive bias over the north-eastern regions,
compared to WRFb-CLM4.0. With the change of PBL scheme in WRFc-NoahMP, this dipole remains but it is
weakened. The change of atmospheric schemes in WRFa-NoahMP vyield a dramatically different summer
cloudiness regime with a general negative bias. The bias patterns for summer cloudiness are in good agreement

with the results for the downwelling shortwave radiation. That is, regions which show low cloudiness tend to
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show excess shortwave radiation. A corresponding link is also detected for summer cloudiness — longwave
radiation (not in WRFa-NoahMP), but the representation of summer clouds has generally greater impact on

shortwave than longwave radiation.

CLARA-A2.1 WRFb-CLM4.0 minus CLARA-A2.1 WRFa-NoahMP minus CLARA-A2.1
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WRFc-NoahMP minus CLARA-A2.1 MMM minus CLARA-A2.1

indicates areas where model bias is within the CLARA-A2.1 uncertainty range. The £1xSD is used as estimate of the uncertainty
range of CLARA-A2.1 dataset. MMM : multi-model-mean of LUCAS simulations excluding WRF configurations.

2.3.5 Seasonal cycles

The observed and simulated seasonal cycles of downwelling shortwave (Figure 2.24) and longwave radiation
(Figure 2.25) and total cloud fraction (Figure 2.26) are analyzed in order to obtain a comprehensive view on the
relationship between radiation fluxes and cloudiness across seasons and regions in Europe.

WRFa-NoahMP shows a year-round overestimation of shortwave radiation which is maximized during the
summer months. With the change of atmospheric set-up in WRFb-NoahMP, the shortwave radiation is in better
agreement with CLARA-A2.1, although a prominent overestimation remains during the warm months apart from
the regions of British Isles and Scandinavia. WRFb-NoahMP and WRFc-NoahMP exhibit a similar seasonal
cycle, indicating the small impact of PBL change on the simulation of shortwave radiation. Only over British
Isles and Scandinavia, WRFc-NoahMP produces greater radiation amounts than WRFb-NoahMP in summer.
Moreover, the switch from NoahMP to CLM4.0 improve the WRF performance over Alps, France, Mid-Europe
and Iberian Peninsula.

The various atmospheric and land surface schemes produce a range of behaviors for the seasonal cycle of
cloudiness. WRFa-NoahMP shows unrealistically low cloud fraction in most regions across all months, which
helps to explain the overestimated seasonal cycle of shortwave radiation. With the change of atmospheric set-up
in WRFb-NoahMP, the WRF performance is clearly improved in simulating the cloud fraction. WRFb-NoahMP
simulates greater cloud fraction than CLARA-A2.1 during the cold months in all regions, while underestimates
the observed values in summer mostly over Alps and Mediterranean. Only over British Isles and Scandinavia it
shows a year-round overestimation of cloudiness. The excess cloudiness during the cold months or the year-round

overestimation over the northern regions do not correspond to smaller shortwave amounts at surface, whereas the
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summer negative bias is linked to the overestimated shortwave radiation over the most regions. The switch from
NoahMP to CLLM4.0 affects the simulation of cloudiness in summer months. WRFb-CLM4.0 produces larger
cloud fraction in summer than WRFb-NoahMP, mostly over Alps, France, Mid-Europe and Mediterranean. This
fact results in a small overestimation of summer cloudiness in WRFb-CLM4.0 over France and Mid-Europe, but
it’s in better agreement with CLARA-A2.1 over Alps and Mediterranean. The LSM-induced differences in
summer cloudiness are reflected to the results for shortwave radiation, where WRFb-CLM4.0 achieves higher
performance than WRFb-NoahMP over Alps, France and Mid-Europe. The change of PBL scheme in WRFc-
NoahMP leads to smaller cloud fraction in winter months in most regions compared to WRFb-NoahMP and
consequently to better agreement with CLARA-A2.1. In summer, the selected atmospheric set-up for WRFc-
NoahMP improves the WRF performance for cloudiness over Alps, France, Iberian Peninsula and Mediterranean,
however without inducing differences in shortwave radiation with respect to WRFb-NoahMP.

The errors in the simulation of cloud fraction have not great impact on the seasonal cycle of longwave component.
In all regions except the British Isles, the modelling systems tend to reproduce with high accuracy the observed
seasonal variations of downwelling longwave radiation, showing small biases which lie within the CLARA-A2.1

uncertainty range in most cases.
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Figure 6: Observed and simulated seasonal cycle of downwelling shortwave radiation at surface (W/m?) averaged over eight
European regions for the period 1986-2015. AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP (lberian
Peninsula), MD (Mediterranean), ME (Mid-Europe), SC (Scandinavia). The grey area represents the range of CLARA-A2.1
uncertainty (£1xSD).
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Figure 2.25: Observed and simulated seasonal cycle of downwelling longwave radiation at surface (W/m?) averaged over eight
European regions for the period 1986-2015. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP (Iberian
Peninsula), MD (Mediterranean), ME (Mid-Europe), SC (Scandinavia). The grey area represents the range of CLARA-A2.1
uncertainty (£1xSD).
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Figure 2.26: Observed and simulated seasonal cycle of total cloud fraction (%) averaged over eight European regions for the
period 1986-2015. AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean),
ME (Mid-Europe), SC (Scandinavia). The grey area represents the range of CLARA-A2.1 uncertainty (x1xSD).

2.3.6 Surface heat fluxes

A large part of radiative energy absorbed by the surface is released to the atmosphere in the form of latent and
sensible heat fluxes. These fluxes have an essential role in summer when the solar energy reaching the ground is
maximized. This section is focused on the evaluation of summer heat fluxes, comparing models to ERA5
reanalysis data, in order to better interpret the model behaviors with respect to surface climate.

Figure 2.27 illustrates the mean summer bias for latent heat over the 1986-2015 time period in Europe. ERA5
latent heat amounts range from 63 W/m?in lberian Peninsula to almost 90 W/m?in Alps and Eastern Europe on
average (Table 12). All WRF configurations systematically show a negative bias for latent heat in various
magnitudes. Between WRFb-CLM4.0 and WRFb-NoahMP are noticed small differences, implying the small
impact of LSM change on latent heat simulation. More specifically, the two configurations share a similar and
widespread negative bias which is maximized over Mediterranean (greater than -30%). The changes in
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atmospheric schemes have greater impact on latent heat. WRFa-NoahMP shows the strongest underestimation
with errors exceeding the 50% of the absolute ERAS estimation over many regions. The change of PBL scheme
in WRFc-NoahMP dramatically reduces the negative bias seen in WRFb-NoahMP over the whole Europe. Biases

in WRFc-NoahMP lie within the ERAS5 uncertainty range over a large part of the domain.
ERAS WRFb-CLM4.0 minus ERAS WRFa-NoahMP minus ERAS

e

.

Figure 7: Mean bias (models minus ERADS) for latent heat flux in summer (JJA) over 1986-2015 period. Stippling indicates areas
where model bias is within the ERA5 uncertainty range. The £1xSD is used as estimate of the uncertainty range of ERA5 dataset.
MMM: multi-model-mean of LUCAS simulations excluding WRF configurations.

Table 12: Mean summer bias for latent heat flux (W/m?) over 1986-2015 period with respect to ERA5, averaged over eight
European subregions. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP (lberian Peninsula), MD
(Mediterranean), ME (Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS simulations excluding WRF
configurations.

AL Bl EA FR IP MD ME SC

ERA5 (W/m?) 92 75 93 88 63 80 88 70

WRFb-CLM4.0 minus ERA5 -25%  -23%  -21%  -271% -22%  -35% -25%  -22%

WRFa-NoahMP minus ERA5 -56% -38% -62% -69% -57% -60% -65% -27%

WRFb-NoahMP minus ERA5 -22% -20%  -25%  -27% -27% -31% -24%  -25%

WRFc-NoahMP minus ERA5 -1% -2% -5% 1% -10% -15% -4% -14%

MMM minus ERAS5 -14%  -21% -20% -16% -14% -25% -16% -16%
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Figure 2.28 depicts the mean:summer bias for sensible heat over the 1986-2015 time period in Europe. In contrast
to latent heat, ERA5 sensible heat is maximized over lberian Peninsula, 72 W/m? on average (Table 13) and
reduces towards the north-eastern part of Europe. Widespread positive biases are noticed for all WRF
configurations. The different set-ups influence only the magnitude of biases. WRFa-NoahMP shows
unrealistically high sensible heat amounts with relative bias reaching the order of 400% of the absolute ERA5
estimation over Mid and Eastern Europe. Note, however, that ERA5 sensible heat amounts are somewhat small
mostly over the central and northern regions, so that large relative biases do not necessarily correspond to
extremely large absolute errors. Between WRFb-NoahMP and WRFb-CLM4.0 are noticed differences in terms
of magnitude of bias over Eastern Europe, where WRFb-CLM4.0 shows a greater overestimation, and over Alps,
Mid-Europe and France where WRFb-NoahMP shows larger errors. The PBL change in WRFc-NoahMP yields
smaller biases in central and eastern regions of Europe but not in Scandinavia, where the overestimation almost
doubles with respect to WRFb-NoahMP.

ERAS5 WRFb-CLM4.0 minus ERA5 WRFa-NoahMP minus ERAS

, _ < SR B ST e B
Figure 2.28: Mean bias (models minus ERAD5) for sensible heat flux in summer (JJA) over 1986-2015 period. Stippling indicates

areas where model bias is within the ERA5 uncertainty range. The +1xSD is used as estimate of the uncertainty range of ERA5
dataset. MMM: multi-model-mean of LUCAS simulations excluding WRF configurations.

Table 13: Mean summer bias for sensible heat flux (W/m?) over 1986-2015 period with respect to ERA5, averaged over eight
European subregions. AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France), IP (lberian Peninsula), MD
(Mediterranean), ME (Mid-Europe), SC (Scandinavia). MMM: multi-model-mean of LUCAS simulations excluding WRF
configurations.

AL Bl EA FR IP MD ME SC

ERA5 (W/m?) 30 23 21 31 72 51 21 24
WRFb-CLM4.0 minus ERAS5  94% 53% 164% 90%  33% 74% 117% S51%
WRFa-NoahMP minus ERA5  255%  271%  400% 280% 76% 137% 421% 231%
WRFb-NoahMP minus ERA5  108% 41% 137%  107%  34% 67% 132% 62%
WRFc-NoahMP minus ERAS  91% 66% 107% 96%  42% 62% 107% 99%
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MMM minus ERAS 50% 51% 105% 54% 12% 34% 75% 32%

The absolute magnitude of the turbulent fluxes is directly affected by radiation biases and thus does not reflect
the inherent model skills in simulating these fluxes. It’s more informative to analyze turbulent fluxes in terms of
their partitioning by examining the evaporation fraction, calculated as the ratio between latent heat and the sum
of latent and sensible heat. This metric is relatively independent of radiation biases.

According to ERAD5, the evaporation fraction is too weak over the southern Europe in summer and increases
towards the north (Figure 2.29). All model configurations tend to underestimate the evaporation fraction across
Europe. This was expected, since the models underestimate the latent heat and overestimate the sensible heat. In
other words, models simulate weaker evapotranspiration and stronger sensible heating than ERA5 in summer.
This fact could potentially trigger a physical mechanism which explains the different climate states between the
models. For example, less evaporation theoretically implies a decrease of the atmospheric moisture content and
subsequently a decrease of cloudiness and precipitation. The reduction of atmospheric humidity and therefore the
decrease of cloudiness and precipitation, would lead to an increase of the incoming shortwave radiation and finally
to a warming effect on surface temperature. This idealized mechanism of positive feedbacks could explain the
climate state as simulated by WRFa-NoahMP, that is, the extremely low evaporation fraction in summer results
in dry atmospheric conditions and thus low rainfall rates and cloudiness, in line with unrealistically high
shortwave amounts at surface and finally a large warm summer bias. The same idealized mechanism could also
explain the warm and dry conditions over the southern regions in summer in the other three WRF simulations,
and mostly the high maximum temperatures in late summer over Alps, France and Mid-Europe in WRFb-
NoahMP. The summer climate over the northern Europe is not regulated by the partitioning of surface heat fluxes,
since the underestimated evaporation fraction is not consistent to the increased cloud fraction and the subsequent

decrease of shortwave radiation.
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Figure 2.29: Mean summer bias (models minus ERAS) for evaporation fraction over 1986-2015 period. Stippling indicates areas
where model bias is within the ERA5 uncertainty range. The +1xSD is used as estimate of the uncertainty range of ERAS dataset.
MMM: multi-model-mean of LUCAS simulations excluding WRF configurations.

To complement the results for evaporation fraction, the simulations are also compared to flux measurements at 8
different sites over Europe (Table 14). Indeed, the models generally underestimate the evaporation fraction in all
selected flux sites (except BE-Vie), confirming the results from the previous comparison to reanalysis data.
WRFa-NoahMP again shows the worst performance among the WRF configurations with large negative
deviations from measurements. In addition, WRFc-NoahMP does not clearly improve the results with respect to
WRFb-NoahMP, as seen in comparison to ERAS.

Table 14: Comparison between simulated and measured evaporation fraction at 8 different FLUXNET sites. MMM: multi-
model-mean of LUCAS simulations excluding WRF configurations. Evaporation fraction is calculated as the ratio between
latent heat and the sum of latent and sensible heat.

BE-Vie CH-Fru Qoo  ES-Llu FlHyy FRGri FR-LBr IT-Col

FLUXNET (ratio) 058 08 065 021 06 063 055 056

WRFb-CLM40 minus 005  -0.19  -002 -008 -007 -008 -019 -0.14
FLUXNET

WRFa-NoahMP minus  -0.26  -035  -043 015 -023 -046 -046 -027
FLUXNET

WRFb-NoahMP minus 003 021  -002 -015 013 -009 02  -0.02
FLUXNET

WRFc-NoahMP minus  0.14  -018  -007 012 -012 -002 -019 -006
FLUXNET

MMM minus FLUXNET 014 036 021 -022 016 -019 -011 -0.12

2.3.6.1 Seasonal cycles

Figure 2.30 and Figure 2.31 show the mean seasonal cycle of latent and sensible heat as represented by models
and ERAD, averaged over the eight subregions of analysis.

The ERAS seasonal cycle of latent heat is a normal distribution with minimum values in the cold months and

peak in the summer. The modelled seasonal cycles have smaller amplitude, as they show lower maximum values
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than ERA5 in summer, while the winter amounts are equally small. In Scandinavia, it is noticed a great
consistency between ERA5 and models which show a small underestimation during the summer. In the other
regions, WRFa-NoahMP performs poorly with quite large negative biases. WRFc-NoahMP fits quite well with
ERADS in British Isles, while it shows negative deviations from ERA5 in late summer and autumn mostly over
France, Mediterranean and Iberian Peninsula (here also in spring). Even though they share a similar pattern of
seasonal cycle, the change of PBL scheme in WRFb-NoahMP degrades the quality of simulation in most regions
compared to WRFc-NoahMP. Last, the switch from NoahMP to CLM4.0 results in smaller seasonal variations in
latent heat. WRFb-CLM4.0 shows greater underestimation until the mid-summer and better agreement with

ERAS in late summer and autumn compared to WRFb-NoahMP.
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Figure 2.30: ERAS5 and simulated seasonal cycle of latent heat (W/m?) averaged over eight European regions for the period 1986-
2015. AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean), ME (Mid-
Europe), SC (Scandinavia). The grey area represents the range of ERA5 uncertainty (+1xSD).

The seasonal variation of sensible heat is smaller than that of latent heat in ERA5 over all regions apart from
Iberian Peninsula. WRFa-NoahMP stands out again for its poor performance showing a largely overestimated

seasonal cycle, which is associated with its poor representation of latent heat. The other WRF configurations also
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overestimate sensible heat amounts in summer months showing deviations outside the range of ERA uncertainty
in all regions. Despite their different set-ups, they show quite similar behavior over the most regions. The most
prominent differences are noticed over Alps, France and Mid-Europe where WRFb-NoahMP shows a pronounced
overestimation in the late summer, which is not visible when the LSM (WRFb-CLM4.0) or PBL (WRFc-
NoahMP) changes, and is probably the main reason for its high maximum temperature over these regions. The
LSM change improved the WRF performance over Iberian Peninsula and Scandinavia in summer, while the

different PBL scheme in WRFc-NoahMP yields better agreement with ERA5 over Eastern Europe.
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Figure 2.31: ERAS and simulated seasonal cycle of sensible heat (W/m?) averaged over eight European regions for the period
1986-2015. AL (Alps), BI (British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean), ME
(Mid-Europe), SC (Scandinavia). The grey area represents the range of ERA5 uncertainty (£1xSD).

2.3.7 Soil moisture
Land hydrology could help to interpret the results for the partitioning of surface heat fluxes. Figure 2.32 depicts

the mean seasonal cycle of soil moisture content of the top 1 m of soil, averaged over eight European regions as
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represented by ERAS and WRF configurations. The results are discussed mainly for summer, as in winter the
land-atmaosphere interaction is not essential.

The seasonal cycle of ERAS receives maximum values in the cold months and minimum in the late summer. In
Scandinavia, the seasonal variation of soil wetness is small with a secondary maximum in late spring due to
snowmelt. WRF configurations follow the pattern of ERA5 seasonal variations although they systematically show
drier soils across all seasons and regions, which is consistent with the simulation of less evaporation amounts. A
corresponding link between soil dryness and precipitation forcing is also valid mostly in summer, when models
tend to underestimate precipitation in most regions. In winter, the higher simulated precipitation amounts do not
explain the low soil moisture contents. Also, in Scandinavia the almost year-round overestimation of precipitation
(not in WRFa-NoahMP) is not in agreement with the simulated soil dryness. After all, it is not always easy to
relate the differences in soil water content to the simulation of surface heat fluxes and precipitation forcing. Such
an approach requires a detailed analysis of the hydrological cycle and the examination of all the participating
components, such as the leaf area index, surface and subsurface runoff, the recharge of soil column from the
underlying aquifer, etc.

The changes of atmospheric and land surface schemes have impact on the simulation of soil water content. WRFb-
NoahMP shows quite dry soils in late summer and autumn in almost all regions but mostly over Alps, Mid-Europe
and France. The dry soils over these regions are associated with strong sensible heating, less rainfall amounts and
finally higher maximum temperatures in WRFb-NoahMP. The results for the soil moisture in the late summer are
improved either with the change of LSM in WRFb-CLM4.0 or the change of PBL scheme in WRFc-NoahMP,
indicating that both the land and atmospheric processes contribute to soil dryness. Actually, the dry soils remain
in WRFb-CLM4.0 and WRFb-NoahMP, but they are closer to ERAS. The better representation of soil moisture
by WRFb-CLM4.0 and WRFc-NoahMP compared to WRFb-NoahMP, is consistent to the more accurate results
for sensible heating, precipitation and finally for maximum summer temperature in Alps, France and Mid-Europe.
The coupling of WRF to CLMA4.0 results in a better representation of soil moisture in late summer and autumn
over the southern regions (Mediterranean, Iberian Peninsula) and France with respect to NoahMP configurations,
which is also reflected to the better partitioning of heat fluxes. This is likely due to a better groundwater
management in CLM4.0, which has a larger soil volume discretized in ten layers and generally is more
sophisticated than NoahMP. Last, WRFa-NoahMP shows a poor performance by simulating too dry soils across
all seasons and regions. Since WRFa-NoahMP differs only in microphysics and convection schemes with WRFb-
NoahMP, it could be suggested that the bias in soil wetness has its origins in the representation of atmospheric
processes and specifically is caused by the low rainfall amounts, resulting in high sensible heating (or less

evaporation) and finally warmer than observed surface climate.
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Figure 2.32: Mean seasonal cycle of integrated soil water content of the top 1 m of the soil for ERA5 and WRF configurations,
averaged over eight European subregions for the time period 1986-2015.

2.3.8 Model performances

To obtain a quantitative estimate of the overall RCM performances in simulating the surface climate state, RMSE
(root mean squared error) scores are calculated for each modelling system over the 1986-2015 time period in the
whole Europe (Figure 2.33). As in Davin et al., 2016, RMSE is calculated from the difference between simulated
and observed values taken at each land grid cell of the domain and based on monthly means over the entire
simulation time period, thus accounting for both spatial and temporal model performance. When possible, two
different reference products are employed in order to consider the uncertainty in observational data.

The use of Grell-Freitas (Grell and Freitas, 2014) as convection scheme and WDM6 (Lim and Hong, 2010) as
microphysics scheme lead WRFa-NoahMP to the worst performance not only among the WRF configurations
but also among the LUCAS simulations. Its bad scores have their origins in the simulation of atmospheric
processes, as the atmospheric schemes are those that differ in relation to the simulation from WRFb-NoahMP. In

view of the multi-model spread, the other three WRF configurations somewhat cluster together in terms of
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ranking. The WRF coupling to CLM4.0 yields better scores for latent and sensible heat fluxes compared to WRFb-
NoahMP. The better representation of surface heat fluxes is reflected to the results for shortwave radiation, where
WRFb-CLM4.0 also outperforms WRFb-NoahMP. No improvement, however, is seen for the longwave
component, which is even slightly degraded. The change of PBL and skin surface schemes in WRFc-NoahMP
improve the representation of latent heat and slightly the simulation of sensible heat flux compared to WRFb-
NoahMP. Better scores are also noted for longwave radiation in WRFc-NoahMP, but not for the shortwave
component. It’s worth noting that the models generally reproduce the downwelling longwave radiation more
accurately than the downward shortwave radiation at surface, while WRF configurations achieve higher
performances for latent than sensible heat. With respect to temperature, WRFb-CLM4.0 again shows better
performance than WRFb-NoahMP both in daytime (maximum) and nighttime (minimum) temperatures,
outperforming most other LUCAS simulations. Moreover, WRFb-NoahMP and WRFc-NoahMP almost cluster
together for temperature in terms of ranking. However, the change of atmospheric set-up in WRFc-NoahMP
somewhat degrades the quality of simulation compared to WRFb-NoahMP, not only for temperature but also for
precipitation. Last but not least, the poorer performance of WRFb-CLM4.0 for precipitation in comparison to
WRFb-NoahMP is in contrast to the better scores for turbulent fluxes. This discrepancy could be associated with
the different timestep for model integration between WRFb-CLM4.0 and WRFc-NoahMP.
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Figure 2.33: Model performances in simulating a) surface heat fluxes, b) temperature and c) precipitation over the 1986-2015
time period in Europe, described with RMSE scores (colors). As in Davin et al., 2016, RMSE is calculated across all land grid
points of the domain based on monthly values over multiple years. Numbers denote model ranking. MMM : multi-model-mean
of LUCAS simulations.

2.4Summary
In chapter 1, the ability of a WRF multi-physics ensemble in simulating surface climate of a 30-year period at
0.44° spatial resolution over Europe is evaluated, in the context of LUCAS FPS. The simulated fields are

compared to reference products, either satellite or terrestrial and reanalysis data, for 2-meter temperature,
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precipitation, radiation and heat fluxes, cloud fraction and soil moisture. Within the LUCAS ensemble, the WRF
configurations share the same atmospheric scheme but are coupled to different LSMs or combine the same LSM
with different atmospheric schemes, enabling the evaluation of the respective influence of atmospheric versus
land processes representation. Specifically, four WRF simulations are involved, three of which share the NoahMP
as land surface model; WRFa-NoahMP uses the Grell-Freitas (Grell and Freitas, 2014) and WDM6 (Lim and
Hong, 2010) as cumulus and microphysics scheme as opposed to WRFb-NoahMP which is coupled to Kain-
Fritsch (Kain, 2004) and Thompson (Thompson et al., 2004) schemes respectively. Also, WRFc-NoahMP differs
from WRFb-NoahMP in PBL and skin surface layer schemes, while WRFb-CLM4.0 has the same atmospheric
component as WRFb-NoahMP but is coupled to CLM4.0 LSM.

There is no ideal configuration that optimizes WRF performance for all climate variables in all regions across
Europe. However, the combination of atmospheric schemes selected for WRFa-NoahMP dramatically degrades
WREF performance, achieving the worst scores not only between WRF simulations but within LUCAS ensemble
as awhole. Since a similar behavior is not reproduced by WRFb-NoahMP, with which they differ only in cumulus
and microphysics schemes, it is concluded that its poor performance originates from the representation of
atmospheric processes. WRFa-NoahMP suffers from a general dry bias which leads to extremely dry soils and
consequently to strong sensible heating and less evaporation. As a result of the decreased moisture flux to the
atmosphere, lower cloudiness is simulated and increased shortwave amounts reach the ground finally producing
a largely warmer and drier than observed climate. However, the overall inferior WRF performance caused by the
combination of atmospheric schemes in WRFa-NoahMP, contradicts findings from recent literature (Jeworrek et
al., 2019; Gao et al., 2017) which identified Grell-Freitas as the best performing cumulus scheme in combination
with various microphysics schemes. However, note that these studies were conducted over a different domain
with different topography and on higher spatial resolution than the present study.

The other three WRF configurations show a more balanced overall behavior and despite their different set-ups
they show similar features. For example, they all underestimate evaporation fraction, overestimate winter
cloudiness and precipitation and produce a radiative surplus at surface in winter, resulting from a positive bias for
shortwave and longwave radiation. The simulated radiative surplus is not consistent to the winter cloudiness
overestimation and in no way explains the general tendency for cold winter bias, which is prominent over the
north-eastern part of the domain (around -2 °C) for WRFc-NoahMP and is attributed to the poor performance of
MMS5, as skin surface layer scheme, over the snow-pack.

In summer, any combination of parameterization schemes yields an overestimation of sensible heat and
underestimation of latent heat. The errors in the estimation of the partitioning of heat fluxes result in less
atmospheric humidity, therefore less cloudiness and precipitation, producing increased downwelling shortwave
amounts and finally a warmer and drier climate over the central and southern regions. However, the partitioning
of heat fluxes has different characteristics between models, due to the different representation of atmospheric and

land processes. The strong sensible heating in WRFb-NoahMP configuration yields a prominent warm (mainly
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in daytime temperatures) and dry bias mostly over Alps, Mid Europe and France in the late summer. The coupling
to CLM4.0 improves the WRF accuracy for sensible and latent heat especially in the late summer, due to a better
management of groundwater. Also, the change in the combination of PBL and skin surface layer schemes
improves the representation of heat fluxes and consequently reduces the warm biases for WRFc-NoahMP
compared to WRFb-NoahMP, however it produces wetter conditions over the north-eastern part of the domain.
In general, WRF configurations show weaknesses in simulating adequately the heat fluxes, especially sensible
heat. The coupling to the advanced CLM4.0 LSM vyields higher scores for WRF performance in simulating the
summer surface climate with respect to NoahMP simulations.

In this chapter, the systematic errors in model performances and the identification of the underlying physics
mechanisms that are responsible for the occurrence of these biases are highlighted. Most models are considered
reliable in simulating quite realistically the climate physical processes and thus participate in the next phase of
sensitivity experiments, about the forestation effect on surface climate in Europe.
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3 Afforestation impact on soil temperature in regional climate simulations over

Europe

The published version of these results can be found in Sofiadis et al., 2022 on Geoscientific Model Development

(GMD) international scientific journal.

3.1Introduction

There is currently a strong policy focus on afforestation as a possible greenhouse gas mitigation strategy to meet
ambitious climate targets (Grassi et al., 2017). The biogeochemical effects of afforestation or reforestation are
mostly related to increased carbon stocks stored in vegetation and soil, as the total carbon stored in forests is
nearly 3 times larger than the carbon stored in croplands (Devaraju et al., 2015). However, understanding the full
climate consequences of the large-scale deployment of such a strategy requires to consider also the biophysical
effects of afforestation arising from changes in evapotranspiration efficiency, surface roughness and surface
albedo (Betts, 2000; Bonan, 2008; Perugini et al., 2017; Duveiller et al., 2018; Davin and Noblet-Ducoudré,
2010).

The crucial need for the assessment of land-use change biophysical impacts on regional scale over Europe is
addressed by the Land Use and Climate Across Scales (LUCAS) FPS (Rechid et al., 2017). In the first phase of
LUCAS, for the first time, multi-model simulations were performed under a common experimental protocol to
address the RCMs sensitivity to theoretical afforestation in Europe, contrasting two idealized land cover
scenarios. The first scenario assumed a maximum forest coverage, while the second assumed a maximum grass
coverage over Europe.

Up to now, research based on LUCAS ensemble highlighted some robust model responses to theoretical transition
from grasslands to forests. First, Davin et al., 2020 suggested that afforestation induce a warming over northern
Europe in winter and spring owing to a decrease in surface albedo. They also reported a strong disagreement
between models for the signal of summer 2m temperature change, related to uncertainty for turbulent heat fluxes
partitioning following afforestation. Moreover, Breil et al., 2020 identified opposing effects of afforestation on
surface temperature and temperature at the lowest atmospheric model level. Specifically, they found that
afforestation dampened the diurnal surface temperature range and amplified the daily temperature cycle at lowest
atmospheric model level. Also, Mooney et al., 2021 indicated changes in snow-albedo effect and snowmelt
enhancement due to afforestation in sub-polar and alpine climates.

While the afforestation impact on surface climate has been discussed in previous studies, the changes in soil
temperature profile remain unexplored in LUCAS community so far. MacDougall and Beltrami, 2017 suggested
that a ground warming remains present for centuries after deforestation. In this chapter, the biophysical impact of
afforestation on soil temperature profile across Europe is investigated, as simulated by the suite of 10 RCMs

established within FPS LUCAS Phase 1, comparing two idealized scenarios which represent Europe entirely
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covered by forest and grass respectively. The soil temperature response to afforestation is investigated through
inter-model changes in surface energy balance components and soil moisture. In addition, the simulated impact
on soil temperature is compared to observational evidence based on FLUXNET paired sites, classified as forest
or open land.

3.2Data & Methods

3.2.1 Regional climate model ensemble

Two idealized land cover change experiments are carried out using an ensemble of 10 RCMs. Table 16 provides
a brief description of the RCM ensemble characteristics, while more information about the land and atmospheric
setups can be found in Davin et al., 2020. Compared to Davin et al. (2020), the current model ensemble includes
simulations from two additional RCMs (CCLM-CLM5.0 and WRFc-NoahMP), while one of the RCMs (RCA)
is not included here because the necessary variables for the analysis were not recorded. Compared to CCLM-
CLM4.5, CCLM-CLMS5.0 is coupled with a modified version of CLM 5.0 (Lawrence et al., 2019) that includes
biomass heat storage (Swenson et al., 2019; Meier, 2019). WRFc-NoahMP shares the same land component as
WRFb-NoahMP but differs in the atmospheric setup. Namely, WRFc-NoahMP used the Yonsei University (YSU)
scheme (Hong et al., 2006) as planetary boundary layer (PBL) parameterization, as opposed to Mellor—Yamada—
Nakanishi—Niino (MYNN) level 2.5 PBL (Nakanishi and Niino, 2009) in WRFb-NoahMP. In addition, new

simulations were carried out for WRFb- NoahMP and WRFb-CLMA4.0 to address minor bug fixes.

Table 15: Characteristics of the RCMs participating in the study. JLU - Justus-Liebig-Universitat Giefen; BTU:
Brandenburgische Technische Universitdt; KIT — Karlsruhe Institute of Technology; ETH - Eidgendssische Technische
Hochschule Zirich; SMHI — Swedish Meteorological and Hydrological Institute; ICTP — International Centre for Theoretical
Physics; GERICS — Climate Service Center Germany; IDL — Instituto Amaro Da Costa; UHOH — University of Hohenheim;
BCCR - Bjerknes Center for Climate Research; AUTH -Aristotle University of Thessaloniki. The full table including the
parameterization schemes and model settings, can be found in Davin et al., 2020.

Model
Institute RCM version LSM Soil column
name
CCLM TERRA-ML 10 layers down to 15.3 m. First 9
TERRA JLU/BTU/CMCC | COSMO 5.0 cIm9 | (Schrodin and (8) layers are thermally
Heise, 2001) (hydrologically) active.
] 10 layers down to 15 m. First 9
CCLM- VEG3D (Breil et
KIT COSMO _5.0 clm9 (8) layers are thermally
VEG3D al., 2018) _ )
(hydrologically) active.
15 thermally active layers down
CCLM- CLM4.5 (Oleson )
ETH COSMO_5.0_clm9 to 42 m. The first 10 layers are
CLM4.5 etal., 2013) _ )
hydrologically active.
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o g CLM5.0 25 thermally active layers down
ol ETH COSMO _5.0_cIm9 | (Lawrence et al., to 50 m. The first 20 layers are
' 2019) hydrologically active.
15 thermally active layers down
RegCM- ]
ICTP RegCM4.6.1 CLMA4.5 to 42 m. The first 10 layers are
CLM4.5 _ _
hydrologically active.
REMO- IMOVE (Wilhelm | 5 thermally active layers down to
_ GERICS REMO2009
iIMOVE etal., 2014) 9.8 m. One water bucket.
WRFa-
IDL WRF381 NoahMP 4 layers down to 2 m.
NoahMP
WRFb-
UHOH WRF381 NoahMP 4 layers down to 2 m.
NoahMP
WRFc-
BCCR WRF381 NoahMP 4 layers down to 2 m.
NoahMP
WRFb- CLM4.0 (Oleson | 10 thermally and hydrologically
AUTH WRF381 )
CLM4.0 et al., 2010b) active layers down to 3.43 m.

3.2.2 Experimental design

In LUCAS, each participating RCM undertook two different simulations, applying the same experimental design.

In the first experiment, called FOREST, models are forced with a vegetation map representing a Europe fully

covered by trees, where they can realistically grow. Bare lands and water bodies were conserved as in original

model maps. In the second experiment, called GRASS, the models integrate the same vegetation map, with the

only difference that trees are entirely replaced by grasslands. These maps are shown in Figure S1 in Appendix

and a detailed description about creation of maps and the way they are implemented into the respective RCMs
can be found in Davin et al. (2020). All simulations are performed over the EURO-CORDEX domain (Jacob et
al., 2020) with a spatial resolution of 0.44° (~ 50 km), forced by ERA-Interim reanalysis data (Dee et al., 2011)

at their lateral boundaries and at the lower boundary over the sea. The analysis covers the 30-year period of 1986—

2015 and focuses on the following eight European subregions as described in Christensen and Christensen (2007):

the Alps, the British Isles, eastern Europe, France, the Iberian Peninsula, the Mediterranean, mid-Europe and

Scandinavia (Figure 3.1).
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Figure 3.1: Topography of the model domain and location of the observational pairs. The outlined boxes with a dashed line
correspond to the eight regions on which the analysis focused: AL (Alps), Bl (British Isles), EA (Eastern Europe), FR (France),
(IP) Iberian Peninsula, MD (Mediterranean), ME (Mid-Europe), (SC) Scandinavia.

FOREST minus GRASS differences are considered, implying the impact of theoretical maximum afforestation
on soil temperature in Europe. Fourier’s second law of heat conduction is widely used by land surface models

(LSMs) to update temperature in each soil layer (Equation 1):

a_T = i [k * O_T]

at 0z 0z
where % is the time rate of soil temperature (K s*) and Z—Z is the spatial gradient of soil temperature (K m™) in
the vertical direction z (m). The quantity k represents the thermal diffusivity (m? s) defined at the layer node
depth z(m) and is equal to the ratio of thermal conductivity to volumetric heat capacity (p X cm, where p is mass
density and cm specific heat capacity per unit mass). In RCMs, k is time variable and is parameterized depending
on soil type and composition (mineral components, organic matter content), on bulk density and soil wetness. In
our experiments, soil texture remains unchanged and RCMs do not account for possible occurrence of heat sources
or sinks (such as organic matter or carbon decomposition) in the realm where soil heat flow takes place. Thus,

the potential changes in soil wetness with afforestation constitute the main driver of differences in soil thermal
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diffusivity in our experiments. In this way, we use soil moisture response to afforestation as a potentially
explanatory variable of soil temperature variations across RCMs.

Similar to Breil et al., 2020, we employ the residual of energy balance at surface in order to express the surface
energy input into the ground. Specifically, we define as energy input into ground the residual energy amount
resulting from available radiative energy (net shortwave + incoming longwave radiation) minus the sum of
turbulent heat fluxes (latent and sensible heat flux), without accounting for likely deviation of surface energy
budget from assumed balance in models (Constantinidou et al., 2020). Our analysis on the changes of surface
energy balance components due to afforestation is carried out for summer season, when models disagree both on
the sign and magnitude of soil temperature response. Thus, the land surface is assumed to be snow-free. Also, the
current RCMs do not account for heat storage into biomass over land surface, apart from CCLM-CLM5.0. A
detailed description on the structure of land-atmosphere exchange in the different LSMs is provided in Breil et
al., 2020.

3.2.3 FLUXNET observational data

We use measured or high-quality gap-filled data of soil temperature on monthly scale from the FLUXNET2015
Tier 2 dataset to complement the model-based analysis. Detailed documentation on data and processing methods
can be found in Pastorello et al., 2020.

In order to extract the potential effect of afforestation from observations, we employ a space-for-time analogy by
searching for pairs of neighbouring flux towers located over forest (deciduous, evergreen or mixed trees) and
open land (grasslands or croplands), respectively. This approach has been used in previous studies aiming to
investigate biophysical impacts of local LUC and evaluate LSM performance (Broucke et al., 2015; Chen et al.,
2018). In search for site pairs, the following criteria were defined: the two sites have to 1) be located in the Euro-
CORDEX domain, 2) differ in the type of vegetation, one site being forested and the other one being either
cropland or grassland, 3) have a linear distance within the horizontal resolution of the performed simulations (less
than 50 km), 4) have a common measurement period of at least two years, and 5) provide measurements at
common depth below the ground surface. In total, we found 14 sites that met our criteria and combined in ten
pairs. Their locations are depicted in Figure 3.1 and their characteristics are reported in Table 17. The median
linear distance between the paired sites is 11.4 km and their median elevation difference is 125 m.

The close proximity between the flux towers of paired sites ensures almost similar atmospheric conditions, so
that differences can be primarily attributed to the different vegetation cover. Applying a simple linear correlation
test, the differences either in elevation or separation between the flux towers of paired sites are not the dominant
factors in determining the changes in soil temperature (r = -0.2 and r = -0.3, respectively).

For comparison with the RCMs, we consider the observed mean monthly soil temperature differences (forest
minus open land) averaged over all paired sites. This is then compared with the mean of the grid cells matching

the locations of the observational pairs in the various RCMs (FOREST minus GRASS). Modelled soil temperature
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was linearly interpolated to the common measurement depth that is available for each pair site and averaged over
the time period 2003-2014 which covers the observational time span.

Last but not least, the observational setup does not fully resemble the experimental design applied in RCM
ensemble. The spatial scale of afforestation applied in models is significantly different from the small forest
patches the flux towers are located in. The theoretical maximum afforestation in RCMs has the potential to induce
changes in large-scale atmospheric circulation, which can create tele-connections (Swann et al., 2012) that modify
the regional cloud cover (Lagué and Swann, 2016) and thus the regional climate conditions. Such feedbacks are
not realistic in observations, where most forest measurement locations are located in relatively small forest

patches surrounded by open land and is almost unlikely to alter the climate conditions on regional scale.

Table 16: Characteristics of the sites selected from FLUXNET2015 dataset. DBF — Deciduous Broadleaf Forest; ENF —
Evergreen Needleleaf Forest; MF — Mixed Forest; CRO - cropland; GRA - grassland, as described by the International
Geosphere-Biosphere Programme (IGBP) classification scheme.

Land
Pair | FLUXNET (Latitude, Elevation Distance | Time Measurement
cover
ID site ID Longitude) (m) (km) period depth
type
IT-CA1 (42.380,12.026) 200 DBF 2011-
1 0.3 15cm
IT-CA2 (42.377,12.026) 200 CRO 2014
IT-CA3 (42.380,12.022) 197 DBF 2011-
2 0.4 15cm
IT-CA2 (42.377,12.026) 200 CRO 2014
IT-Ro2 (42.390,11.920) 160 DBF 2011-
3 8.7 15cm
IT-CA2 (42.377,12.026) 200 CRO 2012
CZ-BK1 (49.502,18.536) 875 ENF 2004-
4 0.9 5cm
CZ-BK2 (49.494,18.542) 855 GRA 2012
DE-Tha (50.962,13.565) 385 ENF 2004-
5) i 4.1 10cm
DE-Gri (50.950,13.512) 385 GRA 2014
DE-Obe (50.786,13.721) 734 ENF 2008-
6 : 23.4 10cm
DE-Gri (50.950,13.512) 385 GRA 2014
DE-Tha (50.962,13.565) 385 ENF 2004-
7 8.4 10cm
DE-KIli (50.893,13.522) 478 CRO 2014
DE-Obe (50.786,13.721) 734 ENF 2008-
8 18.4 10cm
DE-KIli (50.893,13.522) 478 CRO 2014
IT-Lav (45.956,11.281) 1353 ENF 2003-
9 19.3 10cm
IT-Mbo (46.014,11.045) 1550 GRA 2013
CH-Lae (47.478,8.364) 689 MF 2005-
10 30 10cm
CH-Cha (47.210,8.41) 393 GRA 2014
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3.3 Results

3.3.1  Soil temperature response

Figure 3.2 depicts the afforestation (FOREST minus GRASS) impact on the annual amplitude of soil temperature
(AAST) at 1 meter below the ground surface. AAST is calculated as the difference between the warmest and
coldest month of an average year, based on the climatology of the 30-year simulation period 1986-2015. In Figure
3.3, the mean differences in AAST between FOREST and GRASS are averaged over eight European subregions.
The differences are also examined at 2 cm, 20 cm and 50 cm below the ground surface, in order to address the
soil temperature response to afforestation across soil column.

Within the ensemble, the sign of AAST response to afforestation is mixed, while the magnitude of AAST change
at 1 meter depth ranges from -7.1 °C to 1.8 °C across regions. Note that the sign of AAST response does not
change with depth in almost all models. The fact that the participating modelling systems share the same
atmospheric model coupled to different LSMs or share the same LSM coupled to different atmospheric
components, helps to address the respective role of atmospheric and land processes in the AAST response to
afforestation. According to the results, the LSM selection drives in a great extent the sign of changes in AAST,
while the choice of atmospheric schemes further modulates (dampens/enhances) the magnitude of the signal. The
first evidence that confirms this finding derives from the comparison between three WRF modelling systems
which utilize the NoahMP LSM coupled to different atmospheric schemes (WRFa-NoahMP, WRFb-NoahMP,
WRFc-NoahMP). They all show a similar behavior in terms of the sign of changes, namely an increase of AAST
due to afforestation, but they differ in the magnitude of changes. WRFa-NoahMP shows the most intense AAST
increase across Europe (close to 2 °C in several regions) while the other two configurations show absolute changes
less than 1 °C. Moreover, the atmospheric models which are coupled to CLM LSM (CCLM-CLM4.5, CCLM-
CLM5.0, RegCM-CLM4.5, WRFb-CLM4.0) share a similar pattern of changes showing a tendency for decrease
in AAST due to afforestation in most regions, in contrast to NoahMP simulations. Another finding that highlights
the dominant role of LSM selection on the AAST response results from the opposite sign of changes between
WRFb-NoahMP (positive sign) and WRFb-CLM4.0 (negative sign) mostly over the southern Europe. The role
of land processes is also addressed within the sub-ensemble built around the CCLM atmospheric model coupled
to three different LSMs (TERRA, VEG3D, CLM 4.5 and 5.0) illustrating diverse results. CCLM-TERRA exhibits
strong decreases in AAST exceeding -4 °C in many regions. The CCLM-CLM configurations show similar
responses with maximum changes up to -2 °C. Last, CCLM-VEG3D exhibits a distinct behavior with small AAST
increase over central Europe and large AAST decrease of more than -5 °C in northern Europe and areas of high-

altitude.
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CCLM-TERRA CCLM-VEG3D CCLM-CLM4.5

Figure 3.2: Afforestation (FOREST minus GRASS) impact on the AAST at 1 meter depth. MMM: multi-model-mean of
LUCAS simulations. Positive (negative) values indicate an increase (decrease) due to afforestation.
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Figure 3.3: Afforestation (FOREST minus GRASS) impact on AAST at four different soil depths 2cm, 20cm, 50cm and 1
meter, averaged over eight European subregions.

To better understand the changes in AAST, the mean seasonal differences in soil temperature across soil depths
are examined, averaged over Mediterranean (Figure 3.4) and Scandinavia (Figure 3.5). These two regions are
selected as they are representative of southern and northern Europe, while similar figures can be found for all
European subregions in Appendix (Figures A 4-9).

Over the Mediterranean region, almost all models respond to afforestation, with REMO-iMOVE exhibiting an
almost constant temperature increase of small magnitude at all soil depths and seasons. From the remaining
simulations, six out of the nine show that summer (maximum) soil temperatures are higher in the GRASS than in
the FOREST experiment. All simulations included in this category include the CLM (coupled to CCLM, RegCM,
WRF), TERRA and the VEG3D LSMs. The winter (minimum) soil temperatures in the same modelling systems
are not considerably affected by afforestation, thus the decreased AAST, discussed before, is attributed
exclusively to the summertime climate processes over the Mediterranean region. Last, the WRF-NoahMP

configurations show the opposite behavior with higher forest soil temperatures in summer (this is true only at 1
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meter depth for WRFc-NoahMP). Similar to the first group of simulations, the winter soil temperature sensitivity
to afforestation is small, and as a result the AAST has a positive sign of change in WRF-NoahMP modelling

systems.
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Figure 3.4: Mean seasonal differences (FOREST minus GRASS) in soil temperature at four different soil depths, averaged
over Mediterranean.

In Scandinavia, a large spread in soil temperature response is simulated across RCMs in summer. Soil temperature
is not strongly affected by afforestation in REMO-iMOVE and WRF configurations, which show a small tendency
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for warming across seasons. Only in WRFa-NoahMP is noticed an intense warming of 1.5 °C in summer, which
explains the increased AAST with afforestation in this model. The response of the rest of the modelling systems
is mostly based on the selection of the land component, since the CCLM model coupled to TERRA, VEG3D and
CLM provides largely different results. CCLM-TERRA and CCLM-VEG3D show a temperature decrease at all
soil depths, with CCLM-VEG3D being the most responsive with changes up to -9 °C in the uppermost soil layer.
CCLM-CLM4.5 exhibits small sensitivity across seasons with a tendency towards temperature decrease in
summer (similar response from RegCM-CLM4.5), while in CCLM-CLMB5.0 the sign of changes switches from
negative in upper layers to positive in deeper layers. In winter, the soil temperature differences are small in the

majority of simulations and with a tendency for warming.
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Figure 3.5: Mean seasonal differences (FOREST minus GRASS) in soil temperature at four different soil depths, averaged
over Scandinavia.
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3.3.2 Surface energy input

As reported in the previous section, the simulated AAST response exhibits great variability during the summer
season, when models disagree both on the sign and magnitude of changes. For this reason, it is essential to
examine the afforestation-induced changes in the available energy to warm the ground across RCMs in summer.
As available energy to warm the ground or surface energy input into the ground is considered the residual of
energy balance at the land surface, as defined in Data & Methodology.

Figure 3.6 shows maps of the afforestation impact on the surface energy input into the ground in summer. The

pattern of changes is largely heterogeneous between the models and correlates well with the spatial pattern of
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changes in AAST. The choice of LSM affects the magnitude of changes; different scales of decrease are noticed
between the members which share the CCLM atmospheric model, especially between CCLM-VEG3D and
CCLM-TERRA in central Europe. CCLM-CLM4.5 and CCLM-CLM5.0 provide similar responses with larger
changes in southern Europe (close to -10 W/m?). Furthermore, the choice of LSM drives the sign of changes over
southern Europe between WRFb-NoahMP and WRFb-CLM4.0. The contribution of atmospheric component is
mostly related to the magnitude of changes; between RegCM-CLM4.5 and CCLM-CLMA4.5, the latter provides
stronger response in southern and central Europe, while between WRF-NoahMP modelling systems, WRFa-

NoahMP stands out for its intense increase in surface energy input of more than 10 W/m? in several regions.
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Figure 8: Afforestation impact (FOREST minus GRASS) on the surface energy input into the ground (W/m?) in summer.
Positive (negative) values indicate an increase (decrease) due to afforestation.

The heterogeneity in the afforestation-induced changes in the available energy to warm the ground is largely
consistent to the disagreement for AAST response among RCMs. Thus, it is crucial to explore the origin of large

inter-model spread in changes of surface energy balance in summer. Below, the afforestation impact on the
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different components of surface energy balance is investigated for each RCM over Mediterranean (Figure 3.7)
and Scandinavia (Figure 3.8). Similar figures can be found for the rest European subregions in the Appendix
(Figures A 10-15). The analysis of changes in surface energy balance components is performed with respect to
inter-model differences in land-use characteristics, such as leaf area index (LAI), surface roughness and surface
albedo.

In both regions, all models (except CCLM-TERRA) consistently show an increase in net shortwave radiation at
the surface due to afforestation, which is a result of lower albedo in FOREST compared to the GRASS experiment.
The changes vary across RCMs from +5 to +25 W/m? over the Mediterranean and from +15 to +35Wm? over
Scandinavia. In Scandinavia, the changes in net shortwave radiation are stronger than those in the Mediterranean.
This is attributed to the fact that the forests in Scandinavia consist of needleleaf trees, which have lower albedo
values compared to broadleaf trees which dominate in Mediterranean. Furthermore, the WRF configurations
exhibit more pronounced increases in net shortwave radiation with respect to other RCMs, which is linked to
stronger reductions in albedo values in these simulations. Moreover, the albedo effect is further intensified by a
reduction in cloud fraction with afforestation over Scandinavia in WRF configurations. In CCLM-TERRA, the
reduced net shortwave radiation is due to a pronounced increase in cloud fraction with afforestation triggered by
a strong and widespread increase in evaporation rates (Davin et al., 2020). Cloud fraction is also increased with
afforestation in the other CCLM members, however the reduced incoming shortwave radiation is offset by the
albedo effect, and thus the changes in net shortwave radiation have a positive sign in these simulations.

The increase in available radiative energy at the surface with afforestation is followed by an increase in sensible
heat flux, which is another robust feature among simulations. According to Breil et al., 2020, the increase in
sensible heat flux with afforestation is attributed to higher surface roughness values in forests compared to
grasslands. Generally, the high surface roughness values favor the mixing of atmosphere and enhance the heat
exchange between the surface and the upper air. In the current model ensemble, the changes in sensible heat vary
across RCMs from +5 to +26 W/m? over the Mediterranean and from +16 to +35 W/m? over Scandinavia. Again,
the only RCM which exhibits a reduction in sensible heat flux is CCLM-TERRA over Scandinavia, because of
the pronounced increase in latent heat with afforestation discussed above. Moreover, WRF configurations exhibit
the strongest changes in sensible heat flux within ensemble, especially over Scandinavia. As previously shown,
afforestation induced an intense increase in net shortwave radiation in these simulations due to strong reductions
in albedo in combination with decreases in cloud fraction. Thus, a larger part of radiative energy is available to
be transformed into sensible heat flux in these simulations. At the same time, the high surface roughness of
needleleaf trees dominating in Scandinavia facilitates the energy exchange between the ground and atmosphere
in the form of turbulent heat fluxes.

While RCMs consistently show an increase in sensible heat flux, the agreement is much lower for the response

of latent heat flux to afforestation. In Scandinavia, a tendency towards increase in latent heat is noted, but in the
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Mediterranean the simulated: response is mixed. In general, the sum of turbulent heat fluxes is increased with
afforestation in all models and it is largely attributed to an intense and widespread increase in sensible heat flux.
To sum up, all RCMs respond to afforestation in the same way. That is, afforestation leads to increased available
radiative energy at the surface due to lower albedo values in the FOREST experiment compared to GRASS. In
parallel, a large part of this additional radiative energy is transformed into turbulent heat energy due to the mixing-
facilitating forest characteristics, such as the high LAI and roughness values, which enhance the heat exchange
between the ground and upper atmosphere. The balance between the increased available radiative energy and the
increased sum of turbulent heat fluxes will determine if the surface energy input into the soil will be increased or
decreased with afforestation in each RCM. Since these processes are differently weighted in each modelling
system depending on land-use characteristics, the resulting energy input into the soil varies within the model
ensemble in terms of the sign and magnitude of changes. In CCLM-TERRA, CCLM-VEG3D, CCLM-CLM4.5,
CCLM-CLM5.0 and RegCM-CLM4.5, the soil heating is decreased with afforestation in summer over the
Mediterranean and Scandinavia, because the increased available radiative energy is compensated by the increased
sum of turbulent heat fluxes. On the other hand, REMO-iMOVE and the sub-ensemble built around NoahMP
LSM exhibit an increase in soil heating with afforestation, since the increase in the sum of turbulent heat fluxes

is not enough to compensate their pronounced increase in net shortwave radiation.
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Figure 3.7: (a) Changes in surface energy balance components (FOREST minus GRASS) averaged over Mediterranean in
summer, (b) the changes in available radiative energy at the surface and in the sum of turbulent heat fluxes with afforestation,
(c) cloud fraction response to afforestation across models, (d) the inter-model differences in LA, (e) surface roughness and (f)
surface albedo in summer (yearly maximum). Positive (negative) values indicate an increase (decrease) with afforestation.
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Figure 3.8: (a) Changes in surface energy balance components (FOREST minus GRASS) averaged over Scandinavia in
summer, (b) the changes in available radiative energy at the surface and in the sum of turbulent heat fluxes with afforestation
(FOREST minus GRASS), (c) cloud fraction response to afforestation across models, (d) the inter-model differences in LA,
(e) surface roughness and (f) surface albedo in summer (yearly maximum). Positive (negative) values indicate an increase
(decrease) with afforestation.

3.3.3 Soil moisture
The changes in soil moisture could also have key role in explaining the simulated soil temperature response to

afforestation, because they affect the thermal diffusivity within the soil column. It is expected that a drier (wetter)
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soil column would lead to a larger (smaller) AAST due to its smaller (larger) heat capacity, when considering
equal soil heat fluxes between the two experiments.

In Figure 3.9, the mean summer differences (FOREST minus GRASS) in soil moisture content (SMC) of the top
1m of the soil are mapped over Europe. A widespread soil moisture decrease is simulated over the biggest part of
the domain, although with considerable variation in the magnitude of changes across RCMs. The choice of LSM
produces a large spread of responses; within the sub-ensemble around CCLM, the SMC change ranges from small
decrease of less than -10 kg/m? in CCLM-CLMA4.5 to more than -40 kg/m? for CCLM-TERRA in several regions.
Differences in the magnitude of changes are also noticed between WRFb-NoahMP and WRFb-CLM4.0 because
of LSM choice. The atmospheric processes also affect the magnitude of afforestation effect on SMC; among the

modelling systems which share the NoahMP LSM, WRFa-NoahMP appears to be the most responsive, with

changes exceeding -20 kg/m?in many regions.
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Figure 3.9: Afforestation (FOREST minus GRASS) impact on soil moisture content (kg/m?) of the top 1m of the soil in
summer. REMO-iMOVE is not included because it employed a bucket scheme for soil hydrology in the LUCAS phase 1

experiments, which does not allow a separation of soil moisture into different layers. Positive (negative) values indicate an
increase (decrease) due to afforestation.

< Ao

The surface water balance (P-E), defined as the difference between precipitation (P) and total evapotranspiration
(E), decreases with afforestation in summer in the majority of models over all regions (Figure A 16 in Appendix).

This fact explains the general soil dryness following afforestation. In most simulations, the decrease in the
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terrestrial water budget originates from increased evapotranspiration rates with afforestation. In summer, high
LAI values do not allow solar radiation to reach the tree-covered ground surface; as a result, soil evaporation is
limited and transpiration dominates overall evapotranspiration (Bonan, 2008). Specific characteristics, such as
the big leaf area, the deep roots, the great available energy due to low albedo and the mixing of the upper
atmospheric boundary layer because of the high surface roughness, enhance the transpiration rate in forests.
However, CCLM-VEG3D and WRFa-NoahMP show a positive sign of changes in the water balance in the
regions of central and southern Europe, due to decreased evapotranspiration with afforestation. This is linked to
low atmospheric demands for hydrates in the FOREST experiment of CCLM-VEG3D (Breil et al., 2021). As for
WRFa-NoahMP, its poor performance in simulating correctly the surface climate processes, as shown in chapter
1, does not allow for formulating reliable arguments for its behavior in water balance.

The soil moisture changes with depth would indirectly reveal the afforestation effect on the evapotranspiration
process during summer. The water uptake for transpiration occurs in different depths within the soil column for
grasslands and forests. In grasslands, the soil water needed for transpiration is extracted from shallow layers,
because the large fraction of their roots is located there, depleting the moisture of upper soil. On the other hand,
forests have a deeper root distribution, thus consuming water from a bigger soil water reservoir. In Figure 3.10,
the afforestation-induced soil moisture changes within the top 1m of the soil are averaged over the Mediterranean
and Scandinavia. Similar plots for the other subregions can be found in Figure A 17 in Appendix. The
heterogeneity of SMC changes with depth is evident in most models, mostly in the Mediterranean. In Scandinavia,
the contrast in the sign of changes with depth is not evident and to the opposite a distinct soil drying in the
uppermost layers is simulated in most models, especially in CCLM-CLM4.5 and CCLM-CLM5.0, which is
probably related to differences in surface runoff of water amounts from snowmelt. The different structures of land
models and the various descriptions of physiological characteristics of plants in LSMs, such as the root

distributions, differentiate the pattern of SMC changes with depth among the simulations.
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Figure 3.10: Mean summer differences in soil moisture content (SMC) due to afforestation (FOREST minus GRASS) within
the top 1m of the soil, averaged over the Mediterranean and Scandinavia. Positive (negative) values indicate an increase
(decrease) due to afforestation.

3.3.4 The origin of inter-model spread in AAST

The widespread and homogeneous soil drying with afforestation, mentioned in the previous section, is not
consistent to the mixed AAST response. On the other hand, higher agreement between the pattern of changes in
soil heating and in AAST is noted. It has been previously showed that the afforestation impact on radiative
processes, such as the decrease in surface albedo, increases the available radiative energy at the surface. In
parallel, the afforestation effect on non-radiative processes removes a large part of thermal energy from surface
to atmosphere in the form of sensible heat flux. The balance between these processes will determine if the surface
energy input into the soil will be increased or decreased with afforestation in each RCM. However, the above
biophysical processes are differently weighted across RCMs depending on land-use characteristics, like surface
roughness, albedo and LAI, which affect the turbulent mixing and the amount of the absorbed solar energy at the
surface. Furthermore, the response of cloud fraction to afforestation is another important factor which affects the
soil heating, because of its impact on the incoming shortwave radiation at the surface.

With the aim to quantify the effect of changes in the above-mentioned quantities on the simulated AAST response
to afforestation, a linear regression analysis is conducted over all the European subregions. More specifically, the
mean summer changes in albedo, LAI, cloud fraction and soil moisture content are used as explanatory
(independent) variables to determine to what extent they influence the changes in AAST (dependent variable).
When all the explanatory variables are regressed against the simulated AAST response, the coefficient of multiple

determination (R?) is found above 80% in all regions, indicating the key role of the selected drivers in shaping
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the effect of afforestation on soil temperature (Figure 3.11). In southern regions, the Mediterranean and Iberian
Peninsula, the albedo effect predicts the largest part of the inter-model spread in AAST response. Over regions
of central Europe (mid-Europe, eastern Europe, France, British Isles), the predictive ability of albedo effect
remains strong, however the cloud fraction is the dominating factor which effectively explains the inter-model
variance over these regions. Soil moisture also contributes to the explanation of the inter-model spread in AAST
over the regions of central Europe, although it is not a dominating driver. In Scandinavia, the simulated AAST
response is largely explained by differences in LAI across RCMs, with cloud fraction also substantially
contributing to the prediction of the inter-model spread. The changes in LAI are potentially connected with the
simulated cloud fraction response, since higher LAI values could facilitate the evaporation rates triggering an
increase in cloud cover. This interaction effect between two or more physical processes which are used as
explanatory variables constitutes a caveat of the used statistical approach, which results in a reduction of the
effectiveness of the corresponding drivers in predicting the response of the dependent variable.
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Figure 3.11: The fraction of inter-model variance in AAST response to afforestation, explained by the mean summer changes
in albedo, LAI, cloudiness (clt), soil moisture content (SMC) or all combined (albedo+LAl+clt+SMC). Bars represent the
coefficient of determination (R?) derived from linear regression analysis applied over each subregion: Alps (AL), British Isles
(BI), eastern Europe (EA), France (FR), Iberian Peninsula (IP), Mediterranean (MD), mid-Europe (ME), Scandinavia (SC).

3.3.5 FLUXNET paired sites

In this section, the simulated impact on AAST is compared to observational evidence of afforestation effect on
soil temperature, based on 10 FLUXNET paired sites. In winter, simulations and observations illustrate
insignificant changes in soil temperature with afforestation (Figure 3.12). The magnitude of afforestation effect
in the observations is amplified during summer, revealing a strong cooling up to -3 °C. The majority of models
capture the seasonal pattern of changes in soil temperature and particularly the observed summer cooling, albeit
with considerable variation in the magnitude of changes. CCLM-TERRA shows the largest changes in summer
soil temperature (-5 °C), whereas WRFb-NoahMP and WRFc-NoahMP exhibit subtle summer cooling smaller
than -1 °C. On the other hand, WRFa-NoahMP, CCLM-VEG3D and REMO-iMOVE do not capture the observed
signal of changes in summer, simulating a warming. Especially REMO-iMOVE shows a yearly warming, in
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contrast to the observed cooling throughout the year. According to the observations, afforestation dampens the
mean annual soil temperature range by almost -3 °C, which is qualitatively consistent with most RCMs, in which
the decrease ranges from -5 °C for CCLM-TERRA to -0.2 °C for REMO-iMOVE. A notable exception is WRFa-
NoahMP, which exhibits a distinct increase greater than 1 °C in contradiction to the observational evidence.
Within the sub-ensemble of the CCLM model, the selection of CLM (4.5 or 5.0) as the land component brings
the CCLM closer to observations. Also, between the simulations which share the same WRF atmospheric
configuration (WRFb), the selection of CLM4.0 against NoahMP LSM improves the WRF performance in
simulating the afforestation effect on soil temperature.
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Figure 3.12: (Left) Observed and simulated impact of afforestation on mean monthly soil temperature. The dots indicate the
differences which are insignificantly different from zero in a two-sided t-test at 95% confidence level. (Right) The simulated
and observed changes in AAST (°C) due to afforestation. The observational differences are averaged over all the paired
FLUXNET sites (forest minus open land) and the simulated changes are averaged over the corresponding model grids
(FOREST minus GRASS). Positive (negative) values indicate an increase (decrease) with afforestation.

3.4Summary

In this study, the experimental design established within LUCAS FPS is employed in order to investigate the
afforestation impact on soil temperature in Europe. Two idealized land cover change experiments were performed
by an ensemble of 10 RCMs, in which the European land surface is represented as fully covered by forest and
grass, respectively. The majority of simulations showed a dampening of the annual soil temperature cycle with
afforestation, due to changes in summer soil temperature. A large inter-model spread was produced, ranging from
-7°C to +2 °C depending on model and region.

The changes in AAST with afforestation were found to be consistent with summer changes in available energy to
warm the ground. In other words, RCMs which showed a ground cooling following afforestation tend to simulate
a reduction in surface energy input into the ground, and vice versa. What differentiates the sign of changes in soil
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heating across models is the balance between two biophysical processes, which are greatly affected by
afforestation. First, it is the increased available radiative energy at the surface, due to lower albedo in forests, and
second it is the increased sum of turbulent heat fluxes (mostly sensible heat flux), due to mixing-facilitating
characteristics in forests, such as high LAI and surface roughness values, which enhance the heat exchange
between ground and atmosphere. However, these physical processes are differently weighted in LSMs depending
on land-use characteristics, such as surface albedo, surface roughness and LAI, while subsequent atmospheric
feedbacks, such as the cloud cover changes, can influence the surface fluxes. Thus, the magnitude of afforestation
effect on net shortwave radiation and on turbulent heat fluxes is differently pronounced across models. In six out
of 10 RCMs of the ensemble, the increased available radiative energy is compensated by the increased sum of
turbulent heat fluxes, thus simulating a decrease in soil heating with afforestation and finally a reduction in soil
temperature, while the opposite is true for the other four modelling systems. Finally, the changes in albedo, LA,
cloud fraction and soil moisture were found to explain more than 80% of inter-model variance in AAST response
in all subregions.

Previous studies which addressed the effects of land-cover changes on soil temperature have reported similar
results with the present work. Ni et al., 2019 employed field monitoring on a landscape consisting of tree- and
grass-covered ground to investigate the soil temperature effects on root water uptake for a time period from July
to November. They found that soil temperature under the grass-covered ground had larger fluctuations and slightly
higher values compared to tree-covered ground in summer. Lozano-Parra et al., 2018 studied the combined effect
of soil moisture and vegetation cover on soil temperature over three dryland areas of the Iberian Peninsula for
two hydrological years. Under dry conditions, they found smaller daily amplitudes of soil temperature below the
tree canopies than in grasslands. Longobardi et al., 2016 used a global climate model to investigate the climate
sensitivity to various rates of deforestation across the globe. According to their results, deforestation warmed the
soils of the midlatitudes because of a reduction in sensible heat fluxes that offset the induced albedo increase.
Lastly, MacDougall and Beltrami, 2017 conducted a GCM experiment to study the historical deforestation impact
on subsurface temperatures on a global scale. They found that a soil temperature increase remains present for
centuries following the deforestation, originating from the reduction of surface energy fluxes towards the
atmosphere.

In line with recent findings from observations and model-based studies (Jia et al., 2017; Ren et al., 2018; Zhang
etal., 2018; Li et al., 2018b), an afforestation-induced soil drying was detected in summer, implying smaller soil
heat capacity. This was also a robust feature among the models, albeit with a considerable inter-model range in
the magnitude of responses. Soil moisture decrease with afforestation resulted from large drying of deep layers,
related to the fact that forests and grasslands extract soil water for transpiration process from different soil depths.
However, the homogeneous soil drying and thus the smaller soil heat capacity is not consistent with the
afforestation-induced decrease of soil temperature in the majority of models, explaining only a small part of inter-

model variance in AAST response in regions of central Europe.
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To evaluate the reliability of model results, the simulated soil temperature response to afforestation was compared
to paired observations from the FLUXNET dataset. The vast majority of models agreed with the observational
evidence that showed a summer ground cooling in forested areas compared to open land. The paired sites
exhibited a mean reduction of -3 °C in AAST, while the simulated response varied from -5 °C to +1 °C.

The structure of the current ensemble helps to address the role of atmospheric and land processes in the
representation of biophysical forcing of land cover change, since it involves simulations which share the same
atmospheric model coupled to different land components or share the same LSM with different atmospheric
setups. The switch from CCLM to RegCM when both were coupled to CLMA4.5 did not induce important changes
in model results, implying the dominance of land processes in these simulations. Among the suite of models
which share the NoahMP LSM, the atmospheric configuration selected for WRFb-NoahMP and WRFc-NoahMP
significantly refined the afforestation effect on soil temperature compared to WRFa-NoahMP. Moreover, the
results stress the crucial role of LSMs in the simulation of the biophysical effects of afforestation on soil
conditions. Among the LSMs coupled to the CCLM maodel, the choice of CLM significantly improves the
representation of afforestation impact on AAST. Also, WRF coupled to CLM4.0 agreed better with observations
than WRF coupled to NoahMP. Another issue is the problematic behavior in model performance stemming from
unrealistic descriptions of the physical plant functioning in LSMs. Meier et al., 2018 improved the representation
of the evapotranspiration with land cover change in CLM4.5, modifying parameters related to transpiration
process, such as the root distribution and water uptake formulation.

Research has accounted for the contribution of historical deforestation to present climate conditions. In the last
years, governments and non-governmental organizations have been planning (re)afforestation projects around the
world with the purpose to mitigate the negative effects of anthropogenic activities on climate. This study aspires
to contribute to the deeper understanding of the scientific community on the biophysical effects of afforestation
on soil conditions. Future studies focused on the consequences of afforestation from biological or chemical
aspects are encouraged to consider these results in order to draw comprehensive conclusions on important climate

processes in which afforestation is involved, such as carbon sequestration and microbial respiration.
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4 Recent land cover changes over Europe could increase the diurnal range of
summer temperature at regional scale

4.1 Introduction

Around 15% of the total land cover in Europe has changed over the period 1950-2010, an area similar to France
(Fuchs et al., 2013). In recent years, the development of satellite technology enabled the assessment of temporal
and spatial dynamics of land cover changes (Song et al., 2018; Hansen et al., 2013). However, the current
generation of global land cover datasets, including MODIS-based land cover (Friedl et al., 2010), GLC2000
(Bartholomé and Belward, 2005) and GLOBCOVER (Arino et al., 2008), provide little consistency in terms of
time period of observations, spatial resolution, thematic information and accuracy standards (Poulter et al., 2015).
Because of these limitations, it is difficult to meet the requirements of earth system models for land cover input,
which need high-quality information of the different types of vegetation and their changes over time in order to

describe accurately the land cover feedbacks to climate.

To address these challenges, the European Space Agency (ESA) Climate Change Initiative (CCI)-Land Cover
project delivered consistent global land cover maps at 300 m spatial resolution on annual basis from 1992 to 2015,
based on synthesis of multiple remote sensing products and ground-truth observations (Poulter et al., 2015).
Research based on annual ESA-CCI LC maps showed that the global land cover change area from 1992 to 2015
was around 6 million km?or 3.5 % of the whole continental area (Li et al., 2018a; Liu et al., 2018). The dominant
land cover transition was between croplands and forests. Global forest area decreased fast from 1992 to 2014,
mostly over Central and South America and tropical Africa, accompanied by fast increases in croplands. In
Europe, the most common land cover transition was from cropland to forest, accounting for 42% of all the
transition areas over Europe, mainly distributed in Eastern Europe.

The contribution of historical and future LULCC on climate change signal over Europe is investigated within the
framework of FPS LUCAS Phase 2 (Rechid et al., 2017; Jacob et al., 2020), conducting downscaling experiments
of CMIP6 results with an ensemble of regional climate models. To cover the need for transient long-term land-
use forcing in these model experiments, annual land cover maps of 0.1° spatial resolution which cover the time
period 1950-2100 were constructed (Hoffmann et al., 2021). The generation of these maps was based on ESA-
CCI LC maps and land-use change information from Land Use Harmonization (LUH2) dataset (Hurtt et al., 2020),
including information for land management practices, such as irrigated croplands, and accounting for changes in

forest types (needleleaf, broadleaf trees) provided by a forest species composition dataset (McGrath et al., 2015).

In this study, the LUCAS LUC dataset is employed in combination with the regional climate model WRF in order

to investigate the impact of recent land cover changes on regional climates of Europe. In particular, two WRF
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simulations are performed for the reference period 1986-2015, forced with LUCAS maps for 1950 and 2015 year
respectively (named as LC1950 and LC2015). The two simulations differ only in their land cover map, thus their
differences can be exclusively attributed to land cover change. Previous similar assessments of LULCC impacts
on regional climate in Europe have focused on a single variable (Huang et al., 2020) or based on idealized land
cover change scenarios (Strandberg and Kjellstrom, 2019). Here, the effects of realistic land cover changes that
recently occurred in Europe on components of surface energy balance and temperature are investigated. It’s
worthwhile to note that | examine the climate sensitivity of 1986-2015 time period to two different real land cover
maps (1950 and 2015) and not the contribution of historical land cover changes on climatic trends between 1986-
2015. While acknowledging the limitations of a single model in terms of generalizability and robustness of results,
the performance of the specific model configuration has been evaluated (in chapter 1, named as WRFc-NoahMP)

and is able to reproduce the observational patterns with good accuracy, adding value to model outputs.
4.2 Data & Methodology

Two climate simulations are performed over Europe for the time period 1986-2015 with the regional climate
model WRFv3.8.1 (Skamarock et al., 2008). One simulation is forced with the LUCAS land cover map of 1950
(named as LC1950) and the other with the land cover map of 2015 (named as LC2015). Details about the
processing and implementation of these maps into WRF are reported below. Since the two simulations differ only
in land cover input, the differences in model outputs can be exclusively attributed to land cover forcing. Here, the
LC2015 minus LC1950 differences are considered, which indicate how different the climate of 1986-2015
simulation period would be, if the realistic land cover map of 2015 year instead of the 1950 map is considered as
land cover input. The analysis is focused on summer season (June-July-August), since the winter temperature

showed a weak sensitivity even to extreme land cover change scenario.
4.2.1 Model set-up

The WRF simulations are carried out over the EURO-CORDEX domain (Jacob et al., 2020) at 0.44° spatial
resolution and cover the time period 1985-2015, forced by ERA-Interim reanalysis data at their lateral boundaries
and at the lower boundary over the sea (Dee et al., 2011). The first year is used as spin-up period and only the
1986-2015 period is analyzed. Radiative fluxes within the atmosphere are calculated based on Rapid Radiative
Transfer Model (RRTMG) (lacono et al., 2008). Vertical turbulent mixing is parameterized according to Yonseli
University PBL scheme (YSU) (Hong et al., 2006), while the fluxes within the lowest atmospheric part of
boundary layer are calculated according to revised MM5 surface layer scheme based on Monin-Obhukov
similarity theory (Jiménez et al., 2012). For moist convection, the mass flux scheme of Kain-Fritsch (Kain, 2004)

is used in combination with Thompson microphysics scheme (Thompson et al., 2004). The present WRF
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configuration has been evaluated in chapter 1 (named as WRFc-NoahMP) and achieved good performance in

reproducing the observational temporal and spatial patterns.

The atmospheric component of WRF is coupled to NoahMP land surface model in order to represent the key land-
atmosphere interaction processes, surface water infiltration and runoff, groundwater transfer and storage as well
as soil heat fluxes (Yang et al., 2011). The NoahMP scheme augments the conceptual realism in biophysical and
hydrological processes based on the Noah scheme (Chen and Dudhia, 2001) and introduces a framework for
multiple options to parameterize selected processes. NoahMP in WRF has a detailed description of land surface,
in which the vertical structure includes a single-layer vegetation canopy, a multi-layer snowpack, and a four-layer
soil column. The vegetation canopy layer is separated from the combined surface layer, and the two-stream
radiation transfer scheme is used to calculate the canopy radiation transfer. Noah-MP contains a multi-layer snow
pack with liquid water storage and melt/refreeze capability and a snow-interception model describing
loading/unloading, melt/refreeze, and sublimation of the canopy-intercepted snow. A Ball-Berry type stomatal
resistance scheme is chosen to consider the difference of sunlit and shaded leaves, while the TOPMODEL scheme
is used to parameterize the surface and subsurface water runoff (Niu et al., 2005). NoahMP employs the dominant
approach (one vegetation type per grid cell) to represent the land cover, which is classified according to 20 IGBP-
MODIS land cover categories that differ in structure and physiology as leaf and steam optical properties, root
distribution, aerodynamic and photosynthetic parameters. These parameters are monthly prescribed and daily

updated by linearly interpolating monthly values.
4.2.2 Land cover maps

The LUCAS LUC historical dataset v1.0 (Hoffmann et al., 2021) is used in order to explore the climate effects
of recent land cover changes in Europe. The annual LUCAS maps are provided at 0.11° spatial resolution for a
period of 65 years, from 1950 to 2015. These maps represent the ground surface using 16 Plant Functional Types
(PFTs). The land cover information is provided as PFT fraction per grid cell, where each fraction represents the
area covered by the respective PFT within each grid cell (0-1). The LUCAS maps have been generated within
the FPS LUCAS Phase 2 in order to be applied as land cover input to downscaling experiments of CMIP6 results
over Europe. The new dataset is based on the LANDMATE PFT land cover dataset for Europe (Reinhart et al.,
2022), which is derived from the ESA-CCI LC map for 2015. The annual LUCAS maps are also based on land
use change information from Land-Use Harmonization Data Set version 2 (LUH2) (Hurtt et al., 2020) in order to
derive realistic land use distribution at high spatial resolution from 1950 to 2015. Furthermore, the historical
changes in the forest type distributions were adopted from reconstructed forest maps provided by McGrath et al.,
2015.
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By default, WRF-NoahMP uses a MODIS-based land cover map at a resolution of 30-arc-seconds (around 1 km
at 45° latitude) in order to describe the global land cover. This map provides the global distribution of 20 land use
categories based on IGBP LC classification system. Thus, specific conversion rules should be applied in order to
implement the PFT-based LUCAS maps into WRF-NoahMP. First, the LUCAS LC data were interpolated to
model grid with the use of distance weighting method followed by bilinear interpolation. The fractional coverage
of land use categories which are present in default MODIS map and are not considered in LUCAS maps
(savannas, closed shrublands, cropland/natural vegetation mosaic, mixed forest, wooden and barren tundra) were
set to zero. Water, snow and ice are not provided by LUCAS maps therefore these categories were conserved as
in the original MODIS maps. Furthermore, the IGBP/MODIS classification system does not distinguish between
C3 & C4 grass, irrigated & non-irrigated crops, evergreen & deciduous shrublands, thus the respective PFTs in
LUCAS maps were combined into a joint land cover type. In this way, the fractional coverage of C4 grass is
added to that of C3 grass in LUCAS maps and then was translated to “Grassland” category in IGBP/MODIS. The
fractions of irrigated and non-irrigated crops combined and then translated to IGBP category “Croplands”, while
evergreen and deciduous shrublands are added to the IGBP category “Open Shrublands”. The cross-walking table
(Table A 1 in Appendix) describes the conversion of LUCAS PFTs to IGBP classes used as input to WRF.

In order to facilitate the interpretation and visualization of land cover transitions that occurred in Europe, the
LUCAS PFTs were aggregated into the generic IPCC land cover classes, according to the cross-walking Table

A 2 in Appendix.
4.2.3 Surface temperature decomposition

An energy balance decomposition method, developed by Juang et al., 2007 and further modified by Luyssaert et
al., 2014, is employed in order to investigate the processes underlying the surface temperature response to land
cover changes. This method enables the quantification of the net impact of changes in each individual term of

surface energy balance on surface temperature response.
The energy balance at the surface-atmosphere interface can be written as:
SWhet+ LWhet = LE + H + G, (1)

where SWhet and LWnet represent the net shortwave and longwave radiation flux at surface respectively, LE is
the latent heat flux, H is sensible heat flux and G is a residual term mainly consisting of soil heat flux. Applying
the Stefan-Boltzmann law, the LWhet can be written as:

I_Wnet = SLWdown - I_Wup = SLWdown — 08T4s , (2)
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where ¢ is the surface emissivity (assuming constant € = 1),  is the Stefan-Boltzmann constant (5.67x 108 W m-

2K and Tsis the surface temperature. Substituting (2) into (1), we obtain
0T%= SWhet + LWgown— LE - H—G , (3)

The change in surface temperature ATs is decomposed by calculating the total derivative of equation (3) and
solving for ATs:

1
40Ts3

ATs

(ASWiee + ALW,9n — ALE — AH — AG) (4)

All terms in equation (4) can be computed from the differences in model outputs (LC2015 minus LC1950). In
this way, changes of positive sign in ASWhet and ALWaown indicate positive changes in ATs or a warming, while
positive changes in ALE and AH heat fluxes induce a cooling. As in Winckler et al., 2017, we omit the residual
term AG in the following analysis, as the multi-year mean ground heat flux is largely unaffected by sparse land

cover changes.

Note that the net impact of each term on surface temperature response could arise either from direct biophysical
consequences of land cover changes or atmospheric feedbacks triggered by changes in surface properties. For
example, the change in net shortwave radiation could arise from changes in surface albedo, which influence the
absorption amounts of solar energy from surface, or from changes in cloudiness which regulate the incoming

solar radiation at surface.

4.3 Results

4.3.1 Land cover changes in Europe

The fractional changes in the main IPCC land classes from 1950 to 2015 (LC2015 minus LC1950) are presented
in Figure 4.1. The PFT-based LUCAS maps were translated to IPCC classification system to facilitate the
interpretation of results. A widespread decline in agricultural land is seen in most of Europe, except for the
northern coastline of Africa, Albania, Greece, eastern Ukraine and Turkey. The same pattern but with the opposite
sign of changes is observed for shrublands. Forest areas increased in Europe, especially around the Alps and
Baltic countries. Great urban sprawling also occurred in much of Europe between 1950 and 2015. The spatial
pattern of changes in grasslands is heterogeneous, decreasing in much of western Europe and increasing over the
eastern part of the domain. Wetlands, bare lands and lands with sparse vegetation have not been significantly
affected.
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Figure 4.1: Changes in grid cell fraction for the main IPCC land classes between 1950 and 2015 based on LUCAS LUC maps
(LC2015 minus LC1950). Positive values mean expansion, negative values mean contraction. LUCAS PFT-based maps were
converted to IPCC classification system to facilitate interpretation (Table A 2).

In Figure 4.2, the land cover fractions are converted into area coverage (10° km?) for eight European sub-regions.
The results show a consistent decline of agricultural lands in all subregions, more pronounced in Eastern Europe
where more than 100.000 km? of farmlands have been abandoned between 1950 and 2015. Farmland
abandonment in Europe has been associated with a combination of socio-economic, political and environmental
factors by which formerly cultivated fields are no longer economically viable under existing land-use and socio-
economic conditions (Ustaoglu and Collier, 2018; Alcantara et al., 2013; Lesiv et al., 2018). In Eastern Europe,
agricultural lands mostly converted into grasslands, but in many areas a great part of croplands was replaced by
forests. The conversion of croplands and pasture lands to forests was the dominant land cover transition the last
decades in many European regions (Fuchs et al., 2013; McGrath et al., 2015; Kuemmerle et al., 2016; Fuchs et
al., 2015). Another major land cover change that occurred in Europe between 1950 and 2015 is the partial
conversion of croplands to shrublands. Generally, the type of natural succession after agricultural abandonment
depends on soil fertility, local climate and nearby vegetation (Huang et al., 2020; Rey Benayas and Bullock,
2012). Last but not the least, the population and economic growth has led to urban expansion in all subregions at
the expense of agricultural areas, especially on the outskirts of mega-cities.
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Figure 9: Area changes (LC2015 minus LC1950) in the main IPCC land classes over eight European subregions. AL (Alps), Bl
(British Isles), EA (Eastern Europe), FR (France), IP (Iberian Peninsula), MD (Mediterranean), ME (Mid-Europe), SC
(Scandinavia).

4.3.2 Land surface properties

The land cover changes have biophysical consequences on land-atmosphere interactions through modifications
in land surface characteristics, which regulate the heat and radiation fluxes at surface. Figure 4.3 depicts the
changes in WRF-NoahMP for leaf area index (LALI), surface roughness and albedo due to the recent land cover

changes (LC2015 minus LC1950), averaged over eight European subregions.

The transition from open lands to forests and shrublands increased LAl in all subregions, from 0.002 m?/m? over
British Isles to 0.25 m?m?in Alps. Also, rougher (from 0.01 m in British Isles to 0.16 m in Alps) and darker
(from -0.03 in Eastern Europe to -0.28 in Alps) surfaces are noticed in all subregions. The magnitude of changes
in land surface parameters depends not only on the size and type of occurred land cover changes, but also on the

magnitude of subregions, as differences (LC2015 minus LC1992) are averaged on regional scale.

Considering the implications from the resulted changes in land surface characteristics and ignoring the possible
atmospheric feedbacks triggered by them (e.g. changes in cloudiness), it is expected that the reduction in surface
albedo is going to increase the available radiative energy at surface. Also, the greater leaf area could facilitate
transpiration due to a greater number of stomata, while the rougher surface is likely to enhance the mixing of

atmospheric boundary layer and consequently favor the heat exchange between surface and atmosphere.
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Figure 4.3: Changes in WRF-NoahMP for a) LAI (yearly maximum), b) surface roughness and c) surface albedo due to recent
land cover changes (LC2015 minus LC1992) averaged over eight subregions. Surface albedo is calculated for an exemplary
leaf/stem ratio.

4.3.3 Surface temperature

A method for energy balance decomposition was followed, as described in equation (4), in order to extract the
sign of surface temperature change due to the recent land cover changes and quantify the importance of underlying
biophysical mechanisms. According to this method, the surface temperature change (ATs) is exclusively attributed
to the response of four components of surface energy balance, namely, net shortwave radiation (ASWhet),

incoming longwave radiation (ALW4down), latent (ALE) and sensible heat (AH) fluxes.

Figure 4.4 depicts the impact of recent land cover changes (LC2015 minus LC1950) on mean daily surface
temperature in summer over Europe for the simulation period 1986-2015. A tendency for warming is shown
towards the southern part of Europe, reaching 0.15 °C in Alps and Iberian Peninsula on regional scale. The surface

temperature over the northern and eastern part of the domain was not significantly affected by land cover changes.
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Figure 4.4: The map of differences (LC2015 minus LC1950) in mean daily surface temperature (°C) in summer (JJA) of
simulation period (1986-2015) over Europe. The dots indicate the differences which are insignificantly different from zero in a
two-sided t-test at 95% confidence level. Below the map, the temperature differences are averaged over eight subregions. The
values in parenthesis represent the standard deviation from average. The grid cells with intense red/blue color correspond to

grid cells where a land cover change occurs.

In Figure 4.5, the temperature decomposition is applied over each subregion, based on spatially averaged daily
values for summer. The stacked bars illustrate the contribution of changes in each individual component on

surface temperature response to land cover changes. ATsarises from the total sum of all individual contributions.

As previously mentioned, the change of land cover induced positive changes in summer temperature (positive
ATs) of simulation period 1986-2015, reaching up to 0.15 °C in Alps. The dominant mechanism that explains this
warming is the change in net shortwave radiation (ASWhet) which alone induce a warming from 0.01 °C in
Scandinavia to almost 1 °C in Alps. The change in sensible heat (AH) is the second major influence, which results
in changes of negative sign in surface temperature (from -0.07 °C in Scandinavia to -0.8 °C in Alps) and thus
partly offset the warming induced by ASWhet. The influence of latent heat changes (ALE) on ATs is mixed in terms
of sign (from -0.26 °C over Iberian Peninsula to 0.15 °C in British Isles) and has less importance than the
corresponding response of sensible heat flux, apart from Iberian Peninsula where ALE dominates over AH.
Moreover, the changes in downward longwave radiation (ALWgown) have a minor influence on ATs, inducing a

range of changes from -0.09 °C in British Isles to 0.15 °C in Iberian Peninsula.
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Figure 4.5: Surface temperature decomposition (equation 4) based on mean daily differences (LC2015 minus LC1950) for
summer of simulation period (1986-2015) averaged over eight subregions (over all land pixels). The stacked bars represent the
contribution of each component of surface energy balance to temperature response. The black dashed line indicates the net
change in surface temperature, which is the sum of individual contributions. In Table A 3 (Appendix), ATsas simulated by
WRF-NoahMP is compared to ATs as estimated from equation 4. Negligible differences are depicted between them, implying
the minor contribution of ground heat flux response on surface temperature differences.

To gain further insights, Figure 4.6 shows the effect of land cover changes (LC2015 minus LC1950) on mean
daily cycle of surface temperature in summer, averaged over eight subregions. The diurnal temperature range
increases in all subregions from 0.04 °C in Iberian Peninsula to 0.36 °C in Mid-Europe. In most regions, the
increase in diurnal temperature range originates from increased daytime (maximum) temperatures, while the
nighttime (minimum) temperature is not considerably affected by land cover changes. Only in Scandinavia the
negligible increase of diurnal range results from a small decrease of minimum temperature, while in Iberian

Peninsula the hourly temperature is increased all day.
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Figure 4.6: The impact of recent land cover changes (LC2015 minus LC1950) on daily cycle of surface temperature in
summer, averaged over eight subregions. DTR represents the effect on diurnal temperature range, which results from the
difference between daily maximum and minimum temperature.

Below, the mean daily summer changes in energy balance components that explain the surface temperature
response to land cover changes are investigated.

4.3.4 Shortwave radiation

As previously reported, the change in net shortwave radiation at surface is the dominant mechanism that explains
the warming over most of Europe. The changes (LC2015 minus LC1950) in mean daily net shortwave radiation
for summer are mapped in Figure 4.7. The available net shortwave amounts at surface are increased over the
largest part of domain due to land cover changes and maximized over Alps (5.2 W/m? on average). Reduced
amounts are shown only over Scandinavia (-0.02 W/m? on average) which are not statistically significant, in

northern African coast and some pixels in Turkey.
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Figure 4.7: The impact of land cover changes (LC2015 minus LC1950) on mean daily net shortwave radiation (W/m?) at
surface in summer for simulation period 1986-2015. The dots indicate the differences which are insignificantly different from
zero in a two-sided t-test at 95% confidence level. Below the map, the differences are averaged over eight subregions. The
values in parenthesis represent the standard deviation from average. The grid cells with intense red/blue color correspond to
grid cells where a land cover change occurs.

The net shortwave radiation at surface arises from the difference between incoming and outgoing shortwave
radiation amounts. The contribution of each component on net change is illustrated in Figure 4.8a, averaged on
regional scale. The incoming shortwave radiation increased due to land cover changes over regions of central
Europe (Alps, British Isles, Eastern Europe, France, Mid-Europe) and decreased in southern regions (lberian
Peninsula, Mediterranean) and Scandinavia. The response of incoming shortwave radiation is explained by the
changes in total cloud fraction (Figure 4.8b). As shown, the total cloudiness is decreased over Alps, British Isles,
Eastern Europe, France, Mid-Europe and increased in Iberian Peninsula, Mediterranean and Scandinavia. On the
other hand, the outgoing shortwave radiation is reduced in all regions, leaving more available radiative energy at
surface. The reduction of outgoing shortwave radiation is a consequence of darker surface (lower albedo) induced
by land cover changes, as discussed in Figure 4.3. The decreased outgoing radiation amounts in combination
with the increased incoming radiation explain the increased net shortwave radiation amounts in Alps, British Isles,
Eastern Europe, France and Mid-Europe. In southern regions (Mediterranean, Iberian Peninsula) the net positive
change is attributed to the decreased outgoing radiation amounts which offset the decreased incoming radiation
flux. In Scandinavia, the net change is almost zero since the changes in outgoing and incoming radiation offset
each other.
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Figure 4.8: a) The impact of recent land cover changes (LC2015 minus LC1950) on shortwave radiation components, based on
mean daily summer values and averaged over eight subregions. b) The corresponding LCC impact on total cloud fraction.

4.3.5 Incoming longwave radiation

The changes in downward longwave radiation have minor influence on surface temperature response to land cover
change. The response of incoming longwave radiation to land cover changes (LC2015 minus LC1950) is mapped
in Figure 4.9. The differences are small and insignificant over the largest part of the domain, ranging from -0.14
W/m? in Scandinavia to 0.9 W/m?in lberian Peninsula on average. Longwave radiation and cloudiness responses

are not well correlated, in contrast to the strong corresponding link between cloud cover and shortwave radiation.
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Figure 10: The impact of land cover changes (LC2015 minus LC1950) on downwelling longwave radiation at surface (W/m?)
based on mean daily summer values for simulation period 1986-2015. The dots indicate the differences which are
insignificantly different from zero in a two-sided t-test at 95% confidence level. Below the map, the differences are averaged
over eight subregions. The values in parenthesis represent the standard deviation from average.
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4.3.6 Sensible heat

The differences in sensible heat flux due to land cover changes (LC2015 minus LC1950) are mapped in Figure
4.10. On regional scale, the sensible heat flux increases from 0.3 W/m?2 in Scandinavia to 4.3 W/m?in Alps. The
increase of sensible heat flux towards atmosphere removes available energy from surface thus leading to a cooling
that partly offset the warming induced by the increased net shortwave radiation. The reason behind the increase
of sensible heat flux is likely the increase of roughness length with land cover changes, which favor the turbulent
mixing and thus enhance the heat exchange between the ground and atmosphere.
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Figure 4.10: The impact of land cover changes (LC2015 minus LC1950) on sensible heat flux (W/m?) based on mean daily
summer values for simulation period 1986-2015. The dots indicate the differences which are insignificantly different from zero
in a two-sided t-test at 95% confidence level. Below the map, the differences are averaged over eight subregions. The values in

parenthesis represent the standard deviation from average. The grid cells with intense red/blue color correspond to grid cells
where a land cover change occurs.

4.3.7 Latent heat

The sign of changes in latent heat flux due to land cover changes is spatially mixed, varying from -0.3 W/m?in
Eastern Europe and Scandinavia to 1.5 W/m? over Iberian Peninsula (Figure 4.11). The decrease of latent heat
flux in British Isles, Eastern Europe and Scandinavia contributes to the surface warming dominated by increased
net shortwave amounts, while the increased latent heat flux over the remaining regions, in combination with the
increased sensible heat flux, induce a cooling effect that partly offset the warming of radiative origin. Despite the
positive changes in characteristics that facilitate evapotranspiration, such as the increased LAI, roughness length

and available radiative energy at surface, the latent heat flux is not increased everywhere as was expected. Other
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factors related to evapotranspiration, such as stomatal conductance, saturation deficit between vegetation and

atmosphere (Breil et al., 2021) should be investigated in order to unveil the latent heat flux response to land cover
change.
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Figure 4.11: The impact of land cover changes (LC2015 minus LC1950) on latent heat flux (W/m?) based on mean daily
summer values for simulation period 1986-2015. The dots indicate the differences which are insignificantly different from zero
in a two-sided t-test at 95% confidence level. Below the map, the differences are averaged over eight subregions. The values in

parenthesis represent the standard deviation from average. The grid cells with intense red/blue color correspond to grid cells
where a land cover change occurs.

4.3.8 Precipitation

The impact of land cover changes on summer precipitation is mapped in Figure 4.12. Precipitation does not
change dramatically for most of Europe. On regional scale, drier conditions are mostly seen over regions of central

Europe (-0.14 mm/day in Alps, -0.12 mm/day in France, -0.14 mm/day in Mid-Europe). Over the remaining areas,
the precipitation changes are not considered significant.
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Figure 4.12: Differences in mean summer precipitation (mm/day) for the simulation period 1986-2015 due to recent land cover
changes (LC2015 minus LC1950). The dots indicate the differences which are insignificantly different from zero in a two-sided
test at 95% confidence level. Below the map, the differences are averaged over the subregions. The values in parenthesis
represent the standard deviation from average.

The role of turbulent heat fluxes partitioning is probably responsible for the drier conditions over the most of
Europe. Indeed, the evaporation fraction, calculated here as the ratio between latent heat and the sum of sensible
and latent heat fluxes, is reduced over all subregions due to land cover changes (Figure 4.13). This is an
implication for reduced water input to the atmosphere and consequently reduced cloudiness and precipitation.

The reasons for the reduced evaporative fraction due to land cover change are beyond the scope of this analysis.
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Figure 4.13: Differences in evaporative fraction due to land cover changes (LC2015 minus LC1950), averaged over eight
subregions. Evaporative fraction is calculated as the ratio between latent heat flux and the sum of sensible and latent heat
fluxes.
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4.3.9 2m temperature

Compared to changes in surface temperature, changes in 2m temperature may be considered more relevant for
human living conditions. 2m temperature is a diagnostic quantity which is estimated at 2 meter above the surface
(top of vegetation) and is obtained via a procedure based on Monin-Obhukov similarity theory that uses both the
temperatures at the surface and at the lowest atmospheric model level. It could be said that 2m temperature is an
interpolation between surface temperature and temperature at the lowest atmospheric model level. Breil et al.,
2020 and Winckler et al., 2019 revealed opposing effects of deforestation on the surface and air temperature in
climate models, thus the diagnostic calculation and use of 2m temperature in their studies could not reflect the
occurring processes near the surface and consequently produced misleading conclusions for temperature response
to deforestation. Thus, the sole use of the simulated 2m temperature as a metric to assess the land cover change

impact on regional climate is not recommended.

Since the simulated 2m temperature is a diagnostic calculation based on surface and lowest atmospheric model
level temperature (Tam), the changes in Tam should be first examined. The impact of land cover changes (LC2015
minus LC1950) on mean daily cycle of Tam for summer is depicted in Figure 4.14, averaged over eight
subregions. The diurnal temperature range is increased in all regions, from 0.06 °C in Scandinavia to 0.35 °C in
France, owing to increased daytime (maximum) temperature, following the pattern of changes in surface
temperature. The warming effect on lowest atmospheric model level results from the increased sensible heat flux
from surface towards atmosphere, as a consequence of increased surface roughness, in contrast to surface

warming which has radiative origins.
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Figure 4.14: The impact of recent land cover changes (LC2015 minus LC1950) on daily cycle of summer temperature at the
lowest atmospheric model level, averaged over eight subregions. DTR represents the effect on diurnal temperature range,
which results from the difference between daily maximum and minimum temperature.
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The impact of land cover changes (LC2015 minus LC1950) on daily cycle of summer 2m temperature is depicted
in Figure 4.15, summarized over eight regions. The diurnal temperature range at 2m is increased over all regions

from 0.07 °C in Scandinavia to 0.42 °C in Alps, as a result of warming effects on surface and lowest atmospheric

model level.
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Figure 4.15: The impact of recent land cover changes (LC2015 minus LC1950) on daily cycle of summer 2m temperature,
averaged over eight subregions. DTR represents the effect on diurnal temperature range, which results from the difference
between daily maximum and minimum temperature.

The warming in WRF-NoahMP due to forest cover increase contradicts recent evidence from studies based on
models and observations, which suggest that forests cause lower daytime temperatures at surface compared to
open lands in mid-latitudes (Alkama and Cescatti, 2016; Breil et al., 2020; Li et al., 2015). In these studies, the
temperature over forest was lower than adjacent open lands, because the increased sensible heat flux from ground
to atmosphere (roughness effect) offset the radiative gain from decreased forest albedo. The same physical
processes take place also in WRF-NoahMP, however the albedo values for forest tiles are somewhat high with
respect to other models, as a result the roughness effect is not enough to compensate the albedo effect, leading to

an increase of available energy at surface and finally a warming with afforestation.

4.4Summary

This study addressed the climate change signal in summer on regional scale due to recent land cover changes that
occurred in Europe. For this purpose, two climate simulations were performed over the time period 1986-2015,

the one forced with a representative land cover map of 1950 year and the other with the land cover map of 2015.
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The results showed that the recent land cover changes produce warmer daytime temperatures in summer,
increasing the diurnal temperature range up to 0.3 °C on average in most regions. Based on energy balance
decomposition, it’s shown that the dominant physical mechanism behind this warming was the increased
shortwave radiation amounts at surface, as a consequence of lower surface albedo and decreased cloudiness. In
parallel, a consistent increase in sensible heat flux from surface to atmosphere, due to increased roughness length,
produced a warming at the lowest atmospheric model level and a cooling at surface, that partly offset the warming
of radiative origin. Furthermore, summer precipitation was not significantly affected by land cover changes,
showing a tendency for drier conditions mostly over regions of central Europe, probably related to a general

decrease in evaporation fraction.

The simulated results show a tendency for warmer and drier conditions due to the recent land cover changes,
which mostly concern the transition from open lands (croplands/grasslands) to forests and shrublands. This is
rather contradictory to the evidence that increased forest cover leads to cooler climate. Observational evidence
based on clusters of closely spaced eddy covariance towers located over forested areas and nearby open lands
respectively, show that the surface temperature of open land is cooler than forest at night and warmer during the
day at temperate zone (Lee et al., 2011; Burakowski et al., 2018). Similar results are reproduced by satellite-
driven analyses based on land surface temperature differences between forests and nearby open lands (Li et al.,
2015; Tang et al., 2018; Schultz et al., 2017; Alkama and Cescatti, 2016). However, the observational set-up does
not resemble the experimental design applied in WRF, thus the observational evidence is not directly comparable
to the current model results. The main discrepancy lies in the fact that observations capture only local temperature
effects but exclude non-local effects—for example, when measurements of neighboring forests and grasslands
are compared, any non-local effects cancel, because advection and atmospheric circulation affect neighboring
regions similarly (Pongratz et al., 2021). Winckler et al., 2019b have shown that the non-local effect of forest loss
constitutes a cooling across temperate regions, whereas the local biophysical effects lead to a warming. The
temperature signal of non-local effect is dominated by changes in albedo (Bright et al., 2017), while the local

temperature response is attributed to roughness change (Winckler et al., 2019b).

The present study provides evidence about the impact of recent land cover changes on regional climate, based on
results from single model. However, evidence from more models at finer scales is needed in order to deliver
reliable information to stakeholders for land management. In the framework of FPS LUCAS Phase 2, simulations
driven by GCMs and dynamic land use changes will be performed for past and future in order to quantify the
relative contribution of land use changes compared to other forcings in the detection of the past and future climate

trends.
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5 Conclusions

The present dissertation addressed the impact of land cover changes on regional climate in Europe with the use
of regional climate simulations performed in the framework of LUCAS FPS. The simulations cover the 1986-
2015 time period at ~50 km spatial resolution and follow the Euro-CORDEX protocol for reanalysis-driven
simulations. The analysis focused on afforestation impacts, defined as the transition from open lands to forests,
as it constitutes a land cover change trend that has recently emerged in developed countries and is frequently

proposed as a tool to mitigate anthropogenic greenhouse gas emissions.

The study is divided into three parts. In the first part, WRF simulations within LUCAS ensemble are compared
to observational datasets in order to evaluate the WRF performances for correctly simulating the physical
processes. In the second part, all the simulations within LUCAS are used in order to investigate the impact of
theoretical maximum afforestation across Europe on surface energy balance and soil temperature at regional level.
In the last part, land cover maps for 1950 and 2015 are implemented into WRF so as to examine the effect of
recent land cover changes on regional climate in Europe for the reference period 1986-2015. Below, the

conclusions are reported in detail for each part of the analysis.

5.1 Evaluation of WRF simulations

Four WRF simulations within LUCAS ensemble were compared to gridded reference products for 2m
temperature, precipitation, radiation and heat surface fluxes, cloud fraction and soil moisture. WRF simulations
shared either the same atmospheric set-up coupled to different land surface model (WRFb-NoahMP, WRFb-
CLM4.0) or the same land surface model with different combination of parameterization schemes for the
representation of atmospheric processes (WRFa-NoahMP, WRFb-NoahMP, WRFc-NoahMP). This fact helped
to understand the respective role of atmospheric and land surface processes on the model errors in the estimation

of physical processes.

The analysis focused on winter and summer season. In winter, the sign of temperature bias among WRF
simulations was mixed. The two WRF simulations with the same land surface model produced minor absolute
biases below 1 °C and shared similar spatial bias patterns, indicating the small contribution of land processes on
winter temperature simulation. The change of parameterization schemes for the representation of processes which
take place within atmospheric boundary layer in WRFc-NoahMP, induced a prominent cold bias of -2 °C in
Scandinavia which was attributed to the problematic estimation of skin temperature over snow-covered ground.
The change of convection and microphysics scheme in WRFa-NoahMP resulted in a winter temperature
overestimation which exceeded 2 °C in many regions. Moreover, winter precipitation was overestimated in all
simulations except WRFa-NoahMP confirming a well-known WRF typical behavior. The WRF ensemble
produced a positive bias for incoming shortwave radiation at surface in winter mostly towards the southern Europe
which ranges from 9% in WRFb-CLM4.0 to 46% in WRFa-NoahMP with respect to the absolute CLARA-A2.1
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estimate over Mediterranean. The overestimation of incoming shortwave radiation over the southern regions
could not be associated with a general overestimation in total cloud cover in WRF simulations except for the case
of WRFa-NoahMP.

In summer, the use of Grell-Freitas scheme for the representation of convection processes in WRFa-NoahMP
produced a widespread dry bias across Europe which exceeded the -70 % of EOBS estimate in many regions, in
combination with a large underestimation of cloud cover. As a consequence, WRFa-NoahMP overestimated the
amounts of incoming shortwave radiation at surface in summer and showed warm biases across Europe which
reached the 7 °C over Alps. The switch from Grell-Freitas to Kain-Fritsch scheme strongly improved the results
for WRFb-NoahMP, however strong dry biases remained mostly over France, Iberian Peninsula and Alps. The
underestimation of summer precipitation over these regions induced dry soils which limited the latent heat flux
and enhanced sensible heat and thus reduced water input to the atmosphere and subsequent cloud cover. As a
result, WRFb-NoahMP overestimated the incoming shortwave radiation and suffered from warm biases of more
than 2 °C in Alps, France and Iberian Peninsula, mostly due to warmer maximum temperatures in late summer.
The warm and dry biases are strongly alleviated in WRF coupled to CLM4.0, owing to a better representation of
groundwater which improved the heat fluxes partitioning at surface in late summer. The change of PBL scheme
in WRFc-NoahMP also improved the heat fluxes partitioning in Alps, France and Mid-Europe resulting in better
results for summer temperature and precipitation compared to WRFb-NoahMP, however induced wetter than
observed conditions in Eastern Europe. The fact that the overestimation of sensible heat flux and underestimation
of latent heat is a robust feature among simulations, despite their different set-ups, highlights the WRF deficiency
in estimating the turbulent heat fluxes partitioning across Europe. This fact is probably related to underestimated
cloud cover and overestimated incoming shortwave radiation at surface over the southern regions of Europe,
which is another robust feature among simulations and finally leads to a tendency for warmer and drier than
observed conditions.

A guantitative estimate of overall performance for all simulations of ensemble based on RMSE scores which
account for the entire domain over the full simulation period, showed that there is no ideal configuration that
optimizes WRF performance for all climate variables. WRFa-NoahMP configuration achieved the worst
performance among WRF simulations and the whole LUCAS ensemble. WRFb-CLM4.0 outperformed WRFb-
NoahMP for temperature, shortwave radiation, sensible and latent heat but degraded the quality for longwave
component and precipitation. WRFb-NoahMP and WRFc-NoahMP almost cluster together in terms of ranking.
WRFb-NoahMP has somewhat better scores than WRFc-NoahMP for temperature, precipitation and shortwave

radiation while WRFc-NoahMP outperforms WRFb-NoahMP for heat fluxes and longwave component.
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5.2 Afforestation impact on soil temperature in Europe

In chapter 2, all LUCAS models performed two simulations with idealized land cover in which Europe is
represented as fully covered by forests (FOREST experiment) or grasslands (GRASS experiment) respectively.
FOREST minus GRASS differences were considered in order to investigate the impact of theoretical maximum

afforestation on surface energy balance and soil temperature across Europe at regional level.

The afforestation impact on annual amplitude of soil temperature (AAST) at 1m below the ground varies from -
7 °C to +2 °C across regions depending on model. The choice of land surface model drives in a great extend the
sign of change in AAST while the choice of atmospheric component further modulates the magnitude of the
signal. The changes in AAST originate from changes in summer temperatures. In winter, the soil temperature
differences due to afforestation are small in the majority of simulations and with a tendency towards an increase.
Over Mediterranean, the simulations which shared a version of CLM LSM, VEG3D and TERRA-ML showed a
decrease in summer soil temperature with afforestation which ranges from -1 °C in WRFb-CLM4.0 to more than
-4 °C in CCLM-TERRA. On the other hand, the AAST increased in all WRF-NoahMP simulations, mostly in
WRFa-NoahMP where the increase was close to 2 °C. REMO-iMOVE showed a year-round increase smaller than
1°C. In Scandinavia, REMO-iMOVE together with all WRF modelling systems exhibit a small constant warming
in almost all seasons. The ensemble around CCLM model provided largely different results. CCLM-TERRA and
CCLM-VEG3D exhibit large soil temperature decreases in summer which are close to -9 °C for CCLM-VEG3D.
CCLM-CLM4.5 showed small changes in all seasons with a tendency for decrease in summer, similar to
RegCM4.5, while the sign of changes in CCLM-CLM5.0 turns from negative in upper soil layers to positive in

deeper layers.

The spatial pattern of changes in AAST correlates well with changes in available energy to warm the ground in
summer or the residual of surface energy balance, thus it’s considered crucial to explore the origin of inter-model
spread in surface energy balance changes. In all regions, models consistently show a systematic increase of net
shortwave radiation at surface due to afforestation, as a result of lower albedo of forests compared to grasslands.
The increase in available radiative energy at the surface is followed by an increase in sensible heat flux, which is
another robust feature among simulations and is attributed to increased roughness length with afforestation which
favor the mixing of atmospheric boundary layer and thus enhance the heat exchange between ground and
atmosphere. In CCLM simulations and RegCM-CLM4.5, the increase of net shortwave radiation was offset by
the increase of sensible heat flux therefore afforestation induced a decrease in available energy to warm the ground
and finally a summer cooling in soil temperatures. On the other hand, the increase of net shortwave radiation was
more intense in NoahMP simulations due to stronger decreases in surface albedo and partly due to decreased
cloud cover in Scandinavia. The increased available radiative energy at surface was stronger than the increased
sensible heat and thus NoahMP simulations exhibit an increase of surface energy input into the ground with

afforestation and finally a warming of soil temperatures.
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The inter-model spread in albedo changes due to afforestation regulate the simulated AAST response over
Mediterranean, Alps and Iberian Peninsula. The albedo effect has also strong influence on AAST response over
British Isles, Mid-Europe, France and Eastern Europe, however the changes in cloud fraction have the dominating
role on soil temperature response over the regions of central Europe. In Scandinavia, the largest part of inter-
model variance in AAST response is explained by changes in leaf area index. When the changes in albedo, cloud
fraction, leaf area index and soil moisture are all combined into a linear equation and regressed against the
simulated AAST response, they explain more than 80% of inter-model variance in all regions. Despite the key
role of soil wetness on soil thermal conditions, the changes in soil moisture did not strongly influence the soil
temperature response to afforestation. Afforestation induced a widespread soil drying due to transpiration-
facilitating forest characteristics, such as big leaf area and deep roots, which remove available water from deeper

soil layers.

Neighboring sites from FLUXNET network located in forests and open lands paired in order to extract the
afforestation effect on soil temperature from observational evidence. Observations showed that the mean annual
soil temperature cycle is smaller by almost 3 °C in forests compared to open lands, due to cooler summer
temperatures. In line with observational signal, seven out of the ten RCMs showed a mean AAST decrease from
-5°Cto-0.2 °C.

5.3 The effect of recent land cover changes on regional climate in Europe

In chapter 3, an evaluated WRF-NoahMP configuration is used to perform two simulations with realistic land
cover maps for 1950 (LC1950 experiment) and 2015 (LC2015 experiment) years covering the reference period
1986-2015. LC1950 and LC2015 differ only in land cover input thus the differences LC2015 minus LC1950
imply the potential effect of recent land cover changes on the regional climate of 1986-2015 period in Europe.
The analysis focused only on summer season, since the winter climate sensitivity is small even to extreme land

cover changes.

A widespread decline of agricultural lands is seen in most of Europe. Especially over Eastern Europe, more than
100,000 km? of farmlands abandoned between 1950 and 2015 which is associated with a combination of socio-
economic, political and environmental factors. In Eastern Europe the greatest part of croplands was transformed
into grasslands, but in many areas a large part of croplands was replaced by forests. Forests generally increased
across Europe as did urban areas. Also, the shrublands expanded at the expense of agricultural lands, mostly over
Iberian Peninsula, Mid-Europe and France. Wetlands, bare lands and lands with sparse vegetation were not

significantly affected.

The recent land cover changes increased the leaf area index across Europe in WRF-NoahMP from 0.002 m?/m?

over British Isles to 0.25 m?/m? in Alps on average. They also increased the surface roughness length from 0.01
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m in British Isles to 0.16 m in Alps and decreased the surface albedo by -0.03 in Eastern Europe up to -0.28 in
Alps.

A method for energy balance decomposition was followed in order to extract the sign of surface temperature
change due to the recent land cover changes and quantify the importance of underlying biophysical mechanisms.
The results exhibited a tendency for summer warming mostly over the southern Europe which was close to 0.15
°C in Alps and Iberian Peninsula at regional level, while the northern Europe was not significantly affected by
land cover change. The mean diurnal temperature cycle was increased in all subregions from 0.04 °C in Iberian

Peninsula to 0.36 °C in Mid-Europe due to warmer maximum temperatures.

The dominant mechanism that explains the summer warming is the increase of net shortwave radiation which
alone induce a surface warming up to 1 °C in Alps. The increase of available radiative energy at surface is
attributed to a generally decreased albedo with land cover changes and decreased cloud cover over British Isles,
Mid-Europe, France, Eastern Europe and Alps. The radiation-induced warming is partly offset by a cooling effect
induced by increased sensible heat flux, which transfers thermal energy from surface to atmosphere and is likely
related to increased surface roughness with land cover changes. Furthermore, latent heat flux decreased in British
Isles, Eastern Europe and Scandinavia thus contributing to the warming effect of radiative origin, whereas the
increased latent heat amounts in the remaining regions contributed to the cooling effect induced by increased

sensible heat amounts.

Land cover changes did not dramatically change summer precipitation. A tendency for drier conditions is mostly
seen over regions of central Europe reaching up to -0.14 mm/day in Alps and Mid-Europe. The drier conditions
are probably related to a general reduced evaporation fraction across Europe, which imply reduced water input to

atmosphere and thus less water available for cloud formulation and precipitation.

The increased transmission of thermal energy from ground to atmosphere in the form of sensible heat flux
increased the summer temperature at the lowest atmospheric model level, amplifying the diurnal temperature
range up to 0.35 °C in France. The diurnal 2m temperature cycle is also increased up to 0.42 °C in Alps due to
land cover changes, since it’s a diagnostic quantity based on surface and lowest atmospheric model level

temperature.
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5.4 Key remarks

The use of Grell-Freitas scheme for the representation of convection processes strongly degrades the
WREF performance producing large warm and dry biases across Europe.

The change from Grell-Freitas to Kain-Fritsch scheme improves the quality of simulation, however
considerable dry summer biases remain mainly over Alps, France and Mid-Europe in combination with
warm biases of more than 2 °C mostly due to overestimated maximum temperatures in late summer. The
latter fact is related to excess amounts of sensible heat which suppress the latent heat flux and thus reduce
the water input to atmosphere and the subsequent cloud cover, as a result larger than observed amounts
of shortwave radiation reach the surface.

The warm and dry biases in summer are largely alleviated when WRF is coupled to CLM4 LSM due to
a better groundwater representation which improves the estimation the turbulent heat fluxes partitioning
in late summer.

The warm and dry summer biases were also reduced over Alps, France and Mid-Europe with the switch
from MYNN to YSU PBL scheme, which improved the estimation of turbulent heat fluxes partitioning
but produced wetter than observed conditions in Eastern Europe.

The increased net shortwave radiation at surface, due to lower albedo, and increased sensible heat flux,
due to rougher surface, are the most robust model responses to afforestation. The balance between these
two biophysical consequences largely depends on LSM choice.

Simulations with TERRA-ML, VEG3D or version of CLM LSM exhibit cooler soil temperatures due to
afforestation in summer, because the increased net shortwave radiation was offset by the increased
sensible heat flux, whereas the opposite is true for NoahMP simulations.

Soil drying with afforestation is another robust models’ feature which is attributed to transpiration-
facilitating forest characteristics which remove available water from deeper soil layers. However, soil
moisture has not a dominating role on soil temperature response to afforestation.

When changes in surface albedo, cloud fraction, leaf area index and soil moisture are all combined into a
linear regression equation, largely explain the inter-model spread in AAST response.

Evidence from observations showed that ground under forests is cooler by almost 3 °C on average in
summer with respect to open lands. This view is supported by seven out the ten ensemble members with
a range from -5 °C to -0.2 °C.

Recent land cover changes in Europe involve widespread abandonment of agricultural lands and
expansion of urban areas, shrublands and forests. Among the main biophysical consequences were an
increased leaf area index and surface roughness and decreased surface albedo.

The recent land cover changes amplified the diurnal temperature cycle at surface in summer in all regions

reaching up to 0.36 °C in Mid-Europe, due to a warming of maximum temperatures.
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The surface warming is dominated by increased net shortwave radiation at surface due to lower albedo
with land cover changes and decreased cloud fraction in British Isles, Mid-Europe, France and Alps. The
radiation-induced warming effect is partly offset by a cooling effect resulted from increased sensible heat
flux due to increased roughness length. The removal of thermal energy from surface towards atmosphere
in the form of sensible heat flux, amplified the diurnal temperature range at the lowest atmospheric model
level in summer.

A tendency for drier atmospheric conditions is seen mostly over regions of central Europe related to
reduced evaporation fraction with land cover changes, which implies less water available for cloud

formulation and precipitation.
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Abstract

This dissertation addressed the biophysical effects of land cover changes on regional climate in Europe. To this
aim, WRF simulations were performed in the framework of FPS LUCAS which covered the 1986-2015 time
period at ~ 50 km spatial resolution following the Euro-CORDEX protocol for reanalysis-driven simulations. The
analysis focused on afforestation impacts, defined as the transition from open lands to forests, as it constitutes a
land cover change trend that has recently emerged in developed countries and is frequently proposed as a tool to

mitigate anthropogenic greenhouse gas emissions.

The dissertation divided into three parts. The first part addresses the ability of WRF simulations, which share
different configurations for the representation of atmospheric and land surface processes, to correctly simulate
the observational spatial and temporal climate patterns. The results showed that there is no ideal configuration
that optimizes WRF performance for all climate variables in all regions across Europe. One model configuration
was found to dramatically degrade WRF performance, producing extremely warm and dry biases over a large part
of the model domain. The other three WRF configurations showed a balanced overall behavior and despite their
different set-ups they shared some robust features, such as a wet bias in winter and problematic estimation of
turbulent heat fluxes partitioning in summer, which yielded excess sensible heat amounts towards atmosphere.
This overestimation was the reason for warmer and drier summer conditions than observed, mostly over regions

of central and southern Europe.

In the second part, the LUCAS models are forced with idealized land cover maps which represent Europe as fully
covered by forests and grasslands respectively, in order to examine the climatic effect of maximum afforestation
on surface energy balance and soil temperature at regional level. Two robust biophysical responses to afforestation
were common in all simulations. One was the increased available radiative energy at surface due to lower albedo
in forests and second was the increased sensible heat flux from ground towards atmosphere due to rougher forest
surface which facilitates the mixing of lower atmospheric layer. The magnitude of the afforestation effect on net
radiation and heat flux was differently pronounced across models. In six out of ten RCMs of the ensemble, the
increased radiative energy at surface was offset by the increased heat flux towards atmosphere and thus simulated
a decrease in available energy to warm the ground with afforestation and finally a reduction in summer soil
temperature, while the opposite was true for the other four modelling systems. Observational evidence from paired
FLUXNET sites showed that the ground is cooler under forests in summer with respect to open lands, in

agreement with the majority of simulations.

In the third part, two realistic land cover maps for 1950 and 2015 years are implemented into WRF in order to
investigate the climate change signal from recent land cover changes in Europe. The results revealed a widespread
abandonment of croplands in Europe which largely converted to forests and partly to shrublands, in addition to

urban sprawling trend. The land cover changes induced an increase in leaf area index and surface roughness and
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decreased surface albedo. The decreased albedo induced an increase in net shortwave radiation amounts at surface
while the increased roughness resulted in surface energy loss due to increased sensible heat flux from surface to
atmosphere. The increase in net shortwave radiation was larger than the increased sensible heat flux and finally
the sign of temperature change due to recent land cover changes was positive in most regions. The daily
temperature cycle was increased by up to 0.36 °C in Alps and France, due to warmer maximum temperatures.
Moreover, the results indicated a tendency for drier summer conditions due to land cover changes, which was

attributed to lower evaporation rates and thus reduced water input to atmosphere.

IHepiinyn

H S1axtopikn datpiPn apopd Tic PLOQUOIKES EMTTOGELS TOV AALXY®V KOAVYNG YNG OTO TEPLOYIKO KA TNG
Evponng. Me avtdv 1o ckomo, deEnydnoay kKApotikés mpocsoptoltdcelg pe 1o poviéAo WRF 610 mAaicio opdong
10V TAOTIKOL Tpoypdppatog LUCAS, mov kdAvyav v xpovikn mepiodo 1986-2015 pe ywpkn avéivon nepimov
50 yAn axoAovBmvtag to mpwTOKoAAo Tov EUuro-CORDEX yuo mpocopoidoel odnyodueveg amd de00UEVaL
emovilvong. H epyocio emKeEVIPOVETAL OTIC EMTTMOGELS TNG 0AGMOONG/OVAdAC®ONS, 1| omoia opileTol ®g M
petdfoon omd EKTACELS OVOIKTNG YNG 6€ 0doT, KoBMG amotedel pio Tom mov €xel TPOKVYEL TPOGPATO GTIG

VAT TUYUEVES YDPEG KL GLYVA TPOTEIVETAUL G EPYOAELD LETPLAGHOV TOV 0VOPOTOYEVAV BEPLOKNTLOKOV 0EPimV.

H pedém yopileton o tpelg evotnteg. Xy mpdtn evotnta, a&todoyeiton 1 ikavotta twv WRF tpocopoimcemy,
Ol OTtO{EG YPNGLOTOLOVV JLOPOPETIKE GYNLLATO TOPOUETPOTOINCTG Y10 VO TEPLYPAWOVV TIC OTLOCPUIPIKES Kol
£00PIKES KMUOTIKEG OlEPYUGIES, VAL TPOGOUOUDGOVY GMGTA TO, TOPATNPOVUEVE YOPIKE KOl XPOVIKA KALOTUC
potifa. To amoterécpato €0e1&av Oev LIAPYXEL WOVIKO GOVOAO CYNUATOV TOPUUETPOTOINCNS 7OV V.
BeAitiotomotel v emidoom tov WRF yua 6Aeg Tic petaPintég oe 6Aeg Tig meproyés. Mia mpocopoimon Bpédnie
va vroPabuiler dpapatikd v enidoon tov WRF, mapdyoviag vyniotepeg Oeppoxpacieg kot Enpotepeg
OLVONKEG Ao TIC TPOYUATIKEG GE peyOAo pépog g Evpodmmg. Ot vmdAoumeg mpocopodoels £3e&ay o
GOPPOTNUEVT] €MIOOON Kol TOPA TS OPOPEG TOVG OTO GYNUOTO TOPAUETPOTOINCNG EUPAVIGAV KOWA
YOPOKTNPLOTIKA, OGS TNV VIEPEKTIUNGT PPOYNG TOV YEWDVA KOl TNV TPOPANUOTIKY EKTIUNOT GTOV AOYO TV
BepLKOV PODV TO KAAOKAIPL, TOV TPOKAAEGE VIEPEKTIUNOT GTA TOGE LETASOONG TNG osONTg BeprotnTag amd
10 €000p0o¢ otnv atudseapo. To tedevtoio ceOApa Moy M oitio Yo TV Tpocopoimor Bepudtepwv Kot
ENPOTEP®V ATO TOV TPAYLATIKOV KOAOKAIPIVAOV GLVONK®OV, KUPIOS TAVO amd TIG TEPLOYES TNG KEVIPIKNG Kol

votiag Evponng.

210 dgVTEPO UEPOG, OVO 10enTOl XAPTES TTOL ametkovilovy TV Evpdnn og mAipwg Kalvppévn gite and ddon 1
amd ypacidl evoopotdvovtal oto poviéda tov LUCAS, dote va €£eTaoTodv 0Ol EMMTAOCELS TG HEYIOTNG
BempnTiKN g avaddowong 6To evepyelako 160L0Y10 TG EMPAVELNG Kat T Oeppokpacia dapovs. AVo Blo@uoikég
OGULVETELEC TPOEKLY AV GE OAES TIG TPOGOUOLDGELS AOY® NG avaddcmong. Mia ftav 1 adénon 61 GLGCOPELON

EVEPYELOG OTNV EMPAVELL AOY® TNG HKPATEPNG OVOKAACTIKOTNTOG TOV d00MV GTNV NAOKT aKTVOBoAio Kot
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deVTEPOV N AOENON OTN HETAS0GT aucONTHG BEpUOTNTOG OO TNV EMPAVELD GTNV ATUOSPOLPA AOY® TNG TPOYELNG
EMPAVELNG TOV O0CMV TOL EVVOEL TNV OVAUEIEN TOL KATMOTEPOL OTHOCOAIPIKOV oTp®duaToc. To péyeBog g
eMidpaong oTiG 000 aVaPEPOLEVES PLOPVGIKES dLOOIKAGIEC TV SLPOPETIKO aVAUESH GTO LOVTELD. Xe €EL amod
T0 O€KOL LOVTELQ, TO evepYELokd omdOepa otV emtpdvelo A0y axTivofoAiiog ovTioTadpicTnKe amd TNV ammAEL
evépyelng HEGm ouoOnTNG Beppdtnrog pe amotéhespa ) Heimon ¢ dtbéoung evépyelog yia  0épuoven tov
€00(POVG KOl GLVETTMG TN Helwon g Oeppokpaciog tov £ddpovg, evd to avtiBeta cuvéfnoov ot vTOAOITA
téooepa poviéha. EvdeiEelg amd otabpovc FLUXNET £€dei&av 611 10 £d0p0¢ KaTm amd ddon givar mo kpvo o€

oxéon He To £30(POG KAAVUUEVO amtd YPOGidl, GE CUUEMVI [LE TNV TAEIOYNPI0 TOV TPOGOUOUDGEMV.

2y 1pitn evotta, 600 TPOYUATIKOL XAPTES KAALYNG TOV £0ApoLG Yo Ta £t 1950 kat 2015 evompatmdvoviot
o010 WRF mpokeipévov va gpguvnet to onpo g KAMUOTIKNG 0ALOYNG omtd TIG TPOGEATEG OAAAYEC OTIG XPNOELS
s omv Evpomn. Ta amoteAéopato £dei&ov pio eKTETOUEVT EYKATAAEIYT KOAMEPYNGIU®V Kol XEPCAi®V
ektdoewv otnv Evpdnn ot omoieg petatpdnnkav oe 0don Kot ev HEPEL € BUUVMOELS EKTAGELS, EVO TapaTnpnONKe
Kot aotikn] e€amimon. Ot aAlayég otn ¥pNon yng tpokdrecay adEnNon 6To SeikTN PLAMIKYG TEPLOYNG Kol GTNV
TPAYVTNTO TG EMPAVELOG KOL LEIMOT GTNV OVOKAACTIKOTNTO TNG EXPAVELNG 6TV NAlakT aktivoBoliio (albedo).
H peimon oy avaklaoTikOTnTo EMEQEPE AOENOT 6TA TOGH NALOKNG aKTIVOPOAING 0TO £30(pOC EVD N adENON
OTNV TPOYLTNTO TNG EMPAVELNS TPOKOAECE EVEPYELNKY] OMMAELL PEG® TNG AVENUEVNG UETAOOONS o1cONTNG
Bepuorag oty atpndceapa. Q6tdco, 1 aENCT 610 evepyeloKkd amdbepa Aoy axtivoPoAing ftav peyaAvtepn
Ao TNV ATMOAELL EVEPYELNS AOY® HETAOOONG TG acONTNG OEPUOTNTOG e OMOTEAEGHA Ol QAAAYEG GTIG YPNOELS
MG va Tpokarécovv Bépuavon otig meplocdtepes meployés. To péoo nuepnoto Beppopetpikd gvpog awénodnke
péypt 0.36 Babuovg Keroiov otig Almeg kot v ['oAlia, to omoio amodidetar oty avénon tov pPEYIoTOV
Bepuokpacidv. Emnpdcbeta, ta amoteléopato anokdAvyav pio tdon yuo ENpotepeg cuvONKeg TO KaAoKaipt
eCautiag TV aAloydv otic ypnoelg yng petasd 1950-2015, to omoio amoddbnke ot peimon tov pvOUov

eEATIIONG KOl GUVETAOGC TNG LETAPOPAS VOPATUAOV OO TO £30(POG GTNV OTULOGPALPOL.
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Appendix

List of Abbreviations

AAST
clt
ESM
ET

FPS LUCAS

GCM
GHF
H
LAI
LC
LE
LUC
LULCC
LSM
LST
LW
PBL
RCM
RMSE
SMC
SW
Ts
WRF

Annual Amplitude of Soil Temperature
Total cloud fraction
Earth System Model
Evapotranspiration

Land Use Change Across Scales in Europe Flagship
Pilot Study
Global Circulation Model
Ground Heat Flux
Sensible Heat
Leaf Area Index
Land Cover
Latent Heat
Land Use Change
Land Use Land Cover Change
Land Surface Model
Land Surface Temperature
Longwave radiation
Planetary Boundary Layer
Regional Climate Model
Root Mean Squared Error
Soil moisture content
Shortwave radiation
Surface Temperature

Weather Research and Forecasting model
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Supplementary maps and plots
ERA5 WRFb-CLM4.0 minus ERAS WRFa-NoahMP minus ERAS

Figure A 1: Mean bias (models minus ERA5) for downwelling longwave radiation at surface in winter (DJF) over 1986-2015
period. Stippling indicates areas where model bias is within ERA5 uncertainty range (x1xSD). MMM: multi-model-mean of
LUCAS simulations excluding WRF configurations.

WRFb-CLM4.0 minus ERAS WRFa-NoahMP minus ERAS

Figure A 2: Mean bias (models minus ERA5) for downwelling shortwave radiation at surface in summer (JJA) over 1986-2015
period. Stippling indicates areas where model bias is within ERAS uncertainty range (z1xSD). MMM: multi-model-mean of
LUCAS simulations excluding WRF configurations.

118



CRU WRFb-CLM4.0 minus CRU WRFa-NoahMP minus CRU

Figure A 3: Mean bias (models minus CRU) for total cloudiness (%0) in winter (DJF) over 1986-2015 period. Stippling indicates

areas where model bias is within CRU uncertainty range (£1xSD). MMM: multi-model-mean of LUCAS simulations excluding
WRF configurations.
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Figure A 4: Mean seasonal differences (FOREST minus GRASS) in soil temperature at four different soil depths, averaged

over Alps.
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Figure A 7: Mean seasonal differences (FOREST minus GRASS) in soil temperature at four different soil depths, averaged

over France.
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Figure A 8: Mean seasonal differences (FOREST minus GRASS) in soil temperature at four different soil depths, averaged

over lberian Peninsula.
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Figure A 9: Mean seasonal differences (FOREST minus GRASS) in soil temperature at four different soil depths, averaged
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Figure A 10: (a) Changes in surface energy balance components (FOREST minus GRASS) averaged over Alps in summer, (b)
the changes in available radiative energy at the surface and in the sum of turbulent heat fluxes with afforestation, (c) cloud
fraction response to afforestation across models, (d) the inter-model differences in LAI, (e) surface roughness and (f) surface
albedo in summer (yearly maximum). Positive (negative) values indicate an increase (decrease) with afforestation.
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Figure A 11: (a) Changes in surface energy balance components (FOREST minus GRASS) averaged over British Isles in
summer, (b) the changes in available radiative energy at the surface and in the sum of turbulent heat fluxes with afforestation,
(c) cloud fraction response to afforestation across models, (d) the inter-model differences in LA, (e) surface roughness and (f)
surface albedo in summer (yearly maximum). Positive (negative) values indicate an increase (decrease) with afforestation.
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Figure A 12: (a) Changes in surface energy balance components (FOREST minus GRASS) averaged over Eastern Europe in
summer, (b) the changes in available radiative energy at the surface and in the sum of turbulent heat fluxes with afforestation,
(c) cloud fraction response to afforestation across models, (d) the inter-model differences in LAI, (e) surface roughness and (f)

surface albedo in summer (yearly maximum). Positive (negative) values indicate an increase (decrease) with afforestation.
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Figure A 13: (a) Changes in surface energy balance components (FOREST minus GRASS) averaged over France in summer,
(b) the changes in available radiative energy at the surface and in the sum of turbulent heat fluxes with afforestation, (c) cloud

fraction response to afforestation across models, (d) the inter-model differences in LA, (¢) surface roughness and (f) surface

albedo in summer (yearly maximum). Positive (negative) values indicate an increase (decrease) with afforestation.
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Figure A 14: (a) Changes in surface energy balance components (FOREST minus GRASS) averaged over Iberian Peninsula in

summer, (b) the changes in available radiative energy at the surface and in the sum of turbulent heat fluxes with afforestation,

(c) cloud fraction response to afforestation across models, (d) the inter-model differences in LAI, (e) surface roughness and (f)
surface albedo in summer (yearly maximum). Positive (negative) values indicate an increase (decrease) with afforestation.
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Figure A 15: (a) Changes in surface energy balance components (FOREST minus GRASS) averaged over Mid-Europe in
summer, (b) the changes in available radiative energy at the surface and in the sum of turbulent heat fluxes with afforestation,
(c) cloud fraction response to afforestation across models, (d) the inter-model differences in LA, (e) surface roughness and (f)

surface albedo in summer (yearly maximum). Positive (negative) values indicate an increase (decrease) with afforestation.
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Figure A 16: Afforestation (FOREST minus GRASS) impact on surface water balance, defined as the difference between

precipitation and evapotranspiration in summer, averaged over eight European regions.
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Figure A 17: Mean summer differences in soil moisture content (SMC) due to afforestation (FOREST minus GRASS) in the

top 1m of the soil, averaged over six European regions. Positive (negative) values indicate an increase (decrease) due to

afforestation.
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Supplementary tables
Table A 1: Cross-walking table used to convert the LUCAS PFTs to IGBP land cover classes used as input to WRF.

LUCAS PFTs

Temperate
Broadleaf
Evergreen

trees

Tropical
Broadleaf
Deciduous

trees

Temperate
Broadleaf
Evergreen

trees

Temperate
Broadleaf
Deciduus
trees

Coniferous
Evergreen
trees

Coniferous
Decidous
trees

Evergreen | Deciduous

shrubs

Grass C3
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Grass C4
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Swamps

Cropland
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Urban

Bare
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Table A 2: Cross-walking table to convert the LUCAS PFTs to the standard IPCC classes. This conversion is only used for
simplification and visualization purposes of land cover transitions.

IPCC classification
LUCAS PFTs

Agriculture | Forest | Grassland | Wetland | Settlement | Shrubland | Lichens & mosses | Sparse vegetation | Bare area | Water

Temperate
Broadleaf
Evergreen

trees
Tropical
Broadleaf

Deciduous

trees

Temperate
Broadleaf
Evergreen

trees

Temperate
Broadleaf
Deciduus

trees

Coniferous
Evergreen X

trees

Coniferous
Decidous X

trees

Evergreen

shrubs

Deciduous

shrubs
Grass C3 X

Grass C4 X
Tundra X

Swamps X

Cropland X

Irrigated
cropland
Urban X

Bare X

Table A 3: Differences between LC2015 and LC1950 experiments in surface temperature (ATs), when it’s estimated according
to equation 4 (decomposition method) and when it’s taken directly as model output.

AL Bl EA FR IP MD ME SC
ATs (estimated) | 0.18°C | 0.15°C | 0.15°C | 0.19°C | 0.15°C | 0.09°C | 0.12°C | -0.03°C
ATs (model output) | 0.17°C | 0.13°C | 0.14°C | 0.17°C | 0.15°C | 0.08 °C | 0.10°C | -0.03 °C
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Table A 4: Characteristics of LUCAS RCM ensemble.

Model _ _ Land Cumulus

Institute  RCM version PBL scheme
name model scheme
CCLM- TERRA- Tiedke

JLU/BTU COSMO_5.0_clm9 Mellor-Yamada
TERRA ML (1989)
CCLM- Tiedke

KIT COSMO _5.0 cIm9 VEG3D Mellor-Yamada
VEG3D (1989)
CCLM- Tiedke

ETH COSMO 5.0 cIm9 CLM4.5 Mellor-Yamada
CLM4.5 (1989)
CCLM- Tiedke

ETH COSMO _5.0 cIm9 CLM5.0 Mellor-Yamada
CLM5.0 (1989)
RegCM- Tiedke

ICTP RegCM4.6.1 CLM4.5 Bretherton et al. 2004
CLM4.5 (1989)
REMO- _ Tiedke Extended level-2 scheme
) GERICS REMO2009 iIMOVE
iIMOVE (1989) after Mellor-Yamada
WRFa-

IDL WRFv3.8.1 NoahMP Grell-Freitas  MYNN 2.5 TKE
NoahMP
WRFb- S

UHOH WRFv3.8.1 NoahMP Kain-Fritsch  MYNN 2.5 TKE
NoahMP
WRFc-

BCCR WRFv3.8.1 NoahMP Kain-Fritsch ~ YSU
NoahMP
WRFb-

AUTH WRFv3.8.1 CLM4.0 Kain-Fritsch MYNN 2.5 TKE
CLM4.0
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