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Abstract 

The  accurate  measurement  of  individual  well  production  is  a  critical  challenge  in 

hydrocarbon production, especially in subsea fields where traditional methods such as test 

separators  are  not  feasible.  In  the  demanding environment  of  subsea  hydrocarbon fields, 
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employing test  separators for precise measurement of individual well  production may not 

always  be  a  practical  choice.  This  is  primarily  attributable  to  the  logistical  complexities 

involved  in  accessing  deep-sea  wellheads,  potential  flow disruption  and corrosion  issues 

associated with the introduction of test separators. Additionally, limited space availability on 

the seabed,  along with the challenge  of maintaining and calibrating the test  separators at 

significant  depths,  render them a less favorable option.  To address this  issue, Multiphase 

Flowmeters (MPFMs) are commonly used, but their installation requires complex underwater 

operations and incurs significant costs. An innovative alternative is the implementation of 

Virtual Multiphase Flowmeters  (VFMs), where flow rates at  each wellhead are estimated 

based  on  available  measurements.  This  master  thesis  investigates  the  development  and 

application of VFMs to estimate the production of each phase from interconnected wells in a 

subsea field. The research focuses on creating a realistic well network model using a pipeline 

simulation  software to  mimic  the  complex flow dynamics  in  the field.  Through iterative 

simulations under varying production conditions, relevant data is collected to train suitable 

machine  learning  models.  The  study  showcases  the  potential  of  VFMs  in  accurately 

estimating well production by combining data from permanently installed manometers at the 

wellheads  with  total  flow  measurements  obtained  from a  main  separator.  The  proposed 

mathematical approach enables the determination of the individual well's contribution to the 

total production at the separator. The results demonstrate the efficacy of VFMs in providing 

accurate  estimates  of  each  well's  production,  facilitating  optimal  well  management  and 

enhancing  overall  hydrocarbon  production  efficiency.  Moreover,  the  adoption  of  VFMs 

eliminates the need for physically separating the flow phases, reducing operational costs and 

complexity.

Key  words:  Virtual  Multiphase  Flowmeter,  subsea  field,  PIPESIM,  Machine  Learning, 

MATLAB 
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Περίληψη 

Η  ακριβής  μέτρηση  της  παραγωγής  μεμονωμένων  γεωτρήσεων  είναι  μια  κρίσιμη 

πρόκληση  στην  παραγωγή  υδρογονανθράκων,  ειδικά  σε  υποθαλάσσια  πεδία  όπου  οι 

παραδοσιακές μέθοδοι όπως οι test separators δεν είναι εφικτές. Στο απαιτητικό περιβάλλον 

των  υποθαλάσσιων  πεδίων  υδρογονανθράκων,  η  χρήση  test  separator  για  την  ακριβή 

μέτρηση της  παραγωγής μεμονωμένων γεωτρήσεων μπορεί  να μην είναι  πάντα πρακτική 

επιλογή. Αυτό αποδίδεται κυρίως στην υλικοτεχνική πολυπλοκότητα που σχετίζεται με την 

πρόσβαση σε κεφαλές γεωτρήσεων σε μεγάλα βάθη υδάτων, την πιθανή διακοπή ροής και τα 

προβλήματα διάβρωσης που σχετίζονται με τους test separators. Επιπλέον, η περιορισμένη 

διαθεσιμότητα χώρου στον πυθμένα της θάλασσας, μαζί με την πρόκληση της διατήρησης 

και  της  βαθμονόμησης των test  separators  σε σημαντικά  βάθη,  τους  καθιστούν λιγότερο 

ευνοϊκή επιλογή. Για την αντιμετώπιση αυτού του ζητήματος, χρησιμοποιούνται συνήθως 

πολυφασικά  ροόμετρα  (MPFMs),  αλλά  η  εγκατάστασή  τους  απαιτεί  πολύπλοκες 

υποθαλάσσιες εργασίες και συνεπάγεται σημαντικό κόστος.  Μια καινοτόμος εναλλακτική 

λύση είναι η εφαρμογή των εικονικών πολυφασικών ροόμετρων (VFMs), όπου οι ρυθμοί 

ροής σε κάθε κεφαλή γεώτρησης υπολογίζονται με βάση τις ήδη διαθέσιμες μετρήσεις. Αυτή 

η  μεταπτυχιακή  εργασία  διερευνά  την  ανάπτυξη  και  την  εφαρμογή  των  VFM για  την 

εκτίμηση  της  παραγωγής  κάθε  φάσης  από  διασυνδεδεμένες  γεωτρήσεις  σε  υποθαλάσσιο 

πεδίο.  Η  έρευνα  επικεντρώνεται  στη  δημιουργία  ενός  ρεαλιστικού  μοντέλου  δικτύου 

γεωτρήσεων χρησιμοποιώντας λογισμικό προσομοίωσης αγωγών για να μιμηθεί τη σύνθετη 

δυναμική  ροής  στο  πεδίο.  Μέσω  επαναληπτικών  προσομοιώσεων  υπό  διαφορετικές 

συνθήκες  παραγωγής,  συλλέγονται  σχετικά  δεδομένα  για  την  εκπαίδευση  κατάλληλων 

μοντέλων μηχανικής εκμάθησης. Η μελέτη δείχνει τη δυνατότητα των  VFM στην ακριβή 

εκτίμηση της παραγωγής γεωτρήσεων συνδυάζοντας δεδομένα από μόνιμα εγκατεστημένα 

μανόμετρα στις κεφαλές των γεωτρήσεων με μετρήσεις συνολικής ροής που λαμβάνονται 

από  έναν  κύριο  διαχωριστή.  Η  προτεινόμενη  μαθηματική  προσέγγιση  επιτρέπει  τον 

προσδιορισμό της  συνεισφοράς  της  κάθε  γεώτρησης  ξεχωριστά  στη  συνολική  παραγωγή 

στον διαχωριστή. Τα αποτελέσματα καταδεικνύουν την αποτελεσματικότητα των VFM στην 

παροχή ακριβών εκτιμήσεων της παραγωγής κάθε γεώτρησης, διευκολύνοντας τη βέλτιστη 

διαχείριση  της  και  ενισχύοντας  τη  συνολική  απόδοση  παραγωγής  υδρογονανθράκων. 

Επιπλέον, η υιοθέτηση των VFM εξαλείφει την ανάγκη για φυσικό διαχωρισμό των φάσεων 

ροής, μειώνοντας το λειτουργικό κόστος και την πολυπλοκότητα.
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Chapter 1 Introduction 

In contemporary oil and gas exploration and exploitation endeavors, a notable shift has 

been  observed  from onshore  to  offshore  locations,  primarily  attributed  to  the  dwindling 

reserves  onshore  and  the  escalating  environmental  concerns  associated  with  terrestrial 

extraction  activities.  Consequently,  offshore  environments  are  now  garnering  increased 

attention, necessitating the deployment of equipment in marine environments. Nonetheless, 

this transition introduces a distinct array of challenges in comparison to onshore operations.

Offshore oil platforms are subject to spatial limitations that necessitate the development 

of innovative solutions for efficient equipment installation and operation. As a result, there 

has  been  a  significant  reliance  on  seabed  deployment  for  various  types  of  equipment, 

including  crucial  measuring  instruments  such  as  multiphase  flowmeters  (MPFMs). 

Nevertheless, leveraging the seabed for equipment deployment brings forth novel obstacles, 

particularly concerning cost escalation and logistical management. Subsea fields often span 

vast expanses, complicating the coordination and transportation of equipment to these remote 

locations. 

An additional layer of complexity in offshore hydrocarbon exploitation arises from the 

equitable  distribution  of  ownership  stakes  and  corresponding  production  rights  among 

companies/operators involved in the development of extensive subsea fields, contrasting with 

traditional  block-based  exploitation  methods.  Contemporary  operations  often  entail 

interconnected subsea wells, with multiple companies sharing access to central production 

facilities  and possessing rights  over specific  wells.  Precisely determining each company's 

contribution to overall production is essential,  considering the diverse origins of extracted 

hydrocarbons. Achieving equitable  production distribution among these entities presents a 

multifaceted challenge,  particularly when production comes from multiple  reservoir zones 

within each well. Consequently, total production distribution must consider each operator's 

proportional  contributions,  accounting  for  both  quantity  and  quality  of  extracted 

hydrocarbons.

The  precise  determination  of  individual  well  contributions  necessitates  sophisticated 

technological solutions. Traditional methodologies such as test separators have historically 

addressed this issue; however, the escalating intricacies of subsea operations demand more 

advanced approaches. Multiphase flow meters (MPFMs) have emerged as a consequential 

innovation in this domain, facilitating the precise measurement and allocation of production 

volumes. These systems utilize sensor arrays to concurrently gauge the flow rates of oil, gas 

and water, furnishing real-time data essential for accurate assessment.
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Multiphase flowmeters offer precise measurement capabilities in subsea environments, 

yet  their  implementation  presents  notable  challenges.  Their  substantial  cost  and  intricate 

maintenance requirements in such settings pose significant operational hurdles. Furthermore, 

the  necessity  for  individual  flowmeters  for  each  well  exacerbates  financial  burdens, 

particularly in expansive offshore fields.  Additionally,  offshore pose threats  to equipment 

durability  and  accuracy,  with  harsh  environments  potentially  impacting  longevity  and 

environmental factors affecting measurement accuracy over time.

In  response  to  the  challenges  posed  by  offshore  environments  and  the  limitations 

associated  with  traditional  multiphase  flowmeter  deployment,  the  development  of  Virtual 

Multiphase  Flowmeters  (VFMs)  has  emerged  as  a  promising  solution.  VFMs have  been 

introduced  by  advancements  in  computational  fluid  dynamics  and  machine  learning 

algorithms, which enable the estimation of flow rates and phase fractions without reliance on 

physical equipment.  VFMs offer a cost-effective and space-saving alternative by leveraging 

computational models to simulate multiphase flow behavior and infer flow characteristics 

based on input parameters such as fluid properties, pipe geometry and operating conditions.

The deployment of VFMs can be remotely conducted and seamlessly integrated into 

existing control and monitoring systems, providing real-time insights into flow dynamics. 

Moreover,  VFMs offer  the  flexibility  to  adapt  to  evolving  operational  requirements  and 

changing  environmental  conditions,  facilitating  dynamic  adjustments  and  optimization  of 

production processes.

By eliminating the requirement for sensors and related infrastructure, VFMs contribute 

to  cost  reduction  and  operational  efficiency,  thereby  enhancing  the  viability  of  offshore 

exploration  and  exploitation  endeavors.  Even  in  scenarios  involving  multiple  companies 

within the subsea network, where only a topside flowmeter/separator on the oil platform is 

utilized to measure overall production, a VFM based on machine learning algorithms can 

precisely ascertain the proportions of production from each individual well.

This  thesis  will  focus  on  the  development  of  a  data-driven  Virtual  Multiphase 

Flowmeter. More specifically,  Chapter  2 will  detail  all  the correlations  utilized  to  model 

multiphase flow in both horizontal and vertical pipelines. In Chapter 3, MPFMs and their 

virtual counterparts will be thoroughly analysed. In Chapter 4, the focus will be on detailing 

the machine learning models utilized in the creation of the VFMs. Following this, Chapter 5 

will  present  a  case  study elucidating  a  simple  network  comprising  of  two wells,  with  a 

detailed examination of four variables. This thesis will close with its conclusions.
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Chapter 2 Multiphase flow

This  chapter  provides  a  thorough  exploration  of  fundamental  principles  governing 

multiphase flows, encompassing both two-phase and three-phase scenarios. A comprehension 

of these principles is vitally important for elucidating the intricate dynamics of multiphase 

flows, emphasizing critical factors such as flow regime transitions, pressure variations and 

fluid  characteristics.  This  foundational  knowledge  serves  as  a  basis  for  the  subsequent 

development  and  assessment  of  the  Virtual  Multiphase  Flowmeter  (VFM)  introduced  in 

Chapter  4.  By examining  these  pivotal  elements,  the chapter  underscores  the  compelling 

necessity for a VFM system capable of overcoming limitations associated with conventional 

flow measurement methods. This need is particularly pronounced in the context of complex 

subsea fields, where accurately measuring individual well production poses challenges.

Furthermore,  the  comprehensive  examination  of  two-phase  and  three-phase  flow 

phenomena in  both  horizontal  and vertical  pipelines  is  of  utmost  significance  within  the 

framework of this thesis, given that the profound understanding of multiphase flow behavior 

in various pipe configurations  is fundamental for the development of precise and reliable 

VFM systems. In two-phase flow scenarios, a mixture of two immiscible fluids, typically oil 

and gas, is conveyed, while three-phase flow introduces a third phase, often water. Variations 

in  flow  patterns  and  behaviors  emerge  in  horizontal  and  vertical  pipes,  influenced  by 

gravitational and hydrodynamic effects, exerting a substantial impact on the interaction and 

distribution of phases within the pipe. This knowledge has a pivotal role in the design of 

VFMs.  It  equips  them  with  the  capability  to  effectively  address  the  complexities  and 

uncertainties that are inherent in real-world applications. This is particularly crucial in subsea 

oil and gas production because ultimately influences the final production outcomes.

2.1 Fundamentals of multiphase flows

2.1.1 Void fraction 

In  the  study  of  gas-liquid  two-phase  flow,  the  cross-sectional  void  fraction  is  an 

essential geometric flow parameter. It indicates the fraction of the total flow volume occupied 

by the gas phase. The void fraction is one of the most important flow parameters needed to 

accurately describe two-phase flows: it is required as an input for determining various other 

crucial flow parameters (such as two-phase viscosity and density or cross-sectional average 

velocities of the liquid and gas phases) and it has a significant role in modeling two-phase 

flow regime transitions, heat transfer and pressure drop. Void fraction is a parameter defined 
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as the ratio of the pipe’s cross-sectional area Ag occupied by the gas or vapor phase to the 

total cross-sectional area A of the pipe as follows:

ε=
Ag

A
Equation  2.1

As described in Equation  2.1, it is symbolized by the symbol (epsilon) and is stated as a 

fraction or decimal between 0 and 1. A void fraction of 0 (Ag = 0 corresponding to only liquid 

in the pipe cross section) indicates the absence of gas in the flow, while a void fraction of 1 

(Ag = A corresponding to only gas or vapor in the pipe cross section) indicates that the flow is 

fully comprised of gas. 

Values of the void fraction close to 0+ are typical of bubbly two-phase flow where the 

large percentage of the pipe is occupied by the liquid phase and only a few gas or vapor 

bubbles are entrained in the continuous liquid phase,  whereas values of the void fraction 

close to  1− are characteristic  of dispersed mist  flow, where the gas or vapor occupy the 

largest percentage of the pipe and only a few liquid droplets are entrained in the continuous 

gas phase.

A different term utilized in two phase flows to describe the ratio of each phase to the  

total volume of the pipe (Ali, S. F. 2009), is “hold-up or fraction”. However, it has prevailed 

to be used to describe the liquid fraction rather than the gas volume fraction hence, the term 

void fraction corresponds to gas volume fraction.

In practice,  the void fraction is estimated using a range of experimental  approaches, 

including  direct  measurement,  void  fraction  correlations  and  empirical  models.  These 

approaches  strive  to  reliably  forecast  the  void  fraction  in  various  flow  patterns and 

geometries,  providing  useful  data  for  the  design  and  optimization  of  many  industrial 

processes involving two-phase flow.

2.1.2 Pressure gradient  

The “pressure gradient” or sometimes referred as “total pressure gradient” describes the 

total two-phase flow pressure drop with distance along the pipeline and is mathematically 

defined as the sum of three components (Equation  2.2):

(ⅆ Ptp

Lⅆ )=( dPf

Lⅆ +
d Ph

Lⅆ +
ⅆPa

Lⅆ ) Equation  2.2
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where  dpf/dx  is  the  frictional  pressure  gradient,  dph/dy  is  the  gravitational  pressure 

gradient, and dpa/dz is the acceleration pressure gradient. 

The frictional pressure drop is caused by irreversible shear work at the pipe wall and the 

gas-liquid  interface.  The  frictional  pressure  gradient  in  two  phase  flow  is  far  more 

challenging to determine than in single phase flow. This is because it is affected by a variety 

of  flow  parameters,  including  pipe  diameter,  mass  flux,  pipe  orientation,  pipe  surface 

roughness, fluid properties and the interfacial contact area between the phases. Since both 

phases are present in the pipe simultaneously,  the cross-sectional  area available  for these 

phases to flow is consequently less. As a logical  consequence of the friction between the 

phases, significant pressure drop is anticipated in two-phase flow.

The gravitational pressure gradient represents the pressure change due to the change in 

height along the pipe and is dependent on the orientation of the pipe (vertical or horizontal). 

The  acceleration  pressure  gradient  indicates  the  pressure  change  due  to  acceleration  or 

deceleration of the fluid.

For  adiabatic  flows  in  both  horizontal  and  vertical  pipes (Al-Awadi,  H.  2011),  the 

acceleration  pressure  gradient  typically  constitutes  less  than  1%  of  the  overall  pressure 

gradient  (ESDU, 2004).  Consequently,  the  term dpa/dz  is  disregarded  and the  evaluation 

focuses solely on the frictional and gravitational components (Ali, S. F. 2009). 

To properly forecast the pressure gradient in a two-phase flow, both the frictional and 

gravitational pressure gradients must be considered, as well as any changes in fluid properties 

caused by the presence of two phases. This may be accomplished by employing models and 

correlations designed expressly for two-phase flow systems.

2.2 Two-phase flow

Multi-phase flow refers to the simultaneous flow of different phases. Multi-phase flow is 

widespread in various industries including the chemical, nuclear and geothermal industries. A 

two-phase flow of two immiscible fluids, such as oil/water (Al-Awadi, H. 2011) or gas/liquid 

develops in producing wells, related flow lines, separators, dehydration units, evaporators and 

other processing equipment in the oil industry (Al-Dogail, et al. 2021). Because of all these 

fields of occurrence of multiphase flow, it comprises an important area of study for engineers 

and  scientists  involved  in  the  design,  operation  and  optimization  of  production, 

transportation, and refining processes. 

Two-phase flow is described as the simultaneous flow of two phases in a pipe, such as  

gas and liquid. A fluid compound mixture that flows through a pipeline can emerge as a 
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single-phase  liquid,  a  single-phase  gas,  or  a  two-phase gas-liquid  combination.  The flow 

behavior of two-phase systems, on the other hand, is considerably more complicated than that 

of single-phase schemes due to variations in phase distribution in the pipeline; these flow 

features  are  defined  as  the  flow  pattern  or  flow  regime.  Numerous  factors  and  forces 

impacting on fluids determine the sort of flow pattern that occurs at a specific place in the 

pipeline.  These flow parameters  include  forces  such as  buoyancy,  turbulence,  inertia  and 

surface tension (Ali,  S. F. 2009), in addition to volume fluxes,  pipe diameter,  inclination 

angle and fluid properties including fluid density and viscosity (Al-Dogail, et al. 2021).

The ability to identify two-phase flow regimes is becoming necessary in oil and gas 

industry.  An  accurate  evaluation  of  multiphase  flow  regimes will  result  in  an  accurate 

forecast of pipeline pressure drop. Furthermore, the mass, momentum and energy transfer 

rates and processes can be affected by the geometric distribution of the flow's components 

(Al-Dogail,  et  al.  2021).  Moreover,  flow  regimes  give  essential  information  for  several 

related flow issues, such as predicting erosion and corrosion, as well as predicting solids 

deposition and slug characteristics.

Nevertheless, there is currently no reliable technique for determining two-phase flow 

regimes. Two-phase flow regimes are often set based on subjective opinion of the researcher 

(Lowe and Rezkallah 1999). Due to relative movement and varying interfaces between the 

two phases, two-phase flow is, on the one hand, more complicated than single-phase flow. On 

the other hand, there is no reliable means for gathering precise data that can represent the real 

flow regimes.

Nowadays there are two different types of methods being utilized to determine two-

phase flow regimes:

 Direct methods: This type of approach involves the direct observation of the flow 

patterns to determine the flow regime. Examples of direct methods include eyeballing, 

high-speed  photography  and  radial  attenuation.  These  methods  provide  visual 

information about the flow and can be useful for gaining qualitative understanding of the 

flow regime, but their accuracy can be limited by the resolution of the equipment and the 

subjectivity of the observer's interpretation.

 Indirect methods: These methods analyze recorded signals statistically in order to 

determine  the flow regimes by reflecting  the fluctuating characteristics  of two-phase 

flows. To determine the flow regime, measurements and analyses may be conducted on 

variables including pressure drop and void fraction. These methods offer quantitative 
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data  regarding  the  flow,  but  they  may  have  limitations  due  to  the  precision  of  the 

measuring tools and the complexity of the data analysis.

To achieve accurate  and trustworthy findings,  it  is  critical  to  have a  comprehensive 

grasp of the underlying physical principles and to employ proper measurement and analysis 

procedures  in  both  direct  and  indirect  approaches.  The  identification  of  two-phase  flow 

regimes is an ongoing research topic, with new approaches and procedures being developed 

to increase the precision and validity of flow pattern identifying.

2.2.1  Two-phase flow patterns in vertical pipes 

Diverse interpretations of flow behavior visualization by various scientists have resulted 

in a lack of unanimity in the description and classification of flow regimes, including those in 

small  diameter  pipes (Shoham, 2006;  Pagan et  al.  2017). Because of the highly complex 

nature of its interface, modeling of two-phase flows has always been limited to certain cases 

hence,  the  two-phase  flows  in  upward  vertical  and  near-vertical  pipes  were  generally 

classified into four basic patterns: bubbly, slug, churn and annular flow.

When  the  flow  conditions  change,  these  regimes  emerge.  Bubbly  flow  emerges  in 

examining vertical pipe flows while maintaining a constant liquid flow rate and increasing 

the gas flow rate.  Bubble coalescence produces  bigger bubbles as gas volume flow rates 

increases. The flow pattern is demonstrated to transition from bubble flow at low gas flow 

rates, to slug flow, then churn flow and eventually annular flow at higher gas rates (Montoya 

et al. 2016).

A suitable starting point for describing flow regime transitions is single phase liquid 

flow.  Bubble  flow  emerges  when  liquid  is  pumped  into  a  vertical  pipe  while  gas  is 

concurrently injected at the pipe's bottom (Perez, 2007). The pattern in the pipe changes from 

bubble to slug when the gas flow rate increases while the liquid flow rate remains constant. 

This is related to the coalescence of tiny bubbles. When the gas flow rate is increased further, 

the regime changes to churn and then to annular flow. Despite substantial efforts, robust and 

precise modeling techniques for such situations remain lacking.

In two-phase flow, the flow regime pertains to the pipe's design and structure (inclined, 

vertical, or horizontal pipeline), the local flow state and the fluid parameters of each phase. 

The  fundamental  challenge  in  analyzing  two-phase  flow  is  determining  its  continuity, 

momentum and energy, in addition to its reactivity to pipeline's geometry.

The intricacy of two-phase flows becomes more pronounced as the void fraction rises. 

This is due to opposing forces that cause coalescence of tiny bubbles into bigger ones, while 
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simultaneously  causing  the  disintegration  of  the  larger  structures (Montoya  et  al.  2016). 

Moreover, as the liquid phase becomes more turbulent, the increase in bubble size leads to a 

greater  complexity  level  at  the  interface.  The  greater  deformability  poses  significant 

challenges in the theoretical modeling of large bubbles (Montoya et al. 2016). The difficulties 

in modeling high void fraction patterns are exacerbated by the restricted data available from 

experimental sources. While local and transient data for small and large bubble patterns has 

been  collected  (Prasseretal.,  2007;  Lucas  et  al.,  2005; Montoya  et  al.  2016),  churn-like 

bubbles are exceedingly unstable and hence not amenable to independent investigation.

The two-phase flow patterns observed in vertical pipes are described as follows:

2.2.1.1 Bubbly flow

 Gas bubbles travel dispersed in a complicated motion via a dominant liquid flow (Perez, 

2007). The vapor phase is evenly disseminated as bubbles of varying size and shape in the 

continuous liquid phase. They are, however, substantially smaller than the pipe diameter and 

in general,  spherical.  Unless at  very low mass velocities,  when buoyancy effects  become 

obvious, the ratio of phase velocities in the bubble pattern is close to one and no significant 

slippage can be detected. This flow regime appears near zero vapor quality  and is typically 

present prior to the fluid reaching a state of saturation, which is characterized by subcooled 

boiling (Schmid et al. 2022). Bubble flow regimes may be further subdivided into bubbly and 

dispersed-bubble flow. The first one is characterized by a lower number of larger bubbles 

traveling at a higher velocity than the liquid phase, whilst subsequent one is characterized by 

multiple smaller bubbles travelling at an equivalent velocity to the liquid phase (Brill and 

Mukherjee, 1999; Pagan et al. 2017).

2.2.1.2 Slug flow

As the void fraction increases, the bubbles from the bubble flow regime tend to coalesce, 

generating bigger bubbles approximately the size of the inner pipe diameter. These bubbles 

exhibit a bullet-like shape with a hemispherical front and a fluctuating tail in the direction of 

the flow. They maintain axial symmetry. (Schmid et al. 2022). They are usually referred to as 

"Taylor-Bubbles". A thin liquid layer separates the Taylor bubbles from the pipe wall (Pagan 

et al. 2017). The liquid film moves downwards, whereas the Taylor bubbles flow upwards. 

Liquid slugs carrying tiny bubbles bridge the pipe perimeters and create separation among the 

Taylor-Bubbles. Buoyancy influences the velocity of the phases and the net average velocity 

of the vapor  phase is  often greater  than  that  of the liquid phase in  the upward direction 
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(Schmid et  al.  2022). As the void fraction grows, the Taylor-Bubbles become longer and 

liquid slugs emerge at lower frequencies. According to recent research, this pattern does not 

occur in larger diameter pipes; rather, a straight transition from bubble to churn flow occurs 

(Cheng et al. 1998; Perez, 2007).

2.2.1.3 Churn flow

Many researchers consider  churn flow to be the least  comprehended flow pattern  in 

vertical upward gas-liquid flows within pipes. Nonetheless, this flow pattern is widespread in 

various applications in the petroleum industry, including gas-lift operations, gas-condensate 

well production and two-phase flows with a high gas-liquid ratio in general. Furthermore, 

regardless of flow regime, the precision of two-phase flow modeling for larger pipe diameters 

remains  questionable.  Only  a  limited  number  of  studies  in  publicly  available  literature 

validate two-phase flow models for pipe diameters exceeding 0.203 m (8 in.) (Pagan et al. 

2017).

This  regime  is  formed  when the  Taylor  bubbles  exhibit  an  erratic  motion.  It  is  an 

extremely chaotic flow pattern that involves the constant break up and dispersion of liquid 

into gas and gas into liquid (Perez, 2007). Prasser (2003) offered a nice illustration of an 

unstable "slug" flow for larger pipe diameters. Ohnuki and Akimoto (2000) offered various 

definitions for large diameter pipes (Perez, 2007). This flow pattern is distinguished by a 

chaotic mix of phases. It begins to form when the liquid slugs become unstable and start to 

collapse (Schmid et al. 2022). The liquid's local flow direction may fluctuate between upflow 

and downflow, with a net flow in the upward direction. The highest void fraction in the liquid 

slugs  is  achieved during the shift  from slug to  churn and the turbulent  wake behind the 

preceding Taylor-Bubble begins to impact the nose of the subsequent one. The transition 

conditions to churn flow are determined by liquid slugs that are not retained (Schmid et al. 

2022). As a result, their frequency is reduced to zero.

The churn flow regime is characterized by chaotic flow. Because of its intricacy, several 

researchers have stated that its physics is extremely difficult to understand and characterize 

experimentally  (Ansari  et  al.,  1994;  Shoham,  2006;  Pagan et  al.  2017).  The  churn  flow 

pattern has been observed between the slug and annular flow regimes, albeit at really high 

liquid flow rates, a direct transition from slug or even bubbly flow directly to annular flow 

may occur  (Jayanti  and Hewitt,  1992).  Because  of  its  similarities  to  annular  flow,  some 

scientists do not consider churn flow as a distinct flow regime. Many other scientists consider 

that this pattern is just a transition one. For a sufficiently long pipes, Taitel et al. (1980) and 
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Dukler & Taitel (1986) define churn flow pattern as an entry phenomenon that precedes the 

stable slug flow downstream (Pagan et al. 2017). Waltrich et al. (2013), on the other hand, 

recently claimed that the churn flow pattern exists and should be recognized as a distinct 

pattern.  Their  conclusion  was  drawn  from  experimental  observations,  including  video 

recordings  and  liquid  holdup  measurements  (Pagan  et  al.  2017)  taken  while  utilizing  a 

vertical tube system 42m long and 0.048m in diameter.

Figure 2.1 Two-phase flow patterns in vertical upflow Thome, J. R., & Cioncolini, A. (2016). Two-phase flow pattern maps 
for microchannels. in encyclopedia of two-phase heat transfer and flow I: Fundamentals and Methods (Pp. 47-84).

2.2.1.4 Annular flow

Annular flow in a vertical pipe is defined by a high-speed gas core including entrained 

liquid droplets (Pagan et al. 2017). A thin liquid film surrounds the pipe wall in this flow 

pattern,  which  may  include  entrained  gas  bubbles.  Annular  flow is  characterized  by  the 

continuous vapor phase in the pipe's core, while the liquid phase is pushed from the center to 

the pipe's perimeter. The significant proportion of the liquid phase flows as an annulus at the 

inner pipe wall,  resulting to  the flow regime's  name and remaining part  of it  as droplets 
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entrained  in  the  vapor  core  (Schmid  et  al.  2022).  The  vapor  phase's  velocity  is  often 

significantly greater than the liquid annulus'.

The liquid film in vertical annular flow is thin and generally homogeneous across the 

inner pipe perimeter. The drag of the high-velocity gas core causes waves to develop on the 

liquid film. As the shear from the gas core against the liquid film breaks off the tip of the 

waves, it leads to the generation of entrained droplets within the gas core (Pagan et al. 2017). 

As the entrained droplets travel randomly in the gas core and are transported up by the gas 

stream, they will every once in a while, re-deposit in the liquid film downstream from where 

they were produced (Hewitt and Hall-Taylor, 1970). The interface within phases is frequently 

rough because of the generation of waves. The dispersed phase can transfer almost all of the 

liquid at some very high gas flow rates. The shear forces of the vapor phase core elevate the 

liquid  film in  vertical  upflow.  At  low mass  velocities,  however,  gravitational  forces  can 

dominate over shear, resulting in the liquid film flowing in the opposite direction (Schmid et 

al. 2022).

During the change from churn to annular flow, the liquid phase is no longer bridging the 

pipe perimeter, allowing the vapor in the pipe core to flow freely without being disturbed by 

the liquid. However, the transition from churn to annular flow lacks well-defined criteria. As 

a result,  it  is more of a continuous transition from a chaotic and turbulent condition to a  

steadier flow. In addition, oscillating between the two flow patterns may occur during the 

transition  phase,  when  sequences  from one  pattern alternate  with  sequences  of  the  other 

(Schmid et al. 2022).

2.2.1.5 Mist flow

Mist flow is a type of two-phase flow that arises when gas or vapor carries tiny droplets 

within  it.  These  droplets  are  often  too  small  to  be  observed  without  magnification  or 

illumination. The onset of mist flow typically occurs at high vapor qualities when the shear 

forces from the gas core on the interface cause the annular film to become unstable (Pagan et 

al. 2017). As a result, the annular film becomes thinner until all of the liquid in the film is 

carried as droplets within the continuous gas phase. Another situation where mist flow may 

occur is during flow boiling when the critical heat flux is exceeded (Thome & Cioncolini, 

2016). When the liquid droplets in the mist flow come into contact with the tube wall, they 

only  intermittently  wet  it  locally.  Consequently,  heat  transfer  is  significantly  reduced 

compared to annular flow because the droplets do not form a  continuous film on the wall, 

which is necessary for efficient heat transfer.
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2.2.2 Two-phase flow patterns in horizontal pipes

A precise forecast of pressure loss in pipelines may be achieved by accurately estimating 

multiphase  flow  regimes.  They  are  susceptible  to  the  rates  and  processes  of  mass, 

momentum,  and  energy  transmission.  Flow  patterns  also  give  information  for  various 

connected  flow  issues,  such  as  erosion  and  corrosion  prediction,  in  addition  to  solids 

deposition and slug characteristics prediction, as mentioned before.

Another significant consideration in two-phase flows pertains to horizontal pipelines. In 

fact,  two-phase flow patterns in horizontal  pipes closely resemble those in vertical  flows, 

differing primarily  in  terms of flow stratification  effects.  In a  horizontal  two-phase flow, 

buoyancy forces lead to the separation of liquid and vapor, causing the liquid to accumulate 

at the bottom of the pipeline and the gas to rise towards the top. However, when the flow 

rates  are  sufficiently  high,  the  impact  of  buoyancy  becomes  insignificant  and  the  flows 

closely resemble those found in vertical configurations (Thome & Cioncolini, 2016).

Numerous researchers have established classifications for flow patterns to interpret the 

various flow arrangements leading to a wide range of flow pattern names (Al-Dogail, et al. 

2021). 

In horizontal flow regimes, where gravity acts perpendicular to the flow direction, there 

is a potential  for flow separation to transpire. The various flow patterns include stratified 

flow,  where  gravitational  separation  is  fully  realized;  stratified-wavy  flow;  bubble  flow, 

characterized by the dispersion of bubbles within the liquid continuum; annular dispersed 

flow, akin to that in vertical flow but with asymmetry in film thickness caused by gravity;  

and  various  intermittent  flow patterns. The  intermittent  flow category  encompasses  plug 

flow, where large bubbles flow near the top of the pipe; semi-slug flow, characterized by the 

presence of very large waves on the stratified layer; and slug flow, where these waves reach 

the top of the  pipe  and create  a liquid slug that swiftly moves along the channel  (Perez, 

2007).

Predicting flow patterns is often a requirement and the conventional approach involves 

creating  a  flow  regime  map  based  on  certain  primary  variables,  such  as  the  superficial 

velocity of the phases, mass flux and quality. However, substantial efforts have been devoted 

to developing generalized plots that can be utilized across various channel configurations and 

fluid characteristics (Perez, 2007). Several factors and forces exert influence on the fluids, 

leading to the emergence of specific flow regimes within a particular section of the pipeline. 

The inherent instability of these flow patterns contributes to the shifting boundaries of flow 
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regime regions on a flow regime map, subsequently leading to transitions between different 

flow patterns (Al-Dogail, et al. 2021). The two-phase flow patterns observed in horizontal 

pipes are described as follows:

2.2.2.1 Bubble flow

When the liquid flow rate in a pipeline is high, the bubble flow regime develops. Due to 

buoyancy force, many dispersed gas bubbles create a layer on the upper half of the pipeline, 

above the continuous liquid phase,  in this regime (Al-Awadi,  H. 2011). The bubbly flow 

regime is mostly seen in horizontal flows at high mass flow rates because at lower flow rates 

the  numerous  bubbles  in  the  upper  half  swiftly  amalgamate  into  a  few large,  elongated 

bubbles and it can quickly convert into plug flow (intermittent regime) (Thome & Cioncolini, 

2016). In relation to the pipe diameter, the bubbles are rather minute. Shear forces dominate 

at high liquid velocities and bubbles are evenly distributed throughout the pipe. This flow 

regime may represent a different category. As the vapor velocity increases, the number of 

bubbles tends to increase as well to fill the whole pipe cross section.

2.2.2.2 Stratified flow 

This flow is gravity dominated and appears at low gas and liquid flow rates when the 

two phases separate completely: the gas flows along the upper section of the pipe and the 

liquid travels along the lower section of the pipe with no notable interfacial waves (Thome & 

Cioncolini,  2016). The interface between the two phases is horizontal  and flat.  Typically, 

over half of the pipe's perimeter remains dry, leaving its remaining wet. This flow pattern has 

the  simplest  form of  all  horizontal  flow regimes  and  is  also  described  as  the  "stratified 

smooth" flow pattern.  The dispersed phase  creates  a  layer  on top  of  the pipe,  while  the 

continuous phase lies underneath it.  It can also be characterized by the coalescence of gas 

plugs to form a continuous gas flow along the top of the pipe, exhibiting a smooth gas-liquid 

interface characteristic of stratified flow at low flow rates (Ali, S. F. 2009).

2.2.2.3 Wavy stratified flow 

The dispersed phase creates a layer at the top of the pipe in stratified wavy flow, while 

the continuous phase flows below. The interface between the two phases is wavy and moves 

in the flow direction. This happens as the gas velocity rises and generates interfacial shear on 

the liquid surface, leading to the generation of waves that travel in the direction of flow and 

wrap around the pipe's perimeter towards the top. The amplitude of the waves is noticeable 
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and it increases proportionately to the rate of gas flow. Their crests, however, do not contact  

the upper surface of the inner pipe. Although sometimes large-amplitude waves may wet it, a 

notable portion of the upper perimeter of the pipe remains dry (Thome & Cioncolini, 2016). 

The gas-liquid interface is seldom smooth and the waves generate ripples in the liquid surface 

(Al-Awadi, H. 2011).

2.2.2.4 Intermittent flow 

With  the  increase  in  gas  velocity,  the  interfacial  waves  attain  sufficient  height  to 

consistently wet the upper perimeter,  frequently leaving a liquid film in their  wake. As a 

result, nearly the entire pipe's perimeter remains continuously wet. The high-amplitude waves 

are interspersed with lower-amplitude waves that do not attain the top of the channel. Due to 

the rolling motion of these waves, entrained bubbles are frequently observed within the larger 

waves.  The liquid  slugs  that  separate  such big,  elongated  bubbles  might  alternatively  be 

regarded as large periodic amplitude waves, giving rise to the regime's name: intermittent 

flow. Intermittent flow is occasionally further subdivided into two distinct patterns: plug flow 

and slug flow (Thome & Cioncolini, 2016):

14

Figure 2.2 Two-phase flow patterns in horizontal flow (from Silva Lima, 2011). Thome, J. 
R., & Cioncolini, A. (2016). Two-phase flow pattern maps for microchannels. in 
encyclopedia of two-phase heat transfer and flow I: Fundamentals and Methods (Pp. 47-84).
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2.2.2.4.1 Plug flow 

This flow pattern is characterized by a continuous liquid flow with large, bullet-shaped, 

elongated  gas  bubbles  (Thome & Cioncolini,  2016)  and liquid  plugs  traveling  along  the 

pipeline's top. Many bubbles coalesce to generate intermittent gas plugs. The diameter of the 

elongated bubbles is smaller than the diameter of the pipe, allowing a continuous liquid phase 

to emerge on the pipe's bottom. This flow regime is also known as "elongated bubble" flow 

pattern. Collisions between the discrete bubbles happen more often at increased gas flow rate 

and they coalesce into elongated "plugs" (Ali, S. F. 2009). This is the reason it is termed plug 

flow.

2.2.2.4.2 Slug flow

The dispersed phase in this flow pattern is composed of big bubbles separated by slugs 

of the continuous phase, resulting in a periodic change in the cross-sectional area of the pipe 

(Perez, 2007). Large amplitude waves or splashes of liquid eventually build up and reach the 

upper wall of the pipe, forming liquid slugs. The slugs alternately travel with the dispersed 

phase, while the liquid slugs are carried by the faster-moving gas flow. In contrast to the plug 

flow pattern,  wherein elongated  bubbles  are  carried  by the liquid  phase,  the  fast-moving 

liquid slugs in the slug flow regime are frequently accompanied with sudden pressure pulses 

and severe pressure fluctuations that can cause damage to downstream components, making it 

very undesirable in practical applications. With an increase in gas flow rate, the diameters of 

the elongated bubbles get closer to that of the pipeline and the flow pattern starts to resemble 

slug flow in vertical pipelines. The liquid film between the bubble's top and the pipeline is 

(Thome & Cioncolini, 2016) often thinner in comparison to the liquid film underneath the 

bubble. The flow enters the slug flow regime when the amplitude of the waves flowing along 

the liquid surface becomes significant  enough to span the top of the pipe (Al-Awadi,  H. 

2011).

2.2.2.5 Annular flow

When the gas flow rate is high enough to support the liquid film around the pipe walls 

(Ali, S. F. 2009), this flow is momentum-dominated and occurs at relatively high gas flow 

rates. When the gas flow rate is increased, the liquid forms a continuous annular film around 

the perimeter of the pipe wall and the gas flows as a central core, entrapping tiny droplets of 

liquid dispersed as mist. Small gas bubbles may be entrained in the liquid film as well. The 

15



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

thickness of the liquid film is greater towards the bottom of the pipe due to gravity until the 

annular liquid ring achieves a uniform thickness when even higher gas flow rates prevail. 

Waves may disrupt the interface between the liquid annulus and the vapor core and droplets 

may be disseminated in the gas core. At high gas fractions, the top of the tube with its thinner 

film dries first, leaving the annular film to cover just the bottom pipe perimeter, resulting in a 

stratified-wavy  flow  (Thome  &  Cioncolini,  2016).  This  flow  regime  is  linked  with  a 

substantially greater heat transfer coefficient in flow boiling or condensation.

2.2.3 Flow regime maps 

The  preceding  chapter  detailed  typically  observed  flow  regimes  in  vertical  and 

horizontal  gas-liquid  flow.  Organizing  these  frequently  disorderly  processes  poses  a 

considerable  challenge.  Usually,  flow  patterns,  identified  by  analyzing  trends  in  both 

quantitative and qualitative  data,  are systematically  arranged (Perez,  2007).  Mapping is  a 

prominent  method  for  analyzing  distinctive  flow  regimes  depending  on  different  flow 

parameters.  Within  a  spectrum of  flow conditions,  delineating  the  boundaries  wherein  a 

specific pattern prevails becomes feasible. Graphical classification of flow pattern maps is 

achievable for both vertical  and horizontal  multiphase flows. Upon mapping all  observed 

pattern boundaries, a comprehensive understanding of behavior relative to flow conditions 

emerges (Perez, 2007). 

A  flow  pattern  map  is  a  two-dimensional  map  depicting  flow  regime  transition 

boundaries  (Ali,  S.  F.  2009).  Predicting  regimes  is  frequently  required  and  the  standard 

technique is to plot the information in terms of a flow regime map. The selection of proper 

coordinates  to represent  the various flow regimes clearly and efficiently  has long been a 

research  topic.  In  practice,  dimensional  coordinates  such  as  superficial  velocities 

are commonly  utilized  as  the  one  proposed  by Taitel  et  al.  (1976).  Numerous  maps  are 

expressed in terms of fundamental variables, such as the superficial velocity of each phase, 

mass flux and quality. However, substantial efforts have been invested in generalizing these 

plots  to  enable  their  adaptation  across  a  diverse  spectrum  of  pipe  geometries  and  fluid 

physical properties (Perez, 2007). 

There  are  two different  types  of  flow  regime  maps:  empirical  flow  maps,  that  are 

typically  fitted to data bases of observed flow patterns and theoretical or semi-theoretical 

flow maps, in which transitions are predicted from physical models of the flow phenomena 

(Montoya et al. 2016). Theoretical or semi-theoretical flow-pattern maps are designed with 

the flow structure in consideration and they are often related to heat transfer processes and 
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diabatic characteristics. Typically, just two parameters, such as the superficial gas and liquid 

velocities,  are utilized to construct a coordinate  system on which the boundaries between 

distinct flow patterns are plotted. Similar to a conventional map, transition boundaries are 

presented to separate the various flow regimes.

Two-phase flow, that refers to the simultaneous flow of a liquid and a gas in a pipe, is a 

complicated  process  regulated  by  a  number  of  competing  forces  including  shear  stress, 

capillarity,  gravity and momentum. This contributes to making predicting two-phase flow 

behavior challenging. Flow-pattern maps or flow-regime maps are commonly employed to 

simplify the visualization of this complicated flow behavior. The relative magnitudes of the 

forces acting on the fluids are used to categorize the flow into different regimes (Al-Awadi, 

H. 2011).

These  maps,  however,  have  certain  drawbacks.  Flow  regime  maps  have  limitations 

considering that they are frequently dimensional and only applicable to certain pipe diameters 

and  fluids.  Furthermore,  experimental  data  is  necessary  to  construct  these  maps,  yet 

evaluating the influence of each parameter on the flow regime map is not always possible. 

Attempts to establish generalized coordinates for flow maps have also been  hampered  by 

instabilities in the transition lines between flow regimes, which are regulated by distinct sets 

of fluid properties. Moreover, the impact of fluid parameters such as density, viscosity and 

surface tension on flow patterns and pressure drop in pipelines remains unclear.

Because  of  the  non-axisymmetric  structure  of  gravity-induced  flow,  horizontal  two-

phase flow is more challenging to analyze than vertical two-phase flow. Baker's flow map, 

which is frequently quoted for adiabatic gas-liquid flow, fails to account for the influence of 

pipe diameter since the majority of the data utilized was for a fixed pipe size. 

Kosterin developed the first flow regime maps in 1949 and since then, other researchers 

have presented several flow regime maps based on experimental data acquired from various 

references. Baker's flow regime map is one of the most often utilized (Al-Awadi, H. 2011) 

flow regime maps, because it relies on experimental data gathered from several published 

references (Al-Dogail, et al. 2021).

Taitel and Dukler (1976) developed a widely used theoretical, mechanistic flow regime 

map, albeit with alterations to the computation of the interfacial friction factor (Perez, 2007). 

Taitel-Dukler's  map  is  premised  on  a  simplified  theoretical  model  and  several  of  their 

assumptions have been criticized by other scientists. The flow pattern map of Taitel et al. 

(1980) (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής) is the most frequently used for vertical 

flow. However, for vertical downward flow, different flow patterns have been devised, such 
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as those of Bilicki and Kestin (1987) and Barnea et al. (1982) (Perez, 2007). Mandhane's 

flow  map  (Σφάλμα:  Δεν  βρέθηκε  η  πηγή  παραπομπής,  Σφάλμα:  Δεν  βρέθηκε  η  πηγή

παραπομπής),  on  the  other  hand,  is  commonly  accepted  for  horizontal  flows  since  it  is 

developed utilizing a broad range of parameter values.

Flow regime maps, despite their limitations, are a useful tool for predicting the flow 

pattern and pressure drop in two-phase flow in pipes. They give a visual representation of the 

complicated behavior of two-phase flow, which can be difficult to comprehend based only on 

mathematical models. Engineers and scientists may better design and improve pipelines and 

other  industrial  processes  requiring  two-phase  flow  by  employing  flow  regime  maps. 

However, interpreting two-phase flow patterns is typically subjective and there is no precise 

quantitative approach for describing and categorizing the flow patterns.

A combination of parameters and dimensionless numbers were (Al-Dogail, et al. 2021) 

employed  to  broaden  the  applicability  of  the  flow  regime  maps.  A  large  amount  of 

experimental  data  is  necessary to  construct these maps and it  is  typically  not possible  to 

examine  the  effect  of  each  parameter  (density,  viscosity,  surface  tension,  pipe  size,  or 

geometry)  on  the  flow  regime  map.  The  presence  of  interfaces  between  phases  and 

discontinuities in associated properties defines multi-phase flow. Surface tension is used to 

describe the presence of interphase and its impact was not evaluated for the air-water system, 

despite the fact that the air-water system is used in the majority of the research published in 

the literature to create the experimental data necessary for the flow regime map.

The flow regime maps provided in the literature are diverse since they were developed 

employing different parameters such as pipe diameter, fluid characteristics and flow rates. 

Bergelin and Gazley, for instance, introduced a flow pattern map for a two-phase flow system 

consisting of air and water flowing through a 1-inch diameter pipe, whereas Alves presented 

a flow pattern map for various fluid mixtures,  some of which consisted of air-water  and 

others of air-oil, also on a 1-inch diameter pipe (Al-Dogail, et al. 2021).

Mandhane et al. designed a flow pattern map for two-phase gas-liquid flow in horizontal 

(Al-Awadi,  H.  2011)  pipes  utilizing  around  6000  observations.  The  flow  regime  map's 

mapping  parameters  were  liquid  and  gas  superficial  velocities  (Perez,  2007).  Their 

conclusion indicated that the transition boundaries of flow patterns are minimally influenced 

by fluid properties and pipe diameter when mapping parameters such as superficial velocities 

of liquid and gas are employed. (Al-Dogail, et al. 2021). 

Other researchers have created flow regime maps based on experimental data collected 

at atmospheric pressure with various horizontal pipe diameters. Lin and Hanratty examined 
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the  impact  of  pipe  diameter  on  flow patterns  for  air-water  flow in  horizontal  pipes  and 

developed a flow pattern map based on experimental data recorded at atmospheric pressure 

using 1-inch and 3.75-inch horizontal pipes. They reported that at high gas flow rates, pipe 
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diameter had no influence on transition lines,  and the transition from stratified to annular 

flow differed in small and large diameters owing to the effect of wave velocities (Al-Dogail, 

et al. 2021). 
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The development of accurate flow regime maps requires a large amount of experimental 

data and the generalized applicability of these maps remains a topic of ongoing research.
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Figure 2.7 Flow patterns map adapted from reference (Mandhane et al., 1974).

Figure 2.6 Reproduced gas-liquid flow pattern map for vertical upward flow

Figure 2.5 Flow regimes map for vertical upflow showing Taitel et al. (1980) and Mishima 
and Ishii (1984) transitions (Mishima and Ishii, 1984). Ali, S. F. (2009). Two-phase flow in a 
large diameter vertical riser (Doctoral dissertation, Cranfield University)

Figure 2.4 Flow regime map for horizontal flow showing Mandhane et al. (1974) and Taitel 
et al. (1976) transitions (Brennen, 2005). Ali, S. F. (2009). Two-phase flow in a large 
diameter vertical riser (Doctoral dissertation, Cranfield University).

Figure 2.3 Two-phase horizontal flow map. Knotek, S., Fiebach, A., & Schmelter, S. (2016, 
September). Numerical simulation of multiphase flows in large horizontal pipes. In 
Proceedings of the 17th International Flow Measurement Conference FLOMEKO.
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2.3 Two-phase flow pattern transitions and mechanisms 

Changes in the type of flow regime which emerge in a pipe are referred to as flow 

pattern transitions. Changes in flow rate, fluid characteristics, or pipe geometry can induce 

these transitions, indicating that the behavior of gas-liquid flows is significantly influenced 

by both the physical properties and the geometrical features of the pipeline (Azzopardi, 2006; 

Brennen  and  Brennen,  2005;  Crowe,  2005;  Shen  et  al.,  2014; Mohammed  et  al.  2019). 

Because  two-phase  flow  behavior  is  very  complicated  and  nonlinear,  understanding  the 

underlying mechanisms of flow pattern transitions constitutes a significant challenge, but it is 

also  essential  for  forecasting  and  controlling  multiphase  flow  in  pipelines.  Models  and 

mechanisms described for small geometries are expected to exhibit substantial differences 

when applied to larger geometries and other physical attributes.  It would be intriguing to 

examine how regime transition mechanisms, which are typically created for air-water systems 

in  small  diameter  pipes,  might  convert  in  a  larger  diameter  pipe  at very  high  viscosity 

(Mohammed et al. 2019).

Despite controlled systems with simple geometries and regulated flow rates, the intricate 

nature of the transitions makes it  challenging to fully  understand the underlying physical 

phenomenon. The variations  in local  void and interfacial  area distributions  within a  two-

phase  flow  differ  among  patterns,  highlighting  the  significance  of  momentum  transfer 

between phases in controlling flow behavior. The strong dependence of the regime on flow 

characteristics underscores the need for understanding not only the behavior of the regime but 

also  its  emergence  within  the  system.  Theoretical  studies  of  two-phase  flow  regime 

transitions  emphasize  on  establishing  correlations  by  modeling  the  dominant  physical 

variables  that  induce  regime  transition.  Mishima  and Ishii  (1984)  proposed  a  hypothesis 

stating that the transition from bubbly to slug flow occurs at a void fraction of 30%. This 

transition  point  represents  the  threshold  at  which  bubbly  flow  is  transformed  into  large 

bubbles through coalescence.  Additionally,  it  is  theorized  that  the transition  from slug to 

churn flow occurs when the overall void fraction surpasses the void fraction found merely in 

the bubble region. This criterion is equivalent to selecting the moment when the liquid slug 

becomes sufficiently aerated to the extent that it cannot be distinguished separately. In this 

condition, the void is distributed relatively evenly throughout the pipe and there are no longer 

distinct liquid slugs. Ultimately, the transition from churn to annular flow was hypothesized 

to take place when flow direction reverses in the liquid film section along elongated bubbles 

or  when liquid  slugs  and  large  waves  are  eliminated  due  to  entrainment  or  deformation 

(Zimmer & Bolotnov 2019). 
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The emergence of instabilities in the flow is one of the most typical mechanisms behind 

flow  regime  transitions.  A  variety  of  factors,  including  fluid  viscosity,  surface  tension, 

gravity, and inertia, can generate these instabilities. The instabilities can become more severe 

when the flow rate or other parameters change, resulting in a transition to a different flow 

regime.  The interaction  of  different  phases  in  the  flow is  another  mechanism that  might 

induce flow pattern transitions. The existence of gas bubbles in a liquid flow, for instance, 

might create turbulence and result in a transition to slug or churn flow. Correspondingly, 

bubble or droplet  coalescence can create a transition from dispersed to annular flow (Al-

Awadi, H. 2011). Flow pattern transitions can also be influenced by the geometry of the pipe. 

Changes in the diameter or orientation of the pipe, for instance, might influence the flow 

regime by changing the relative significance of various forces and instabilities.

Researchers frequently employ flow visualization techniques such as high-speed video 

imaging and laser-based approaches to examine flow pattern transitions in multiphase flow. 

Researchers may determine the mechanisms underlying flow pattern transitions and establish 

models to predict  and control  the behavior of multiphase flow in different  conditions  by 

examining  flow  patterns  and  their  behavior.  To  handle  the  challenging  issue  of 

comprehending  two-phase  flow  regimes,  cutting-edge  experimental  facilities  have  been 

established and different measuring techniques have been applied according to the research 

objectives.  When the primary concern is the identification of the two-phase flow  pattern, 

high-speed cameras have been employed to monitor the flow and categorize the pattern. In 

other research, such as Wojtan et al. (2005), the facility could add extra steam to the flow via 

boiling  to  examine  its  impact  on  the  transition  behavior.  Researchers  can  additionally 

determine  the flow pattern by utilizing  an impedance  void meter,  that  records  the flow's 

instantaneous electrical impedance (Tsoukalas et al., 1997; Schlegel et al., 2013; Zimmer & 

Bolotnov 2019).  Each flow pattern's  impedance signal is different,  enabling identification 

without visual observation of the flow (Zimmer & Bolotnov 2019).

Understanding  flow  pattern  transitions  is  a  critical  area  of  study  with  significant 

consequences  for  a  broad  spectrum  of  industrial  use  cases,  including  nuclear  reactors, 

chemical processes and oil and gas production (Perez, 2007).

2.3.1 Transition from Bubbly to Slug flow

The transition from bubbly flow to slug flow occurs when the gas volume fraction or 

superficial gas velocity increases, or when the liquid viscosity or superficial liquid velocity 

decreases. As the void fraction or superficial gas velocity increases, the gas bubbles begin to 
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coalesce,  resulting in the formation of larger bubbles (Montoya et  al.  2016). These larger 

bubbles may start to detach from the liquid phase, leading to the formation of slugs.

The transition from bubbly flow to slug flow is determined by the interplay between 

bubble coalescence and break-up. This transition occurs when coalescence prevails, leading 

to the growth of bubbles into Taylor bubbles. A bubble becomes a slug flow Taylor bubble 

only when its equivalent diameter exceeds that of the pipe (Taitel et al., 1980; Mohammed et 

al. 2019). This indicates that the pipe diameter has a direct impact on the transition. On the 

other hand, liquid viscosity has a direct effect on bubble rise velocity due to drag, transverse 

movement of bubbles and bubble-induced turbulence; all these parameters have a significant 

influence  on  the  coalescence  and  break-up  of  bubbles,  which  determine  the  bubble-slug 

transition. According to Taitel et al. (1980), the transition to slug flow occurs when the void 

fraction reaches 0.2-0.3 (Mohammed et al. 2019). This represents the maximum number of 

bubbles that can be accommodated within a cube without significantly increasing the rate of 

coalescence. Radovcich and Moissis (1962) proposed a model to predict the transition to slug 

flow by  considering  the  possibility  of  successful  bubble  coalescence  in  relation  to  pipe 

diameter, void fraction and velocities. However, it is worth noting that their model did not 

account for the physical properties of the fluids (Mohammed et al. 2019).

The mechanism behind the transition from bubbly flow to slug flow is related to the 

dynamics of the gas-liquid interface.  The detachment of bubbles from the liquid phase is 

driven by buoyancy,  which can cause the bubbles to  rise  to  the top of the channel.  The 

detachment can also be driven by shear forces, which can cause the bubbles to break away 

from the liquid  phase.  Once the bubbles  detach,  they  can  coalesce  and form larger  (Al-

Awadi, H. 2011) gas pockets or slugs. The transition from bubbly flow to slug flow can also 

be affected by the channel geometry and the liquid properties. For example, in a horizontal 

channel,  the transition is more likely to occur at  lower gas velocities,  while in a vertical 

channel, the transition is more likely to occur at higher gas velocities. The physical analysis 

of the transition from bubbly to slug flow, as described by Hasan and Kabir (1988), adheres  

to an approach analogous to that employed for vertical systems. In the context of vertical 

systems,  the  transition  from  bubbly  flow  is  typically  observed  when  the  void  fraction 

surpasses 0.25 (Perez, 2007). In inclined pipe configurations, the gas phase predominantly 

flows along the upper wall. Consequently, in proximity to the upper wall, the in-situ void 

fraction may surpass 0.25, leading to a substantial rise in bubble collisions and the subsequent 

formation of Taylor bubbles. In such cases, the transition to slug flow takes place at a cross-

sectional average void fraction below 0.25 (Perez, 2007). 
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 The transition can also be affected by the surface tension between the gas and liquid 

phases, which can influence the stability of the gas bubbles. In slug flow, the liquid slugs can 

cause significant pressure fluctuations and can impact the performance of heat exchangers, 

reactors  and  other  process  equipment.  Thus,  understanding  the  mechanism  behind  the 

transition and the factors that can affect it is crucial in optimizing the design and operation of 

such systems (Ali, S. F. 2009).

2.3.2 Transition from Slug to churn flow

The transition from slug flow to churn flow happens when the liquid film that separates 

the gas slug from the pipe wall gets unstable and breaks up, causing the generation of smaller 

bubbles  or droplets  that  are  spread in  the liquid  phase.  This  mechanism can occur  for  a 

variety of reasons, including an increase in gas flow rate or a decrease in liquid flow rate, 

resulting in a decrease in liquid film thickness (Ali, S. F. 2009). As the liquid film breaks up, 

the bubbles or droplets coalesce to produce bigger gas pockets, resulting in a bubbly flow. 

The development of these gas pockets, as well as the break-up of the liquid film, increases 

turbulence and mixing between the gas and liquid phases, culminating in the establishment of 

a  churn  flow regime.  Alteration  in  pipe  geometry,  for  instance  a  quick  increase  in  pipe 

diameter or the presence of an abrupt constriction in the pipe, can also cause the transition 

from slug to  churn flow, resulting  in an increase  in  the velocity  of the gas  phase and a 

decrease in the thickness of the liquid film.

Churn flow is recognized by the presence of a froth consisting of small bubbles and cap-

sized  bubbles,  as  well  as  a  large,  unstable,  incoherent  structure  of  bubbles  that  undergo 

frequent coalescence and breakup. The most distinguishing characteristic of churn flow is the 

intermittent downward motion of the liquid film when massive gas formations ascend the 

vertical  column.  Mohammed  et.al  's  work  (2019), is  recommended  for  a  more  in-depth 

research of churn flow, particularly at high viscosities and in large diameter pipes. One of the 

prominent transition mechanisms proposed by Mishima and Ishii (1984) and Chen and Brill 

(1997) suggests that the transition occurs when Taylor bubbles reach a sufficient length for 

the wake of the leading bubble to meet the nose of the following bubble. This interaction 

forces the slug to collapse and results in the formation of substantial liquid structures. This 

scenario is believed to manifest when the average void fraction within the liquid slug matches 

or surpasses that of the Taylor bubble region. This mechanism is commonly referred to as the 

"wake effect" mechanism. Nicklin et al. (1962) postulated a transition mechanism involving 

the flooding of the liquid film surrounding the Taylor bubble. Hewitt and Hall-Taylor (1970) 
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presented a comprehensive experimental method for identifying the transition point. Some 

researchers, including Taitel et al. (1980), proposed that churn flow constitutes an emerging 

flow pattern for slug flow, driven by the backflow of the liquid slug when two unstable 

Taylor bubbles merge and transform into slugs. Brauner and Barnea (1986) postulated an 

alternative mechanism centered around bubble coalescence (Mohammed et al. 2019).

2.3.3 Transition from Churn to Annular flow

The transition to annular flow begins with the formation of a continuous gas core in 

which  the  liquid  mainly  flows  as  waves  and film on the  pipe  wall.  Complete  transition 

happens when the gas superficial velocity reaches a level at which it can lift the largest stable 

droplet within the gas core upwards (Mohammed et al. 2019). This transition is caused by the 

coalescence and breakup of liquid droplets in the churn flow area (Perez, 2007), resulting in a 

progressive increase in the thickness of the liquid film on the pipe wall.  The liquid film 

becomes continuous when the liquid film thickness reaches a critical point and the churn flow 

pattern  transitions  to  annular  flow.  Hinze  (1955)  hypothesized  a  transition  mechanism 

focusing on the balance between drag and gravity forces within the gas core. Only a limited 

number of researchers have conducted studies on the dynamics of gas-very viscous liquid 

flows and even fewer have explored the nature of flow pattern transitions and expounded on 

the probable transition mechanisms (Mohammed et al. 2019).

The interfacial shear stress between the liquid film and the gas core also influences the 

transition from churn to annular flow. The interfacial shear stress increases as the liquid film 

thickness  increases,  which improves  liquid  film stability  and accelerates  the transition  to 

annular flow. The fluid characteristics, such as surface tension and viscosity, along with the 

flow conditions, including gas and liquid superficial velocities and pipe diameter, all impact 

the transition from churn to annular flow. These parameters can impact the coalescence and 

breakage of liquid droplets, as well as the stability of the liquid film, and hence the transition 

from churn to annular flow.

2.4 Three-phase flow

Multiphase flow is quite  commonplace in the oil  and gas industry.  Gas-liquid-liquid 

three-phase flow is particularly essential  in offshore petroleum recovery well lines, which 

may contain a three-phase combination of crude oil, sea water (naturally occurring or injected 

to preserve reservoir pressure) and natural gas. The pressure drop and stability characteristics 
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of the flow in these lines, which are inextricably linked to the flow regimes that emerge, are 

critical to the proper functioning of offshore oil well platforms (Montoya et al.2016).

Water and hydrocarbon condensate are frequently found in gas pipelines and water and 

vapor are found in oil pipelines. The flow pattern and pressure gradient along the horizontal 

pipeline are the most essential characteristics of multiphase flow. It is crucial to investigate 

the  flow  rates,  flow  regimes,  liquid-hold-up/water  cut,  pressure  gradients,  and  volume 

fractions of gas, oil and water in pipelines during petroleum product transportation. The water 

cut describes the quantity of water at the pipe inlet expressed as a percentage of the total inlet  

volumetric flow rate. During the transportation of the multiphase flow, water in the system 

begins to separate from oil and accumulates at the pipe bottom, which is known as the local  

water contents, local water, or water hold-up. The water cut always constitutes one of the 

starting points regarding the designing of pipelines and equipment. 

Because of densities differences, three-phase flow occurs in horizontal or near horizontal 

pipelines,  with air  flowing at  the top,  oil  flowing in the center  and water  flowing at  the 

bottom.  In  the  latter  stages  of  a  well's  operation,  there  is  a  substantial  rise  in  water  

production, with water being co-produced alongside oil and natural gas. Pumping water or 

steam during secondary and tertiary recovery phases in oil fields is also standard practice, 

resulting  in  a  three-phase  combination  of  water,  oil  and  natural  gas.  It  is  essential  to 

understand the flow distribution across various flow conditions (Mukherjee et al. 2014) in 

order to design optimal transport pipelines.

Water,  salts  and carbon dioxide gas included in petroleum products are  the  primary 

causes of carbon steel pipeline corrosion in oil transportation and storage. When water is 

fully dispersed in oil at low water cut, corrosive water does not pose significant issues. Most 

oil wells  operate with various water cuts, up to 90%, resulting in different flow patterns. 

Water droplets begin to coalesce as the water cut increases and oil and water phase separation 

occurs.  Each  phase wets  different  segments  of  the  pipe.  As the  water  phase  comes  into 

contact  with  the  pipe  wall,  the  potential  of  corrosion  increases.  It  is  therefore  vital  to 

comprehend  the  three-phase  air-oil-water  dynamics  in  production  pipelines,  as  well  as 

forecast flow patterns, pressure gradient and as a consequence, minimize pipe corrosion.

There  have  been  multiple  studies  of  two-phase  flow  patterns,  but  three-phase  flow 

patterns have been given less emphasis. A deeper insight of this complicated flow phenomena 

is  required  due to  the  availability  of  three-phase flow applicability  in  the  petroleum and 

chemical industries (Montoya et al. 2016). In the petroleum industry, precise investigation 

and prediction of flow configurations and pressure drop is required. A lot of research on the 
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characteristics of oil-water-gas, as well as the wetting characteristics of oil and water in the 

presence  of  gas,  has  been  conducted.  Ensuring  the  prolonged lifespan  of  the  pipeline  is 

critical,  as the interaction between the pipe material  and the fluid, with its impact on the 

protective  wall  layer,  can  lead  to  corrosion  in  the  pipeline  and  its  associated  equipment 

(Mukherjee et al. 2014).

Aside from oil and gas recovery, concurrent gas-liquid-liquid flow takes place when two 

immiscible liquids flow together with one undergoing evaporation/condensation, or when two 

immiscible liquids react to release a gaseous component. All three constituents subsequently 

flow through  the  reactor  in  a  simultaneous  manner.  Information  about  the  existing  flow 

pattern is required for every multiphase flow system in order to determine the hydrodynamics 

and heat and mass transfer properties of the mixture (Mukherjee et al. 2014).

The conventional  methodology to modeling three-phase flow typically entails  one of 

two methods: either simplifying the flow as a two-phase system, focusing on oil and gas 

while disregarding the water phase, or combining the oil and water phases into a single phase. 

In the latter case, the system is treated as a two-phase mixture comprising gas and a pseudo-

single-phase liquid. (Tek,1961; Mukherjee et al. 2014). These techniques are constrained by 

specific  flow  conditions  and  cannot  be  applied  across  the  entire  operational  spectrum. 

Following  these  studies,  Galyamov  and  Karpushin  (1971)  investigated  the  separation  of 

liquid phases, finding that  the effective viscosity  of the mixture was contingent  upon the 

liquid volume fraction. Subsequently, Foreman and Woods (1975) conducted research that 

involved  separating  the  gas  phase  from the  liquids.  Shean  (1976)  then  formulated  flow 

regime maps and employed drift-flux techniques  to  analyze the vertical  three-phase flow 

within pipelines (Montoya et al. 2016).

Additionally, in the realm of research, Govier and Aziz (1972) published flow regime 

maps  specifically  addressing  horizontal  liquid/liquid  flows;  however,  these  maps  did  not 

include a gas phase. In a separate study, Bhaga and Weber (1972) employed one drift-flux 

theory to examine vertical gas/liquid/solid flows, focusing on average volumetric fractions. 

While  they  substantiated  their  analytical  findings  with  experimental  data,  they  did  not 

provide flow regime maps as part of their research. Subsequently, Giot (1982) delved into 

research on vertical gas/liquid/solid flows and his models accurately predicted the volumetric 

fraction of the phases and the frictional pressure drop across various pipe diameters, ranging 

from 40 to 300 millimeters, as documented by Montoya et al. (2016).

2.4.1 Three-phase flow patterns in vertical pipes
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The majority  of the research has focused on horizontal  pipes.  Little  is  known about 

three-phase gas-liquid-liquid flows in vertical pipes. Woods et al. performed one of the early 

experiments on vertical simultaneous oil/water/air upflow in a 0.026m inner diameter (ID) 

pipe. They assessed the impact of input liquid and gas flow rates as well as the flow pattern 

on holdup. They presented correlations to identify the transition between regimes dominated 

by  oil  and  water  (Mukherjee  et  al.  2014).  Descamps  et  al.  examined  the  impact  of  gas 

injection on the phase inversion of vertical oil-water flow. Although the dispersion phase (oil-

water)  significantly  affects  bubble  size,  their  findings  indicated  that  gas  injection  has  a 

minimal impact on the critical concentration of oil and water. Wang et al. utilized two signal 

types from a small conductance probe array and a vertical multielectrode array to identify oil-

water-gas three-phase flow patterns in a vertical pipe. They generated six flow pattern maps 

corresponding to four different total mixture liquid flow rates. Their analysis revealed that an 

increased ratio of oil fraction in the liquid (fo) led to the emergence of oil-in-water slug flow 

at lower superficial gas velocity. Furthermore, they observed that with higher superficial gas 

velocity, the phase inversion of liquids occurred at lower (fo) values (Mukherjee et al. 2014).

Woods et al. conducted a comprehensive study involving vertical concurrent upflow of 

oil, water and air in a 0.026 m inner diameter (ID) pipe. Their investigation included an in-

depth  analysis  of  visual/video  data,  holdup  measurements  and  pressure  loss  data. 

Additionally, they considered existing flow pattern descriptions provided by other researchers 

for both horizontal and vertical three-phase oil/water/gas flow. Through this analysis, they 

successfully  identified  nine  distinct  flow  regimes.  These  flow  regimes  were  further 

categorized into two types: oil-dominated (OD) and water-dominated (WD) (Woods et al. 

1998; Mukherjee et al. 2014). The three-phase  flow patterns observed in vertical pipes are 

described as follows:

2.4.1.1 Oil-Dominated Oil Annulus/Dispersed Annular

On the inside wall of the pipe, the oil created an annulus film, which was covered by an 

annular dispersion of water droplets in an oil continuum that interfaced with the gas core. 

Increasing gas and/or water flow induced a gradual thinning of the oil annulus until total 

water dispersion in oil was developed, for instance the OD dispersed annular regime. Such 

flow seemed opaque/white, posing issues with optical detection of detail. The OD dispersed 

annular regime might be semi-annular in nature, with surface waves in each (Woods et al.  

1998). (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής – 1)
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2.4.1.2 Oil-Dominated Broken Annulus

When the water rate neared the inversion point (when the system transitioned from OD 

to  WD),  the  OD annulus  next  to  the  wall  began  to  break  down and  was  progressively 

replaced by a WD annulus. Small strips of the OD annulus delaminated from the pipe wall 

and were replaced by a WD phase before being covered by the OD dispersed film (Woods et 

al. 1998). The pipe wall appeared marbled, with a significant degree of liquid entrainment in 

the gas phase. (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής – 2)

2.4.1.3 Oil-Dominated Dispersed Churn

The  pattern  resembled  two-phase  churn  flow in  which  the  liquid  phase  exhibited  a 

vertical  oscillatory dispersion of water droplets in oil (Woods et al.  1998). (Σφάλμα: Δεν

βρέθηκε η πηγή παραπομπής – 3)

2.4.1.4 Oil-Dominated Dispersed Slug

31

Figure 2.8 Oil dominated flow regimes in vertical three-phase 
flow Woods, G. S., Spedding, P. L., Watterson, J. K., & 
Raghunathan, R. S. (1998). Three-phase oil/water/air vertical 
flow. Chemical Engineering Research and Design, 76(5), 571-
584.



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

The pattern resembled two-phase slug flow, with the liquid phase consisting of water 

droplets dispersed in oil. Yet, there was barely any liquid flow against the pipe wall in the 

annulus that surrounded the rising gas bubble. The thickness of the dispersed liquid annulus 

surrounding  the  gas  bubble  was  significantly  higher  than  in  the  two-phase  system.  The 

dispersed annulus was, in fact, a characteristic of the OD dispersed slug pattern (Woods et al.  

1998). (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής – 4)

2.4.1.5 Water-Dominated Water Annulus/Oil Annular

As the water rate was raised past the inversion point, the conversion to WD flow was 

accompanied by the creation of a water annulus adjacent to the pipe wall, which was overlaid 

by an annular oil  film. The flow regime was transparent. Depending on the gas flow, the 

annular oil film may flow as an annular or semi-annular film with roll waves or ripples on the 

surface (Woods et al. 1998). (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής - 5)

2.4.1.6 Water-Dominated Dispersed Annulus/Oil Annular

Under this pattern, increased mixing in the liquid phases occurred, leading to a partial 

dispersion of oil droplets in the water annulus. Therefore,  the water film could take on a 

semi-annulus shape. Depending on the gas flow, the annular film interacting with the gas 

might flow as an annular film or as roll waves or ripples on the surface (Woods et al. 1998). 

(Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής - 6)

2.4.1.7 Water-Dominated Dispersed Churn

The pattern resembled two-phase churn flow, with the liquid phase consisting of an oil 

droplet  dispersion  in  water  exhibiting  a  vertical  oscillatory  motion  (Woods  et  al.  1998). 

(Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής – 7)
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2.4.1.8 Water-Dominated Dispersed Slug

The pattern was comparable to two-phase slug flow, with the liquid phase consisting of 

oil droplets dispersed in water. A dispersed annulus was, in fact, a characteristic of the WD 

dispersed  slug  regime  at  times  (Woods  et  al.  1998).  (Σφάλμα:  Δεν  βρέθηκε  η  πηγή

παραπομπής - 8) 

2.4.1.9 Water-Dominated Oil Slug

Inside  a  water  annulus,  the  oil  was  carried  in  fast-moving  oil  slugs.  At  low  slug 

frequencies, distinct layers of water and oil were identified in the film area around the gas 

slug. Yet, at high slug frequencies, the distinction was not visible (Woods et al. 1998).
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Figure 2.9 Water dominated flow regimes in vertical three-phase Woods, 
G. S., Spedding, P. L., Watterson, J. K., & Raghunathan, R. S. (1998). 
Three-phase oil/water/air vertical flow. Chemical Engineering Research 
and Design, 76(5), 571-584.
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2.4.2 Three-phase flow patterns in horizontal pipes

It is challenging to develop a common terminology for horizontal two-phase flows since 

gravitational  forces  typically  induce  asymmetric  horizontal  two-phase  flows.  Various 

researchers  have  described  horizontal  two-phase  flow  regimes  differently.  Consequently, 

consistency across two-phase flow regime maps created by various researchers is sometimes 

difficult to observe. The same or even more complicated problem is posed by the maps for 

horizontal three-phase flows.

To resolve this issue, the researchers sought to characterize horizontal three-phase flow 

patterns by discriminating between plug and slug flows. They classified the flow regime as 

plug flow when the liquid phases drove the gas phase and as slug flow when the gas phase 

was the dominant driving force (Montoya et al. 2016). The authors also classified the flow 

regime as either oil dominated (OD) or water dominated (WD), with the dominant liquid 

phase constituting the continuum in which the second liquid phase was dispersed in some 

way.  Moreover,  classifications  were  established  for  intermittent,  stratified  and  annular 

regimes.

There are numerous flow regimes for three-phase oil flows. Furthermore, oil dominated 

flow regimes introduce a new variety of flow regimes that do not emerge in water-based 

three-phase flow. Because of this,  new terminology for various flow regimes is required. 

Acikgoz et al. (1992), Lahey et al. (1992) and Pan et al. (1995) all indicated a demarcation 

between  separated  and  dispersed  stratified  flows.  In  three-phase  stratified  flows,  the 

immiscible liquid phases can be dispersed. Small amplitude waves on the oil/water interface 

may be observed in stratified flow regimes. The liquid film was either annular separated or 

annular dispersed in the annular flows and the film adhering to the inner pipe wall had a 

marbled  pattern.  All  annular  flow  observations  are  just  for  stratifying-annular  flow 

conditions,  in  which  the  liquid  film at  the  bottom of  the  pipe  is  thicker  than  at  the  top 

(Montoya et al. 2016) due to stratification.

In  water  dominated  intermittent  flows,  while  in  the  dispersed  slug  regime,  the  gas 

bubbles exhibited extremely defined tails around which oil droplets congregated. The slug 

regime maintained the basic characteristics of this type of pattern, except that the liquid was 

cleaner than in the analogous oil dominated regime.

The  water-dominated  stratified  regimes  resembled  the  corresponding  two-phase 

gas/water regimes in appearance, except for a visible dispersion of oil droplets within the 

water  continuum (Al-Awadi,  H.  2011).  The  water-dominated  annular  regimes  might  be 

separated or dispersed.
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The three-phase flow patterns observed in horizontal pipes are described as follows:

2.4.2.1 Oil-based dispersed plug flow 

Oil-based dispersed plug flow (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής left) is seen at 

relatively low water and air superficial velocities. At these flow rates, water combine with oil, 

resulting in a foamy liquid solution. The flow regime was deemed plug flow as long as the 

liquid phases drive the air phase and the flow (Montoya et al. 2016) is more continuous and 

uniform. The existence of elongated liquid plugs separated by short air bubbles characterizes 

the mixture in plug flow. 

2.4.2.2 Oil-based dispersed slug flow

In oil-based dispersed flow, increasing the air superficial velocity (Ali, S. F. 2009) can 

result in the establishment of a slug flow regime, in which the air phase begins to drive the 

liquid phases. This happens when the momentum of the gas phase gets sufficient enough to 

drive the liquid phases in the form of slugs. Slugs of varying lengths can be separated by 

relatively short or long gas bubbles. As previously, the oil-based liquid phase appears foamy 

within the slug flow region. However, in contrast to plug flow, the trailing edge of the large 

air bubbles was less distinct (Al-Awadi, H. 2011). This is because the gas bubbles in slug 

flow are not as well-defined as those in plug flow and tend to break up more quickly owing to 

the liquid's churning motion. (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής right)
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2.4.2.3 Oil-based dispersed stratified/wavy flow

Stratification and gravitational phase separation are seen in this flow regime (Açikgöz et 

al.  1992). A mixture consisting of oil with relatively large water droplets forms an upper 

layer over a continuous layer of water (Al-Awadi, H. 2011). Oil and water exist in distinct 

layers separated by a wavy interface. Small-amplitude surface waves on the oil/water layer 

are noticed in this region of the three-phase flow regime map. The difference in density and 

viscosity of the two fluids causes the wavy interface between the oil and water layers. Many 

factors, such as flow rate, pipe diameter and fluid characteristics, can create waves at the 

interaction. (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής left)
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Figure 2.10 Schematic diagram of oil-based dispersed plug flow (left) - Schematic diagram of 
oil-based dispersed slug flow (right), Açikgöz, M., Franca, F., & Lahey Jr, R. T. (1992). An 
experimental study of three-phase flow regimes. International Journal of Multiphase Flow, 
18(3), 327-336.
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2.4.2.4 Oil-based separated stratified/wavy flow

The  oil  and  water  phases  were  entirely  separated  for  this  flow regime.  Because  of 

gravitational  stratification,  the  oil  phase  flowed  above  the  water  phase,  resulting  in  the 

formation of a complex wave structure on the upper section of the pipe (Al-Awadi, H. 2011). 

In the interface between the oil and water phases, ripple waves are also seen. (Σφάλμα: Δεν

βρέθηκε η πηγή παραπομπής right)

2.4.2.5 Oil-based separated wavy stratifying-annular flow

In this flow pattern, the upper oil structures observed in separated stratified/wavy flow 

become  denser  in  this  flow  regime  and  are  linked  with  a  thinner  oil  film,  leading  to 

continuous wetting of the upper pipe wall (Al-Awadi, H. 2011). Remarkably, stratification 

continues to play a major role in this flow regime. This results in a wavy annular flow pattern 

with a distinct oil film on the pipe wall and an oil layer distinct from the water phase. Despite  

the presence of the annular flow regime, stratification remains prevalent in this flow regime. 

Because of gravitational stratification, the oil phase is still separated from the water phase 

(Ali, S. F. 2009), with the heavier water phase moving below the lighter oil phase. (Σφάλμα:

Δεν βρέθηκε η πηγή παραπομπής left)
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Figure 2.11 Schematic diagram of oil-based dispersed stratified / wavy flow (left) - 
Schematic diagram of oil-based separated stratified/wavy flow (right), Açikgöz, M., Franca, 
F., & Lahey Jr, R. T. (1992). An experimental study of three-phase flow regimes. 
International Journal of Multiphase Flow, 18(3), 327-336.
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2.4.2.6 Oil-based separated/dispersed stratifying-annular flow

Variations in the oil  film thickness on the top pipe wall,  a distinctive feature of the 

preceding flow regime (Montoya et al.  2016), are eliminated by raising the air flow rate. 

Small air bubbles may be seen in the oil film on the upper part of the pipe. The existence of  

these bubbles, generated by the higher air flow rate, might change the flow behavior and heat 

transfer properties of the system. Stratification effects are still visible in this flow regime, 

despite  the  existence  of  tiny  air  bubbles,  as  in  the  preceding  flow  regime.  Because  of 

gravitational stratification, the oil phase remains separated from the water phase. This causes 

the annular flow pattern to emerge, where the oil film wets the top pipe wall. (Σφάλμα: Δεν

βρέθηκε η πηγή παραπομπής right)

2.4.2.7 Water-based dispersed slug flow

 In this flow regime, the air phase is the driving phase and the water phase is dispersed 

into slug-like structures that follow the air bubbles. Air bubbles with highly pronounced tails 

were noted under conditions of relatively low air and high-water flow rates (Montoya et al. 

2016). Additionally, a relatively high concentration of oil droplets was observed in the areas 

subsequent  to  the  air  bubbles.  An increased  air  flow rate  resulted  in  the  replacement  of 
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Figure 2.12 Schematic diagram of oil-based separated wavy stratifying-annular flow (left) - 
Schematic diagram of oil-based separated / dispersed stratifying-annular flow (right), 
Açikgöz, M., Franca, F., & Lahey Jr, R. T. (1992). An experimental study of three-phase 
flow regimes. International Journal of Multiphase Flow, 18(3), 327-336.
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distinct boundaries between the air plug tails and the water phase by a frothy appearance at 

the back of the air  plugs (Al-Awadi,  H.  2011), indicating  that  the oil  droplets  are  being 

dispersed more evenly throughout the water phase. The frothy appearance of the water phase 

in this flow regime is caused by the turbulence generated by the air bubbles. The air bubbles 

break up into smaller  bubbles, which then coalesce to form larger bubbles.  The resulting 

frothy mixture of water and air bubbles has a higher interfacial area, which promotes efficient 

mass  transfer  and  heat  transfer  between  the  two  phases.  (Σφάλμα:  Δεν  βρέθηκε  η  πηγή

παραπομπής left)

2.4.2.8 Water-based dispersed stratified/wavy flow

Excluding the dispersed oil droplets (Al-Awadi, H. 2011), this flow regime resembles a 

two-phase stratified/wavy flow, with the water phase flowing below the air  phase due to 

gravitational stratification. The water and air phases create separate layers or waves in this 

flow regime, while minute oil droplets are dispersed throughout the water phase. (Σφάλμα:

Δεν βρέθηκε η πηγή παραπομπής right) 

2.4.2.9 Water-based separated/dispersed incipient stratifying-annular flow 

The relatively  small  waves  are  substituted  by  a  new structure  that  incorporates  roll 

waves as the air flow increases (Al-Awadi, H. 2011). Also, liquid "phase" separation occurs, 

probably as a result of gravity and shear effects, with oil droplets dispersed all through the 
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Figure 2.13 Schematic diagram of water-based dispersed slug flow (left) - Schematic diagram 
of water-based dispersed stratified/wavy flow (right), Açikgöz, M., Franca, F., & Lahey Jr, R. 
T. (1992). An experimental study of three-phase flow regimes. International Journal of 
Multiphase Flow, 18(3), 327-336.
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water  phase.  The  flow  regime  is  close  to  that  of  stratifying-annular  flow,  which  is 

distinguished by a continuous liquid film on the pipe wall and a gas core in the pipe's center. 

The increased air flow rate allows the air phase to become the driving force in the system, 

causing the change from dispersed to separated flow. This causes bigger and more complex 

waves  to  develop,  as  well  as  liquid  phase  separation  owing to  gravity  and shear  forces. 

(Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής left)

2.4.2.10 Water-based dispersed stratifying-annular flow

During this flow pattern, the pipe periphery is continually wetted by a water-based film 

with minute oil droplets dispersed in it. The differences in the water film thickness between 

the upper and lower sections of the pipe were most evident at lower superficial air velocities 

and  become less  as  the  air  flow rate  increases.  With  the  exception  of  the  dispersed  oil 

droplets,  this  flow  regime  resembled  two-phase  stratifying-annular  flow.  (Σφάλμα:  Δεν

βρέθηκε η πηγή παραπομπής right)
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Figure 2.14 Schematic diagram of water-based separated dispersed incipient stratifying-
annular flow (left) - Schematic diagram of water-based dispersed stratifying-annular flow 
(right), Açikgöz, M., Franca, F., & Lahey Jr, R. T. (1992). An experimental study of three-
phase flow regimes. International Journal of Multiphase Flow, 18(3), 327-336.
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2.4.3 Three-phases flow pattern transition and mechanisms 

Transition boundaries in three-phase flows (Ali, S. F. 2009), such as in two-phase flows, 

constitute  essential  regions  of the flow regime map. Yet,  in contrast  to two-phase flows, 

three-phase flows exhibit new transition boundaries when the base fluid transitions. Such a 

boundary  emerges  when  the  flow  is  on  the  verge  of  transitioning  from  water-based 

stratified/wavy  flow  to  oil-based  dispersed  stratified/wavy  flow  (Montoya  et  al.  2016). 

Quantifying  the  boundaries  of  three-phase  flow  regimes  (Al-Awadi,  H.  2011)  poses a 

difficult problem due to the various transport properties of three-phase fluid mixtures.
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Figure 2.15 Schematic diagram of the boundary between water-based wavy flow and oil-
based wavy flow., Açikgöz, M., Franca, F., & Lahey Jr, R. T. (1992). An experimental study 
of three-phase flow regimes. International Journal of Multiphase Flow, 18(3), 327-336.
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Chapter 3 Multiphase flowmeters 

Chapter  2  delves  into  Virtual  Multiphase  Flowmeters,  designed  to  establish  a  solid 

foundation  for  the  subsequent  development  and  evaluation  of  the  Virtual  Multiphase 

Flowmeter in this master's thesis. The chapter begins with a comprehensive examination of 

test  separators  and  physical  multiphase  flowmeters,  emphasizing  the  challenges  and 

limitations  inherent  in  conventional  methods  and  highlighting  a  shift  towards  more 

sophisticated  and  accurate  measurement  technologies.  The  historical  overview  and 

development  of  VFMs  provide  valuable  insights  into  the  evolution  of  production 

measurement  techniques,  underscoring  the critical  necessity  and significance  of  VFMs in 

today’s oil and gas industry. 

The chapter proceeds by categorizing virtual multiphase flowmeters into two subgroups: 

first-principles or physics-driven VFM systems and data-driven VFMs. An extensive analysis 

follows,  exploring  the  commercial  applications,  components  and  methodologies  of  these 

VFMs  to  clarify  the  complexities  in  characterizing  and  modeling  multiphase  flow.  The 

comparison between first-principles and data-driven VFMs within this analysis aims to offer 

a comprehensive understanding, highlighting the strengths and limitations of each approach.

3.1 MPFMs -Test separators

A typical oil and gas production setup involves several wells linked to a flowline that 

transports  the  extracted  liquid  between the  wellheads  and an  inlet  separator  located  at  a 

treatment plant. In subsea fields, a riser connects the flowline to the inlet separator. Choke 

valves, positioned at the wellheads, regulate the flow rate of the extracted liquid.  Most fields 

have multiple wells and the extracted liquid typically comprises a complex blend of oil, gas, 

water  and  solids  like  sand  or  asphaltenes  (Falcone  et  al.,  2009;  Bikmukhametov,  T.,  & 

Jäschke, J., 2020). Upon reaching the inlet separator, the extracted liquid mixture undergoes a 

phase separation process, wherein its individual components are segregated. Subsequently, 

further processing is undertaken at the treatment plant (Falcone et al., 2009; Bikmukhametov, 

T., & Jäschke, J., 2020).

To ensure the efficient operation of oil and gas production systems, it is crucial to have 

accurate knowledge of the flowrates of oil, gas and water from each well. This information is 

essential  for  effective  production optimization,  reservoir  management,  rate  allocation  and 

future field operation prognosis (Falcone et al.,  2001; Retnanto et al.,  2001; Morra et al., 

2014; Bikmukhametov, T., & Jäschke, J., 2020).
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Traditionally,  the  main  approach  used  for  estimating  well  flowrates  involved  well 

testing.  This  process  entailed  directing  the  well's  stream  into  a  test  separator,  where  it 

underwent separation into its fundamental components: oil, gas and water. Subsequently, the 

flowrates of these individual streams were quantified utilizing single-phase meters located at 

the separator outlet.  (Corneliussen et al., 2005; Bikmukhametov, T., & Jäschke, J., 2020). 

Conventional  test  separators  are  large  and  expensive  pieces  of  equipment  demanding 

substantial monitoring time for assessing each well's performance due to the time it takes to 

achieve stabilized flow conditions. Furthermore, in deepwater developments, the exceptional 

length  of  the  flowlines  makes  it  even  more  challenging  to  monitor  individual  wells' 

performance. Test separators necessitated an independent flowline, which meant that every 

well  had  to  be  connected  to  the  test  separator  and  evaluated  without  the  need  to  halt 

operations across the entire system. (Bikmukhametov, T., & Jäschke, J., 2020). 

An additional approach for estimating flowrates is through the use of an inlet separator. 

This involves either shutting down all wells except the one being tested, which results in a 

significant production loss, or the temporary closure of the well under evaluation, followed 

by the measurement of the production rates of the remaining operating wells recorded at the 

separator conditions. The flowrates of the well under evaluation are subsequently determined 

through  the  subtraction  of  the  obtained  flowrates  from  the  pre-tested  measurements,  a 

technique  known  as  deduction  well  testing.  (Idso  et  al.,  2014;  Bikmukhametov,  T.,  & 

Jäschke, J., 2020).  However, it is necessary to establish a steady operational environment to 

obtain  accurate  flowrate  measurements,  which  can  be  time-consuming  and  the  required 

duration may vary based on the well-separator distance. Additionally, the closure of a single 

well can affect the functionality of the remaining wells, potentially resulting in less accurate 

flowrate assessments (Falcone et al., 2001; Idso et al., 2014; Bikmukhametov, T., & Jäschke, 

J., 2020).

In order to prevent the necessity of shutting down all wells and conducting individual 

tests, a dedicated test line can be employed to oversee production from each well linked to 

the  same  manifold.  Nevertheless,  the  expense  associated  with  implementing  a  separate 

flowline can be a significant barrier. As an alternative, multiphase flow meters (MPFMs) can 

be installed in the subsea manifold, which provides several advantages over conventional test 

separators. MPFMs do not require separation of the phases. Conventional separators offer an 

accuracy within the range of about 5 to 10%, a level that can presently be attained using 

MPFMs. Moreover, MPFMs can provide continuous well monitoring without the need for 

regular  intervention  by trained personnel.  (Falcone et  al.,  2001),  Retnanto,  et  al.,  (2001), 
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Corneliussen, S., Dahl, B., & Hognestad, A. (2005), Morra et al., (2014), Bikmukhametov, 

T., & Jäschke, J., (2020))

Physical multiphase flow meters (MPFMs) were first commercialized in the early 1990s 

as a substitute for well testing for measuring well multiphase flowrates (Falcone et al., 2001; 

Bikmukhametov, T., & Jäschke, J., 2020). They were created in the 1980s in response to the 

anticipated  decline  in production from the major  North Sea fields,  which required future 

smaller discoveries to be tied back to existing infrastructure. In a mature producing province, 

higher gas and water proportions, which are inherent, can lead to increased instability in flow 

conditions within existing production facilities. This situation necessitates the implementation 

of more adaptable multiphase solutions. MPFMs have gained acceptance in the field and are 

becoming a primary metering solution for latest field developments. MPFMs are designed to 

gauge the flowrates of oil, gas and water without the need for phase separation. Flowmeters 

of this kind are typically placed at the wellhead to oversee the real-time multiphase flowrates 

from  a  particular  well. Flowrates  are  indirectly  determined  by  measuring  fluid  phase 

characteristics including velocities and phase compositions within the device (Falcone et al., 

2001;  Gryzlov,  2011;  Bikmukhametov,  T.,  & Jäschke,  J.,  2020).  Considerable  endeavors 

were  invested  in  the  development  of  precise  multiphase  flow  measurement  devices, 

employing  various  technologies  such  as  acoustic  attenuation,  impedance  and  gamma 

densitometry to achieve this objective (Falcone et al., 2001; Bikmukhametov, T., & Jäschke, 

J.,  2020).  Numerous  review  articles  delve  extensively  into  the  methods  employed,  the 

underlying principles, governing equations, and measurement strategies applied in this field. 

(Corneliussen et al., 2005; Falcone et al., 2009; Thorn et al., 2013; Bikmukhametov, T., & 

Jäschke, J., 2020).

MPFMs are recognized by the oil and gas industry as having significant advantages in 

terms of production facility layout, well testing, reservoir management, production allocation, 

production monitoring and capital and operating expenses. MPFMs minimize the amount of 

equipment  required  for  onshore,  offshore  topside  and  offshore  subsea  applications.  The 

elimination of a dedicated test separator for well-testing applications is crucial. The use of 

MPFMs for topside applications reduces the amount of platform space and load required for 

well-testing operations. High - cost well-testing lines can be removed from manufacturing 

facilities,  which  could  be essential  for  unmanned locations,  deepwater  developments  and 

satellite fields.

Both  well  testing  and  MPFMs  have  advantages  and  disadvantages  for  measuring 

flowrates. Well testing, for instance, requires the installation of an independent flowline and 
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separator,  leading  in  significant  initial  investment  expenditures  for  field  development 

(Falcone et al., 2001; Bikmukhametov, T., & Jäschke, J., 2020). Closing the well of interest  

may  lead  to  major  production  losses  if  the  inlet  separator  serves  as  a  test  separator. 

Furthermore,  due to potential  flow assurance issues,  deduction testing may be impossible 

(Melbo et al., 2003; Bikmukhametov, T., & Jäschke, J., 2020). Nonetheless, even with the 

installation  of  multiphase  flow  meters  in  the  field,  the  practice  of  well  testing  remains 

prevalent in the monitoring of oil and gas production. This enduring reliance on well testing 

can be attributed to its role in providing a benchmark for calibrating multiphase flow meters 

and determining essential fluid properties (Corneliussen et al., 2005; Bikmukhametov, T., & 

Jäschke, J., 2020).

Another negative aspect of traditional well testing is that well performance deteriorates 

after shutdown cycles. Wells subjected to testing regularly, typically necessitate additional 

workover operations to preserve production levels. MPFMs, on the contrary, do not require 

shutting down the wells for testing, which means that the shutdown cycles affiliated with well 

testing have no effect on well performance. MPFMs can also be utilized to oversee the well 

as it undergoes the clean-up flow, which often results in lost flow data since the well stream 

does not  pass through the test  separator.  This  contributes  to added benefits  by providing 

enhanced management of formation drawdown, pressure transients and shorter flow periods.

MPFMs can identify and gauge changes in the gas/oil ratio or water cut in real time, 

whereas conventional test separators only provide data on cumulative volumes at discrete 

points in time. By providing real-time data on changes in gas and liquid flow rates, MPFMs 

allow operators to detect well-slugging effects or gas-lift issues as they arise. This enables 

production optimization as well as field life extension. 

Operators should compare the capital and operating expenses of each solution before 

deciding between a traditional  approach to  manufacturing  facilities  and one that includes 

MPFMs. Although hardware costs  are relatively easy to  estimate,  operating expenses are 

remarkably  challenging  to  predict.  While  it  is  widely  recognized  that  the  capital  cost  of 

MPFMs is significantly lower than that of traditional metering hardware, operators often fail 

to  appreciate  the  operating  expenses  involved  with  MPFMs,  especially  during  the 

commissioning phase and the first year of operation. The real-time data on well flowrates 

provided  by  MPFMs  undeniably  offer  advantages  for  the  functioning  of  the  system. 

Nevertheless, they come with a significant expense and in case of a malfunction, they require 

intervention,  resulting in substantial  system costs (Falcone et al., 2001; Patel et al.,  2014; 

Bikmukhametov,  T.,  & Jäschke,  J.,  2020).  Besides  that,  physical  multiphase  flow meters 
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exhibit a particular operating range. After this point, the precision of flowrate estimations can 

significantly diminish. In addition, the flowmeters may degrade due to sand erosion or partial  

blockage, affecting measurement accuracy (Marshall and Thomas, 2015; Bikmukhametov, 

T., & Jäschke, J., 2020).

It  is  anticipated  that  as  more  field  experience  is  gained,  MPFMs will  demand  less 

maintenance after installation, resulting in lower operating costs. Furthermore, MPFMs could 

improve system management by increasing the value of recovered oil by 6 to 9%. However, 

existing  MPFMs  are  not  (and  may  never  be)  precise  enough  to  meet  fiscal-metering 

requirements, despite the fact that such an application would ensure MPFMs' future. While 

their accuracy has some limitations, the advantages of using MPFMs end up making them a 

promising solution for the oil and gas industry.

3.2 History and Development of VFM 

Multiphase flow meters expanded the potential of monitoring individual wells in real 

time whereas minimizing production losses resulting from well test shutdowns. These flow 

meters play a pivotal role in optimizing well operation and control by providing real-time 

data  (Góes  et  al.  2021).  Because  the  expense  of  repairing  or  replacing  damaged  subsea 

equipment  is  prohibitively  expensive,  oil  and  gas  companies  prioritize  the  reliability  of 

multiphase flow meters deployed in subsea fields. Furthermore, multiphase flow meters are 

either expensive, inaccurate, or unable to use downhole owing to harsh conditions (Leskens 

et al., 2008; Graham, 2015).

Virtual sensors, soft sensors and inferential models constitute mathematical models that 

can be employed to substitute measuring devices. These virtual sensors have the capacity to 

predict  multiple  system variables  by  employing  mathematical  models,  replacing  physical 

sensors and utilizing data obtained from other available variables (Fortuna et al. (2007); Góes 

et al. (2021)).

Typical  sensors  are  effective  in  detecting  straightforward  process  variables  such  as 

temperature, pressure, differential pressure and single-phase flow rate. However, for deriving 

online  variables  for  which  hardware  sensors  are  either  unavailable  or  too  costly,  the 

utilization of virtual sensors becomes a viable option, as advocated in Chu et al. (1998) and 

Góes et al. (2021).

Recently,  the  oil  and  gas  industry  has  placed  significant  emphasis  on  virtual  flow 

metering  (VFM)  as  an  alternative  to  conventional  hardware-based  flow  measurement 

methods.  This  shift  is  prompted  by  the  challenges  and  costs  associated  with  both  flow 
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measurement  approaches.  VFM operates  by  gathering  existing  field  data  and  utilizing  it 

within  a  numerical  model  to  predict  flowrates  (Rasmussen,  2004;  Toskey,  2011; 

Bikmukhametov, T., & Jäschke, J., 2020). The typical measurement data includes:

 Bottomhole pressure and temperature (PBH and TBH). 

 Wellhead pressure and temperature upstream of the choke (PWHCU and TWHCU). 

 Wellhead  pressure  and  temperature  downstream  of  the  choke  (PWHCD  and 

TWHCD). 

 Choke opening (Cop). 

As opposed to well testing and physical multiphase flow meters, virtual flow meters can 

be  incorporated  into  existing  infrastructure  and  do  not  need  the  installation  of  extra 

equipment, allowing them to save field development capital and operational expenses. This 

approach enables real-time modeling and optimization of production while also limiting the 

need for additional equipment. Moreover, VFM systems provide capacities for estimating the 

flowrates in real time and adapt  to alterations  in flow conditions,  providing a significant 

benefit over the well testing technique, where steady well flowrates are presumed between 

tests (Marshall and Thomas, 2015; Bikmukhametov, T., & Jäschke, J., 2020). Furthermore, 

Virtual Flow Meters may serve either as a standalone approach or as a backup system in 

conjunction with a MPFM, utilizing data from a physical multiphase flow meter to enhance 

flowrate estimations (Holmas et al.,  2013). Despite the ongoing research endeavors in the 

realm of VFM and the various methods and models applicable to it, there is still a notable 

absence of a comprehensive overview, as pointed out by Bikmukhametov, T., & Jäschke, J. 

(2020).

Flow rate  estimation  can  be  derived  from various  inputs,  including  factors  such  as 

pressure drop across a choke, wellhead temperature and downhole pressure, as discussed in 

Graham (2015) and Góes et  al.  (2021). Carbone (2007) utilized temperature and pressure 

measurements  obtained  from surface  sensors  on  a  platform as  input  variables  for  virtual 

sensors to estimate individual well flow rates. However, Leskens et al. (2008) investigated 

the capabilities and constraints of multiphase soft sensors and stated that relying solely on 

downhole  pressure  and  temperature  values  is  insufficient  for  real-time  well  flow  rate 

estimation (Góes et al. 2021). It is important to note that their conclusions were premised on 

simulations and did not take into account actual well data.

An  approach  was  proposed  by  Garca  et  al.  (2010)  to  estimate  individual  well  oil 

production  using  data  from  sensors,  well  tests  and  simulations.  They  utilized  a  neural 

network and online correlation logic, training the neural network based on prediction errors 

47



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

assessed using data from the most recent well test. This method achieved results with errors 

of less than 4% when compared to fiscal meters. Amim (2015) conducted an evaluation of the 

performance of commercial VFMs using actual production data from a subsea well. Despite 

encountering challenges in predicting variations in the gas-oil ratio (GOR) with the defined 

PVT model  for  the  virtual  sensor,  these  virtual  sensors  still  delivered  reliable  flow rate 

estimations over extended periods (Góes et al., 2021).

Qutami  et  al.  (2017) presented a soft  sensor relying on a  neural  network that  could 

estimate multiphase flow rates in oil and gas production pipes. This soft sensor was designed 

to provide flow rate estimations between well tests and could also function as a backup in 

case of failures in conventional multiphase flow meters, particularly when a common flow 

meter or test separator was in place. (Góes et al., 2021) Ursini et al. (2019) similarly created a 

real-time VFM by combining commercial  software packages and optimization algorithms. 

This virtual flow meter was effectively implemented in an offshore gas field, offering real-

time estimations exclusively for gas production flow rates from individual wells. It relied on 

upstream choke and bottomhole pressure and temperature data for its calculations (Góes et 

al., 2021).

Sanzo et al. (2020) also suggested a neural network-based machine learning algorithm 

for estimating multiphase flow rates. This algorithm took into account a range of process 

parameters  and the functioning of installed equipment.  The VFM developed in this  work 

could function as a backup in situations where MPFMs experienced failures. Its flow rate 

predictions relied on process parameters located both upstream and downstream of the choke, 

incorporating factors such as pressure, temperature, and choke opening (Góes et al., 2021).

Bikmukhametov and Jaschke's (2020) recent research offered an extensive overview of 

the current state of VFM methods, incorporating numerical techniques, field experience and 

recent  research  activities.  According  to  the  conclusions  drawn from this  research,  future 

studies should give priority to the development of auto-tuning and calibration techniques. 

Additionally, the review highlighted that the integration of machine learning into VFM has 

the  potential  to  enhance  precision,  yet  further  research  is  essential  to  guarantee  their 

robustness (Góes et al., 2021).

The  total  flow  rate  generated  by  a  Production  and  Exploration  Unit  (PEU), 

encompassing all its wells, can be continuously monitored in real time. However, individual 

liquid and gas flow rates from each well are usually confirmed through a production test, 

which  is  conducted  approximately  bimonthly  in  some  PEUs.  Between  these  tests,  it  is 

presumed that every well is operating in accordance with the most recent Well Test Report.  
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This can result in delays in identifying issues and it is not practical to oversee the production 

of each well during this interim period (Góes et al., 2021).

In  the  research  mentioned  earlier,  Leskens  et  al.  (2008)  provided  instance  analyses 

derived from simulations rather than real well data. García et al. (2010) utilized data from 

well tests for neural network training. Amim (2015) did not specify the utilization of well test  

data  in  their  study.  Additionally,  Bikmukhametov  and  Jaschke  (2020)  analyzed  VFM 

approaches and noted the assumption that individual flow rates are expected to remain steady 

between well testing (Góes et al., 2021).

3.3 VFM Methods

Over the past two decades, various techniques  have arisen for estimating multiphase 

flowrates through the utilization of accessible field data within the Virtual Flow Metering 

(VFM)  concept.  Several  global  firms  have  established  commercial  VFM  systems  for 

deployment  by  oil  and  gas  operators  worldwide.  While  some  methods  are  currently 

undergoing evolution with the aim of enhancing the precision of flowrate forecasts, others are 

not presently employed in the industry but hold the capacity to drive advancements in VFM 

development in the future. Bikmukhametov, T., & Jäschke, J. (2020) have outlined that two 

main Virtual Flow Metering methods can be distinguished based on modeling frameworks:

 First principles VFM 

 Data-driven VFM

First principles VFM systems depend on mechanistic modeling of multiphase flows near 

the well, wells, pipelines and production chokes (Holms and Lvli, 2011; Bikmukhametov, T., 

& Jäschke, J., 2020). These models are employed in conjunction with observations and data 

recordings,  including  pressure  and  temperature,  for  the  evaluation  of  precise  flowrate 

predictions. An optimization algorithm adjusts the flowrates and other tuning parameters to 

minimize the disparities between model estimations and real measurements (Holms and Lvli, 

2011;  Bikmukhametov,  T.,  &  Jäschke,  J.,  2020).  The  production  system  can  either  be 

modeled in its entirety, covering everything from the reservoir to the processing facility, or be 

dissected into sub-models, contingent on the accessible data. Most contemporary commercial 

VFM  systems  predominantly  rely  on  first  principles  models.  (Bikmukhametov,  T.,  & 

Jäschke, J., 2020).

The data-driven VFM method depends on gathering  field  data  and adjusting  it  to  a 

mathematical model without specifying the physical characteristics of the production system, 

such as wellbore and choke geometry or flowline wall thickness. This approach, commonly 
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referred to as "machine learning" modeling, has gained widespread popularity across various 

applications, extending beyond the realm of oil and gas (Bikmukhametov, T., & Jäschke, J., 

2020). The fitting process of the model is conventionally denoted as "training" in the context 

of data-driven modeling (Hastie et al., 2009). When the data-driven model is well-trained and 

the  operational  conditions  fall  within  the  range  used  for  training,  it  demonstrates  the 

capability to perform rapid and precise real-time metering. This method does not require as 

extensive specialized knowledge of production engineering as first principles models do and 

the model can be established at  a relatively more cost-effective level.  Beyond classifying 

methods based on modeling principles, another approach is to categorize them according to 

their  treatment  of  the  time-dependent  aspects  in  the  model.  Following  this  criterion,  the 

implementation  of  the  following  sub-classification  is  possible  (Bikmukhametov,  T.,  & 

Jäschke, J., 2020):

 First principles VFM – steady state and dynamic models 

 Data-driven VFM – steady state and dynamic models

While the conservation equations in first principles VFM typically have a dynamic form, 

it is important to mention that the optimization problem is usually formulated in a steady-

state  or  quasi-steady-state.  In  these  scenarios,  an  optimization  solver  is  responsible  for 

finding the solution for a single time point or using the solution from the previous step as an 

initial  estimate  to  predict  the  current  time  step. In  specific  situations,  such  as  those 

concerning  choke models  (Perkins,  1993;  Bikmukhametov,  T.,  & Jäschke,  J.,  2020),  the 

conservation  equations  may adopt  a  steady-state  form or  omit  the  consideration  of  time. 

Notably,  while  it  is  feasible  to  frame  the  VFM  optimization  problem  dynamically,  the 

existing  body  of  literature  on  first  principles  VFM does  not  extensively  delve  into  this 

method.  This  omission  can  be  attributed  to  the  fact  that  dynamic  optimization  for  first 

principles VFM systems is often associated with significant computational  cost (Lew and 

Mauch,  2006).  It  is  worth  noting  that  while  such  methods  may  have  been  employed  in 

practice,  they  might  not  have  been  comprehensively  documented  in  the  literature 

(Bikmukhametov, T., & Jäschke, J., 2020).

State estimation methods, including approaches like the Kalman filter, can be employed 

to establish a dynamic VFM, as demonstrated by De Kruif et al. (2008) and Bikmukhametov, 

T., & Jäschke,  J. (2020) in the context of dynamic optimization.  The key reason for this 

selection  might  be  the  requirement  for  advanced  knowledge  in  both  setup  and 

implementation, as well as the complexity of achieving reliable tuning for real field data.
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The model formulation for most data-driven algorithms employed in VFM is typically 

established  in  a  steady  state.  This  indicates  that,  at  a  single  time  point,  pressure  and 

temperature data recordings are utilized by these algorithms to make predictions regarding 

flowrates for the same time step. However, there exist data-driven algorithm structures with 

dynamic formulations, allowing the use of past data recordings to predict flowrates at the 

current time step. Recently, various dynamic algorithm structures for VFM applications have 

been under investigation by several researchers (Bikmukhametov, T., & Jäschke, J., 2020).

3.4 First principles VFM systems

First principles Virtual Flow Meter systems, also known as  physics-driven  VFMs, are 

the most extensively utilized VFMs in the oil and gas industry. To determine multiphase flow 

rates,  these  models  employ  first-principles  modeling,  which  is  based  on  physics  and 

chemistry laws. The models can be further classified as steady-state or transient. During the 

past  50  years,  tremendous  work  has  been  expended  to  define  each  component  of  the 

approach,  resulting  in  a  thorough  comprehension  of  production  system  behavior,  fluid 

characteristics and optimization techniques. The Physics-driven VFM was initially designed 

as an add-on to SPT Group's (later acquired by Schlumberger) OLGA transient multiphase 

flow simulator  for  deepwater  subsea  development  design  and flow assurance  monitoring 

(Canon et al., 2015). Kongsberg Ledaflow is a popular physics-driven VFM. These VFMs 

have undergone performance evaluations (Belt et al., 2011). Turbulent Flux's Flux Simulator, 

developed  for  real-time  monitoring  applications,  is  the latest  transient  multiphase  flow 

simulator offered to the industry. According to Bikmukhametov, T., & Jäschke, J. (2020), a 

cutting-edge physics-driven VFM system today comprises the following essential elements:

 Fluid properties model

 Production system model including

- Reservoir inflow model

- Thermal-hydraulic model

- Choke model

- Electric submersible pump (ESP) model 

 Data validation and reconciliation (DVR) algorithm

In a physics-driven VFM system, the fundamental concept is to create model outputs, 

including  pressures  and  temperatures  throughout  the  production  system  using  thermal-

hydraulic,  choke,  ESP  and  reservoir  inflow  models.  These  models  demand  pre-existing 

pressure-volume-temperature  (PVT)  data,  describe  fluid  characteristics  under  specific 
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conditions and are produced utilizing fluid properties models like Equations of State (EoS) 

and Black Oil models (BOM) (Bikmukhametov, T., & Jäschke, J., 2020).

The  Data  Validation  and  Reconciliation  (DVR)  algorithm  serves  the  purpose  of 

validating  the  measured  field  data  by  eliminating  outliers  and  filtering  noise.  In  the 

reconciliation step, adjustments are made to model parameters, including flowrates, choke 

discharge coefficient, gas and water fractions, friction and heat transfer coefficients and slip 

relation. These adjustments aim to match the model outputs with data recordings from the 

physical system and guarantee an overall material balance. Creating a virtual flow meter with 

physics-driven VFM systems entails numerous crucial steps as follows (Bikmukhametov, T., 

& Jäschke, J., 2020):

i. The first step is to develop a fluid properties model that precisely describes the fluid 

data. This model is crucial  for precisely simulating the flow of fluid through the 

production system. 

ii. The subsequent phase involves the selection of suitable production system models 

contingent  upon  the  available  measurements.  These  models  should  be  able  to 

accurately simulate the flow of the fluid through the system and should take into 

account factors such as pressure, temperature and flowrate.

iii. Once  the  models  are  chosen,  the  measurement  data  must  be  read and validated. 

Outliers and noise in the data must be eliminated to ensure that the resultant model is 

as precise as feasible.

iv. When  the  data  has  been  validated,  tuning  parameters  must  be  chosen.  These 

parameters, which include flow rates, choke discharge and heat transfer coefficients, 

will be utilized to fine-tune the model to match the real flow data.  To begin the 

tuning procedure, initial parameter values must be estimated by a guess.

v. The production system models chosen in step 2 must then be simulated utilizing the 

fluid characteristics from step 1 and the initial tuning parameter values from step 4. 

vi. The simulation outputs must be chosen based on which measurements are available 

such as pressures and temperatures at the bottomhole and wellhead,

vii. After that, to reduce the mismatch between the model outputs from step 6 and the 

validated measurement data from step 3 the data reconciliation algorithm is run. This 

algorithm adjusts the tuning parameters chosen in step 4 to get the model output as 

close to the measurement data as possible.
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viii. Finally, depending on the solution from step 7, the oil, gas and water flowrates for 

each well are provided. This provides a virtual flow meter which can be utilized to 

monitor and optimize production in real-time. 

3.4.1 Commercial first principles VFM systems

The physics-driven VFM approach is extensively employed in industry because of its 

reliability in describing behavior of production systems and phenomena related to multiphase 

flow (Bikmukhametov, T., & Jäschke, J., 2020). Commercial physics-driven VFM systems 

employ advanced methodologies  and models,  making them an accurate  representation  of 

contemporary VFM technology. By examining these systems in depth, a further insight into 

the variations in models and capabilities among different software products on the market can 

be gained. Fully understanding the models and capabilities of commercial VFM systems is 

crucial  since it  allows for the industry to evaluate  the effectiveness  of  VFM technology. 

These systems are continually changing and improving and by examining their strengths and 

limits,  areas  for  further  development  may  be  discovered.  Furthermore,  by  analyzing  the 

differences between different software products, it is possible to determine which system is 

best suited to a particular application.

OLGA  Online  by  Schlumberger,  K-Spice  Meter  (K-Spice  +  LedaFlow)  by 

KONGSBERG,  FlowManager  by  FMC,  Rate&Phase  by  BP,  FieldWatch  +  METTE  by 

Roxar,  Well  Monitoring  System  (WMS)  by  ABB,  Virtuoso  by  WoodGroup  and 

ValiPerformance  by  Belsim  are  among  the  commercial  VFM  systems  available.  These 

products  have  a  similar  structure  in  that  they  estimate  multiphase  flowrates  using  fluid 

characteristics  and  production  system  models  in  conjunction  with  a  DVR  algorithm 

(Bikmukhametov, T., & Jäschke, J., 2020). It should also be noted that there are additional 

VFM vendors omitted from the aforementioned, including Ensys Yocum, which provides the 

VMSS3 Virtual Flow Meter but with less literature available and TurbulentFlux, an upstart 

company cutting-edge VFM solution that is not yet publicly accessible.

Aside from the software mentioned, there are several more software packages that might 

be regarded as virtual flow meters. For instance, in Amin's (2015) study, Prosper (PETEX, 

2017) was employed as a VFM system. Prosper is a widely used petroleum industry software 

that  simulates  the  behavior  of  wells  and  production  systems  under  varied  conditions.  It 

incorporates numerous reservoir inflow, choke and hydrodynamic models that are coupled to 

PVT data to assess well performance (PETEX, 2017). Nevertheless, because Prosper lacks 

the DVR algorithm to calibrate the models for specific field measurement circumstances, this 
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article does not consider it a fully integrated VFM system. Additionally, no other research or 

literature  exists  that  evaluates  Prosper  as  a  VFM system.  Mokhtari  and Waltrich  (2016) 

employed Pipesim as a VFM system to analyze several models for VFM purposes in another 

study. Schlumberger's Pipesim is a steady-state multiphase flow simulator that also provides 

OLGA  Online  as  a  VFM  product.  As  a  result,  while  Pipesim  does  not  serve  as 

Schlumberger's VFM, it may be used for VFM purposes (Bikmukhametov, T., & Jäschke, J., 

2020).

Figure  3.1 Physic  based,  first  principle  Virtual  Flow  Meter  (VFM),  Data  Driven  Versus  Transient  Multiphase  Flow 
Simulator for Virtual Flow Meter Application, p.2, Mohd Azmin B Ishak, Idris B Ismail, Tareq Aziz Hasan Al-qutami

3.4.2 Components of the first principles VFM systems 

3.4.2.1 Fluid properties model 

Hydrocarbon  mixtures  are  intricate  compounds  with  varying  characteristics  under 

varying pressure and temperature scenarios throughout the production system. To identify the 

alterations,  fluid characterization must be performed utilizing fluid samples acquired from 

various  locations,  including  the  downhole  or  separator  (Whitson  and  Brule,  2000; 

Bikmukhametov,  T.,  &  Jäschke,  J.,  2020).  From this  characterization  process,  pressure-

volume-temperature (PVT) data is generated and VFM systems subsequently utilize this data 

to accomplish two primary objectives outlined by Falcone et al. (2009):
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The initial utilization of PVT data by VFM systems is to determine the local attributes of 

hydrocarbon  mixtures  including  density,  viscosity  and  thermal  conductivity,  which  are 

required for physics-driven VFM models. These properties are directly engaged in thermal-

hydraulic conservation equations in addition to choke, ESP, and reservoir  inflow models, 

influencing VFM flowrate predictions. Consequently, providing inaccurate phase densities or 

enthalpies to the VFM system for certain pressures and temperatures might cause deviations 

between real  and predicted  flowrates.  As a result,  this  can pose challenges  in finding an 

efficient  solution using the DVR algorithm when adjusting flow measurements  and other 

modeling variables (Bikmukhametov, T., & Jäschke, J., 2020).

The other reason for incorporating PVT data into VFM systems is to reconcile flowrate 

measurements collected at various locations, such as at a separator under standard conditions 

and at the wellhead under local conditions, with local flowrate measurements or estimations. 

VFM systems use data  validation and reconciliation (DVR) algorithms to adjust  flowrate 

estimations and guarantee they match reference flowrate measurements despite changes in 

the production system's conditions. This is crucial for precise flowrate estimations, which are 

typically given under reference conditions for reasons of reconciliation, production and sales 

reporting (Pinguet et al., 2005; Bikmukhametov, T., & Jäschke, J., 2020). Reconciliation is 

essential  in  fields  with  interconnected  wells  to  back-allocate  overall  collective  measured 

output rates at separator conditions to individual wells (Bikmukhametov, T., & Jäschke, J., 

2020).

There are two commonly used methods for fluid characterization (Whitson and Brule, 

2000; Falcone et al., 2009; Bikmukhametov, T., & Jäschke, J., 2020):

3.4.2.1.1 Black Oil model

The term "black  oil"  is  used to  describe  any liquid  phase containing  dissolved gas, 

which is often found in hydrocarbons extracted from oil reservoirs. These oils tend to have 

dark colors, gravities below 40°API and experience minor changes in composition within the 

two-phase envelope. The Black Oil model is a straightforward method to characterize fluid 

behavior, assuming that the oil component does not interact with gas or water phases. This 

method utilizes correlations to calculate properties of oil and gas separately (Whitson and 

Brule, 2000), taking into account three primary PVT properties: the oil formation volume 

factor (Bo), the gas formation volume factor (Bg) and the solution gas-oil ratio (Rs).

Bo can  also  be  used  to  indicate  how the  oil  phase  shrinks  or  expands.  Changes  in 

dissolved  gas  as  well  as  the  oil's  compressibility  and  thermal  expansion  create  volume 
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changes in the oil. By far the most significant factor that affects volume change is dissolved 

gas.  Oil  formation  volume  factor  can  be  evaluated  in  a  laboratory  or  predicted  using 

empirical correlations. A simpler parameter has been proposed for black oils with associated 

gas to take into account gas that dissolves (condenses) or evolves (boils) from solution in the 

oil.  Rs can be evaluated  in  a  laboratory or  identified  through empirical  correlations.  The 

black-oil model shouldn't be utilized at temperatures close to the critical-point temperature 

since  it  cannot  predict  retrograde  condensation  phenomena.  The  volume  factor  for  gas 

formation is commonly referred to as Bg. It is referred to as the amount of gas at reservoir 

conditions that is required to produce one standard cubic foot of gas at standard conditions. 

Bg is a crucial parameter in reservoir engineering that is used to calculate how much gas can 

be produced from a specific reservoir volume. It can be calculated experimentally employing 

correlations based on the reservoir fluid parameters or determined experimentally in the lab. 

Once the black-oil-model parameters have been determined, oil density and other physical 

properties of the two phases can be estimated.

Modified Black Oil models (MBOM) for volatile hydrocarbon mixtures, on the other 

hand, have been established to add another key variable known as the solution oil-gas ratio. 

Whenever  water  is  part  of  the  fluid  product,  it  becomes  necessary  to  establish  added 

attributes, including the gas-to-water ratio (Rsw) and the water formation volume factor (Bw). 

It is noteworthy that the amount of gas that can dissolve in water and the resulting changes in 

water  volume  are  notably  smaller  in  comparison  to  gas/oil  systems.  Additional 

comprehensive information regarding traditional and modified Black Oil models for volatile 

oils and water/hydrocarbon systems can be found in Whitson and Brule's SPE monograph 

(Bikmukhametov, T., & Jäschke, J., 2020).

3.4.2.1.2 Compositional model

A Compositional Model is a more accurate  method for determining mass transfer of 

volatile oils and condensate fluids than black-oil-model parameters. If the composition of a 

fluid mixture, also known as "feed," is provided, a VLE calculation can be used to establish 

the distribution of the feed between the vapor and liquid phases and identify the composition 

of each phase. This information allows for the determination of the quality or mass fraction of 

gas in the mixture. Additionally, the knowledge of the composition of each phase enables the 

computation of the interfacial tension, densities, enthalpies and viscosities associated with 

each phase.
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VLE calculations are more precise but more challenging to execute than black-oil-model 

parameters. If a detailed composition is available for a gas/oil system, black-oil parameters 

can be generated from VLE calculations. However, the black-oil model is more practical for 

non-volatile  oils due to the constant composition that results for the liquid phase and the 

increased computational requirements of the Compositional Model.

 In contrast to the Black Oil model, the compositional fluid model takes into account 

interactions  between different  hydrocarbon phases. A compositional  fluid model relies on 

Equations of State (EoS), which describes the pressure, volume and temperature connections 

to determine the phase and volumetric behavior of the produced fluid (Whitson and Brule, 

2000; Bikmukhametov, T., & Jäschke, J., 2020). The development of EoS can be traced back 

to Van der Waals' fundamental work in 1870, which has since been modified and improved. 

Peng-Robinson (PR) (Peng and Robinson, 1976), Redlich-Kwong (RK) (Redlich and Kwong, 

1949) and Soave-Redlich-Kwong (SRK) (Soave, 1972) equations are the most widely utilized 

versions  for  oil  and  gas  applications  (Whitson  and  Brule,  2000;  Falcone  et  al.,  2009; 

Bikmukhametov, T., & Jäschke, J., 2020).

Both compositional  and BOM methods for PVT modeling  are supported by modern 

VFM systems, as described in various sources (Bendiksen et al., 1991; Melb et al., 2003; 

Haldipur and Metcalf, 2008; Kongsberg, 2016; Lvli and Amaya, 2016; Bikmukhametov, T., 

& Jäschke, J., 2020). While the compositional model is currently favored in first principles 

VFM, as evidenced by the Virtual Flow Metering assessment study conducted by Letton-Hall 

Group (Toskey, 2011), basic VFM solutions that rely solely on a single model (such as a 

choke/orifice model) typically opt for the Black Oil model due to its ease of use, as noted by 

Da Paz et al. (2010), Campos et al. (2014) and Bikmukhametov, T., & Jäschke, J., (2020).

Fluid property models, such as BOM or compositional models, are usually saved in PVT 

tables for usage by VFM models to simplify the simulation process. Employing the models 

directly  in  VFM systems would  be computationally  costly,  necessitating  the use of  PVT 

tables to store the data and interpolate between data points during simulations.

Nevertheless, before constructing PVT tables, the fluid property models must be tuned 

to the specific petroleum fluid, as default model parameters may not reliably predict fluid 

characteristics from a particular field (Coats and Smart, 1986). Furthermore, fluid properties 

change throughout the field’s life cycle, necessitating model adjustment (Falcone et al., 2009; 

Bikmukhametov, T., & Jäschke, J., 2020). Non-linear regression (Agarwal et al., 1990; Coats 

and Smart, 1986) or reiterative calibration of EoS parameters (Pedersen et al., 1988; Whitson 

and  Torp,  1983)  can  be  employed  to  do  this.  Calibration  for  EoS  models  is  based  on 
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laboratory test data, which includes compositional analysis (gas chromatography), constant 

composition  expansion,  multistage  surface  separation,  constant  volume  depletion  and 

differential liberation expansion (Whitson and Brule, 2000; Bikmukhametov, T., & Jäschke, 

J., 2020). Laboratory tests are carried out to determine the primary model variables whenever 

utilizing  BOM.  An instance  of  BOM parameter  evaluation  utilizing  laboratory  results  is 

exemplified by the Whitson-Torp approach (Whitson and Torp, 1983; Bikmukhametov, T., & 

Jäschke, J., 2020).

Following the adjustment of fluid models to match particular fluid characteristics, PVT 

tables are constructed to cover a variety of anticipated pressure and temperature scenarios. 

Subsequently,  these  tables  are  imported  into  the  VFM  system (Bikmukhametov,  T.,  & 

Jäschke,  J.,  2020). Utilizing  the  data  available  in  the  tables,  the  system  can  perform 

interpolations  to  determine  properties  such  as  phase  density  and  viscosity  to  match  the 

specific local pressure and temperature, for instance those at the wellhead (Bendiksen et al., 

1991; Bikmukhametov, T., & Jäschke, J., 2020).

It  is  critical  to  ensure  the precision  of  the  fluid model  utilized  to  characterize  PVT 

characteristics (Bikmukhametov, T., & Jäschke, J., 2020). With MPFMs, which are highly 

sensitive to these properties, inaccuracies in PVT data have been recorded (AlDabbous et al., 

2015).  These  deviations  may  be  induced  by  inaccurate  estimate  of  phase  properties  or 

improper  use  of  EoS.  (Abro  et  al.,  2017;  Bikmukhametov,  T.,  &  Jäschke,  J.,  2020). 

Predictions  of  fluid  characteristics  using  EoS  are  only  accurate  inside  the  pressure  and 

temperature  boundaries  employed  during  model  tuning.  Extrapolating  outside  of  these 

boundaries may lead to severe estimation mistakes (Joshi and Joshi, 2007; Bikmukhametov, 

T., & Jäschke, J., 2020).

The precision of physics-driven VFM models, similar to MPFMs, heavily relies on the 

quality of PVT data. Therefore, it is crucial to have well-characterized fluid properties data 

for accurate flowrate estimations (Petukhov et al., 2011; Zhang et al., 2017; Bikmukhametov, 

T.,  & Jäschke,  J.,  2020).  Whenever  VFM is  utilized  in  preliminary  studies  or fields,  the 

importance  of  PVT  data  cannot  be  overstated  (Haouche  et  al.,  2012a).  Erroneous  PVT 

description  can  increase  the  unreliability  in  VFM  estimations  (Ausen  et  al.,  2017; 

Bikmukhametov, T., & Jäschke, J., 2020). This is because PVT data determines local fluid 

attributes and differences in fluid attributes immediately impact local flowrate estimations. 

Furthermore, the reconciliation algorithm results are also influenced since the fluid attributes 

play  a  role  in  the  conversion  of  rates  from  local  to  reference  conditions,  which  are 

subsequently utilized in the algorithm (Bikmukhametov, T., & Jäschke, J., 2020).
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3.4.2.2 Production system model

The  production  system  model  generally  comprises  of  various  elements  that  are 

determined  by the  field's  available  measurements  and the  equipment  installed.  Presented 

below are the primary models that can be incorporated into the VFM system based on first 

principles.

3.4.2.2.1 Reservoir inflow model

A commonly utilized model for representing reservoir inflow is the Inflow Performance 

Relationship (IPR) model. In this model, the production rate of a well is expressed based on 

the differential pressure between the reservoir and bottomhole conditions. They are defined 

as the well static or reservoir pressure PR, the well flowing or bottom hole pressure PBH and 

the flowrate Q. IPR curves are developed through multi-rate well testing (Golan and Whitson, 

1991;  Bikmukhametov,  T.,  &  Jäschke,  J.,  2020)  and  give  essential  information  for 

understanding the behavior of fluids flowing from the reservoir through the formation and 

into the  well.  IPRs are widely used in  the industry,  with various models  available  to  be 

implemented in current VFM systems. The IPR quantifies production potential by analyzing 

the  well's  flowing  pressure  and  production  rate.  It  also  provides  key  insight  for  well 

completion design, production optimization, nodal analysis and artificial lift design. Several 

IPR  correlations  exist,  including  Vogel's  and  Fetkovitch's  models,  in  addition  to  a  few 

analytical correlations that have limited applicability. The following models are some of the 

more popular ones:

3.4.2.2.1.1 Linear

The  linear  model,  commonly  employed  in  undersaturated  oil  wells  (Cholet,  2008; 

Schlumberger Limited., 2014; Bikmukhametov, T., & Jäschke, J., 2020), posits that the well's 

rate is in direct proportion to the pressure differential between the reservoir and bottomhole 

conditions,  as  proposed by Bradley (1987).  This  linear  model  underpins  the  productivity 

index relationship  for liquid  reservoirs,  which is  the simplest  and most  widely used IPR 

equation.  This  straight-line  equation  indicates  that  the  rate  of  production  is  directly 

proportional  to  the  pressure  drawdown  between  the  bottomhole  and  the  reservoir.  The 

productivity index (PI) is typically estimated during a well test and once the PI is estimated, it 

can be used in subsequent calculations, such as nodal analysis, production optimization and 
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to artificial lift systems design, such as gas lift or electric submersible pumps. The subsequent 

Equation  3.3 describes this model.

q l=PI (PR−PBH) Equation  3.3

Where ql represents the liquid flowrate, PI indicates the productivity index, PR represents the 

reservoir pressure and PBH stands for bottomhole pressure.

3.4.2.2.1.2 Vogel

Vogel's  (1968)  equation  is  among  the  various  methods  available  for  specifying  the 

Inflow Performance Relationship (IPR) for a completion.  It was generated to simulate oil 

wells that are saturated. A number of simulated well performance calculations were used to 

create  Vogel's  equation,  which  is  the  best-fit  approximation.  Vogel's  study  exclusively 

examines  the  impact  of  reservoir  and  fluid  characteristics  on  systems  under  maximum 

saturation conditions. The impacts of high-velocity flow that might occur in high-rate wells 

are not taken into consideration by the Vogel relation. Vogel's equation is (Equation  3.4):

Ql=Qmax(1−0.2( pBHpR )−( pBHpR )
2

) Equation  3.4

Ql represents the liquid flow rate (STB/D or m3/d),  Qmax represents the absolute open 

hole flow potential, that is the liquid flow rate when the bottom hole pressure equals zero, PBH 

refers to the well flowing (or bottom hole) pressure (psia or bara), PR refers to the well static 

(or reservoir) pressure (psia or bara).

3.4.2.2.1.3 Fetkovich's equation

Fetkovich's  equation,  an extension of the Vogel  equation,  is  among several  methods 

available for determining the Inflow Performance Relationship (IPR) for a completion. This 

equation incorporates the impact of high velocity, as outlined in Equation  3.5 (Schlumberger, 

2017).

Ql=Qmax(1−( PBH

PR )
2

)
n

Equation  3.5
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where  Ql signifies  the  liquid  flow  rate  (measured  in  STB/D  or  m3/d),  Qmax  denotes  the 

absolute open hole flow potential, indicating the liquid flow rate at zero bottom hole pressure, 

PBH pertains to the well's flowing (or bottom hole) pressure (expressed in psia or bara), while 

PR corresponds to the well's static (or reservoir) pressure (given in psia or bara).

3.4.2.2.1.4 Backpressure/Backpressure normalized

The  Back  Pressure  Equation  was  formulated  by  Rawlins  and  Schellhardt  (1935) 

following tests on 582 wells. Although it is primarily employed for gas wells, its relevance to 

oil wells has been verified. In cases where correlations are already available for oil wells, the 

backpressure equation is exclusively utilized for gas wells. The equation is written as follows 

(Equation  3.6):

qg=Cb (PR
2−PBH

2 ¿¿n Equation  3.6

where  qg represents  the  gas  flowrate,  Cb and  n  stand  for  the  tuning  coefficients,  both 

determined  through  well  tests,  PR signifies  the  reservoir  pressure  and  PBH  indicates  the 

bottomhole pressure.

For saturated oil wells, a normalized form of the preceding equation is utilized, and it can 

be written as (Equation  3.7):

q l=q l ,max ⌈ 1−(PBH

PR
)⌉

n
Equation  3.7

where ql,max represents the maximum liquid flowrate.

3.4.2.2.1.5 Forchheimer/Single Forchheimer 

Forchheimer  developed  an  equation  for  non-Darcy flow in  reservoirs  in  1901.  It  is 

critical  to  address  inertial  effects  in  gas  reservoirs  with  high  flowrates.  To  model  these 

effects, the Forchheimer model, a non-law Darcy's model, is applied (Bradley, 1987). The 

tuning  coefficients  Bf and  Cf in  the  Forchheimer  model  are  determined  by well  testing. 

(Equation  3.8)

PR
2−PBH

2 =B f qg+C f qg
2 Equation  3.8
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A  single  Forchheimer  model  is  utilized  for  high-pressure  gas  wells.  The  single 

Forchheimer model has a linear equation where the pressure difference is proportional to the 

flowrate. (Schlumberger Limited, 2014; Bikmukhametov, T., & Jäschke, J., 2020) (Equation

 3.9)

PR−PBH=B f qg+C f qg
2 Equation  3.9

3.4.2.2.1.6 IPR table

An Inflow Performance Relationship (IPR) table is a collection of data that demonstrates 

the relationship between a well's flowrate and pressure differential.  This table is produced 

using user-input information and an estimated pressure delta. The table data is then used to 

estimate the flowrate through a linear or polynomial interpolation technique (Schlumberger 

Limited, 2014; Bikmukhametov, T., & Jäschke, J., 2020).

Depending on the production conditions of the well, the models used to represent Inflow 

Performance Relationship  (IPR)  might  take  several  forms.  IPR models  can  serve  several 

purposes  regarding VFM. Firstly,  they can  be utilized  as  standalone  models  to  predict  a 

well’s productivity  capacity.  Additionally,  the  incorporation  of  IPR  models  along  with 

thermal-hydraulic and choke models allows for the representation of the system's boundary 

conditions  and  the  simulation  of  reservoir  inflow to  the  well. This  approach  introduces 

additional parameters into the VFM calibration procedure, which can be employed to fine-

tune the model to historical data. Lansagan (2012) has demonstrated an approach where the 

IPR  equation  is  employed  in  conjunction  with  a  thermal-hydraulic  model  to  calculate 

multiphase  flowrate  under  steady-state  conditions,  as  outlined  in  Bikmukhametov,  T.,  & 

Jäschke, J. (2020).

3.4.2.2.2 Thermal-hydraulic model. 

Multiphase flow in oil and gas fields, both in wells and pipelines, has been present for 

over a century (Shippen and Bailey, 2012). Lockhart and Martinelli made the first attempt at 

modeling multiphase flow in 1949, relying on empirical correlations from experiments and 

field data. This method was eventually replaced by a more fundamental modeling strategy 

that took into account the underlying physics of multiphase flow phenomena. Shippen and 

Bailey provide a thorough overview of the history of multiphase flow model development 

(2012). In accordance with the literature, numerous thermal-hydraulic multiphase models are 
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presently  employed  in  physics-driven  Virtual  Flow  Metering (Bikmukhametov,  T.,  & 

Jäschke, J. (2020).

3.4.2.2.2.1 Two-fluid model

The two-fluid model is a numerical technique used for simulating gas-liquid two-phase 

flow, focusing on the thermo-fluid behavior.  This model  considers conservation of mass, 

momentum and energy for each phase, including interfacial transfer terms that describe the 

exchange of mass, momentum and energy between the phases. These transfer terms account 

for thermal and kinematic non-equilibrium, making the two-fluid model more accurate. In 

one-dimensional  thermo-fluid  simulation  codes  using  the  two-fluid  model,  the  interfacial 

drag  force  term is  critical  for  interfacial  momentum transfer  and it  is  formulated  as  the 

product of the drag coefficient and the average relative velocity between the gas and liquid 

phases, squared. To derive this formulation, the drift-flux model concept is utilized.

The two-phase flow model comprises of three sub-models: the homogenous flow, drift 

flow and two-fluid flow models. The homogenous flow model treats the two-phase flow as a 

single-phase flow, lacking the ability  to  capture phase interactions.  The drift  flow model 

represents the two-phase flow as a mixture and introduces drift velocity to account for inter-

phase slip, but it does not account for interphase heat exchange. The two-fluid model is the 

most precise and reasonable model among the three, as it employs distinct physical equations 

to model the flow and heat transfer mechanisms of each phase. However, due to the absence 

of empirical  correlations,  the auxiliary model of the two-fluid model remains incomplete. 

Nevertheless, the two-fluid model is expected to be the primary model for two-phase flow 

analysis, owing to the advancement of numerical simulations.

The multi-fluid model,  commonly known as the two-fluid model,  formulates distinct 

conservation equations for each phase, regardless of being in a continuous or dispersed state. 

The  general  form  of  mass,  momentum  and  energy  equations  for  each  phase  has  been 

expressed  in  previous  studies  conducted  by  Goldszal  et  al.  (2007),  Nydal  (2012)  and 

Bikmukhametov, T., & Jäschke, J., (2020):

Mass equation:

∂α k ρk
∂ t

+
∂αk ρk uk
∂ x

=Ψ
Equation 
3.10
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Momentum equation: 

∂α k ρk uk
∂ t

+
∂αk ρk ukuk

∂ x
=

−∂αk pk
∂ x

−α k ρk g sin θ−F kw± Fki+O k Equation  3.11

Energy equation: 

∂α k ρk hk
∂ t

+
∂αk ρk uk hk

∂x
= ∂
∂x

αk kk
∂
∂x

T k+ak
Dp
Dx

+Qkw+∑
i ≠k

Oki+Qext Equation  3.12

where k stands for phase density, αk for phase volume fraction and t for time. uk stands 

for the phase velocity. The pipe's axial dimension is indicated by x. Ψ identifies the sources 

of mass transfer (e.g. phase change and mixing), Phase pressure is denoted by pk, while pipe 

inclination is denoted by θ. Fkw stands for wall friction. The interphase friction symbol is Fki. 

The letters Ok represent additional momentum exchange terms, encompassing phase change, 

droplet exchange and the level gradient term, along with p representing system pressure and 

kk indicating the effective phase thermal conductivity. The rate of phase transfer at the pipe 

wall  is  denoted by Qkw.  The rate  of heat  transfer between the kphase and other  fields  is 

indicated by the letters Qki. The remaining net external heat transfer sources are referred to as 

Qext.

The mass conservation equation for a specific  phase in a multiphase flow system is 

represented by  Equation  3.10. It indicates that the quantity on the right-hand side of the 

equation, which stands for the net rate of mass transfer into or out of the phase, is equal to the 

rate of change of the volume fraction of the phase with time, or the left-hand side of the 

equation. The term "mass transfer" includes all forms of reactions, including phase changes, 

mixing and others, as sources of mass transfer.

Equation   3.11,  which  provides  the  conservation  of  momentum for  each phase in  a 

multiphase  flow,  is  the  momentum equation  for  the  two-fluid  model.  The phase  volume 

fraction αk, density ρk and velocity uk are combined to form the left-hand side of the equation, 

which reflects the time and space rate of change of momentum for the k phase. The pressure 

gradient force acting on the k-th phase is represented by the first term on the right-hand side 

of the equation, 
−∂α k pk
∂ x

. It describes the rate of pressure change in the pipe's axial direction, 
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which causes a force to accelerate  the phase in the direction of decreasing pressure.  The 

negative sign indicates that the force acts in the opposite direction to the pressure gradient, 

which is a fundamental principle of fluid mechanics. The gravitational force per unit volume 

is represented by the second term on the right, α k ρk g sin θ.

Equation  3.12 is a representation of the energy conservation principle in the multi-fluid 

model,  which considers  various  factors  affecting  the  energy balance  of  each phase.  This 

equation takes into account the contributions of heat transport through both convective and 

conductive mechanisms, pressure work, wall friction, interphase heat transfer and external 

sources of heat transfer. It describes how the enthalpy of a particular phase changes over time 

and space.

3.4.2.2.2.2 Drift-flux model

The drift-flux model introduces the term of drift velocity, which stands for the disparity 

between the volume of the mixture and the gas's  velocity.  This  drift  velocity  reveals  the 

relative velocity or kinematic non-equilibrium that exists between the gas and liquid phases. 

The local drift-flux model is averaged over the flow channel when the drift-flux model is 

used in one-dimensional analysis, which results in an uneven distribution of the gas, liquid, 

and  void  fraction  and  a  covariance  term.  The  crucial  parameter  that  defines  the  phase 

distribution in the flow channel is the distribution parameter, which is the covariance term. 

The drift-flux model offers precise numerical simulations of the thermo-fluid behavior of the 

gas-liquid two-phase flow by incorporating local  information about flow distribution  into 

one-dimensional  analyses  via  the  distribution  parameter.  Reliable  results  are  ensured  by 

providing the distribution parameter and drift velocity through constitutive equations.

By multiplying the liquid fraction by the relative velocity between the gas and liquid 

phases,  the  drift  velocity  can  be  determined.  The  bubble-shape  regime  affects  how  the 

relative velocity in drift velocity is modelled. In bubble shapes such infinite media, viscous, 

distorted-fluid-particle and cap bubbles, for example, the drift velocity is described by a drag 

law. In contrast,  potential  flow theory is  used to predict  the drift  velocity  in a slug flow 

regime where the bubble shape is confined by a channel wall. The drift velocity in a severely 

deformed bubble-shape regime,  also known as a churn-turbulent-flow regime,  is modeled 

using the crucial Weber number. When used with real two-phase flows, empirical coefficients 

and  correction  factors  are  typically  added  to  the  predicted  drift  velocity  to  account  for 

differences  between  the  model  and  experimental  data.  Although  it  can  be  difficult  to 
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characterize the drift velocity at flow regime transitions, the drift velocity model for each 

bubble-shape regime can serve as a starting point for explaining the drift velocity's behavior 

at these transitions.

On  the  contrary,  the  determination  of  the  distribution  parameter  relies  on  the 

distributions of mixture volumetric flux and void fraction, which are not extensively available 

in experimental databases. Hence, in the modeling of the distribution parameter, it is typically 

determined empirically  as a slope in the drift-flux plot of mixture volumetric flux vs gas 

velocity.

Within the drift-flux model, mass conservation equations are expressed individually for 

every component, whereas the energy and momentum equations are solely developed for the 

mixture (Bikmukhametov, T., & Jäschke, J., 2020). This aspect of the model is elucidated in 

the research conducted by Holmas and Lovli (2011).

Mass Conservation Equation (same to Equation  3.10)

∂α k ρk
∂ t

+
∂αk ρk uk
∂ x

=Ψ Equation  3.13

Momentum Equation

∂
∂ t∑k

αk ρk uk+¿ ∂
∂ x∑k

α k ρk uk uk+¿∑
K
αk ρk g+

∂ p
∂ x

=−F tot−Otot ¿¿ Equation  3.14

Energy Equation

∂
∂ t∑k

αk ρk Ek+¿ ∂
∂ x∑k

α k ρ kuk Ek+
∂
∂ x∑k

α k ρ k p+U tot=0¿ Equation  3.15

where Ftot stands for total wall friction, Otot  for source term, Ek for total energy and Utot for 

total source term, which includes sources, wall heat transfer and mass transfer.

The mass conservation equation,  Equation  3.13, explains how the volume fraction of 

each phase changes over time and along the axial dimension of the pipe. It states that the net 

rate of mass transfer into or out of the system owing to multiple factors, including phase 

change and mixing, is equal to the rate of change of the volume fraction of phase k with 
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respect to time. The right-hand side of the equation denotes the sources of mass transfer, 

whereas the left-hand side denotes the change in the mass of phase k through distance and 

time.

Equation   3.14 which  is  written  in  terms  of  the  mixture,  represents  the  momentum 

conservation equation for a two-phase flow system. It represents the overall fluid mixture's 

momentum changes  through time and space.  The two terms on the left-hand side of the 

equation are the time and space rates of change of the momentum of each phase weighted by 

their respective volume fractions. This term refers to how much each phase contributes to the 

mixture's momentum. The third term,  ∑
K
αk ρk g, denotes the gravitational force per volume 

of the mixture as a result of the acceleration of gravity. The first component in the equation's 

right-hand side Ftot, reflects the total force of wall friction acting on the mixture. Included in 

this are the frictional losses brought on by the mixture's flowing along the pipe or channel's 

walls. The source term is denoted by the second term on the right-hand side of the equation, 

Otot. This term incorporates contributions from a variety of sources, such as internal forces 

(for instance gravity) or external forces (such as interfacial forces between the phases). The 

pressure  gradient  term  
∂ p
∂ x ,  which  indicates  how  the  pressure  difference  affects  the 

momentum of the mixture, is also a part of the equation. The spatial rate of change of the 

pressure is correlated with the pressure gradient. The total source term, U tot, which is included 

in the equation as a final component, accounts for all the sources of energy transfer in the 

system, including heat transfer to and from the pipe or channel walls.

Equation   3.15 explains  the  drift-flux  model's  two-phase  flow energy  conservation. 

According to the equation, the time derivative of the summation of the energy densities of the 

two phases, the spatial derivative of the summation of the energy flux densities of the two 

phases, the spatial derivative of the summation of the pressure and the spatial derivative of 

the summation of the total source term all have to equal zero.

In  order  to  account  for  the  difference  in  phase  velocities,  the  drift-flux  model 

necessitates a slip relation. Zuber and Findlay (1965) established the most well-known and 

widely used form (Equation  3.16):

ug=Coum+ud Equation  3.16

where the abbreviations ug, um, ud, and Co stand for "gas velocity," "mixed velocity," "drift 

velocity," and "profile parameter," respectively.
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3.4.2.2.2.3 Steady state mechanistic model

The  multiphase  flow  models  discussed  above  are  time-dependent,  meaning  they 

represent the flow behavior in both space and time. The model enters steady state and is only 

resolved in space if the time derivative term ∂/∂t has a value of zero. The model assumes a 

constant  flow  rate  throughout  time.  This  kind  of  model  is  helpful  in  situations  when 

identifying the spatial  distribution of flow parameters including temperature,  pressure and 

velocity  is  the  main  goal  and  the  flow behavior  does  not  vary  considerably  over  time. 

Instabilities  in  well  behavior,  such  as  liquid  loading  or  severe  slugging,  cannot  be  well 

described by a steady state model since they are transient in nature (Waltrich and Barbosa, 

2011; Bikmukhametov, T., & Jäschke, J., 2020). 

Different  VFM systems  may  employ  different  thermal-hydraulic  models,  with  some 

utilizing only one specific model formulation while others use a combination of them. For 

example,  OLGA  incorporates  a  mixture  energy  equation  with  a  two-fluid  momentum 

equation formulation, resulting in a total of five mass equations, three momentum equations 

and one mixture energy equation (Nydal,  2012; Shippen and Bailey,  2012). On the other 

hand, K-Spice Meter employs LedaFlow to resolve multiphase flows in wells and utilizes 

nine mass equations,  three momentum equations, and three energy equations, making it a 

two-fluid  model  with  nine  fields,  including  three  continuous  and  six  dispersed  phases 

(Kongsberg, 2016; Shippen and Bailey, 2012; Bikmukhametov, T., & Jäschke, J., 2020). In 

contrast,  FlowManager  utilizes  a  transient  drift-flux  model  with  one  mixture  momentum 

equation  and  one  energy  equation,  solving  the  mass  balances  for  each  phase  separately 

(Holmas and Lovli, 2011; Bikmukhametov, T., & Jäschke, J., 2020). A similar approach is 

employed by METTE, a multiphase flow solver in FieldWatch that uses the transient drift-

flux model with mixture momentum and energy equations, with an option to incorporate or 

omit slip effects between phases (Roxar, 2015; Bikmukhametov, T., & Jäschke, J., 2020).

3.4.2.2.3 Choke model

In order to control production rates and avoid problems like gas or water coning, sand 

production, or excessive erosion velocities, surface chokes are frequently installed close to 

the  wellhead  of  producing  wells.  They  may  be  necessary  to  fulfil  certain  production 

requirements or restrictions. In some circumstances, flow rates are estimated using pressure 

measurements taken at the choke.
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Critical flow occurs when fluids flowing through the choke throat in compressible flow 

reach velocities that are greater than the velocity of sound. This occurs in both single-phase 

gas  and  multiphase  flow  and  indicates  that  flow  behavior  becomes  independent  of 

downstream conditions.  Subcritical  flow is  what  occurs  when the highest  velocity  of the 

fluids  in  the  choke is  lower than the  sonic velocity.  Predicting  the  sonic  velocity  or  the 

boundary  between  critical  and  subcritical  flow  is  crucial  for  effectively  describing  the 

behavior  of  compressible  fluids  via  chokes.  The  flow  rate  through  the  choke  becomes 

constant when  the  pressure  ratio  is  at  the  critical  value.  Predicting  the  flow behavior  of 

multiphase  fluids  through chokes  requires  a thorough understanding of  single-phase flow 

through restrictions.

Choke  valves  have  been  utilized  for  security  and  management  reasons  in  the 

hydrocarbons industry for several decades (Buffa and Balio, 2017; Bikmukhametov, T., & 

Jäschke, J., 2020). Due to the proportional relationship between pressure decrease across the 

choke and flowrate, the choke valve represents a viable option for flow estimation. Therefore, 

deeming a choke valve model as a basic form of a VFM is suitable because it approximates 

the  flow  instead  of  precisely  calculating  it.  Measuring  flow  across  the  choke  presents 

challenges due to the complexity of multiphase flow (Bikmukhametov,  T., & Jäschke, J., 

2020).

Similar to numerous other applications of fluid dynamics, empirical correlations were 

initially  utilized  for  flow estimation  through  a  choke.  Gilbert  (1954)  proposed  one  such 

empirical model. Mechanistic models, however, were incorporated as research progressed on 

and are nowadays employed in VFM (Bikmukhametov, T., & Jäschke, J., 2020).

Four models employed in industrial VFM solutions have been identified in the currently 

available published information. Nevertheless, it is probable that more models are in use but 

are not publicly disclosed by VFM suppliers. Modified Bernoulli, Hydro (Long and Short) 

and Perkins are some of these models (Bikmukhametov, T., & Jäschke, J., 2020). Yet, there 

are not a lot of publications from VFM suppliers on this subject.

3.4.2.2.3.1 Modified Bernoulli

In the oil  and gas sector,  the Modified Bernoulli  model  is  a widely used model  for 

evaluating the flowrate of multiphase fluids flowing through a choke valve. One such system 

that uses this model is FieldWatch, a commercial Virtual Flow Meter system from Roxar.

The  Modified  Bernoulli  model  is  a  modification  of  the  Bernoulli  equation,  which 

describes the relationship between pressure, velocity and height of an incompressible fluid 
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and  is  a  fundamental  equation  in  fluid  mechanics.  Nevertheless,  because  the  Bernoulli 

equation was first established for single-phase flow, modifications are necessary to take many 

phases into account.

The Modified Bernoulli model adds two new parameters—the mixture density and the 

choke discharge coefficient—to account for the multiphase flow. The mixture density is the 

density  of  the  multiphase  fluid  flowing through the  choke,  whereas  the  choke discharge 

coefficient is a dimensionless factor that quantifies the efficiency of the choke in converting 

pressure drop to flowrate. The Modified Bernoulli model is expressed as follows (Equation

 3.17):

ṁ=A1CD [2 Δp ρmA1
A2

−1 ]
1
2

Equation  3.17

where CD stands for the choke discharge coefficient and ṁ stands for the mass flowrate. A1 

denotes the inlet choke area, A2 denotes the choke throat area, m signifies the fluid mixture 

density and p denotes the pressure drop over the choke (Bikmukhametov, T., & Jäschke, J., 

2020).

3.4.2.2.3.2  Hydro (Long and Short)

The  Selmer-Olsen-created  Hydro  model,  a  choke  model  used  in  the  oil  and  gas 

industry's OLGA Online Virtual Flow Meter system, was created in 1995. There are two 

variations of the Hydro model, Long and Short, which differ in their assumptions regarding 

the location of the vena contracta, which is the point of maximum constriction in the flow. 

The critical flow is the largest possible flowrate, hence both versions of the Hydro model 

compute sub-critical and critical flows before choosing the smaller of the two. The Hydro 

model does not necessitate the use of a discharge coefficient in its calculations, in contrast to 

many other choke models, and takes into account permanent choke losses mechanistically. 

The works of Schüller et al. (2003) and Sampath et al. (2006) provide a thorough explanation 

of the whole Hydro model,  including its derivation,  an improved slip relation and testing 

outcomes using experimental data (Bikmukhametov, T., & Jäschke, J., 2020).

In  their  2006  study,  Schüller  et  al.  observed  that  the  Hydro  models  demonstrate 

outstanding accuracy in the estimation of mass flow rates in both subcritical and critical flow 

conditions. These models achieved an average absolute error of only 6.2% and a standard 
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deviation of 8.9%. In contrast, models developed by Sachdeva et al. in 1986 and Perkins in 

1993  exhibited  inferior  performance,  with  average  errors  exceeding  22%  and  standard 

deviations  surpassing  25%  (Schüller  et  al.,  2006).  Furthermore, the  Hydro  models  can 

anticipate  the  transition  from  subcritical  to  critical  flow  conditions  with  high  accuracy, 

indicating their effectiveness in capturing complex flow behavior (Schüller et al., 2006).

3.4.2.2.3.3 Perkins

The Rate&Phase software uses the Perkins model (Perkins, 1993) for predicting mass 

flowrate through chokes. This model is based on the energy equation for a control volume of 

fluid and computes mass flowrate for both sub-critical and critical flow conditions. However, 

the  actual  flowrate  is  obtained  by  multiplying  the  calculated  value  with  a  discharge 

coefficient  (Perkins,  1993;  Bikmukhametov,  T.,  &  Jäschke,  J.,  2020).  Unlike  the  Hydro 

model, the Perkins model does not take into account slip effect between phases and frictional 

losses in the throat. Sampath et al. (2006) noted that these limitations are a drawback of the 

Perkins model and that the Hydro model surpasses it by considering the slip effect. K-Spice 

Meter software offers the Hydro as well as the Perkins model, giving users the flexibility to 

select their desired alternative (Kongsberg, 2016; Bikmukhametov, T., & Jäschke, J., 2020).

Moreover,  a  multitude  of  non-commercial  simulation  models  are  available  for 

estimating mass flowrates through choke systems. Ashford's model, developed in 1974, relies 

on fluid  properties,  choke size  and the  discharge  coefficient  to  determine  the  total  mass 

flowrate.  This,  in  turn,  allows for  the estimation  of  the oil  flowrate  based  on Black Oil  

properties (Bikmukhametov, T., & Jäschke, 2020).

In 1986, Sachdeva et al. introduced a two-phase flow model, which assumed a no-slip 

frozen  flow  condition  and  utilized  the  discharge  coefficient  for  flowrate  adjustment. 

However, a study conducted by Sampath et al. in 2006 revealed that this model exhibited 

lower accuracy compared to the Hydro model, primarily due to its reliance on the no-slip 

assumption. Nevertheless, Sachdeva et al.'s (1986) model continues to be widely employed as 

an early pioneer among mechanistic choke models, serving the purpose of enabling analysis 

and comparison with more recent models (Bikmukhametov, T., & Jäschke, 2020).

In 2009,  Al-Safran and Kelkar  proposed a choke model  that  considers  slip  between 

phases.  Their  objective  was  to  achieve  a  balance  between  simplicity,  reminiscent  of  the 

Sachdeva and Perkins models and accuracy on par with the Hydro model. This model is 

rooted in the foundational concepts of Sachdeva and Perkins models, incorporating the slip 

model originally proposed by Schüller et al. in 2003 into a modified version of the Hydro 
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model. The model's performance was evaluated by Sampath et al. in 2006 and experimental 

results  demonstrate  that  the  Al-Safran  and  Kelkar  model  outperforms  the  Sachdeva  and 

Perkins models, leading to an average percent error reduction of 5-10% (Bikmukhametov, T., 

& Jäschke, 2020).

Since there are numerous choke models available for estimating flowrate, aside from the 

models discussed above, there are other general models that have been employed for real 

field cases but are not as well-known.

3.4.2.2.4 Electric submersible pump (ESP) model. 

In the oil and gas sector, electric submersible pumps (ESPs) are often employed artificial 

lift  systems  to  produce  oil  when  natural  production  is  not  feasible  because  of  factors 

including low bottomhole pressure, liquid loading, or the presence of heavy oil. As described 

in a review by Lea and Bearden, ESPs have been used extensively both onshore and offshore 

(1999). Given to its  widespread use,  there have been various attempts  to develop a first-

principles model that explains how ESP functions. Establishing a correlation between the rise 

in pump pressure, pump inlet pressure, flow rate and pump speed is the basic idea underlying 

these  models  (as  described  by  Schlumberger  Limited,  2014  and  Bikmukhametov,  T.,  & 

Jäschke, 2020) (Equation  3.18).

ΔP=f (q ,ξ ,α1 , Pinlet) Equation  3.18

where q stands for flowrate, ξ for pump speed, α1 for liquid fraction, and Pinlet for pump inlet 

pressure (Bikmukhametov, T., & Jäschke, 2020).

ESP models can be used to estimate the flowrate of a multiphase flow mixture pumped 

by an electric submersible pump (ESP) by assessing pressure pre and post pump and applying 

a  model  similar  to  the  one  described  above.  However,  grouping  ESP  models  can  be 

challenging  since  some VFM suppliers  withhold  information  on the  precise  models  they 

employ. Yet, it is worth mentioning that such setups employ ESP models and can provide a 

helpful  tool  for  estimating  multiphase  flowrates  eliminating  the  requirement  for  extra 

equipment placement (Bikmukhametov, T., & Jäschke, 2020).

3.4.2.3 Data validation and reconciliation (DVR) algorithm
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The  DVR  algorithm  is  a  critical  component  of  contemporary  first-principles  VFM 

systems. Some literature and software refer to this algorithm as the "optimization algorithm" 

(Melb et al.,  2003; Heddle et al.,  2012; Holmås and Løvli,  2011; Bikmukhametov, T., & 

Jäschke, J., 2020), but other sources may refer to it as the DVR (van der Geest et al., 2001; 

Haouche et al., 2012a; Patel et al., 2014). In essence, the DVR process involves changing the 

VFM’s  variables  to  ensure  that  its  outputs  align  with the  recorded  field  data 

(Bikmukhametov, T., & Jäschke, J., 2020).

Implying its name, the data validation and reconciliation (DVR) algorithm is composed 

of  two  main  stages:  validation  and  reconciliation.  During  the  data  validation  stage,  the 

primary objective is to eliminate data that is inaccurate data and data with interference. To 

accomplish this  objective,  analytical  methods and data  filtering techniques  are  employed. 

These techniques may include the use of exponential  filters  or moving averages (Stanley, 

1982; Bikmukhametov, T., & Jäschke, J., 2020).

After the data validation stage, the reconciliation phase is executed. During this phase, 

an optimization algorithm is utilized to fine-tune various model parameters, including flow 

rates, choke discharge coefficients, gas and water percentages, as well as friction and heat 

transfer coefficients. Its objective is to ensure that the VFM’s results are consistent with the 

validated recorded data, while also adhering to the specified process conditions, such as mass 

balances  (Câmara  et  al.,  2017;  Bikmukhametov,  T.,  & Jäschke,  J.,  2020).  Typically,  the 

reconciliation  algorithm in  VFM systems is  formulated  in  the  form of  constrained  least-

squares, as described in Petukhov et al. (2011).

min
x
∑
i

N

( ymeasi− y predictedi
σ i )

2

Equation  3.19

Constrained by the conditions below:

F ( s , y )=0 Equation  3.20

ymin≤ y predictedi≤ ymax Equation  3.21

smin≤ si≤smax Equation  3.22
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The equation  put  forth  by  Petukhov et  al.  (2011) (Equation   3.19)  involves  several 

variables,  where  i  represents  the  index  of  a  specific  measurement,  ymeasi represents  the 

corresponding  measured  value  and  ypredictedi denotes  the  predicted  (reconciled)  value. 

Additionally,  the  measurement  uncertainty  is  represented  by  σi,  while  si refers  to  any 

unmeasured  variables  that  may  be  affecting  the  process.  Finally,  the  process  equality 

constraints,  which are typically  related  to  factors  such as  mass  and energy balances,  are 

represented by F (s, y) = 0 in the equation.

When dealing with VFM applications,  the problem at hand often involves non-linear 

formulations because of the system's intricate nature. As a result, a variety of methods may be 

utilized in order to obtain a solution to the non-linear data reconciliation problem. In cases 

where there are no inequality constraints,  one commonly used approach is the method of 

Lagrangian multipliers, which can yield the solution (Camara et al., 2017; Bikmukhametov, 

T., & Jäschke, J., 2020). However, when inequality constraints are present, gradient-based 

optimization  techniques  like  Levenberg-Marquardt,  SQP  or  Gauss-Newton  are  typically 

employed  to  obtain  a  solution  (Holmas  and  Lovli,  2011;  Camara  et  al.,  2017; 

Bikmukhametov, T., & Jäschke, J., 2020). Ultimately, the algorithm is able to estimate the 

flowrates that lead to either a local or global minimum error.

After  the  completion  of  the  reconciliation  process,  the  outcomes  are  subjected  to  a 

validation  step.  In  this  stage,  statistical  tests  are  carried  out  to  identify  any  potential 

measurement or estimation errors and assess the likelihood of gross errors. To achieve this, 

individual tests such as penalty tests and global tests like chi-squared tests are conducted 

(Petukhov  et  al.,  2011;  Bikmukhametov,  T.,  &  Jäschke,  J.,  2020).  These  tests  help to 

additionally  identify  untrustworthy  measurements  and  estimations  and  ensure  the  final 

results' accuracy.

3.5 Data-driven VFM

Data-driven modeling involves the examination of the system’s data and establishing 

connections  among  its  input  and  output  parameters,  all  while  not  necessitating  a 

comprehensive understanding of its underlying physical behavior (Solomatine et al., 2009; 

Bikmukhametov and Jäschke, 2020). The primary benefit of the method is that the necessity 

for a comprehensive physical representation of a system's mechanisms or workflows, which 

can  pose  mathematical  challenges,  is  circumvented.  This  is  exemplified  in  the  case  of 

multiphase  flows in  pipelines. Data-driven approaches  operate  under  the  assumption  that 

experimental  or  industrial  data accurately  describe  the  system and  strive  to  deduce  its 
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underlying  physical  relationships directly  from this  information  (Bikmukhametov,  T.,  & 

Jäschke, J., 2020). Machine learning models such as Neural Networks (Ahmadi et al., 2013; 

Andrianov, 2018; Grimstad et  al.,  2021) and ensemble learning (AL-Qutami et al.,  2018; 

Bikmukhametov  and  Jäschke,  2019)  have  been  tested  in  data-driven  VFMs,  which  use 

historical production data to enable machine learning and regression model generation. Shell 

has developed a data-driven VFM called 'Production Universe' (PU) (Poulisse et al, 2006).

Disregarding the physical interconnections among the data points, the data-driven VFM 

directly establishes a mathematical relationship between key parameters, such as temperature 

and pressure within  the  pipeline  and the  flow rate  (Andrianov,  2018;  Song et  al.,  2017; 

Bikmukhametov  & Jäschke,  2020;  Song  et  al.  2022).  Garcia  et  al.  (Garca  et  al.,  2010) 

commercialized data-driven VFMs in oil fields in 2010, with a maximum relative error of 

5%. Scientists have preferred neural networks in the evolution of data-driven VFMs (Qiu and 

Toral, 1993; Ahmadi et al., 2013; Song et al., 2017; Song et al. 2022). In 1993, Qiu and Toral 

(Qiu and Toral, 1993) established a VFM method by training Back Propagation (BP) neural 

networks (Song  et  al.,  2022).  An  ICA-ANN  model  was  suggested  by  Ahmadi  et  al. 

(Ahmadiet  al.,  2013).  In  this  model,  an  imperialist  competitive  algorithm  was  used  to 

optimize neural network connection weights. As per the research conducted by Al-Qutami et 

al. (2018), the gas flow rate estimation is highly affected by the parameters related to the oil  

nozzle,  while  the  crude  oil  flow  rate  prediction  is  most  influenced  by  the  well  bottom 

pressure  parameter.  Furthermore,  in  data-driven  VFMs,  the  Long  Short-Term  Memory 

(LSTM) network is frequently utilized (Andrianov, 2018; Sun et al., 2018; Song et al., 2022).

Despite the enhanced precision of data-driven VFMs when compared to first principles 

VFMs,  their  adaptability  and  robustness  still  fall  short  for  a  wide  range  of  industrial 

implementations. Consequently, existing data-driven VFMs are seldom implemented in real-

world scenarios. (Al-Qutami et al., 2017; Omrani et al., 2018; Song et al., 2022). Limited 

data  amount  and diversity  as well  as  substandard  data  quality  are  commonly  blamed for 

degrading the efficacy of data-driven VFMs (Qiu and Toral, 1993; Ahmadi et al., 2013; Song 

et  al.,  2022).  Moreover,  conventional  data-driven VFMs often lack broad applicability  to 

other wells, which is commonly the primary cause for their underutilization.

To begin the modeling  process,  the initial  step involves  the collection  of  data.  This 

encompasses various aspects of the process, including the system's past records, its present 

state, or even information from a related system with past documentation. Following this, the 

subsequent  step  involves  the  preliminary  preparation  of  the  information or  data  pre-

processing.  This  could  include  a  variety  of  operations.  To  begin,  researchers  ensure  the 
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appropriateness of the collected data for modeling purposes through procedures that involve 

eliminating  irregular  data  points,  handling  data  gaps  and  minimizing  interference 

(Bikmukhametov, T., & Jäschke, J., 2020). Data transformation and feature engineering can 

also  provide  enhanced  understanding  into  the  information  contained  in  data.  The  term 

"feature engineering" is derived from the practice of often referring to input data as "features" 

within the machine learning community, so feature engineering involves the manipulation of 

input data with the aim of revealing valuable insights that can enhance the model training 

phase (Bikmukhametov, T., & Jäschke, J., 2020).

After pre-processing the data, the model is developed. This phase involves the creation 

and training of a  data-driven model  using the pre-processed data.  The training procedure 

involves  adjusting  a  mathematical  function  to  precisely  represent  the  data.  In  certain 

instances, this function may take on an analytical form, as in the case of a linear regression 

model.  In  other  situations,  it  can be  represented  as  a  black-box model,  such as  a  neural 

network (NN). In order to verify the model's capacity to produce precise forecasts for unseen 

data,  it  must  undergo  validation  using  an  independent  dataset.  (Bikmukhametov,  T.,  & 

Jäschke, J.,  2020). Only after the validation process has been successfully completed,  the 

model can be employed for predictions with recently collected data.

Collected  data  within  a  data-driven VFM system typically  encompasses  information 

about bottomhole and wellhead pressures and temperatures, specifications for choke opening, 

ESP  parameter  configurations  and  related  records  of  oil,  gas  and  water  flow  rates. 

(Bikmukhametov, T., & Jäschke, J., 2020). Flowrate data can be collected through various 

methods. One option is to utilize well testing data, while another approach is to utilize data 

obtained from MPFM. When physical multiphase flow meters are in place at every wellhead, 

the data-driven model serves as a backup metering system for the well (Bikmukhametov, T., 

& Jäschke, J., 2020). However, when a single physical multiphase flow meter is implemented 

to monitor a group of wells, its data is utilized in a manner similar to how well test and 

separator data are used. This facilitates the acquisition of flowrate measurements from each 

well following the established well testing schedule. In this scenario, the data-driven model 

functions as an independent VFM system after training and validation (Bikmukhametov, T., 

& Jäschke, J., 2020).
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3.6 Data-driven VFM components and applied methods

3.6.1 Data collection and pre-processing

In order to develop a data-driven model,  the initial  step involves collecting and pre-

processing the relevant data. For Virtual Flow Metering systems, this could include sensor 

readings obtained from various sources like wells and processing facilities. Furthermore, past 

measurements pertaining to akin wells or fields can contribute to model refinement. After 

collecting the data, the following procedure is to pre-process it before beginning the training 

process. Usually, the data collected is noisy, can be corrupted and may contain data gaps, 

anomalies,  or unnecessary inputs (Famili  et al.,  1997; Bikmukhametov, T., & Jäschke, J., 

2020). Therefore, it is crucial to clean and validate the data before putting it to further use. 

Essentially, this validation process is similar to the one carried out by the DVR algorithm, 

that is typically utilized in the physics-driven VFM systems, as previously stated.

During data pre-processing, it is possible to transform the data and extract additional 

insights. This is often known as feature engineering. In the case of VFM, the raw features 

typically  include  pressure  and  temperature  readings  at  different  locations  within  the 

production  system,  choke openings  and ESP data.  Various  techniques  can  be  applied  in 

feature  engineering,  such  as  Principal  Component  Analysis  (PCA)  for  dimensionality 

reduction, feature selection techniques and combinations of original features using both linear 
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Figure 3.2 Data driven Virtual Flow Meter (VFM) Ishak, M. A. B., Ismail, I. B., & Al-
Qutami, T. A. H. (2021, July). Data Driven Versus Transient Multiphase Flow Simulator for 
Virtual Flow Meter Application. In 2020 8th International Conference on Intelligent and 
Advanced Systems (ICIAS) (pp. 1-4). IEEE.
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and non-linear methods. (Bikmukhametov, T., & Jäschke, J., 2020). Feature engineering is a 

significant  step  in  data  pre-processing  because  it  can  assist  the  data-driven  algorithm in 

discovering  intricate  interdependencies  between the input  data  and the  output  parameters 

while also removing unnecessary features. This may result in more cost-efficient computing 

throughout  the  learning  and  prediction  phases.  Creating  informative  features  for  training 

algorithms requires a deep understanding of the specific field and VFM is no different in this 

regard.  Constructing  useful  features  that  characterize  the  procedure  of  transporting 

multiphase  flows  from  the  input  data  has  the  potential  to  enhance  prediction  accuracy. 

(Bikmukhametov, T., & Jäschke, J., 2020). Nevertheless, in most cases, sensor data from the 

production system is used without further feature engineering and the opportunities for fully 

exploring effective feature engineering in Virtual Flow Metering implementations has not 

been realized in the literature (Bikmukhametov, T., & Jäschke, J., 2020).

3.6.2 Model development

The procedure of model development entails crafting an algorithm with the ability to 

accurately  link  input  features  to  output  (target)  parameters.  This  procedure,  commonly 

referred to as training or learning, entails  the adjustment of the algorithm's parameters to 

enhance the accuracy of its target variable estimations. The choice of which parameters to 

adjust is determined by the algorithm used. In neural networks, for instance, it is typically the 

weights connecting the neurons that are adjusted,  while in regression trees, the adjustable 

factor  is  the tree  depth.  The training  procedure  is  designed to  minimize  a  cost  function, 

characterized  as  the  disparity  between  the  algorithm's  forecasts  and  the  actual  values  as 

outlined  by  Bikmukhametov,  T.,  &  Jäschke,  J.  (2020).  The  cost  function  commonly 

employed for Virtual Flow Metering regression problems is the mean squared error (MSE), 

which is expressed in the following form (Equation  3.23):

MSE= 1
N ∑

i=1

N

( ymeasi¿− y predictedi )
2¿ Equation  3.23

where the cost function is represented by MSE, the measured (true) value of the i-th 

training  example  is  denoted  as  ymeasi,  the  predicted  value  of  the  i-th  training  example  is 

represented as ypredictedi,  the number of training examples is denoted as N and the training 

example index is indicated as i (Bikmukhametov, T., & Jäschke, J., 2020).
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This  equation  bears  a  resemblance  to  the  data  reconciliation  algorithm employed  in 

physics-driven VFM systems, as both aim to reduce the disparity  between estimated and 

measured  values.  While  data-driven  VFM  models  typically  involve  unconstrained 

optimization, data reconciliation incorporates constraints and accounts for uncertainty in the 

cost  function.  Both  physics-driven  and  data-driven  VFM  systems  share  the  underlying 

concept of adjusting model variables to minimize the disparity in predicted and measured 

values. The key distinction lies in their mathematical methodology: physics-driven models 

utilize physical principles to describe the procedure of transporting multiphase flows, while 

data-driven  models  derive  insights  about  multiphase  flow  behavior  straight  from  data 

(Bikmukhametov, T., & Jäschke, J., 2020).

After a model has undergone training, there arises a necessity to conduct validation and 

testing on a separate dataset to verify its capability for effective generalization to new unseen 

data.  Generalization  performance  refers  to  the  model's  ability  to  have  accurately  predict 

outcomes on new data (Abrahart et al. (2008); Bikmukhametov, T., & Jäschke, J., (2020)). 

Validation  also  encompasses  a  process  for  the  selection  of  suitable  hyperparameters  that 

enhance the model's alignment with the data. These hyperparameters constitute pre-training 

settings  that  are  not  acquired  throughout  training  phase. Neural  network hyperparameters 

include elements such as the number of layers, the quantity of nodes in the hidden layers and 

regularization  parameters,  among  others.  Notably,  regularization  parameters  stand  out  as 

essential hyperparameters capable of mitigating the influence of interference and outliers in 

model predictions, thereby preventing overfitting (Bikmukhametov, T., & Jäschke, J., 2020). 

There are several validation methods available,  with standard K-fold cross-validation 

standing out as one of the most frequently employed techniques (Hastie et al., 2009). This 

method involves the division of the existing data into training and test sets. Subsequently, the 

training  set  is  further  partitioned  into  K  subsets  or  K-folds.  A  predetermined  set  of 

hyperparameters is chosen prior to the training phase and the model is trained on K-1 folds 

using these hyperparameters. The evaluation of the model's performance is accomplished by 

assessing  the  error  between  the  actual  and  predicted  values  on  the  remaining  fold 

(Bikmukhametov, T., & Jäschke, J., 2020). 

This procedure is iterated K times, with each iteration involving training on K-1 folds 

and evaluating on the one left out, yielding K distinct evaluations. The resulting error from 

these evaluations is calculated as an average over the K folds, providing a representative 

measure  of  model  performance  with  the  selected  hyperparameters.  Following  this,  the 

hyperparameters can be modified and the process of computing the average error over K 
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folds is repeated. The optimal hyperparameters are determined as those that minimize the 

error across the K folds. Upon identifying the optimal hyperparameters, the model can be 

retrained using these settings on the entire training set (Bikmukhametov, T., & Jäschke, J., 

2020). This final  training step ensures that  the model makes the best possible  use of the 

available data, taking into account the selected hyperparameters.

The K-fold cross-validation method Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής (left) 

assumes that data points are independent of one another, which is not always true in Virtual 

Flow  Metering.  Bottomhole  pressures,  for  instance,  may  be  affected  by  conditions  at  a 

previous time, unless there are significant time intervals or steady-state operations with no 

pressure  fluctuations.  Despite  this  limitation,  most  data-driven  VFM  models  have  used 

standard K-fold cross-validation without taking this into account (Al-Qutami et al., 2017c, 

2017a; Bikmukhametov, T., & Jäschke, J., 2020).

Nested K-fold cross-validation Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής (right) can be 

used instead of standard K-fold cross-validation. The training set is divided into K-folds in 

this  approach  and  the  model  undergoes  training  and  validation  in  a  nested  form.  As  an 

illustration, the model might undergo training using data from fold 1 and validation using 

data from fold 2, followed by training on data from folds 1 and 2 combined and validation 

using data from fold 3. This methodology ensures that the model is not exposed to future data 

to predict past results, thereby avoiding the possibility of biases and ensuring accurate and 

trustworthy assessments about its efficiency (Bikmukhametov, T., & Jäschke, J., 2020).
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Figure 3.3 Standard (left) and nested (right) K-fold cross-validation schemes for data-driven 
models. Timur Bikmukhametov, Johannes Jäschke 2020, First Principles and Machine 
Learning Virtual Flow Metering: A Literature Review P.13
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To reach conclusions about model generalization, the model’s efficiency after validation 

should ideally be tested on a separate test dataset. When testing the model's performance, one 

of two things can happen: 

 The training and test sets exhibit notable errors

 The training set error is minimal, whereas the test set error is significant

The initial condition is commonly termed underfitting and it occurs when the trained 

model displays significant bias. Conversely, the second scenario is referred to as overfitting, 

which arises when the trained model exhibits a substantial amount of variance. In practice, 

the main purpose of data-driven model training is to find the right equilibrium between bias 

and variance, with the aim of achieving the optimal point known as the bias-variance trade-

off (Hastie et al., 2009; Bikmukhametov, T., & Jäschke, J., 2020). The goal of validation and 

testing is to find the best set of hyperparameters for achieving the best bias-variance trade-

off. A well-generalized algorithm with a good bias-variance trade-off can make accurate and 

reliable predictions on new data. 
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The early stopping method, widely employed in data-driven training scenarios, offers an 

alternative technique for enhancing model performance, even in VFM applications (Prechelt, 

2012; Al-Qutami et al., 2017b; Bikmukhametov and Jaschke, 2019; Bikmukhametov, T., & 

Jäschke, J., 2020). The method involves partitioning the data into training, validation and test 

sets.  Throughout  the  training  process,  the  model's  performance  on both  the  training  and 

validation  sets  is  closely  monitored.  Training  continues  to  the  point  where  there  is  a 

noticeable sign of the model's performance deteriorating on the validation set, typically due 

to overfitting. When this happens, the model is retrained using a combination of the training 

and  validation  datasets  to  improve  its  generalization  capabilities.  Finally,  the  model  is 

assessed on the test  set  to ensure that  it  can perform well  on entirely  new, unseen data. 

(Bikmukhametov, T., & Jäschke, J., 2020).

3.7 Comparison of First principles with the Data driven VFMs

First-principles VFMs Data-driven VFMs
ADVANTAGES

Tested, tried and proven across industries 
Operational experience is relatively long

It is not necessary to have a thorough 
understanding of the of the system's 

physical principles
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Figure 3.4 Workflow for data driven VFM Ishak, M. A., Hasan, A. Q., Aziz, T., Ellingsen, 
H., Ruden, T., & Khaledi, H. (2020, October). Evaluation of Data Driven Versus Multiphase 
Transient Flow Simulator for Virtual Flow Meter Application. In Offshore Technology 
Conference Asia. OnePetro
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Reliable over the lifetime of an asset, can 
predict future events and be utilized to 
simulate other challenges encountered 

during well operation such as slugging and 
erosion

Can make use of all available sensor data

Suitable for predicting unobserved 
variables beyond the scope of available data Cost-effective computing

Several suppliers are accessible Easy to update continuously with newly 
obtained data

The uncertainty in the models has been 
extensively studied and can be taken into 

account during design and operation

Convenient amalgamation of diverse 
features from separate sections of the 

production system without the use of a 
complicated physical system

DISADVANTAGES
May experience a lag in capturing dynamic 

scenarios
The majority of approaches are in steady 

state 
Is significantly influenced by PVT data 

precision
Inadequate for scenarios with a shortage of 

past data
Substantial computational expense Limited operational experience 

Commercially available simulation 
software typically entails considerable 

expenditure

Functions efficiently with data falling 
within or near the parameters of the training 

dataset; if not, it must be fine-tuned and 
retrained

Involves a comprehensive understanding of 
the system's physical principles

In-depth feature engineering relies on a 
deep understanding of the procedure

Table 3.1 Comparison of First principles with the Data driven VFMs , Timur Bikmukhametov, Johannes Jäschke 2020, First 
Principles and Machine Learning Virtual Flow Metering: A Literature Review P.13

Chapter 4 Machine learning approaches for VFMs

Chapter 3 lays the foundation for the subsequent development of the data-driven Virtual 

Multiphase  Flowmeter  of  this  thesis  detailed  in  chapter  4.  It  comprehensively  examines 

various  machine  learning  approaches  tailored  to  achieve  the  overarching  objective  of 

developing  VFM  systems.  The  chapter  begins  with  an  assessment  of  supervised  and 

unsupervised machine learning methods for VFMs and then delves into supervised learning 

models, specifically emphasizing artificial neural networks (ANNs). ANNs are extensively 

discussed for their popularity in virtual multiphase flowmeters, showcasing their ability to 
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comprehend intricate relationships within multiphase flow data. The examination considers 

both  steady-state  and  dynamic  conditions,  recognizing  their  significance  in  industrial 

processes and anticipating diverse operational scenarios confronted by VFMs.

The comprehensive  analysis  of  diverse  machine  learning algorithms underscores  the 

importance  of  identifying  the  most  suitable  approach  for  accurate  and  reliable  virtual 

multiphase  flow measurements  in  various  operating  conditions.  Subsequent  chapters  will 

leverage this foundational study to systematically develop and evaluate the envisioned data-

driven Virtual Multiphase Flowmeter.

4.1 Supervised and Unsupervised Machine Learning

To further explain the machine learning methods used in virtual multiphase flowmeters a 

brief reference to their basic definitions should be given. To begin, a comparison between 

supervised and unsupervised machine learning should be made. 

Machine learning is a subset of artificial intelligence that aims to address problems by 

analyzing past or historical data  (Libbrecht et al., 2015). Machine learning, as opposed to 

conventional  AI  applications,  entails  finding  hidden  patterns  in  data  (data  mining)  and 

utilizing  those patterns  to  classify  or  forecast  future  instances  of  the problem (Alpaydin, 

2014). In essence, machine learning algorithms provide intelligent machines the information 

they need to function effectively. These algorithms are integrated into machines, which are 

then fed with data streams, allowing them to extract and use information more efficiently. 

Although  all  artificial  intelligence  approaches  are  machine  learning  algorithms,  not  all 

artificial intelligence techniques can be categorized as machine learning algorithms (Berry et 

al., 2019).

Machine learning algorithms are broadly classified into supervised and unsupervised 

types,  although  some  experts  also  consider  reinforcement  learning  as  a  distinct  type. 

However,  the  majority  of  literature  recognizes  supervised  and  unsupervised  machine 

learning. The primary difference between these two classes is the presence or absence of 

labeled data in the training subset (Berry et al., 2019). 

Supervised learning is a machine learning technique that relies on labeled datasets to 

train  algorithms.  These  datasets  are  used  to  supervise  the  algorithm's  classification  or 

prediction accuracy. The model can learn from these labeled inputs and outputs over time. 

According to Kotsiantis (2007), supervised learning involves predetermined output attributes 

along  with  input  attributes  (Berry  et  al.,  2019).  The  algorithms  predict  and  classify  the 

predetermined attribute and their accuracy and misclassification rates are dependent on the 

84



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

correct  prediction  or  classification  of  the  predetermined  attribute.  The  learning  process 

terminates when the algorithm achieves an acceptable performance level (MathWorks, 2016). 

As per Libbrecht and Noble (2015), supervised algorithms first perform analytical tasks using 

the training data and then create contingency functions for mapping new instances of the 

attribute.  It  is  essential  to  pre-specify  the  maximum  settings  for  desired  outcomes  and 

performance  levels  (Libbrecht  et  al.,  2015,  MathWorks.  2016).  The  supervised  learning 

algorithms are further divided into classification and regression algorithms (Alpaydin, 2014; 

Kotsiantis, 2007). 

 Classification algorithms are used to accurately categorize test  data  into specific 

groups  or  categories.  Common  types  of  classification  algorithms  include  linear 

classifiers, decision trees, support vector machines, and random forests.

 Regression is  another supervised learning technique that  helps to understand the 

relationship between dependent and independent variables. Regression models can 

be  used  to  predict  numerical  values  based  on  different  data  points.  Regression 

algorithms that are often used are logistic, polynomial, and linear.

Artificial  neural  networks  (ANNs)  and  SVMs can  be  used  for  both  regression  and 

classification tasks in machine learning.

On the other hand, unsupervised learning is a type of machine learning that involves the 

use of algorithms to analyze and cluster data sets that are not labeled. These algorithms can 

find hidden patterns in data without the need for human interaction. Unsupervised machine 

learning involves pattern recognition without the use of a target attribute. In other words, all 

variables in the analysis are treated as inputs, making the techniques well-suited for clustering 

and association mining. According to Hofmann (2001), unsupervised algorithms can be used 

to create labels in the data, which can then be utilized in supervised learning tasks. There are 

three  main  tasks  that  unsupervised  learning  models  are  commonly  used  for:  clustering, 

association and dimensionality reduction.

 Clustering is  a  method  employed  in  data  mining  that  involves  categorizing 

unlabeled data  based on their  similarities  or differences.  The K-means clustering 

algorithm is  an  example  of  a  technique  that  can  group data  points  with  similar 

features into clusters, where the K value sets the size and precision of the clusters. 

Clustering  algorithms  discover  natural  patterns  within  unlabeled  data  and  then 

allocate labels to each data point. This approach is documented in studies such as 

Dougherty et al. (1995) and Marshland (2015).
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 Association refers  to  the  use  of  various  rules  to  discover  connections  between 

variables within a dataset. These algorithms search for rules that provide an accurate 

representation of the relationships between attributes.

 Dimensionality reduction is a machine learning method employed when a dataset 

has too many features (or dimensions) to manage. It compresses the data inputs to a 

manageable size while maintaining data integrity. This technique is commonly used 

in the data pre-processing stage, such as when autoencoders remove visual noise to 

enhance picture quality.

Several machine learning approaches are often utilized to train the VFM model for the 

data-driven VFM using previous well test data. Regarding the virtual multiphase flowmeters, 

supervised learning techniques can be applied to them to improve accuracy in predicting flow 

rates in oil and gas production. By training algorithms on labeled data, such as historical flow 

rate measurements, the model precisely forecasts the flow rates of different phases in real-

time (Góes et al., 2021). This approach allows for better monitoring of production and can aid 

in  decision-making  processes.  Common  supervised  learning  techniques  used  in  virtual 

multiphase flowmeter applications include artificial neural networks, support vector machines 

and decision trees.

Unsupervised  learning  can  also  be  applied  in  virtual  multiphase  flow metering.  By 

analyzing large amounts of unlabeled data, unsupervised machine learning algorithms can 

discover hidden patterns in the data and identify similarities or differences in the multiphase 

flow behavior. This can be used to cluster different flow regimes, which can then be used to 

predict flow rates of oil,  gas and water in virtual multiphase flow metering. Additionally, 

unsupervised  learning  can  also  be  used  for  dimensionality  reduction,  which  reduces  the 

number  of  features  in  the  data  and  improves  the  efficiency  and  accuracy  of  the  virtual 

multiphase flow metering process. 

For  the  purposes  of  this  thesis,  supervised  machine  learning  methods  for  virtual 

multiphase flowmeters will be further explained.

4.2 Implemented techniques for data-driven VFM systems 

In this section, there will be examined the various data-driven techniques that have been 

utilized in VFM systems. Given that VFM entails non-linear regression, the majority of data-

driven methods in Virtual Flow Metering rely on ANN, either individually or in combination 

with adjustments such as ensemble algorithms (Bikmukhametov, T., & Jäschke, J., 2020). As 

a result, ANN-based VFM approaches will be examined in greater detail compared to other 
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machine learning methods. Additionally, recurrent neural networks capable of representing 

dynamic problems will be analyzed separately.

4.2.1 Artificial neural network VFM solutions

4.2.1.1 Steady state artificial neural network VFM solutions. 

Artificial Neural Networks  (ANNs) are a popular type of machine learning algorithm 

that is widely utilized in engineering to address nonlinear problems (Shahbaz et al. 2019). 

However, they can be considered black boxes because of the hidden layers of regression-like 

computations (Wood 2018; Barjouei et al., 2021). Two of the most common ANN algorithms 

are  the  feed-forward  neural  network  (FFNN),  which  has  a  single  hidden  layer  and  the 

multiple hidden layers perceptron’s (MLP) (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής). A 

single-hidden-layer ANN was developed by Barjouei et al. (2021) to predict the two-phase 

flow rate (Ql) through a wellhead choke.

Multilayer Perceptrons (MLPs) are a form of artificial neural network (ANN) that can 

approximate  complex  functions  using  a  fixed  amount  of  input  data.  They  do  not  have 

feedback connections from inputs to outputs (Bikmukhametov, T., & Jäschke, J., 2020). They 

are  modeled  after  the  structure  and  functionality  of  biological  neural  networks,  with 

interconnected nodes organized into layers. Typically, MLPs consist of an input layer, one or 

more  hidden  layers  and  an  output  layer  (Goodfellow  et  al.,  2016).  To  train  and  make 
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Figure 4.1 Indicative structure of a feed-forward artificial neural network (ANN) with a 
single hidden layer with multiple neurons Barjouei, H. S., Ghorbani, H., Mohamadian, N., 
Wood, D. A., Davoodi, S., Moghadasi, J., & Saberi, H. (2021). Prediction performance 
advantages of deep machine learning algorithms for two-phase flow rates through wellhead 
chokes. Journal of Petroleum Exploration and Production, 11, 1233-1261.
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predictions  using MLPs,  feature values  must  be inputted  into the input  layer.  In a  VFM 

system, these features may include pressure and temperature measurements, choke opening, 

or other production system characteristics (Bikmukhametov, T., & Jäschke, J., 2020). The 

hidden  layers  are  responsible  for  transforming  the  input  features  through  non-linear 

operations and approximating the function that describes the system behavior. Finally, the 

output layer predicts output variables, such as flow rates, by applying an activation function 

to  the  data  obtained  in  the  hidden  layer.  MLPs  are  considered  universal  approximators 

because  they  can  estimate  connections  and  patterns  between  variables,  making  them  a 

popular choice for VFM applications (Hornik et al., 1989). It's worth noting that MLPs are 

more suitable for steady-state solutions than transient flow behavior (Omrani et al., 2018).

In an ANN, the data transmitted from the neurons in a given layer to the neurons in the 

following layer is modified using weight and bias vectors. The neurons located in the hidden 

layer process the data and transfer processed signals forward to the output layer (Barjouei et 

al.,  2021).  These  signals  are  adapted  using  an  activation  function.  The  equation  below 

demonstrates the signal modifications that take place as data passes through the Artificial 

Neural Network.

y j=f (∑i=1 W ij x i+b j) Equation  4.24

Equation  4.24 represents the output signal generated by the jth neuron in the hidden 

layer. The input signal xi is multiplied by the weight Wij and the hidden layer bias bj is added 

to the result. The sum of these values is then passed through the activation function f, which 

generates the output signal yj. 

In an artificial neural network (ANN), the weights and bias values of the hidden layer 

(Barjouei  et  al.,  2021)  are  initially  assigned  random  values.  To  enhance  its  predictive 

performance,  the  ANN  is  trained  using  a  backpropagation  algorithm,  which  involves 

repeatedly presenting input data and comparing the output to the actual target values. The 

algorithm adjusts the weights and biases assigned to the hidden layer by minimizing a loss 

function that quantifies the discrepancy between the predicted and actual outputs.

The backpropagation algorithm computes the error gradient, which represents the rate of 

change of  the  loss  function  with  respect  to  the  weights  and biases  in  the  network.  This 

gradient indicates the direction and magnitude of the adjustment needed to reduce the error in 
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the output of the ANN. Using the error gradient, the backpropagation algorithm updates the 

weights and biases in the network with the objective of minimizing the loss function.

Typically, the loss function used in the backpropagation algorithm is the mean squared 

error (MSE), which computes the average of the squared differences between the predicted 

and actual values for all data records in the training subset. The backpropagation algorithm 

minimizes  the  MSE  by  iteratively  adjusting  the  weights  and  biases  until  the  error  is 

minimized. As a result, the ANN is trained to make accurate predictions on new, unseen data.

EMSE=
1
m∑

i

m

( ŷ i− yi )
2

Equation  4.25

The Equation  4.25 for calculating the MSE (also mentioned in chapter 3.6.2), is shown 

above, where ŷ i represents the measured value pertaining to the dependent variable for the ith 

data record, yi is the forecasted value of the dependent variable for the i th data record and m 

represents the overall data record count in the training subset (Barjouei et al., 2021). The goal 

is to minimize the MSE, which reflects the average squared difference between the predicted 

and actual values of the dependent variable. By minimizing the MSE, the algorithm seeks to 

achieve  the  best  possible  fit  between  the  predicted  and  actual  values  of  the  dependent 

variable.

Different  optimization  algorithms  can  be  used  in  place  of  backpropagation  in  Artificial 

Neural  Networks  (ANN) to improve prediction  accuracy and hasten convergence.  Adam, 

RMSprop, Adagrad, Adadelta, Momentum and Nesterov Accelerated Gradient (Barjouei et 

al., 2021) are some of these algorithms. A flowchart illustrating the series of steps the ANN 

takes to produce its predictions for the dependent variable is shown in Σφάλμα: Δεν βρέθηκε

η πηγή παραπομπής.

Qiu and Toral (1993) were among the first to estimate multiphase flowrates using neural 

network models based on pressure sensor data. They utilized laboratory pressure transducers 

as inputs and estimated gas-liquid rates as outputs (Bikmukhametov, T., & Jäschke, J., 2020). 

Subsequently,  there  have  been  multiple  reports  of  neural  networks  being  employed  for 

Virtual Flow Metering. 
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Al-Qutami et al. (2018, 2017a, 2017c, 2017b) have significantly contributed to this field, 

as noted in Bikmukhametov and Jäschke (2020). In their 2017b research, Al-Qutami et al. 

employed a NN fine-tuned with the Levenberg-Marquardt optimization algorithm and applied 

the k-fold cross-validation approach to determine the optimal number of neurons for their 

model (Bikmukhametov, T., & Jäschke, J., 2020). The model's validation process utilized 

well test data spanning a 1.5-year period and they employed the early stopping technique to 

minimize  overfitting,  as discussed in  Bikmukhametov and Jäschke (2020).  Regarding the 

evaluation of the trained model  on the test  dataset,  they performed a sensitivity  analysis, 

revealing that the predicted gas flow rate was most influenced by the choke position, whereas 
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Figure 4.2 Flow diagram of single layer ANN Barjouei, H. S., Ghorbani, H., Mohamadian, 
N., Wood, D. A., Davoodi, S., Moghadasi, J., & Saberi, H. (2021). Prediction performance 
advantages of deep machine learning algorithms for two-phase flow rates through wellhead 
chokes. Journal of Petroleum Exploration and Production, 11, 1233-1261.
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bottomhole pressure played a pivotal role in predicting oil flow rates within the context of 

VFM, as outlined by Bikmukhametov and Jäschke (2020).

By integrating the outputs of many models or learners, ensemble learning is a prominent 

approach used in machine learning and data mining to increase the accuracy of predictions. 

Ensemble learning includes creating a group of models that are separately trained on the same 

dataset rather than depending on a single model to generate predictions. Each model in the 

ensemble has its own advantages and disadvantages and is meant to capture particular aspects 

of the data. Once the individual models have been trained, their predictions are integrated to 

provide an overall forecast that is more accurate. This may be accomplished using a variety 

of strategies, such as weighted averaging, in which each model's predictions are weighted 

based on their  performance on a validation set,  or by employing a voting mechanism, in 

which  the  ensemble  output  is  the  most  often  predicted  class  by  the  individual  models. 

Σφάλμα:  Δεν  βρέθηκε  η  πηγή  παραπομπής depicts  the  fundamental  principle,  with  the 

ensemble consisting of numerous models whose predictions  are merged to obtain greater 

performance.

In their study from 2017a, Al-Qutami and their research team introduced an innovative 

ensemble learning technique known as NN-RTE. This approach integrates the capabilities of 

neural networks and regression trees. The concept behind this strategy is to generate several 

learners, employ multiple learning algorithms (specifically neural networks and regression 

trees), subject them to a pruning process via simulated annealing and subsequently combine 

their predictions through straightforward averaging to yield the final output. Their research 

discussed by Bikmukhametov and Jäschke in  2020 found strong evidence  supporting the 

superiority of this hybrid approach over conventional ensemble methods that solely rely on 

neural networks and regression trees.
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In a subsequent study in 2017c, Al-Qutami et al. delved into the optimization of a radial 

basis function network (RBFN) by introducing a Gaussian transfer function in the hidden 

layer,  which  deviated  from  the  conventional  sigmoid  function  (Bikmukhametov,  T.,  & 

Jäschke, J., 2020). This alteration notably accelerated the network's training process. To train 

the  network,  they  utilized  the  Orthogonal  Least  Squares  algorithm,  a  method  typically 

associated  with  RBFNs.  By  conducting  a  sensitivity  analysis  that  excluded  bottomhole 

pressure and choke opening as model inputs, the researchers made a significant discovery. 

Their  analysis  showed that  bottomhole pressure did not impact  the predictions,  while  the 

degree of choke opening played a pivotal role in the network's accuracy. This finding was in 

alignment  with  the  results  observed  by  Al-Qutami  et  al.  (2017b)  regarding  gas  rate 

(Bikmukhametov,  T.,  & Jäschke,  J.,  2020).  The researchers  emphasized  the necessity  for 

further investigations to establish the reliability of sensitivity analysis in NN.

In their study, Al-Qutami and colleagues (2018) examined adjusted version of ensemble 

learning in contrast to their earlier work (2017b). This time, they utilized a neural network 

ensemble to introduce diversity by implementing several regularization criteria such as scaled 

conjugate gradient and Bayesian regularization. Moreover, they applied weighted averaging 

and neural network meta-learner combination techniques (Bikmukhametov, T., & Jäschke, J., 

2020).

Omrani and colleagues (2018) examined the usage of feedforward neural networks on 

both model-generated and factual field measurements. They initially applied a neural network 

to  predict  oil  and  gas  flowrates  during  steady  state  conditions  (Bikmukhametov,  T.,  & 
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Figure 4.3 Ensemble learning structure Al-Qutami, T. A., Ibrahim, R., & Ismail, I. (2017, 
September). Hybrid neural network and regression tree ensemble pruned by simulated 
annealing for virtual flow metering application. In 2017 IEEE International Conference on 
Signal and Image Processing Applications (ICSIPA) (pp. 304-309). IEEE.
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Jäschke,  J.,  2020),  which  demonstrated  a  high  level  of  accuracy.  However,  the  NN's 

performance during transient operation was proved to be less reliable. The researchers also 

performed sensitivity analyses on the target variables, which revealed that NNs can produce 

accurate flowrate predictions even in the presence of noisy input data, unless the uncertainty 

levels  become  very  high.  Lastly,  the  study suggested  a  back-allocation  method  for  well 

flowrates utilizing flow measurements  obtained from a separator  (Bikmukhametov,  T.,  & 

Jäschke, J., 2020), which exhibited acceptable performance and merits further examination.

In research by Alajmi and colleagues (2015), a NN was employed to forecast the oil 

flowrate through a choke. As compared to flowrate estimations based on empirical choke 

correlations,  the  NN  performed  much  better. The  NN utilized  various  input  parameters, 

including pressure, temperature, choke size, water cut data and an empirical correlation for 

critical choke flow. In comparison to Flow predictions based on empirical choke correlations, 

the NN demonstrated significantly improved performance.  Nevertheless, it  is important to 

acknowledge, that the choke models utilized in this research were solely empirical lacking the 

fundamental mechanical principles that typically result in more precise forecasts, as discussed 

by Bikmukhametov and Jäschke (2020).

Berneti and Shahbazian (2011) and Ahmadi et al. (2013) conducted a study comparing 

the performance of conventional NN training with a hybrid method that involved optimizing 

the initial weights of the network using Imperialist Competitive Algorithm (ICA). Ahmadi et 

al. (2013) further investigated the use of Particle Swarm Optimization (PSO) and Genetic 

Algorithm in addition to ICA and also introduced Fuzzy Logic flow estimation. The results 

indicated  that  the  NN with  ICA had superior  performance  in  comparison with  the  other 

hybrid methods and the conventional Neural Network training method (Bikmukhametov, T., 

& Jäschke, J., 2020).

In the study mentioned by Bikmukhametov and Jäschke in 2020, Zangl and colleagues 

(2014) utilized a NN to predict oil and water rates through multi-rate well tests. The network 

was trained utilizing gradient descent and it provided accurate predictions on a test dataset. In 

related research, Hasanvand and Berneti (2015) employed a three-layer FFNN to estimate oil 

flowrates. They utilized actual well testing measurements from 31 wells collected over an 8-

year production period, as also mentioned in Bikmukhametov and Jäschke's study in 2020. 

Additionally,  Xu  et  al.  (2011)  and  Shaban  and  Tavoularis  (2014)  employed  Principal 

Component  Analysis  (PCA) to derive  input  features  from experimental  datasets  for  their 

neural networks (Bikmukhametov, T., & Jäschke, J., 2020). This approach helped optimize 
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the network's performance, resulting in flow rate estimations that were consistent with the 

measured values.

Apart  from academic  research,  Baker  Hughes  has  created  NeuraFlow  software  that 

employs a NN model for forecasting flowrates in systems employing electric submersible 

pumps (Denney et al., 2013; Baker Hughes, 2014; Bikmukhametov, T., & Jäschke, J., 2020). 

NeuraFlow employs the same neural network approach as previously stated, taking in input 

parameters including pump intake and discharge pressures, in addition to pump frequency, to 

provide flowrate estimations.

4.2.1.2 Dynamic artificial neural network VFM solutions

There  are  several  neural  network  modifications  that  can  effectively  model  dynamic 

transient  phenomena,  unlike  the  steady-state  feedforward  neural  networks.  Despite  the 

emergence of sophisticated deep learning methods, ANN remains a prevalent baseline model 

for  many  forecasting  tasks.  However,  the  primary  limitation  of  ANNs  is  that  they  only 

transfer  information  from  input  to  output,  leading  to  suboptimal  performance  in  highly 

dynamic systems. Feedforward neural networks are generally limited to steady-state mapping 

since they rely exclusively on current data. In contrast, recurrent neural networks (RNNs) are 

better  suited  for  transient  data  and  have  shown  effectiveness  in  tasks  such  as  voice 

identification  and machine  translation  tasks  (Graves  et  al.,  2013;  Bikmukhametov,  T.,  & 

Jäschke, J., 2020). RNNs utilize past data to forecast the present target parameter. In virtual  

flow metering, RNNs leverage past pressure and temperature measurements to determine the 

current  flow  rate  (Bikmukhametov,  T.,  &  Jäschke,  J.,  2020),  while  feedforward  neural 

networks are constrained to steady-state mapping based solely on current data.

While it is possible to integrate historical data into feedforward neural networks, limited 

research has been conducted on this approach. In contrast, RNN-based methods have proven 

to be effective in estimating transient flow rates in VFM and are therefore a promising area 

for further investigation.

Among RNNs, LSTM and GRU are notable examples capable of capturing short-term 

and long-term dynamics  in  data  and have demonstrated  impressive  results  in  time  series 

prediction tasks. By iteratively providing the network with the estimated current moment's 

output as input for generating the next prediction, recurrent neural networks can preserve the 

series'  historical  information  and produce forecasts  with enhanced precision (Mercante & 

Netto, 2022).

94



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

LSTM (Long-Short Term Memory), a deep learning technique introduced by Hochreiter 

and Schmidhuber in 1997, is widely known for its capability to effectively capture short-term 

and long-term dynamics in data. On the other hand, GRU (Gated Recurrent Unit), another 

type of recurrent neural network, can also handle these dynamics similarly to LSTM but is 

characterized by a less complex architecture with fewer parameters. This makes GRU more 

computationally efficient and faster to train than LSTM, as indicated by Cho et al. in 2014. 

Ultimately,  the choice of which model  to use depends on the specific  task and available 

computational resources, with LSTMs being preferred for complex long-term dependency 

tasks and GRUs being ideal for simpler models that require faster training times.

One  of  the  primary  advantages  of  RNNs is  their  ability  to  retain  information  from 

previous time steps and use it to make predictions for future time steps. This makes them 

particularly useful for time series prediction tasks. To make a prediction at time step t+1, an 

RNN takes as input the previous prediction at time step t, along with any other relevant inputs 

and updates its internal state or memory. At time t + 1, the recurrent neural network receives 

the prediction for time t, which is then multiplied by a weight just like any other input. The 

RNN then uses this updated state to make a prediction for the next time step. 

Training an RNN involves adjusting the weights of the network to minimize the error 

between its predictions and the true values in the training data. This is typically done using 

backpropagation through time, which involves computing gradients of the error with respect 

to the weights at each time step and updating the weights accordingly. This approach enables 

the recurrent network to identify patterns and behaviors specific to the time series and adapt 

its predictions accordingly (Mercante & Netto, 2022).

Recurrent neural networks (RNNs) frequently encounter a computational issue known as 

the exploding or disappearing gradient problem (Haykin, 2007; Mercante & Netto, 2022). 

This drawback happens because the back-propagation of the training over time adjusts the 

weights of neurons for each state by multiplying an error gradient (Mercante & Netto, 2022). 

This process can result in the gradient values becoming very large or very small, making it 

difficult for the network to learn effectively.

The problem of the exploding gradient occurs when the weights are greater than one. In 

this  case,  the  gradient  values  become  very  large  and  can  cause  the  weights  to  change 

dramatically, leading to unstable training. On the other hand, the problem of the disappearing 

gradient occurs when the weights are less than one. In this case, the gradient values become 

very small and the network cannot learn effectively. The LSTM is a specific type of recurrent  
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network designed to solve the problem of the exploding or disappearing gradients (Hochreiter 

and Schmidhuber, 1997; Mercante & Netto, 2022). 

LSTM architecture comprises three distinct neural components: a forget gate, an input 

gate and an output gate. The primary function of the forget gate is to enable the network to 

adapt  and  selectively  disregard  input  from the  previous  state  when  required,  effectively 

addressing the gradient-related challenges. This feature emulates the human brain's aptitude 

for discarding insignificant data, mirroring the cognitive process of our brains. The GRU, 

with its two neurons per cell, specifically the reset gate and the update gate, offers a distinct 

architecture. A significant  benefit  of  LSTM and GRU networks  lies  in  their  capacity  to 

incorporate  historical  values  from  the  series,  regardless  of  how  old  they  are,  while 

intelligently  discarding  less  crucial  information. The  solution  of  the  gradient  problem 

simplifies the training process and these models typically exhibit a robust ability to predict 

intricate time series data. (Mercante & Netto, 2022).

LSTM  and  GRU  networks  are  two  types  of  recurrent  neural  networks  that  were 

developed  to  address  the  problem of  vanishing or  exploding  gradients  that  can  occur  in 

traditional RNNs. LSTM networks have three types of neurons: the input gate, the forget gate 

and the output gate.  The input gate  controls which values from the current  time step are 

passed on to the cell state, while the forget gate controls which values from the previous cell  

state are retained or forgotten. The output gate controls which values from the cell state are 

output at the current time step. This allows the network to selectively remember or forget 

information from previous time steps, improving its ability to learn long-term dependencies. 

On the other hand, GRU networks have two types of neurons: the reset gate and the update 

gate. The reset gate determines how much of the previous hidden state is combined with the 

current input to produce a new candidate state. The update gate determines how much of the 

previous hidden state is retained and how much of the new candidate state is added to it.  

GRUs simplify the architecture of the network compared to LSTMs, making it easier to train 

and reducing the risk of overfitting.

Andrianov's  research  demonstrates  the  use  of  recurrent  neural  networks  (RNNs) for 

VFM (2018). In this work, Long-Short Term Memory was employed. The LSTM model's 

capabilities  for  not  just  flowrate  estimation  but  also  predicting  future  flowrates  were 

demonstrated utilizing simulated well test data. The LSTM model was also tested for severe 

slugging forecasting, a markedly dynamic multiphase flow phenomenon that usually tends to 

happen in risers. The findings indicated that the model properly forecasted the volumetric 

flowrate of the periodic slugging flow in the riser (Bikmukhametov, T., & Jäschke, J., 2020).
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The work of Loh et al.  is an additional instance of a recurrent neural network VFM 

system (2018). The authors employed an LSTM model to predict gas rates for one couple of 

natural gas wells. The system underwent training using data from the first well before making 

predictions  on new data  from both wells.  The findings  indicated  that,  overall,  the model 

exhibited capability of reliably forecasting gas flowrates (Bikmukhametov, T., & Jäschke, J., 

2020), although the predictions were occasionally wrong for the well whose data was not 

included in training. The LSTM model was also combined with an ensemble Kalman filter. 

The combination of these two methods yielded more accurate flowrate estimations for each 

of the two wells.

Omrani  et  al.  (2018) conducted  comparative  research  between  an  LSTM NN and a 

FFNN, demonstrating that the LSTM model performs better under dynamic conditions such 

as well shut-in and start-up. Furthermore, the LSTM model accurately tracked changes in the 

liquid-gas ratio during production (Bikmukhametov, T., & Jäschke, J., 2020).

Sun et al. (2018) employed a LSTM NN to forecast oil, gas and water flowrates from 

shale  wells,  which exhibit  extremely transient  behavior that  is challenging to model  with 

typical FFNNs and other steady-state data-driven algorithms.  The authors proved that the 

LSTM model can estimate flowrates not just for a well whose historical data was used for 

training, but also for a new well utilizing historical data from nearby wells (Bikmukhametov, 

T., & Jäschke, J., 2020). This application shows the promising potential of LSTM NNs in 

VFM.

4.2.2 Support Vector Machine – Support Vector Regression 

Machine learning algorithms have gained popularity for classification tasks due to their 

accuracy  and  the  advancement  of  computer  science  [Wang,  Y.;  Yang,  P.;  Zhao,  S.; 

Chevallier, J.; Xiao, Q., 2023, Wang, Y.; Yang, P.; Song, Z.; Chevallier, J.; Xiao, Q., 2023]. 

Previous research by Nnabuife et al. utilized spectral features and a support vector machine 

(SVM) for  objective  flow-regime identification  [Nnabuife,  G.S.;  Pilario,  S.E.K.;  Lao,  L.; 

Cao,  Y.;  Shafiee,  M.,  2019].  In  2023,  Kai  Yang  and  colleagues  conducted  a  study  on 

identifying flow patterns in a narrow channel using SVM. Originally,  SVM was a binary 

classification algorithm that could handle both linear and nonlinear classifications [Xu, Q.; 

Wang, X.; Chang, L.; Wang, J.; Li, Y.; Li, W.; Guo, L., 2022], but it has since evolved to 

support multiple classification problems.

The support vector machine (SVM) algorithm was created in 1991 on the premise of 

statistical  learning  theory  by  Cortes  and  Vapnik  (1995).  A  variety  of  classification, 
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regression, and time series prediction problems have been resolved using SVM (Cortez and 

Vapnik 1995; Drucker et al. 1997; Cao and Tay 2003; Smola and Scholkopf 2004; Kuo et al. 

2013; Vapnik 2013; Rui et al. 2019; Ahmad et al. 2020; Shao et al. 2020; Barjouei et al., 

2021).

The aim of SVM in classification is to determine a hyperplane that divides the data into 

two or more classes. The hyperplane constitutes a decision boundary that divides data into 

different classes. The hyperplane may take the form of a line in two dimensions, a plane in 

three  dimensions,  or  a  hyperplane  in  a  higher-dimensional  space.  The  Support  Vector 

Machine  algorithm  aims  to  find  a  hyperplane  that  can  best  separate  the  data  points  of 

different classes. It does so by maximizing the margin, which refers to the maximum distance 

between the hyperplane and the closest data points from each class. The support vectors, that 

correspond to the data points closest to the hyperplane, are established by SVM in order to 

maximize the boundary separation between the classes and the hyperplane for the training 

subset (Barjouei et al., 2021). The hyperplane is created using these support vectors. If the 

training  data  is  linearly  separable,  meaning  that  it  is  possible  to  draw a hyperplane  that 

separates the different classes perfectly, then a pair (w, b) exists such that the following two 

conditions are satisfied (Equation  4.26, Equation  4.27):

wT xi+b≥1 , for all x i∈P Equation  4.26

wT xi+b≤−1 , for all x i∈N Equation  4.27

Where xi is a data point, P is the set of data points in the positive class and N is the set of  

data points in the negative class. The bias or threshold is denoted by the symbol b and the 

vector w is known as the weight vector.

The sign of the expression wT xi + b, which establishes the class of a new data point x, 

provides the SVM decision rule. If wT xi + b is positive, then the class of x is positive; if it is 

negative, then the class of x is negative. In other words, the equation wT xi + b = 0 determines 

the decision boundary. 

To  find  an  optimum  separating  hyperplane  that  linearly  separates  two  classes,  the 

squared norm of the separating hyperplane can be minimized. This optimization problem can 

be formulated as a convex quadratic programming (QP) problem. (Equation  4.28) 
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minimize
w ,b

Φ(w)=1
2‖w‖2 Equation  4.28

Where ‖w‖2 is the squared norm of the weight vector w, which represents the distance 

of the hyperplane from the origin. The objective function Φ(w) is convex, which means that it 

has  a  unique  global  minimum. The  QP  problem  is  subject  to  the  following  constraints 

(Equation  4.29):

subject ¿ y i (wT x i+b)≥1 ,i=1 ,…, l . Equation  4.29

where yi is the class label of the i-th data point (yi=1 for the positive class and yi=-1 for 

the negative class), xi is the feature vector of the i-th data point, b is the bias or intercept term, 

and l is the total number of data points. These constraints ensure that all data points lie on the 

correct side of the hyperplane. If a data point is on the wrong side of the hyperplane, the 

product y i (wT xi+b )≥1 will be negative, violating the constraint.

The  solution  to  the  QP problem can  be  represented  as  a  linear  combination  of  the 

support vector points. Other data points that are not support vectors are ignored since they do 

not contribute to the hyperplane's definition. 

The  data  points  might  not  always  be  able  to  be  separated  by  a  straight  line  or  a 

hyperplane.  By using kernel  functions,  SVM can solve this  problem by transforming the 

input data into a higher-dimensional space that makes it linearly separable. The input data is 

mapped by the kernel function into a higher-dimensional feature space, where a hyperplane 

can be used to divide it. A linear hyperplane, which corresponds to a nonlinear boundary in 

the  original  feature  space,  divides  the  transformed  data  points  in  the  higher-dimensional 

space after that. This renders SVM a more effective data separator than conventional linear 

classifiers. The polynomial kernel, the radial basis function (RBF) kernel and the sigmoid 

kernel are some of the frequently used kernel functions in SVM.

The  data  points  might  not  always  be  able  to  be  separated  by  a  straight  line  or  a 

hyperplane.  By using kernel  functions,  SVM can solve this  problem by transforming the 

input data into a higher-dimensional space that makes it linearly separable. The input data is 

mapped by the kernel function into a higher-dimensional feature space, where a hyperplane 

can be used to divide it (Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής). A linear hyperplane, 
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which  corresponds  to  a  nonlinear  boundary  in  the  original  feature  space,  divides  the 

transformed data points in the higher-dimensional space after that. This renders SVM a more 

effective data separator than conventional linear classifiers. The polynomial kernel, the radial 

basis function (RBF) kernel and the sigmoid kernel are some of the frequently used kernel 

functions in SVM.

The Support Vector Machine (SVM) technique relies on the kernel function to compute 

the degree of similarity between pairs of data points in a high-dimensional space. To handle 

the  computational  complexity  brought  on  by  high-dimensional  space,  a  suitable  kernel 

function must be used. In determining how similar the data points are, the kernel function 

computes their inner products. This value is used for establishing the hyperplane's position. 

The data may be transformed using a variety of kernel functions, each of which has special  

characteristics. The exact issue that has to be solved determines which kernel function should 

be used.  The term "kernel  function" refers to  any function that  meets  Mercer's  condition 

(Vapnik 2013). The four kernel functions that are often employed in SVM are given in Table

4.1. (Smola and Scholkopf 2004; Vapnik 2013).

Kernel Function Mathematical expression Definition of parameters

Polynomial K (x , x i )=(t+ x iT xc )
d

d=degree of polynomial
t=intercept

Sigmoid K (x , x i )= tanh (k x iT x+θ)
k=scale of parameter

θ=bias parameter

Radial basis function K (x , x i )=exp(−‖x i− x‖2

2σ2 ) σ2=variance of RBF
(Gaussian) kernel

Linear K (x , x i )=x i
T x
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Figure 4.4 Schematic diagram of SVM classification principle. (a) Class distribution in low 
dimensional space; (b) Class distribution in high dimensional space. Xu, Q., Wang, X., Luo, 
X., Tang, X., Yu, H., Li, W., & Guo, L. (2022). Machine learning identification of 
multiphase flow regimes in a long pipeline-riser system. Flow Measurement and 
Instrumentation, 88, 102233.
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Table 4.1 Kernel functions commonly used with SVM algorithms, Barjouei, H. S., Ghorbani, H., Mohamadian, N., Wood, 
D.  A.,  Davoodi,  S.,  Moghadasi,  J.,  & Saberi,  H.  (2021).  Prediction performance advantages of deep machine learning  
algorithms for two-phase flow rates through wellhead chokes. Journal of Petroleum Exploration and Production, 11, 1233-
1261.

The polynomial kernel function uses polynomial functions to map the input data to a 

high-dimensional space, making it appropriate for processing nonlinearly separable data. The 

decision boundary's complexity may be managed by adjusting the polynomial's degree. The 

RBF kernel function, which effectively separates complicated nonlinear boundaries, maps the 

input data to an infinite-dimensional space utilizing Gaussian functions. The sigmoid kernel 

function  is  a  powerful  tool  for  addressing  binary  classification  problems because  it  uses 

sigmoid  functions  to  map  the  input  data  to  a  high-dimensional  space.  The  radial  basis 

function (RBF) kernel, sometimes referred to as the Gaussian kernel, is a widely used kernel 

with SVM and has the capacity to reduce interference from noise in data (Vapnik et al. 1996; 

Kuo et al. 2013; Liu and Xu 2014; Wu et al. 2018; Hashemitaheri et al. 2020; Barjouei et al., 

2021). 

Overfitting is a challenge with SVM, when the model is overly complicated and fits the 

training  data  too  closely,  leading  to  subpar  generalization  on  new  data.  SVM  employs 

regularization parameters to manage the model's complexity in order to avoid overfitting. The 

balance between fitting the data well and preventing overfitting may be achieved by adjusting 

these parameters. 

The shape and position of the optimal hyperplane in the SVM algorithm are determined 

by the support vectors, while the kernel scale and box constraint hyperparameters control the 

model's complexity. Accurate results depend on the number and weight of support vectors, 

which need to be carefully controlled for optimal performance. The support vector number 

and positions impact the complexity of the hyperplane. The kernel scale and box constraint 

hyperparameters govern the number and weight of support vectors. The kernel scale defines 

the similarity threshold for considering data points in the same class. A smaller kernel scale 

produces more support vectors, leading to a more intricate hyperplane shape. The trade-off 

between margin size (distance between the decision boundary and the nearest data points) 

and  the  number  of  incorrectly  categorized  points  are  controlled  by  the  box  constraint 

hyperparameter.  It  penalizes  data  points  that  violate  the  ideal  hyperplane's  boundary 

condition. Larger box constraints make the model of the hyperplane and support vectors more 

complicated  and take  longer  to  train  since  they  are  less  likely  to  remove outliers  in  the 

sample.
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SVR (Support Vector Regression) is a variant of SVM used for predicting the value of a  

dependent variable based on input variables. In SVR, a line or plane is sought that can fit the 

data  with  minimal  error.  The  algorithm  uses  methods  similar  to  those  employed  in 

classification to generate the line or plane. However, instead of maximizing the margin, the 

algorithm minimizes  the  error  between  the  predicted  and  actual  values.  The  relationship 

between the dependent  and independent  variables  is  studied in the context  of multiphase 

flowmeters when predicting two-phase flow rates across wellhead chokes (Barjouei et al., 

2021;  Liu  et  al.,  2022).  In  their  research,  Brereton  et  al.  (2010)  and  Pan  et  al.  (2009) 

developed an SVR model for predicting the flow rate of two-phase fluids through wellhead 

chokes based on regression. Similarly, Barjouei et al. (2021) utilized the SVR method and 

RBF kernel to forecast the two-phase flow rate (Ql) through a wellhead choke.

For SVR models, the input variables are represented by a vector [x i] ∈ X = Rn and the 

dependent variable,  or prediction target, is represented by a value y i ∈ X = R, where i = 

1,2,3,...,N. N stands for the total number of records in the dataset. The main objective of SVR 

is to accurately fit a regression function y = f(x) that can predict the dependent variable's 

value based on the given input variables. The model approximates the target values of the 

dependent  variable  by  utilizing  a  learning  function,  which  can  be  expressed  as  follows 

(Equation  4.30):

f (x ,w)=wTφ(x )+b Equation  4.30

The objective of Support Vector Regression (SVR) is to estimate a regression function 

f(x) that can accurately predict the value of a dependent variable y based on a set of input 

variables x. Similar to Support Vector Machines (SVM), SVR is also used for regression 

tasks, where the goal is to find a regression function that can approximate the mapping from 

input variables x to the output or dependent variable y. The objective of SVR is to minimize 

the structural risk, which is a combination of the empirical risk and a regularization term, by 

expressing the regression function in a feature space induced by a kernel function. The kernel 

function is used to define the mapping function φ(x), which maps the input vector x into the 

feature space.

The  SVR predicted  target  values  are  denoted  by  f(x)  and  are  obtained  by  a  linear 

combination of the feature space mapping of the input variables x, represented by φ(x) and 

the weight  vector  w,  with  the addition  of  a  bias  term b.  SVR aims  to find  a  regression 
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function that maps the input variables x to the corresponding output or dependent variable y. 

The mapping function φ(x) is used to map the input vector from the low-dimensional input 

space x to a high-dimensional feature space where linear regression can be performed.

Once the input variables are mapped to the feature space, the predicted target values, 

denoted by f(x), are obtained by a linear combination of the feature space mapping of the 

input variables x represented by φ(x), the weight vector w and a bias term b. The weight 

vector w ∈ Rn is a set of n coefficients that are learned during the training phase of the model 

and the bias term b  ∈ R is a threshold that represents the distance between the predicted 

target values and the origin in the feature space.

The objective of the SVR model is to minimize the structural risk, which is the sum of 

the empirical risk and a regularization term. The empirical risk is the difference between the 

predicted target values and the actual target values, while the regularization term is used to 

prevent overfitting.

To derive the coefficients w and b in the support vector regression model the aim is to 

minimize  the  regularized  risk  function,  which  is  composed  of  three  components  and 

expressed in the equation below. By minimizing this regularized risk function, the optimal 

values of w and b can be obtained, which define the regression function f(x) for the support 

vector regression model.

1
2
w2+C 1

l∑i=1
n

Lε( y i , f (x i ,w )) Equation  4.31

 The first component is  ‖w‖2 or the smoothness penalty term encourages a flat or 

smooth function, which helps to avoid overfitting and improves the generalization 

ability of the model.

 The second component of the regularized risk function is the regularization factor C, 

which controls the trade-off between the smoothness penalty and the empirical error. 

The regularization  factor  allows to  balance  the  complexity  of  the  model  and its 

accuracy.  A larger  value of  C results  in  a  less  smooth function  but  with higher 

accuracy  on  the  training  data,  while  a  smaller  value  of  C  leads  to  a  smoother 

function but with lower accuracy on the training data.

 The third component  of the regularized  risk function is  the empirical  error term 

1
l ∑i=1

1

Lε( y i , f (x i )), which measures the difference between the predicted target value 
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f(x) and the true target value yi for each training example. The empirical error is 

measured using an ε-insensitive loss function, denoted by Lε, which is defined as the 

absolute difference between the predicted target value f(x) and the true target value 

yi, with an offset of ε to account for small errors. The empirical error is calculated as 

the average of the ε-insensitive loss function over all training examples. This term 

ensures that the model fits the training data well while also being able to generalize 

to  unseen  data.  The  ε-insensitive  loss  function  over  all  training  examples  is 

expressed by Equation  4.32 below:

Lε (Y i , f (x i ,w ))={ 0 , y i−f (x i ,w )≤ε
y i−f (x i ,w )−ε , otherwise

Equation  4.32

where the range of ε values is determined in a way that ensures the loss is zero when the 

(Barjouei et al., 2021) absolute difference between the predicted target value and the actual 

target value is less than or equal to ε, which means that the predicted value falls within the 

range. On the other hand, when the absolute difference between the predicted value and the 

true value is greater than ε, the loss is equal to the difference between ε and the absolute 

difference between the predicted value and the true value. This means that the forecasted 

value lies outside the specified range (Barjouei et al., 2021) and the difference between the 

predicted  value  and  the  true  value  is  penalized  by  ε.  The  ε-insensitive  loss  function 

encourages  the  SVM  model  to  fit  the  data  within  a  certain  range  and  allows  for  some 

tolerance for errors.  This helps to improve the robustness of the model  and its ability  to 

generalize to new data.

To estimate the coefficients w and b, a common approach is to transform the regularized 

risk  function  ( 1
2
w2+C 1

l∑i=1
n

Lε( y i , f (x i ,w ))) into  the  original  objective  function  equation 

below by introducing two positive constants known as slack variables, denoted by ξ and ξ∗. 
The slack variables allow for some deviation between the predicted and true values and the 

optimization problem can be formulated as minimizing the sum of a regularization term and a 

loss term, subject to constraints that ensure the model stays close to the training data points.  

Specifically, the regularization term penalizes the complexity of the model by encouraging 

small weights, while the loss term penalizes the deviation between the predicted and true 

values. By solving the optimization problem, the values of w and b that minimize the error 

and satisfy the constraints can be found.
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Min 1
2
w2+C 1

l ∑i=1
l

(ξ i−ξi
¿ ) Equation  4.33

subjected¿ {y i−f (xi ,w )−b≤ε+ξi
f (xi ,w )+b− y i≤ε+ξi

¿

ξ i , ξi
¿>0

Equation  4.34

The optimization problem for Support Vector Regression (SVR) with a linear kernel, 

has  two components  (Equation   4.33):  the first  term  
1
2
w2 is  the regularization  term that 

penalizes the complexity of the model and encourages the model to have small weights. The 

second term C 1
l ∑i=1

l

(ξ i−ξ i
¿) is the loss term, which penalizes the deviation of the predicted 

values from the true values, while allowing for some slack variables ξ and ξ* to account for 

noise or outliers in the data. The constraints (Equation  4.34) in the problem ensure that the 

model  stays  close  to  the  training  data  points.  The  first  constraint  y i− f (x i ,w )−b≤ ε+ξi
requires that the predicted value for each training point yi is within a distance of ε from the 

true value, plus an additional slack variable ξi. The second constraint  f (x i ,w )+b− y i≤ε+ξ i
¿ 

requires the same for the opposite direction. The slack variables ξi and ξi
* are non-negative 

and represent the amount of deviation allowed for each data point. (Σφάλμα: Δεν βρέθηκε η

πηγή παραπομπής)
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Figure 4.5 The soft margin loss setting for a linear SVM.Liu, M., Kim, G., Bauckhage, K., & 
Geimer, M. (2022). Data-Driven Virtual Flow Rate Sensor Development for Leakage 
Monitoring at the Cradle Bearing in an Axial Piston Pump. Energies, 15(17), 6115.
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The regression error in SVR is defined as the difference between the predicted output 

value and the true output value for each training data point. The goal of SVR is to minimize 

this error while fitting a function to the training data. The regression error is controlled using 

Lagrangian multipliers, which are introduced as constraints in the optimization problem. The 

margin in SVR is the distance between the regression hyperplane and the closest support 

vectors. The regression hyperplane is the linear function that best fits the training data, and 

the support vectors are the most informative data points that define the decision boundary. 

The margin is used to control the complexity of the SVR model and prevent overfitting. The 

margin is also controlled using Lagrangian multipliers, which are introduced as constraints in 

the optimization problem.

The optimization problem in SVR is a trade-off between minimizing the regression error 

and  maximizing  the  margin.  This  convex  optimization  expression  can  be  addressed  by 

employing a Lagrangian multiplier strategy (Smola and Scholkopf 2004; Vapnik 2013; Rui et 

al.  2019;  Ahmad  et  al.  2020;  Shao  et  al.  2020;  Barjouei  et  al.,  2021).  The  Lagrangian 

multipliers are introduced as constraints to enforce this trade-off and find the best solution 

that fits the training data while preventing overfitting. Equation  4.35 defines the transformed 

equation with these multipliers:

f (x ,α i , αi
¿)∑

i=1

N

(αi−αi
¿¿)(φT(x i)φ(x))+b¿ Equation  4.35

where the α i and α i
¿ represent the Lagrangian multipliers. 

In the transformed equation,  f (x , α i , αi
¿) is the regression function,  which is a linear 

combination  of  the transformed input  vectors  φ (xi).  The term  ∑
i=1

N

(α i−α i
¿¿)(φT(x i)φ (x))¿ 

represents the difference between the Lagrangian  multipliers  associated  with positive and 

negative errors, multiplied by the transformed input vectors. The parameter b is the bias term.

The input vectors xi that correspond to α i−α i
¿=0  are called support vectors. These are 

the most informative data points that lie closest to the regression hyperplane and define the 

decision boundary. The support vectors play a crucial  role in the SVR algorithm, as they 

determine the shape of the regression function.

4.2.3 Decision trees
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Decision trees are a well-known and commonly used machine learning technique that 

can  be  applied  to  analyze  various  types  of  datasets,  including  both  regression  and 

classification problems (Lorena et al. 2007; Tsai and Chiou. 2009; Nie et al. 201; Barjouei et 

al., 2021). These trees are built by dividing the dataset into groups based on a set of learned 

rules, creating nodes and branches to form a hierarchical structure. Although decision trees 

can be used for both classification and numerical (regression) datasets, they are most often 

applied to classification problems (Osei-Bryson 2004; Lorena et al. 2007; Ortuno et al. 2015; 

Barjouei et al., 2021). To solve classification problems, each leaf of the tree is assigned a 

class label, with the rules used to discriminate between the different classes and allocate the 

data  to  specific  leaves.  The process  of  constructing  a  decision tree  for  machine  learning 

typically involves three steps:

 When  developing  decision  trees  for  machine  learning  tasks,  it  is  necessary  to 

distinguish input (attribute) variables from dependent (target) variables (Barjouei et 

al.,  2021).  Input  variables  refer  to  the  features  or  predictors  used  to  make 

predictions, while dependent variables are the variables being predicted.

 Splitting the data records at "child" nodes according to certain criteria requires the 

application of a splitting algorithm that evaluates the input variables (Barjouei et al., 

2021). The decision tree algorithm identifies the most informative variable that can 

divide the dataset into distinct groups or classes. This is achieved by computing the 

impurity or entropy of the dataset with each input variable. The splitting variable 

that yields the largest reduction in impurity is chosen and the dataset is split into 

subsets based on the values of that variable.

 Continuing  to  split  the  data  at  each  child  node  to  generate  further  nodes  and 

decision-tree layers. At each child node, the dataset is further divided into subsets by 

selecting  the most  informative  variable  and dividing  the  dataset.  This  process  is 

repeated until a stopping criterion is met, which can be determined by factors such 

as the maximum depth of the tree, the minimum number of records in a node, or 

when further splitting no longer improves classification accuracy.

A decision tree is a structure that arranges nodes and branches in a hierarchical manner 

to provide a set of rules for predicting an outcome based on input variables. Nodes within the 

tree represent decision points where the dataset is divided into subsets based on a specific 

attribute, while branches represent the potential outcomes of each decision. The first node in 

the decision tree is called the root node (top layer).  At the top layer, the dataset is initially 

divided into two subsets, that subsequently evolve into child nodes, constituting the second 
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layer of the tree. Subsequently, these child nodes undergo further division into sub-nodes, 

creating additional layers of child nodes, eventually resulting in the last layer of terminal 

nodes, also known as leaves (Barjouei et al., 2021).

To ensure consistency-homogeneity among the data records assigned to each child node, 

a splitting algorithm is utilized in the decision tree. The algorithm identifies the attribute that 

provides the highest information gain or reduction in impurity for the dataset and applies it to 

determine the data splits at each node. The aim is to attain the utmost level of consistency for  

each  sub-node.  Through  this  process,  the  algorithm  establishes  clearly  differentiated 

(homogeneous) data records at the final layer of terminal nodes (Barjouei et al., 2021). Each 

terminal  node  represents  a  specific  decision  outcome,  such  as  a  classification  label  or 

numerical value in regression analysis.

The decision tree is developed through the iterative division of the dataset into subsets at 

each node, until a predetermined stopping criterion is achieved, such as a maximum depth, 

minimum number of records in a node, or no further improvement in classification accuracy. 

A set of rules is utilized to determine which variables should be split at each node of the tree. 

In  practice,  decision  trees  are  constructed  by  continuously  splitting  the  data  until  every 

training data point is accurately classified, resulting in a decision tree with 100% accuracy on 

the training data. However, this accuracy may not extend to new and previously unseen data 

points, as the decision tree may have been overly adjusted to the training data.

A key issue with decision trees is their tendency to overfit the training data, whereby the 

model becomes too intricate and too finely-tuned to the training data, leading to deficient 

performance on new and previously unseen data points. The risk of overfitting rises with an 

increase in the number of layers and nodes within a decision tree. (Fakhari and Moghadam 

2013;  Czajkowski  and  Kretowski  2016;  Liu  et  al.  2016;  Barjouei  et  al.,  2021).  This  is 

because, as the tree grows more complex, it is more likely to capture noise in the training data 

rather than the underlying patterns.

To prevent overfitting in machine learning models, there are several methods that can be 

employed. One frequently used technique involves pruning the decision tree, which entails 

eliminating redundant nodes or branches that do not contribute to accurate classification on 

the testing data. Another strategy is to use an ensemble of decision trees, such as Random 

Forest,  to  minimize  the  risk  of  overfitting  by  aggregating  the  predictions  from multiple 

decision trees.

Regarding the VFMs, in their research, Barjouei et al. (2021) utilized the decision tree 

module of scikit-learn (sklearn) library, which was implemented using Python. Barjouei and 
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colleagues (2021) selected the "gini" criterion to evaluate the significance of features and 

employed the "best" splitter approach to determine both the feature and the threshold value 

for each split. The main objective of their study was to predict the two-phase flow rate (Ql) 

passing through a wellhead choke.

4.2.4 Random Forest

Ensemble  learning  is  a  highly  effective  approach  in  machine  learning  that  utilizes 

multiple models to enhance the overall performance of the model. One of the most widely 

used ensemble learning methods is bagging, short for bootstrap aggregating. This technique 

involves  training  several  models  on various  subsets of  the training  data.  The subsets  are 

created by bootstrapping, a process of randomly sampling data points from the training set 

with replacement to form each subset. This ensures that each model in the ensemble is trained 

on  a  distinct  set  of  data,  making  them  independent  and  reducing  the  variance  in  the 

ensemble's predictions. In the case of the Random Forest algorithm, decision trees serve as 

the weak learners.  The ensemble of  decision trees  generates  a  Random Forest  (Breiman, 

2001). Decision trees are models that learn a tree-like structure of decision rules to classify 

data. Each node in the tree represents a condition on one of the data features and the tree 

branches out into two paths depending on whether the condition is met or not. The leaves of 
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Figure 4.6 Typical structure of a decision-tree machine-learning model Barjouei, H. S., 
Ghorbani, H., Mohamadian, N., Wood, D. A., Davoodi, S., Moghadasi, J., & Saberi, H. 
(2021). Prediction performance advantages of deep machine learning algorithms for two-
phase flow rates through wellhead chokes. Journal of Petroleum Exploration and Production, 
11, 1233-126
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the tree represent the predicted class for a given data point, as mentioned in the previous 

paragraph 4.2.3.

The  Random  Forest  algorithm  is  created  by  training  multiple  decision  trees  using 

bagging.  Each  decision  tree  is  trained  on  a  different  subset  of  the  training  data,  and 

hyperparameters such as the minimum leaf size, maximum number of splits and the number 

of  variables  to  sample  in  each  split  are  optimized  to  create  diverse  models  within  the 

ensemble.  By  aggregating  the  predictions  of  these  decision  trees,  the  Random  Forest 

algorithm uses a majority vote to predict the final class of a given data point.

It is worth highlighting that although bagging and Random Forest are sometimes used 

interchangeably, Random Forest is a specific variation of bagging that employs decision trees 

as the weak learners. In contrast, other types of bagging algorithms may use different models 

as  the  weak  learners.  The  Random Forest  approach  has  demonstrated  high  performance 

across diverse applications and it remains one of the most widely utilized ensemble learning 

methods in the field of machine learning.

The random forest algorithm is a supervised machine learning technique that extends the 

decision tree algorithm by constructing multiple decision trees to evaluate input data. It is 

commonly  used  for  classification  and  regression  tasks  and  involves  training  and  testing 

subsets of data sets displaying distinct input and dependent parameters (Zhou et al. 2020; 

Grape et al. 2020; Barjouei et al., 2021). Unlike individual decision trees, each decision tree 

in the random forest ensemble is constructed in parallel  and utilizes only a few layers or 

nodes. This mitigates the risk of overfitting and reduces the variance and bias of prediction 

results. The collective assessment of all decision trees ensures accurate predictions without 

compromising overall decision accuracy (Breiman 2001; Ahmad 2018; Barjouei et al., 2021).

To facilitate the training of the random forest model, the process involves the random 

sampling of subsets of data records from the complete dataset, utilizing a method commonly 

referred to as bootstrapping. (Barjouei et al., 2021). After generating the bootstrapped data 

subsets, each subset can be utilized to construct an unpruned decision tree for classification or 

regression purposes. In constructing each decision tree, a random subset of the available input 

variables (G) is selected for splitting, rather than using all input variables (M) (Barjouei et al., 

2021). This selection of only a few input variables for each tree ensures that each tree is 

independent  of the others and reduces  the correlation between the individual  trees in  the 

ensemble. Several decision trees are constructed sequentially until a predetermined number of 

trees (K) is reached. In the context of regression tasks, predictions for the dependent variable 

are generated by combining predictions (bagging) obtained from all the individual regression 
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trees that have been constructed (Barjouei et al., 2021). Bagging is a technique that simplifies 

each decision tree and reduces the likelihood of the algorithm overfitting the training data. 

Bagging  reduces  the  risk  of  the  algorithm  fitting  too  closely  to  the  training  data.  This 

decreases the chance of overfitting and ultimately leads to improved algorithm performance. 

Equation 4.36 represents the prediction function for the random forest algorithm (Barjouei et 

al., 2021):

f̂ RF
K ( x )= 1

K∑
k=1

K

T i(x)
Equation 4.36

The  equation  calculates  the  predicted  value  for  a  given  input  variable  vector  (x)  by 

aggregating the predictions of individual  regression trees.  The variable  K in the equation 

represents the number of individual regression trees that are built in the random forest model. 

Each regression tree is trained on a different subset of the bootstrapped data records and uses 

a limited, randomly chosen set of input variables (G) for splitting (Barjouei et al., 2021). The 

prediction for each individual tree is denoted by Ti(x), where i represents the index of the data 

record. The prediction from each tree is combined by taking the average of all the predictions  

(i.e., the sum of all the predictions divided by K). This final aggregated prediction is denoted 

by f̂ RF
K ( x ). So, when the random forest model is given a new input variable vector (x), each 

individual regression tree will predict a value for the dependent variable based on the input 

variable vector, and the predicted values from all the trees are then averaged to obtain the 

final prediction of the random forest model.

To evaluate the performance of each tree of the random forest model, a technique called 

out-of-bag (OOB) error estimation is used. OOB error is an important feature of the random 

forest algorithm as it allows for a more accurate estimation of the generalization error of the 

model compared to just relying on the training set. 

The  random  forest  algorithm  utilizes  the  OOB  error  to  assess  the  accuracy  of  its 

predictions. The OOB error is determined by evaluating the predictions of each tree on data 

points that were not used for its training, which is achieved by randomly selecting a subset of  

data during the bootstrap process. This approach allows for an unbiased estimation of the 

generalization error of the model and helps to prevent overfitting or underfitting of the data. 

By comparing the OOB error to the accuracy of the forest on an independent testing subset, 

the algorithm can determine whether the model is overfitting or underfitting the data. There is 

an overfitting of the model to the data if the OOB error is significantly greater than the testing 
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error. Overall,  the OOB error provides a valuable tool for evaluating the accuracy of the 

random forest algorithm's predictions.

Random forest can be used to assess the importance of input variables in predicting the 

dependent  variable.  One  approach  is  to  randomly  permute  the  values  of  a  single  input 

variable in the OOB subset and observe the resulting decrease in prediction accuracy. This 

process is repeated for all input variables to rank them based on their relative importance to 

the prediction accuracy. By determining how much the prediction accuracy decreases when a 

particular  input  variable  is  removed from the  model,  it  becomes  possible  to  identify  the 

variables that are most significant in predicting the dependent variable. This information can 

then  be  used  to  eliminate  low-contribution  variables,  reducing  the  dimensionality  of  the 

model and enhancing its performance on datasets with high dimensionality (Ahmad et al. 

2017; Barjouei et al., 2021). Ranking the relative importance of input variables in a random 

forest can be accomplished through several methods. One approach entails interchanging two 

input variables  within the tree solutions while keeping the other variables unchanged and 

subsequently calculating the average decrease in prediction accuracy. This procedure enables 

the assessment of the relative  importance  of each input  variable  concerning the accuracy 

attained for the dependent variable (Ahmad 2018; Barjouei et al., 2021). The random forest 

algorithm is visually represented in Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής.

The study conducted by Barjouei et al. (2021) utilized the Scikit Learn Random Forest 

Regressor to establish a regression random forest model for predicting the two-phase flow 

rate (Ql) through a wellhead choke.
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4.3 Parameters optimization 

Hyperparameters  are  values that  are set  before the training process begins,  and they 

determine how the model will learn from the data. They are not learned by the model during 

training,  unlike  the  parameters  which  are  learned  from  the  data.  The  selection  of 

hyperparameters can have a significant impact on the performance of a machine learning 

algorithm. If the hyperparameters are not set correctly, the model may overfit or underfit the 

data, leading to poor performance on new, unseen data.

Each machine learning algorithm involves a multitude of hyperparameters that play a 

crucial  role  in  determining  the  accuracy  of  the  resulting  model.  These  hyperparameters 

encompass various aspects  such as the number of hidden layers and neurons in a neural 

network, the number of trees in a Random Forest, the kernel function in SVM, the learning 

rate and the choice of optimization algorithm, among others.

Choosing the right hyperparameters is essential, yet there are no established principles 

or fixed guidelines that can ensure the finest performance for a particular machine learning 
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Figure 4.7 Schematic diagram of generic configuration of random forest algorithm Barjouei, 
H. S., Ghorbani, H., Mohamadian, N., Wood, D. A., Davoodi, S., Moghadasi, J., & Saberi, H. 
(2021). Prediction performance advantages of deep machine learning algorithms for two-
phase flow rates through wellhead chokes. Journal of Petroleum Exploration and Production, 
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algorithm.  The  pursuit  of  locally  optimal  hyperparameters  typically  relies  on  a  blend  of 

individual  experience-derived  insights  and  search  algorithms  (Song  et  al.,  2022).  Some 

hyperparameters,  for  instance  the  number  of  hidden  layers  in  a  neural  network,  can  be 

determined empirically.

Hornik et  al.  (1989) demonstrated that a single hidden layer neural network with an 

appropriate number of neurons can approximate highly complex functions. However, using 

more than one hidden layer in a neural network can increase the risk of getting stuck in local 

minima and lead to slower convergence (Liu et al., 2022). Similarly, the structure of LSTM 

networks resembles that of BP networks, and increasing the number of hidden layers can lead 

to higher computational  costs  and slower convergence.  As a result,  a single hidden layer 

LSTM network is preferred.

Other hyperparameters such as the quantity of trees in a Random Forest, the learning 

rate and the number of training iterations, are established through personal experience. The 

grid search algorithm is then employed to pinpoint locally optimal hyperparameters within a 

specified  range.  While  training  the  model,  the  utilization  of  a  suitable  loss  function  can 

expedite model convergence and minimize errors (Culotta et al., 2007; Song et al., 2022).

The Mean Squared Error (MSE) (Equation  4.25) is  used as the evaluation function 

during model training, whereas the Mean Absolute Error (MAE) (Equation  4.37) is typically 

employed for practical applications. 

EMAE=
1
m∑

i

m

|ŷ i− yi| Equation  4.37

where ŷ i represents the real value of the dependent variable for the i th data record, yi is the 

predicted value of the dependent variable for the ith data record and m represents the total 

number of data records in the training subset (Barjouei et al., 2021).
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Chapter 5 Case of study 

5.1 Introduction

Chapter 4 serves as the focal point of this thesis, delineating the procedural workflow for 

the development of a data-driven Virtual Multiphase Flowmeter. The objective of this thesis 

is  to  present  the  development  of  a  VFM  tailored  for  a  subsea  network,  leveraging  the 

capabilities  of  machine  learning  techniques  and the  Pipesim software.  The generation  of 

training data for the VFM is facilitated by the steady-state simulator and the machine learning 

techniques elucidated in Chapter 3 are subsequently applied to train the VFM.

The forthcoming chapters will expound upon the proposed methodology and its practical 

application. The primary aim of this VFM is to accurately estimate hydrocarbon flowrates at 

the wellheads of each well within the subsea network. This stands in contrast to other VFMs 

previously discussed, which primarily focus on identifying flow regimes.

Building upon this contextual foundation, the section dedicated to data collection, pre-

processing  and  feasibility  analysis  assumes  a  pivotal  role.  It  delineates  the  process  of 

acquiring and preparing datasets, each representing specific conditions such as GOR equality, 

GOR inequality, water cut and pressure variations. The intentional diversification of datasets 

enables a comprehensive study of the VFM's performance under varied operational scenarios, 

contributing to a thorough understanding of its adaptability and efficacy across a spectrum of 

operational conditions.

A  pivotal  aspect  of  the  pre-processing  phase  involves  the  application  of  feature 

engineering  techniques,  enhancing  datasets  to  ensure  the  effective  capture  of  pertinent 

information. The use of tools such as the Regression Learner App for each dataset showcases 

the workflow employed during the pre-processing phase. The subsequent section on model 

development delineates the application of the Neural Net Fitting App, marking the realization 

of the data-driven VFMs.

5.2 Subsea network construction in Pipesim

The datasets utilized in this thesis were generated using the renowned Pipesim software 

by  Schlumberger.  Pipesim  stands  as  Schlumberger's  flagship  software  for  steady-state 

multiphase  flow  simulations,  specifically  designed  to  model  the  behavior  of  wells  and 

networks.  Its  initial  introduction  dates  back to  1984,  primarily  addressing  the  challenges 

faced  in  designing  production  systems  for  demanding  environments  like  the  North  Sea. 

Throughout  its  existence,  Pipesim  has  remained  committed  to  incorporating  the  latest 

scientific breakthroughs to ensure the utmost accuracy in predictions.
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Over the years, Pipesim has undergone continuous enhancement and expansion, aligning 

itself with the advancements in scientific knowledge and technological progress. By utilizing 

Pipesim,  users  gain  the  capability  to  optimize  production  processes  and  guarantee  flow 

assurance across the entire lifecycle of an oil and gas field. This encompassing functionality 

covers diverse aspects ranging from field development to production operations.

In order to construct the datasets, a deliberate decision was made to create a simplified 

subsea network consisting of two wells. This selection was intentional, with the purpose of 

minimizing  complexity  within  the  resulting  model  and  subsequently  mitigating  potential 

errors associated  with intricate  configurations.  By opting for a  simpler  system,  the focus 

could  be  directed  towards  accurately  capturing  the  essential  dynamics  and  behaviors  of 

multiphase flow, facilitating a more precise analysis and modeling process.

The dataset was designed to simulate a subsea network comprising of two wells draining 

the same reservoir and positioned at same depths. Both wells share identical geometries, with 

their  bottomhole extending to a depth of 12,000 feet. The wellheads were located on the 

seafloor at a depth of 1,600 feet. The borehole diameter for both wells in the datasets was 

specified  as  9.75  inches,  and  the  drainage  radius  was  defined  as  2,000  feet.  In  this 

configuration,  each  well  was  associated  with  an  individual  flowline  that  connected  its 

respective wellhead to the topside processing facilities via a riser. 

The length of the flowline for well 1 was set to 6,336 feet, while that of the flowline for 

well  2  to  7,920 feet.  These specific  values  were chosen to  reflect  realistic  scenarios  and 

operational conditions typically encountered in subsea networks. By maintaining consistent 

geometries and comparable flowline lengths, the datasets aimed to investigate the impact of 

specific parameters and variations in operational conditions.

The flowlines from each well were connected to a riser, which extended to a height of 

1,600 feet, reaching the seasurface. The riser served as a conduit for the produced fluids, 

facilitating  their  transportation  from the subsea wells  to  the platform.  Upon reaching the 

platform, the riser was connected to a three-phase separator system. For simulation purposes 

Pipesim used a separator system comprised of three separate tanks, each designated for a 

specific phase of the produced fluids: a gas tank, an oil tank and a water tank. In real-world 

applications, however, it corresponds to a three-phase separator that effectively separates gas, 

oil and water components from the extracted fluids.

The reservoir fluid utilized in the simulations is a light black oil. It exhibited properties 

indicative of a relatively light crude oil, with an API gravity of 31. The specific gravity of 

water was determined to be 1.02 and additionally,  the specific  gravity of the gas present 
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within  the  reservoir  was  0.74.  The  gas-oil  ratio  (GOR)  played  a  significant  role  as  a 

parameter  in  the  datasets,  with  two distinct  values  considered  depending  on the  specific 

scenarios under investigation. The GOR values selected for the dataset were either 300 scf/stb 

or 500 scf/stb. The choice of these GOR values was based on the particular objectives being 

explored within the datasets, which would be elaborated upon in subsequent subchapters. It is 

important to highlight that the fluid did not incorporate any contaminants.

The reservoir featured in the datasets is characterized by a thickness of 180 feet. The 

permeability of the reservoir was set at 100 millidarcies (md). A permeability value of 100 

md suggests  a moderately  permeable  reservoir,  allowing for  a  satisfactory  flow of fluids 

through the rock matrix.  This  permeability  is  crucial  in  determining the ease with which 

hydrocarbons can flow within the reservoir. The temperature of the reservoir was equal to 

180 °F. 

5.3 Data collection 
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Figure 5.1 Simplified representation of the geometry of the subsea well network
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Data  points  were  generated  utilizing  the  Pipesim software  through  the  execution  of 

multiple simulation runs. The outcomes of these simulations were systematically collected 

manually and categorized into four distinct data sets, delineated as follows.

5.3.1 Dataset 1 (GOR1=GOR2)

The first data set comprises of 362 data points. In its creation, a hypothetical scenario 

was considered involving the two identical wells with the geometry described in Chapter 5.2. 

The GOR is identical for both wells, set at 500 scf/stb. For the purpose of this study, this  

particular data set will henceforth also be denoted as "GOR1=GOR2." 

To generate each data point, the bottomhole pressures of the wells underwent systematic 

manual adjustments. Initially, a uniform grid of data points was established, with variations in 

the bottomhole pressures of both wells by 500 psi within the range of 4,500-9,000 psi. By 

assigning 10 different values to each pressure, a total of 100 data points were created.

However, noticeable fluctuations were observed in the recorded values of hydrocarbon 

flowrates, intended for prediction. To address this, the resolution of the data point grid was 

refined by introducing additional  bottomhole  pressure values  for  well  2.  This  adjustment 

resulted in the creation of an irregular grid, where bottomhole pressure 1 exhibited variations 

every 500 psi and bottomhole pressure 2 demonstrated variations every 125 psi, all confined 

within  the  range  of  4,500-9,000  psi.  Consequently,  a  grid  comprising  362  points, 

representative  and sufficiently  dense,  was established,  forming a foundational  basis  upon 

which a machine learning model can be developed and trained.

5.3.2 Dataset 2 (GOR1≠GOR2)

In  the  second  dataset,  a  total  of  421  data  points  were  generated,  employing  a 

methodology similar to that of the previous dataset. This time, the two wells are positioned in 

the  same  reservoir  but  are  separated  by  a  geological  fault.  This  geological  structure 

introduces variations in the composition of the fluids on either side of the fault, thus varying 

their  GOR values.  Alternatively,  the  fluid  differentiation  between  the  two  wells  can  be 

attributed to an anticlinic shape of the reservoir. In this scenario, the second well receives an 

additional influx of gas from the gas cap, resulting in a higher GOR for this particular well.  

Conversely,  the  first  well  withdraws  fluid  from  the  base  of  the  reservoir,  leading  to  a 

comparatively lower GOR that corresponds to the solution GOR only. Consequently, in this 

new scenario, the GOR exhibits  variability between the two wells, with GOR1 set at 300 

scf/stb, while GOR2 is set at to be 500 scf/stb. All other fluid properties employed remain 
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same to the previous scenario in Dataset 1. Moreover, the specific gravity of the gas within 

the reservoir remains at 0.74. For the purpose of this study, this data set will be denoted as " 

GOR1≠GOR2." 

To generate  each data  point,  manual  adjustments  were systematically  applied  to  the 

bottomhole  pressures of the wells. Initially, a uniform grid of data points was established, 

featuring variations in the bottomhole pressures of both wells by 500 psi within the range of 

4,500-9,000 psi, mirroring the approach employed in the previous dataset. By assigning 10 

different values to each pressure, a total of 100 data points were created in the initial phase.

However,  once  again,  noticeable  fluctuations  were  observed  in  the  hydrocarbon 

flowrates,  constituting  the  output  variables.  To  address  this  challenge,  it  was  deemed 

necessary to enhance the data  grid resolution beyond the scope of the previous scenario. 

Accordingly, additional values were introduced for well 2 bottomhole pressure, varying at 

intervals  of  125  psi  within  the  extended  range  of  4,125-9,750  psi,  while  pressure  1 

maintained variations every 500 psi within the range of 4,500-9,000 psi. Consequently, a grid 

of  421  points  was  meticulously  constructed,  providing  a  representative  dataset  for  the 

development and training of a machine learning model.

5.3.3 Dataset 3 (Watercut)

The third data set consists of 498 data points. In this scenario, the two wells are located 

in the same reservoir  but are  separated  by a fault.  The fault  acts  as a barrier,  creating a 

physical  flow separation  between the  two wells.  Such geological  structures  are  common 

features in reservoir systems and can significantly influence fluid flow and distribution. The 

GOR for the first well GOR1, was established at 300 scf/stb, while the GOR for the second 

well, GOR2 was set at 500 scf/stb as was the case with Dataset 2.

This time, two additional variables were varied, specifically the water cut of each well is 

now also altered.  For the purpose of this  study, this data set will  be denoted as "Dataset  

watercut." The fluid properties used in both wells were same as the previous scenarios. To 

account for the increased complexity resulting from the inclusion of four variables, a more 

randomized selection of pressures and water cuts values was made.

In this dataset,  the water cut values ranged from 10% to 90%, while the bottomhole 

pressures  were  within  the  range  of  5000–9000  psi.  The  generation  of  a  comprehensive 

dataset, totaling more than 6,500 data points, is considered impractical due to the manual 

nature of data entry. Consequently, a more pragmatic approach was employed to ensure the 

creation of a representative data set of manageable size.
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To achieve  this,  a  systematic  selection  process  was implemented  from the  potential 

combinations of the aforementioned variables. A carefully chosen subset of 498 data points 

was  strategically  curated,  with  each  selected  point  designed  to  adequately  represent  the 

broader  parameter  space.  The  selection  criteria  involved  assessing  points  that  exhibited 

substantial hydrocarbon production, while simultaneously discarding combinations with no 

production or insufficient production. This judicious and selective approach aimed to capture 

the essential characteristics of the system while providing a dataset size reduced yet with a 

sufficiently dense grid to effectively train a machine learning model.

By  incorporating  these  scientifically  plausible  scenarios  and  ensuring  the  specified 

ranges  for  bottomhole  pressures  and  water  cuts,  the  data  set  provides  a  comprehensive 

representation of the various conditions and their potential influence on reservoir behavior 

and production dynamics.

5.3.4 Dataset 4 (Combined) 

In this case, the data sets 2 and 3 were combined without generating new data points. 

The  hypothetical  scenario  involves  a  network  of  two  subsea  wells  situated  in  the  same 

reservoir but separated by a fault. Initially, the wells commence production with zero water 

cut, indicating the extraction of dry oil. However, as time progresses, water production starts 

to manifest in the sinks of the separator. In the subsequent sections, the data set resulting 

from the combination of data sets 2 and 3 will be denoted as the "combined" data set.

This  scenario  closely  reflects  real-world  situations  encountered  in  subsea  reservoir 

engineering. Over time, it is common for water to migrate from adjacent aquifers within the 

reservoir due to pressure depletion or influx from surrounding formations. As a result, water 

production  gradually  emerges  in  the  separator  sinks.  This  could  also  be  the  case  when 

breakthrough appears after water flooding. 

5.4 Data description 

After each simulation, the following parameters were recorded for each data point and 

stored in an Excel sheet:

 Two pressures at the wellheads (PWhellhead1, PWellhead2): These pressures represent the 

measured pressure values at the respective wellheads and are expressed in pounds 

per square inch (psi). They are obtained from the manometers that are permanently 

installed at these wellheads for accurate pressure monitoring.
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 Gas  flow rates  (Qgas): The  gas  flow rates,  denoted  as  QgasWell1 and  QgasWell2,  are 

expressed  in  million  standard  cubic  feet  per  day  (scf/d)  and  measured  at  the 

respective wellheads of the two wells.  These values represent the amount of gas 

produced by each well. Due to the prevailing pressure in the separator, there is a 

small  amount  of  gas  that  only  appears  in  the  oil  sink  at  standard  conditions. 

Therefore, the gas flow rate in the gas sink is denoted as QgasSinkGas, while the gas 

appearing in the oil sink is denoted as QgasSinkOil. 

 Oil  flow rates  (Qoil): The  oil  flow rates,  represented  as  QoilWell1 and  QoilWell2,  are 

expressed in  stock  tank  barrels  per  day  (STB/d)  and measured  at  the  respective 

wellheads of the two wells. These values signify the volume of oil being produced 

by each well. Additionally, the oil flow rate at the oil sink is denoted as QoilSinkOil. 

This  value  indicates  the  overall  oil  production  and represents  the  volume of  oil 

collected after the oil-gas separation process is complete. Note that no oil appears in 

the gas sink since the produced gas is dry.

 Water flow rates (Qwater): Water flow rates are recorded when there is a presence of 

water cut in the produced fluid. The water flow rates are measured in stock tank 

barrels per day (STB/d) at the wellheads (QwaterWell1, QwaterWell2) and at the water sink 

which was a constant fraction of 100%. 

At  this  point,  it  is  imperative  to  elucidate  the  distinction  between  dependent  and 

independent variables in the context of the case study. The independent (predictor) variables 

consist of the pressures at wellhead 1 (Pwellhead1) and wellhead 2 (Pwellhead2), along with the flow 

rates of each phase in the sinks post three-phase separation. Notably, these inputs are initially 

extracted  directly  from Pipesim  but  undergo  subsequent  modification  during  the  feature 

engineering  process,  as  detailed  in  the  subsequent  Chapter  5.5.2.  Consequently,  the  raw 

variables from the software are not directly employed to train the machine learning model but 

instead, the feature-engineered variables are utilized. All selected variables serving as inputs 

are measurable in real-life scenarios. Simultaneously, the dependent (response) variables in 

this  study comprise the flow rates of each phase (oil,  gas,  and water)  at  wellhead 1 and 

wellhead 2. Unlike the input variables, the flowrates of each phase at the wellheads require 

prediction,  given  their  inherent  inability  to  be  directly  measured  in  real-life  scenarios. 

Nevertheless,  their  economic  significance  remains  paramount  and  this  represents  the 

challenge that a VFM aims to address. The following figure visually depicts inputs in green 

and outputs in red in a simplified representation of the subsea network.
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5.5 Pre-processing

Preprocessing in machine learning is the preparation and transformation of raw data to 

improve its quality, structure and compatibility for optimal performance when training and 

evaluating  machine  learning  models.  In  this  work,  the  following  two  operations  were 

implemented:

5.5.1 Missing Values and Data Normalization

In  this  study,  the  hydrocarbon  phases  fractions  of  well1  were  predicted  since  the 

fractions of well2 could be calculated by subtracting the hydrocarbon fractions of well1 from 

100%. This approach is based on the assumption that the sum of hydrocarbon fractions over 

all wells equals to 100% and no gas mass is lost. 

However, during the data collection process, certain data points were identified where 

the bottomhole pressures were set in a way that caused one of the wells to inject rather than 

produce. This happened because one well exhibited significantly higher potential compared 

to the other well. In such cases, the wellhead pressure for the weaker well was set to zero, 
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Figure 5.2 Simplified explanation of the distinction between dependent and independent 
variables; in red color are presented the inputs and in green color are presented the outputs
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while the other well maintained a positive pressure value.  Consequently,  the hydrocarbon 

production fraction for such wells with zero wellhead pressure was recorded as 0, signifying 

the complete absence of hydrocarbon production from that specific well. Conversely, the well 

with  a  positive  wellhead  pressure  registered  a  hydrocarbon  production  fraction  of  1, 

indicating  that  all  the hydrocarbons produced in that particular  scenario originated  solely 

from this active well.

It is important to acknowledge that machine learning models are typically designed to 

operate effectively with datasets that conform to smooth distributions, devoid of abrupt and 

extreme deviations among individual data points. The presence of scenarios where one well 

exhibits a hydrocarbon production fraction of 0 and the other well demonstrates a fraction of 

1 poses challenges for machine learning algorithms, primarily due to the necessity of learning 

two distinct and contrasting behaviors.

During  the  training  phase,  the  algorithm  learns  to  predict  updates  for  oil  and  gas 

fractions by considering both wellhead pressures as inputs. However, when encountering a 

situation where one well's production fraction is  exclusively 1, the algorithm is  suddenly 

required to make predictions using only the wellhead pressure of that particular well. This 

shift in behavior can perplex the algorithm, as its training was predicated on considering both 

fractions and wellhead pressures simultaneously. As a result, the algorithm may encounter 

difficulties  in  effectively  generalizing  its  learned  patterns  to  accommodate  this  novel 

scenario, potentially leading to reduced prediction accuracy or uncertainty in its outputs.

In this context, missing values in the dataset, which correspond to data points where the 

wellhead  pressures  and  consequently  the  hydrocarbon  fractions  were  0  for  well1,  were 

appropriately removed. This step was taken to ensure that all required data is available for 

analysis. Additionally, in cases where one well is not producing any oil, it is scientifically 

justified  to  consider  that  the  production  fraction  for  that  well  is  0%.  Therefore,  the 

information  related  to  the  non-producing  well  can  be  disregarded  during  the  prediction 

process and these data points may be excluded from the dataset.

Moreover, in certain cases, it was observed that after the simulations, some data points 

resulted in gas and oil fractions that very slightly exceeded unity (values greater than 1). This 

occurrence can be attributed to the utilization of numerical methods by the Pipesim software 

during each simulation, which introduces a degree of numerical error on the order of decimal 

thousands  or  tens  of  thousands.  Simulation  software  often  incorporates  simplifying 

assumptions  to  expedite  calculations.  While  these  assumptions  facilitate  the  simulation 

process,  they  may  also  introduce  limitations  and  potential  inaccuracies.  Therefore,  it  is 
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crucial  to  have  a  comprehensive  understanding  of  the  assumptions  implemented  in  the 

software and assess their impact on the accuracy of the obtained results. To address instances 

where  the  oil  or  gas  fraction  exceeded  unity,  manual  corrections  were  applied  to  obtain 

precise values. These corrections were made to rectify the inaccuracies introduced by the 

simulation software. By manually adjusting the values, the dataset was refined to ensure that 

the gas and oil fractions adhered to their physical limits (between 0 and 1) and provided more 

accurate representations of the actual data.

5.5.2 Feature engineering and Target engineering

Feature  engineering  involves  crafting  or  modifying  input  variables  to  enhance  their 

informativeness  and improve machine  learning model  performance.  It  includes  tasks  like 

selecting  relevant  features,  creating  new ones,  or  transforming existing variables.  On the 

other hand, target engineering, often known as target creation, is the process of deliberately 

constructing or defining the target variable in a way that optimizes the model's predictive 

accuracy. This can involve transforming the target variable to better align with the modeling 

objectives or creating composite targets that capture specific aspects of the prediction task. In 

the context of the recorded data, both processes were employed:

5.5.2.1 Feature engineering

Acquiring  knowledge  of  the  ultimate  flowrates  of  each  phase  after  the  three-phase 

separation was essential for facilitating the creation of a new input variable, Gas-Oil Ratio 

(GOR). As substantiated in subsequent chapters, the GOR variable played a pivotal role in 

shaping the machine learning development of the datasets.

 Gas-Oil Ratio (GOR): GOR is a measure of the amount of gas produced in relation 

to the amount of oil produced. It is calculated by dividing the total gas production 

(QgasSinkGas + QgasSinkOil) by the total oil production (QoilSinkOil) at the oil sink. (Equation

 5.38)

GOR=
QgasSinkGas+QgasSinkOil

QoilSinkOil

Equation  5.38

5.5.2.2 Target engineering

The primary objective of the virtual multiphase flowmeter is to anticipate the flowrates 

of individual phases (oil, gas and water) at each wellhead. Rather than relying on absolute 

values, the model leverages the known ultimate flowrates of each phase derived from data 
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points  in  Pipesim.  The prediction  process  is  streamlined  by estimating  the  proportion  or 

fraction of each phase between the two wells, guided by the following equations (Equation

 5.39, Equation  5.40, Equation  5.41). This approach utilizes the established final flowrates 

in the sinks to infer the fractional contributions of each phase, enhancing the efficiency of the 

predictive modeling process. Accurate predictions of these fractions enable the determination 

of the flowrate of each phase for each well by multiplying the fraction with the total flowrate.

 Gas fraction well  1: This parameter  represents the proportion of gas production 

from well 1 compared to the total gas production from both well 1 and well 2. It can 

be calculated by dividing the gas flow rate from well 1 (QgasWell1) by the sum of the 

gas  flow  rate  at  the  gas  sink  (QgasSinkGas)  and  the  gas  flow  rate  at  the  oil  sink 

(QgasSinkOil). (Equation  5.39)

Gas fractionwell 1=
QgasWell1

QgasSinkGas+Q gasSinkOil

Equation  5.39

 Oil fraction well 1: This parameter represents the proportion of oil production from 

well 1 compared to the total oil production at the oil sink. It can be calculated by 

dividing the oil flow rate from well 1 (QoilWell1) by the oil flow rate at the oil sink 

(QoilSinkOil). (Equation  5.40)

Oil fractionwell1=
Q oilWell1

Q oilSinkOil

Equation  5.40

 Water fraction well1: This parameter represents the proportion of water production 

from well 1 compared to the total water production from both well 1 and well 2. It 

can be calculated by dividing the water flow rate from well 1 (QwaterWell1) by the sum 

of the water flow rates from both wells (QwaterWell1 + QwaterWell2). (Equation  5.41)

Water fractionwell=
QwaterWell 1

QwaterWell1+QwaterWell2

Equation  5.41

5.6 Feasibility Analysis and Data Feasibility Assessment

Prior  to  commencing  a  machine  learning  project,  a  feasibility  analysis  becomes 

imperative  to  ascertain  the  overall  viability  of  the  proposed  solution.  This  evaluation 

constitutes the fundamental basis for the development of a robust machine learning solution. 
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A critical  facet  of  this  analysis  involves  the  scrutiny  of  data  feasibility,  which  entails  a 

thorough  examination  of  the  quality,  quantity  and  relevance  of  the  available  data.  The 

objective is to ensure that the data is  suitable  for training a machine learning model and 

accurately represents the intricacies of the problem domain. By addressing both feasibility 

analysis and data feasibility, informed decisions can be made regarding potential successes 

and challenges.

In the context of the case study, subsequent to the theoretical analysis, it was established 

that specific inputs are necessary for predicting the outputs of the VFM. To corroborate the 

correlation  beyond  theoretical  predictions,  a  numerical  test  involving  various  machine 

learning  models  was  conducted,  with  a  focus  on  feasibility  over  accuracy.  A  feasibility 

analysis was executed to assess the presence of the theoretically presumed correlations within 

the data.  The aim was to verify the accurate  association of inputs and outputs with their  

corresponding variables  at  the  data  level  before  the  finalization  of  the  machine  learning 

model development. This involved the exclusion of data considered uncorrelated or lacking 

essential information, ensuring the existence of a functional relationship.

In this  study,  the  Regression Learner  App available  in  the  MATLAB software  was 

employed for these purposes. The app provides a user-friendly interface for implementing 

regression  analysis,  allowing  control  over  a  single  output  variable  while  incorporating 

multiple input variables for analysis. Through the utilization of the Regression Learner App, 

the reliability of the datasets was evaluated by examining either the oil fraction or the gas 

fraction of well 1. This analytical decision was motivated by the objective to elucidate that 

the modeling of either gas or oil as a variable can be extrapolated to the other, emphasizing 

their intrinsic interdependence as variables.

Feasibility analysis was executed for all four datasets, revealing that, to varying extents, 

the data can be effectively captured by a model. A successful feasibility demonstration is 

characterized by data points clustering around the diagonal, signifying their amenability to 

being learned by a machine learning model. The presence of an off-diagonal cluster indicates 

potential  issues  not  with  the  machine  learning  models  but  with  the  datasets  themselves. 

Additionally,  considering  the  inherent  potential  for  typographical  errors  in  manually 

generated data, a meticulous data validation process was implemented to detect and rectify 

any erroneous data points resulting from such errors. Incorrect data points were identified and 

corrected by comparing the data against expected values or established patterns.

Each dataset will be presented separately to ensure the appropriate focus and analysis of 

the respective variables.
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5.6.1  Dataset 1 (GOR1=GOR2) – Regression Learner App

In the initial data set, the experimental conditions were relatively simpler compared to 

the  subsequent  sets.  The  wells  used  in  this  data  set  were  completely  identical  and  they 

produced  the  same  type  of  fluid.  Since  the  data  was  obtained  from simulations,  it  was 

expected that these simulations would provide perfect predictions due to the lack of noise. 

Consequently,  it  was  anticipated  that  the  actual  and predicted  values  would be  identical, 

resulting in the data points falling precisely on the diagonal line ((0,0), (1,1)). However, it is 

important to note that the primary objective of the analysis in the Regression Learner App is 

not  solely  focused on aligning  the  data  points  with  the  diagonal  line.  Rather,  it  aims  to 

investigate  the  presence  of  correlation  between  the  variables  and determine  the  machine 

learning algorithm that best describes the data.

Specifically, the chosen input variables for this analysis are the two wellhead pressures. 

These variables were selected because they are the only ones that can potentially influence 

hydrocarbon production in the given scenario.

Regarding the reservoir conditions in this data set, it is indicated that the reservoir lies 

above the bubble point, which signifies that the pressure exceeds the threshold at which gas 

begins to separate from the oil phase. In this state, the reservoir exists in phase equilibrium, 

meaning that oil and gas coexist as a homogeneous mixture without physical separation. 

In  previous  chapters,  two  fundamental  metrics  frequently  employed  in  statistical 

analysis and Machine learning were introduced. To provide a brief summary, those metrics 

will be revisited (MSE, MAE) and the two new metrics will be introduced: (R², RMSE).

 Mean Squared Error (MSE): Mean Squared Error (MSE) is a commonly used 

metric  in  statistical  studies  and  machine  learning  to  assess  predictive  model 

performance. It calculates the average of the squared differences between predicted 

and  actual  values.  Squaring  the  differences  ensures  both  positive  and  negative 

deviations  are  treated  equivalently.  A  lower  MSE  indicates  better  model 

performance, as it reflects a smaller average discrepancy between predictions and 

observations. However, MSE does not consider the scale of the data and reports the 

error in the original units squared. To address this, the square root of MSE, known as 

Root Mean Squared Error (RMSE), is often used for interpretability, as it is in the 

same units as the dependent variable.
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 Root  Mean  Squared  Error  (RMSE): Root  Mean  Squared  Error  (RMSE)  is  a 

widely used metric in machine learning to evaluate the performance of predictive 

models. It provides a measure of the average difference between the predicted values 

of a model and the corresponding actual values in a dataset. Mathematically, RMSE 

is  computed  as  the  square  root  of  the  mean of  the  squared  residuals.  Residuals 

represent  the  vertical  distances  between  the  observed  data  points  and  the 

corresponding predicted values based on a regression line or the model's predictions. 

A lower RMSE value indicates that the model has smaller prediction errors and is 

considered to be more accurate. In an ideal scenario, where a hypothetical model 

could consistently predict the exact expected values, the RMSE would be 0. As the 

observed  data  points  align  more  closely  with  the  regression  line  or  the  model's 

predictions,  the  model's  error  decreases,  leading  to  a  lower  RMSE.  This  would 

indicate a perfect fit between the model's predictions and the actual values. 

 R-squared (R²): also known as the coefficient of determination, measures how well 

a  regression  model  fits  the  data  by  quantifying  the  proportion  of  the  dependent 

variable's variance explained by the independent variables. It ranges from 0 to 1, 

where 0 signifies no explanation of variance and 1 represents a perfect fit. Higher R² 

values indicate better model performance in capturing underlying patterns. However, 

R² does not measure predictive power or accuracy and should be used alongside 

other metrics for a comprehensive evaluation of the model's performance.

 Mean Absolute Error (MAE): Mean Absolute Error is a statistical metric used to 

quantify the average magnitude of errors in a set of predictions, regardless of their 

direction. It is computed as the average absolute difference between the predicted 

values  and  the  corresponding  actual  values.  MAE  is  commonly  employed  to 

evaluate  the  performance  and  effectiveness  of  a  regression  model.  It  provides  a 

measure of the average absolute discrepancy between predicted and actual values. 

Lower MAE values indicate higher accuracy, as they reflect reduced overall error 

magnitude in the model's predictions.

After running the Regression Learner App, the obtained results are presented in the Table

5.1 below. These metrics are evaluated both on the validation and test sets. The validation 

dataset is used during model development to tune hyperparameters and evaluate the model's 
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performance. The test dataset is kept separate and is used to assess the model's generalization 

ability on unseen data.

Model Type RMSE 
(Validation)

MSE 
(Validation)

R2 

(Validation)
MAE 

(Validation)
MAE
(Test)

MSE
(Test)

RMSE 
(Test)

R2

(Test)

Linear 
Regression 0.057 0.003 0.902 0.039 0.037 0.003 0.055 0.916

Stepwise 
Linear 

Regression
0.057 0.003 0.901 0.040 0.037 0.003 0.055 0.916

Fine Tree 0.038 0.001 0.956 0.025 0.023 0.001 0.031 0.974

Medium 
Gaussian 

SVM
0.024 0.001 0.982 0.015 0.017 0.001 0.028 0.978

Ensemble 
(Boosted 
Trees)

0.038 0.001 0.956 0.026 0.023 0.001 0.028 0.979

Medium 
Neural 

Network
0.005 0.00002 0.999 0.003 0.002 0.00002 0.004 1.000

Least 
Squares 

Regression 
Kernel

0.167 0.028 0.897 0.125 0.167 0.043 0.207 0.899

Table 5.1 Performance evaluation metrics of different machine learning models for GOR1=GOR2 model

According to Table 5.1, the following observations about the different machine learning 

models arise:

 Linear Regression and Stepwise Linear Regression: Both linear regression and 

stepwise  linear  regression  models  exhibit  similar  metrics.  However,  the  linear 

regression-based models may not be the optimal choices for this task, as indicated by 

their moderate RMSE and R2 values, suggesting potential limitations in capturing 

data patterns. 

 Fine  Tree: The  decision  tree  model  demonstrates  promising  performance, 

surpassing linear regression-based models with a notably higher R2 value. 

 Medium Gaussian SVM: The medium Gaussian SVM model  showcases  robust 

predictive  capabilities,  reflected  in  its  low RMSE and impressive  R2 value.  The 

model  effectively  captures  the  data  patterns,  making  it  a  competitive  choice  for 

accurate predictions.
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 Ensemble (Boosted Trees): The ensemble model delivers competitive results across 

both  validation  and  test  sets.  Its  ability  to  combine  multiple  models  enhances 

predictive accuracy, striking a favorable balance between RMSE and R2 values.

 Medium Neural  Network: The  medium  neural  network  stands  out  as  the  top-

performing model, consistently producing the lowest RMSE and the highest R2 value 

among  all  models.  Its  adeptness  at  capturing  intricate  patterns  and  nonlinear 

relationships positions it as a compelling choice for further exploration.

 Least  Squares  Regression  Kernel: The  least  squares  regression  kernel  model 

exhibits the least favorable performance among all models. Its significantly higher 

RMSE, MSE and MAE values, coupled with a low R2 value, indicate a poor fit to the 

data. 

For a more comprehensive evaluation of the models' performances, normalization was 

applied to Table 5.1 by dividing the metrics of each model by the corresponding metrics of 

the Linear Regression model presented in the first row, followed by expressing the results as 

percentages.

This normalization method facilitates a systematic and thorough comparative analysis, 

assessing each model's deviation or improvement relative to the linear baseline across metrics 

for both validation and test sets. In the context of normalized performance metrics, lower 

percentages for metrics such as RMSE, MSE and MAE indicate superior performance, while 

higher  percentages  suggest  a  relative  decrease  in  performance  compared  to  the  linear 

regression  baseline.  Conversely,  for  the  R2 metric,  higher  percentages  indicate  improved 

performance,  whereas  lower  percentages  suggest  a  relative  decrease  in  performance 

compared to the linear regression baseline.

In Table 5.2 with the normalized values, the model with the lowest percentage value in 

each column, considering RMSE, MSE and MAE, and the highest for R2, is considered the 

best for interpreting the dataset. Once again, the Neural Network model evidently emerges as 

the best-performing model.

Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

R2 

(Validation)
MAE 

(Validation)
MAE
(Test)

MSE
(Test)

RMSE 
(Test) R2 (Test)
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Linear 
Regression 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%

Stepwise 
Linear 

Regression
100.940% 101.889% 99.796% 100.890% 100.000% 100.000% 100.000% 100.000%

Fine Tree 67.387% 45.409% 105.902% 62.945% 63.100% 31.099% 55.767% 106.328%

Medium 
Gaussian 

SVM
42.458% 18.027% 108.863% 37.886% 46.663% 26.107% 51.095% 106.786%

Ensemble 
(Boosted 

Trees)
67.368% 45.384% 105.905% 66.093% 61.144% 24.831% 49.831% 106.904%

Medium 
Neural 

Network
8.375% 0.701% 110.736% 7.555% 6.359% 0.557% 7.461% 109.133%

Least 
Squares 

Regression 
Kernel

295.687% 874.308% 99.391% 320.438% 450.209% 1402.002% 374.433% 98.190%

Table 5.2 Performance evaluation metrics of different machine learning models for GOR1=GOR2 model (normalized values)

In  Σφάλμα:  Δεν  βρέθηκε  η  πηγή  παραπομπής and Σφάλμα:  Δεν  βρέθηκε  η  πηγή

παραπομπής,  the  graphs  depicting  the  validation  and  test  sets  of  the  first  data  set  are 

presented.
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As observed in  the  validation  set Σφάλμα:  Δεν  βρέθηκε  η  πηγή παραπομπής,  three 

points are identified where the prediction of the oil fraction appears to be slightly inaccurate. 

These  instances  correspond to  scenarios  where  production  solely  originates  from well  1, 

resulting in an oil fraction of unity. While these three points could have been excluded from 

the dataset under the assumption that well 2 has zero production,  they were intentionally 

retained  for  analysis.  Interestingly,  these  points  do  not  significantly  impact  the  neural 

network model's performance. Instead, they contribute valuable information to the model, as 

will be elucidated in subsequent chapters. Within the dataset, numerous data points exhibit 

hydrocarbon fractions in the range of 0.9-1. Consequently, instances where the fraction is 

exactly 1 do not deviate significantly from these values, contributing to a smooth distribution. 

Following this rationale, a machine learning model has the capacity to effectively learn from 

these data points, considering them as additional information.

It is crucial to note that, at this stage, the primary focus is on the feasibility analysis. The 

chosen  inputs,  namely  the  two  pressures  at  the  wellheads,  are  deemed  appropriate  for 

predicting the oil fraction as an output. Following this analysis, it becomes evident that there 

are no extensively off-diagonal data points, indicating that a model can effectively learn these 

data points. Thus, the feasibility analysis is deemed successful.

5.6.2 Dataset 2 (GOR1≠GOR2) – Regression Learner App
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In this dataset, the wells remain unchanged compared to Dataset1 however, the fluid 

they produce exhibits different GORs as a consequence of a geological fault that has caused 

reservoir compartmentalization. A thorough examination was undertaken to identify the most 

suitable  machine  learning  model  for  accurately  characterizing  the  dataset  and  exploring 

potential correlations among the variables using the Regression Learner App.

The selected input variables for the analysis are the two wellhead pressures, considered 

the  primary  factors  influencing  hydrocarbon  production  in  the  specified  scenario.  After 

multiple  tests  in  the  Regression  Learner  app,  other  variables  present  in  the  dataset  were 

excluded from this analysis, as they were determined to have either negligible or no direct 

impact on the chosen output variable, which was the oil fraction for well 1. The feasibility 

analysis for Dataset 2 produced outcomes that are tabulated in Table 5.3.

Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

R2

(Validation)
MAE 

(Validation)
MAE
(Test)

MSE
(Test)

RMSE 
(Test)

R2

(Test)

Linear 
Regression 0.062 0.004 0.930 0.046 0.053 0.005 0.071 0.927

Stepwise 
Linear 

Regression
0.062 0.004 0.930 0.046 0.053 0.005 0.071 0.926

Fine Tree 0.030 0.001 0.983 0.019 0.013 0.0003 0.018 0.995

Fine 
Gaussian 

SVM
0.038 0.001 0.973 0.021 0.017 0.0004 0.021 0.993

Ensemble
(Boosted 
Trees)

0.029 0.001 0.985 0.023 0.023 0.001 0.028 0.989

Wide 
Neural 

Network
0.005 0.00003 0.999 0.002 0.001 0.000002 0.002 1.000

SVM 
Kernel 0.210 0.044 0.909 0.163 0.137 0.036 0.189 0.918

Table 5.3 Performance evaluation metrics of different machine learning models for GOR1≠GOR2 model

 Linear  Regression and Stepwise  Linear  Regression: The  linear  regression 

models,  both  basic  and  stepwise,  exhibit  commendable  performance  on  the 

validation set, as indicated by low RMSE and high R-squared values. However, their 

efficacy in capturing intricate and complex patterns is called into question, given the 

moderate  RMSE observed  on  the  test  set.  This  suggests  potential  limitations  in 

generalization to new data.
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 Fine  Tree: The  decision  tree  model  stands  out  with  exceptional  performance, 

outperforming  the  linear  regression-based  models.  Its  low  RMSE  and  high  R-

squared  values  on  both  validation  and test  sets  indicate  its  ability  to  effectively 

capture a substantial portion of the variance in the data, positioning it as a promising 

choice for this predictive task.

 Fine Gaussian SVM and Ensemble (Boosted Trees): The SVM and the Ensemble 

models demonstrate competitive performance across both validation and test sets. 

The SVM model showcases robust predictive capabilities, reflected in low RMSE 

and an impressive R-squared value. Meanwhile, the ensemble method leverages the 

strengths of multiple models to achieve a favorable balance between RMSE and R-

squared, making it a solid and accurate prediction option.

 Wide Neural Network: The Neural Network emerges as the top-performing model, 

consistently delivering the lowest RMSE and the highest R-squared value among all 

models.  Its  adeptness  at  capturing  intricate  patterns  and  nonlinear  relationships 

positions it as a compelling candidate for further exploration and consideration as 

the primary model for this predictive task.

 SVM Kernel: The  Kernel  model  displays  the  poorest  performance,  marked  by 

significantly higher RMSE, MSE and MAE values. The presence of a low R-squared 

value  indicates  its  unsuitability  for  predicting  the  target  variable.  Given  these 

limitations,  prudent  consideration  should  be  given  to  alternative  models 

demonstrating superior predictive capabilities tailored to the specific requirements of 

this task. 

For  a  thorough  evaluation  of  model  performances,  the  metrics  in  Table  5.3 were 

normalized by dividing them with the corresponding metrics of the Linear Regression model 

and expressed as percentages in  Table 5.4. The model with the lowest percentage value for 

RMSE, MSE and MAE and the highest for R2, is deemed the best for interpreting the dataset. 

The Neural Network model consistently emerges as the top-performing model.

Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

R2 

(Validation)
MAE 

(Validation)
MAE
(Test)

MSE
(Test)

RMSE 
(Test)

R2

(Test)
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Linear 
Regression 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%

Stepwise 
Linear 

Regression
100.038% 100.075% 99.994% 99.529% 100.797% 100.463% 100.231% 99.963%

Fine Tree 48.954% 23.965% 105.735% 41.003% 24.363% 6.252% 25.004% 107.410%

Fine 
Gaussian 

SVM
61.777% 38.163% 104.664% 44.943% 32.928% 8.886% 29.810% 107.202%

Ensemble 
(Boosted 
Trees)

46.737% 21.844% 105.895% 50.250% 42.813% 15.223% 39.017% 106.701%

Wide 
Neural 

Network
8.825% 0.779% 107.484% 4.690% 1.889% 0.046% 2.144% 107.900%

SVM 
Kernel 337.868% 1141.547% 97.794% 355.305% 258.731% 712.591% 266.944% 99.059%

Table  5.4 Performance  evaluation  metrics  of  different  machine  learning  models  for  GOR1≠GOR2 model (normalized 
values)

In  Σφάλμα:  Δεν  βρέθηκε  η  πηγή  παραπομπής and  Σφάλμα:  Δεν  βρέθηκε  η  πηγή

παραπομπής, the graphs illustrate the performance and evaluation results of the validation 

and test sets for data set 2, respectively. The feasibility analysis is deemed successful as the 

data points cluster around the diagonal.
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Figure 5.6 Test set for GOR1≠GOR2 model (Wide Neural Network)

Figure 5.5 Validation set for GOR1≠GOR2 model (Wide Neural Network)
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5.6.3 Dataset 3 (Watercut) – Regression Learner App

The third dataset comprises a total of 498 data points, exhibiting a notable variation in 

complexity. The model under consideration involves two identical wells, physically separated 

by  a  fault,  with  each  well  producing  distinct  fluids.  The  fluid  from  the  first  well  is  

characterized by a GOR of 300 scf/stb, while the second produces fluid with a GOR of 500 

scf/stb.  Each data point is associated not only with varying bottomhole pressures but also 

with different water cuts. The selection of diverse pressures and water cuts to generate these 

data  points  was elaborated  upon in  Chapter  5.3.3 and the  method could be described as 

relatively random.

In the Regression Learner App, the input variables encompass wellhead pressures and 

GOR measured in scf/stb. Notably, the GOR utilized as an input is the one measured on the 

platform post the separation process. The output variable denotes the gas fraction of the first 

well.  Initially,  the correlation between GOR and wellhead pressures with the dataset  was 

uncertain.  However,  following  rigorous  testing  and feasibility  analysis  in  the  Regression 

Learner app, it was revealed that GOR serves as a highly suitable and influential parameter, 

as substantiated by the findings presented in Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής and 

Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής.

After employing the Regression Learner App, the obtained metrics are detailed in Table

5.5. The normalized values, expressed as percentages and derived by dividing each model's 

metrics by the corresponding metrics of the Linear Regression model in the first row, are 

presented in Table 5.6.
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Table 5.5 Performance evaluation metrics of different machine learning models for Watercut model

Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

R2

(Validation)
MAE 

(Validation)
MAE
(Test)

MSE
(Test)

RMSE 
(Test)

R2

(Test)

Linear 
Regression 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%

Stepwise 
Linear 

Regression
69.079% 47.720% 100.669% 62.997% 60.852% 34.565% 58.792% 100.924%

Fine Tree 64.604% 41.737% 100.745% 47.275% 47.506% 52.575% 72.508% 100.670%

Quadratic 
SVM 38.582% 14.886% 101.089% 51.865% 49.234% 13.640% 36.933% 101.219%

Ensemble 
(Boosted 

Trees)
157.600% 248.378% 98.102% 197.890% 204.099% 244.637% 156.409% 97.958%

Bilayered 
Neural 

Network
15.021% 2.256% 101.250% 14.150% 14.682% 1.796% 13.401% 101.386%

SVM 
Kernel 167.582% 280.839% 97.687% 127.477% 123.715% 187.124% 136.793% 98.770%

Table 5.6 Performance evaluation metrics of different machine learning models for Watercut model (normalized values)

Upon  reviewing  the  metrics  for  the  various  machine  learning  models,  several 

observations can be made:

 Linear  Regression  and  Stepwise  Linear  Regression: Both  linear  models 

demonstrate  strong predictive  performance,  with  low RMSE and high R-squared 

values  on  both  the  validation  and test  sets.  The Stepwise  Linear  Regression,  in 
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Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

R2 

(Validation)
MAE 

(Validation)
MAE
(Test)

MSE
(Test)

RMSE 
(Test)

R2

(Test)

Linear 
Regression 0.016 0.0002 0.987 0.010 0.009 0.0003 0.016 0.986

Stepwise 
Linear 

Regression
0.011 0.0001 0.994 0.006 0.006 0.0001 0.009 0.995

Fine Tree 0.010 0.0001 0.995 0.005 0.004 0.0001 0.012 0.993

Quadratic 
SVM 0.006 0.00004 0.998 0.005 0.005 0.00003 0.006 0.998

Ensemble 
(Boosted 
Trees)

0.025 0.001 0.969 0.019 0.019 0.001 0.025 0.966

Bilayered 
Neural 

Network
0.002 0.000005 1.000 0.001 0.001 0.000005 0.002 1.000

SVM 
Kernel 0.026 0.001 0.965 0.012 0.012 0.0005 0.022 0.974
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particular,  exhibits  slight  improvement  over  the  basic  Linear  Regression,  as 

evidenced by lower RMSE and higher R-squared values on both validation and test 

sets.

 Fine  Tree: The  Tree  model  performs  exceptionally  well,  outperforming  linear 

regression-based models with minimal RMSE and high R-squared values on both 

sets. 

 Quadratic  SVM and Ensemble  (Boosted  Trees): The  SVM  model  showcases 

exceptional performance, with extremely low RMSE and high R-squared values on 

both  validation  and test  sets.  The Ensemble  model  provides  competitive  results, 

incorporating the strengths of multiple models for accurate predictions, albeit with 

slightly higher RMSE and lower R-squared values compared to individual models.

 Bilayered Neural Network: The Neural Network stands out as the top-performing 

model, achieving near-perfect performance with the lowest RMSE and highest R-

squared values among all models on both validation and test sets. Its capacity to 

capture intricate patterns and nonlinear relationships makes it an excellent choice for 

further consideration and exploration.

 SVM Kernel: The Kernel model exhibits  reasonable performance with moderate 

RMSE and R-squared values on both validation  and test  sets.  While  not the top 

performer, it provides a balanced performance and could be considered as a suitable 

option for certain predictive tasks.

In conclusion,  based on the quantitative analysis of the provided metrics,  the Neural 

Network emerges as the top-performing model among the listed options. It demonstrates high 

accuracy, strong fit to the data and excellent RMSE, R-squared and MAE values. 

In  Σφάλμα:  Δεν  βρέθηκε  η  πηγή  παραπομπής and Σφάλμα:  Δεν  βρέθηκε  η  πηγή

παραπομπής, the graphs illustrate the performance and evaluation results of the validation 

and test sets for Dataset 3, respectively. Feasibility test is successful as the observed data 

points exhibit a notable clustering around the diagonal. This clustering indicates that the NN 

model can effectively learn and predict  the associated data,  affirming the viability  of the 

138



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

dataset for modeling. The absence of off-diagonal clusters suggests that the chosen variables 

are appropriately correlated.
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Figure 5.7 Test set for Watercut model (Bilayered Neural Network)
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5.6.4 Dataset 4 (Combined) – Regression Learner App

Scenario  4  involves  the  examination  of  data  originating  from  two  distinct  wells 

characterized  by different  GORs due to  their  physical  separation  caused by a  fault.  The 

dataset for Model 4 spans the entire production period, starting from the initiation of well 

operations  until  the commencement  of  water  co-production alongside  hydrocarbons.  This 

dataset results from the merger of datasets 2 and 3, with the anticipated total number of data 

points being 421 + 498 = 919. However,  the actual  combined dataset  did not attain this 

anticipated size due to the removal of certain data points, resulting in a final count of 894 data 

points, as elaborated subsequently.

Machine learning models significantly benefit from datasets characterized by a smooth 

distribution, as it facilitates a more comprehensive understanding of underlying patterns and 

relationships. A smooth distribution implies minimal fluctuations in data values, aiding the 

model  in  effectively learning the data.  In Dataset  2,  where water  production was absent, 

certain  data  points  exhibited  notably  lower  values  for  wellhead  pressures,  consequently 

leading to diminished hydrocarbon fractions. Specifically, these occurrences were observed 
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Figure 5.8 Validation set for Watercut model (Bilayered Neural Network)
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when the bottomhole pressure for well 1, the well with a lower Gas-Oil Ratio (GOR) of 300 

scf/stb compared to the second well with GOR=500 scf/stb, ranged between 4500-5000 psi. 

This led to proportionally diminished oil and gas fractions. The rationale lies in the well with 

a higher liquid density, attributed to a lower dissolved gas content, where the pressure was 

inadequate  to  generate  higher  flowrates.  As  a  result,  hydrocarbon  fractions  were  lower 

compared to other data points in Dataset 2 and significantly lower in relation to data points in 

Dataset 3.

On the contrary, Dataset 3, predominantly dedicated to water cut modeling, incorporated 

higher  bottomhole  pressures.  The  inclusion  of  small  bottomhole  pressures  (ranging  from 

4500  to  5500  psi)  combined  with  water  cut  would  either  result  in  zero  production  or 

extremely low values of flowrates.

In  scenario  2,  where  only  bottomhole  pressures  were  modified  while  retaining  data 

points with small hydrocarbon fractions, the machine learning model demonstrated effective 

training. The relatively smaller dataset, emphasizing a higher proportion of data points with 

small hydrocarbon fractions, positively contributed to the efficiency of the machine learning 

algorithm during the training process. However, the integration of data sets 2 and 3 presented 

challenges  during  the  training  of  the  machine  learning  model,  mainly  attributed  to  the 

significant contrast between the data points in Dataset 2 (characterized by low bottomhole 

pressures and hydrocarbon fractions) and the Dataset in set 3.

To overcome this challenge and facilitate effective training, data points in Dataset 2 with 

bottomhole pressures ranging between 4500-5000 psi for well 1 were excluded. As a result, 

Dataset 4 was formed, consisting of 894 data points. The exclusion of data points that might 

hinder the training of the combined dataset  due to  their  contrasting nature allowed for a 

thorough feasibility  analysis  in  the Regression Learner  App. This  approach enhances  the 

machine  learning  model's  ability  to  understand  and  capture  the  underlying  relationships 

between variables, thereby leading to more effective and accurate predictions.

The Regression Learner App was employed to investigate the correlation between the 

gas fraction for well 1 and specific input variables, namely bottomhole pressures and GOR 

measured at the sinks on the platform. These particular variables were deliberately chosen 

due to their  identified significant  influence on the output. Following the execution of the 

models,  the  evaluation  of  the  performance  of  each  model  was  conducted.  The  resulting 

metrics are recorded in Table 5.7. After the normalization process, Table 5.8 was generated.
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Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

R2 

(Validation)
MAE 

(Validation)
MAE 
(Test)

MSE 
(Test)

RMSE 
(Test)

R2

(Test)

Linear 
Regression 0.026 0.001 0.981 0.019 0.017 0.001 0.024 0.978

Stepwise 
Linear 

Regression
0.009 0.0001 0.997 0.005 0.005 0.0001 0.008 0.998

Fine Tree 0.006 0.00003 0.999 0.003 0.002 0.00001 0.003 1.000

Quadratic 
SVM 0.006 0.00004 0.999 0.005 0.004 0.00003 0.005 0.999

Ensemble 
(Boosted 
Trees)

0.019 0.0004 0.990 0.017 0.017 0.0003 0.018 0.988

Medium 
Neural 

Network
0.002 0.000005 1.000 0.001 0.002 0.00001 0.003 1.000

SVM 
Kernel 0.018 0.0003 0.991 0.009 0.008 0.0001 0.011 0.996

Table 5.7 Performance evaluation metrics of different machine learning models for Combined model

Model 
Type

RMSE 
(Validation)

MSE 
(Validation)

R2 

(Validation)
MAE 

(Validation)
MAE 
(Test)

MSE 
(Test)

RMSE 
(Test)

R2

(Test)

Linear 
Regression 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000% 100.000%

Stepwise 
Linear 

Regression
36.196% 13.101% 101.706% 28.881% 27.946% 9.718% 31.174% 102.013%

Fine Tree 22.865% 5.228% 101.861% 15.485% 13.006% 1.904% 13.800% 102.187%

Quadratic 
SVM 23.270% 5.415% 101.857% 24.517% 23.353% 4.653% 21.571% 102.126%

Ensemble 
(Boosted 
Trees)

73.562% 54.114% 100.901% 90.001% 94.634% 55.084% 74.219% 101.001%

Medium 
Neural 

Network
8.643% 0.747% 101.949% 7.511% 10.999% 1.408% 11.864% 102.198%

SVM Kernel 69.821% 48.750% 101.006% 49.631% 47.413% 18.666% 43.204% 101.813%
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Table 5.8 Performance evaluation metrics of different machine learning models for Combined model (normalized values)

 Linear  Regression  Stepwise  Linear  Regression: The  Linear  Regression  model 

demonstrates consistent and reliable performance with low RMSE, high R-squared, 

and low MAE on both the validation and test sets. The Stepwise Linear Regression 

model showcases improvements over the basic Linear Regression. With lower RMSE, 

higher R-squared and low MAE on both sets, this model offers increased precision in 

capturing the underlying patterns in the data.

 Fine  Tree: The  Tree  model  stands  out  with  exceptional  performance,  displaying 

remarkably low RMSE and high R-squared values on both validation and test sets. Its 

ability to effectively capture intricate patterns makes it a promising choice for tasks 

that demand high predictive accuracy.

 Quadratic SVM and Ensemble (Boosted Trees): The SVM model exhibits robust 

predictive capabilities, demonstrating low RMSE, high R-squared and minimal MAE 

values.  On the other hand, the Ensemble model  delivers competitive performance, 

albeit  with  slightly  elevated  RMSE and  lower  R-squared  compared  to  individual 

models. 

 Medium  Neural  Network: The  Neural  Network  emerges  as  the  top-performing 

model, consistently delivering the lowest RMSE, highest R-squared, and lowest MAE 

values among all models. It is crucial to note the Neural Network's exceptional ability 

to  capture  intricate  patterns  and  nonlinear  relationships,  making  it  the  choice  for 

further exploration.

 SVM Kernel: The Kernel model exhibits reasonable performance with moderately 

low RMSE and high R-squared values on both validation and test sets.

In  Table  5.7 and  Table  5.8,  the presented  performance metrics  highlight  the  Neural 

Network as the optimal model for this dataset. Consistently exhibiting the lowest RMSE and 

MAE values, the Neural Network model signifies superior accuracy in predictions. Moreover, 
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for R2, the Neural Network model showcases the highest value, emphasizing its capability to 

capture the variance in the dataset effectively.

In Σφάλμα:  Δεν  βρέθηκε  η  πηγή  παραπομπής and Σφάλμα:  Δεν  βρέθηκε  η  πηγή

παραπομπής, the graphs illustrate the performance and evaluation results of the validation 

and test sets for data set 4, respectively.
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Figure 5.9 Validation set for Combined model (Medium Neural Network)

Figure 5.10 Test set for Combined model (Medium Neural Network)
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5.7 Model development

After concluding the preprocessing stage and conducting a feasibility analysis, it  has 

been determined that neural networks stand out as the most appropriate machine learning 

model for all considered scenarios. The models exhibit the capability to effectively learn the 

datasets.  The  current  chapter  provides  a  detailed  account  of  the  process  involved  in 

constructing the finalized models of virtual multiphase flowmeters.

For this purpose, MATLAB's Neural Net Fitting App will be employed, serving as a 

potent tool for creating, visualizing, and training two-layer feed-forward networks tailored 

specifically  for data fitting challenges.  A noteworthy advantage of the Neural Net Fitting 

App's implementation is its flexibility, allowing the incorporation of the required number of 

multiple  output  and input  variables  during the modeling  process.  The Virtual  Multiphase 

Flowmeters will be deployed to predict both oil and gas fractions as simultaneous outputs. To 

address the four distinct scenarios related to gas and oil production under varied conditions, 

the development of four distinct algorithms will be undertaken to represent the VFMs.

5.7.1 Dataset 1 (GOR1=GOR2) – Neural Net Fitting App

In the first scenario for Dataset 1, the goal was to develop a final neural network model 

and evaluate its performance in predicting hydrocarbon fractions of Well 1 based on wellhead 

pressures. The neural network utilized the Levenberg-Marquardt algorithm for training and 

underwent  evaluation  using  a  random  data  division  approach.  The  model  architecture 

comprised a two-layer  feed-forward neural  network with a hidden layer  consisting of 20 

neurons.  The  input  variables  for  the  model  were  the  wellhead  pressures  (PWellhead1 and 

PWellhead2), and it aimed to predict the corresponding combined outputs of Gas Fraction Well1 

and Oil Fraction Well1.

To  evaluate  the  neural  network  model's  performance,  three  distinct  datasets  were 

utilized: the training, validation, and test sets. The mean squared error (MSE) metric served 

as a measure of the accuracy of the predictions. The neural network demonstrated exceptional 

performance across all datasets, as indicated by an “R” value of 1.0000. This perfect positive 

linear  relationship between the predicted values  and the actual  values implies  that  as the 

predicted  values  increase,  the  actual  values  also  increase  proportionally.  The  perfect 

correlation coefficient across all datasets suggests that the model's predictions align perfectly 

with the actual values in both the training and validation sets. While this alignment is logical 

considering  that  the  data  points  are  generated  from  simulations,  it  remains  essential  to 
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evaluate  the model's  generalization  to  new data  and assess  its  performance in  real-world 

scenarios.

The results indicate that the neural network model performed exceptionally well on all 

three datasets: training, validation, and test sets. For the training set with 290 observations, 

the achieved MSE was 1.0831e-06, and the correlation coefficient (R) was 1.0000, denoting a 

strong positive linear correlation. Similarly, on the validation set comprising 36 observations, 

the model attained an MSE of 4.7054e-07, along with an R value of 1.0000. These results 

affirm  the  model's  capability  to  generalize  effectively  to  previously  unseen  data.  The 

reliability  and  accuracy  of  the  neural  network  model  are  further  demonstrated  by  its 

performance  on  the  test  set,  encompassing  36  observations.  On  this  dataset,  the  model 

achieved an MSE of 3.0972e-06 and an R value of 1.0000. These outcomes underscore the 

model's  ability  to  accurately  predict  gas  and  oil  fractions  based  on  wellhead  pressures. 

(Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής)

Σφάλμα: Δεν βρέθηκε  η πηγή παραπομπής illustrates  the  performance of  the  neural 

network model across diverse datasets,  including training,  test,  validation,  and the overall 

dataset.  The Y=T line signifies the ideal alignment,  where observed values coincide with 

predicted values. The fit line, representing the model's predictions, closely mirrors the line of 

perfect match (Y=T) for each dataset. In the training set diagram with 290 observations, data 

points  align  nearly  perfectly  along  the  Y=T  line,  showcasing  the  model's  precision  in 

capturing  the  relationship  between  wellhead  pressures  and  corresponding  gas  and  oil 

fractions. This alignment persists in the validation and test set diagrams, where data points 

also closely follow the Y=T line. The diagram for the entire dataset, combining observations 

from training,  test,  and validation sets, consistently demonstrates alignment with the Y=T 

line. This analysis emphasizes the model's efficacy in predicting gas and oil fractions based 

on wellhead pressures across the dataset.
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Table 5.9 Training results for model GOR1=GOR2

Observations MSE R
Training 290 1.0831e-06 1.0000

Validation 36 4.7054e-07 1.0000
Test 36 3.0972e-06 1.0000
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5.7.2 Dataset 2 (GOR1≠GOR2) – Neural Net Fitting App

In the second scenario for Dataset 2, the primary objective was to formulate a definitive 

neural network model and evaluate its efficacy in predicting hydrocarbon fractions of well 1 

based on wellhead pressures. The training of the neural network employed the Levenberg-

Marquardt algorithm. The model's performance underwent assessment through a random data 

division approach, ensuring an unbiased evaluation. The architecture of the two-layer FFNN 

featured  a  hidden  layer  comprising  20  neurons.  This  configuration  utilized  the  wellhead 

pressures, specifically PWellhead1 and PWellhead2, as input variables to predict the corresponding 

gas and oil fractions, represented as outputs GasFractionWell1 and OilFractionWell1.

The mean squared error (MSE) metric served as a quantitative measure to assess the 

accuracy  of  predictions  across  the  training,  validation,  and test  sets.  The  neural  network 

demonstrated exceptional performance across all datasets. In the training set, encompassing 

337 observations, the achieved MSE was 1.7919e-06, coupled with a correlation coefficient 

of 1.0000. This robust correlation coefficient suggests a strong positive linear relationship 

between the predicted and actual gas and oil fractions, underscoring the model's proficiency 

in  capturing  underlying  relationships.  Similarly,  on  the  validation  set,  consisting  of  42 

observations,  the model  attained an MSE of  1.1322e-06,  accompanied  by an R value  of 
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Figure 5.11 Oil and gas fractions predictions for Well 1 (GOR1=GOR2 model)
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1.0000.  These  results  imply  that  the  model  exhibits  consistent  performance  without 

overfitting to the training data, showcasing its ability to generalize effectively to previously 

unseen data. Furthermore, the reliability and accuracy of the neural network were validated 

on the test set, comprising 42 observations. On this dataset, the model achieved an MSE of 

1.4085e-06 and an R value of 1.0000. These outcomes provide compelling evidence of the 

model's accuracy in predicting gas and oil fractions based on wellhead pressures, even when 

confronted with new data. (Table 5.10)

The  consistent  low  MSE  values  and  high  correlation  coefficients  across  training, 

validation and test datasets attest to the model's reliability and effectiveness in generalizing to 

new data.

Observations MSE R
Training 337 1.7919e-06 1.0000

Validation 42 1.1322e-06 1.0000
Test 42 1.4085e-06 1.0000

Table 5.10 Training results for GOR1≠GOR2 model

The  graphical  plots  in Σφάλμα:  Δεν  βρέθηκε  η  πηγή  παραπομπής depict  the 

performance  of  the  neural  network  model  across  different  datasets.  In  the  training  set 

diagram, featuring 337 observations, data points align almost perfectly along the Y=T line, 

highlighting the model's precision in capturing the relationship between wellhead pressures 

and corresponding gas and oil fractions. This alignment trend persists in the validation and 

test set diagrams, as well as in the overall set that combines observations from the training, 

test, and validation sets. This analysis underscores the model's effectiveness in predicting gas 

and oil fractions based on wellhead pressures across the entire dataset.
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5.7.3 Dataset 3 (Watercut) – Neural Net Fitting App

In the third scenario for Dataset 3, a neural network model was constructed to predict 

combined gas and oil fractions for Well 1. The model utilized three input variables, namely, 

the wellhead pressures (PWellhead1 and PWellhead2) and the produced Gas-Oil Ratio. The training 

process of the model employed the Levenberg-Marquardt algorithm, and its performance was 

evaluated using a random data division approach. The FFNN architecture was designed with 

a hidden layer comprising 20 neurons, enabling the model to effectively capture and learn the 

intricate relationships between the input variables and the target output.

The model was trained on a dataset comprising 348 observations. During training, the 

model  achieved  an  impressively  low  mean  squared  error  of  2.3822e-06,  indicating  its 

exceptional accuracy in capturing the relationships between the input variables and the target 

outputs. Furthermore,  the high correlation coefficient (R = 0.9999) between the predicted 

values and actual observations during training suggests a strong positive linear relationship, 

reinforcing the model's robustness. On the validation set, comprising 75 previously unseen 

observations, the model continued to perform well, yielding an MSE of 4.1854e-06 and a 

high correlation coefficient (R = 0.9999). This outcome indicates that the model is able to 

maintain  its  accuracy  on  data  outside  the  training  set,  further  supporting  its  reliability. 

Similarly, when evaluated on the independent test set of 75 observations, the model exhibited 

consistent  performance  with  an  MSE  of  6.4302e-06  and  a  correlation  coefficient  (R  = 
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Figure 5.12 Oil and gas fractions predictions for Well 1 (GOR1≠GOR2 model)



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

0.9998).  The  combination  of  exceptional  accuracy  and  consistency  across  all  datasets 

underscores  the  model's  strong  predictive  capability.  (Σφάλμα:  Δεν  βρέθηκε  η  πηγή

παραπομπής)

Observations MSE R
Training 348 2.3822e-06 0.9999

Validation 75 4.1854e-06 0.9999
Test 75 6.4302e-06 0.9998

The  neural  network  model  shows  excellent  performance  in  predicting  gas  and  oil 

fractions  for  well  1,  using wellhead pressures  and GOR as  input  variables.  The plots  in 

Σφάλμα:  Δεν  βρέθηκε  η  πηγή  παραπομπής,  demonstrate  the  model's  precision  and 

consistency,  with  data  points  closely  aligning  with  the  Y=T  line  across  the  training, 

validation and test sets. This high level of alignment and consistency in both training and 

validation sets further confirms the model's precision in its predictions. 

5.7.4 Dataset 4 (Combined) – Neural Net Fitting App

In the fourth scenario for Combined Dataset, a neural network model was constructed to 

predict  hydrocarbon  fractions  for  Well  1.  This  model  leveraged  data  from  two  distinct 

datasets (2 and 3) and featured a two-layer FFNN. The selected input variables encompassed 

150

Figure 5.13 Oil and gas fractions predictions for Well 1 (Watercut model)

Table 5.11 Training results for Watercut model
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wellhead pressures (PWellhead1 and PWellhead2) and the produced GOR, while the output variables 

specifically represented gas and oil fractions for Well 1.

The choice of the Levenberg-Marquardt algorithm as the training method for the neural 

network was based on its  proven effectiveness  in optimizing  complex models.  Given the 

greater abundance of data points and intricate relationships between variables in this dataset, 

a  higher  number  of  30  neurons  were  selected  for  the  feedforward  neural  network.  This 

architectural decision aimed to facilitate precise forecasts by allowing the model to capture 

and represent the intricacies within the data effectively.

To  assess  the  model's  performance,  a  random  data  division  approach  was  utilized, 

dividing the dataset into three subsets: training, validation and test sets. This division ensured 

that  the  model's  ability  to  generalize  to  unseen  data  was  evaluated  while  preventing 

overfitting.

The model demonstrated outstanding performance in predicting gas and oil fractions for 

Well 1, evident from the notably low Mean Squared Error values across all three subsets 

(Table 5.12). Specifically, the training set exhibited an impressively low MSE of 2.2951e-06, 

signifying the model's effective capture of the underlying relationships within the training 

data. The correlation coefficient value of 1.0000 in the training set indicates a strong positive 

linear relationship between the predicted values and the actual values.

In the validation set, the MSE of 3.7141e-06 and the correlation coefficient value of 

1.0000 demonstrate  the  model's  ability  to  generalize  well  to  unseen data.  Although it  is 

important  to  note  that  a  correlation  coefficient  of  1.0000  may  not  provide  a  complete 

assessment of the model's performance, it does indicate a strong linear relationship between 

the predicted values and the actual values in the validation set. For the test set, the MSE of 

4.7601e-06 and the correlation coefficient value of 0.9999 provide further evidence of the 

model's accuracy.

Observations MSE R
Training 536 2.2951e-06 1.0000

Validation 179 3.7141e-06 1.0000
Test 179 4.7601e-06 0.9999

Table 5.12 Training results for Combined model

The  neural  network  model  exhibits  remarkable  accuracy  in  forecasting  gas  and  oil 

fractions  for  well  1,  using  wellhead  pressures  and  GOR  as  inputs.  The  graphical 

representations in Σφάλμα: Δεν βρέθηκε η πηγή παραπομπής provide clear evidence of the 

model's consistency and reliability across all datasets, including the training set, validation 

151



Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

set, test set and overall dataset. The data points closely aligning with the Y=T line in the plot 

affirm the model's precision and further validate its performance in capturing the underlying 

relationships between the input and output variables.

Chapter 6 Conclusions

This thesis has demonstrated the remarkable potential of a simplified approach to phase 

separation in subsea well networks. Through the utilization of merely two wells and the sole 

reliance  on total  production  measurements  from a separator  and the pressure on the two 

wellheads, complete phase separation was achieved without the necessity for subsea metering 
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Figure 5.14 Oil and gas fractions predictions for Well 1 (Combined model)
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equipment.  The  encountered flowrate  errors,  measured  at  a  mere  2%,  underscore  the 

effectiveness of the proposed methodology.

The virtual multiphase flow meters implemented in this thesis underwent examination 

across  various  scenarios,  encompassing  cases  with  identical  fluids,  differing  fluid 

compositions, as well as those with differing pressures. Across all scenarios, all the machine 

learning models exhibited excellent performance. Notably, among the models tested, neural 

networks consistently emerged as the most effective solution.  Their  superior performance 

underscores  their  suitability  for  addressing  the  complexities  inherent  in  multiphase  flow 

metering within the oil and gas industry.

The demonstrated effectiveness of the simplified approach to phase separation in subsea 

well  networks suggests its  potential  scalability  to accommodate larger  and more intricate 

production systems. In the future, as operations expand to encompass more complex systems, 

such as subsea networks comprising of more wells or additional drain zones per well, the 

methodologies  presented  in  this  study  will  need  to  be  adapted  accordingly.  Given  the 

experience gained from this study, there is confidence in the ability to build upon and expand 

these methodologies to address the challenges posed by future developments in the field.

Ideally, the insights gained from this thesis could lead to the development of software 

beyond  the  capabilities  of  Pipesim,  specifically  tailored  to  address  the  challenges  of 

multiphase flow metering in subsea fields. Such software could offer enhanced specificity 

and  accuracy,  potentially  revolutionizing  the  field  of  subsea  production  optimization. 

However, to realize this vision, it is imperative to prioritize the validation and refinement of 

the methodologies proposed in this thesis using real data, ensuring their effectiveness and 

reliability in practical scenarios.
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