

ΓΕΩΛΟΓΙΑΣ

ΑΡΚΟΥΛΑΚΗ ΕΛΕΝΗ

ΓΕΩΤΕΧΝΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΘΕΜΕΛΙΩΣΗΣ ΚΑΙ ΑΝΤΙΣΤΗΡΙΞΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΚΤΙΡΙΟΥ ΚΑΙ ΥΠΟΣΤΑΘΜΟΥ ΣΤΟ ΠΑΓΚΡΑΤΙ, ΑΤΤΙΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ 'ΕΦΑΡΜΟΣΜΕΝΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΛΟΓΙΑ' ΚΑΤΕΥΘΥΝΣΗ: 'ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ'

ΘΕΣΣΑΛΟΝΙΚΗ 2024

Ψηφιακή βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

ΕΛΕΝΗ ΑΡΚΟΥΛΑΚΗ Πτυχιούχος Γεωλόγος

ΓΕΩΤΕΧΝΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΘΕΜΕΛΙΩΣΗΣ ΚΑΙ ΑΝΤΙΣΤΗΡΙΞΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΚΤΙΡΙΟΥ ΚΑΙ ΥΠΟΣΤΑΘΜΟΥ ΣΤΟ ΠΑΓΚΡΑΤΙ, ΑΤΤΙΚΗΣ

Υποβλήθηκε στο Τμήμα Γεωλογίας,

Τομέα Εφαρμοσμένης Γεωλογίας, Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας στα πλαίσια του Προγράμματος Μεταπτυχιακών Σπουδών 'Εφαρμοσμένη και Περιβαλλοντική Γεωλογία', Κατεύθυνση 'Τεχνική Γεωλογία και Περιβάλλον'

Ημερομηνία Προφορικής Εξέτασης: 19/02/2024

Τριμελής Εξεταστική Επιτροπή

Δρ. Παπαθανασίου Γ. Αναπληρωτής Καθηγητής ΑΠΘ, Επιβλέπων Δρ. Μακεδών Θ. ΕΔΙΠ Τεχνικής Γεωλογίας ΑΠΘ Δρ. Μαρίνος Β. Επίκουρος Καθηγητής ΕΜΠ

© Αρκουλάκη Ελένη, Γεωλόγος, 2024 Με την επιφύλαξη κάποιων δικαιωμάτων ΓΕΩΤΕΧΝΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΘΕΜΕΛΙΩΣΗΣ ΚΑΙ ΑΝΤΙΣΤΗΡΙΞΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΚΤΙΡΙΟΥ ΚΑΙ ΥΠΟΣΤΑΘΜΟΥ ΣΤΟ ΠΑΓΚΡΑΤΙ ΑΤΤΙΚΗΣ– Μεταπτυχιακή Διπλωματική Εργασία Το έργο παρέχεται υπό τους όρους Creative Commons CC BY-NC-SA 4.0.

© Arkoulaki Eleni, Geologist, 2024

Some rights reserved.

Geotechnical investigation and design of foundation and support for the construction of a building and substation in Pagrati, Athens – *Master Thesis*

The work is provided under the terms of Creative Commons CC BY-NC-SA 4.0.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας

εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό.

Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη

κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Ερωτήματα που αφορούν τη χρήση της εργασία, για κερδοσκοπικό σκοπό

πρέπει να απευθύνονται προς το συγγραφέα. Οι απόψεις και τα συμπεράσματα

που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευτεί ότι εκφράζουν τις επίσημες θέσεις του Α.Π.Θ.

Περιεχόμενα

Προλογος	I
Περίληψη	2
Abstract	3
1. Αντικείμενο εργασίας	4
2. Μεθοδολογία	5
2.1 Εργαστηριακές δοκιμές	9
2.1.1 Δοκιμή προσδιορισμού υγρασίας	9
2.1.2 Δοκιμή προσδιορισμού φαινόμενου βάρους	10
2.1.3 Δοκιμή προσδιορισμού ορίων Atterberg	11
2.1.4 Κοκκομετρική ανάλυση	12
2.1.5 Ανάλυση με αραιόμετρο	15
2.1.6 Δοκιμή μονοδιάστατης στερεοποίησης	18
2.1.7 Δοκιμή άμεσης βραδείας προστερεοποιημένης διάτμησης	19
2.1.8 Δοκιμή σημειακής φόρτισης	21
2.2 Επί τόπου πρότυπη δοκιμή διείσδυσης (SPT)	22
2.3 Υπολογισμός παραμέτρων για περιπτώσεις σεισμικής φόρτισης	24
2.3.1 Επιδεκτικότητα έναντι ρευστοποίησης	24
2.4 Υπολογισμός φέρουσας ικανότητας εδάφους θεμελίωσης	26
2.5 Υπολογισμός καθιζήσεων	35
2.5.1 Ελαστικές καθιζήσεις	35
2.5.2 Καθιζήσεις λόγω στερεοποίησης	38
2.5.3 Μέθοδος Burland και Burbidge	39
2.6 Μέθοδοι ανάλυσης ευστάθειας εκσκαφών	40
3. Ευρύτερη περιοχή μελέτης	43
3.1 Γεωλογία ευρύτερης περιοχής	43
3.1.1 Σχιστόλιθοι Αθηνών	47
3.2 Σεισμοτεκτονική ευρύτερης περιοχής	48
3.3 Γεωμορφολογία – Υδρογραφικό δίκτυο ευρύτερης περιοχής	52
4. Θέση έργου	54
4.1 Γεωλογία θέσης έργου	58
4.2 Σεισμοτεκτονική - Παράμετροι σεισμικής επικινδυνότητας θέσης έργου	60
4.3 Μορφολογία - Υδρογεωλογία θέσης έργου	60
5. Γεωτεχνική έρευνα θέσης έργου	62
5.1 Πρόγραμμα ερευνητικών εργασιών	62
5.1.1 Δειγματοληπτική γεώτρηση	62
5.1.2 Δειγματοληψία	63

Ψηφιακή συλλογή Βιβλιοθήκη	
5.1.3 Επί τόπου πρότυπη δοκιμή διείσδυσης	64
5.1.4 Παρακολούθηση στάθμης υπόγειων υδάτων	64
5.2 Στρωματογραφία θέσης έργου	65
5.3 Χαρακτηριστικά στρωμάτων θέσης έργου	69
5.3.1 Φυσικές ιδιότητες στρωμάτων	69
5.3.2 Μηχανικές ιδιότητες στρωμάτων	70
5.3.3 Επιδεκτικότητα έναντι ρευστοποίησης	70
5.4 Γεωτεχνικό προφίλ θέση μελέτης	71
6. Γεωτεχνικοί έλεγχοι θεμελίωσης	73
6.1 Φέρουσα ικανότητα – Επιτρεπόμενη τάση σχεδιασμού	73
6.2 Αναμενόμενες καθιζήσεις	75
7. Γεωτεχνικοί έλεγχοι ευστάθειας εκσκαφών	
7.1 Αναλύσεις ευστάθειας εκσκαφών	
7.2 Εξεταζόμενα μέτρα αντιστήριξης	
8. Καθιζήσεις όμορων κτιρίων λόγω πτώσης υδροφόρου ορίζοντα	95
9. Συμπεράσματα	97
Βιβλιογραφία	

- Παράρτημα Α: Μητρώο γεώτρησης Συγκεντρωτικοί πίνακες αποτελεσμάτων
- Παράρτημα Β: Αποτελέσματα εργαστηριακών δοκιμών
- Παράρτημα Γ: Φωτογραφική αποτύπωση
- Παράρτημα Δ: Αναλυτικά αποτελέσματα γεωτεχνικών ελέγχων θεμελίωσης
- Παράρτημα Ε: Αναλυτικά αποτελέσματα γεωτεχνικών ελέγχων ευστάθειας πρανών

Παράρτημα ΣΤ: Υπολογιστικοί έλεγχοι διαστασιολόγησης μέτρων αντιστήριξης

Λίστα Εικόνων

Εικόνα 1: Ενιαίο σύστημα ταξινόμησης εδαφών USCS (ASTM D-2487)13
Εικόνα 2: Μοντέλο επιφάνειας αστοχίας κατά Prandtl (1920)28
Εικόνα 3: Νομογράφημα εύρεσης συντελεστών φέρουσας ικανότητας για γενική θραύσης (N_c , N_q , N_γ)
και για τοπική θραύση (N' _c , N' _q , N' _γ) (Terzaghi 1955)30
Εικόνα 4: Διαγράμματα εύρεσης συντελεστών I1 και I2 για ελαστικές καθιζήσεις (Janbu and Bjerrum,
1956)
Εικόνα 5: Διάγραμμα υπολογισμού συντελεστή βάθους I_F ή F_3
Εικόνα 6: Νομογράμματα υπολογισμού συντελεστών μ ₀ , μ ₁ (Βαλαλάς, 1977)
Εικόνα 7: Κατακόρυφη ζώνη i μιας επιφάνειας αστοχίας κατά Janbu (1954) και οι ασκούμενες σε αυτή
τάσεις
Εικόνα 8: Διάγραμμα υπολογισμού του συντελεστή διόρθωσης f_0 (Janbu, 1954)43
Εικόνα 9: Απεικόνιση γεωτεκτονικών ενοτήτων του Λεκανοπεδίου των Αθηνών. β-γ) Λεπτομερείς
χάρτες του δυτικού και κεντρικού Λεκανοπεδίου, αντίστοιχα (Παπανικολάου, 2004)46

0/5	
137	BIBLIOADKD
13A	DIDNICOTINT
DH6	$1 = O = P A \Sigma T O \Sigma'' = V A A A A A A A A A A A A A A A A A A$
No.	Εικονα 10: Απεικονιση επαφών μεταξύ της Ενότητας Αθηνών, της Ενότητας Αλεποβουνίου και του
Nay	Αυτοχθονου Καλυμματος της Αττικής στο λοφο Λιθαρι (Παπαγου). Ο ΑΙ: κρυσταλλικοι ασβεστολίθοι,
0	Sch Al: φυλλιτες ενοτητας Αλεποβουνίου, s: υπερβασικα πετρωματα, M: μαρμαρα ενοτητας Αττικής
	(Παπανικολαου, 2004)
	Eικονά 11. Δοροφορική εικονά Δεκανολεοιου Ασηνάς με τα κορία ενεργά (συνεχομενή γραμμή) και τιθανά συσχά (διακαγομμάτη ασομμά) σάμματα (Pa) και μότης 2002. Const et al. 2004. Const et al.
	2005 (διακεκομμενή γραμμή) ρηγματά (Βαλκανιωτής 2005, Ganas et al. 2004, Ganas et al. 2004, Ganas et al. 2005)
	2005)
	λιθοσοσιοικών πλακών, οι διακεκοιμιώνες κόκκινες νοσιμιές τις ισοβαθείς καμπύλες της ζώνης Wedeti-
	Benjoff (Papazachos et al. 2000) και τα κίτοινα αστέρια τα κύρια ηραιστειακά κέντρα (b) Ιστορική
	σεισμικότητας γύρω από την περιογή της Αθήνας. Τα αστέρια υποδεικυύουν τα επίκεντρα σεισμών
	$\mu_{\rm ext}$ $M > 6.0$ katá th Siáokeja tov telentajov 300 etóv (Panazachos and Panazacho) 2003). Ol
	μεγεύους $\frac{11}{0}$, κατά τη υπρκεία των τεκευταίων 500 ετών (1 αραζασπου από 1 αραζασπού 2005). Οτ μηγανισμοί χένεσης μποδεικυύουν τα τοία πιο ποόσφατα γενονότα. Οι σκιανοαφημένη περιογή τη
	μητοοπολιτική περιοχή της Αθήνας και η κόκκινη νοαιμή το ρήνιμα αποκόλλησης μεταξή των
	μητροποιτική πορτοχή της ποιγίας και η κοικκιτή γραμμή το ρηγμα αποκοιπησης μοτάξο των
	του Εθνικού Σεισμολογικού Δικτύου της Ελλάδας (HUSN). Κόκκινα τοίνωνα: σεισμολογικοί σταθμοί
	(Konstantinou et al. 2020)
	Εικόνα 13: Γεωλονικός και τεκτονικός γάρτης βασισμένος στην εφαρμονή βαρυτικών μεθόδων από
	τ ovc Dilalos et al. (2019)
	Εικόνα 14: (a) Χάρτης των ρηγμάτων της ευρύτερης περιογής της Αθήνας όπως καθορίστηκαν από τη
	μελέτη των Konstantinou et al. (2020). (b) Χάρτης των ρηγμάτων της ευρύτερης περιοχής της Αθήνας
	μαζί τα επίκεντρα των σεισμών. Οι μηγανισμοί γένεσης αναπαριστούν τα τέσσερα μεγαλύτερα
	γεγονότα σύμφωνα με το Εθνικό Αστεροσκοπείο Αθηνών (NOA)
	Εικόνα 15: Υψομετρικός χάρτης ευρύτερης περιοχής μελέτης
	Εικόνα 16: Χάρτης κλίσεων ευρύτερης περιοχής μελέτης
	Εικόνα 17: Δορυφορική απεικόνιση γεωγραφικής θέσης έργου στο λεκανοπέδιο της Αθήνας
	Εικόνα 18: Γεωγραφική θέση έργου55
	Εικόνα 19: Φωτογραφική απεικόνιση θέσης μελέτης (Χατζηγώγος 2023)56
	Εικόνα 20: Δορυφορική εικόνα θέσης έργου (Χατζηγώγος 2023)
	Εικόνα 21: Απόσπασμα τοπογραφικού διαγράμματος οικοπέδου μελέτης (Χατζηγώγος 2023)57
	Εικόνα 22: Κατασκευαστική τομή έργου. Προβλεπόμενες εκσκαφές θεμελίωσης και υποσταθμού
	(Χατζηγώγος 2023)
	Εικόνα 23: Ψηφιακός γεωλογικός χάρτης περιοχής μελέτης (Μπορονκάυ Κ.)
	Εικόνα 24: Γεωλογικός – Τεκτονικός χάρτης Λεκανοπεδίου Αθηνών (Παπανικολάου et al. 2002). Με
	κόκκινο τετράγωνο απεικονίζεται η θέση μελέτης61
	Εικόνα 25: Χάρτης ζωνών σεισμικής επικινδυνότητας Ελλάδος (ΦΕΚ 1154Β', 12-8-2003)62
	Εικόνα 26: Εκτέλεση της δειγματοληπτικής γεώτρησης στη θέση του έργου (Χατζηγώγος 2023)63
	Εικόνα 27: Τοποθέτηση πιεζομέτρου (Χατζηγώγος 2023)65
	Εικόνα 28: Αντιπροσωπευτικό δείγμα του στρώματος S167
	Εικόνα 29: Αντιπροσωπευτικό δείγμα του στρώματος W167
	Εικόνα 30: Αντιπροσωπευτικό δείγμα του στρώματος R167
	Εικόνα 31: Στρωματογραφική τομή γεώτρησης Γ1 στη θέση του έργου
	Εικονα 32: Στρωματογραφια θέσης εργου
	Εικονα 33: Ι ραφικα αποτελεσματα υπολογισμού φερουσας ικανότητας κτιρίου με πεδιλοδοκό πλάτους
	B = 1,4m και βαθος θεμελιωσης D=4.65m σε συνθηκες αποστραγγισης, με το λογισμικό LoadCup/4
	Εικονα 34: 1 ραφικα αποτελεσματα υπολογισμου φερουσας ικανότητας υποσταθμού με κοιτόστρωση
	πλατους $B = 3.9m$ και βαθος θεμελιωσης $D = 4.45m$ σε συνθηκες αποστραγγισης, με το λογισμικό
	LuauCup
	Eικονα 55. Διαγραμμα παραμειρικού υπολογισμού καυιζησεών κτιρίου για πεσιλοσοκο $B = 1,40$ με
	το πογισμικό LoadCup

Ψηφιακή συλλογή
BIDNIUUIIKI
ΘΕΟΦΡΑΣΤΟΣ"
Εικόνα 36: Διάγραμμα παραμετρικού υπολογισμού καθιζήσεων υποσταθμού για κοιτόστρωση
$B^2=3,90m$ με το λογισμικό LoadCup
Εικόνα 3/: Κάτοψη μοντέλου υπολογισμού καθιζήσεων του κτιρίου και του υποσταθμού στο λογισμικό
Settle3D. Η γαλάζια σκιαγράφηση (Strip 1-5) απεικονίζει τις πεδιλοδοκούς, η μπλε τα επιχώματα και η
πρασινη (Mat) την κοιτόστρωση
Εικόνα 38: Τρισδιάστατο μοντέλο στο οποίο απεικονίζονται η εκσκαφή, τα θεμέλια, τα επιχώματα και
τα στρωματα πανώ στα οποία εγίνε η εδραίωση των θεμελίων (Settle3D)
Eικονα 39: Αποτελεσματά υπολογισμου καθιζησεών με το λογισμικό Settle3D
Εικονα 40: Κατοψη μοντελου υπολογισμου καθιζησεών του κτιριού και του υποσταθμού στο λογισμικο
SettleSD για το σεναρίο του υπογείου. Η γαλαζία σκιαγραφήση (Sirip 1-5) απεικονίζει τις
πεοιλοσοκούς, η μπλε την πλακά ράσης και η πράσινη (Mai) την κοιτοστρώση
Ekova 41. Ipioolaotato μ ovieno oto onolo anekovigoviai ij ekoka ψ ij, ta oe μ enia kai ij nnaka
εορασης των σεμελιών για το σεναριό με το υπογείο (SettlesD)
EKOVA 42. ANOTENEOMATA UNONOVIOMOU KAUGIJOE ω V με το λογισμικό Settle3D για το σεναρίο με το
οπογείο
Ekova 43. Katowi $\mu ovienou onovojio \mu o v kati \mu o v novoji o \mu o v novoji o \mu o v kati \mu o v novoji o \mu o v novoji o \mu o v kati \mu o v novoji o \mu o v no \mu o v no \mu $
σκιανοάφηση απεικονίζει τις πεδιλοδοκούς η άσποη την πλάκα βάσης και η ποάσινη (Mat) την
κοιτόστρωση
Εικόνα 44 Τρισδιάστατο μοντέλο στο οποίο απεικονίζονται η εκσκαφή, τα θεμέλια και η πλάκα
έδρασης των θεμελίων για το σενάριο με το υπόγειο και με προσθήκη επιπλέον κάθετων πεδιλοδοκών
(Settle3D)
Εικόνα 45: Αποτελέσματα υπολογισμού καθιζήσεων με το λογισμικό Settle3D για το σενάριο με το
υπόγειο και με προσθήκη επιπλέον κάθετων πεδιλοδοκών
Εικόνα 46: Τομή θεμελίωσης όμορης οικοδομής προς τα νοτιοδυτικά (Χατζηγώγος, 2023)83
Εικόνα 47: Ανάλυση ευστάθειας ορύγματος 1 με το λογισμικό Slide
Εικόνα 48: Ανάλυση ευστάθειας ορύγματος 2 με το λογισμικό Slide
Εικόνα 49:Ανάλυση ευστάθειας ορύγματος 3 με το λογισμικό Slide
Εικόνα 50: Ανάλυση ευστάθειας ορύγματος 4 με το λογισμικό Slide
Εικόνα 51: Διατομή μικροπασσάλου Φ250mm W130X2490
Εικόνα 52: Ανάλυση ευστάθειας ορύγματος 1 με το λογισμικό Slide και με εφαρμογή των μέτρων
αντιστήριξης
Εικόνα 53: Ανάλυση ευστάθειας ορύγματος 2 με το λογισμικό Slide και με εφαρμογή των μέτρων
αντιστήριξης
Εικόνα 54: Ανάλυση ευστάθειας ανατολικού τμήματος ορύγματος 3 με το λογισμικό Slide και με
εφαρμογη των μετρων αντιστηριζης92
Εικονα 55: Αναλυση ευσταθειας δυτικου τμηματος ορυγματος 3 με το λογισμικο Slide και με εφαρμογη
των μετρων αντιστηριζης
Εικονά 56: Αναλυση ευσταθείας ορυγματος 4 με το λογισμικό Shae και με εφαρμογή των μετρών
avitornpicnc
EKOVA $5/$: I εωτεχνική τομή σχεσιασμού μετρων αντιστήριζης
Εικόνα 58: Κατοψή εξεταξομένων μετρών αντιστήριζης
Εικόνα 57. Καθιζήσεις 800 μήνες μετά την κατασκευή του κτιρίου Α
ορίζοντα
Εικόνα 61: Διάγραμμα απεικόνισης πορείας καθιζήσεων του κτιρίου Α. Το κόκκινο πλαίσιο περιβάλει
το τμήμα της καμπύλης που απεικονίζεται λεπτομερέστερα στην Εικόνα 62
Εικόνα 62: Τμήμα καμπύλης της πορείας των καθιζήσεων κτιρίου Α, που περιεβάλλεται στο κόκκινο
πλαίσια στην Εικόνα 6197

ΕΟΦΡΑΣΤΟΣ" Τμήμα Γεωλογίας Α.Π.Θ Λίστα Πινάκων

Ψηφιακή συλλογή Βιβλιοθήκη

Πίνακας 1: Μέγιστη διάμετρος κόκκων (do) σε αιώρηση κάτω από δεδομένες συνθήκες κατά
A.A.S.H.O
Πίνακας 2: Σύνθετες διορθώσεις επί των ενδείξεων που διαβάζονται στο πρότυπο, κατά Α.Α.S.Η.Ο.,
υδρόμετρο εδάφους 152 Η, για τις αναγραφόμενες θερμοκρασίες και διαλύματα διασποράς, ώστε να
γίνει αναγωγή αυτών σε ενδείξεις μέσα σε αποσταγμένο νερό θερμοκρασίας 20 °C16
Πίνακας 3: Τιμές παράγοντα K_L για πυκνόμετρο 152 Η κατά Α.Α.S.Η.Ο
Πίνακας 4: Τιμές συντελεστή διόρθωσης KG συναρτήσει του ειδικού βάρους του εδάφους και τιμές
συντελεστή διόρθωσης K_n συναρτήσει της θερμοκρασίας κατά A.A.S.H.O17
Πίνακας 5: Τιμές σχετικής πυκνότητας και γωνίας εσωτερικής τριβής σε σχέση με τον αριθμό N _{SPT}
(Terzaghi και Peck, 1948)
Πίνακας 6: Τιμές συνεκτικότητας εδάφους σε σχέση με τον αριθμό N _{SPT} (Terzaghi και Peck, 1948). 23
Πίνακας 7: Τιμές παραμέτρου S για τις τυποποιημένες κατηγορίες εδάφους του EC825
Πίνακας 8: Κατηγορίες εδαφών κατά τον ΕΝ 1998-1
Πίνακας 9: Τιμές των συντελεστών Ne Ng Ny συναρτήσει της γωνίας εσωτερικής τριβής για γενική
θραύση) (Terzaghi 1955)
Πίνακας 10: Τιμές των συντελεστών Ν' N' N' συναρτήσει της γωνίας εσωτερικής τριβής για τοπική
θραύση) (Terzaghi 1955)
Πίνακας 11: Τιμές συντελεστή d_c ανάλογα με τα χαρακτηριστικά του θεμελίου και για φ=0°32
Πίνακας 12: Τιμές συντελεστών Ι1 και Ι2, για τον υπολογισμό του συντελεστή επιρροής Is του
Steinbrenner, για διάφορες τιμές των λόγων N=H/B' και M=L/B (Steinbrenner 1934)
Πίνακας 13: Μηγανικές παράμετροι στρωμάτων στη θέση του έργου, όπως προέκυψαν από την επί
τόπου πρότυπη δοκιμή διείσδυσης
Πίνακας 14: Κύριες φυσικές ιδιότητες εδαφικών στρωμάτων
Πίνακας 15: Δευτερεύουσες φυσικές ιδιότητες εδαφικών στρωμάτων
Πίνακας 16: Μηγανικά γαρακτηριστικά εδαφικών στρωμάτων
Πίνακας 17: Αποτελέσματα δοκιμής σημειακής φόρτισης
Πίνακας 18: Συγκεντρωτικός πίνακας μηγανικών παραμέτρων των στρωμάτων στη θέση του έργου,
όπως προέκυψαν από την επί τόπου πρότυπη δοκιμή διείσδυσης και από τις εργαστηριακές δοκιμές.
Πίνακας 19: Τελικές γεωτεχνικές παράμετροι σχεδιασμού υπεδάφους στη θέση του έργου71
Πίνακας 20: Αποτελέσματα παραμετρικού υπολογισμού καθιζήσεων κτιρίου για πεδιλοδοκό Β'=1,40m
με το λογισμικό LoadCup
Πίνακας 21: Αποτελέσματα παραμετρικού υπολογισμού καθιζήσεων για κοιτόστρωση B'=3.90m με το
λογισμικό LoadCup
Πίνακας 22: Γεωμετοικά γαρακτηριστικά πρανών εκσκαφής
Πίνακας 23: Αποτελέσματα ανάλυσης ευστάθειας πραγών εκσκαφής
Πίνακας 24: Χαρακτηριστικά μικροπασσάλων που σχεδιάστηκαν στο λονισμικό RSPile και
συντελεστές ασφαλείας κατά την εφαρμονή τους στο βορειοανατολικό και νοτιοδυτικό πραγές με
διαξονική απόσταση 1m και μήκος πασσάλου 9.25m και 5.25m για τα δύο πρανή αντίστοιγα
Πίνακας 25: Χαρακτηριστικά πασσάλων τύπου ΗΕΑ (ΛΙΑΠΡΟΜΕΤΑΛ Α.Ε.)
Πίνακας 26: Αποτελέσματα ευστάθειας για τους δύο τελικούς τύπους πασσάλων και για διάφορες
διαξονικές αποστάσεις
Πίνακας 27: Αποτελέσματα ευστάθειας για το νοτιοανατολικό ποανές επί της οδού Αρητής 90
Πίνακας 28: Συγκεντρωτικός πίνακας τελικών μέτρα αντιστήριξης για τα τέσσερα πρανή

Πρόλογος

Στα πλαίσια του μεταπτυχιακού προγράμματος σπουδών «Εφαρμοσμένη και Περιβαλλοντική Γεωλογία», του τμήματος Γεωλογίας του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης, εκπονήθηκε η παρούσα διπλωματική εργασία, με θέμα τη γεωτεχνική διερεύνηση και τον σχεδιασμό θεμελίωσης και αντιστήριξης για την κατασκευή νέου κτιρίου και υποσταθμού στο Παγκράτι, Αττικής.

Με την ολοκλήρωση της μεταπτυχιακής διπλωματικής μου εργασίας θα ήθελα να ευχαριστήσω όλους όσους συνέβαλλαν στην εκπόνησή της. Ευχαριστώ θερμά τον επιβλέπων καθηγητή μου κ. Παπαθανασίου Γεώργιο, Αναπληρωτή Καθηγητή του Τμήματος Γεωλογίας του ΑΠΘ, για την επίβλεψη, τις χρήσιμες συμβουλές και τη διαθεσιμότητα του όλο αυτό το διάστημα.

Επίσης, να ευχαριστήσω ιδιαίτερα τον Δρ. Νικόλαο Χατζηγώγο, για τη διαρκή υποστήριξη και καθοδήγησή του, για την ηθική συμπαράσταση που μου παρείχε, αλλά και τον πολύτιμο χρόνο που μου αφιέρωσε. Η συμβολή του στην ολοκλήρωση της διπλωματικής μου ήταν ανεκτίμητη.

Τέλος, θα ήθελα να εκφράσω την ευγνωμοσύνη μου στην οικογένειά μου και τους φίλους μου για τη στήριξη, τη συμπαράσταση και την κατανόηση που έδειξαν όλο αυτό το διάστημα. Ο καθένας με βοήθησε με τον δικό του τρόπο και όλοι τους έχουν συμβάλλει σε αυτή την εργασία.

Περίληψη

Ψηφιακή συλλογή

Βιβλιοθήκη

Η παρούσα διπλωματική εργασία έχει ως θέμα τη γεωτεχνική διερεύνηση και τον σχεδιασμό θεμελίωσης νέου κτιρίου και υποσταθμού του ΔΕΔΔΗΕ, καθώς και το σχεδιασμό της αντιστήριξης των απαιτούμενων εκσκαφών, στο Παγκράτι, Αττικής. Πιο συγκεκριμένα, θα αναλυθεί η μεθοδολογία εργασίας για την κατασκευή επταώροφου κτιρίου σε υπέδαφος που αποτελείται, από τα ανώτερα προς τα βαθύτερα στρώματα, από πυκνή αργιλοϊλυώδη άμμο με εμφανή υπολειμματική δομή από την αποσάθρωση του σχιστολιθικού υποβάθρου, εδαφοποιημένο ψαμμίτη και ασθενή Αθηναϊκό Σχιστόλιθο, έντονα αποσαθρωμένο, κατακερματισμένο και με φυλλώδη δομή. Για το αναφερόμενο έργο έχει εκτελεστεί, στα πλαίσια μελέτης, επί τόπου γεωτεχνική έρευνα και για την εκπόνηση της παρούσας διπλωματικής παραχωρήθηκαν από τον αρμόδιο μελετητή το τοπογραφικό σχέδιο του κτιρίου, η κατασκευαστική τομή, καθώς και τα αποτελέσματα δειγματοληπτικής γεώτρησης.

Στα κεφάλαια που ακολουθούν θα αναφερθούν λεπτομερώς το αντικείμενο της διπλωματικής (Παράγραφος 1), οι μέθοδοι και οι εργαστηριακές δοκιμές, που εφαρμόστηκαν και πραγματοποιήθηκαν στα πλαίσια της, καθώς και οι διαδικασίες υπολογισμού των απαραίτητων παραμέτρων για τη ολοκληρωτική κάλυψη του γεωτεχνικού περιεχομένου (Παράγραφος 2). Επιπροσθέτως, θα αναλυθούν η γεωλογία, η σεισμοτεκτονική, η μορφολογία και η υδρογεωλογία του λεκανοπεδίου Αθηνών, ως ευρύτερη περιοχή μελέτης (Παράγραφος 3), καθώς και της θέσης του έργου (Παράγραφος 4). Στην Παράγραφο 5 θα προσδιοριστούν οι φυσικές και μηχανικές ιδιότητες των στρωμάτων στην θέση ενδιαφέροντος και αφότου δημιουργηθεί το γεωτεχνικό προφίλ, θα αρχίσει το κομμάτι των γεωτεχνικών αναλύσεων.

Το κομμάτι των γεωτεχνικών αναλύσεων αφορά τον υπολογισμό της φέρουσας ικανότητας και της επιτρεπόμενης τάσης σχεδιασμού για τον προτεινόμενο τύπο θεμελίωσης, με το λογισμικό LoadCup της εταιρίας Geostru, όπως και την εκτίμηση των αναμενόμενων καθιζήσεων με το λογισμικό Settle3D της εταιρίας RocScience (Παράγραφος 6). Έπειτα, θα αναφερθούν οι αναλύσεις ευστάθειας έναντι κυκλικών ολισθήσεων, που πραγματοποιήθηκαν στα πρανή των εκσκαφών, με το λογισμικό Slide της εταιρίας RocScience και τα μέτρα αντιστήριξης που εξετάστηκαν σε κάθε περίπτωση (Παράγραφος 7). Τα μέτρα αντιστήριξης που μελετήθηκαν και εφαρμόστηκαν είναι μικροπάσσαλοι, οι οποίοι σχεδιάστηκαν με το λογισμικό RSPile της εταιρίας RocScience και διαμόρφωση της κλίσης των εκσκαφών.

Τέλος, εξετάστηκε η επίδραση της πτώσης της στάθμης του υπόγειου υδροφόρου ορίζοντα στα γειτονικά κτίρια, με το λογισμικό Settle3D της εταιρίας RocScience (Παράγραφος 8). Η

μεταβολή της στάθμης είναι επιτακτική για την πραγματοποίηση των εργασιών, χωρίς την εισροή υδάτων και με τη μελέτη της επιτυγχάνεται η αντιμετώπιση των παραμορφώσεων που ίσως προκύψουν. Αφού έχουν εξετασθεί και αναλυθεί όλα τα παραπάνω, διεξάγονται τα τελικά συμπεράσματα για τον τύπο της θεμελίωσης, τα μέτρα αντιστήριξης και τα μέτρα προστασίας του έργου.

Ψηφιακή συλλογή

Βιβλιοθήκη

Abstract

The present master thesis refers to the geotechnical investigation and design of foundation of a building and substation, as well as the support of excavations, in Pagrati, Athens. More specifically, this thesis concerns the construction of a seven-storey building in a subsoil consisting, from the upper to the deeper layers, from dense clayey-silty sand with obvious residual structure, sandstone with soil-like texture and weak Athenian Schist strongly decomposed, fractured and with dense schistosity. For the mentioned project an on-site geotechnical survey has been carried out within the framework of a study and in order to carry out this thesis, the topographical plan of the building, the construction section, as well as the results of a sampling borehole were provided by the responsible geologist.

In the following chapters, the scope of the thesis (Paragraph 1), the methods and laboratory tests, that were applied, are detailing, as well as the procedures for calculating the necessary parameters for the complete coverage of the geotechnical content (Paragraph 2). In addition, the geology, the seismotectonics, the morphology and the hydrogeology of the Athens basin will be analyzed, as the wider study area (Paragraph 3), as well as of the project's location (Paragraph 4). In chapter 5, the physical and mechanical properties of the strata in the location of interest will be determined and after the geotechnical profile has been established, the geotechnical analyses will begin.

The geotechnical analyses concern the calculation of the bearing capacity and the design resistance for the proposed foundation type, with the LoadCup software by Geostru, as well as the estimation of the expected settlements with the Settle3D software by RocScience (Paragraph 6). Also, stability analyses against circular failure, carried out on excavations, with the Slide software by RocScience and support measures were proposed where necessary (Paragraph 7). The support measures that were studied and applied are micro piles, designed with the RSPile software by RocScience and sloping.

Finally, the effect of the drop of the groundwater table was examined on the neighboring buildings, using the Settle3D software by RocScience (Paragraph 8). The change in

groundwater level is necessary in order to carry out the works without water ingress. After all the above have been considered and analyzed, conclusions and final recommendations for the type of foundation and support measures were carried out.

1. Αντικείμενο εργασίας

Ψηφιακή συλλογή

Βιβλιοθήκη

Στην παρούσα μεταπτυχιακή διπλωματική εργασία παρουσιάζονται και αξιολογούνται τα αποτελέσματα γεωτεχνικής έρευνας, η οποία πραγματοποιήθηκε στο Παγκράτι, Δήμου Αθηναίων. Σκοπός της έρευνας είναι η διερεύνηση των συνθηκών θεμελίωσης νέου κτιρίου και υποσταθμού του ΔΕΔΔΗΕ (Διαχειριστή Ελληνικού Δικτύου Διανομής Ηλεκτρικής Ενέργειας) επί της οδού Αρητής 50, καθώς και διερεύνηση των συνθηκών ευστάθειας των απαιτούμενων εκσκαφών. Κατά το αρχικό κατασκευαστικό σχέδιο, προβλέπεται κατασκευή επταώροφου κτιρίου με υποσταθμό στο βορειοανατολικό τμήμα του υπογείου και επίχωση του υπόλοιπου υπογείου χώρου, αφότου κατασκευασθεί ο υποσταθμός και η θεμελίωση του κτιρίου. Στην παρούσα μελέτη εξετάζεται εκτός αυτού και η διατήρηση του υπογείου χώρου, για την εκμετάλλευσή του ως χώρου στάθμευσης οχημάτων.

Αναλυτικότερα, αντικείμενο της εργασίας αποτελεί η διερεύνηση και ο προσδιορισμός των συνθηκών του υπεδάφους, που επικρατούν στη θέση θεμελίωσης. Πρωταρχικός στόχος είναι η εκτίμηση των φυσικών και μηχανικών χαρακτηριστικών του υπεδάφους, ώστε να μελετηθεί η μηχανική συμπεριφορά του και να διατυπωθούν τεκμηριωμένες προτάσεις αναφορικά με τον σχεδιασμό της θεμελίωσης. Έπειτα, πραγματοποιούνται έλεγχοι φέρουσας ικανότητας, καθιζήσεων και ευστάθειας εκσκαφών, με στόχο τη διερεύνηση πιθανών απαιτούμενων μέτρων βελτίωσης-προστασίας των έργων. Εκτός από τα παραπάνω, γίνεται διερεύνηση και άλλων πιθανών γεωτεχνικών κινδύνων, που μπορεί να προκύψουν κατά τη μεταβολή των εντατικών συνθηκών, όπως θέματα σχετικά με την μεταβολή της στάθμης των υπογείων υδάτων, η οποία είναι αναγκαία στην προκειμένη περίπτωση για τον περιορισμό των εισροών

Ο λόγος για τον οποίο εξετάζονται όλα όσα αναφέρθηκαν είναι τα ποικίλα γεωτεχνικά προβλήματα που έχουν προκύψει κατά την κατασκευή διαφόρων έργων ή μετά την ολοκλήρωσή τους. Τα προβλήματα αυτά έχουν οδηγήσει είτε στην ολοκληρωτική καταστροφή του έργου, είτε σε δαπανηρές επισκευές ώστε να τεθεί ξανά σε λειτουργία. Κάποια από τα σημαντικότερα γεωτεχνικά προβλήματα, που είναι πιθανό να προκύψουν, είναι καθιζήσεις, ρευστοποιήσεις, θραύση εδάφους και αστάθεια εκσκαφών. Αυτά συμβαίνουν λόγω της μεταβολής της εντατικής κατάστασης στη θέση παρατήρησής τους, η οποία μπορεί να

οφείλεται σε φυσικά αίτια, όμως τις περισσότερες φορές είναι ανθρωπογενής ο παράγοντας που την προκαλεί. Εκσκαφές, επιχώσεις, επιβολή φορτίων, μεταβολή της στάθμης του υπόγειου νερού, σεισμοί είναι ορισμένες καταστάσεις που οδηγούν σε αλλαγή του εντατικού περιβάλλοντος.

Επομένως, καθίσταται αναγκαίο να πραγματοποιείται γεωτεχνική μελέτη πριν την κατασκευή ενός έργου, με την οποία θα διερευνώνται τα φυσικά και μηχανικά χαρακτηριστικά του εδάφους ή του βραχώδους υποβάθρου στην θέση του έργου. Πλέον με αυτά γνωστά, θα είναι δυνατή η δημιουργία αντιπροσωπευτικών μοντέλων και η προσομοίωση των εντατικών συνθηκών, που επικρατούν στην υπό μελέτη θέση. Με τα μοντέλα αυτά θα είναι δυνατός ο υπολογισμός της φέρουσας ικανότητας, δηλαδή του φορτίου, ανά μονάδα επιφάνειας, κατά την εφαρμογή του οποίου θα προκληθεί θραύση του εδάφους και της επιτρεπόμενης τάσης, δηλαδή του μέγιστου φορτίου που μπορεί να εφαρμοσθεί, χωρίς να προκληθούν μη αποδεκτές παραμορφώσεις στο έδαφος θεμελίωσης (Χρηστάρας, 2011). Επιπροσθέτως, θα είναι εφικτός ο καθορισμός της συμπεριφοράς του εδάφους στις ανερχόμενες τασικές μεταβολές και η ποσοτικοποίηση των ενδεχόμενων καθιζήσεων και διογκώσεων. Παράλληλα, θα είναι δυνατός ο έλεγχος έναντι φαινομένων ρευστοποίησης και ο προσδιορισμός της συμπεριφοράς του εδάφους σε μια ενδεχόμενη δυναμική φόρτιση, λόγω σεισμού ή σε πιθανές μεταβολές της στάθμης των υπογείων υδάτων. Τέλος, στην περίπτωση που διαμορφώνονται εκσκαφές θα πραγματοποιούνται και αναλύσεις ευστάθειας αυτών. Με βάση όλα τα παραπάνω, θα είναι πλέον γνωστά τα ενδεχόμενα γεωτεχνικά προβλήματα, θα μπορούν να προταθούν μέτρα βελτίωσης του εδάφους θεμελίωσης και μέτρα αντιστήριξης των εκσκαφών και θα είναι δυνατός ο σχεδιασμός ενός βιώσιμου έργου.

2. Μεθοδολογία

Ψηφιακή συλλογή

Βιβλιοθήκη

Η γεωτεχνική έρευνα πραγματοποιείται σύμφωνα με των Ευρωκώδικα 7 και τον Ευρωκώδικα 8 για στατικές και σεισμικές συνθήκες, αντίστοιχα. Σύμφωνα με τον Ευρωκώδικα 7 (Geotechnical Design, Part 1, Chapter 2), οι περιπτώσεις θεμελιώσεων κατασκευών ανήκουν στην γεωτεχνική κατηγορία 2, για τα έργα της οποίας απαιτείται ποσοτικοποίηση των γεωτεχνικών δεδομένων και αναλύσεις που διασφαλίζουν τις θεμελιώδεις απαιτήσεις, με υλοποίηση υπαίθριων και εργαστηριακών δοκιμών. Αναλυτικότερα, πρέπει να διευκρινισθούν:

- Η καταλληλότητα του εδάφους στο οποίο θα εδρασθεί το έργο,
- Η δομή των εδαφικών στρώσεων, πετρωμάτων, αλλά και να γίνει ταξινόμησή τους,

- Η ύπαρξη κεκλιμένων επιφανειών στρώσης, ρηγμάτων, ασυνεχειών, ενστρώσεων σκληρών και μαλακών στρωμάτων,
- Η ύπαρξη ορυχείων, σπηλαίων, διακένων με ή χωρίς υλικό πλήρωσης ή άλλων υπογείων κατασκευών και δομών,
- Η φύση του περιβάλλοντος στο οποίο θα κατασκευασθεί το έργο περιλαμβάνοντας διαδικασίες απόπλυσης και εκσκαφής υλικού, διαδικασίες αποσάθρωσης, διάβρωσης, ψύξης, απόψυξης, μεταβολές της στάθμης των υπόγειων υδάτων, ύπαρξη υπόγειων πηγών αερίων,
- Η σεισμική επικινδυνότητα,

Ψηφιακή συλλογή

βιβλιοθήκη

- Η αντοχή της κατασκευής σε παραμορφώσεις,
- Η επίδραση της νέας κατασκευής σε ήδη υπάρχουσες δομές και υπηρεσίες.

Για την ποσοτικοποίηση των γεωτεχνικών δεδομένων και την εξαγωγή του γεωτεχνικού μοντέλου πραγματοποιούνται δειγματοληπτικές γεωτρήσεις σύμφωνα με τις τεχνικές προδιαγραφές δειγματοληπτικών γεωτρήσεων ξηράς E101-83 (ΦΕΚ 363/24.6.83 τεύχος B) και επί τόπου πρότυπες δοκιμές διείσδυσης (SPT) σύμφωνα με τις τεχνικές προδιαγραφές επιτόπου δοκιμών εδαφομηχανικής E106-86 (ΦΕΚ 955/31.12.86 τεύχος B). Έπειτα, τα δείγματα της γεώτρησης υπόκεινται σε πληθώρα εργαστηριακών δοκιμών, σύμφωνα με τις τεχνικές προδιαγραφές εργαστηριακών δοκιμών εδαφομηχανικής E105-84 (ΦΕΚ 955/31.12.86 τεύχος B). Η εργαστηριακή έρευνα, στις περιπτώσεις θεμελίωσης κατασκευών, περιλαμβάνει δοκιμές άμεσης βραδείας προστερεοποιημένης διάτμησης, δοκιμές μονοδιάστατης στερεοποίησης, δοκιμές σημειακής φόρτισης και δοκιμές προσδιορισμού της κοκκομετρίας, του φαινόμενου βάρους, της φυσικής υγρασίας και των ορίων Atterberg των δειγμάτων. Στις παραγράφους που ακολουθούν αναλύονται οι διαδικασίες των ανωτέρω δοκιμών, καθώς και τα κριτήρια επιδεκτικότητας έναντι ρευστοποίησης και ο υπολογισμός του δυναμικού μέτρου διάτμησης.

Συνεχίζοντας με τη γεωτεχνική έρευνα θεμελίωσης, σύμφωνα με τον Ευρωκώδικα 7 υπάρχουν ορισμένες οριακές καταστάσεις, που πρέπει να μελετηθούν κατά τον σχεδιασμό μίας θεμελίωσης. Αυτές είναι η απώλεια συνολικής σταθερότητας, η φέρουσα ικανότητα του εδάφους θεμελίωσης, η αστοχία έναντι ολίσθησης, η συνδυαζόμενη αστοχία εδάφουςκατασκευής, η δομική αστοχία λόγω κίνησης της θεμελίωσης, οι εκτεταμένες καθιζήσεις, η εκτεταμένη διόγκωση και οι μη αποδεκτοί κραδασμοί. Αρχικά, προτείνεται ο τύπος του θεμελίου και τα χαρακτηριστικά του (πλάτος, μήκος, βάθος έδρασης). Για την επιλογή του βάθους της θεμελίωσης πρέπει να ληφθούν υπόψη το βάθος του στρώματος επαρκούς φέρουσας ικανότητας, το βάθος πάνω από το οποίο η συρρίκνωση και η διόγκωση αργιλικών εδαφών μπορεί να προκαλέσουν αισθητές μετακινήσεις, το βάθος πάνω από το οποίο μπορεί να πραγματοποιηθούν αστοχίες λόγω παγετού, το ύψος της στάθμης του υπογείου νερού, η επιρροή των απαιτούμενων εκσκαφών σε ήδη υπάρχουσες κατασκευές, πιθανές μελλοντικές εκσκαφές κοντά στη θεμελίωση, οι θερμοκρασιακές μεταβολές εξαιτίας των κτιρίων και η πιθανότητα μελλοντικών εκσκαφών. Αναφορικά με το πλάτος θεμελίωσης, αυτό πρέπει να σχεδιάζεται ανάλογα με το κόστος των εκσκαφών, τις απαιτήσεις του χώρου εργασίας και τις διαστάσεις του τοίχου ή της κολώνας που θα αντιστηριχθεί. Αφού, προταθεί η θεμελίωση, εξετάζονται οι οριακές καταστάσεις που αναφέρθηκαν.

Ψηφιακή συλλογή

Βιβλιοθήκη

Στις περιπτώσεις θεμελίωσης κατασκευών εξετάζονται η φέρουσα ικανότητα του εδάφους για την προτεινόμενη θεμελίωση, η επιτρεπόμενη τάση και οι αναμενόμενες καθιζήσεις, τόσο για αστράγγιστες συνθήκες, όσο και για συνθήκες αποστράγγισης, καθώς και σε περίπτωση σεισμού. Η απώλεια συνολικής σταθερότητας δεν εξετάζεται όταν η θεμελίωση δεν βρίσκεται σε κεκλιμένη επιφάνεια ή επίχωμα, ούτε κοντά σε εκσκαφή ή τοίχο αντιστήριξης, σε ποτάμι, λίμνη, θαλάσσια ακτή και υπόγειες εκσκαφές. Επίσης, δεν διερευνάται η αστοχία έναντι ολίσθησης, στις περιπτώσεις που το φορτίο ασκείται κατακόρυφα πάνω στη θεμελίωση και η στρωματογραφία στην θέση του έργου είναι οριζόντια.

Αναφορικά με τον τύπο της θεμελίωσης, οι επιφανειακοί τύποι θεμελίωσης, για τους οποίους ισχύει D/B≤1 (όπου D το βάθος της θεμελίωσης και B το πλάτος της), μπορεί να είναι πέδιλα, πεδιλοδοκοί, κοιτοστρώσεις, ή πυκνή σχάρα πεδιλοδοκών (Bowles, 1997). Τα πέδιλα χρησιμοποιούνται σε εδάφη καλής ποιότητας, στα οποία δεν αναμένονται διαφορικές καθιζήσεις, καθώς χαρακτηρίζονται από υψηλές τάσεις έδρασης. Ακολουθούν οι πεδιλοδοκοί και οι κοιτοστρώσεις κατά μειούμενη σειρά τάσεων έδρασης, οι οποίοι προτείνονται σε εδάφη χαμηλότερων μηχανικών χαρακτηριστικών. Επιπροσθέτως, η κοιτόστρωση είναι ιδανική σε περιπτώσεις διαφορικών καθιζήσεων, διότι η ακαμψία της πλάκας της μπορεί να παραλάβει διαφορετικές παραμορφώσεις, σε αντίθεση με την πεδιλοδοκό, ωστόσο λόγω του μεγάλου πλάτους της χαρακτηρίζεται από μεγάλο βάθος επιρροής τάσεων συγκριτικά με τα πέδιλα. Αναφορικά με την πυκνή σχάρα πεδιλοδοκών, αυτή προσομοιάζει την κοιτόστρωση και ταυτόχρονα είναι οικονομικότερη αυτής.

Όσον αφορά στο φαινόμενο των καθιζήσεων, με τον όρο καθίζηση περιγράφεται η επιφανειακή εκδήλωση της κατακόρυφης παραμόρφωσης του εδαφικού υλικού (Craig 2004, Χρηστάρας 2011). Καθιζήσεις παρατηρούνται κατά την εφαρμογή φορτίων στο έδαφος, αλλά

και σε περιπτώσεις πτώσης ή ανόδου της στάθμης του υδροφόρου ορίζοντα και οφείλονται στη διαδικασία της στερεοποίησης (Craig 2004). Με τον όρο στερεοποίηση περιγράφεται η διαδικασία σταδιακής μείωση του όγκου το εδάφους, εξαιτίας εφαρμογής τάσεων σε αυτό. Η μείωση του όγκου οφείλεται κατά κύριο λόγο στην απομάκρυνση του αέρα και του νερού των πόρων και κατά δεύτερο λόγο στην ανακατανομή των κόκκων του εδαφικού υλικού (Craig 2004, Χρηστάρας, 2011). Τα στάδια της στερεοποίησης είναι τρία, κατά τα οποία πραγματοποιούνται άμεσες/ελαστικές καθιζήσεις καθιζήσεις, λόγω στερεοποίησης/οιδημετρικές και δευτερογενείς καθιζήσεις λόγω συνίζησης (Hunt 1984, Καλλέργης και Κούκης 1985, Δημόπουλος 1986, Tsytovich 1986). Οι άμεσες καθιζήσεις στα λεπτόκοκκα-συνεκτικά εδάφη πραγματοποιούνται αμέσως μετά την επιβολή της φόρτισης χωρίς αποστράγγιση του νερού, λόγω απομάκρυνσης του αέρα. Στα χονδρόκοκκα-ψαθυρά εδάφη συμβαίνουν αμέσως μετά την επιβολή της φόρτισης, λόγω της άμεσης αποστράγγισης του νερού των πόρων και αποτελούν την ολική καθίζηση του υλικού. Οι καθιζήσεις λόγω στερεοποίησης πραγματοποιούνται βαθμιαία σε στραγγιζόμενες συνθήκες σε συνεκτικά, λεπτόκοκκα εδάφη έως ότου εξισωθούν οι υπάρχουσες υδραυλικές τάσεις με την πίεση του νερού των πόρων. Στις Παραγράφους 2.4, 2.5 αναλύεται η διαδικασία υπολογισμού τόσο της φέρουσας ικανότητας, όσο και των καθιζήσεων, αντίστοιχα.

Ψηφιακή συλλογή

Βιβλιοθήκη

Περνώντας στη γεωτεχνική έρευνα σχετικά με την ευστάθεια των εκσκαφών, οι αναλύσεις ευστάθειας γίνονται σύμφωνα με τις κλασσικές μεθόδους ανάλυσης, ενώ οι έλεγχοι γίνονται με τους συντελεστές ασφαλείας που ορίζονται στον Ευρωκώδικα 7 σύμφωνα με τον Τρόπο Ανάλυσης 3 (Design Approach DA-3). Οι αναλύσεις εφαρμόζονται για αστράγγιστες συνθήκες, ενώ να σημειωθεί πως η σεισμική επιβάρυνση, καθώς και ο έλεγχος για ανώτατη στάθμη 50-ετίας δεν εξετάζονται, όταν οι εκσκαφές είναι προσωρινές.

Ο Τρόπος Ανάλυσης 3 (DA-3) (Ευρωκώδικας 7) εφαρμόζεται σε συνδυασμό με τις παρακάτω σχέσεις για τις εντάσεις (Ε) και τις αντιστάσεις (R):

 $E_d = E (F_d, X_d) = E (\gamma_F, F_k, X_k/\gamma_M) \quad (2.1)$ $R_d = R (F_d, X_d) = R (\gamma_F, F_k, X_k/\gamma_M) \quad (2.2)$

Όπου F_d=δράση σχεδιασμού, F_k=χαρακτηριστική τιμή δράσης, X_d=εδαφική παράμετρος σχεδιασμού και X_k=χαρακτηριστική τιμή εδαφικής παραμέτρου.

Όταν η δράση F είναι αποσταθεροποιητική (μη ευνοϊκή), τότε ο συντελεστής ασφαλείας που χρησιμοποιείται είναι ο γ_{dst}. Στην αντίθετη περίπτωση, ο συντελεστής ασφαλείας που χρησιμοποιείται είναι ο γ_{stb} (γ_{dst}> γ_{stb}).

Για ευστάθεια του πρανούς πρέπει να ικανοποιείται η Σχέση 2.3 και οι εξής ομάδες επιμέρους συντελεστών ασφαλείας δράσεων και εδαφικών παραμέτρων (γ_F, γ_M) του Παραρτήματος Α του EN1997-1 :

- (A1) για δομικές δράσεις (από την ανωδομή), όπως φορτία κτιρίων και κυκλοφορίας στην επιφάνεια του εδάφους,
- (A2) για δράσεις από το έδαφος (γεωτεχνικές δράσεις), περιλαμβανομένου και του βάρους του εδάφους,
 - (M2) για τις εδαφικές παραμέτρους.

Ψηφιακή συλλογή

Βιβλιοθήκη

 $E_d \leq R_d \rightarrow E(\gamma_F F_k, X_k / \gamma_M) \leq R(\gamma_F F_k, X_k / \gamma_M) \quad (2.3)$

Ο Τρόπος Ανάλυσης 3 (Ευρωκώδικας 7) αφορά μόνον στον έλεγχο της ολικής ευστάθειας των γεωτεχνικών έργων. Ο συντελεστής προσομοιώματος εξαρτάται από τις παραδοχές των υδραυλικών συνθηκών και θα λαμβάνει τις εξής τιμές:

α) Για συνήθεις δυσμενείς παραδοχές υδραυλικών συνθηκών : $\gamma_m = 1, 1$.

Η χρήση του ανωτέρω συντελεστή προσομοίωσης γίνεται ώστε ο ισοδύναμος ενιαίος συντελεστής ασφαλείας (F.S) έναντι ολικής ευστάθειας να είναι :

- F.S = γ_M γ_m = 1,25×1,1= 1,38 για αναλύσεις μέσω ενεργών τάσεων με χρήση ενεργών παραμέτρων αντοχής (c', φ').
- F.S = $\gamma_M \gamma_m = 1,40 \times 1,1 = 1,54$ για αναλύσεις μέσω ολικών τάσεων με χρήση της αστράγγιστης διατμητικής αντοχής (C_u).
- β) Για πολύ δυσμενείς παραδοχές υδραυλικών συνθηκών : $\gamma_m = 1,0$.

Στην περίπτωση αυτή, ο ισοδύναμος ενιαίος συντελεστής ασφαλείας (F.S) έναντι ολικής ευστάθειας είναι:

- $F.S = \gamma_M \gamma_m = 1,25 \times 1,0 = 1,25$ για αναλύσεις μέσω ενεργών τάσεων με χρήση ενεργών παραμέτρων αντοχής (c', ϕ).
- F.S = γ_M γ_m = 1,40×1,0= 1,40 για αναλύσεις μέσω ολικών τάσεων με χρήση της αστράγγιστης διατμητικής αντοχής.

Στην Παράγραφο 2.6 παρουσιάζονται οι μέθοδοι ανάλυσης ευστάθειας εκσκαφών, που χρησιμοποιήθηκαν στην παρούσα διπλωματική.

2.1 Εργαστηριακές δοκιμές

2.1.1 Δοκιμή προσδιορισμού υγρασίας

Η υγρασία (m) ορίζεται ως ο λόγος του βάρους του νερού που υπάρχει μέσα στους πόρους του εδάφους (W_w) προς το βάρος των ξηρών κόκκων του εδάφους (W_s) και έχει ποσοστιαία μορφή (Χρηστάρας, 2011). Γενικά, η υγρασία των εδαφών παίρνει τιμές <50%, ενώ τα

κοκκώδη υλικά χαρακτηρίζονται από m=0-40% (Χρηστάρας, 1998, Κούκης 2002, Παπαχαρίσης, 2015). Για τον υπολογισμό της κατά ASTM D-2216/80 χρησιμοποιούνται ειδικές κάψες γνωστού βάρους (W_K). Σε αυτές τοποθετείται ποσότητα δείγματος και ζυγίζονται μαζί. Το βάρος αυτό αποτελεί το υγρό βάρος (W_Y) του δείγματος μαζί με την κάψα. Η κάψα μαζί με το δείγμα τοποθετούνται στο φούρνο για τουλάχιστον 12ώρες, έως και 24ώρες, στους 105°C. Έπειτα, ξαναζυγίζονται και βρίσκεται το ξηρό βάρος υπολογίζεται η ποσότητα νερού που περιείχε το δείγμα (W_w). Επίσης αφαιρώντας από το ξηρό βάρος το βάρος της κάψας υπολογίζεται το βάρος του ξηρού δείγματος (W_s). Γνωρίζοντας αυτές τις ποσότητες μπορεί να βρεθεί το ποσοστό της υγρασίας (m) στο δείγμα.

$$m = \frac{W_w}{W_s} 100\%$$
 (2.4)

2.1.2 Δοκιμή προσδιορισμού φαινόμενου βάρους

Ψηφιακή συλλογή

Βιβλιοθήκη

Το φαινόμενο βάρος ορίζεται ως το πηλίκο του βάρους του εδάφους (W) προς τον όγκο του εδάφους (V) (Χρηστάρας, 2006). Μονάδες μέτρησής του είναι τα gr/cm³ ή kN/m³. Για τον υπολογισμό του, κατά AASHO T-147, ASTM C-29, εφαρμόζεται η μέθοδος που αναλύεται στη συνέχεια.

Ογκομετρικός κύλινδρος γεμίζεται με απεσταγμένο νερό και καταγράφεται ακριβώς η στάθμη του νερού σε αυτόν (h_{αρχ}). Λαμβάνεται ένα κομμάτι εδαφικού δείγματος περίπου 100gr και σχήματος τέτοιου ώστε να χωράει στον ογκομετρικό κύλινδρο και ζυγίζεται. Έπειτα, εμποτίζεται σε λειωμένη παραφίνη, ώστε να επικαλυφθεί όλη η επιφάνειά του με μια λεπτή φλούδα παραφίνης, η οποία θα αποτρέψει τη διάλυση και την αλλοίωση της φυσικής υγρασίας του δείγματος κατά την εισαγωγή του στον ογκομετρικό κύλινδρο. Ζυγίζεται και καταγράφεται η νέα στάθμη του νερού (h_{τελ}). Από τη διαφορά της αρχικής και της τελικής ένδειξης της στάθμης του νερού, υπολογίζεται ο όγκος του παραφινωμένου δείγματος το βάρος τον από τον όγκο του παραφινωμένου δείγματος, υπολογίζεται ο όγκος του παραφινωμένου δείγματος το βάρος της με το ειδικό της βάρος, και αφαιρώντας τον από τον όγκο του παραφινωμένου δείγματος, υπολογίζεται ο όγκος του παραφινωμένου δείγματος τος βάρος του εδαφικού δείγματος.

 $\gamma = \frac{W}{V} \quad (2.5)$ $V_{\Delta + \Pi} = h_{\tau \epsilon \lambda} h_{\alpha \rho \chi} \quad (2.6)$

Το ξηρό φαινόμενο βάρος (γ_d) το οποίο είναι το ξηρό βάρος του υλικού προς τον συνολικό όγκο του δείγματος (Χρηστάρας, 2011) υπολογίζεται από το φαινόμενο βάρος και την υγρασία (Σχέση 2.7), ενώ ο αρχικός λόγος κενών (e_o) και ο βαθμός κορεσμού (S) υπολογίζονται σύμφωνα με τις Σχέσεις 2.8 και 2.9 (Χρηστάρας, 2011), αντίστοιχα, όπου το ειδικό φαινόμενο βάρος (γs) του υλικού λαμβάνεται ίσο με γ_s=26,5kN/m³, για ένα πιο συντηρητικό σενάριο και το φαινόμενο βάρος του νερού ίσο με γ_w=10kN/m³.

$$\gamma_d = \frac{\gamma}{1+m} \quad (2.7)$$

$$e_o = \frac{\gamma_s}{\gamma_d} - 1 \quad (2.8)$$

$$S = \frac{m*\gamma_s}{e*\gamma_w} \quad (2.9)$$

2.1.3 Δοκιμή προσδιορισμού ορίων Atterberg

Ψηφιακή συλλογή

Βιβλιοθήκη

Τα όρια Atterberg είναι το όριο υδαρότητας (LL) και το όριο πλαστικότητας (PL) και σχετίζονται με τη πλαστικότητα του εδάφους, δηλαδή την ικανότητα του να δέχεται μεγάλες παραμορφώσεις χωρίς θραύση (Χρηστάρας, 1998, Κούκης 2002, Παπαχαρίσης, 2015). Το όριο υδαρότητας είναι η περιεκτικότητα του εδάφους σε νερό κατά την χρονική στιγμή που το έδαφος μεταβαίνει από την πλαστική στην υδαρή κατάσταση (Χρηστάρας, 2011). Για τον υπολογισμό του χρησιμοποιείται η μέθοδος του πίπτοντος κώνου (Leroueil, 1985). Στη μέθοδο αυτή χρησιμοποιείται υλικό που διέρχεται από το κόσκινο No40. Στο υλικό αυτό προστίθεται νερό έως ότου γίνει μία συμπαγής μάζα και τοποθετείται στο δοχείο του οργάνου μέτρησης, με επίπεδη την επάνω επιφάνεια. Έπειτα από το όργανο μέτρησης απελευθερώνεται κωνικό βαρίδιο συγκεκριμένων διαστάσεων, το οποίο βρισκόταν σε θέση κατά την οποία η μύτη του να εφάπτεται με την επίπεδη επιφάνεια του δείγματος, και βυθίζεται στο δείγμα. Καταγράφεται το βάθος της διείσδυσης και λαμβάνεται δείγμα από το υλικό για τη μέτρηση της υγρασίας του. Η διαδικασία αυτή επαναλαμβάνεται 3 φορές τουλάχιστον προσθέτοντας κάθε φορά επιπλέον νερό στο δείγμα και έπειτα γίνεται το διάγραμμα του ποσοστού της περιεχόμενης υγρασίας και της διείσδυσης του κώνου. Στο διάγραμμα αυτό το όριο υδαρότητας ισούται με το ποσοστό υγρασίας που αντιστοιχεί σε διείσδυση 10mm.

Το όριο πλαστικότητας είναι το χαμηλότερο ποσοστό υγρασίας στο οποίο το έδαφος μεταβαίνει από την πλαστική στην ημιστερεή κατάσταση (Χρηστάρας, 2011). Για τον υπολογισμό (Δημόπουλος, 1986) του λαμβάνονται τουλάχιστον δύο μικρά κομμάτια από τη προηγούμενη συμπαγή μάζα που δημιουργήθηκε για τον υπολογισμό του ορίου υδαρότητας. Το υλικό πλάθεται πάνω σε διηθητικό χαρτί, το οποίο έχει την ικανότητα να απορροφάει την υγρασία του δείγματος. Όταν το δείγμα φτάσει στο σημείο να σπάει και να μη μπορεί άλλο πια

να πλασθεί μετράται η υγρασία του. Το όριο πλαστικότητας ισούται με το μέσο όρο των υγρασιών που υπολογίσθηκαν από τα διαφορετικά κομμάτια του δείγματος.

Αφαιρώντας από το όριο υδαρότητας, το όριο πλαστικότητας υπολογίζεται ο δείκτης πλαστικότητας (PI) (Χρηστάρας, 2011). Ο τελευταίος ορίζεται ως η περιοχή ανάμεσα στο όριο υδαρότητας και στο όριο πλαστικότητας (PI = LL-PL), όπου το υλικό είναι εύπλαστο(Χρηστάρας, 2011). Τα όρια Atterberg χρησιμοποιούνται μαζί με τα αποτελέσματα της κοκκομετρικής ανάλυσης και της ανάλυσης με αραιόμετρο για την ταξινόμηση των εδαφικών δειγμάτων σύμφωνα με το ενιαίο σύστημα ταξινόμησης USCS (ASTM D-2487) (Casagrande 1948). Επιπροσθέτως, από τα όρια Atterberg υπάρχει η δυνατότητα υπολογισμού του βαθμού πλαστικότητας (Ip) και του δείκτη συνεκτικότητας (Ic), από τις Σχέσεις 2.10, 2.11, αντίστοιχα (Χρηστάρας, 2011). Όταν $I_p=0$ το εδαφικό υλικό δεν είναι καθόλου πλαστικό, για $I_p=1-5$ και $I_p=5-10$ είναι ελαφρά πλαστικό και μικρής πλαστικότητας, αντίστοιχα, για $I_p=10-20$ είναι μέσης πλαστικότητας, ενώ για $I_p=20-40$ και $I_p>40$ είναι υψηλής και πολύ υψηλής πλαστικότητας, αντίστοιχα. Αναφορικά με τον δείκτης συνεκτικότητας, η αύξηση του συνεπάγεται σε αύξηση της διατμητικής αντοχής του υλικού και πιο συγκεκριμένα για $I_c>1$ το υλικό είναι υψηλής αντοχής.

$$I_p = LL - PL (2.10)$$
$$I_c = \frac{LL - m}{I_p} (2.11)$$

2.1.4 Κοκκομετρική ανάλυση

Ψηφιακή συλλογή

Βιβλιοθήκη

Η κοκκομετρική ανάλυση αποτελεί τη διαδικασία διαχωρισμού του εδάφους σε ομάδες, κάθε μία από τις οποίες αποτελείται από κόκκους που το μέγεθος της διαμέτρου τους αναφέρεται μεταξύ ορισμένων ορίων (Χρηστάρας, 1998, Κούκης 2002, Παπαχαρίσης, 2015). Ο διαχωρισμός αυτός γίνεται με τη βοήθεια μια σειράς κοσκίνων με διαδοχικά μικρότερες οπές (No4, No10, No40, No100, No200 κλπ.).Τα εδαφικά υλικά ανάλογα με το μέγεθος των κόκκων λαμβάνουν τις παρακάτω ονομασίες (ASTM, 1989):

- Κροκάλες- λίθοι: >76,2mm
- Χονδροί χάλικες: 76,2 mm -19,0 mm (3/4, ASTM)
- Λεπτοί χάλικες: 19,0 mm -4,76 mm (No4, ASTM)
- Χονδρή άμμος: 4,76 mm -2 mm (No10, ASTM)
- Μέση άμμος: 2 mm -0,425 mm (No40, ASTM)
- Λεπτή άμμος: 0,425 mm -0,075 mm (No200, ASTM)

	ENIAIO 2	ΣΥΣΤΗΜΑ ΤΑΞΙΝΟΜ	ΙΗΣΗΣ ΕΔΑΦΩΝ (ASTM D-2487)		
Κύριος δια- γωρισμός	Σύμβολα ομάδας	Όνομα	Εργαστηριακά κριτήρια ταξινόμησης		
Χονδρόκοκκα εδά διάμετρο μεγαλύτε	φη (Περισσότερο ρη του κόσκινοι	ο από το 50% των κόκκων έχουν Νο. 200)	Προσδιορισμός του ποσοστού της άμμου και των χαλικιών από την κοκκομετρική καμπύλη. Ανάλογα με το ποσοστό των λεπτόκοκκων (d<0.075 mm) τα χονδρόκοκκα εδάφη ταξινομούνται ως εξής: <5% GW, GP, SW, SP >12% GM, GC, SM, SC 5-12% Οριακές περιπτώσεις (διπλή ονομασία)		
GW Καθαροί χάλικες		Καλά διαβαθμισμένα χαλίκια, μείγμα άμμου-χαλικιών, λίγα ή καθόλου λεπτόκοκκα υλικά	$C_u = \frac{D_{60}}{D_{10}} > 4, \qquad 1 < Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}} < 3$		
(καθόλου λε- πτόκοκκα)	GP	Μη διαβαθμισμένα χαλίκια, μείγμα άμμου-χαλικιών, λίγα ή καθόλου λεπτόκοκκα υλικά	Δεν ικανοποιούν όλες τις απαιτήσεις τις σχετικές με τη διαβάθμιση για να χαρακτηριστούν GW		
Χάλικες με λεπτόκοκκα (σημαντικό	GM ^a d u	Ιλυώδη χαλίκια, μείγμα άμμος- χαλίκια-ιλύς	Όρια Atterberg κάτω από τη γραμμή "Α" ή Ρ.Ι. μικρότερος του 4 Ρ.Ι. μεταξύ 4 και 7 είναι οριακές περιπτώσεις και		
ποσοστό λε- πτόκοκκων)	GC	Αργιλώδη χαλίκια, μείγμα άμμος-χαλίκια-άργιλος	Όρια Atterberg πάνω από τη γραμμή απαιτείται η χρήση διπλού "Α" και Ρ.Ι. μεγαλύτερος του 7		
Άμμοι (περισσότερ διάμετρο μικρότερ	οο από το 50% τ η από αυτή του .	ου χονδρόκοκκων τμημάτων έχουν κόσκινου Νο. 4)			
Καθαρές άμμοι (λίγα ή	SW	Καλά διαβαθμισμένες άμμοι, χαλικώδεις άμμοι, λίγα ή καθό- λου λεπτόκοκκα υλικά	$C_u = \frac{D_{00}}{D_{10}} > 6, \qquad 1 < Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}} < 3$		
καθόλου λε- πτόκοκκα) SP Μη διαβαθμισμένες άμμοι, χαλικώδεις άμμοι, λίγα ή καθό- λου λεπτόκοκκα υλικά		Δεν ικανοποιούν όλες τις απαιτήσεις τις σχετικές με τη διαβάθμιση για να χαρακτηριστούν SW			
Άμμοι με λε- πτόκοκκα	ιμελε- κκα SM ^a d Ιλυώδεις άμμοι, μείγμα άμμος- άργιλος		Ορια Atterberg κάτω από τη γραμμή "Α" ή Ρ.Ι. μικρότερος του 4 Οι περιπτώσεις που προβάλ- λονται στην γραμμοσκια- σμένη ζώνη (Ρ.Ι. = 4 7) είναι		
(Σημαντικό ποσοστό λε- πτόκοκκων)	SC	Αργιλώδεις άμμοι, μείγμα άμμος-άργιλος	Όρια Atterberg πάνω από τη γραμμή σριακές και απαιτείται η χρήση διπλού συμβολισμού "Α" και Ρ.Ι. μεγαλύτερος του 7		
Λεπτόκοκκα εδάφ διάμετρο μεγαλύτε	οη (Περισσότερο ορη του κόσκινοι	ο από το 50% των κόκκων έχουν ο Νο. 200)			
	ML	Ανόργανες ιλείς και λεπτόκοκκες άμμοι, ιλυώδεις ή αργιλώδεις άμμοι, ή αργιλώδεις ιλείς με μικρή πλαστικότητα	Plasticity Chart		
Ιλείς και άργι- λοι (LL<50)	CL	Ανόργανες άργιλοι με μικρή έως μέτρια πλαστικότητα, χαλικώδεις άργιλοι, αμμώδεις άργιλοι, ιλυώ- δεις άργιλοι, άργιλοι χαμηλής πλαστικότητας	50 СН		
	OL	Οργανικές ιλείς και οργανικές ιλυώδεις άργιλοι χαμηλής πλα- στικότητας	x 40 ⇒ 30		
Ιλείς και	MH	Ανόργανες ιλείς, μαρμαρυγιακές ή διατομικές λεπτόκοκκες άμμοι ή ιλυώδη εδάφη, ελαστικές ιλείς			
άργιλοι (LL<50)	СН	Ανόργανες άμμοι μεγάλης πλα- στικότητας, λιπώδεις άργιλοι	10 CLML		
	ОН	Οργανικές άργιλοι μέτριας ή μεγάλης πλαστικότητας, οργανι- κές ιλείς	0 10 20 30 40 50 60 70 80 90 100		
Πολύ οργανικά εδάφη	PT	Γυρφη και άλλα οργανικά εδάφη	Liquid limit		

Εικόνα 1: Ενιαίο σύστημα ταξινόμησης εδαφών USCS (ASTM D-2487).

Για την κοκκομετρική ανάλυση χρησιμοποιούνται από 100gr έως και 5kg δείγματος ανάλογα με το μέγεθος των κόκκων (AASHO T-27/66, ASTM C-136). Για αμμώδες δείγμα

απαιτούνται 100-500gr δείγματος, ενώ για δείγμα με χαλίκια και κροκάλες 5kg δείγματος και παραπάνω. Το δείγμα πριν κοσκινισθεί έχει ξηραθεί για τουλάχιστον 12h στους 105°C. Στη συνέχεια, ζυγίζεται και γίνεται αποσυσσωμάτωση των κόκκων στο γουδί, χωρίς όμως να σπάνε τα περιεχόμενα χαλίκια. Μετά το δείγμα είναι έτοιμο για κοσκίνισμα. Το υλικό που έχει μείνει σε κάθε κόσκινο ζυγίζεται και μετατρέπεται σε ποσοστό επί του συνολικού βάρους του δείγματος, το οποίο αποτελεί το ποσοστό των συγκρατούμενων κόκκων για κάθε κόσκινο. Το ποσοστό αυτό μετατρέπεται σε ποσοστό διερχόμενων κόκκων και προβάλλοντάς το στο διάγραμμα διερχόμενου βάρους (%) - διαμέτρου κόκκου (mm) δημιουργείται η κοκκομετρική καμπύλη, από την οποία μπορούν να βγουν συμπεράσματα για το συντελεστή ομοιομορφίας (Cu ή U) και το βαθμό διαβάθμισης (Cc) του δείγματος.

Ψηφιακή συλλογή

Βιβλιοθήκη

Ο συντελεστής ομοιομορφίας δίνει πληροφορίες για τη συμπύκνωση μη συνεκτικών ή ελαφρά συνεκτικών εδαφών και ισούται με το πηλίκο της διαμέτρου για ποσοστό διερχόμενων 60% προς τη διάμετρο για ποσοστό διερχόμενων 10% (Χρηστάρας, 1998, Κούκης 2002, Παπαχαρίσης, 2015). Όταν U<5 το έδαφος χαρακτηρίζεται ομοιόμορφο, όταν U=5-15 ανομοιόμορφο και όταν U>15 πολύ ανομοιόμορφο. Όσο πιο ανομοιόμορφο το έδαφος τόσο μεγαλύτερη η ικανότητα συμπύκνωσής του.

$$U = \frac{d_{60}}{d_{10}} \ (2.12)$$

Ο βαθμός διαβάθμισης του υλικού ισούται με το πηλίκο του τετραγώνου της διαμέτρου που αντιστοιχεί σε ποσοστό διερχόμενων 30% προς το γινόμενο της διαμέτρου για ποσοστό διερχόμενων 60% επί τη διάμετρο για ποσοστό 10% (Χρηστάρας, 1998, Κούκης 2002, Παπαχαρίσης, 2015). Όσο καλύτερη η διαβάθμιση του εδάφους τόσο πιο σταθερό είναι, τόσο μεγαλύτερη ανθεκτικότητα έχει ως προς της διάβρωση, μπορεί να συμπυκνωθεί και συνεπώς έχει μεγαλύτερη αντοχή στη διάτμηση και μεγαλύτερη φέρουσα ικανότητα, σε σχέση με εδάφη κακής διαβάθμισης.

$$C_c = \frac{d_{30}^2}{d_{60} d_{10}} \ (2.13)$$

Επιπλέον υπάρχει δυνατότητα υπολογισμού του συντελεστή διαπερατότητας (k) του εδάφους, ο οποίος ισούται με το γινόμενο της σταθεράς c επί το τετράγωνο της διαμέτρου για ποσοστό διερχόμενων 10% (Hazen, 1911). Για τη σταθερά c χρησιμοποιείται μια μέση τιμή 100 και η διάμετρος χρησιμοποιείται σε μονάδες εκατοστόμετρων.

$$k = c \, d_{10}^2 \, (2.14)$$

Ψηφιακή συλλογή

Βιβλιοθήκη

Για τα λεπτόκοκκα εδάφη εκτός από τη κοκκομετρική ανάλυση γίνεται και ανάλυση με αραιόμετρο, κατά την οποία μετράται, με το αραιόμετρο, η πυκνότητα του υλικού που αιωρείται μέσα σε υγρό μέσο. Για την ανάλυση αυτή (AASHO T-88/78, ASTM D-422/72) λαμβάνονται 45gr δείγματος που διέρχονται από το κόσκινο No10 και εισάγονται σε ποτήρι των 250ml. Σε αυτό επίσης προστίθενται 5gr παράγοντας διασποράς (πολυφωσφορικό νάτριο) και 250ml απεσταγμένο νερό. Το διάλυμα αναδεύεται και αφήνεται για τουλάχιστον 12h, ώστε να γίνει αποσυσσωμάτωση των κόκκων. Έπειτα, μεταφέρεται με επίπλυση μέσα σε κύπελλο διασποράς, όπου αναδεύεται για 1min και στη συνέχεια μέσα σε ογκομετρικό κύλινδρο στον οποίο προστίθεται νερό μέχρι τα 1000ml. Ο ογκομετρικός κύλινδρος αναδεύεται για 1min και έπειτα αφήνεται σε σταθερό σημείο. Μετρήσεις της πυκνότητας και της θερμοκρασίας του διαλύματος λαμβάνονται ανά 1, 2, 5, 30, 60, 250 και 1140min από τη στιγμή που αφήνεται ο κύλινδρος στο σταθερό σημείο και αρχίζει η καθίζηση του υλικού.

Στις μετρήσεις πυκνότητας που πάρθηκαν γίνονται κάποιες διορθώσεις σχετικές με τη θερμοκρασία και τον παράγοντα διασποράς, που χρησιμοποιήθηκε, και υπολογίζεται το ποσοστό δείγματος (P), που σε κάθε μέτρηση ήταν σε αιώρηση.

$$P = \frac{R}{Ws} 100\% \ (2.15)$$

Η διόρθωση της ένδειξης του υδρομέτρου, με βάση τον τύπο του παράγοντα διασποράς και τη θερμοκρασία κατά τη μέτρηση, γίνεται με βάση τον Πίνακα 2.Στην συνέχεια, υπολογίζεται η διάμετρος των κόκκων (d) που βρίσκονταν σε αιώρηση σε κάθε μέτρηση.

$$d = d_o K_L K_G K_n \qquad (2.16)$$

Όπου d_o η μέγιστη διάμετρος κόκκων σε αιώρηση, η οποία λαμβάνει τιμές για κάθε χρονική στιγμή σύμφωνα με τον Πίνακα 1. K_L ο παράγοντας για πυκνόμετρο 152 H (Πίνακας 3), K_G ο συντελεστής διόρθωσης συναρτήσει του ειδικού βάρους του εδάφους και K_n ο συντελεστής διόρθωσης συναρτήσει του ειδικού βάρους του εδάφους και K_n ο συντελεστής διόρθωσης συναρτήσει της θερμοκρασίας, ώστε να ληφθεί υπόψη η μεταβολή του ιξώδους του μέσου διασποράς (Πίνακας 4). Τέλος, γίνεται αναγωγή του ποσοστού δείγματος σε αιώρηση, στο συνολικό δείγμα και υπολογίζεται έτσι το ποσοστό κόκκων στο συνολικό δείγμα (W_s), το οποίο αντιστοιχεί στο ποσοστό διερχόμενων για την κάθε διάμετρο.

$$W_s = \frac{W}{1+m} \quad (2.17)$$

Όπου W το ποσοστό δείγματος που περνάει από το κόσκινο No10.

Πίνακας 1: Μέγιστη διάμετρος κόκκων (d₀) σε αιώρηση κάτω από δεδομένες συνθήκες κατά A.A.S.H.O..

Ψηφιακή συλλογή

А.П.О

Βιβλιοθήκη

C 11

Χρόνος (n	nin) Μέγιστη διάμετρος κόκκων (mm)
	0,058
2	0,040
5	0,026
15	0,015
30	0,010
60	0,0074
250	0,0036
1440	0,0015

Πίνακας 2: Σύνθετες διορθώσεις επί των ενδείξεων που διαβάζονται στο πρότυπο, κατά A.A.S.H.O., υδρόμετρο εδάφους 152 Η, για τις αναγραφόμενες θερμοκρασίες και διαλύματα διασποράς, ώστε να γίνει αναγωγή αυτών σε ενδείξεις μέσα σε αποσταγμένο νερό θερμοκρασίας 20 °C.

Θερμοκρασία του διαλύματος	Διόρθωση της ενδείζεως του υδρομέτρου για τους παρακάτω παράγοντες διασποράς				
(°C)	NaPO3	NaPO3 Na12P10O31 Na5P3O10 Na6P4O13			
(0)	(gr/L)	(gr/L)	(gr/L)	(gr/L)	
19	-7,4	-3,5	-3,5	-5,5	
19 ½	-7,2	-3,3	-3,3	-5,3	
20	-6,9	-3,1	-3,1	-5,1	
20 1/2	-6,7	-2,9	-2,9	-4,9	
21	-6,5	-2,7	-2,7	-4,7	
21 1/2	-6,3	-2,6	-2,6	-4,6	
22	-6,1	-2,4	-2,4	-4,4	
23	-5,8	-2,2	-2,2	-4,2	
23 1/2	-5,6	-2,0	-2,0	-4,0	
24	-5,4	-1,8	-1,8	-3,8	
24 1/2	-5,2	-1,6	-1,6	-3,6	
25	-4,9	-1,4	-1,4	-3,4	
25 1/2	-4,7	-1,2	-1,2	-3,2	
26	-4,5	-1,1	-1,1	-3,0	
26 1/2	-4,3	-0,9	-0,9	-2,8	
27	-4,1	-0,7	-0,7	-2,6	
28	-3,8	-0,5	-0,5	-2,4	
28 1/2	-3,6	-0,3	-0,3	-2,2	
29	-3,4	-0,1	-0,1	-2,1	
29 1/2	-3,2	+0,1	+0,1	-1,9	
30	-3,0	+0,2	+0,2	-1,7	
30 1/2	-2,7	+0,4	+0,4	-1,6	
31	-2,5	+0,6	+0,6	-1,3	
31 1/2	-2,3	+0,8	+0,8	-1,1	
32	-2,1	+1,0	+1,0	-0,9	
33	-1,9	+1,2	+1,2	-0,7	
33 1/2	-1,7	+1,4	+1,4	-0,5	
34	-1,4	+1,6	+1,6	-0,4	
34 1/2	-1,2	+1,8	+1,8	-0,2	
35	-1,0	+2,0	+2,0	0,0	
35 1/2	-0,8	+2,1	+2,1	+0,2	
36	-0,6	+2,3	+2,3	+0,4	
36 1/2	-0,4	+2,5	+2,5	+0,6	
(1) Τα διαλύματα παρασκευάζονται δι' αραιώσεως 125ml έτοιμου διαλύματος παράγοντα διασποράς μέχρι συμπληρώσεως 1000ml.					

gr/L	KL	gr/L	KL	gr/L	KL	gr/L	KL
A.IL	Θ	28	0,849	55	0,686	82	0,52
2		29	0,841	56	0,680	83	0,51
3		30	0,835	57	0,674	84	0,51
4	0,996	31	0,830	58	0,669	85	0,50
5	0,990	32	0,825	59	0,662	86	0,50
6	0,985	33	0,819	60	0,655	87	0,49
7	0,979	34	0,814	61	0,650	88	0,48
8	0,971	35	0,805	62	0,643	89	0,47
9	0,967	36	0,800	63	0,636	90	0,47
10	0,962	37	0,794	64	0,629	91	0,46
11	0,955	38	0,789	65	0,625	92	0,45
12	0,950	39	0,783	66	0,621	93	0,45
13	0,944	40	0,778	67	0,614	94	0,44
14	0,938	41	0,770	68	0,608	95	0,44
15	0,931	42	0,764	69	0,601	96	0,43
16	0,924	43	0,758	70	0,596	97	0,42
17	0,918	44	0,752	71	0,590	98	0,42
18	0,911	45	0,748	72	0,584	99	0,41
19	0,904	46	0,743	73	0,578	100	0,41
20	0,897	47	0,737	74	0,572	101	0,40
21	0,890	48	0,731	75	0,565	102	0,40
22	0,884	49	0,725	76	0,560	103	0,39
23	0,878	50	0,718	77	0,552	104	0,39
24	0,872	51	0,712	78	0,547	105	0,39
25	0,867	52	0,705	79	0,542		
26	0,860	53	0,699	80	0,535		
27	0,855	54	0,693	81	0,529		

Πίνακας 4: Τιμές συντελεστή διόρθωσης K_G συναρτήσει του ειδικού βάρους του εδάφους και τιμές συντελεστή διόρθωσης K_n συναρτήσει της θερμοκρασίας κατά A.A.S.H.O..

Ειδικό βάρος (gr/cm ³)	K _G	Θερμοκρασία (°C)	Kn
2,60	1,016	15	1,053
2,61	1,013	15,5	1,046
2,62	1,010	15	1,043
2,63	1,007	16,5	1,034
2,64	1,003	17	1,028
2,65	1,000	17,5	1,020
2,66	0,998	18	1,014
2,67	0,995	18,5	1,008
2,68	0,990	19	1,000
2,69	0,987	19,5	0,995
2,70	0,985	20	0,988
2,71	0,983	20,5	0,984
2,72	0,980	21	0,980
2,73	0,978	21,5	0,975
2,74	0,975	22	0,967
2,75	0,972	22,5	0,962
		23	0,956
		23,5	0,950
		24	0,946
		24,5	0,940
		25	0,935
		25,5	0,930
		26	0,925
		26,5	0,920

Πίνακας 3: Τιμές παράγοντα KL για πυκνόμετρο 152 Η κατά A.A.S.H.O..

117

ψηφιακή συλλογή

Βιβλιοθήκη

Στη συνέχεια το διάλυμα που βρίσκεται στον ογκομετρικό κύλινδρο ξεπλένεται στο κόσκινο No200 και αφού ξηραθεί κοσκινίζεται στα κόσκινα No20, 40, 100 και 200. Ζυγίζεται το συγκρατούμενο υλικό από κάθε κόσκινο και υπολογίζεται το ποσοστό των διερχόμενων. Το τελευταίο μαζί με το αναγόμενο στο συνολικό δείγμα, ποσοστό των αιωρούμενων σωματιδίων, προβάλλονται στο διάγραμμα διερχόμενου βάρους (%) διαμέτρου κόκκου (mm) μαζί με τα αποτελέσματα της κοκκομετρικής ανάλυσης και αποτελούν το τμήμα της κοκκομετρικής καμπύλης για το λεπτόκοκκο κλάσμα του δείγματος.

2.1.6 Δοκιμή μονοδιάστατης στερεοποίησης

Ψηφιακή συλλογή

Βιβλιοθήκη

Με τη δοκιμή της μονοδιάστατης στερεοποίησης (ASTM D-2435/80) προσδιορίζονται ο συντελεστής μονοδιάστατης στερεοποίησης (C_v), ο συντελεστής συμπιεστότητας (m_v), το μέτρο παραμορφωσιμότητας (E_m) και ο δείκτης συμπιεστότητας (C_c) του εδαφικού υλικού. Για την εκτέλεσή της κατά ASTM D-2435/80 χρησιμοποιείται το όργανο του οιδημέτρου. Το εδαφικό δείγμα που χρησιμοποιείται είναι στην αρχική του κατάσταση, χωρίς να υποστεί κάποια επεξεργασία και τοποθετείται σε μεταλλικό δακτύλιο συγκεκριμένων διαστάσεων και βάρους. Ο δακτύλιος μαζί με το εδαφικό δείγμα, αφού ζυγισθεί, τοποθετείται στο οιδήμετρο μέσα σε ειδική συσκευή, ανάμεσα σε δύο πορόλιθους, ώστε να μπορεί να διαφεύγει αξονικά το νερό από το δείγμα. Η ειδική συσκευή γεμίζει με απεσταγμένο νερό, ώστε το δείγμα να βρίσκεται βυθισμένο μέσα σε αυτό και φορτίο διαβιβάζεται στο δείγμα μέσω μοχλοβραχίονα. Ανάλογα με το φαινόμενο βάρος του δείγματος και το βάθος από το οποίο έχει εξαχθεί, αποφασίζεται το μέγεθος της φόρτιση που θα ασκηθεί κατά τη δοκιμή. Στόχος είναι στο τελικό στάδιο της δοκιμής να έχει ασκηθεί τόση φόρτιση όση ασκείται στο δείγμα όταν αυτό βρίσκεται στο υπέδαφος. Αφού εφαρμοσθεί η φόρτιση, λαμβάνονται μετρήσεις της καθίζησης, με το μηκυνσιομέτρο που είναι ενσωματωμένο στη συσκευή, στα 15΄΄, 30΄΄, 1΄, 2΄, 4΄, 8΄, 15΄, 30', 1h, 2h, 4h και 24h. Η διαδικασία αυτή επαναλαμβάνεται τουλάχιστον δύο φορές, σε δύο βαθμίδες φόρτισης, μία μικρότερη της ασκούμενης και μία ίση και ίσως λίγο μεγαλύτερη, της ασκούμενης στο υπέδαφος, με διπλασιασμό κάθε φορά του εφαρμοζόμενου φορτίου. Αφού έχουν παρθεί όλες οι μετρήσεις με φόρτιση, απομακρύνονται τα επιβαλλόμενα βάρη και λαμβάνονται μετρήσεις στα ίδια χρονικά διαστήματα κατά την αποφόρτιση του δείγματος. Αφού τελειώσει και η αποσυμπίεση, αποσυναρμολογείται το οιδήμετρο, εξάγεται το δείγμα από το δακτύλιο και μετράτε η υγρασία του στο τέλος της δοκιμής.

Μετά το πέρας της δοκιμής για κάθε βαθμίδα φόρτισης δημιουργείται διάγραμμα χρόνου (s) - ένδειξης μηκυνσιομέτρου (mm). Από αυτό αρχικά υπολογίζονται οι καθιζήσεις για βαθμό στερεοποίησης U=100% και U=0% (Παπαχαρίσης, 1999). Για U=100% γίνεται προέκταση

των 2 ευθύγραμμων τμημάτων της καμπύλης και η τομή τους αντιστοιχεί στην καθίζηση για βαθμό στερεοποίησης 100%. Για U=0% επιλέγονται δύο χρόνοι, μεταξύ των οποίων ο ένας είναι τετραπλάσιος του άλλου, παραδείγματος χάρη 30s και 120s. Μετράτε η απόσταση των δύο χρόνων στον άξονα y και η καθίζηση για U=0% αντιστοιχεί στο σημείο που απέχει απόσταση, ίση με αυτή μεταξύ των t και 4t, από το τον χρόνο t προς την κατεύθυνση του άξονα y που μειώνεται η καθίζηση. Έπειτα, υπολογίζεται η καθίζηση για U=50%, ως το μέσο των U=100% και U=0% και από αυτή με προβολή στον άξονα του χρόνου, ο χρόνος t₅₀. Ο υπολογισμός του συντελεστή μονοδιάστατης στερεοποίησης είναι πλέον εφικτός μέσω της Σχέσης 2.18, όπου Η ισούται με το μισό του ύψους του δοκιμίου, καθώς η αποστράγγιση συμβαίνει και από τις δύο ελεύθερες επιφάνειες του δοκιμίου.

Ψηφιακή συλλογή

Βιβλιοθήκη

$$C_v=0.049 (H^2/t_{50})$$
 (2.18)

Για τον υπολογισμό του συντελεστή συμπιεστότητας (Σχέση 2.19) πρέπει αρχικά να υπολογιστεί ο λόγος κενών του εδάφους στην αρχή (e₀) και το τέλος (e_{τελ}) της δοκιμής. Ο λόγος κενών στην αρχή (e₀) υπολογίζεται με βάση τη Σχέση 2.20, ενώ ο τελικός λόγος κενών (e_{τελ}), ισούται με το γινόμενο της υγρασίας στο τέλος της δοκιμής, με το ειδικό βάρος του υλικού (Χρηστάρας, 2011).

$$m_{v} = \frac{1}{1 - e_{o}} * \frac{e_{o} - e_{\tau \varepsilon \lambda}}{\sigma_{\tau \varepsilon \lambda} - \sigma_{\alpha \rho \chi}} \quad (2.19)$$
$$e_{o} = \frac{\Delta H + H_{o} * e_{\tau \varepsilon \lambda}}{H_{o} - \Delta H} \quad (2.20)$$

Όπου ΔH η καθίζηση κατά τη φόρτιση και H_0 το αρχικό ύψος του δοκιμίου.

Το μέτρο παραμορφωσιμότητας (E_m) ισούται με το αντίστροφο του συντελεστή συμπιεστότητας (Χρηστάρας, 2011). Τέλος για τον δείκτη συμπιεστότητας (C_c), χρησιμοποιείται το διάγραμμα μεταβολής του λόγου κενών (Δε) – τάσης (σ) (Χρηστάρας, 2011). Σε αυτό προβάλλοντας τους λόγους κενών για κάθε βαθμίδα φόρτισης προκύπτει ένα ευθύγραμμο τμήμα, που ονομάζεται Virgin Consolidation Line (VCL). Η κλίση αυτού του ευθύγραμμου τμήματος ισούται με τον δείκτη συμπιεστότητας του εδαφικού υλικού.

2.1.7 Δοκιμή άμεσης βραδείας προστερεοποιημένης διάτμησης

Κατά τη δοκιμή άμεσης διάτμησης γίνεται πειραματικός προσδιορισμός της διατμητικής αντοχής του εδαφικού υλικού, σε σχέση με τη μεταβολή σταθερής ορθής τάσης που ασκείται κάθετα στην επιφάνεια διάτμησης (Χρηστάρας, 2011). Η διατμητική αντοχή αντιπροσωπεύει τη μέγιστη διατμητική αντίσταση που αναπτύσσεται στο επίπεδο μιας αστοχίας (Κούκης, 2002) και περιγράφεται από τη συνοχή (c), δηλαδή την έλξη μεταξύ των κόκκων του υλικού, και την εσωτερική γωνία τριβής (φ), δηλαδή την αντίσταση μετακίνησης που αναπτύσσεται μεταξύ των κόκκων. Τη σχέση της διατμητικής αντοχής με τη συνοχή και τη γωνία εσωτερικής τριβής περιγράφει η εξίσωση του νόμου Mohr-Coulomb (Σχέση 2.21).

Ψηφιακή συλλογή

Βιβλιοθήκη

$$\tau = c + \sigma * \varepsilon \varphi(\varphi) \qquad (2.21)$$

Υπάρχουν τρεις τύποι δοκιμών άμεσης διάτμησης (Κούκης και Σαμπατακάκης 2002, Χρηστάρας 2002). Η ταχεία δοκιμή μη στερεοποιημένου δοκιμίου, η ταχεία δοκιμή στερεοποιημένου δοκιμίου και η βραδεία δοκιμή στερεοποιημένου δοκιμίου. Στην συνέχεια θα αναλυθεί η βραδεία δοκιμή στερεοποιημένου δοκιμίου, η οποία θεωρείται ότι είναι ο πιο αντιπροσωπευτικός τύπος, καθώς είναι δυνατή η εκτόνωση της πίεσης του νερού των πόρων και συνεπώς με αυτή υπολογίζεται η διατμητική αντοχή του εδάφους κατά το στάδιο λειτουργίας του έργου (Κούκης 2002, Χρηστάρας 2002).

Για την εκτέλεση της δοκιμή (ASTM D-3080/79), χρησιμοποιείται όργανο αποτελούμενο από ένα διαιρετό τετράγωνο υποδοχέα, στον οποίο επιβάλλεται μετακίνηση του ενός τμήματος σε σχέση με το άλλο, παράλληλα στη διεπαφή τους. Μέσα στον υποδοχέα τοποθετείται το ανεπεξέργαστο υλικό και αφού προσδιοριστεί το αρχικό ύψος του δοκιμίου, εκατέρωθεν αυτού τοποθετούνται πορόλιθοι για να είναι δυνατή η αποστράγγιση και μηκυνσιόμετρα για την μέτρηση της διατμητικής παραμόρφωσης και της μεταβολής του ύψους του. Αφού το δείγμα στερεοποιηθεί υπό την επιθυμητή ορθή τάση, γίνεται διάτμησή του με βραδεία επιβολή διατμητικής παραμόρφωσης, μέσω της κίνησης του ενός τμήματος του υποδοχέα. Έτσι, η θραύση του δείγματος συμβαίνει κατά μια προκαθορισμένη επιφάνεια, που λέγεται επιφάνεια διάτμησης (Χρηστάρας 2006).

Για την επιλογή του ρυθμού παραμόρφωσης αρχικά εκτιμάται ο απαιτούμενος χρόνος θραύσης (Τ) σύμφωνα με τη σχέση T=50*t₅₀, όπου t₅₀ ο χρόνος για 50% στερεοποίηση του δοκιμίου (Χρηστάρας, 2011). Στην συνέχεια υπολογίζεται ο ρυθμός παραμόρφωσης διαιρώντας την εκτιμώμενη διατμητική παραμόρφωση, η οποία αντιστοιχεί στην μέγιστη διατμητική τάση, με τον χρόνο θραύσης που υπολογίσθηκε προηγουμένως. Η διάτμηση συμβαίνει έως ότου η διατμητική παραμόρφωση φτάσει το 10% του αρχικού πλάτους του δοκιμίου. Στον τέλος της δοκιμής, μετράτε ξανά το ύψος του δοκιμίου και αυτό ξηραίνεται και ζυγίζεται για τον προσδιορισμό του ξηρού του βάρους.

Η παραπάνω διαδικασία πραγματοποιείται τουλάχιστον τρεις φορές, με διαφορετική κάθε φορά εφαρμοζόμενη κάθετη τάση. Από κάθε δοκιμή προκύπτει ένα ζεύγος τιμών μέγιστης διατμητικής τάσης (τ) και εφαρμοζόμενης ορθής τάσης (σ). Αυτές απεικονίζονται στο

διάγραμμα τ-σ και από αυτό προκύπτουν η συνοχή και η γωνία εσωτερικής τριβής του εδαφικού υλικού. Από την δοκιμή αυτή εξάγονται επίσης τα διαγράμματα διατμητικής τάσηςδιατμητικής παραμόρφωσης και διατμητικής τάσης-μεταβολής ύψους δοκιμίου.

2.1.8 Δοκιμή σημειακής φόρτισης

Ψηφιακή συλλογή

Βιβλιοθήκη

Η δοκιμή σημειακής φόρτισης αποτελεί μια απλή μέθοδο, με την οποία υπολογίζεται η μονοαξονική θλιπτική αντοχή βραχωδών υλικών (Broch και Franklin, 1971) Κατά τη μέθοδο αυτή εφαρμόζεται σημειακά θλιπτική δύναμη σε αντιδιαμετρικά σημεία, επί των επιφανειών του δοκιμίου. Μεγαλύτερο πλεονέκτημά της είναι ότι δεν απαιτεί κατάλληλα διαμορφωμένα δοκίμια και για αυτό είναι ευρέως χρησιμοποιούμενη για τον υπολογισμό της αντοχής σε θλίψη δειγμάτων που δεν μπορούν να μορφοποιηθούν (Δημόπουλος, 2008). Με την συγκεκριμένη δοκιμή (ASTM D5731-16, ISRM 1985) υπολογίζεται αρχικά ο συντελεστής σημειακής φόρτισης (I_s).

$$I_s = \frac{P}{D_e^2} \quad (2.22)$$

Όπου P η φόρτιση κατά τη θραύση του δοκιμίου και D_e η ισοδύναμη διάμετρος του δείγματος.

$$D_e^2 = \frac{4DW}{\pi}$$
 (2.23)

Όπου D και W, το ύψος και το πλάτος του δοκιμίου, τα οποία αποτελούν τις δύο μικρότερες διαστάσεις του. Δηλαδή, για τον υπολογισμό της ισοδύναμης διαμέτρου δεν χρησιμοποιείται το μήκος του δοκιμίου. Στην συνέχεια μέσω της Σχέσης 2.24 υπολογίζεται ο διορθωμένος συντελεστής σημειακής φόρτισης ($I_{s(50)}$) για δείγμα διαμέτρου 50mm, ώστε να είναι συγκρίσιμα τα αποτελέσματα μεταξύ διαφορετικών δειγμάτων. Στην Σχέση 2.24, F είναι ο συντελεστής διόρθωσης μεγέθους, ο οποίος υπολογίζεται με τη Σχέση 2.25.

$$I_{s(50)} = F * I_s \quad (2.24)$$
$$F = \left(\frac{D_e}{50}\right)^{0,45} (2.25)$$

Αφού υπολογισθεί και ο διορθωμένος συντελεστής σημειακής φόρτισης μπορεί πλέον να βρεθεί και η μονοαξονική θλιπτική αντοχή (σ) του υλικού (Σχέση 2.26, ISRM, 1985) και το εφατομενικό μέτρο ελαστικότητας (E_t) (Σχέση 2.27, Ifran, Dearman 1978).

$$\sigma = 22 * I_{s(50)} (2.26)$$
$$E_t = (0,588 * I_s + 0,084) * 10^4 (2.27)$$

Τέλος, σύμφωνα με τον Bieniawski (1974) μπορεί να γίνει ταξινόμηση για την αντοχή του δείγματος με βάση τον διορθωμένο συντελεστή σημειακής φόρτισης. Το εδαφικό υλικό θεωρείται πολύ υψηλής αντοχής για $I_{s(50)}$ >8, υψηλής αντοχής για $I_{s(50)}$ =4-8, μέσης αντοχής για $I_{s(50)}$ =2-4 και χαμηλής αντοχής για $I_{s(50)}$ =1-2.

2.2 Επί τόπου πρότυπη δοκιμή διείσδυσης (SPT)

Ψηφιακή συλλογή

Βιβλιοθήκη

Κατά τη διάνοιξη της γεώτρησης εκτελούνται και οι πρότυπες δοκιμές διείσδυσης (Standard Penetration Tests - SPT). Η πρότυπη δοκιμή διείσδυσης αποτελεί μια απλή δυναμική μέθοδο καθορισμού των επί τόπου γεωτεχνικών ιδιοτήτων του υπεδάφους, όπως την σχετική πυκνότητα και τις παραμέτρους διατμητικής αντοχής. Η δοκιμή πραγματοποιείται κατά τη διάνοιξη της γεώτρησης σε επισημασμένα από τον γεωλόγο βάθη και ουσιαστικά μετράει την αντίσταση του εδάφους στη διείσδυση συγκεκριμένων διαστάσεων δειγματολήπτη σε αυτό. Αναλυτικότερα, μόλις ο δειγματολήπτης φτάσει στο επιθυμητό βάθος, αρχίζει να βυθίζεται στον εδαφικό σχηματισμό, μέσω ελεύθερης πτώσης βαριδίου μάζας 63,5kg, το οποίο αφήνεται να πέσει από ύψος 0.76m (ASTM D1586). Η διαδικασία συνεχίζεται έως ότου ο δειγματολήπτης διεισδύσει 45cm από την αρχική του θέση. Κατά τη διάρκεια της διαδικασίας μετρούνται οι κτύποι ανά 15cm διείσδυσης και στο τέλος υπολογίζεται το άθροισμα των κρούσεων (N_{SPT}) για διείσδυση 45cm, χωρίς να ληφθούν υπόψη οι κτύποι για τα πρώτα 15cm. Ουσιαστικά, ο αριθμός N_{SPT} αφορά του κτύπους για την διείσδυση των τελευταίων 30cm και αυτό συμβαίνει διότι τα πρώτα 15cm κατά πάσα πιθανότητα είναι επηρεασμένα από τη διάτρηση και συνεπώς δεν θα δώσουν αντιπροσωπευτικά αποτελέσματα των μηγανικών χαρακτηριστικών του εδάφους.

Στην συνέχεια μέσω εμπειρικών σχέσεων, χρησιμοποιώντας τον αριθμό N_{SPT} μπορούν να υπολογιστούν η σχετική πυκνότητα (D_r) οι παράμετροι της διατμητικής αντοχής (c, φ), η αστράγγιστη αντοχή του εδάφους (C_u) και το οιδημετρικό μέτρο παραμορφωσιμότητας (E_s). Οι Terzaghi και Peck (1948) συσχέτισαν για πρώτη φορά των αριθμό N_{SPT} με την σχετική πυκνότητα. Ο συσχετισμός αυτός αφορά κοκκώδη εδάφη και παρουσιάζεται στον Πίνακα 5. Οι ίδιοι έκαναν τις πρώτες συσχετίσεις του N_{SPT} με την γωνία εσωτερικής τριβής (Πίνακας 5).

Πίνακας 5: Τιμές σχετικής πυκνότητας και γωνίας εσωτερικής τριβής σε σχέση με τον αριθμό Nspt (Terzaghi και Peck, 1948).

NSPT		Dr	φ (°)
0-4	Πολύ χαλαρή	0-0,15	27-32
4-10	Χαλαρή	0,15-0,35	30-35
10-30	Μέση	0,35-0,65	35-40
30-50	Πυκνή	0,65-0,85	38-43
>50	Πολύ πυκνή	0,85-1,0	>40

Ο Peck (1953) προτείνει την Σχέση 2.28 για τον υπολογισμό της γωνίας εσωτερικής τριβής από τον αριθμό N_{SPT}, για αμμώδη εδάφη. Άλλες αντίστοιχες σχέσεις για αμμώδη εδάφη έχουν προταθεί και από τους Ohsaki (1962) (Σχέση 2.29), Japan Road Association (1990) (Σχέση 2.30), ενώ υπάρχουν αντίστοιχες σχέσεις και για άλλους τύπους εδαφών.

Ψηφιακή συλλογή

Βιβλιοθήκη

$$\begin{split} \varphi &= 0.3 * N_{SPT} + 27 \quad (2.28) \\ \varphi &= (20 * N_{SPT})^{0.5} + 15 \; (2.29) \\ \varphi &= (15 * N_{SPT})^{0.5} + 15 \leq 45, \; \gamma \iota \alpha \; N_{SPT} > 5 \; (2.30) \end{split}$$

Αναφορικά με την αστράγγιστη αντοχή, οι Terzaghi και Peck (1948) πρότειναν την Σχέση 2.31, ενώ στον Πίνακα 6 παρουσιάζεται η συνεκτικότητα του εδάφους ανάλογα με τον αριθμό N_{SPT}.

$$C_u = 0.6 * N_{SPT} (t/m^2) (2.31)$$

Πίνακας 6: Τιμές συνεκτικότητας εδάφους σε σχέση με τον αριθμό Nspt (Terzaghi και Peck, 1948).

NSPT	Συνεκτικότητα (I _c)
0-2	Πολύ μαλακή έως υδαρή
2-4	Μαλακή
4-8	Μέση
8-15	Στιφρή
15-30	Ημιστερεή
30	σκληρή

Σχετικά με το οιδημετρικό μέτρο παραμορφωσιμότητας υπάρχουν τύποι που το συσχετίζουν με τον αριθμό N_{SPT} . Ο Webb (1969) για αργιλώδη άμμο έχει προτείνει την Σχέση 2.32, ενώ ο Desai (1970) τη Σχέση 2.33. Επίσης, για αργιλώδη άμμους ο Bowles (1997) προτείνει τη Σχέση 2.35. Ο Begemann (1974) συγκεκριμένα για τον Ελληνικό χώρο έχει προτείνει τη Σχέση 2.34, όπου για εδάφη M+S: C=3, fS: C=3,5, mS: C=4,5, gS: C=7, S+G: C=10 και G+S: C=12.

$$E_s = 3,3(N_{SPT} + 15) \quad (2.32)$$

$$E_s = 5 * N_{SPT}^{1,6} \quad (2.33)$$

$$E_s = 40 + C * (N_{SPT} \pm 6), \ \acute{o}\pi ov + :N_{SPT} > 15 \text{ kal} - :N_{SPT} < 15 \quad (2.34)$$

$$E_s = 320(\text{N} + 15) \text{ (kPa)} \quad (2.35)$$

2.3 Υπολογισμός παραμέτρων για περιπτώσεις σεισμικής φόρτισης

2.3.1 Επιδεκτικότητα έναντι ρευστοποίησης

Ψηφιακή συλλογή

Βιβλιοθήκη

Στην παράγραφο που ακολουθεί θα αναλυθούν οι προϋποθέσεις πρόκλησης ρευστοποίησης (Παπαθανασίου 2022). Κατά κύριο λόγο μεγαλύτερο βαθμό επιδεκτικότητας προς ρευστοποίηση παρουσιάζουν κορεσμένες, γαλαρές, ψαθυρές, μη συνεκτικές αποθέσεις (Youd 1998). Η αύξηση της πυκνότητας και του βαθμού συγκόλλησης των εδαφών, αυξάνουν την αντοχή έναντι ρευστοποίησης και εφόσον αυτά αυξάνονται με το χρόνο, συμπεραίνεται ότι νεότερες αποθέσεις είναι πιο επιδεκτικές προς ρευστοποίηση συγκριτικά με παλαιότερες (Kramer 1996). Γενικά, φαινόμενα ρευστοποίησης παρουσιάζονται κυρίως σε σχηματισμούς Τεταρτογενούς ηλικίας, ενώ δεν έχουν παρατηρηθεί τέτοια φαινόμενα σε Προπλειστοκαινικά ιζήματα (Obermeier 1996). Επίσης, αναγκαία και απαραίτητη προϋπόθεση για ρευστοποίηση είναι το εδαφικό υλικό να βρίσκεται υπό τον υδροφόρο ορίζοντα. Ταυτόχρονα όμως σημαντικό ρόλο παίζει και το βάθος του υδροφόρου. Όσο αυξάνονται οι γεωστατικές τάσεις σε μία στρωματογραφική στήλη, τόσο αυξάνεται και η αντοχή έναντι ρευστοποίησης. Επομένως, η επιδεκτικότητα προς ρευστοποίηση θα μειώνεται με την αύξηση του βάθους της στάθμης του υδροφόρου ορίζοντα. Με βάση τα αποτελέσματα γεωτεχνικών ερευνών, το βάθος των 3-4m να αποτελεί το μέγιστο βάθος της στάθμης για την πλειονότητα των φαινομένων ρευστοποίησης, ενώ μερικές εμφανίσεις συνδέονται με βάθος στάθμης έως 10m και ελάχιστες με βάθος μεγαλύτερο των 15m (Youd, 1998).

Η σχετική πυκνότητα επηρεάζει και αυτή σημαντικά τη συμπεριφορά ενός εδάφους ως προς τη δυνατότητα ρευστοποίησης. Όσο μικρότερη η τιμή της, τόσο πιο χαλαρή είναι η διάταξη των κόκκων. Σύμφωνα με τους Terzaghi και Peck (1967), χαλαρές έως πολύ χαλαρές άμμοι είναι εν δυνάμει ρευστοποιήσιμες, ενώ για να ρευστοποιηθούν μερικώς πυκνές άμμοι απαιτούνται πολύ μεγάλες σεισμικές φορτίσεις. Τέλος, από τα σημαντικότερα κριτήρια για τον χαρακτηρισμό ενός εδάφους ως ρευστοποιήσιμου είναι η κοκκομετρία και τα φυσικά χαρακτηριστικά του. Από τις πρώτες μελέτες προέκυψε ότι οι καθαροί άμμοι είναι σχηματισμοί επιδεκτικοί σε ρευστοποίηση. Αντίθετα, τα λεπτόκοκκα εδάφη χαρακτηρίζονται από υψηλές τιμές συνοχής, τις οποίες προσδίδει το αργιλικό κλάσμα και τα χονδρόκοκκα εδάφη είναι πολύ διαπερατά για να διατηρήσουν τις απαιτούμενες υψηλές πιέσεις, ώστε να ρευστοποιηθούν. Κατά καιρούς πολλά και διαφορετικά κριτήρια έχουν προταθεί, ενώ γενικά έχει επικρατήσει η άποψη ότι εδάφη ομοιόμορφης διαβάθμισης είναι πιο πιθανό να ρευστοποιηθούν από εδάφη καλής διαβάθμισης (Kramer 1996). Γενικότερα ισχύει ότι τα αμμώδη εδάφη είναι επιδεκτικά σε ρευστοποίηση όταν βρίσκονται κάτω από τη στάθμη του υδροφόρου ορίζοντα και χαρακτηρίζονται από τιμή N_{SPT}<30. Αντιθέτως, όταν το έδαφος περιέχει ποσοστό λεπτόκοκκων μεγαλύτερο από 15%, τότε η επιδεκτικότητα εξετάζεται σύμφωνα με τα κριτήρια των Bray και Sancio (2006). Σύμφωνα με τους Bray και Sancio, για να είναι επιδεκτικό σε ρευστοποίηση έδαφος με ποσοστό λεπτόκοκκων μεγαλύτερο του 15% πρέπει να ισχύει m>0,85*LL (όπου m η υγρασία του εδάφους) και ταυτόχρονα PI<12, ή να χαρακτηρίζεται μη πλαστικό (NP).

Ψηφιακή συλλογή

Βιβλιοθήκη

Σύμφωνα με τον Ευροκώδικα 8 (EC8), τα εδάφη που είναι επιδεκτικά σε ρευστοποίηση ανήκουν στην κατηγορία S2 (Πίνακας 8) και η πιθανότητα πρόκλησης ρευστοποίησης γενικά θα πρέπει να μελετάται στις θέσεις όπου υπάρχουν παχιά στρώματα χαλαρής άμμου κάτω από επιφανειακή στάθμη υδροφόρου ορίζοντα (Πιτιλάκης 2010). Από την άλλη, έλεγχος έναντι ρευστοποίησης δεν θεωρείται απαραίτητος όταν ισχύει η Σχέση 2.36 και ταυτόχρονα το ποσοστό του αργιλικού κλάσματος είναι μικρότερο από 20% και ο δείκτης πλαστικότητας PI>10, ή το ποσοστό ιλύος είναι μεγαλύτερο του 35% και η τιμή του (N₁)₆₀>20 ή η αμμώδης απόθεση είναι καθαρή άμμος και ταυτόχρονα η τιμή του (N₁)₆₀>30.

$$\alpha \ x \ S < 0,15 \ (2.36)$$

Όπου α η επιτάχυνση της εδαφικής κίνησης σε έδαφος τύπου A και S παράμετρος που προκύπτει από τον τύπο του εδάφους.

Κατηγορία Εδάφους	S
А	1,0
В	1,2
С	1,15
D	1,35
Е	1,4

Πίνακας 7: Τιμές παραμέτρου S για τις τυποποιημένες κατηγορίες εδάφους του EC8.

Πίνακας 8: Κατηγορίες εδαφών κατά τον ΕΝ 1998-1.

Ψηφιακή συλλογή

Βιβλιοθήκη

Κατηγορία Εδάφους	Π.Θ Περιγραφή στρωματογραφίας	Παράμετροι		
		V _{s,30} (m/s)	NSPT (κρούσεις/30cm)	c _u (kPa)
А	Βράχος ή άλλος βραχώδης γεωλογικός σχηματισμός, που περιλαμβάνει το πολύ 5 m ασθενέστερου επιφανειακού υλικού	> 800	-	-
В	Αποθέσεις πολύ πυκνής άμμου, χαλίκων ή πολύ σκληρής αργίλου, πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος.	360 - 800	> 50	> 250
С	Βαθιές αποθέσεις πυκνής ή μετρίως πυκνής άμμου, χαλίκων ή σκληρής αργίλου πάχους από δεκάδες έως πολλές εκατοντάδες μέτρων.	180 - 360	15 - 50	70 - 250
D	Αποθέσεις χαλαρών έως μετρίως χαλαρών μη συνεκτικών υλικών (με ή χωρίς κάποια μαλακά στρώματα συνεκτικών υλικών) ή κυρίως μαλακά έως μετρίως σκληρά συνεκτικά υλικά.	< 180	< 15	< 70
E	Εδαφική τομή που αποτελείται από ένα επιφανειακό στρώμα ιλύος με τιμές v_s κατηγορίας C ή D και πάχος που ποικίλλει μεταξύ περίπου 5 m και 20 m, με υπόστρωμα από πιο σκληρό υλικό με $v_s > 800$ m/s.			
S_1	Αποθέσεις που αποτελούνται, ή που περιέχουν ένα στρώμα πάχους τουλάχιστον 10 m μαλακών αργίλων/ιλών με υψηλό δείκτη πλαστικότητας (PI > 40) και υψηλή περιεκτικότητα σε νερό	< 100 ενδεικτικό	-	10 - 20
S ₂	Στρώματα ρευστοποιήσιμων εδαφών, ευαίσθητων αργίλων, ή οποιαδήποτε άλλη εδαφική τομή που δεν περιλαμβάνεται στους τύπους Α – Ε ή S1			

2.4 Υπολογισμός φέρουσας ικανότητας εδάφους θεμελίωσης

Φέρουσα ικανότητα (q) (bearing capacity) του εδάφους ονομάζεται το φορτίο, ανά μονάδα επιφάνειας, κατά την εφαρμογή του οποίου, θα προκληθεί θραύση του εδάφους θεμελίωσης (Χρηστάρας 2011). Από την φέρουσα ικανότητα του εδάφους θεμελίωσης προκύπτει η επιτρεπόμενη τάση, ή αλλιώς φέρουσα ικανότητα ασφαλείας, η οποία αποτελεί το μέγιστο φορτίο ανά μονάδα επιφάνειας, που μπορεί να εφαρμοσθεί στο έδαφος μέσω της θεμελίωσης, χωρίς αυτό να παραμορφωθεί πέραν του επιτρεπτού. Η επιτρεπόμενη τάση ουσιαστικά ισούται με την φέρουσα ικανότητα για την περίπτωση θραύσης του εδάφους και με τιμή μικρότερη της φέρουσας ικανότητας, στις περιπτώσεις που υπάρχει όριο μέγιστης παραμόρφωσης, μέσω της εφαρμογής συντελεστών ασφαλείας.

Αναφορικά με τη θραύση του εδάφους θεμελίωσης, σύμφωνα με τον Vesic (1963), υπάρχουν τρεις τύποι αστοχίας για αμμώδη εδάφη ανάλογα με τη σχετική πυκνότητα, η γενική θραύση, η τοπική θραύση και η διάτρηση. Η γενική θραύση παρατηρείται σε πυκνά εδάφη με σχετική πυκνότητα μεγαλύτερη του 67%, αποτελεί απότομη θραύση με πλήρως αναπτυσσόμενη επιφάνεια αστοχίας, που συνοδεύεται από απότομη βύθιση και στροφή του θεμελίου, αλλά και από διόγκωση των επιφανειακών στρωμάτων. Αυτός ο τύπος θραύσης είναι δυνατόν να παρατηρηθεί και σε εδάφη συμπαγούς αργίλου. Η τοπική θραύση παρατηρείται σε μέσης πυκνότητας αμμώδη εδάφη. Οι επιφάνειες αστοχίας αναπτύσσονται τοπικά μόνο κάτω από τη θεμελίωση, χωρίς να φτάνουν στην επιφάνεια του εδάφους, ενώ σε αυτή την περίπτωση αστοχίας η θεμελίωση καθιζάνει και το παρακείμενο έδαφος εμφανίζει μικρή ανύψωση, ο όγκος της οποίας δεν αντιστοιχεί στον όγκο του εκτοπιζόμενου εδάφους κατά την καθίζηση, αλλά είναι πολύ μικρότερος. Τέλος, η διάτρηση παρατηρείται σε χαλαρά αμμώδη εδάφη με μεγάλη συμπιεστότητα. Κατά τη διάτρηση η θεμελίωση παρουσιάζει μεγάλη καθίζηση χωρίς την ανάπτυξη πλήρους επιφάνειας αστοχίας και χωρίς την ανύψωση του παρακείμενου εδάφους. Ουσιαστικά, κάτω από τη θεμελίωση δημιουργείται μία σφήνα, η οποία συμπιέζεται, συμπυκνώνεται και ολισθαίνει μέσα του έδαφος.

Ψηφιακή συλλογή

Βιβλιοθήκη

Επιστρέφοντας στον υπολογισμό της φέρουσας ικανότητας, ο Prandtl (1920) μελέτησε το πρόβλημα της αστοχίας ενός ελαστικού ημιχώρου, εξαιτίας εφαρμοζόμενου φορτίου στην επιφάνεια. Κατά τη μελέτη του υποθέτει ότι το εδαφικό υλικό δεν έχει βάρος ($\gamma=0$ kN/m³), είναι ομοιογενές και ισότροπο, θα συμπεριφερθεί άκαμπτα-πλαστικά, ότι η αστοχία του βασίζεται στο κριτήριο Mohr-Coulomb, ότι το φορτίο εφαρμόζεται ομοιόμορφα και κάθετα πάνω σε άπειρου μήκους πεδιλοδοκό με πλάτος διπλάσιο του ύψους της, ότι δεν ασκούνται εφαπτομενικές τάσεις μεταξύ του θεμελίου και της επιφάνειας θεμελίωσης και ότι δεν συμβαίνει υπερφόρτωση των άκρων της θεμελίωσης. Κατά την αστοχία, επιβεβαίωσε τη διαρροή εδαφικού υλικού κατά την επιφάνεια gfcde (Εικόνα 2). Αναλυτικότερα, παρατήρησε ότι η αστοχία εμφανίζεται κατά μήκος συγκεκριμένων επιφανειών ολίσθησης, συμμετρικών ως προς τον άξονα της πεδιλοδοκού. Κάτω από το θεμέλιο πραγματοποιείται αστοχία κατά μήκος των ευθυγράμμων τμημάτων με κλίση 45° +φ/2 από την οριζόντιο, σχηματίζοντας την τριγωνική σφήνα abc, η οποία ωθείται προς τα κάτω σαν άκαμπτο σώμα. Η κάθοδος της σφήνας ωθεί την εδαφική μάζα που βρίσκεται εκατέρωθεν σε μία κίνηση προς τα έξω και πάνω. Η αστοχία λαμβάνει χώρα κατά μήκος των επιφανειών bcde και acfg και αποτελείται από την κίνηση των ζωνών bcd και acf προς τα έξω και των τριγωνικών σφηνών bde και afg προς τα πάνω. Στις ζώνες acf και bcd τα κατώτερα όρια των αστοχιών αποτελούν τμήματα λογαριθμικών σπειρών με πόλους τα a και b, αντίστοιχα. Οι σφήνες bde και afg οριοθετούνται από ευθύγραμμα τμήματα με κλίση 45° -φ/2 ως προς την οριζόντιο. Με γνωστό τον τρόπο αστοχίας του εδάφους, υπολογίζει τη φέρουσα ικανότητα (q) σε σχέση με τη διατμητική αντοχή του εδάφους και τον όγκο που εδάφους που οριοθετείται από την επιφάνεια ολίσθησης gfcde.

$$q = B \times c \ (2.39)$$
Όπου Β συντελεστής που εξαρτάται από γωνία εσωτερικής τριβής του υλικού.

$$B = \cot g\varphi [e^{\pi tan\varphi} tan^2 (45^o + \varphi/2) - 1] (2.40)$$

Σύμφωνα με τη Σχέση 2.40 για φ=0 ο συντελεστής B=5,14, ενώ σε μη συνεκτικά εδάφη με (c=0, γ≠0) σύμφωνα με τον Prandtl προκύπτει q=0 και συνεπώς δεν μπορεί να εφαρμοσθεί φορτίο. Πάνω σε αυτή τη θεωρία βασίστηκαν όλες οι μετέπειτα έρευνες και εξελίξεις του υπολογισμού της φέρουσας ικανότητας του εδάφους θεμελίωσης.

Εικόνα 2: Μοντέλο επιφάνειας αστοχίας κατά Prandtl (1920).

Ψηφιακή συλλογή

Βιβλιοθήκη

Α.Π.Θ

Ο Caquot (1948) συνεχίζοντας τη θεωρία του Prandtl, αλλά θεωρώντας ότι το θεμέλιο τοποθετείται σε βάθος h≤2b,όπου 2b το πλάτος του θεμελίου, και ότι το έδαφος μεταξύ της επιφάνειας και του βάθους h χαρακτηρίζεται από $\gamma_1 \neq 0$, $\varphi=0$, c=0, ότι είναι δηλαδή υλικό με βάρος, όμως χωρίς αντίσταση, προκύπτει η Σχέση 2.41. Η σχέση αυτή αποτελεί μια εξέλιξη της θεωρίας του Prandtl, όμως ακόμα δεν αντανακλά την πραγματικότητα.

$$q = A \times \gamma_1 + B \times c \ (2.41)$$

Ο Terzaghi (1955) θεωρεί το έδαφος ως υλικό με βάρος (γ≠0) και προσθέτει επιπλέον τροποποιήσεις για να λάβει υπόψη του τα πραγματικά χαρακτηριστικά του συστήματος θεμελίωσης-εδάφους. Αρχικά, λαμβάνει υπόψη του τις εφαπτομενικές τάσεις στην επιφάνεια επαφής της θεμελίωσης με το έδαφος, καθώς αυτές είναι που συγκρατούν το έδαφος και δεν το αφήνουν να κινηθεί πλευρικά. Συνεπώς, στο έδαφος κάτω από το θεμέλιο αλλάζει το τασικό πεδίο. Έτσι, αν για το έδαφος κάτω από τη θεμελίωση ισχύει γ=0 και οι επιφάνειες αστοχίας παραμένουν αμετάβλητες προκύπτει η Σχέση 2.42 για τον υπολογισμό της φέρουσας ικανότητας.

$$q = A \times \gamma \times h + B \times c + C \times \gamma \times b \ (2.42)$$

Όπου C είναι συντελεστής συναρτήσει της γωνίας εσωτερικής τριβής του εδάφους κάτω από τη θεμελίωση και της γωνίας εσωτερικής τριβής του εδάφους πάνω από αυτή και b ισούται με το μισό του πλάτους του θεμελίου.

Ψηφιακή συλλογή

Βιβλιοθήκη

Στη συνέχεια, ο Terzaghi βασισμένος σε πειραματικά δεδομένα, εισάγει συντελεστές σχετικούς με το σχήμα του θεμελίου (s_c, s_γ), τη συνοχή του εδάφους (N_c), το βάρος των υπερκείμενων (N_q) και το ίδιο το βάρος του εδάφους (N_γ) (Σχέση 2.43). Επιπρόσθετα, υποθέτει ότι η άκαμπτη-πλαστική συμπεριφορά, αντιστοιχεί μόνο πολύ συμπυκνωμένα εδάφη. Σε αυτά η καμπύλη φορτίου-καθίζησης είναι αρχικά γραμμική και έπειτα ακολουθείται από ένα μικρό καμπυλωτό τμήμα. Στο σημείο κάμψης της καμπύλης συμβαίνει η αστοχία, η οποία είναι τύπου γενικής θραύσης και από αυτό προσδιορίζεται η φέρουσα ικανότητα του εδάφους θεμελίωσης. Αντίθετα, σε πολύ χαλαρά εδάφη, η καμπύλη φορτίου καθίζησης είναι άροτία το σημείο αστοχίας, η οποία σε αυτή την περίπτωση είναι τύπου τοπικής θραύσης. Συνεπώς για πολύ χαλαρά εδάφη, ο Terzaghi προτείνει τη χρήση απομειωμένων τιμών (φ_{red}, c_{red}) των μηχανικών χαρακτηριστικών σύμφωνα με τος Σχέσεις 2.52, 2.53. Συνεπώς, κατά την τοπική θραύση διαφοροποιούνται και οι συντελεστές σχήματος για συνεχή, τετραγωνικά και κυκλικά θεμέλια, αντίστοιχα σύμφωνα με τον Terzaghi.

 $q_{ult} = c N_c s_c + \gamma D N_q + 0.5 \gamma B N_\gamma s_\gamma (2.43)$ Για συνεχή πέδιλα: $q_{ult} = c N_c + \gamma D N_q + 0.5 \gamma B N_\gamma (2.44)$ Για τετραγωνικά πέδιλα: $q_{ult} = 1.3 c N_c + \gamma D N_q + 0.4 \gamma B N_\gamma (2.45)$ Για κυκλικά πέδιλα: $q_{ult} = 1.3 c N_c + \gamma D N_q + 0.3 \gamma B N_\gamma (2.46)$

$$N_{q} = \frac{\alpha^{2}}{2 \times \cos^{2}(45 + \varphi/2)} (2.47)$$

$$\alpha = e^{(0,75\pi - \varphi/2)tan\varphi} (2.48)$$

$$N_{c} = (N_{q} - 1)cot\varphi (2.49)$$

$$N_{\gamma} = \frac{tan\varphi}{2} \left(\frac{K_{p} \times \gamma}{cos^{2}\varphi} - 1\right) (2.50)$$

$$K_{p} = tan^{2} (45^{\circ} + \varphi/2) (2.51)$$

$$tan\varphi_{red} = 2/3 \times tan\varphi (2.52)$$

$$c_{red} = 2/3 \times c (2.53)$$

30 Οι τιμές των συντελεστών N_c , N_q και N_γ μπορούν να βρεθούν και από το νομόγραμμα της Εικόνας 3, αλλά και από τους Πίνακες 9, 10 για γενική και τοπική θραύση, αντίστοιχα.

Εικόνα 3: Νομογράφημα εύρεσης συντελεστών φέρουσας ικανότητας για γενική θραύσης (N_c , N_q , N_γ) και για τοπική θραύση (N'_c , N'_q , N'_γ) (Terzaghi 1955).

Πίνακας 9: Τιμές των συντελεστών $N_c N_q N_\gamma$ συναρτήσει της γωνίας εσωτερικής τριβής για γενική θραύση) (Terzaghi 1955).

φ' (deg)	Nc	Nq	Νγ	φ' (deg)	Nc	Nq	Νγ
0	5,70	1,00	0,00	26	27,09	14,21	9,84
1	6,00	1,10	0,01	27	29,24	15,90	11,60
2	6,30	1,22	0,04	28	31,61	17,81	13,70
3	6,62	1,35	0,06	29	34,24	19,98	16,18
4	6,97	1,49	0,10	30	37,16	22,46	19,13
5	7,34	1,64	0,14	31	40,41	25,28	22,65
6	7,73	1,81	0,20	32	44,04	28,52	26,87
7	8,15	2,00	0,27	33	48,09	32,23	31,94
8	8,60	2,21	0,35	34	52,64	36,50	38,04
9	9,09	2,44	0,44	35	57,75	41,44	45,41
10	9,61	2,69	0,56	36	63,53	47,16	54,36
11	10,16	2,98	0,69	37	70,01	53,80	65,27
12	10,76	3,29	0,85	38	77,50	61,55	78,61
13	11,41	3,63	1,04	39	85,97	70,61	95,03
14	12,11	4,02	1,26	40	95,66	81,27	115,31
15	12,86	4,45	1,52	41	106,81	93,85	140,51
16	13,68	4,92	1,82	42	119,67	108,75	171,99
17	14,60	5,45	2,18	43	134,58	126,50	211,56
18	15,12	6,04	2,59	44	151,95	147,74	261,60
19	16,56	6,70	3,07	45	172,28	173,28	325,34
20	17,69	7,44	3,64	46	196,22	204,19	407,11
21	18,92	8,26	4,31	47	224,55	241,80	512,84
22	20,27	9,19	5,09	48	258,28	287,85	650,67
23	21,75	10,23	6,00	49	298,71	344,63	831,99
24	23,36	11,40	7,08	50	347,50	415,14	1072,80
25	25,13	12,72	8,34				

Ψηφιακή συλλογή

Βιβλιοθήκη

φ' (deg)	N'c	N'q	N'γ	φ' (deg)	N'c	N'q	Ν'γ
0	5,70	1,00	0,00	26	16,53	6,05	2,59
1	5,90	1,07	0,005	27	16,30	6,54	2,88
2	6,10	1,14	0,02	28	17,13	7,07	3,29
3	6,30	1,22	0,04	29	18,03	7,66	3,76
4	6,51	1,30	0,055	30	18,99	8,31	4,39
5	6,74	1,39	0,074	31	20,03	9,03	4,83
6	6,97	1,49	0,10	32	21,16	9,82	5,51
7	7,22	1,59	0,128	33	22,39	10,69	6,32
8	7,47	1,70	0,16	34	23,72	11,67	7,22
9	7,74	1,82	0,20	35	25,18	12,75	8,35
10	8,02	1,94	0,24	36	26,77	13,97	9,41
11	8,32	2,08	0,30	37	28,51	16,32	10,90
12	8,63	2,22	0,35	38	30,43	16,85	12,75
13	8,96	2,38	0,42	39	32,53	18,56	14,71
14	9,31	2,55	0,48	40	34,87	20,50	17,22
15	9,67	2,73	0,57	41	37,45	22,70	19,75
16	10,06	2,92	0,67	42	40,33	25,21	22,50
17	10,47	3,13	0,76	43	43,54	28,06	26,25
18	10,90	3,36	0,88	44	47,13	31,34	30,40
19	11,36	3,61	1,03	45	51,17	35,11	36,00
20	11,85	3,88	1,12	46	55,73	39,48	41,70
21	12,37	4,17	1,35	47	60,91	44,54	49,30
22	12,92	4,48	1,55	48	66,80	50,46	59,25
23	13,51	4,82	1,74	49	73,55	57,41	71,45
24	14,14	5,20	1,97	50	81,31	65,60	85,75
25	14,80	5,60	2,25				

Ο Meyerhof (1963) προτείνει μία σχέση παρόμοια με του Terzaghi, αλλά στην οποία έχουν προστεθεί επιπλέον συντελεστές (Σχέση 2.54, 2.55). Προσθέτει τον συντελεστή σχήματος s_q, ο οποίος πολλαπλασιάζει τον συντελεστή N_q, τον συντελεστή βάθους d_i και τον συντελεστή κλίσης i_i για περιπτώσεις στις οποίες το φορτίο εφαρμόζεται με κλίση που αποκλίνει από την κατακόρυφο. Επιπλέον, προτείνει τις Σχέσεις 2.56, 2.57, 2.58 για τους συντελεστές N_q, N_c και N_γ, αντίστοιχα.

Για κατακόρυφη φόρτιση: $q_{ult} = c N_c s_c d_c + \gamma D N_q s_q d_q + 0.5 \gamma B N_\gamma s_\gamma d_\gamma$ (2.54) Για κεκλιμένη φόρτιση: $q_{ult} = c N_c i_c d_c + \gamma D N_q i_q d_q + 0.5 \gamma B N_\gamma i_\gamma d_\gamma$ (2.55)

$$N_{q} = e^{\pi \tan \varphi} \tan^{2}(45 + \varphi/2) \ (2.56)$$
$$N_{c} = (N_{q} - 1) \cot \varphi \ (2.57)$$
$$N_{\gamma} = (N_{q} - 1) \tan(1.4\varphi) \ (2.58)$$
$$s_{c} = 1 + 0.2K_{p} \frac{B}{L} \gamma \iota \alpha \ \varphi > 10 \ (2.59)$$

Ο Hansen (1970) προσθέτει στην σχέση του Meyerhof τον συντελεστή b_i, ο οποίος αφορά μια πιθανή κλίση του θεμελίου από την οριζόντιο και τον συντελεστή g_i για κεκλιμένη επιφάνεια εδάφους. Η σχέση αυτή προτείνεται για όλο το εύρος D/B, όπου D το βάθος και B το πλάτος θεμελίωσης, συνεπώς μπορεί να χρησιμοποιηθεί τόσο σε επιφανειακές όσο και βαθιές θεμελιώσεις. Ωστόσο, διαφοροποιεί λίγο τους συντελεστές d_i, s_i, i_i, για να αποτρέψει την υπερβολική αύξηση του οριακού φορτίου με την αύξηση του βάθους.

Για D/B<1: $d_c = 1 + 0.4 \frac{D}{B} (2.68)$ $d_q = 1 + 2tan \varphi (1 - sin\varphi)^2 \frac{D}{B} (2.69)$ Για D/B>1: $d_c = 1 + 0.4tan^{-1} \frac{D}{B} (2.70)$

 $d_q = 1 + 2\tan\varphi(1 - \sin\varphi)^2 \tan^{-1}\frac{D}{B} (2.71)$

Πίνακας 11: Τιμές συντελεστή d
ς ανάλογα με τα χαρακτηριστικά του θεμελίου και για φ=0°.

D/B	0	1	1,1	2	5	10	20	100
d'c	0	0,40	0,33	0,44	0,55	0,59	0,61	0,62

Στις σχέσεις που ακολουθούν ο τόνος (') στους συντελεστές αναφέρεται στις περιπτώσεις που $\varphi=0^{\circ}$.

$$s'_{c} = 0.2 \frac{B}{L} (2.72)$$

 $s_{c} = 1 + \frac{N_{q}}{N_{c}} \frac{B}{L} (2.73)$

$$\begin{split} s_c &= 1 \ \gamma \iota \alpha \ \pi \epsilon \delta \iota \lambda \circ \delta \circ \circ \circ \varsigma \ (2.74) \\ s_q &= 1 + \frac{B}{L} tan \varphi \ (2.75) \\ s_\gamma &= 10, 4 \frac{B}{L} \ (2.76) \\ i'_c &= 0, 5 - 0, 5 \sqrt{1 - \frac{H}{A_f c_a}} \ (2.77) \\ i_c &= i_q - \frac{1 - i_q}{N_q - 1} \ (2.78) \\ i_q &= \left(1 - \frac{0, 5H}{V + A_f c_a cot \varphi}\right)^5 \ (2.79) \\ i_\gamma &= \left(1 - \frac{0, 7H}{V + A_f c_a cot \varphi}\right)^5 \gamma \iota \alpha \ \eta = 0 \ (2.80) \\ i_\gamma &= \left(1 - \frac{(0, 7 - \eta/450)H}{V + A_f c_a cot \varphi}\right)^5 \gamma \iota \alpha \ \eta > 0 \ (2.81) \\ g'_c &= \frac{B}{147} \ (2.82) \\ g_c &= 1 - \frac{B}{147} \ (2.83) \\ g_q &= g_\gamma = (1 - 0, 5 tan \beta)^5 \ (2.84) \end{split}$$

$$b'_{c} = \frac{\eta^{\circ}}{147^{\circ}} (2.85)$$

 $b_{c} = 1 - \frac{\eta^{\circ}}{147^{\circ}} (2.86)$

$$b_q = exp(-2\eta tan\varphi) (2.87)$$

Ο Vesic (1975) προτείνει μία σχέση ανάλογη του Hansen, με τους συντελεστές N_q, N_c ίδιους με του Meyerhof και τον συντελεστή N_γ σύμφωνα με τη Σχέση 2.88. Οι συντελεστές σχήματος και βάθους παραμένουν ίδιοι με του Hansen, ωστόσο διαφοροποιούνται οι συντελεστές για την κλίση της φόρτισης, την κλίση του εδάφους και την κλίση του θεμελίου.

$$N_{\gamma} = 2(N_q + 1)tan\varphi \ (2.88)$$

Σύμφωνα με τον Ευρωκώδικα 7 (Brich-Hansen 1970) προϋπόθεση για να διατηρηθεί σταθερή μία θεμελίωση είναι να ισχύει Vd≤ Rd, όπου Vd είναι η τάση σχεδιασμού και Rd η φέρουσα ικανότητα του εδάφους θεμελίωσης. Η τάση σχεδιασμού περιλαμβάνει τόσο το φορτίο της ίδιας της θεμελίωσης, καθώς και τις υδροστατικές πιέσεις σε στραγγιζόμενες

συνθήκες. Η φέρουσα ικανότητα λαμβάνει υπόψη εκκεντρικά και κεκλιμένα φορτία, ενώ για καλά διαβαθμισμένα εδάφη υπολογίζεται τόσο για βραχυπρόθεσμα, όσο για μακροπρόθεσμα σενάρια. Η φέρουσα ικανότητα (R) υπολογίζεται σύμφωνα με τις Σχέσεις 2.89 και 2.92 για αστράγγιστες συνθήκες και συνθήκες αποστράγγισης, αντίστοιχα.

Για αστράγγιστες συνθήκες: $R/A' = (2 + p) c_u s_c i_c + q$ (2.89)

A' = B' L': Η σχεδιαζόμενη επιφάνεια θεμελίωσης, η οποία ορίζεται ως η βάση του θεμελίου ή σε περιπτώσεις εκκεντρικής φόρτισης, η μειωμένη επιφάνεια θεμελίωσης, της οποίας το κέντρο είναι το σημείο μέσω του οποίου ενεργεί η συνισταμένη του φορτίου. Β'το πλάτος της θεμελίωσης και L' το μήκος της.

 $_{C_{u}}$: Η αστράγγιστη αντοχή του εδάφους.

Ψηφιακή συλλογή

Βιβλιοθήκη

 $s_{\mbox{c}:}$ Ο συντελεστής σχήματος του θεμελίου.

 ${s_{c}}=1+0,2~({B^{\prime}}/{L^{\prime}})$ για ορθογώνιο θεμέλιο(2.90)

 $s_c = 1,2$ για τετράγωνο ή κυκλικό θεμέλιο

ic: Ο συντελεστής κλίσης εφαρμοζόμενου φορτίου Η.

$$i_c = 0.5 \left(1 + \sqrt{1 - H/A'c_u} \right) (2.91)$$

Για συνθήκες αποστράγγισης: $\frac{R}{A'} = c' N_c s_c i_c + q' N_q s_q i_q + 0,5 γ' B' N_γ s_γ i_γ$ (2.92) N_q, N_c, N_γ : Οι συντελεστές φέρουσας ικανότητας.

$$N_q = e^{\pi t a n \varphi'} tan^2 (45 + \varphi'/2) \quad (2.93)$$
$$N_c = (N_q - 1) cot \varphi' \quad (2.94)$$
$$N_{\chi} = 2 \ (N_q - 1) tan \varphi' \quad (2.95)$$

 s_q, s_γ, s_c : Οι συντελεστές σχήματος θεμελίου.

$$s_q = 1 + (B'/L') sinφ' για ορθογώνιο σχήμα (2.96)$$

$$s_q = 1 + sinφ' για τετράγωνο ή κυκλικό σχήμα (2.97)$$

$$s_γ = 1 - 0,3(B'/L') για ορθογώνιο σχήμα (2.98)$$

$$s_γ = 0,7 για τετράγωνο ή κυκλικό σχήμα$$

$$s_c = (s_q N_q - 1)/(N_q - 1) (2.99)$$

 i_q , i_γ , i_c : Οι συντελεστές κλίσης φορτίου, το οποίο προκαλείται από φορτίο Η παράλληλο στο L'ή στο B' με χρήση των m_L και m_B , αντίστοιχα.

$$i_{q} = [1 - H/(V + A'c'cot\varphi')]^{m}(2.100)$$

$$i_{\gamma} = [1 - H/(V + A'c'cot\varphi')]^{m+1}(2.101)$$

$$i_{c} = (i_{q} N_{q} - 1)/(N_{q} - 1) (2.102)$$

$$m = m_{B} = \frac{[2 + (\frac{B'}{L'})]}{[1 + (\frac{B'}{L'})]} \gamma_{I\alpha} H//B' (2.103)$$

$$m = m_{L} = \frac{[2 + (\frac{L'}{B'})]}{[1 + (\frac{L'}{B'})]} \gamma_{I\alpha} H//L' (2.104)$$

Συμπληρωματικά των ανωτέρω, οι Paolucci και Pecker (1997) εισάγουν τους συντελεστές z_i, ώστε να ληφθεί υπόψη η επίδραση της σεισμικής διέγερσης κατά τον υπολογισμό της φέρουσας ικανότητας του εδάφους.

$$z_q = z_{\gamma} = \left(1 - \frac{k_h}{\tan \varphi}\right)^{0.35} (2.105)$$
$$z_{\gamma} = 1 - 0.32 \ k_h \ (2.106)$$

Όπου kh ο οριζόντιος σεισμικός συντελεστής, ο οποίος υπολογίζεται ως εξής:

$$k_h = S a_g / g (2.107)$$

Όπου ag η μέγιστη εδαφική επιτάχυνση αναφοράς για τύπο εδάφους Α και S συντελεστής του εδάφους που βασίζεται στον τύπο του εδάφους. Επιπροσθέτως, ο κατακόρυφος συντελεστής σεισμικότητας (k_v), υπολογίζεται ως εξής:

$$k_v = \pm 0,5 k_h \ (2.108)$$

2.5 Υπολογισμός καθιζήσεων

2.5.1 Ελαστικές καθιζήσεις

Ψηφιακή συλλογή

Βιβλιοθήκη

Βασισμένοι στην θεωρία της ελαστικότητας οι Janbu και Bjerrum (1956) υπολογίζουν τις άμεσες καθιζήσεις εύκαμπτης επιφάνειας θεμελίωσης σύμφωνα με την εξής σχέση:

$$\Delta H = q B \frac{(1 - \nu^2)}{E_s} I_f \ (2.109)$$

Για ν=0,5, προσθέτουν τους συντελεστές I_1 και I_2 έναντι του I_f και έτσι η αρχική σχέση μετατρέπεται στην Σχέση 2.110.

$$\Delta H = \frac{qB}{E_s} I_1 I_2 \ (2.110)$$

Όπου q η ομοιόμορφη πίεση επαφής του θεμελίου, B η μικρότερη διάσταση του θεμελίου, E_s το μέτρο ελαστικότητας, ν ο λόγος Poisson και I_i συντελεστές που εξαρτώνται από το σχήμα και την ακαμψία του θεμελίου. Οι τιμές των I₁ και I₂ προκύπτουν από τα διαγράμματα της Εικόνας 4.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 4: Διαγράμματα εύρεσης συντελεστών I_1 και I_2 για ελαστικές καθιζήσεις (Janbu and Bjerrum, 1956).

Οι Timoshenko και Goodier (1951) προτείνουν την Σχέση 2.111 για τον υπολογισμό των άμεσων καθιζήσεων ορθογώνιας θεμελίωσης πλάτους B' και μήκους L'. Στον τύπο q_o είναι η ομοιόμορφη πίεση επαφής θεμελίου, B' η μικρότερη διάσταση του θεμελίου, E_s το μέτρο συμπιεστότητας, ν ο λόγος Poisson, I_s συντελεστής που εξαρτάται από το λόγο L'/B', το πάχος του στρώματος (H), το λόγο Poisson (ν) και το βάθος θεμελίωσης (D) και I_F συντελεστής που απομειώνει τις καθιζήσεις με το βάθος και εξαρτάται από το λόγο Poisson και το λόγο L/B (Fox, 1948). Οι συντελεστές I₁ και I₂ υπολογίζονται σύμφωνα με τον Steinbrenner (1934), από τον Πίνακα 12 και στη συνέχεια προκύπτει ο συντελεστής I_s από αυτούς (Σχέση 2.112) και ο I_F προκύπτει από το διάγραμμα της Εικόνας 5.

$$\Delta H = q_o B' \frac{1 - \nu^2}{E_s} I_s \ I_F \ (2.111)$$
$$I_s = I_1 + \frac{1 - 2\nu}{1 - \nu} I_2 \ (2.112)$$

Πίνακας 12: Τιμές συντελεστών Ι1 και Ι2, για τον υπολογισμό του συντελεστή επιρροής Ιs του Steinbrenner, για διάφορες τιμές των λόγων N=H/B' και M=L/B (Steinbrenner 1934).

Ψηφιακή συλλογή

Βιβλιοθήκη

88

N	M=1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
0,2	I1=0,009	0,008	0,008	0,008	0,008	0,008	0,007	0,007	0,007	0,007	0,007
	I2=0,041	0,042	0,042	0,042	0,042	0,042	0,043	0,043	0,043	0,043	0,043
0,4	0,033	0,032	0,031	0,030	0,029	0,028	0,028	0,027	0,027	0,027	0,027
	0,066	0,068	0,069	0,070	0,070	0,071	0,071	0,072	0,072	0,073	0,073
0,6	0,066	0,064	0,063	0,061	0,060	0,059	0,058	0,057	0,056	0,056	0,055
	0,079	0,081	0,083	0,085	0,087	0,088	0,089	0,090	0,091	0,091	0,092
0,8	0,104	0,102	0,100	0,098	0,096	0,095	0,093	0,092	0,091	0,090	0,089
	0,083	0,087	0,090	0,093	0,095	0,097	0,098	0,100	0,101	0,102	0,103
1,0	0,142	0,140	0,138	0,136	0,134	0,132	0,130	0,129	0,127	0,126	0,125
	0,083	0,088	0,091	0,095	0,098	0,100	0,102	0,104	0,106	0,108	0,109
1,5	0,224	0,224	0,224	0,223	0,222	0,220	0,219	0,217	0,216	0,214	0,213
	0,075	0,080	0,084	0,089	0,093	0,096	0,099	0,102	0,105	0,108	0,110
2,0	0,285	0,288	0,290	0,292	0,292	0,292	0,292	0,292	0,291	0,290	0,289
	0,064	0,069	0,074	0,078	0,083	0,086	0,090	0,094	0,097	0,100	0,102
3,0	0,363	0,372	0,379	0,384	0,389	0,393	0,396	0,398	0,400	0,401	0,402
	0,048	0,052	0,056	0,060	0,064	0,068	0,071	0,075	0,078	0,081	0,084
4,0	0,408	0,421	0,431	0,440	0,448	0,455	0,460	0,465	0,469	0,473	0,476
	0,037	0,041	0,044	0,048	0,051	0,054	0,057	0,060	0,063	0,066	0,069
5,0	0,437	0,452	0,465	0,477	0,487	0,496	0,503	0,510	0,516	0,522	0,526
	0,031	0,034	0,036	0,039	0,042	0,045	0,048	0,050	0,053	0,055	0,058
6,0	0,457	0,474	0,489	0,502	0,514	0,524	0,534	0,542	0,550	0,557	0,563
	0,026	0,028	0,031	0,033	0,036	0,038	0,040	0,043	0,045	0,047	0,050
7,0	0,471	0,490	0,506	0,520	0,533	0,545	0,556	0,566	0,575	0,583	0,590
	0,022	0,024	0,027	0,029	0,031	0,033	0,035	0,037	0,039	0,041	0,043
8,0	0,482	0,502	0,519	0,534	0,549	0,561	0,573	0,584	0,594	0,602	0,611
	0,020	0,022	0,023	0,025	0,027	0,029	0,031	0,033	0,035	0,036	0,038
9,0	0,491	0,511	0,529	0,545	0,560	0,574	0,587	0,598	0,609	0,618	0,627
	0,017	0,019	0,021	0,023	0,024	0,026	0,028	0,029	0,031	0,033	0,034
10,0	0,498	0,519	0,537	0,554	0,570	0,584	0,597	0,610	0,621	0,631	0,641
	0,016	0,017	0,019	0,020	0,022	0,023	0,025	0,027	0,028	0,030	0,031
20,0	0,529	0,553	0,575	0,595	0,614	0,631	0,647	0,662	0,677	0,690	0,702
	0,008	0,009	0,010	0,010	0,011	0,012	0,013	0,013	0,014	0,015	0,016
500,0	0,560	0,587	0,612	0,635	0,656	0,677	0,696	0,714	0,731	0,748	0,763
	0.000	0,000	0,000	0,000	0,000	0,000	,0001	0,001	0,001	0,001	0,001

Εικόνα 5: Διάγραμμα υπολογισμού συντελεστή βάθους Ι_F ή F₃.

Οι τιμές των μ₀, μ₁ υπολογίζονται με τη βοήθεια των νομογραμμάτων της Εικόνας 6 (Βαλαλάς, 1977) και εξαρτώνται από τα γεωμετρικά χαρακτηριστικά του θεμελίου και το βάθος θεμελίωσης.

Εικόνα 6: Νομογράμματα υπολογισμού συντελεστών μ₀, μ₁ (Βαλαλάς, 1977).

2.5.2 Καθιζήσεις λόγω στερεοποίησης

Οι καθιζήσεις λόγω στερεοποίησης υπολογίζονται μέσω της δοκιμής μονοδιάστατης στερεοποίησης. Με την δοκιμή αυτή καθορίζονται η τάση προστερεοποίησης (σ'_p), ο δείκτης συμπίεσης (C_c), ο δείκτης επανασυμπίεσης (C_r) και εν συνεχεία ο λόγος συμπίεσης (CR) και ο λόγος επανασυμπίεσης (RR), ενός εδαφικού στρώματος αρχικού πάχους H_o. Αν το έδαφος

είναι υπερστερεοποιημένο (OCR>1), δηλαδή αν οι τάσεις που εφαρμόζονται τώρα (σ'_{vo}) είναι μικρότερες από την τάση προστερεοποίησης του εδαφικού υλικού, οι οιδημετρικές καθιζήσεις υπολογίζονται με την εξής σχέση:

$$\Delta H = H_o RR \log \frac{\sigma'_{\nu o} + \Delta \sigma_{\nu}}{\sigma'_{\nu o}} (2.114)$$

Αντίθετα, αν το έδαφος είναι κανονικά στερεοποιημένο (OCR=1), δηλαδή αν οι τάσεις που εφαρμόζονται τώρα ισούνται με την τάση προστερεοποίησης, τότε οι οιδημετρικές καθιζήσεις υπολογίζονται σύμφωνα με την σχέση:

$$\Delta H = H_o \ CR \ \log \frac{\sigma'_{\nu o} + \Delta \sigma_{\nu}}{\sigma'_{\nu o}} (2.115)$$
$$RR = \frac{C_r}{1 + e_o} (2.116)$$
$$CR = \frac{C_c}{1 + e_o} (2.117)$$

Ένας εναλλακτικός τρόπος υπολογισμού των οιδημετρικών καθιζήσεων από τη δοκιμή μονοδιάστατης στερεοποίησης χωρίς την χρήση των λόγων συμπίεσης και επανασυμπίεσης, είναι με χρήση του συντελεστή μεταβολής όγκου (m_v), σύμφωνα με τη σχέση που ακολουθεί.

$$\Delta H = H_o \ m_v \ \Delta \sigma_v \ (2.118)$$

2.5.3 Μέθοδος Burland και Burbidge

Ψηφιακή συλλογή

Βιβλιοθήκη

Η μέθοδος υπολογισμού καθιζήσεων των Burland και Burbidge (1985) εφαρμόζεται όταν υπάρχουν διαθέσιμα αποτελέσματα πρότυπων δοκιμών διείσδυσης (SPT). Πιο λεπτομερώς, ο δείκτης συνεκτικότητας (I_c) συσχετίζεται με των αριθμό N_{SPT}.

$$I_c = \frac{1.71}{N_{AV}^{1.4}} \left(2.119 \right)$$

Όπου N_{AV} η μέση τιμή του N_{SPT} για ένα συγκεκριμένο βάθος (z_i). Επίσης, να αναφερθεί ότι οι τιμές N_{SPT} πρέπει να διορθωθούν ώστε να αντιστοιχούν σε ιλυώδεις άμμους, που βρίσκονται κάτω από τον υδροφόρο ορίζοντα και έχουν τιμή N_{SPT}>15 (Terzaghi και Peck, 1948). Η διορθωμένη τιμή N_{SPT} για ιλυώδεις άμμους ισούται με N_C=15+0,5(N_{SPT}-15), ενώ για χαλίκια ή χαλικώδεις άμμους με N_C=1,25 N_{SPT}.

Έπειτα, οι καθιζήσεις μπορούν να υπολογισθούν από την εξής σχέση:

$$\Delta H = f_s f_H f_t \left[\sigma'_{\nu o} B^{0,7} \frac{I_c}{3} + (q' - \sigma'_{\nu o}) B^{0,7} I_c \right] (2.120)$$

Όπου q' η ενεργός τάση από την κατασκευή, σ'_{vo} η κατακόρυφη τάση στο βάθος θεμελίωσης, Β το πλάτος του θεμελίου και f_s, f_H, f_t συντελεστές διόρθωσης για το σχήμα του θεμελίου, το πάχος του συμπιεστού στρώματος και του χρόνου, αντίστοιχα.

$$f_{s} = \left(\frac{1.25 \ L/B}{L/B + 0.25}\right)^{2} (2.121)$$
$$f_{H} = \frac{H}{z_{i}} \left(2 - \frac{H}{z_{i}}\right) (2.122)$$
$$f_{t} = \left(1 + R_{3} + R \ \log\frac{t}{3}\right) (2.123)$$

Στους παραπάνω τύπους, L είναι το μήκος του θεμελίου, B το πλάτος, H το πάχος του συμπιεστού στρώματος, z_i το βάθος εφαρμογής της πρότυπης δοκιμής διείσδυσης, t είναι ο χρόνος σε χρόνια (>3), R₃ συντελεστής με σταθερή τιμή ίση με 0,3 για στατική φόρτιση και 0,7 για δυναμική φόρτιση και R συντελεστής με τιμή 0,2 για στατική και 0,8 για δυναμική φόρτιση.

2.6 Μέθοδοι ανάλυσης ευστάθειας εκσκαφών

Ψηφιακή συλλογή

Βιβλιοθήκη

Υπάρχουν πολλές μέθοδοι ανάλυσης ευστάθειας εκσκαφών. Παρακάτω θα αναλυθούν αυτές του Bishop και του Janbu corrected, οι οποίες χρησιμοποιήθηκαν και στην συγκεκριμένη εργασία και αφορούν κυκλικές επιφάνειες αστοχίας και βασίζονται στον διαχωρισμό του τμήματος που αστοχεί, σε κατακόρυφες ζώνες (Method of slices).

Έστω ότι η επιφάνεια αστοχίας είναι τμήμα ενός κύκλου με κέντρο Ο και ακτίνα r. Η εδαφική μάζα πάνω από την κυκλική επιφάνεια αστοχίας χωρίζεται σε κατακόρυφες ζώνες με πλάτος (b), ύψος (h), κλίση της βάσης τους από την οριζόντιο (a) και βάση η οποία θεωρείται ευθεία με μήκος L=b*sec(a). Η ευστάθεια κάθε ζώνης εξαρτάται από τον συντελεστή ασφαλείας FS, ο οποίος ισούται με το λόγο της διαθέσιμης διατμητικής αντοχής (τ_f) προς τη διατμητική τάση (τ_m). Οι τάσεις που ασκούνται σε κάθε ζώνη είναι:

- Το βάρος της εδαφικής μάζας (W=γbh),
- Η συνολική ορθή τάση στη βάση (N=σL), η οποία αποτελείται από δύο συνιστώσες, την ενεργή ορθή τάση (N'=σ'L) και την υδροστατική τάση (U=uL, όπου u η πίεση του νερού των πόρων),
- Η διατμητική τάση της βάσης (T=τ_mL),
- Οι ορθές τάσεις πλευρικά των ζωνών (X_{i-1}, X_{i+1})
- Οι διατμητικές τάσεις πλευρικά των ζωνών (V_{i-1}, V_{i+1}).

Εικόνα 7: Κατακόρυφη ζώνη i μιας επιφάνειας αστοχίας κατά Janbu (1954) και οι ασκούμενες σε αυτή τάσεις.

Ο Bishop (1955) υποθέτει ότι οι διατμητικές τάσεις που δρουν πλευρικά των ζωνών (V_{i-1}, V_{i+1}) είναι ίσες μεταξύ τους και συνεπώς μπορούν να παραληφθούν και ασχολείται με την ισορροπία των κατακόρυφων δυνάμεων κάθε ζώνης και την ισορροπία της συνολικής ροπής ως προς το σημείο Ο.

Όσον αφορά στις συνολικές ροπές και εφόσον ο μοχλοβραχίονας του βάρους ισούται με r*sina θα ισχύει:

$$\sum T r = \sum W r sina \Leftrightarrow \sum T = \sum W sina (2.124)$$

Επίσης, ισχύει:

$$T = \tau_m L = \frac{\tau_f}{FS} L = \frac{c' + \sigma' tan \varphi'}{FS} L \quad (2.125)$$

Συνεπώς η Σχέση 2.124 γίνεται:

$$\sum_{FS}^{\frac{\tau_f}{FS}L} = \sum W \operatorname{sina} \Leftrightarrow FS = \frac{\sum \tau_f L}{\sum W \operatorname{sina}} \Leftrightarrow FS = \frac{\sum (c' + \sigma' \tan \varphi') L}{\sum W \operatorname{sina}} \Leftrightarrow FS = \frac{c' L + \tan \varphi' \Sigma N'}{\sum W \operatorname{sina}} (2.126)$$

Σχετικά με την κατακόρυφη διεύθυνση, το βάρος και η ενεργή ορθή τάση υπολογίζονται σύμφωνα με τις Σχέσεις 2.127, 2.128, αντίστοιχα.

$$W = N'\cos\alpha + u L \cos\alpha + \frac{c'L}{F}\sin\alpha + \frac{N'}{FS}\tan\varphi' \sin\alpha (2.127)$$

Έπειτα από κάποιες μετατροπές η Σχέση 2.126, γίνεται ως εξής:

$$FS = \frac{1}{\Sigma W sin\alpha} \sum \left[\{ c' \ b + (W - u \ b) tan \varphi' \} \frac{sec\alpha}{1 + (tan\alpha \ tan\varphi'/FS)} \right] (2.129)$$

Εισάγοντας και τον αδιάστατο λόγο πίεσης πόρων (r_u), ο συντελεστής ασφαλείας προκύπτει από τη Σχέση 2.130. Ο λόγος πίεσης των πόρων ισούται με την πίεση των πόρων προς το γινόμενο του φαινόμενου βάρους με το ύψος της εδαφικής μάζας (r_u=u/γh) ή για μία εδαφική ζώνη ισούται με την πίεση των πόρων προς το πηλίκο του βάρους της εδαφικής μάζας με το πλάτος της ζώνης (r_u=u/(W/b)).

$$FS = \frac{1}{\Sigma W sin\alpha} \sum \left[\{ c' \ b + W(1 - r_u) tan\varphi' \} \frac{sec\alpha}{1 + (tan\alpha \ tan\varphi'/FS)} \right] (2.130)$$

Αξίζει να αναφερθεί ότι, ο συντελεστής ασφαλείας που προκύπτει με αυτή τη μέθοδο είναι υποτιμημένος, ωστόσο το σφάλμα είναι απίθανο να ξεπερνάει το 7%, ενώ στις περισσότερες περιπτώσεις είναι μικρότερο του 2%.

Ο Janbu (1954) υποθέτει ότι δεν ασκούνται διατμητικές τάσεις μεταξύ των ζωνών και ασχολείται με την ισορροπία των κατακόρυφων δυνάμεων για κάθε ζώνη και με την ισορροπία των συνολικών οριζόντιων δυνάμεων για ολόκληρη την κατολισθαίνουσα μάζα. Η εξίσωση των κατακόρυφων δυνάμεων δίνεται από την Σχέση 2.131 και η εξίσωση των οριζόντιων από τη Σχέση 2.132.

$$\sum F_{Vertical} = 0 \Leftrightarrow W_i + (V_{i-1} - V_{i+1}) = T_i sin\alpha_i + (N'_i + U_i) cos\alpha_i (2.131)$$

 $\sum F_{Horizontal} = 0 \Leftrightarrow T_i cos \alpha_i = (N'_i + U_i) sin \alpha_i \ (2.132)$

Συνδυάζοντας τις Σχέσεις 2.131. 2.132 και λαμβάνοντας υπόψη την Σχέση 2.125, προκύπτει η εξίσωση υπολογισμού του συντελεστή ασφαλείας (FS) (Σχέση 2.133), όπου Β το πλάτος κάθε ζώνης (B=L cosa).

$$FS = \frac{\sum_{i=1}^{N} c_i B_i + \sum_{i=1}^{N} [W_i + (V_{i-1} - V_{i+1})] cos\alpha_i \tan\varphi_i - \sum_{i=1}^{N} U_i cos\alpha_i \tan\varphi_i}{\sum_{i=1}^{N} [W_i + (V_{i-1} - V_{i+1})] cos\theta_i \sin\theta_i} (2.133)$$

Παρόλα αυτά, δεν μπορεί να χρησιμοποιηθεί η τελευταία εξίσωση όσο είναι άγνωστες οι δυνάμεις που ασκούνται πλευρικά των ζωνών. Έτσι ο Janbu προσθέτει τον συντελεστή διόρθωσης f₀, ο οποίος υποκαθιστά τη διαφορά $V_{i-1} - V_{i+1}$. Ο συντελεστής αυτός εξαρτάται από της παραμέτρους της αντοχής του εδάφους και από τη γεωμετρία του πρανούς. Για τον

υπολογισμό του χρησιμοποιείται το διάγραμμα της Εικόνας 8. Σε αυτό, L είναι το μήκος του τμήματος που ενώνει τον πόδα με τη στέψη της πιθανής επιφάνειας αστοχίας και d είναι η μέγιστη κάθετη απόσταση μεταξύ αυτού του ευθύγραμμου τμήματος και της επιφάνειας αστοχίας. Σχετικά με τις καμπύλες του σχήματος, χρησιμοποιείται η c-only soil, όταν πραγματοποιούνται αναλύσεις συνολικών τάσεων και η διατμητική αντοχή αντιπροσωπεύεται εξ' ολοκλήρου από την αστράγγιστη διατμητική αντοχή (c=cu, φ=0), ενώ η φ and c soils και φ only soil χρησιμοποιούνται στις περιπτώσεις ανάλυσης ενεργών τάσεων στις οποίες η διατμητική αντοχή δίνεται από το κριτήριο Mohr-Coulomb. Ο συντελεστής f₀ μπορεί επίσης να υπολογιστεί και από τη Σχέση 2.134, όπου για c-only soil b₁=0,69, για φ and c soils b₁=0,50 και για φ-only soil b₁=0,31.

Εικόνα 8: Διάγραμμα υπολογισμού του συντελεστή διόρθωσης f₀ (Janbu, 1954).

$$f_0 = 1 + b_1 \left[\frac{d}{L} - 1.4 \left(\frac{d}{L} \right)^2 \right] (2.134)$$

3. Ευρύτερη περιοχή μελέτης

3.1 Γεωλογία ευρύτερης περιοχής

Ψηφιακή συλλογή

Βιβλιοθήκη

Η υπό μελέτη περιοχή βρίσκεται στον γεωγραφικό χώρο της Κεντρικής Αττικής και πιο συγκεκριμένα στο λεκανοπέδιο της Αθήνας. Το λεκανοπέδιο βρίσκεται στο βορειοδυτικό περιθώριο του Αττικοκυκλαδικού συμπλέγματος και οριοθετείται από τους ορεινούς όγκους του Υμηττού και της Πεντέλης στα ανατολικά και βορειοανατολικά, ενώ δυτικά και βόρεια από τους ορεινούς όγκους της Πάρνηθας, του Ποικίλου και του Αιγάλεω. Ο Lepsius (1893) διαχώρισε τους σχηματισμούς του λεκανοπεδίου σε τρεις Κρητιδικές ενότητες, με τις μεταξύ

τους επαφές τεκτονικές. Η κατώτερη αφορά μεταμορφωμένα πετρώματα που εντοπίζονται στους δυτικούς πρόποδες του Υμηττού, η ενδιάμεση τους Σχιστολίθους των Αθηνών και η ανώτερη αντιστοιχεί σε ανθρακικά πετρώματα που εμφανίζονται στις κορυφές των Αθηναϊκών λόφων. Η ηλικία τους καθορίστηκε Κρητιδική, από την εύρεση πλήθους απολιθωμάτων Ανωκρητιδικής ηλικίας (Vacinites atheniensis, Radiolites giganteus Hippourites atheniensis κ.α.) στους Αθηναϊκούς λόφους (Ktenas, 1907). Ο Negris (1915-1919) αναφέρει την ύπαρξη Τριαδικών απολιθωμάτων στα μεταμορφωμένα πετρώματα του Υμηττού και Κρητιδικά στους Σχιστολίθους των Αθηνών. Ανωκρητιδικά απολιθώματα έχουν αναφερθεί και στα νηριτικά ανθρακικά πετρώματα των Αθηναϊκών λόφων (Μαρίνος, 1937, Renz 1940, Sindowski 1949, 1951). Οι Μαρίνος et al. (1971, 1974) διαχωρίζουν το λεκανοπέδιο σε δύο ενότητες. Η υποκείμενη αποτελείται από τα Στρώματα Καρρά (Cla κατά Lepsius 1893), τα οποία αντιστοιχούν στο φυλλιτικό κάλυμμα της Ενότητας Λαυρίου. Η υπερκείμενη ενότητα αφορά τους Σχιστολίθους των Αθηνών, για τους οποίους η Ανωκρητιδική ηλικία πιστοποιείται από την εύρεση απολιθωμάτων Globotruncana sp. σε διάφορες θέσεις του λεκανοπεδίου. Μεταξύ αυτών των δύο ενοτήτων αναφέρουν και την ύπαρξη των ασβεστολίθων του Αλεποβουνίου, οι οποίοι τοποθετήθηκαν εκεί τεκτονικά και είναι άγνωστης ηλικίας. Οι Παρασκευαΐδης και Χωριανοπούλου (1978) θεωρούν το Σχιστόλιθο των Αθηνών ως το φλύσχη μιας ακολουθίας η οποία εμφανίζεται στο Αιγάλεω και αρχίζει με κλαστικούς σχηματισμούς του Άνω Παλαιοζωικού και ασύμφωνους ασβεστολίθους του Τριαδικού. Έπειτα ακολουθεί η ασύμφωνη απόθεση Ανωκρητιδικών νηριτικών ασβεστολίθων και τέλος, οι ασβεστόλιθοι αυτοί μεταβαίνουν στα πελαγικά ιζήματα αυτού του φλύσχη. Από την άλλη ο Papanikolaou (1986), λόγω της έλλειψης εσωτερικής γεωμετρίας και της λιθολογικής ποικιλίας των Σχιστολίθων των Αθηνών, θεωρεί ότι αποτελούν ένα mélange Ανωκρητιδικής ηλικίας.

Ψηφιακή συλλογή

Βιβλιοθήκη

Αργότερα πραγματοποιήθηκε λεπτομερής χαρτογράφηση του λεκανοπεδίου των Αθηνών στα πλαίσια μικροζωνικής μελέτης (Παπανικολάου et al. 2002), μετά τον σεισμό της Αθήνας το 1999. Η μελέτη αυτή οδήγησε στη διάκριση των σχηματισμών του λεκανοπεδίου σε δύο ενότητες, την Ενότητα των Αθηνών και την Ενότητα Αλεποβουνίου.

Η υπερκείμενη Ενότητα Αθηνών καταλαμβάνει το μεγαλύτερο τμήμα του λεκανοπεδίου, αλλά επιφανειακά εμφανίζεται μόνο τα ανώτερα τμήματα των λόφων του κεντρικού και δυτικού τμήματος, λόγω της επικάλυψης από Νεογενείς και Τεταρτογενείς αποθέσεις. Η Ενότητα των Αθηνών διακρίνεται σε δύο υποενότητες, οι οποίες εναλλάσσονται μεταξύ τους. Η μία περιλαμβάνει λευκούς-γκριζωπούς, συμπαγείς, άστρωτους-παχυστρωματώδεις νηριτικούς ασβεστολίθους. Αυτοί περιέχουν τρηματοφόρα και ρουδιστές, τα οποία προσδίδουν στους ασβεστολίθους ηλικία Σενωνίου. Η δεύτερη υποενότητα είναι πιο περίπλοκη, καθώς αποτελείται από διάφορες λιθολογίες και είναι γνωστή με την ονομασία Σχιστόλιθοι Αθηνών (Μαρίνος et al. 1971). Η λιθολογική ποικιλομορφία μεταβάλλεται στα διάφορα τμήματα του λεκανοπεδίου και θα αναλυθεί στη συνέχεια. Η ηλικία της ενότητας έχει προσδιοριστεί Ανωκρητιδική λόγω της ύπαρξης πλούσιας μικροπανίδας του Άνω Κρητιδικού στους σχηματισμούς της.

Ψηφιακή συλλογή

Βιβλιοθήκη

Η υποκείμενη Ενότητα του Αλεποβουνίου εμφανίζεται στους δυτικούς πρόποδες του Υμηττού, όπου παρεμβάλλεται μεταξύ της υπερκείμενης Ενότητας Αθηνών και της υποκείμενης αυτόχθονης Ενότητας Αττικής. Στο μεγαλύτερο τμήμα της καλύπτεται επιφανειακά από Νεογενείς και Τεταρτογενείς αποθέσεις, ενώ και αυτή διαχωρίζεται σε δύο λιθολογικά σύνολα. Το ανώτερο λιθολογικό σύνολο αποτελείται από λευκούς έως ερυθροκάστανους, συμπαγείς, άστρωτους έως παχυστρωματώδεις κρυσταλλικούς ασβεστολίθους. Η ηλικία τους δεν έχει προσδιοριστεί, καθώς δεν έχουν βρεθεί σημαντικά ευρήματα απολιθωμάτων σε αυτούς. Ο Negris (1915-1919) αναφέρει περιγράμματα από λείψανα φυκιών, πιθανόν Gyroporella, στον λόφο Αλεποβουνίου και απολιθώματα της οικογένειας Orbitolinidae στον λόφο Κόρακα, πιθανότατα Κάτω Κρητιδικής ηλικίας. Ο Kober (1929) αναφέρει το κοράλλιο Thecosmilia, κοντά στον Άγιο Ιωάννη τον Μάρκο, απέναντι από το νεκροταφείο Καισαριανής, ηλικίας Τριαδικού. Το κατώτερο λιθολογικό σύνολο της Ενότητας Αλεποβουνίου αποτελείται από μεταμορφωμένα έως ημιμεταμορφωμένα ψαμμιτικά, σχιστομαργαϊκά στρώματα και φυλλίτες, έντονα πτυχωμένους. Μέσα σε αυτά παρεμβάλλονται τεφροί έως καστανοί πλακώδεις ασβεστόλιθοι και πλακώδεις ερυθροί έως κιτρινωποί μικροκοκκώδεις χαλαζίτες, καθώς και τεμάχη πρασινιτών κυρίως στην επαφή των δύο λιθολογικών συνόλων της ενότητας.

Αναφορικά με τις επαφές των ενοτήτων, στο ανατολικό τμήμα του λεκανοπεδίου η Ενότητα Αθηνών υπέρκεινται τεκτονικά της Ενότητας Αλεποβουνίου. Ο τεκτονικός χαρακτήρας της επαφής έχει προσδιοριστεί από το τεκτονικό πέτρωμα που υπάρχει στο όριο των ενοτήτων και από την έντονη διατμητική παραμόρφωση των πετρωμάτων, η οποία εξασθενεί προς τα δυτικά. Στα δυτικά του λεκανοπεδίου η Ενότητα Αθηνών υπέρκεινται τεκτονικά της Υποπελαγονικής Ζώνης. Η επαφή αυτή εμφανίζεται στους ανατολικούς πρόποδες του Αιγάλεω και του Ποικίλου όρους, είναι μικρής έως μέτριας κλίσης και κλίνει προς τα ανατολικά. Η Ενότητα Αλεποβουνίου, όπως αναφέρθηκε, στα δυτικά υπόκεινται με τεκτονική επαφή της Ενότητας Αθηνών και ανατολικά υπέρκεινται με τεκτονική επαφή της μεταμορφωμένης Ενότητας Αττικής. Η επαφή είναι μικρής κλίσης προς τα δυτικά και ο τεκτονικός της χαρακτήρας επιβεβαιώνεται από την παρουσία τεκτονικού πετρώματος, που παρατηρείται επιφανειακά στο λόφο Αλεποβούνι, στο λόφο Λιθάρι, στην περιοχή του Σταυρού Αγ. Παρασκευής κ.α.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 9: Απεικόνιση γεωτεκτονικών ενοτήτων του Λεκανοπεδίου των Αθηνών. β-γ) Λεπτομερείς χάρτες του δυτικού και κεντρικού Λεκανοπεδίου, αντίστοιχα (Παπανικολάου, 2004).

Ωστόσο, ως επί το πλείστον στη μεγαλύτερη έκταση το υπόβαθρο βρίσκεται καλυμμένο από Νεογενή και Τεταρτογενή μετα-αλπικά ιζήματα. Οι νεογενείς αποθέσεις είναι ηλικίας Άνω Μειοκαίνου και κυρίως λιμναίας φάσης, μαζί με ποταμολιμναίες, λιμνοχερσαίες αποθέσεις. Συνίστανται από ερυθρούς πηλίτες, αμμούχες μάργες και κροκαλοπαγή, καθώς και λιγνιτοφόρα στρώματα στα κατώτερα μέλη (Freyberg 1951, Mettos et al. 2000) και καταλαμβάνουν σχεδόν όλο το βόρειο μισό του λεκανοπεδίου, το δυτικό τμήμα μεταξύ του όρους Αιγάλεω και των λόφων της Αθήνας, τις λεκάνες Φυλής και Σκούρτων της Πάρνηθας. Οι Πλειο-τεταρτογενείς αποθέσεις συνίστανται από ποταμοθαλάσσιους σχηματισμούς του Άνω Πλειοκαίνου - Κάτω Πλειστοκαίνου στο βόρειο τμήμα της Αττικής (Ραφήνα, Ωρωπό) και κατά μήκος της ζώνης Πειραιά-Φαλήρου-Γλυφάδας-Βούλας (Χαραλαμπάκης, 1952). Τέλος, εμφανίζονται και πρόσφατοι χαλαροί σχηματισμοί πλευρικών κορημάτων, αποθέσεις κοίτης χειμάρρων, αλλουβιακές προσχώσεις, παράκτιοι σχηματισμοί αποτελούμενοι από άμμους, κροκάλες και συνεκτικούς ψαμμίτες (Μηστάρδης 1961, Κατσικάτσος 1986, Κατσικάτσος 2002, Παυλόπουλος 2002).

Εικόνα 10: Απεικόνιση επαφών μεταξύ της Ενότητας Αθηνών, της Ενότητας Αλεποβουνίου και του Αυτόχθονου Καλύμματος της Αττικής στο λόφο Λιθάρι (Παπάγου). C Al: κρυσταλλικοί ασβεστόλιθοι, Sch Al: φυλλίτες ενότητας Αλεποβουνίου, s: υπερβασικά πετρώματα, M: μάρμαρα ενότητας Αττικής (Παπανικολάου, 2004).

3.1.1 Σχιστόλιθοι Αθηνών

Ψηφιακή συλλογή

Βιβλιοθήκη

Η υποενότητα του Αθηναϊκού Σχιστόλιθου της Ενότητας Αθηνών εμφανίζεται στο κεντρικό τμήμα του λεκανοπεδίου και αποτελεί το υπόβαθρο της Αθήνας (Μαρίνος 1971, Ανδρονόπουλος 1981). Χαρακτηρίζεται από λιθολογική ποικιλομορφία και αποτελείται κυρίως από εναλλασσόμενα στρώματα σερικιτικών ψαμμιτών, αργιλικών σχιστολίθων και φυλλιτών, με κατά θέσεις ενστρώσεις μικροκλαστικών κρυσταλλικών ασβεστολίθων. Εκτός αυτών συναντώνται παρεμβολές μικροκροκαλολατυποπαγών και διαβασικών σωμάτων. Στα βαθύτερα μέλη εμφανίζονται χλωριτικοί και σερικιτικοί σχιστόλιθοι, κρυσταλλικοί ασβεστόλιθοι και σιπολίνες, ενώ προς τα πάνω μεταβαίνει σε παχυστρωματώδεις ανακρυσραλλωμένους καρστικούς ασβεστολίθους, οι οποίοι αναφέρονται ως Ασβεστόλιθοι Τουρκοβουνίων, είναι Ανωκρητιδικής ηλικίας και εμφανίζονται στις κορυφές των λόφων της

Αθήνας. Μέσα στους ασβεστολίθους παρεμβάλλεται και ένας μαργαϊκός ορίζοντας, αποτελούμενος από σκληρές ψαμμιτικές μάργες, ψαμμίτες και κροκαλολατυποπαγή (Κατσικάτσιος, 2002).

Η λιθολογική ποικιλία του Αθηναϊκού Σχιστολίθου μεταβάλλεται στα διάφορα τμήματα που λεκανοπεδίου. Στο δυτικό τμήμα στην περιοχή της Πετρούπολης, κοντά στην επαφή με τους υποκείμενους σχηματισμούς της Υποπελαγονικής Ζώνης αποτελείται από ερυθρούς πηλίτες, τόφφους, μάργες, σχιστολίθους και υπερβασικά πετρώματα, εναλλασσόμενα μεταξύ τους. Πιο νότια αποτελείται από εναλλασσόμενους καστανόφαιους πηλίτες, σχιστολίθους, ψαμμίτες και πλακώδεις ασβεστολίθους, ενώ νότια του Χαϊδαρίου αυξάνονται οι πλακώδεις ασβεστόλιθοι οι οποίοι είναι πιο καστανοί και συχνά εμφανίζονται ογκώδη υπερβασικά σώματα. Στο νοτιοδυτικό τμήμα του λεκανοπεδίου, στις περιοχές Κορυδαλλού και Νίκαιας αποτελείται από ψαμμίτες, ψαμμούχες μάργες, πηλίτες, σχίστες, τόφφους και πλακώδεις μαργαϊκούς ασβεστολίθους, μέσα στους οποίους βρέθηκαν τρηματοφόρα Globotruncana sp. του Άνω Κρητιδικού και ακτινόζωα (Radiolaria). Στο κεντρικό λεκανοπέδιο και πιο συγκεκριμένα από τα Τουρκοβούνια έως και το λόφο Σικελίας, η λιθολογική ποικιλία περιορίζεται. Στο νότιο τμήμα του κεντρικού λεκανοπεδίου κυριαρχούν εναλλαγές πηλιτών, μαργαϊκών ασβεστολίθων, ψαμμούχων μαργών και μικρές εμφανίσεις τόφφων και υπερβασικών σωμάτων και στο ανατολικό υπερτερούν οι πλακώδεις ασβεστόλιθοι σε εναλλαγές με ψαμμίτες και ψαμμούχες μάργες, οι οποίοι περιέχουν μικροπανίδα τρηματοφόρων Ανωκρητιδικής ηλικίας.

3.2 Σεισμοτεκτονική ευρύτερης περιοχής

Ψηφιακή συλλογή

Βιβλιοθήκη

Όπως ο ευρύτερος Ελληνικός χώρος, λόγω της θέσης του στα όρια σύγκλισης των λιθοσφαιρικών πλακών Αφρικής και Ευρασίας, έτσι και το Λεκανοπέδιο των Αθηνών, έχει υποστεί αλλεπάλληλα τεκτονικά γεγονότα, τόσο συμπιεστικά όσο και εφελκυστικά, τα οποία έχουν οδηγήσει στην σημερινή περίπλοκη τεκτονική του εικόνα. Ωστόσο, η έλλειψη σεισμοϊστορικών στοιχείων για καταγραφές σεισμών στην πόλη των Αθηνών, όσο και η γιγάντωση του πολεοδομικού συγκροτήματος, η οποία καθιστά αδύνατη την υπαίθρια χαρτογράφηση και καταγραφή των τεκτονικών δομών, οδήγησαν στην ελλιπή γνώση της γεωλογίας και σεισμοτεκτονικής της περιοχής. Μετά τον καταστροφικό σεισμό του 1999, μεγέθους M=5,9, ξεκίνησαν συστηματικές έρευνες για τον εντοπισμό και τη χαρτογράφηση ενεργών και πιθανά ενεργών ρηγμάτων στην ευρύτερη περιοχή του λεκανοπεδίου της Αθήνας (Pavlides et al. 2002, Ganas et al. 2004, Ganas et al. 2005). Στον δορυφορικό χάρτη της Εικόνας 11 απεικονίζονται τα κύρια ενεργά και πιθανά ενεργά ρήγματα του λεκανοπεδίου, καθώς και το επίκεντρο του σεισμού του 1999 (Βαλκανιώτης 2003, Ganas et al. 2004, Ganas et al. 2005). Εκτός από αυτά, έχουν χαρτογραφηθεί με τη μελέτη σεισμικών καταλόγων και τη χρήση γεωφυσικών μεθόδων, πληθώρα άλλων ρηγμάτων. Οι Dilalos et al. (2019) αναφέρουν την ύπαρξη 30 ρηγμάτων στον χώρο του λεκανοπεδίου (Εικόνα 13), τα οποία προέκυψαν από την εφαρμογή της βαρυτικής γεωφυσικής μεθόδου σε συνολικά 1.122 βαρυτικές μετρήσεις.

Ψηφιακή συλλογή

Βιβλιοθήκη

Οι Konstantinou et al. (2020) αναφέρουν την ύπαρξη 31 ενεργών και 49 πιθανά ενεργών ρηγμάτων σε περιοχή ακτίνας περίπου 50km από το κέντρο της Αθήνας (Εικόνα 14). Για τη συγκεκριμένη μελέτη χρησιμοποιήθηκαν σεισμικοί κατάλογοι για το διάστημα 2011-2018 και έγινε σύγκριση των σεισμών με τα επιφανειακά ίχνη των ρηγμάτων και τις συσσωρευόμενες τάσεις, με χρήση υψηλής ανάλυσης (~5m pixel size) ψηφιακά μοντέλα υψομέτρου και γεωδαιτικά δεδομένα από 30 σταθμούς του Παγκόσμιου Συστήματος Θεσιθεσίας (GPS). Έπειτα, με βάση εμπειρικούς τύπους μεταξύ του μεγέθους του σεισμού και του μήκους διάρρηξης, προέκυψε ότι 54 από αυτά τα ρήγματα είναι ικανά να προκαλέσουν σεισμό μεγέθους της τάξης του Μ=6,0-6,6. Πιο συγκεκριμένα, ιδιαίτερης ανησυχίας είναι τα ρήγματα της βόρειας Αθήνας που έχουν σημαντικές εκδηλώσεις μικροσεισμικότητας τα τελευταία 8 χρόνια, καθώς και τα ρήγματα δυτικά του ρήγματος αποκόλλησης, μεταξύ των αλπικών σχηματισμών και του μεταμορφωμένου υποβάθρου της Ενότητας της Αττικής, τα οποία παρουσιάζουν μικροσεισμικότητα και ελαστική παραμόρφωση >0,5mm/yr. Επίσης, σύμφωνα με τους Konstantinou et al. (2020), το διάστημα 2011-2018 έχουν συμβεί στον χώρο που μελετάται 4.722 σεισμοί, με τους περισσότερους να είναι μεγέθους M_L <3,0, ενώ μόνο τέσσερα γεγονότα ήταν μεγέθους ML=4,1-4,3 και τα τελευταία 300 χρόνια έχουν συμβεί τουλάχιστον 10 σεισμοί μεγέθους M>6,0 στον ίδιο γεωγραφικό χώρο (Εικόνα 12b).

Εικόνα 11: Δορυφορική εικόνα Λεκανοπεδίου Αθήνας με τα κύρια ενεργά (συνεχόμενη γραμμή) και πιθανά ενεργά (διακεκομμένη γραμμή) ρήγματα (Βαλκανιώτης 2003, Ganas et al. 2004, Ganas et al. 2005).

Εικόνα 12: (a) Τεκτονική της ευρύτερης περιοχής του Αιγαίου. Τα βέλη υποδεικνύουν την κίνηση των λιθοσφαιρικών πλακών, οι διακεκομμένες κόκκινες γραμμές τις ισοβαθείς καμπύλες της ζώνης Wadati-Benioff (Papazachos et al. 2000) και τα κίτρινα αστέρια τα κύρια ηφαιστειακά κέντρα. (b) Ιστορική σεισμικότητας γύρω από την περιοχή της Αθήνας. Τα αστέρια υποδεικνύουν τα επίκεντρα σεισμών μεγέθους Μ≥6,0 κατά τη διάρκεια των τελευταίων 300 ετών (Papazachos and Papazachou 2003). Οι μηχανισμοί γένεσης υποδεικνύουν τα τρία πιο πρόσφατα γεγονότα. Οι σκιαγραφημένη περιοχή τη μητροπολιτική περιοχή της Αθήνας και η κόκκινη γραμμή το ρήγμα αποκόλλησης μεταξύ των ιζηματογενών σχηματισμών στα δυτικά και των μεταμορφωμένων πετρωμάτων ανατολικά. (c) Χάρτης του Εθνικού Σεισμολογικού Δικτύου της Ελλάδας (HUSN). Κόκκινα τρίγωνα: σεισμολογικοί σταθμοί. (Konstantinou et al. 2020).

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 13: Γεωλογικός και τεκτονικός χάρτης βασισμένος στην εφαρμογή βαρυτικών μεθόδων από τους Dilalos et al. (2019).

Εικόνα 14: (a) Χάρτης των ρηγμάτων της ευρύτερης περιοχής της Αθήνας όπως καθορίστηκαν από τη μελέτη των Konstantinou et al. (2020). (b) Χάρτης των ρηγμάτων της ευρύτερης περιοχής της Αθήνας μαζί τα επίκεντρα των σεισμών. Οι μηχανισμοί γένεσης αναπαριστούν τα τέσσερα μεγαλύτερα γεγονότα σύμφωνα με το Εθνικό Αστεροσκοπείο Αθηνών (NOA).

3.3 Γεωμορφολογία - Υδρογραφικό δίκτυο ευρύτερης περιοχής

Το λεκανοπέδιο των Αθηνών βρίσκεται στο κεντρικό τμήμα της Αττικής, είναι επιμήκης λεκάνη διεύθυνσης BA-NΔ και έχει μήκος περίπου 22km και πλάτος 11km. Αποτελεί δηλαδή ένα βύθισμα, που οριοθετείται από τα όρη Πάρνηθα στα BBΔ, Πεντέλη στα BA, Υμηττό στα ανατολικά, Αιγάλεω και Ποικίλο στα δυτικά, ενώ στα NΔ του ανοίγεται στον Σαρωνικό Κόλπο. Στο εσωτερικό του λεκανοπεδίου, κατά μήκος του BA-NΔ άξονά του αναπτύσσεται μια λοφοσειρά, αποτελούμενη από τους λόφους Τουρκοβούνια, Λυκαβηττός, Στρέφη, Ακρόπολη, Ζωοδόχος Πηγή και άλλους μικρότερους. Ως λεκανοπέδιο, χαρακτηρίζεται από πεδινό ανάγλυφο, με υψόμετρο έως και 300m περίπου από την επιφάνεια της θάλασσας (Dikau, 1989) (Εικόνα 15) και μικρές κλίσεις εύρους 0° – 12° (Εικόνα 16). Ο μεγαλύτερος ποταμός που διατρέχει το λεκανοπέδιο, με κατεύθυνση από τον βορρά προς το νότο, είναι ο Κηφισός. Έχει μήκος 27km και οι πηγές του βρίσκονται στην Πάρνηθα και την Πεντέλη. Ακολουθεί ο Ιλισσός, ο οποίος βρίσκεται νότια του Κηφισού, έχει ίδια κατεύθυνση ροής με αυτόν, εκβάλλοντας στον Σαρωνικό Κόλπο και πηγάζει από τον Υμηττό.

Εικόνα 15: Υψομετρικός χάρτης ευρύτερης περιοχής μελέτης.

Εικόνα 16: Χάρτης κλίσεων ευρύτερης περιοχής μελέτης.

4. Θέση έργου

Το έργο βρίσκεται επί της οδού Αρητής στο Παγκράτι του Δήμου Αθηναίων. Αποτελεί οικόπεδο εμβαδού 340m², στο οποίο μετά την κατεδάφιση δύο κτιρίων, πρόκειται να κατασκευασθεί νέο κτίριο 7 ορόφων και υποσταθμός του ΔΕΔΔΗΕ στο βορειοανατολικό χώρο του υπογείου. Οι εκσκαφές θεμελίωσης του κτιρίου και του υποσταθμού έχουν μέγιστο βάθος 5,25m και οριοθετούνται στα βορειοανατολικά και νοτιοδυτικά από όμορα κτίρια. Νοτιοανατολικά βρίσκεται η οδός Αρητής, ενώ βορειοδυτικά σε απόσταση περίπου 7,5m από το όριο του σχεδιαζόμενου κτιρίου βρίσκεται άλλο κτίριο. Στην Εικόνα 17 απεικονίζεται η γεωγραφική θέση του έργου στο λεκανοπέδιο της Αθήνας και στις Εικόνες 18, 19, 20 παρουσιάζονται η γεωγραφική, η φωτογραφική και η δορυφορική απεικόνιση της θέσης του

έργου, αντίστοιχα, σε μεγαλύτερη κλίμακα. Στην Εικόνα 21 παρουσιάζεται απόσπασμα του τοπογραφικού διαγράμματος του οικοπέδου και στην Εικόνα 22 η κατασκευαστική τομή με τις προβλεπόμενες εκσκαφές για την θεμελίωση του κτιρίου και του υποσταθμού.

Εικόνα 17: Δορυφορική απεικόνιση γεωγραφικής θέσης έργου στο λεκανοπέδιο της Αθήνας.

Εικόνα 18: Γεωγραφική θέση έργου.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 19: Φωτογραφική απεικόνιση θέσης μελέτης (Χατζηγώγος 2023).

Εικόνα 20: Δορυφορική εικόνα θέσης έργου (Χατζηγώγος 2023).

Εικόνα 21: Απόσπασμα τοπογραφικού διαγράμματος οικοπέδου μελέτης (Χατζηγώγος 2023).

Εικόνα 22: Κατασκευαστική τομή έργου. Προβλεπόμενες εκσκαφές θεμελίωσης και υποσταθμού (Χατζηγώγος 2023).

4.1 Γεωλογία θέσης έργου

Συγκεκριμένα για την θέση του έργου, βάσει του ψηφιακού γεωλογικού χάρτη του λεκανοπεδίου Αττικής (Μπορονκάυ Κ.) (Εικόνα 23), το υπέδαφος επιφανειακά αποτελείται από αλλουβιακές και ποταμοχειμάριες αποθέσεις καστανών αργιλοαμμώδων ιζημάτων με χάλικες. Το υπόβαθρο βρίσκεται σε σχετικά μικρό βάθος και συνίστανται από τον Αθηναϊκό Σχιστόλιθο. Αναλυτικότερα, το υπόβαθρο αναμένεται να αποτελείται από μελανότεφρους μεταϊλυολίθους και αργιλικούς σχίστες με ενστρώσεις τεφρών μεταψαμμιτών, οι οποίοι έως ένα βάθος θα έχουν τη μορφή μανδύα αποσάθρωσης. Εκτός αυτών των σχηματισμών, στην θέση του έργου συναντώνται επιφανειακά τεχνητές επιχώσεις μεγάλου πάχους, οι οποίες συνίστανται από τα υλικά κατεδάφισης των παλιών κτιρίων και τα υπολείμματα της θεμελίωσής τους.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 23: Ψηφιακός γεωλογικός χάρτης περιοχής μελέτης (Μπορονκάυ Κ.).

4.2 Σεισμοτεκτονική - Παράμετροι σεισμικής επικινδυνότητας θέσης έργου Σύμφωνα με την ισχύουσα τροποποίηση των διατάξεων του Ελληνικού Αντισεισμικού Κανονισμού (ΦΕΚ 1154Β', 12-8-2003), η ευρύτερη περιοχή της Αθήνας εντάσσεται στη ζώνη σεισμικής επικινδυνότητας Ι (Εικόνα 25). Η μέγιστη σεισμική επιτάχυνση της ζώνης αυτής είναι α=0,16g με πιθανότητα υπέρβασης 10% στα 50 έτη. Επίσης, σύμφωνα με τον γεωλογικότεκτονικό χάρτη του λεκανοπεδίου στην Εικόνα 24, ΒΔ της θέσης του έργου φαίνεται να υπάρχει το πιθανά ενεργό ρήγμα Ζωγράφου-Φιξ, σε απόσταση περίπου ενός χιλιομέτρου. Από άποψη σεισμικής επικινδυνότητας και σύμφωνα με τον Πίνακα 8 του ΕΝ 1998-1 το υπέδαφος κατατάσσεται από την επιφάνεια του φυσικού εδάφους μέχρι το βάθος έρευνας στην κατηγορία «Β» ως συνιστάμενο από αποθέσεις πολύ πυκνής άμμου, χαλίκων ή πολύ σκληρής αργίλου, πάχους τουλάχιστον αρκετών δεκάδων μέτρων, που χαρακτηρίζονται από βαθμιαία βελτίωση των μηχανικών ιδιοτήτων με το βάθος, και στην κατηγορία «Β», σύμφωνα με την ισχύουσα τροποποίηση των διατάξεων του Ελληνικού Αντισεισμικού Κανονισμού (ΦΕΚ 1154Β', 12-8-2003). Αναφορικά με την ευστάθεια των φυσικών ή τεχνητών πρανών σε σεισμό, αυτή ελέγχεται με τη θεώρηση των ακόλουθων πρόσθετων ενεργών επιταχύνσεων:

• κατά την οριζόντια διεύθυνση: αh=0,5*α=0,08g

Ψηφιακή συλλογή

Βιβλιοθήκη

• κατά την κατακόρυφη διεύθυνση: α_v=0,25*α=0,04g

4.3 Μορφολογία - Υδρογεωλογία θέσης έργου

Το απόλυτο υψόμετρο του οικοπέδου είναι περίπου 120-122m με μέσες κλίσεις της τάξης του 5° -8° που αυξάνονται προς τα ΝΔ. όσον αφορά στο το υδρογραφικό δίκτυο, δεν είναι εμφανές λόγω της οικιστικής ανάπτυξης και η διαχείριση της επιφανειακής απορροής γίνεται μέσω του δικτύου συλλογής όμβριων υδάτων της πόλης.

Σχετικά με το υδρογεωλογικό καθεστώς των σχηματισμών στη θέση του έργου, οι αλλουβιακές και ποταμοχειμάριες αποθέσεις αμμοχαλικώδους σύστασης έως αργιλοϊλυώδους άμμου και αμμώδους αργιλοϊλύος είναι σχηματισμοί μέτριας υδροπεραπότητας, λόγω της ύπαρξης του λεπτόποκοκκου κλάσματος. Ο Αθηναϊκός Σχιστόλιθος είναι πρακτικά αδιαπέρατος σχηματισμός, αποτελώντας το υδατοστεγές υπόβαθρο. Εμφανίζει περιορισμένης έκτασης υδροφορία μόνο στις ζώνες διάρρηξης και εξαλλοίωσης. Στην θέση του έργου, όπου εμφανίζεται στα ανώτερα στρώματα με τη μορφή μανδύα αποσάθρωσης, ενώ βαθύτερα έχει μορφή μεταψαμμίτη και στην συνέχεια βρίσκεται αποσαθρωμένος και κερματισμένος, είναι διαπερατός και αναμένεται η ύπαρξης υπόγειας υδροφορίας, όπως και αυτή βρέθηκε σε βάθος περίπου 3m από την επιφάνεια.

Εικόνα 24: Γεωλογικός – Τεκτονικός χάρτης Λεκανοπεδίου Αθηνών (Παπανικολάου et al. 2002). Με κόκκινο τετράγωνο απεικονίζεται η θέση μελέτης.

Εικόνα 25: Χάρτης ζωνών σεισμικής επικινδυνότητας Ελλάδος (ΦΕΚ 1154Β', 12-8-2003).

5. Γεωτεχνική έρευνα θέσης έργου

5.1 Πρόγραμμα ερευνητικών εργασιών

Στα πλαίσια της γεωτεχνικής έρευνας, εκτελέσθηκε από τον αρμόδιο μελετητή μία δειγματοληπτική γεώτρηση (Γ1) στην θέση του έργου, βάθους 15m. Κατά τη διάνοιξή της πραγματοποιήθηκαν δύο πρότυπες δοκιμές διείσδυσης και μετά την ολοκλήρωσή της εγκαταστάθηκε πιεζόμετρο για την παρακολούθηση των μεταβολών της στάθμης των υπόγειων υδάτων. Επίσης, αντιπροσωπευτικά δείγματα μεταφέρθηκαν στο εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας του ΑΠΘ, όπου και εκτελέσθηκαν εργαστηριακές δοκιμές.

5.1.1 Δειγματοληπτική γεώτρηση

Η δειγματοληπτική γεώτρηση εκτελέσθηκε το διάστημα 23/01/2023 – 24/01/2023. Για την εκτέλεση της χρησιμοποιήθηκε περιστροφικό υδραυλικό γεωτρύπανο τύπου Tones. Στον Πίνακα 1 του Παραρτήματος Α παρουσιάζονται τα πλήρη στοιχεία της γεώτρησης (βάθος, συντεταγμένες) και στο Παράρτημα Γ παρουσιάζεται φωτογραφικό υλικό που λήφθηκε κατά τη διάρκεια εκτέλεσης της γεώτρησης.

Εικόνα 26: Εκτέλεση της δειγματοληπτικής γεώτρησης στη θέση του έργου (Χατζηγώγος 2023).

5.1.2 Δειγματοληψία

Κατά τη διάρκεια εκτέλεσης της γεώτρησης, γινόταν συνεχής δειγματοληψία που περιλάμβανε:

Αντιπροσωπευτικά δείγματα με δειγματολήπτη απλού τοιχώματος (T1) διαμέτρου 117mm και 104mm, χρησιμοποιώντας τη μέθοδο του φραγμού και κοπτική κεφαλή με βίδια WIDIA. Ο συγκεκριμένος τύπος δειγματοληψίας χρησιμοποιήθηκε από τα 0,00m έως τα 5,30m βάθους της γεώτρησης. Η μέθοδος του φραγμού, κατά την οποία πραγματοποιείται διακοπή κυκλοφορίας του νερού κατά τη δειγματοληψία, έχει ως αποτέλεσμα τη διαταραχή του ιστού του εδαφικού υλικού και την αλλοίωση των ιδιοτήτων του λόγω υπερθέρμανσης. Επιλέγεται για χαλαρά εδάφη στα οποία η διείσδυση με απλή πίεση είναι αδύνατη και η περιστροφική κίνηση του δειγματολήπτη σε συνδυασμό με την κυκλοφορία νερού προκαλούν θρυμματισμό και απόπλυση του εδαφικού υλικού. Επομένως, τα δείγματα είναι διαταραγμένα και χρησιμοποιούνται μόνο για δοκιμές ταξινόμησης.

Αντιπροσωπευτικά δείγματα με δειγματολήπτη διπλού διαιρούμενου τοιχώματος (T6S) διαμέτρου 101mm, χρησιμοποιώντας τη μέθοδο περιστροφικής διάτρησης με νερό, κατά την οποία η διάνοιξη επιτυγχάνεται με περιστροφή της γεωτρητικής στήλης, και με χρήση κοπτικής κεφαλής αδαμαντοκορώνας. Αυτός ο τύπος δειγματοληψίας χρησιμοποιήθηκε από τα 5,30m έως το πέρας της γεώτρησης στα 15m. Τα δείγματα που προέκυψαν ήταν αδιατάρακτα και χρησιμοποιήθηκαν για την εκπόνηση εργαστηριακών δοκιμών εδαφομηχανικής.
Τα δείγματα τοποθετήθηκαν σε ειδικά ξύλινα κιβώτια, που έφεραν στοιχεία του περιεχομένου του, τον τίτλο του έργου, την ονομασία της γεώτρησης και το ανώτερο και κατώτερο βάθος του περιεχόμενου δείγματος και εν συνεχεία αποθηκεύτηκαν σε στεγασμένο μέρος. Πριν την αποθήκευση των δειγμάτων πραγματοποιήθηκε φωτογράφισή τους στην περιοχή του έργου. Κάθε φωτογραφία αναφέρεται σε συγκεκριμένο κιβώτιο, στο οποίο αναγράφονται ο τίτλος του έργου, ο αριθμός της γεώτρησης και το αρχικό και τελικό βάθος κάθε σειράς δειγμάτων. Κατά τη φωτογράφηση ελήφθη μέριμνα ώστε να αποφεύγονται σκιάσεις που μειώνουν την ποιότητα των φωτογραφιών των δειγμάτων. Η ποιότητα των φωτογραφιών ελέγχθηκε επιτόπου πριν τη διαλογή – αποστολή των δειγμάτων στο εργαστήριο. Στο Παράρτημα Γ παρουσιάζονται φωτογραφίες όλων των δειγμάτων της γεώτρησης.

5.1.3 Επί τόπου πρότυπη δοκιμή διείσδυσης

Ψηφιακή συλλογή

Βιβλιοθήκη

Κατά τη διάνοιξη της γεώτρησης εκτελέστηκαν δύο επί τόπου πρότυπες δοκιμές διείσδυσης (SPT). Αναλυτικά τα αποτελέσματα τους παρουσιάζονται στην τομή της γεώτρησης στην Εικόνα 31 και συγκεντρωτικά στο Παράρτημα Α. Στον Πίνακα 13 παρουσιάζονται οι μηχανικές παράμετροι κάθε στρώματος, όπως υπολογίστηκαν από τον αριθμό N_{SPT} μέσω εφαρμογής εμπειρικών σχέσεων. Η γωνία εσωτερικής τριβής (φ_{SPT}) υπολογίστηκε σύμφωνα με τη σχέση που έχει προτείνει ο Peck (1953) για αμμώδη εδάφη (Σχέση 2.28). Το οιδημετρικό μέτρο παραμορφωσιμότητας (E_{sSPT}), σύμφωνα με τη σχέση του Bowles (1997) για αργιλώδη άμμους (Σχέση 2.35), ως πιο αντιπροσωπευτική για τους εδαφικούς σχηματισμούς της θέσης του έργου και η αστράγγιστη αντοχή (C_{uSPT}) σύμφωνα με τη σχέση των Terzaghi και Peck (1948) (Σχέση 2.31).

Στρ.	Πάχος (m)	γ (kN/m ³)	Nspt	ФSPT (°)	CuSPT (kPa)	Esspt (MPa)
S 1	4,20	18,3	35	37,5	210	16,0
W1	7,20	20,7	>50	>42	>300	>20,8

| >50 | >42 | >300 | >20,8 |

Πίνακας	13: Μηχανικές παράμετροι	στρωμάτων στη θέση	ι του έργου, όπως πρ	ροέκυψαν από την	επί τόπου
πρότυπη	δοκιμή διείσδυσης.				

5.1.4 Παρακολούθηση στάθμης υπόγειων υδάτων

2,60

22,8

R1

Μετά το πέρας της δειγματοληψίας, στη γεώτρηση τοποθετήθηκε πιεζόμετρο με περιμετρικό χαλικόφιλτρο ώστε να είναι δυνατή η λήψη μετρήσεων της στάθμης του υπόγειου υδροφόρου ορίζοντα. Στον Πίνακα 2 του Παραρτήματος Α δίνονται οι ημερήσιες μετρήσεις στάθμης του υπογείου νερού, το βάθος διάνοιξης και το βάθος σωλήνωσης της γεώτρησης. Οι μετρήσεις και η καταγραφή των υπόγειων υδάτων διενεργήθηκαν σύμφωνα με τις συστάσεις των βρετανικών κανονισμών B.S. 5930, Παράγραφος 20, "Ground Water". Επιπροσθέτως, κατά την εκτέλεση της γεώτρησης έγιναν μετρήσεις της στάθμης του νερού το πρωί, πριν από την έναρξη των εργασιών και κάθε απόγευμα, μετά τη λήξη τους.

Εικόνα 27: Τοποθέτηση πιεζομέτρου (Χατζηγώγος 2023).

5.2 Στρωματογραφία θέσης έργου

Ψηφιακή συλλογή

βιβλιοθήκη

Η στρωματογραφία του υπεδάφους στη θέση του έργου προέκυψε από τη μελέτη των δειγμάτων της δειγματοληπτικής γεώτρησης, εκτιμάται ότι είναι οριζόντια και ότι περιλαμβάνει 4 στρώματα μέχρι το βάθος των 15m. Επιφανειακά εντοπίζονται τεχνητές επιχώσεις πάχους 1m (στρώμα F1). Ακολουθεί το στρώμα S1, το οποίο έχει πάχος περίπου 4m και αποτελείται από πυκνή αργιλοϊλυώδη άμμο έως αμμώδη αργιλοϊλύ, χαμηλής πλαστικότητας, με εμφανή υπολειμματική δομή προερχόμενη από την αποσάθρωση του σχιστολιθικού υποβάθρου. Έπεται το στρώμα W1 με πάχος περίπου 7m το οποίο χαρακτηρίζεται ως εδαφοποιημένος μεταψαμμίτης και έχει προκύψει από την αποσάθρωση του υποβάθρου. Τέλος, μέχρι το πέρας της γεώτρησης και με πάχος περίπου 2,5m εμφανίζεται ο Αθηναϊκός Σχιστόλιθος, μελανότεφρος, ασθενής, έντονα αποσαθρωμένος και κατακερματισμένος με φυλλώδη δομή (στρώμα R1). Όσον αφορά στα υπόγειου υδροφορέα εντοπίστηκε σε βάθος 3,10m μέσα στην γεώτρηση. Πρέπει να τονισθεί, ότι μεταξύ του δρόμου και της αρχής της γεώτρησης υπάρχει μία υψομετρική

διαφορά των 1,6m. Στους υπολογισμούς της φέρουσας ικανότητας και ευστάθειας των εκσκαφών, τα βάθη των στρωμάτων έχουν ληφθεί με επιφάνεια αναφοράς αυτή του δρόμου.

Ψηφιακή συλλογή

Βιβλιοθήκη

Αναλυτικότερα τα στρώματα που εντοπίστηκαν κατά μήκος της γεώτρησης φαίνονται στην Εικόνα 31 και είναι τα εξής:

Στρώμα F1 (0,00-1,00m): Τεχνητές επιχώσεις με αμμοχαλικώδη σύσταση και περιεχόμενα συγκρίματα και διάσπαρτα θραύσματα ασβεστιτικής και ψαμμιτικής προέλευσης (κατάταξη κατά USCS: GP-SP).

Στρώμα S1 (1,00-5,20m): Καστανή έως τεφροκάστανη, ελαφρά υγρή, πυκνή αργιλοϊλυώδης άμμος έως αμμώδης αργιλοϊλύς, χαμηλής πλαστικότητας με εμφανή υπολειμματική δομή από την αποσάθρωση του σχιστολιθικού υποβάθρου (κατάταξη κατά USCS: SC-CL).

Στρώμα W1 (5,20-12,40m): Καστανέρυθρος έως τεφροκάστανος, έντονα αποσαθρωμένος, οξειδωμένος και κατακερματισμένος Αθηναϊκός Σχιστόλιθος – Μεταψαμμίτης, εδαφοποιημένος με κατά θέσεις μορφή ιλυώδους άμμου με συγκρίματα και υγιή μέλη του υποβάθρου με φυλλώδη υπολειμματική δομή (κατάταξη κατά USCS: SM, GSI=15-25).

Στρώμα R1 (12,40-15,00m): Μελανός έως μελανότρεφρος ασθενής Αθηναϊκός Σχιστόλιθος, έντονα αποσαθρωμένος και κατακερματισμένος, με φυλλώδη δομή. Απολήφθηκε ως αργιλωδεις χάλικες.

Σε αυτό το σημείο, να επισημανθεί η ιδιαιτερότητα των στρωμάτων W1 και R1. Το στρώμα R1, ενώ χαρακτηρίζεται ως Αθηναϊκός Σχιστόλιθος, δηλαδή βραχώδες γεωυλικό, δεν έχει δομή βράχου, αλλά η συμπεριφορά του προσομοιάζει ημίβραχο, σκληρό έδαφος. Το ίδιο και ακόμα πιο έντονα ισχύει και για το στρώμα W1 το οποίο χαρακτηρίζεται ως Αθηναϊκός Σχιστόλιθος – Μεταψαμμίτης. Τα δύο αυτά στρώματα αποτελούν υπολειμματικά εδάφη και δημιουργήθηκαν από την αποσάθρωση του σχιστολιθικού υποβάθρου. Εξαιτίας αυτής τους της ιδιαιτερότητας και εφόσον δεν υπάρχουν συγκεκριμένες προδιαγραφές για τη μελέτη τέτοιων υλικών, εφαρμόστηκαν όλοι οι δυνατοί τρόποι έρευνας για την εξαγωγή των μηχανικών τους παραμέτρων. Πιο συγκεκριμένα, έχουν εφαρμοστεί σε αυτά δοκιμές και ταξινομήσεις τόσο εδαφικών υλικών (πρότυπη δοκιμή διείσδυσης, ταξινόμηση κατά USCS), όσο και βραχωδών υλικών (δοκιμή σημειακής φόρτισης). Από τα αποτελέσματα που προέκυψαν

Εικόνα 28: Αντιπροσωπευτικό δείγμα του στρώματος S1.

Εικόνα 29: Αντιπροσωπευτικό δείγμα του στρώματος W1.

Εικόνα 30: Αντιπροσωπευτικό δείγμα του στρώματος R1.

Εικόνα 31: Στρωματογραφική τομή γεώτρησης Γ1 στη θέση του έργου.

5.3 Χαρακτηριστικά στρωμάτων θέσης έργου

5.3.1 Φυσικές ιδιότητες στρωμάτων

Ψηφιακή συλλογή

Βιβλιοθήκη

Μετά την ολοκλήρωση της γεώτρησης έγινε επιλογή αντιπροσωπευτικών δειγμάτων και αποστολή τους στο εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας, του Τμήματος Γεωλογίας του Α.Π.Θ., όπου και πραγματοποιήθηκαν οι εργαστηριακές δοκιμές εδαφομηχανικής κατά την περίοδο του Φεβρουαρίου 2023. Η εργαστηριακή έρευνα περιλαμβάνει, όπως αναφέρθηκε (Παράγραφος 2) μία δοκιμή άμεσης βραδείας προστερεοποιημένης διάτμησης, μία δοκιμή μονοδιάστατης στερεοποίησης, μία δοκιμή σημειακής φόρτισης και πληθώρα δοκιμών προσδιορισμού της κοκκομετρίας, του φαινόμενου βάρους, της φυσικής υγρασίας και των ορίων Atterberg του εδάφους. Τα αποτελέσματα του εργαστηριακών δοκιμών προέκυψαν οι τιμές σχεδιασμού των παραμέτρων των εδαφικών στρώσεων. Πιο συγκεκριμένα, οι τιμές των φυσικών, αλλά και των μηχανικών χαρακτηριστικών εκτιμήθηκαν ως οι μέσοι όροι των τιμών των αντίστοιχων εργαστηριακών δοκιμών για κάθε στρώμα.

Στον Πίνακα 14 παρουσιάζονται οι κύριες φυσικές ιδιότητες των εδαφικών στρωμάτων. Η φυσική υγρασία και το φαινόμενο βάρος προσδιορίστηκαν μέσω εργαστηριακών δοκιμών, όπως αυτές αναλύονται στις Παραγράφους 2.1.1 και 2.1.2. Το ξηρό φαινόμενο βάρος, ο λόγος των κενών και ο βαθμός κορεσμού υπολογίστηκαν σύμφωνα με τις Σχέσεις 2.7, 2.8 και 2,9, αντίστοιχα. Τα όρια Atterberg υπολογίσθηκαν μόνο για το στρώμα S1, λόγω του ότι οι στρώσεις W1 και R1 αποτελούν πιο συνεκτικούς και λιγότερο εδαφοποιημένους σχηματισμούς, συνεπώς δεν ήταν δυνατή η εφαρμογή της μεθόδου του πίπτοντος κώνου. Τέλος, με βάση τα φυσικά χαρακτηριστικά αλλά και τα αποτελέσματα της κοκκομετρικής ανάλυσης έγινε η ταξινόμηση των σχηματισμών κατά το σύστημα USCS (Εικόνα 1). Στον Πίνακα 15 παρουσιάζονται ορισμένες δευτερεύουσες παράμετροι των εδαφικών στρωμάτων, όπως ο συντελεστής ομοιομορφίας (U), ο βαθμός διαβάθμισης (C_e), η διαπερατότητα (k), ο βαθμός

Στο	Πάχος	m	γ	γd	γs	eo	S	PL	LL	PI	USCS
<i>Δι</i> μ.	(m)	(%)	(kN/m^3)	(kN/m^3)	(kN/m^3)		(%)	(%)	(%)	(%)	
S 1	4,20	12,7	18,3	16,2	26,5	0,63	64,3	22	32	10	SC
W1	7,20	12,2	20,7	18,4	26,5	0,41	86,2	-	-	-	SM
R1	2,60	12,0	22,8	20,3	26,5	0,27	115,3	-	-	-	SM

Πίνακας 14: Κύριες φυσικές ιδιότητες εδαφικών στρωμάτων.

Πίνακας 15: Δευτερεύουσες φυσικές ιδιότητες εδαφικών στρωμάτων.

Τύἡμα Γεωλ	oviac					
АПО	Στρ.	U	Cc	k (cm/s)	Ір	Ic
AILO	S1	89	1,08	0,97.10-5	10	3.01
	W1	85	0,83	4,9.10-5	-	-
	R1	-	-	-	-	-

5.3.2 Μηχανικές ιδιότητες στρωμάτων

Ψηφιακή συλλογή

Βιβλιοθήκη

Στους Πίνακες 16, 17 παρουσιάζονται οι μηχανικές παράμετροι των επιμέρους στρωμάτων, όπως προέκυψαν από τις εργαστηριακές δοκιμές. Όπως και στα όρια Atterberg, έτσι και εδώ η δοκιμή άμεσης διάτμησης και μονοδιάστατης στερεοποίησης πραγματοποιήθηκαν μόνο σε δείγμα του στρώματος S1, ενώ δοκιμή σημειακής φόρτισης πραγματοποιήθηκε σε δείγμα του στρώματος W1. Οι ενεργές παράμετροι της διατμητικής αντοχής (c', φ') προσδιορίστηκαν από τη δοκιμή της άμεσης διάτμησης (Παράγραφος 3.2.7). Ο συντελεστής μονοδιάστατης στερεοποίησης (C_e), ο δείκτης συμπιεστότητας (C_v) και το μέτρο παραμορφωστιμότητας (E_s) προσδιορίστηκαν από τη δοκιμή μονοδιάστατης στερεοποίησης (Παράγραφος 3.2.6) και αντιστοιχούν στις τιμές που προέκυψαν για πίεση 180kPa, καθώς το βάθος του δείγματος είναι στα 3,80-4,10m. Επομένως, η συγκεκριμένη πίεση αντιστοιχεί στο εντατικό πεδίο του συγκεκριμένου βάθους. Ο συντελεστής σημειακής φόρτισης (I_s), η μονοαξονική θλιπτική αντοχή (σ_e) και το εφαπτομενικό μέτρο ελαστικότητας (E₁), υπολογίστηκαν όπως αναφέρεται στην Παράγραφο 2.1.8. Τέλος, το δυναμικό μέτρο διάτμησης (G_{max}) υπολογίστηκε, σύμφωνα με τη Παράγραφο 2.3.2, για το στρώμα S1, για το οποίο υπήρχαν διαθέσιμα, η τιμή του δείκτη πλαστικότητας και της αστράγγιστης αντοχής (από τα αποτελέσματα της δοκιμής SPT).

Στρ.	Πάχος (m)	γ (kN/m ³)	c' (kPa)	φ' (°)	Cu (kPa)	Es (MPa)	Ce	Cv (m ² /y)	G _{max} (MPa)
S 1	4,20	18,3	8,1	37,5	-	7,54	0,053	14,02	287,9
W1	7,20	20,7	-	-	-	-	-	-	-
R1	2,60	22,8	-	-	-	-	-	-	-

Πίνακας 16: Μηχανικά χαρακτηριστικά εδαφικών στρωμάτων.

Στρ.	Is (MPa)	Is50 (MPa)	σc (MPa)	Et (GPa)
S1	-	-	-	-
W1	0,45	0,60	13,2	3,47
R1	-	-	-	-

5.3.3 Επιδεκτικότητα έναντι ρευστοποίησης

Με γνωστά τα απαραίτητα χαρακτηριστικά των στρωμάτων στην θέση του έργου, εφαρμόστηκαν τα κριτήρια επιδεκτικότητας έναντι ρευστοποίησης των Bray και Sancio (2006)

(Παράγραφος 2.3.1). Το στρώμα S1 βρίσκεται κάτω από τον υδροφόρο ορίζοντα, ωστόσο χαρακτηρίζεται από τιμή N_{SPT}>30 (N_{SPTS1}=35). Αυτό το καθιστά μη επιδεκτικό προς ρευστοποίηση. Αναφορικά με τα στρώματα W1 και R1, δεν μπορούν να υπολογισθούν τα απαραίτητα χαρακτηριστικά για την εφαρμογή των ανωτέρω κριτηρίων και επίσης η ημιβραχώδης κατάσταση στην οποία βρίσκονται τα καθιστά μη επιδεκτικά προς ρευστοποίηση.

5.4 Γεωτεχνικό προφίλ θέση μελέτης

Ψηφιακή συλλογή

Βιβλιοθήκη

Στον Πίνακα 18 παρουσιάζονται συγκεντρωτικά οι τιμές των μηχανικών παραμέτρων των στρωμάτων, όπως προέκυψαν από τις εργαστηριακές και τις επί τόπου δοκιμές. Συγκρίνοντας τα αποτελέσματά τους, παρατηρείται μία σύγκλιση στις παραμέτρους αντοχής, ενώ ως τελικές τιμές, που θα χρησιμοποιηθούν στις επόμενες αναλύσεις, λαμβάνονται οι ελάχιστες τιμές που προκύπτουν από την σύγκριση, για ένα πιο συντηρητικό σενάριο.

Πίνακας 18: Συγκεντρωτικός πίνακας μηχανικών παραμέτρων των στρωμάτων στη θέση του έργου, όπως προέκυψαν από την επί τόπου πρότυπη δοκιμή διείσδυσης και από τις εργαστηριακές δοκιμές.

Στρ.	Πάχος (m)	γ (kN/m ³)	Nspt	Ф S рт (°)	c' (kPa)	φ' (°)	Cu (kPa)	Cuspt (kPa)	E _{sSPT} (MPa)	Es (MPa)
S 1	4,20	18,3	35	37,5	8,1	37,5	-	210	16,0	7,5
W1	7,20	20,7	>50	>42	-	-	-	>300	>20,8	-
R1	2,60	22,8	>50	>42	-	-	-	>300	>20,8	-

Στον Πίνακα 19 παρουσιάζονται οι τελικές γεωτεχνικές παράμετροι σχεδιασμού του υπεδάφους στην θέση του έργου. Πιο συγκεκριμένα, ο πίνακας περιλαμβάνει το πάχος των στρωμάτων, το φαινόμενο βάρος των εδαφικών σχηματισμών, τις παραμέτρους της διατμητικής αντοχής, την αστράγγιστη αντοχή, το οιδημετρικό μέτρο παραμορφωσιμότητας, το δείκτη συμπιεστότητας και το συντελεστή μονοδιάστατης στερεοποίησης, όπως προέκυψαν από την κριτική θεώρηση του συνόλου των ερευνητικών αποτελεσμάτων. Ο πίνακας αυτός, μαζί με την Εικόνα 32, αποτελούν το γεωτεχνικό προφίλ σχεδιασμού. Σε αυτό βασίζονται οι υπολογισμοί ευστάθειας της κατασκευής (της φέρουσας ικανότητας και των καθιζήσεων της θεμελίωσης) και οι υπολογισμοί της ευστάθειας των πρανών εκσκαφής.

Πίνακας 19: Τελικές γεωτεχνικές παράμετροι σχεδιασμού υπεδάφους στη θέση του έργου.

Στρ.	Πάχος (m)	γ (kN/m ³)	c' (kPa)	φ' (°)	Cu (kPa)	Es (MPa)	Cc	Cv (m ² /y)
S 1	4,20	18,3	8,1	37,5	210,0	7,54	0,053	14,02
W1	7,20	20,7	-	42,0	300,0	20,8	-	-
R1	2,60	22,8	-	42,0	300,0	20,8	-	-

ΥΠΟΜΝΗΜΑ

ΣΤΡΩΜΑ F1: Τεχνητές επιχώσεις με αμμοχαλικώδη σύσταση και περιεχόμενα συγκρίματα και διάσπαρτα θραύσματα ασβεστιτικής και ψαμμιτικής προέλευσης (κατάταξη κατά USCS: GP-SP).

•	•	•
	-	•
	•	

. . .

ΣΤΡΩΜΑ S1: Καστανή έως τεφροκάστανη, ελαφρά υγρή, πυκνή αργιλοϊλυώδης άμμος έως αμμώδης αργιλοϊλύς, χαμηλής πλαστικότητας με εμφανή υπολειμματική δομή από την αποσάθρωση του σχιστολιθικού υποβάθρου (κατάταξη κατά USCS: SC-CL).

ΣΤΡΩΜΑ W1: Καστανέρυθρος έως τεφροκάστανος, έντονα αποσαθρωμένος, οξειδωμένος και κατακερματισμένος Αθηναϊκός Σχιστόλιθος – Μεταψαμμίτης, εδαφοποιημένος μεκατά θέσεις μορφή ιλυώδους άμμου με συγκρίματα και υγιή μέλη του υποβάθρου με φυλλώδη υπολειμματική δομή (κατάταξη κατά USCS: SM, GSI=15-25).

ΣΤΡΩΜΑ R1: Μελανός έως μελανότρεφρος ασθενής Αθηναϊκός Σχιστόλιθος, έντονα αποσαθρωμένος και κατακερματισμένος, με φυλλώδη δομή.

<u>Ψηφιακή βιβλιοθήκη Θεόφραστος – Τμήμα Γεωλογίας – Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης</u>

Εικόνα 32: Στρωματογραφία θέσης έργου.

6. Γεωτεχνικοί έλεγχοι θεμελίωσης 6.1 Φέρουσα ικανότητα – Επιτρεπόμενη τάση σχεδιασμού

Ψηφιακή συλλογή

Βιβλιοθήκη

Ο έλεγχος της φέρουσας ικανότητας πραγματοποιήθηκε με τη βοήθεια του λογισμικού LoadCap της εταιρίας Geostru και έγινε σύμφωνα με τον Ευρωκώδικα 7 και τον ΕΑΚ (Ελληνικό Αντισεισμικό Κανονισμό) σε στατικές και σεισμικές συνθήκες, αντίστοιχα. Με το ίδιο λογισμικό και με βάση της ίδιες διατάζεις, υπολογίσθηκαν επίσης η επιτρεπόμενη τάση σχεδιασμού και οι αναμενόμενες καθιζήσεις. Αναλυτικότερα, η φέρουσα ικανότητα του εδάφους θεμελίωσης και η επιτρεπόμενη τάση υπολογίσθηκαν με τις μεθόδους Terzaghi και Brich-Hansen και με την επιβολή μερικών συντελεστών ασφάλειας βάσει των προσεγγίσεων σχεδιασμού 1 και 2 του Ευρωκώδικα 7. Οι συνδυασμοί συντελεστών ασφάλειας που εφαρμόστηκαν είναι οι A1+M1+R2 (Παρ. 2.4.7.3.4.3., Design Approach 2) και A2+M2+R1 (Παρ. 2.4.7.3.4.2., Design Approach 1, Combination 2). Στις αναλύσεις χρησιμοποιήθηκαν οι ελάχιστες τιμές αστράγγιστης και διατμητικής αντοχής, που υπολογίστηκαν από το μέσο όρο των επί τόπου και εργαστηριακών δοκιμών για κάθε επί μέρους στρώμα και επιπλέον, εφαρμόσθηκε διόρθωση στην τιμή της γωνίας εσωτερικής τριβής (arctg(0,67*tanφ')) και της συνοχής 2/3c. Τέλος, οι αναλύσεις έγιναν για αστράγγιστες και στραγγιζόμενες συνθήκες.

Ο τύπος και τα χαρακτηριστικά των θεμελίων που εξετάζονται στη συνέχεια είναι αυτά που επιλέχθηκαν από τον μελετητή του έργου. Για το κτίριο εξετάστηκε θεμελίωση με πεδιλοδοκούς πλάτους B'=1,40m και μήκους L'=9m, σε βάθος D=4,65m και για τον υποσταθμό θεμελίωση με πλάκα κοιτόστρωσης πάχους 0,25m, πλάτους B'=3,90m και μήκους L'=9,30m, σε βάθος D=4,45m.

Για την περίπτωση θεμελίωσης του κτιρίου, με πεδιλοδοκούς σε βάθος D=4,65m και έδραση στη στρώση W1 προκύπτουν τιμές επιτρεπόμενης τάσης έναντι θραύσης εδάφους της τάξης του σ_{επ}=822,1kN/m² για αστράγγιστες συνθήκες και σ_{επ}=811,3kN/m² για συνθήκες αποστράγγισης (Εικόνα 33). Εάν γίνει αποδεκτή μία μέγιστη ανεκτή ολική καθίζηση για την πεδιλοδοκό της τάξης των 5cm (Ευρωκώδικας 7), η αντίστοιχη τιμή της επιτρεπόμενης τάσης κατέρχεται σε σ_{επ}≈615kN/m². Ωστόσο δεδομένου πως θα επανεπιχωθεί η εκσκαφή μέχρι τη στάθμη της υφιστάμενης οδού, με εκτιμώμενη τάση επανεπίχωσης της τάξης των 95kN/m², για εδαφικό υλικό φαινόμενου βάρους 20kN/m³ και ύψος επίχωσης 4,65m, η τελική τιμής της επιτρεπόμενης τάσης τως που προκύπτει ισούται με σ_{επ}≈520kN/m².

Για την περίπτωση θεμελίωσης του υποσταθμού σε βάθος D=4,45m με κοιτόστρωση και έδραση επί της στρώσης W1, προκύπτουν τιμές επιτρεπόμενης τάσης έναντι θραύσης εδάφους της τάξης του σ_{επ}=857,9kN/m² για αστράγγιστες συνθήκες και σ_{επ}=935,1kN/m² για συνθήκες αποστράγγισης (Εικόνα 34). Εάν γίνει αποδεκτή μία μέγιστη ανεκτή ολική καθίζηση για την κοιτόστρωση της τάξης των 10cm (Ευρωκώδικας 7), η αντίστοιχη τιμή της επιτρεπόμενης τάσης σχεδιασμού κατέρχεται σε σ_{επ}~526kN/m².

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 33: Γραφικά αποτελέσματα υπολογισμού φέρουσας ικανότητας κτιρίου με πεδιλοδοκό πλάτους B'=1,4m και βάθος θεμελίωσης D=4.65m σε συνθήκες αποστράγγισης, με το λογισμικό LoadCup.

6.2 Αναμενόμενες καθιζήσεις

Στην συνέχεια παρουσιάζεται ο παραμετρικός υπολογισμός της καθίζησης για διάφορες τιμές φόρτισης, ο οποίος πραγματοποιήθηκε με το λογισμικό LoadCup της εταιρίας Geostru. Επιπροσθέτως, με το λογισμικό Settle3D της RocScience υπολογίσθηκαν οι αναμενόμενες καθιζήσεις για τα φορτία που θα εφαρμοσθούν στο υπέδαφος σύμφωνα με την κατασκευαστική τομή.

Στην Εικόνα 35 παρουσιάζεται ο παραμετρικός υπολογισμός της καθίζησης για διάφορες τιμές φόρτισης πεδιλοδοκού με πλάτος B'=1,40m, μήκος L'=9,0m και βάθος έδρασης D=4,65m. Προκύπτει λοιπόν καθίζηση 0,40cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}≈100kN/m² έως 2,18cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}≈300kN/m². Για την μέγιστη ολική ανεκτή καθίζηση της πεδιλοδοκού, η οποία ισούται με 5cm (Ευρωκώδικας 7), προκύπτει επιτρεπόμενη τάση ίση με σ_{επ}≈615kN/m². Για τάση έδρασης σ_{εδρ}≈189kN/m² υπολογίζεται καθίζηση ίση με 1,19cm. Η συγκεκριμένη τάση έδρασης

αντιστοιχεί στην τάση του οικοδομικού φορτίου, πολλαπλασιασμένη με συντελεστή ασφαλείας 1,35, όπως ορίζει ο Ευρωκώδικας 7, υποθέτοντας φορτίο ανά όροφο περίπου 20kPa, όπως έγινε και στη μελέτη από τον αρμόδιο μελετητή. Στην περίπτωση επανεπίχωσης κατά την οποία η τάση έδρασης ανέρχεται σε $\sigma_{\epsilon\delta\rho}\approx 284$ kN/m², προκύπτει καθίζηση 2,04cm. Οι ανωτέρω υπολογιζόμενες τιμές ισχύουν για την περίπτωση ολοκλήρωσης των καθιζήσεων λόγω στερεοποίησης, δηλαδή για συνθήκες μακροχρόνιας φόρτισης. Στον Πίνακα 20 αναγράφονται συγκεντρωτικά οι υπολογιζόμενες ελαστικές και οιδημετρικές καθιζήσεις, όπως και οι καθιζήσεις κατά Burland και Burbidge, για τις αντίστοιχες τάσεις έδρασης.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 35: Διάγραμμα παραμετρικού υπολογισμού καθιζήσεων κτιρίου για πεδιλοδοκό B'=1,40m με το λογισμικό LoadCup.

Πίνακας 20: Αποτελέσματα πα το λογισμικό LoadCup.	ραμετρικού υπολογισμού καθιζήσ	εων κτιρίου για πεδιλοδοκό Β	.'=1,40m με
Μέθοδος	Τάση έδοασης (kPa)	Καθίζηση (cm)	

Μέθοδος	Τάση έδρασης (kPa)	Καθίζηση (cm)
	615	3,19
Ελαστικές καθιζήσεις	520	2,63
	284	1,22
	189	0,66
	615	5
Οιδημετρικές καθιζήσεις	520	4,15
	284	2,04
	189	1,19
	615	1,98
Burland & Burbidge	520	1,66
	284	0,85
	189	0,52

Στην Εικόνα 36 παρουσιάζεται ο παραμετρικός υπολογισμός της καθίζησης για διάφορες τιμές φόρτισης της πλάκας κοιτόστρωσης πάχους 0,25m, πλάτους B'=3,90m, μήκους L'=9,30m και βάθους έδρασης D=4,45m. Για την περίπτωση της κοιτόστρωσης προκύπτει καθίζηση 0,99cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}~100kN/m², έως 5,22cm για αναπτυσσόμενες τάσεις έδρασης της τάξης των σ_{εδρ}~300kN/m². Για μέγιστη ανεκτή ολική καθίζηση ίση με 10cm (Ευρωκώδικας 7) προκύπτει επιτρεπόμενη τάση ίση με σ_{επ}~526kN/m², ενώ για καθίζηση 5cm η επιτρεπόμενη τάση μειώνεται σε σ_{επ}~289 kN/m². Στον Πίνακα 21 αναγράφονται συγκεντρωτικά οι υπολογιζόμενες ελαστικές και οιδημετρικές καθιζήσεις, όπως και οι καθιζήσεις κατά Burland και Burbidge, για τις αντίστοιχες τάσεις έδρασης.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 36: Διάγραμμα παραμετρικού υπολογισμού καθιζήσεων υποσταθμού για κοιτόστρωση B'=3,90m με το λογισμικό LoadCup.

Πίνακας 21: Αποτελέσματα παραμετρικού υπολογισμού καθιζήσεων για κοιτόστρωση B'=3,90m με το λογισμικό LoadCup.

Μέθοδος	Τάση έδρασης (kPa)	Καθίζηση (cm)	
Ελαστικές καθιζήσεις	857,9	1,83	
	526	1,05	
Οιδημετρικές καθιζήσεις	857,9	17	
	526	10	
Burland & Burbidge	857,9	13,52	
_	526	8,07	

Πιο συγκεκριμένα για το κτίριο της κατασκευαστικής τομής και τις αντίστοιχες φορτίσεις, υπολογίσθηκαν οι ολικές καθιζήσεις με το λογισμικό Settle3D, όπως φαίνεται στην συνέχεια. Το μοντέλο που σχεδιάστηκε περιλαμβάνει μία εκσκαφή βάθους 4,75m και διαστάσεων ίδιων

με αυτές του κτιρίου στο τοπογραφικό διάγραμμα του οικοπέδου μελέτης. Στον πυθμένα της εκσκαφής τοποθετήθηκε εδαφική στρώση πάχους 10cm με φαινόμενο βάρος εδαφικού υλικού γ=20kN/m³, πάνω στην οποία θα εδρασθούν τα θεμέλια του κτιρίου και του υποσταθμού. Πέντε πεδιλοδοκοί μήκους 10,85-11,85m, ώστε να καλύπτουν το μήκος του κτιρίου, τοποθετήθηκαν σύμφωνα με την κατασκευαστική τομή με εφαρμοζόμενο φορτίο στο υπέδαφος ίσο με 284kPa. Να σημειωθεί ότι στο παρόν σενάριο εξετάζεται η περίπτωση επανεπίχωσης της εκσκαφής μετά την κατασκευή της θεμελίωσης και του υποσταθμού. Συνεπώς, ενδιάμεσα των πεδιλοδοκών τοποθετήθηκε επίχωμα με φορτίο 95kPa. Στην θέση του υποσταθμού προστέθηκε επιπλέον στρώμα πάχους 20cm, πλάτους ίσο με το πλάτος της κοιτόστρωσης του υποσταθμού και φαινόμενο βάρος εδαφικού υλικού γ=20kN/m³. Έπειτα, εφαρμόστηκε η κοιτόστρωση πλάτους 3,9m και πάχους 0,25m με φορτίο 50kPa. Η κάτοψη και το τρισδιάστατο μοντέλο και απεικονίζονται στις Εικόνες 37, 38, αντίστοιχα, ενώ τα αποτελέσματα υπολογισμού των καθιζήσεων στην Εικόνα 39. Υπολογίστηκαν λοιπόν μέγιστες καθιζήσεις της τάξης των 3,36m. Οι μέγιστες καθιζήσεις παρουσιάζονται στη δεύτερη και τρίτη πεδιλοδοκό, ενώ γενικότερα το νοτιοδυτικό τμήμα του κτιρίου παρουσιάζει μεγαλύτερες καθιζήσεις από το βορειοανατολικό.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 37: Κάτοψη μοντέλου υπολογισμού καθιζήσεων του κτιρίου και του υποσταθμού στο λογισμικό Settle3D. Η γαλάζια σκιαγράφηση (Strip 1-5) απεικονίζει τις πεδιλοδοκούς, η μπλε τα επιχώματα και η πράσινη (Mat) την κοιτόστρωση.

Εικόνα 38: Τρισδιάστατο μοντέλο στο οποίο απεικονίζονται η εκσκαφή, τα θεμέλια, τα επιχώματα και τα στρώματα πάνω στα οποία έγινε η εδραίωση των θεμελίων (Settle3D).

Εικόνα 39: Αποτελέσματα υπολογισμού καθιζήσεων με το λογισμικό Settle3D.

Για το σενάριο μη επανεπίχωσης, αλλά έναντι αυτής, κατασκευής υπογείου χώρου στάθμευσης, δημιουργήθηκε μοντέλο στο λογισμικό Settle3D στο οποίο σε βάθος 4,75m τοποθετήθηκε πλάκα πάχους 25cm με φαινόμενο βάρος υλικού κατασκευής 25kN/m³. Πάνω σε αυτή πραγματοποιήθηκε εδραίωση των πεδιλοδοκών και της κοιτόστρωσης του υποσταθμού σε βάθος 4,50m. Τα φορτία που ασκούνται στην προκειμένη περίπτωση είναι 189kPa από τις πεδιλοδοκούς, 50kPa από την κοιτόστρωση και 6,25kPa από την υποκείμενη πλάκα. Στην Εικόνα 42 απεικονίζεται η χωρική κατανομή των καθιζήσεων και όπως φαίνεται αναμένονται καθιζήσεις της τάξης των 1,20cm στις γωνίες του κτιρίου και διογκώσεις της

τάξης των 0,20cm, στο κεντρικό τμήμα του κτιρίου μεταξύ της 3^{ης} και 4^{ης} πεδιλοδοκού. Οι καθιζήσεις είναι μέσα στα ανεκτά όρια και για τους δύο τύπους θεμελίωσης, ωστόσο η ανοχή σε διόγκωση είναι μηδενική. Για αυτό το λόγο εξετάστηκε η προσθήκη δύο επιπλέον πεδιλοδοκών, κάθετων στις ήδη υπάρχουσες, όπως φαίνεται στην Εικόνα 43. Σε αυτή την περίπτωση παρατηρείται αύξηση των καθιζήσεων κατά 0,30cm περίπου σε σχέση με προηγουμένως. Δηλαδή οι αναμενόμενες καθιζήσεις ανέρχονται σε 1,47cm. Από την άλλη επιτυγχάνεται μηδενισμός των διογκώσεων. Εφόσον οι καθιζήσεις είναι μικρότερες των 5cm και δεν παρατηρούνται διογκώσεις, το σενάριο κατασκευής υπογείου χώρου είναι εφικτό.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 40: Κάτοψη μοντέλου υπολογισμού καθιζήσεων του κτιρίου και του υποσταθμού στο λογισμικό Settle3D για το σενάριο του υπογείου. Η γαλάζια σκιαγράφηση (Strip 1-5) απεικονίζει τις πεδιλοδοκούς, η μπλε την πλάκα βάσης και η πράσινη (Mat) την κοιτόστρωση.

Εικόνα 41: Τρισδιάστατο μοντέλο στο οποίο απεικονίζονται η εκσκαφή, τα θεμέλια και η πλάκα έδρασης των θεμελίων για το σενάριο με το υπόγειο (Settle3D).

Εικόνα 42: Αποτελέσματα υπολογισμού καθιζήσεων με το λογισμικό Settle3D για το σενάριο με το υπόγειο.

Εικόνα 43: Κάτοψη μοντέλου υπολογισμού καθιζήσεων του κτιρίου και του υποσταθμού στο λογισμικό Settle3D για το σενάριο του υπογείου και την προσθήκη επιπλέον κάθετων πεδιλοδοκών. Η γαλάζια σκιαγράφηση απεικονίζει τις πεδιλοδοκούς, η άσπρη την πλάκα βάσης και η πράσινη (Mat) την κοιτόστρωση.

Εικόνα 44 Τρισδιάστατο μοντέλο στο οποίο απεικονίζονται η εκσκαφή, τα θεμέλια και η πλάκα έδρασης των θεμελίων για το σενάριο με το υπόγειο και με προσθήκη επιπλέον κάθετων πεδιλοδοκών (Settle3D).

Εικόνα 45: Αποτελέσματα υπολογισμού καθιζήσεων με το λογισμικό Settle3D για το σενάριο με το υπόγειο και με προσθήκη επιπλέον κάθετων πεδιλοδοκών.

7. Γεωτεχνικοί έλεγχοι ευστάθειας εκσκαφών

Για την κατασκευή του υποσταθμού απαιτείται εκσκαφή επιφάνειας τουλάχιστον ίσης με τις διαστάσεις της βάσης του υποσταθμού και των τοιχωμάτων του. Σύμφωνα με την κατασκευαστική τομή (Εικόνα 22) προβλέπεται εκσκαφή διαστάσεων ίδιων με αυτές της βάσης του κτιρίου. Συνεπώς, η απαιτούμενη εκσκαφή είναι ορθογώνιου σχήματος με τέσσερα προσωρινά πρανή εκσκαφής. Το ύψος τους κυμαίνεται μεταξύ 4,75m-5,25m, από την ελεύθερη επιφάνεια του εδάφους έως τη στάθμη θεμελίωσης του κτιρίου και του υποσταθμού. Οι κλίσεις των πρανών θα πρέπει κατ' ανάγκη να είναι παρακατακόρυφες, λόγω περιορισμένου χώρου εξαιτίας των ορίων του οικοπέδου, της παρουσίας της οδού Αρητής στα νοτιοανατολικά και των όμορων κτιρίων στα νοτιοδυτικά και βορειοανατολικά. Για τις προσωρινές εκσκαφές είναι απαραίτητο να πραγματοποιηθεί έλεγχος ευστάθειας, με βάση τον οποίο θα προταθούν μέτρα αντιστήριξης, όπου είναι αναγκαίο.

7.1 Αναλύσεις ευστάθειας εκσκαφών

Ψηφιακή συλλογή

Βιβλιοθήκη

Ο έλεγχος ευστάθειας πραγματοποιήθηκε με τη βοήθεια του λογισμικού Slide της εταιρίας RocScience. για τα τέσσερα πρανή εκσκαφής. Το νοτιοδυτικό πρανές με ύψος 4,75m, συνορεύει με πολυκατοικία θεμελιωμένη σε εκτιμώμενο βάθος 2,70m από την επιφάνεια του δρόμου (Εικόνα 46). Το βάθος θεμελίωσης του όμορου κτιρίου εκτιμήθηκε ότι είναι περίπου 1m κάτω από πλάκα του υπογείου του. Το βορειοανατολικό πρανές με ύψος 5,25m, συνορεύει με πολυκατοικία θεμελιωμένη σε βάθος 0,00m, το νοτιοανατολικό πρανές του δρόμου με μέγιστο ύψος 5,25m και το βορειοδυτικό πρανές μέγιστου ύψους 5,25m, συνορεύει με οικόπεδο πλάτους 7,5m. Αναλυτικά τα γεωμετρικά χαρακτηριστικά των πρανών παρουσιάζονται στον Πίνακα 22.

Εικόνα 46: Τομή θεμελίωσης όμορης οικοδομής προς τα νοτιοδυτικά (Χατζηγώγος, 2023)

Πίνακας 22: Γεωμετρικά χαρακτηριστικά πρανών εκσκαφής.									
Όρυγμα	Περιγραφή	Υψος (m)	Κλίση (°)	Βάθος θεμελίωσης όμορου κτιρίου/δρόμου (m)	Φορτίο όμορου κτιρίου/δρόμου (kN/m²)	Σχηματισμοί			
1	Βόρειο-Δυτικό πρανές	5,25	90	-	-	S1-W1			
2	Βόρειο-Ανατολικό πρανές	5,52	90	0,00	120	S1-W1			
3	Νότιο-Ανατολικό πρανές δρόμου	5,25	90	0,00	30	S1-W1			
4	Νότιο-Δυτικό πρανές	4,75	90	2,70	120	S1-W1			

Ψηφιακή συλλογή

διβλιοθήκη

Οι εκσκαφές ελέγχθηκαν για κυκλικές επιφάνειες θραύσης με τις μεθόδους Bishop και Janbu corrected, για περίπτωση αστράγγιστων συνθηκών και χωρίς σεισμική επιβάρυνση, λόγω του προσωρινού χαρακτήρα τους. Επιπρόσθετα, για το νοτιονατολικό πρανές του δρόμου θεωρήθηκε φορτίο κυκλοφορίας σε απόσταση 3m από τη στέψη του πρανούς, μεγέθους $P{=}30 kN/m^2$ για ένα πιο συντηρητικό σενάριο και για τα βορειο
ανατολικά και νοτιοδυτικά πρανή σε απόσταση 0,5m από της στέψη τους, το φορτίο των όμορων οικοδομών, μεγέθους P=120kN/m². Το φορτίο των όμορων οικοδομών υπολογίστηκε ως 20kN/m² περίπου ανά όροφο, όπως θεωρήθηκε και από τον αρμόδιο μελετητή στην μελέτη για το συγκεκριμένο έργο. Επίσης, το ύψος των πρανών για την ανάλυση οριακής ισορροπίας ορίστηκε ως η απόσταση της θεμελίωσης του σχεδιαζόμενου κτιρίου από την επιφάνεια εφαρμογής των όμορων φορτίων, δηλαδή από τα βάθη θεμελίωσης των διπλανών οικοδομών και από το βάθος έδρασης του δρόμου. Συνεπώς, το βορειοανατολικό πρανές και το πρανές του δρόμου έχουν ύψος 5,25m, καθώς οι επιφάνειες έδρασης των φορτίων είναι επιφανειακές, ενώ το νοτιοδυτικό πρανές έχει ύψος 2,05m, διότι η επιφάνεια έδρασης του φορτίου της όμορης οικοδομής είναι σε βάθος 2,70m. Στις Εικόνες 47, 48, 49, 50 απεικονίζονται οι αντιπροσωπευτικές διατομές των πρανών εκσκαφής και στον Πίνακα 23 παρουσιάζονται συγκεντρωτικά τα αποτελέσματα των αναλύσεων οριακής ισορροπίας τόσο με την εφαρμογή των υπαρχόντων φορτίων, όσο και χωρίς αυτά.

Σύμφωνα με τα αποτελέσματα των αναλύσεων ευστάθειας στις επί μέρους εξεταζόμενες κάθετες εκσκαφές και όσον αφορά στις αναλύσεις χωρίς των εφαρμογή φορτίων, παρατηρείται ότι μόνο το νοτιοδυτικό πρανές ευσταθεί. Το βορειοδυτικό πρανές έχει ίδιους συντελεστές ασφαλείας και στις δύο περιπτώσεις εφαρμογής και μη των φορτίων, λόγω της απόστασης του εφαρμοζόμενου φορτίου από τη στέψη του πρανούς. Το βορειοανατολικό και νοτιοανατολικό πρανές χαρακτηρίζονται από τους ίδιους συντελεστές εξαιτίας της οριζόντιας στρωματογραφίας και των όμοιων γεωμετρικών χαρακτηριστικών των εκσκαφών.

Οσον αφορά στις πραγματικές συνθήκες, και συμπεριλαμβανομένου των εφαρμοζόμενων φορτίων, προκύπτει ότι το επιφανειακό αμμώδες στρώμα S1 πάχους 4,20-3,60m, το οποίο λαμβάνει τη μέγιστη τιμή πάχους ανατολικά λόγω της κλίσης του δρόμου, δεν υποστηρίζει κάθετη εκσκαφή. Αστοχία παρατηρείται, και στις τέσσερις περιπτώσεις, στο επιφανειακό στρώμα, ενώ στο βαθύτερο στρώμα W1 δεν εντοπίζεται κάποια επιφάνεια ολίσθησης, εξαιτίας της συνεκτικότητας του. Στο νοτιοδυτικό όρυγμα, ορισμένες επιφάνειες ολίσθησης φαίνεται να διαπερνούν ελάχιστα και το στρώμα W1, ωστόσο χαρακτηρίζονται από συντελεστές ασφαλείας μεγαλύτερους της μονάδας. Επίσης, να αναφερθεί ότι για το βορειοδυτικό πρανές προκύπτουν ίδιοι συντελεστές ασφαλείας στις περιπτώσεις εφαρμογής και μη του φορτίου της οικοδομής, πιθανόν λόγω της απόστασης του φορτίου από τη στέψη της εκσκαφής, αλλά και του μικρού σχετικά βάθους της. Τα αποτελέσματα των αναλύσεων ευστάθειας παρουσιάζονται αναλυτικότερα στο Παράρτημα Ε.

Όρυγμα	υγμα Περιγραφή		Περιγραφή Ύψος		Κλίση	FS 2 υπάρχον	χωρίς τα φορτία	FS με υπάρχοντα φορτία	
		(m)	(°)	Bishop Janbu		Bishop	Janbu		
					cor.		cor.		
1	Βόρειο-Δυτικό πρανές	5,25	90	0,596	0,716	0,596	0,716		
2	Βόρειο-Ανατολικό πρανές	5,52	90	0,514	0,637	0,389	0,374		
3	Νότιο-Ανατολικό πρανές δρόμου	5,25	90	0,514	0,637	0,514	0,637		
4	Νότιο-Δυτικό πρανές	2,05	90	2,59	2,68	0,976	0,965		

Πίνακας 23:	Αποτελέσματα	ανάλυσης	ευστάθειας προ	ινών εκσκαφής.
-------------	--------------	----------	----------------	----------------

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 47: Ανάλυση ευστάθειας ορύγματος 1 με το λογισμικό Slide.

Εικόνα 48: Ανάλυση ευστάθειας ορύγματος 2 με το λογισμικό Slide.

Εικόνα 49: Ανάλυση ευστάθειας ορύγματος 3 με το λογισμικό Slide.

Εικόνα 50: Ανάλυση ευστάθειας ορύγματος 4 με το λογισμικό Slide.

7.2 Εξεταζόμενα μέτρα αντιστήριξης

Με βάση τα αποτελέσματα των αναλύσεων ευστάθειας, συμπεραίνεται πως είναι απαραίτητη η αντιστήριξη των πρανών εκσκαφής ή η μείωση της κλίσης της εκσκαφής στις περιπτώσεις που είναι δυνατό. Η μείωση της κλίσης θα εφαρμοσθεί στο στρώμα S1 και είναι εφικτή στο όρυγμα επί της οδού Αρητής και στο βορειοδυτικό όρυγμα, λόγω του περιορισμένου διαθέσιμου χώρου στις υπόλοιπες πλευρές του οικοπέδου. Επομένως, για τα βορειοανατολικά και νοτιοδυτικά ορύγματα εξετάζεται αντιστήριξη με πυκνή συστοιχία μικροπασσάλων. Οι μικροπάσσαλοι στα βορειοανατολικά και νοτιοδυτικά θα λειτουργήσουν και ως πασσαλοδιάφραγμα πλευρικής στήριξης και θα συνδέονται με κεφαλόδεσμο σε επαφή με τα στοιχεία θεμελίωσης των όμορων κτιρίων ώστε να παραλάβουν ενδεχόμενες παραμορφώσεις. Ακόμα, κατά τις αναλύσεις εφαρμόζεται διαξονική απόσταση πασσάλων τέτοια ώστε να υπάρχει ικανό κενό μεταξύ των πασσάλων, προκειμένου να μην εμποδιστεί η ροή των υπόγειων υδάτων και τοπικά συμβεί άνοδος της υπόγειας στάθμης, η οποία θα μπορούσε να οδηγήσει σε φαινόμενα καθιζήσεων λόγω υδροστερεοποίησης.

Η διαστασιολόγηση των μικροπασσάλων έγινε με τη βοήθεια των λογισμικών Slide και RSPile της εταιρίας RocScience. Στο λογισμικό RSPile σχεδιάστηκαν οι μικροπάσσαλοι που αναγράφονται στον Πίνακα 24. Οι συγκεκριμένοι πάσσαλοι σχεδιάστηκαν με βάση τους πασσάλους που επέλεξε εμπειρικά ο μελετητής να χρησιμοποιήσει στη μελέτη του. Στην συνέχεια, οι πάσσαλοι χρησιμοποιήθηκαν για την αντιστήριξη των πρανών στο λογισμικό Slide, όπου και πραγματοποιήθηκε παραμετρικός υπολογισμός των συντελεστών ασφαλείας σύμφωνα με τις μεθόδους Bishop και Janbu corrected. Στις αναλύσεις που παρατίθενται στον Πίνακα 24, εφαρμόστηκε διαξονική απόσταση πασσάλων 1m και μήκος πασσάλου 9,25m για το βορειοανατολικό πρανές και 5,25m για το νοτιοδυτικό πρανές.

Ψηφιακή συλλογή

Βιβλιοθήκη

Πίνακας 24: Χαρακτηριστικά μικροπασσάλων που σχεδιάστηκαν στο λογισμικό RSPile και συντελεστές ασφαλείας κατά την εφαρμογή τους στο βορειοανατολικό και νοτιοδυτικό πρανές με διαξονική απόσταση 1m και μήκος πασσάλου 9,25m και 5,25m για τα δύο πρανή αντίστοιχα.

Διατομή πασσάλου	Τύπος Ι-ΒΕΑΜ	Βάθος (mm)	Πλάτος (mm)	Μετατό- πίση	Διατμητική αντοχή (kN)	Βορειοανατολικό πρανές		Νοτιοδυτικό πρανές	
(mm)				(cm) ⁽¹⁾	(2)	FS	FS	FS	FS
						Bishop	Janbu	Bishop	Janbu
	S130X15	127	76	1,56	260	1,257	1,128	1,266	1,205
	S150X26	152	91	1,56	278	1,291	1,169	1,266	1,205
	W100X19	106	103	1,56	281	1,287	1,175	1,266	1,205
250	W130X24	127	127	1,57	305	1,291	1,223	1,265	1,205
	W150X22	152	152	1,57	311	1,290	1,234	1,265	1,205
	W150X24	160	102	1,56	288	1,292	1,195	1,266	1,205
180	S130X15	127	76	1.55	159	1,019	0,932	1,127	1,082
	W100X19	106	103	1.56	192	1,103	0,999	1,126	1,081
⁽¹⁾ Μέγιστη α	ριζόντια μεται	τόπιση πασ	σάλου, ⁽²⁾ Μ	Ιέγιστη διατι	ιητική αντογή π	ασσάλου κ	ατά τον άξ	ονα χ'χ.	

Οι μικροπάσσαλοι που σχεδιάστηκαν είναι από ινοπλισμένο σκυρόδεμα και με οπλισμό σιδερόβεργα τύπου I-BEAM Canadian Steel. Στην Ελλάδα οι αντίστοιχοι μικροπάσσαλοι είναι τύπου HEA. Στον Πίνακα 25 αναφέρονται οι ορισμένοι τύποι πασσάλων HEA και οι διαστάσεις τους. Οι πάσσαλοι HEA 100 και HEA 120 είναι αυτοί που χρησιμοποιούνται συνήθως σε παρόμοιες περιπτώσεις. Έτσι με βάση αυτόν τον Πίνακα 25, έγινε αντιστοίχιση των πασσάλων HEA με τους πασσάλους I-BEAM και πιο συγκεκριμένα έγινε αντιστοίχιση του πασσάλου HEA 100 με τον Φ180 W100X19 και του HEA 120 με τον Φ250 W130X24. Για αυτούς τους δύο τύπους πασσάλων πραγματοποιήθηκαν περαιτέρω δοκιμές στο λογισμικό Slide, ώστε να επιλεχθεί ο κατάλληλος στην προκειμένη περίπτωση, καθώς και για να καθοριστεί η διαξονική απόσταση των πασσάλων. Με βάση τα αποτελέσματα των δοκιμών (Πίνακας 26) καταλληλότερος φαίνεται να είναι ο μικροπάσσαλος Φ250 W130X24 (Εικόνα 51), για την αντιστήριξη των εκσκαφών στη θέση του έργου. Για το βορειοανατολικό όρυγμα προτείνεται διαξονική απόσταση 1,5m, ενώ για το νοτιοδυτικό όρυγμα προτείνεται διαξονική απόσταση 2m.

Δοκός	Βάρος	Διαστάσ	Διατομή	
HEA	(kg/m)	Βάθος	Πλάτος	(cm ²)
100	16,7	96	100	21,2
120	19,9	114	120	25,3
140	24,7	133	140	31,4
160	30,4	152	160	38,8

Πίνακας 25: Χαρακτηριστικά πασσάλων τύπου ΗΕΑ (ΔΙΑΠΡΟΜΕΤΑΛ Α.Ε.)

Πίνακας 26: Αποτελέσματα ευστάθειας για τους δύο τελικούς τύπους πασσάλων και για διάφορες διαξονικές αποστάσεις.

Ψηφιακή συλλογή

Βιβλιοθήκη

Τύπος	Τύπος	Διαξονική	Βορειοανατολικό πρανές		Νοτιοδυτικό πρανές		
πασσαλου ΗΕΑ	πασσαλου I-BEAM	Αποσταση (m)	FS Bishop	FS Janbu	FS Bishop	FS Janbu	
		1	1,103	0,999	1,126	1,081	
HEA Φ180 100 W 100X19	Φ180	1,5	0,939	0,855	0,999	0,969	
	W 100X19	2	0,848	0,771	0,933	0,910	
		2,5	-	-	0,891	0,873	
		1	1,291	1,223	1,265	1,205	
HEA	Φ250	1,5	1,107	1,018	1,098	1,057	
120	W 130X24	2	0,996	0,901	1,009	0,979	
		2,5	_	-	0,955	0,930	

Αναφορικά με το όρυγμα επί της οδού Αρητής, έγινε μελέτη ξεχωριστά για το ανατολικό και δυτικό τμήμα του, εξαιτίας της διαφορετικής απόστασής τους από το πεζοδρόμιο, η οποία είναι 1,3m για το δυτικό τμήμα και 3,6m για το ανατολικό. Η διαφορά αυτή περιορίζει τον διαθέσιμο χώρο εκσκαφής στο δυτικό τμήμα, με αποτέλεσμα η μέγιστη δυνατή κλίση που μπορεί να έχει η εκσκαφή να είναι 4:1 (72°), για τα πρώτα 4m εκσκαφής, που αναμένεται να συναντηθεί το αμμώδες στρώμα S1. Για την κλίση αυτή προκύπτουν συντελεστές ασφαλείας κατά Bishop και κατά Janbu οι οποίοι δεν επαρκούν για την ευστάθεια αυτού του τμήματος του πρανούς, κατά την εφαρμογή του Ευρωκώδικά 7. Συνεπώς στην προκειμένη περίπτωση, εκτός από εκσκαφή του πρανούς με κλίση 4:1, εφαρμόστηκαν και μικροπάσσαλοι. Στον Πίνακα 27, αναγράφονται τα αποτελέσματα ευστάθειας κατά την εφαρμογή μικροπασσάλων και με βάση αυτά καταλληλότερος φαίνεται να είναι ο Φ250 W130X24, με διαξονική απόσταση 2,5m και μήκος L=9.25m. Αντίθετα, στο ανατολικό τμήμα του πρανούς επί της οδού Αρητής η μέγιστη κλίση που μπορεί να εφαρμοσθεί είναι 2:1 (63°) για τα πρώτα 4m εκσκαφής, που αναμένεται να συναντηθεί το αμμώδες στρώμα S1, η οποία επαρκεί για την ευστάθειά του. Τέλος, στο βορειοδυτικό πρανές η διαθέσιμη απόσταση για την εφαρμογή κλίσης στην εκσκαφή είναι περίπου 5m. Η απόσταση αυτή είναι υπεραρκετή και έτσι εξετάστηκε εκσκαφή με κλίση 4:1 για τα πρώτα 4,20m εκσκαφής, που αναμένεται να συναντηθεί το αμμώδες στρώμα S1. Με αυτή την κλίση κατά την ανάλυση ευστάθειας προκύπτουν συντελεστές ασφαλείας κατά Bishop 1,03 και κατά Janbu 1,12.

Στον Πίνακα 28, παρουσιάζονται συγκεντρωτικά τα καταλληλότερα μέτρα αντιστήριξης για τα τέσσερα ορύγματα και στο Παράρτημα ΣΤ παρουσιάζονται αναλυτικά όλα τα αποτελέσματα των αναλύσεων που έγιναν για τον προσδιορισμό τους. Στην Εικόνα 51 απεικονίζεται η διατομή του εξεταζόμενου μικροπασσάλου και στις Εικόνες 52, 53, 54, 55, 56

DAD AS οι διατομές των τεσσάρων ορυγμάτων με την εφαρμογή των μέτρων αντιστήριξης. Τέλος, στις Εικόνες 57 και 58 παρουσιάζονται οι εξεταζόμενες διατάξεις αντιστήριξης σε τομή και κάτοψη.

88

Ψηφιακή συλλογή

Βιβλιοθήκη

Πρανές Δρόμου	Μέτρα αντιστήριξης	Κλίση	Διαξονική Απόσταση (m)	FS Bishop	FS Janbu
	Μέγιστη δυνατή	4:1	-	0,895	0,887
	κλίση πρανούς				
	Κλίση πρανούς +		1	1,61	2,43
	Ф250	4:1	2	1,55	1,76
Δυτικό	W 130X24		2,5	1,49	1,62
τμήμα			3	1,45	1,51
	Κλίση πρανούς +		1	1,59	2
	Ф180	4:1	2	1,49	1,52
	W 100X19		2,5	1,44	1,42
			3	1,39	1,34
Ανατολικό	Μέγιστη δυνατή	2:1	_	1,04	1,02
τμήμα	κλίση πρανούς				

Εικόνα 51: Διατομή μικροπασσάλου Φ250mm W130X24.

Πίνακας 28: Συγκεντρωτικός πίνακας τελικών μέτρα αντιστήριξης για τα τέσσερα πρανή.

- 88

Ψηφιακή συλλογή

Βιβλιοθήκη

Τμήμα Γεωλογίας Α.Π.Θ

Όρυγμα Πρανές Ύψος Τελικά Μέτρα Αντιστήριξης FS FS Bishop Janbu πρανούς (m) 1 5,25 1,034 1,124 Βορειοδυτικό Εκσκαφή με κλίση 4:1, για τα πρώτα 4,2m. Κάθετη εκσκαφή με 2 Βορειοανατολικό 5,25 μικροπασσάλους τύπου ΗΕΑ 120 1,106 1,020 μήκους 9,25m και διαξονική απόσταση 1,5m, που θα συνδέονται με κεφαλόδεσμο. Στο ανατολικό τμήμα εκσκαφή με κλίση 2:1, για τα πρώτα 4m, και στο δυτικό εκσκαφή με κλίση 4:1, 3 Νοτιοανατολικό 5,25 1,036 1.025 για τα πρώτα 4m, και εφαρμογή μικροπασσάλων τύπου ΗΕΑ 120, μήκους 9,25m και διαξονική απόσταση 2,5m, που θα συνδέονται με κεφαλόδεσμο. Κάθετη εκσκαφή με 0,979 4 Νοτιοδυτικό 4,75 μικροπασσάλους τύπου ΗΕΑ 120, 1,009 μήκους 5,25m και διαξονική απόσταση 2m, που θα συνδέονται με κεφαλόδεσμο.

Εικόνα 52: Ανάλυση ευστάθειας ορύγματος 1 με το λογισμικό Slide και με εφαρμογή των μέτρων αντιστήριξης.

Εικόνα 53: Ανάλυση ευστάθειας ορύγματος 2 με το λογισμικό Slide και με εφαρμογή των μέτρων αντιστήριξης.

Εικόνα 54: Ανάλυση ευστάθειας ανατολικού τμήματος ορύγματος 3 με το λογισμικό Slide και με εφαρμογή των μέτρων αντιστήριξης.

Εικόνα 55: Ανάλυση ευστάθειας δυτικού τμήματος ορύγματος 3 με το λογισμικό Slide και με εφαρμογή των μέτρων αντιστήριξης.

Εικόνα 56: Ανάλυση ευστάθειας ορύγματος 4 με το λογισμικό Slide και με εφαρμογή των μέτρων αντιστήριξης.

Εικόνα 57: Γεωτεχνική τομή σχεδιασμού μέτρων αντιστήριξης.

Εικόνα 58: Κάτοψη εξεταζόμενων μέτρων αντιστήριξης.

8. Καθιζήσεις όμορων κτιρίων λόγω πτώσης υδροφόρου ορίζοντα

Ένα ακόμα γεωτεχνικό πρόβλημα που αναλύθηκε στην παρούσα διπλωματική είναι η επίδραση της πτώσης του υδροφόρου ορίζοντα στα όμορα κτίρια. Η πτώση του υδροφόρου είναι επιτακτική, ώστε να μπορέσουν να πραγματοποιηθούν οι εκσκαφές και οι κατασκευαστικές εργασίες για τη θεμελίωση του κτιρίου (κτίριο B) στο βάθος των 4,75m, χωρίς την εισροή υδάτων. Συνεπώς, καθίσταται αναγκαία η άντληση του υπόγειου νερού, έως ότου η στάθμη του φτάσει σε βάθος τουλάχιστον 4,75m στον χώρο της εκσκαφής. Αυτή η μεταβολή της στάθμης θα διαφοροποιήσει το εντατικό πεδίο και είναι πιθανό προκαλέσει παραμορφώσεις στις ήδη υπάρχουσες γειτονικές κατασκευές. Πιο συγκεκριμένα, μελετήθηκε η επίδραση αυτής της μεταβολής στο κτίριο που βρίσκεται βορειοανατολικά του κτιρίου B. Το κτίριο αυτό (κτίριο A) χρήζει μελέτης εξαιτίας της επιφανειακής θεμελίωσής του στα 0,00m και του μεγάλου πάχους, του επιδεκτικού σε καθιζήσεις στρώματος S1 κάτω από αυτό είναι πολύ μικρό.

Η επίδραση της πτώσης του υδροφόρου ορίζοντα μελετήθηκε με το λογισμικό Settle3D της εταιρίας RocScience. Σε αυτό δημιουργήθηκε μοντέλο πολλαπλών χρονικών σταδίων από τη στιγμή κατασκευής του κτιρίου Α έως και 16 περίπου χρόνια μετά την κατασκευή του κτιρίου Β. Στο πρώτο στάδιο (0 μήνες) γίνεται εκσκαφή του κτιρίου Α, βάθους 1,5m και εισαγωγή

φορτίου 120kPa στον πυθμένα της εκσκαφής, με τον υδροφόρο ορίζοντα να βρίσκεται σε βάθος 1,60m και τις άμεσες καθιζήσεις να ισούνται με 3,6cm. Το δεύτερο στάδιο μετά από 600 μήνες είναι το στάδιο κατά το οποίο έχουν ολοκληρωθεί οι καθιζήσεις λόγω στερεοποίησης και η συνολική καθίζηση που έχει υποστεί πλέον το υπέδαφος ανέρχεται σε 7,4cm (Εικόνα 59). Κατά το τρίτο στάδιο (601 μήνες) πραγματοποιείται πτώση της στάθμης του υδροφόρου ορίζοντα σε βάθος 4,45m και γίνεται η εκσκαφή του κτιρίου Β. Στο τέταρτο στάδιο (602 μήνες) εφαρμόζεται φορτίο 284kPa στον πυθμένα της εκσκαφής του κτιρίου Β. Ο υδροφόρος ορίζοντας επιστρέφει στο αρχικό του ύψος, δηλαδή στα 1,60m κάτω από την επιφάνεια του δρόμου, στο πέμπτο στάδιο (603 μήνες) και στο έκτο στάδιο (800 μήνες), δηλαδή περίπου 200 μήνες μετά τη πτώση του υδροφόρου ορίζοντα, οι καθιζήσεις έχουν ανέλθει στα 7,59cm (Εικόνα 60). Αυτό σημαίνει ότι προκλήθηκε καθίζηση της τάξης των 0,20cm εξαιτίας της πτώσης του υδροφόρου ορίζοντα. Η καθίζηση αυτή είναι πολύ μικρή και δεν αναμένεται να προκαλέσει προβλήματα στο κτίριο Α. Στο διάγραμμα της Εικόνας 61 απεικονίζεται η πορεία των καθιζήσεων με το χρόνο και στο Παράστημα Δ παρατίθενται αναλυτικά τα αποτελέσματα.

Εικόνα 59: Καθιζήσεις 600 μήνες μετά την κατασκευή του κτιρίου Α.

Ψηφιακή συλλογή

Βιβλιοθήκη

Εικόνα 60: Καθιζήσεις 800 μήνες μετά την κατασκευή του κτιρίου Α, λόγω πτώσης του υδροφόρου ορίζοντα.

Εικόνα 61: Διάγραμμα απεικόνισης πορείας καθιζήσεων του κτιρίου Α. Το κόκκινο πλαίσιο περιβάλει το τμήμα της καμπύλης που απεικονίζεται λεπτομερέστερα στην Εικόνα 62.

Εικόνα 62: Τμήμα καμπύλης της πορείας των καθιζήσεων κτιρίου Α, που περιεβάλλεται στο κόκκινο πλαίσια στην Εικόνα 61.

9. Συμπεράσματα

Η παρούσα διπλωματική εργασία εξετάζει τη θεμελίωση επταώροφου κτιρίου και υποσταθμού του ΔΕΔΔΗΕ και την αντιστήριξη των προβλεπόμενων εκσκαφών, επί της οδού Αρητής 50, στο Παγκράτι, Δήμου Αθηναίων. Σύμφωνα με τα αποτελέσματα των εργασιών πεδίου και εργαστηριακών δοκιμών που πραγματοποιήθηκαν, το υπέδαφος συνίσταται κυρίως από πυκνή αργιλοϊλυώδη άμμο, χαμηλής πλαστικότητας, με εμφανή υπολειμματική δομή από την αποσάθρωση του σχιστολιθικού υποβάθρου (στρώμα S1), υποκείμενο εδαφοποιημένο ψαμμίτη (στρώμα W1) και βαθύτερα μελανότεφρο ασθενή Αθηναϊκό Σχιστόλιθο, έντονα αποσαθρωμένο, κατακερματισμένο, με φυλλώδη δομή (στρώμα R1). Επιφανειακά συναντώνται τεχνητές επιχώσεις πάχους 1,00m, ενώ η στάθμη του υπόγειου υδροφόρου

ορίζοντα βρίσκεται σε βάθος 3,10m από της στάθμη της γεώτρησης (1,60m από τη στάθμη του δρόμου). Γενικά, η στρωματογραφία του υπεδάφους εκτιμάται πως είναι οριζόντια και οι σχηματισμοί χαρακτηρίζονται ως υπολειμματικά εδάφη. Για αυτό το λόγο, στα δείγματα εκτελέστηκαν όλες οι δυνατές εργαστηριακές δοκιμές, τόσο για εδαφικά, όσο και για βραχώδη υλικά.

Ψηφιακή συλλογή

Βιβλιοθήκη

Αναφορικά με τη θεμελίωση, εξετάστηκε η χρήση πεδιλοδοκών για το κτίριο και κοιτόστρωσης για τον υποσταθμό, με ενιαίο βάθος θεμελίωσης τα 4,75-5,25m από τη στάθμη του δρόμου. Αναλυτικότερα, εξετάστηκε η περίπτωση θεμελίωσης του κτιρίου σε πεδιλοδοκό πλάτους B'=1,4m και μήκους L'=9,0m και του υποσταθμού σε πλάκα κοιτόστρωσης πλάτους B'=3,9m και μήκους L'=9,3m. Κατά τους υπολογισμούς θεωρήθηκαν βάθη θεμελίωσης D=4,65m και D=4,45m, για το κτίριο και τον υποσταθμό, αντίστοιχα. Ο υπολογισμός της φέρουσας ικανότητας και της επιτρεπόμενης τάσης έγιναν με το λογισμικό LoadCup της εταιρίας Geostru, με εφαρμογή των μεθόδων Terzaghi και Brinch-Hansen και με επιβολή μερικών συντελεστών ασφαλείας βάσει σχεδιασμού 1 και 2 του Ευρωκώδικα 7. Υπολογίστηκαν, ελάχιστη τιμή επιτρεπόμενης τάσης έναντι διατμητικής θραύσης του εδάφους $\sigma_{\epsilon\pi}=811,3$ kPa για το κτίριο και $\sigma_{\epsilon\pi}=857,9$ kPa για τον υποσταθμό, ενώ η επιτρεπόμενη τάση έναντι αποδεκτών καθιζήσεων, αν γίνει δεκτή μία μέγιστη ανεκτή ολική καθίζηση της τάξης των 5cm, βρέθηκε $\sigma_{\epsilon\pi}$ =520kPa για το κτίριο και $\sigma_{\epsilon\pi}$ =289kPa για τον υποσταθμό. Συνεπώς, ως επιτρεπόμενη τάση σχεδιασμού θεωρήθηκε η επιτρεπόμενη τάση έναντι αποδεκτών καθιζήσεων, κατά την οποία δεν προκαλείται ούτε θραύση, ούτε μη αποδεκτές παραμορφώσεις. Ταυτόχρονα, με το λογισμικό Settle3D της RocScience εκτιμήθηκαν οι αναμενόμενες καθιζήσεις που θα υποστεί το έδαφος θεμελίωσης εξαιτίας του κτιρίου, κατά την κατασκευή του οποίου προβλέπεται επανεπίχωση του υπογείου χώρου. Αυτές υπολογίσθηκαν 3,36cm, τιμή η οποία βρίσκεται μέσα στο όριο των αποδεκτών καθιζήσεων. Εξετάστηκε επίσης η περίπτωση μη επίχωσης του υπογείου χώρου με σκοπό την εκμετάλλευσή του. Σε αυτή την περίπτωση εκτιμήθηκε ότι αναμένονται καθιζήσεις 1,47cm, αλλά για την αποφυγή διογκώσεων απαιτείται η προσθήκη επιπλέον πεδιλοδοκών, κάθετων στις προηγούμενες, δημιουργώντας πυκνή σχάρα πεδιλοδοκών.

Εξαιτίας του βάθους θεμελίωσης θα διαμορφωθούν επίσης και προσωρινά πρανή εκσκαφής ύψους 4,75-5,25m, περιμετρικά του κτιρίου. Για αυτά έγιναν αναλύσεις ευστάθειας με το λογισμικό Slide της RocScience, με εφαρμογή συντελεστών ασφαλείας που ορίζονται από τον Τρόπο Ανάλυσης 3 του Ευρωκώδικα 7. Να σημειωθεί ότι η σεισμική επιβάρυνση και ο έλεγχος για ανώτατη στάθμη 50-ετίας δεν εξετάστηκαν λόγω του προσωρινού χαρακτήρα των εκσκαφών. Οι εκσκαφές ελέγχθηκαν για κυκλικές επιφάνειες αστοχίας με τις μεθόδους Bishop και Janbu corrected. Στις αναλύσεις εφαρμόστηκαν τα φορτία των όμορων οικοδομών μεγέθους P=120kN/m², σε απόσταση 0,5m από τη στέψη του πρανούς, για το βορειοανατολικό και νοτιοδυτικό πρανές, σε απόσταση 7,5m για το βορειοδυτικό πρανές και το φορτίο κυκλοφορίας του δρόμου P=30kN/m² σε απόσταση 3m από τη στέψη του νοτιοανατολικού πρανούς. Σύμφωνα με τα αποτελέσματα των αναλύσεων ευστάθειας, συμπεραίνεται ότι το επιφανειακό αμμώδες στρώμα S1 δεν υποστηρίζει κάθετη εκσκαφή, ενώ στα βαθύτερα στρώματα λόγω της συνεκτικότητάς τους δεν εντοπίζονται επιφάνειες αστοχίας.

Ψηφιακή συλλογή

Βιβλιοθήκη

Για την ευστάθεια των ορυγμάτων συμπεραίνεται ότι είναι απαραίτητη η εφαρμογή μέτρων αντιστήριξης. Εξετάστηκε λοιπόν η μείωση της κλίσης των εκσκαφών και η αντιστήριξη με πυκνή συστοιχία μικροπασσάλων, οι οποίοι θα λειτουργήσουν και ως πασσαλοδιάφραγμα πλευρικής στήριξης και θα συνδέονται με κεφαλόδεσμο σε επαφή με τα στοιχεία θεμελίωσης των όμορων κτιρίων. Η διαστασιολόγηση των μικροπασσάλων πραγματοποιήθηκε με το λογισμικό RSPile της RocScience και στη συνέχεια εκτελέστηκαν εκ νέου αναλύσεις των εξεταζόμενων ορυγμάτων με την εφαρμογή των σχεδιαζόμενων ευστάθειας μικροπασσάλων, ώστε να υπολογισθεί η απαιτούμενη διαξονική απόσταση μεταξύ τους. Σχεδιάστηκαν μικροπάσσαλοι διαμέτρου Φ250mm με οπλισμό σιδερόβεργα I-BEAM W130X24, που αντιστοιχούν σε δοκό HEA 120. Με βάση τις αναλύσεις, καταλληλότερη φαίνεται να είναι η εφαρμογή πασσάλων μήκους L=9,25m με διαξονική απόσταση 1,5m στο βορειοανατολικό πρανές και πασσάλων μήκους 5,25m με διαξονική απόσταση 2m στο νοτιοδυτικό πρανές. Για το βορειοδυτικό όρυγμα εξετάστηκε διαμόρφωση κλίσης της τάξης 4:1 για τα πρώτα 4,20m εκσκαφής, όπου αναμένεται να συναντηθεί το αμμώδες στρώμα S1. Για το ανατολικό τμήμα του νοτιοανατολικού πρανούς εξετάστηκε διαμόρφωση με κλίση 2:1, ενώ στο δυτικό τμήμα για την ευστάθειά του βρέθηκε ότι πρέπει να εφαρμοσθούν μικροπάσσσαλοι μήκους 9,25cm με διαξονική απόσταση 2,5m, με ταυτόχρονη διαμόρφωση του πρανούς με κλίση 4:1, η οποία αποτελεί τη μέγιστη κλίση που μπορεί να διαμορφωθεί λόγω του διαθέσιμου χώρου.

Τέλος, εξαιτίας της αναγκαιότητας άντλησης για ταπείνωση της υπόγειας στάθμης μέχρι το δάπεδο εργασίας, εξετάστηκε η επίδραση αυτής της μεταβολής του υδροφόρου ορίζοντα στα όμορα κτίρια και συγκεκριμένα στο κτίριο Α. Η διαστασιολόγηση των αναμενόμενων καθιζήσεων έγινε με το λογισμικό Settle3D της RocScience και με ένα μοντέλο έξι χρονικών σταδίων, διαστήματος 800 μηνών. Κατά το αρχικό στάδιο πραγματοποιήθηκε κατασκευή του κτιρίου Α και το τελικό αφορούσε χρονικό διάστημα 200 μηνών μετά την κατασκευή του
κτιρίου B, ενώ η στάθμη του υδροφόρου ορίζοντα έφτασε 4,75m βάθος κάτω από την επιφάνεια του δρόμου. Οι καθιζήσεις που προκλήθηκαν εξαιτίας της μεταβολής του υδροφόρου ορίζοντα είναι της τάξης των 0,20cm, μέγεθος που είναι ικανό να προκαλέσει προβλήματα στα γειτονικά κτίρια.

Βιβλιογραφία

Ανδρονόπουλος Β. (1981). Η γεωλογία του Αθηναϊκού Σχιστολίθου. Πρακτικά Ημερίδας «Γεωτεχνικά προβλήματα του Αθηναϊκού Σχιστολίθου», Τ.Ε.Ε., 2-19.

Βαλαλάς Δ. (1977). Μαθήματα εδαφομηχανικής και θεμελιώσεων. (Α) Γενική θεωρία (Β) Εφαρμογαί εις την μελέτην των τεχνικών έργων. Α.Π. Θες/νίκης.

Βαλκανιώτης Σ. (2003). Γεωλογικές και Νεοτεκτονικές συνθήκες στη δυτική Αθήνα και επιπτώσεις στο δομημένο περιβάλλον από το σεισμό της 7-9-1999. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Δημόπουλος Γ. (1986). Τεχνική Γεωλογία, Α.Π. Θεσ/νίκης.

Ψηφιακή συλλογή

Βιβλιοθήκη

Δημόπουλος Γ. (2008). Τεχνική Γεωλογία. Εκδόσεις Κυριακίδη, σελ. 371-374.

ΔΙΑΠΡΟΜΕΤΑΛ A.E. https://www.diaprometal.gr/index.php/dokoi-ita-pi/dokoi-hea

Ελληνικός Αντισεισμικός Κανονισμός (ΦΕΚ 1154Β', 12-8-2003).

Καλλέργης Γ., Κούκης Γ. (1985). Τεχνική Γεωλογία. ΟΕΔΒ, Πανεπιστήμιο Πατρών.

Κατσικάτσος Γ., Μέττος Α., Βιδάκης Μ., Δούνας Α. (1986). Γεωλογικός χάρτης Ελλάδος, Φύλλο «Αθήναι-Ελευσίς», κλίμακα 1:50.000, Έκδοση Ι.Γ.Μ.Ε..

Κατσικάτσος Γ. (2002). Γεωλογικός χάρτης της Ελλάδος, φύλλο «Κηφισιά», κλίμακα 1:50.000, Έκδοση Ι.Γ.Μ.Ε..

Κούκης Χρ. Γεώργιος, Σαμπατακάκης Στ. Νικόλαος (2002). Τεχνική Γεωλογία. Εκδόσεις Παπασωτηρίου.

Μαρίνος Γ. (1937). Η τεκτονική θέσις του συστήματος των σχιστολίθων των Αθηνών εις την δυτικήν ζώνην αυτού. Πρακτ. Ακαδ. Αθ., 12, 16-21.

Μαρίνος Γ., Κατσικάτσος Γ., Γεωργιάδου-Δικαιούλια Ε., Μίρκου Ρ. (1971). Το σύστημα των Σχιστολίθων Αθηνών. Ι. Στρωματογραφία και τεκτονική, Ann. Geol. Pays Hell, XXIII, 183-26.

Μαρίνος Γ., Κατσικάτσος Γ., Μίρκου-Περιποπούλου Ρ. (1974). Το σύστημα των σχιστολίθων των Αθηνών ΙΙ. Στρωματογραφία και τεκτονική. Ann. Geol. Pays Hell., XXV, 439-444.

Μηστάρδης Γ. (1961). Οι Τεταρτογενείς ερυθρόχροοι ορίζοντες εκ πηλών κλπ. Της Αττικής και των γειτονικών περιοχών. Δελτ. Ελλ. Γεωλ., ΙV, 185-206.

Μπορονκάυ Κ.. Γεωλογικός Χάρτης Λεκανοπεδίου Αθήνας. Με βάση τον Γεωλογικό Τεκτονικό Χάρτη του λεκανοπεδίου Αθηνών (Γεωλογική γεωτεχνική μελέτη λεκανοπεδίου Αθηνών-Μέρος Α' γεωλογική τεκτονική μελέτη- Παπανικολάου, Λόζιος, Σίδερης, Κράνης, Δανάμος, Σκούρτσος, Σούκης, Μπάση, 2002) και τα φύλλα γεωλογικού χάρτη Ελλάδας 1:50.000 του Ι.Γ.Μ.Ε. ΑΘΗΝΑΙ-ΕΛΕΥΣΙΣ (1986), ΑΘΗΝΑΙ- ΠΕΙΡΑΙΕΥΣ (1982), ΚΗΦΙΣΙΑ (2002) και ΚΟΡΩΠΙ-ΠΛΑΚΑ (2003), με τροποποιήσεις βάσει των στοιχείων των γεωλογικών αι γεωτεχνικών ερευνων της ΑΤΤΙΚΟ ΜΕΤΡΟ Α.Ε..

- Ψηφιακή συλλογή

Βιβλιοθήκη

Παπαθανασίου Γ. (2022). Τεχνική Γεωλογία και Γεωλογικοί Κίνδυνοι [Προπτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις.

Παπανικολάου Δ. και συνεργάτες (2002). Γεωλογική – Γεωτεχνική μελέτη Λεκανοπεδίου Αθηνών. Εφαρμοσμένο Ερευνητικό πρόγραμμα. 152 σελ. Αθήνα.

Παπανικολάου Δ., Σούκης Κ., Λόζιος Σ., Σκούρτσος Ε. (2004). Η γεωλογική δομή του αλλόχθονου συστήματος των «Σχιστολίθων Αθηνών». Δελτίο της Ελληνικής Γεωλογικής Εταιρίας τομ. ΧΧΧVΙ, 2004. Πρακτικά 10^{ου} Διεθνούς Συνεδρίου, Θες/νίκης Απρίλιος 2004.

Παπαχαρίσης Ν., Γραμματικόπουλος Ι., Ανδρεάδου-Μάνου Ν. (1999). Γεωτεχνική Μηχανική. Έρευνα – Γεωτρήσεις – Εργαστήριο. Εκδόσεις Κυριακίδη.

Παπαχαρίσης Ν., Γραμματικόπουλος Ι., Ανδρεάδου-Μάνου Ν. (2015). Γεωτεχνική Μηχανική. Έρευνα – Γεωτρήσεις – Εργαστήριο. Εκδόσεις Κυριακίδη.

Παρασκευαΐδης Ηλ., Χωριανοπούλου Π. (1978). Μια τομή απ' το βουνό Αιγάλεω, ο Αθηναϊκός σχιστόλιθος, οι λόφοι της Αθήνας. Δελτ. Ελλ. Γεωλ. Ετ., ΧΙΙΙ/2, 116-134.

Παυλόπουλος Κ., Καρύμπαλης Ε., Μαρουκιάν Χ. (2002). Γεωμορφολογική εξέλιξη της λεκάνης απορροής του Οινόη ποταμού (Β. Αττική) κατά το Τεταρτογενές. 6° Πανελλήνιο Γεωγραφικό Συνέδριο, Θεσσαλονίκη, τομ. 1, 287-295.

Πιτιλάκης Κυριαζής Δ. (2010). Γεωτεχνική Σεισμική Μηχανική. Εκδ. Ζήτη.

Χαραλαμπάκης Σ. (1952). Συμβολή εις την γνώσιν του Νεογενούς της Αττικής. Ann. Geol. Pays Hellen., 4, 1-140.

Χατζηγώγος Νικόλαος-Παναγιώτης (2023). Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής κτιρίου και υποσταθμού επί της οδού Αρητής 50 στο Παγκράτι, Δήμου Αθηναίων.

Χατζηγώγος Νικόλαος-Παναγιώτης. Παρουσιάσεις μαθήματος 'Τεχνική Γεωτρήσεων', Προπτυχιακού Προγράμματος Σπουδών Τμήματος Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Χρηστάρας Β., Δημητρίου Αν., Λεμενή Ελ., Λουπασάκης Κ. (1998). Εργαστηριακές και επί τόπου δοκιμές εδαφομηχανικής. Εργαστηριακές σημειώσεις του μαθήματος «Εδαφομηχανική - Βραχομηχανική» του Η' εξαμήνου του προπτυχιακού προγράμματος σπουδών του Τμήματος Γεωλογίας, Α.Π.Θ.

Χρηστάρας Β. (2002). Εργαστηριακές και επί τόπου δοκιμές εδαφομηχανικής. Εκδόσεις Τεχνικό Επιμελητήριο Ελλάδας.

Χρηστάρας Β., Δημητρίου Α., Λεμόνη Ε., Λουπασάκης Κ. (2006). Εργαστηριακές και επί τόπου δοκιμές εδαφομηχανικής, ΤΕΕ – Τεχνικό Επιμελητήριο Ελλάδας, Αθήνα.

Χρηστάρας Β., Χατζηαγγέλου Μ. (2011). Απλά βήματα στην εδαφομηχανική. University Studio Press, σελ. 131.

AASHO (1961). The classification of soils and soil-aggregate mixtures for highway construction purposes. In Standard specifications for highway materials and methods of sampling and testing, 8th ed., Part 1, Specifications, Am. Assoc. State Highway Officials.

Ψηφιακή συλλογή

Βιβλιοθήκη

ASTM (1989). Standard Definitions of Terms Relating to Sensory Evaluation of Materials and Products. In: Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, 19-22.

ASTM (1990). Standard Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock. Annual Book of ASTM Standards, D 2216-90 (Revision of 2216-63, 2216-80).

ASTM C136-06. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.

ASTM C29/C29M-97. Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate.

ASTM D1586/D1586M-18e1. Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils.

ASTM D 2435-80 (1989). Standard test method for one-dimensional consolidation properties of soils. Annual Book of ASTM standards, vol 04-08. p 283–287.

ASTM D2487-17. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).

ASTM D5731-16, Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications, ASTM International, West Conshohocken, PA, 2016.

Begemann H. (1974). General report for central and western Europe. Proc. of the European Symp. on Penetration Testing (ESOPT), Stockholm, Sweden, 5-7 June 1974.

Bieniawski Z.T. (1974). Geomechanics Classification of Rock Masses and Its Application in Tunneling. 3rd Congress of the International Society of Rock Mechanics, Denever National Academy of Sciences, Washington DC, 1-7 September 1974.

Bishop A.W. (1955). The use of slip circle in the stability analysis of slopes. Geotechnique 5.

Bowles J. (1997). Foundation Analysis and Design. 5th Ed., The McGraw-Hill Companies, Inc., New York, 308.

Bray J.D., Sancio R.B. (2006). Assessment of the liquefaction susceptibility of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering.

Broch E., Franklin J.A., Walton G. (1971). Logging the mechanical character of rock. Ins. Min. and Metall Trans.

Burland J.B., Burbidge M.C. (1985). Settlement of foundations on sand and gravel. Proceedings, Institution of Civil Engineers.

Casagrande A. (1948) Classification and Identification of Soils. Transactions of the American Society of Civil Engineers.

Caquot A., Kerisel J. (1948). Tables for the Calculation of Passive Pressure, Active Pressure and Bearing Capacity of Foundations. (Translated from French by Maurice Bec\ revised translation by chief scientific advisers' Division, Ministry of Works, London.) GauthierVillars, Paris.

Ψηφιακή συλλογή

Βιβλιοθήκη

Craig R.F. (2004). Craig's soil mechanics. Spon Press, London and New York, Seventh edition, p. 227.

Desai M.D. (1970). Relative density of non-cohesive soils by dynamic cone test, Proc. Symp. On Shallow Found., J. of Ind. Geot. Society Dec., Powai, Bombay, Vol. 1.

Dikau R. (1989). The application of a digital relief model to landform analysis. In: Raper, J. F. (ed.) 1989: Three dimensional applications in Geographical Information Systems. Taylor and Francis, London.

Dilalos S., Alexopoulos D.J., Lozios S. (2019). New insights on subsurface geological and tectonic structure of the Athens basin (Greece), derived from urban gravity measurements. Journal of Applied Geophysics, Elsevier.

Eurocode 7: Geotechnical design – Part 1: General rules. ENV 1997-1:1994 E

Eurocode 8 (2002): Design of structures for earthquake resistance, Part 5: Foundations, re-taining structures and geotechnical aspects. EN 1998-1.

Fox E.N. (1948). The mean elastic settlement of a uniformly loaded area at a depth below the ground surface. Proceedings, 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam.

Freyberg von B. (1951). Das Neogen gebiet nordwestlich Athen. Ειδικαί Μελέται επί της Γεωλογίας της Ελλάδος No1, Υπηρεσία Ερευνών Υπεδάφους, Υπουργείο Συντινισμού, Αθήνα.

Ganas A., Pavlides SB., Sboras S., Valkaniotis S., Papaioannou S., Alexandris GA., Plessa A., Papadopoulos GA. (2004). Active Fault Geometry and Kinematics in Parnitha Mountain, At-tica, Greece, Journal of Structural Geology.

Ganas A., Pavlides S., Karastathis V. (2005). DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Elsevier.

Hansen J. B., (1970). A Revised and Extended Formula for Bearing Capacity. Bulletin 28, Danish Geotechnical Institute, Copenhagen.

Hazen A. (1911). Discussion of "Dams on sand foundations" by A. C. Koenig. Transactions of the American Society of Civil Engneers.

Hunt R. (1984). Geotechnical engineering investigation manual. McGraw-Hill book Co., New York.

Irfan T.Y., Dearman W.R., Baynes F.J. (1978). Engineering grading of weathered granite. Engineering Geology, Vol. 12, p. 345-374, Elsevier.

ISRM (1985). Suggested method for determining point load strength. International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstract, 22(2), 51-60.

Janbu N. (1954). Application of composite slip for stability analysis. Proc. Eur. Conf. Stabil. Earth Slopes, Stockholm 3.

Janbu N., Bjerrum L., Kjaernsli B (1956). Veiledning ved losning av fundamenteringsoppgaver. Norwegian Geotechnical Institute.

Japan Road Association (1990). Specifications for highway bridges, Part IV.

Ψηφιακή συλλογή

Βιβλιοθήκη

Kober L. (1929). Beitrage zur Geologie von Attika. Sitzungsb. AcaD. Wiss. In Wien. Abt. I 138B, 8 Heft.

Konstantinou K.I., Mouslopoulou V., Saltogianni V. (2020). Seismicity and active faulting around the Metropolitan area of Athens, Greece.

Kramer L. Steven (1996). Geotechnical earthquake engineering. Prentice-Hall International Series.

Ktenas C. (1907). Sur l'age des terrains calcaires des environs d'Athenes. Com.Rend. Ac. Sc. Paris, 144, 697- 699.

Lepsius, R. (1893). Geologie von Attika. Ein Beitrag zur Lehre von Metamorphismus der Gesteine, Berlin Zeitschr. f. partkt. Geol., 4, 196 S.592 p.

Leroueil S., Magnan J.P., Tavenas F. (1985). Remblais sur argiles molles. Tec.-Doc. Lavoisier. Paris.

Mettos A., Ioakim Ch., Rondoyanni Th. (2000). Paleoclimatic and paleogeographic evolution of Attica-Beotia (central Greece) Geological Society of Greece Special Publication, 9, 187-196.

Meyerhof G. G. (1963). Some Recent Research on the Bearing Capacity of Foundations. Canadian Geotechnical Journal.

Negris, Ph. (1915-1919). Rôches crystallophyliennes et tectonique de la Grèce. Ref. Pia: N. Jah. F. Min. Geol. Pal. Beil., I, 100p.

Obermeier F. Stephen (1996). Internstional Geophysics: Chapter 7 Using liquefaction-induced features for paleoseismic analysis. Elsevier, p 331-396.

Ohsaki Y. (1962). Soils and Foundations: Geotechnical properties of Tokyo subsoils. Elsevier, p 17-34.

Paolucci R., Pecker A. (1997). Seismic bearing capacity of shallow foundations on dry soils. Soils and Foundations p. 95-105, Elsevier.

Papanikolaou D. (1986). Late Cretaceous Paleogeography of the Metamorphhic Hellenides. Geol. Geoph. Res., IGME. Hors serie volume in honor of Prof Papastamatiou, 315-328.

Papazachos B.C., Karakostas V.G., Papazachos C.B., Scordilid E.M. (2000). The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics 319 (2000) 275-300.

Papazachos B.C, Papazachou K. (2003). The earthquakes of Greece. Ziti publications, Thessaloniki, Greece.

Pavlides S.B., Papadopoulos G., Ganas, A. (2002). The fault that caused the Athens September 1999 Ms = 5.9 earthquake: Field observations, Natural Hazards.

Peck R.B., Hanson W.F., Thomburn T.H. (1953). Foundation Engineering. New York, NY: J. Wiley & Sons.

Prandtl L. (1920). Über die Härte plastischer Körper. Nachr. Ges. Wiss. Goettingen.

Renz C. (1940). Die Tektonik der griechischen Gebirge. Πραγμ. Ακαδ. Αθηνών, 8, 171σ.

Senapathy H., Clemente J.L.M., Davie J.R. (2001). Estimating dynamic shear modulus in cohesive soils.

Sindowski K. (1949). Der geologische Bau von Attika. Ann Geol. Pays Hell., 2, 163-218.

Sindowski K. (1951). Zur Geologie des Lykabettus-Tourkovounia Gebietes bei Athen mit einem Beitrag über frühdiluviale Wirbielterfunde aus Spalten. Ann Geol. Pays Hell., 3, 11-21.

Steinbrenner W. (1934). Tafeln zur setzungsberschnung. Die Strass.

Terzaghi K., Peck R. (1948). Soil Mechanics in Engineering Practice.

Terzaghi K. (1955). Evaluation of coefficients of subgrade reaction. Geotechnique.

Terzaghi K., Peck R. (1967). Soil Mechanics in Engineering Practice. 2nd Edition, John Wiley, New York.

Timoshenko S., Goodier J. N. (1951). Theory of elasticity. McGraw-Hill Book Company.

Tsytovich N. (1986). Soil mechanics. Mir Publishers (engl. Trans.) Moscow.

Vesic A. B. (1963). Bearing capacity of deep foundations in sand.

Vesic A. S. (1975). Bearing Capacity of Shallow Foundations. Chapter 3 in Foundation Engineering Handbook, edited by H. F. Winterkorn and H-Y Fang, VanNostrand Reinhold Company, pp. 121–147.

Webb D.L. (1969). Settlement of Structures on Deep Alluvial Sandy Sediments in Durban, South Africa. British Geotechnical Society. Conference on In Siti-Investigation on Soils and Rocks, London.

Youd T.L. (1998). Screening guide for rapid assessment of liquefaction hazard at highway bridge site. Technical report, MCEER-1998–2005, p 58.

Λογισμικά

Esri Inc. (1999-2019), ArcMap, Release 10.8.0.12790, ArcGIS, Release 10.8.0.12790.

Geostru, LoadCup.

Golden Software (1993-2019), Surfer 18, Release 18.1.186.0.

Google (2001), Google Earth Pro.

Microsoft, Microsoft Excel.

Ψηφιακή συλλογή

Βιβλιοθήκη

RocScience, RSPile.

RocScience, Settle3.

RocScience, Slide2.

парартнма А

ΜΗΤΡΩΟ ΓΕΩΤΡΗΣΗΣ ΚΑΙ ΣΥΓΚΕΝΤΡΩΤΙΚΟΙ ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

ΕΟΦΡΑΣΤΟΣ" Τμήμα Γεωλογίας ΠΙΝΑΚΑΣ 1:ΣΤΟΙΧΕΙΑ ΓΕΩΤΡΗΣΕΩΝ

Ψηφιακή συλλογή Βιβλιοθήκη

Α.Π.Θ

Γεωτρήσεις	Υψόμετρο (m)	Βάθος έρευνας (m)	Στάθμη υπόγειου ορίζοντα (m)	x(m)	y(m)
Γ1	162.70	15,0	3.10	478.199,755	4.201.647,344

ΠΙΝΑΚΑΣ 2: ΣΤΟΙΧΕΙΑ ΠΙΕΖΟΜΕΤΡΩΝ

Γεώτρηση	Γ-1
Βάθος Πιεζομέτρου	15,0
Διάτρητα Τμήματα	0,0-15,0
Ημερομηνία ολοκλήρωσης της γεώτρησης	22/1/2023
Ημερομηνία αδειάσματος με air-lift	-
Στάθμη ύδατος (m)	
24/01/2023 (Πριν την εγκατάσταση του πιεζομέτρου)	0.50
25/01/2023 (Πριν την εγκατάσταση του πιεζομέτρου)	4.00
25/01/2023 (Μετά την εγκατάσταση του πιεζομέτρου)	4.50
31/01/2023	3.10

ΠΙΝΑΚΑΣ 3: ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΩΝ SPT

	ŀ	Βάθος (m)	Δοκιμή :	Δοκιμή πρότυπης διείσδυσης (
Γεώτρηση	Από	Έως	Μέσο	0-15cm	15-30cm	30-45cm	NSPT									
	1100	Lwy	111000	Κτύποι	Κτύποι	Κτύποι										
Г-1	2.00	2.45	2.23	11	15	20	35									
Γ-1	5.00	5.27	5.13	22	50/12cm		APN									

Ποσότητα			24/01/2023													1											x 2									END/014.02
Mov.	TEµ.	Ωρες	н.н.	Ωρες	MÉPES	µ.µ.	нн.	μ.μ.	'n'n.	h.µ.	J.H.	μ.μ.	н.н.	н.р.	μ.μ.	'nл.	hμ	TEµ.	Teµ.	Tcµ.	Тер.	Teµ.	Teu.	Теµ.	Τεμ.	Теµ.	TEµ.	Tsµ.	Ωρες	TEµ.	μ.μ.	p.p.	μ.μ.	Mérrov	Ωρες	OTM
ZIEZ	ιρυπάνου	εωτρυπάνου	Δίκτυο	Αντλία	Βυτιοφόρο	0-20	20-40	40-60	60-80	0-20	20-40	40-60	60-80	0-20	20-40	40-60	60-80	το Δείγμα	0-20	20-40	40-60	60-80	0-20	20-40	40-60	60-80	ong (SPT)	inéc -	. иукротпр.	ιέτρου	γιση Πιεζομ.	ητοι Πιεζομ.	ιάτρητοι Πιεζ.	η οδού	έλασης	
EPI A	Εισκόμιση Γεωι	Метакімпап Гі		νεσού			Διάτρηση	σε χαναρα εδάφη		Διάτρηση σε	αημοχάλικα	KEPU. BPONSOUS	erry and ad		Διάτρηση σε	ROD>25%		Αδιατάρακ	Advance	20 (Julio 05	χαλαρά εδάφη	(Sortindat)	Διάτρηση	εν ξηρώ	αμμοχάλικα	κερμ. Βράχους	Δοκιμή Διείσδυ	Επί τόπου δοκ	Αργία γεωτρ. Σ	Κεφαλή Πιεζομ	Υπόγεια Σφράν	Σωλήνες Διάτρ	Σωλήνες Μη Δ	Διάνοιξ	Проот	
EAIDA: A/A DEATIOT:	IMEPOMHNIA: 24/01/2023	CAIPOE: AIBPLOS	ΣΤΟΙΧΕΙΑ ΓΕΩΤΡΥΠΑΝΟΥ	EQTPYFIANO: TONE	(ΕΙΡΙΣΤΗΣ Κόλιας Βαγγέλης	30H90Σ Παναγιώτης		2PEE: ANO 8:00 EQE 15:30					ς κνητές επικώσεις αμμοχαλικά Sug	κυρίως σύστασης με συγκρίματα και	και ψαμμιτικής προέλευσης.			Καστανή έως τεφροκάστανη	ιργιλοίλυώδης άμμος, με κυμαινόμενη περιεκτικότητα σε	κάλικες και σχιστολιθικά τεμάχη, πορέρχεται από την αποσάθρώση του	υποβάθρου Αθηναϊκού Σκιστολίθου.			ξαστανέρυθρος έως τεφροκάστανος	ντονα παραμορφομένος και Ποσαθρώμένος - οξειδώμένος και	ατακερματισμενος με αποδιοργανωμενη :ως φυλλώδη δομή, Αθηναϊκός	Χιστόλιθος - Μεταψαμμίτης.		YIIOMNHMA		a τύπου Shelby	a rúrrou Piston	a rútrou Denisan	ά με νερό	D : Κοπτικό με Διαμάντι	
~	I	×		DY L	×	B		G		UVINE V			-	4 0				sPT = 35 F	0 4				Price APN	X		×-0	8			οπγαφα зυ	ακτα δείγμα	ακτο δείγμα	ακτο δείγμο	γμένο δείγι	ύ με Βίδια,	
IIANOY	RT	AIEH:		OMH NEPO	1	0.50				4102		S.P.T			•			1/15/20 N	1	1		1	2/50(12cm) Ns		1	1	1			D: Δείγμα ι	λιατώρ	ο : Αδιατάρ	: Αδιατάρι	λ : Δισταρα	N : Kormko	/2023
FEOTP	G REPC	x	ΤΡΗΣΗΣ	ΣTA	:HNIQ91	3PAAYNH				12 AEII MA		EIDOE			÷	÷		SPT	÷	s	÷	÷	SPT 2	s	ø	s	ø	N -	023	0		0.I	645 645	.com	-	24/01
NTIO .	ILL RI		EIA LED	H	H	H				FIGU	ľ	No			-	10		e	4	ß	9	7	00	6	10	11	12	TADIO	/01/2	-	e o So a	I.A. 20'	vikn 54	o 123@gmail		HM/NIA
PHZIO AE	DAILY DF	L1	ZTOIX	0.00	01.7.70	no: 7.70	.30		AUDAELES	ΥΔΑΤΟΣ		(%)																TEAOD EF	νέχεια 25	EPFOAQTH	I Part	SC TENNO	44 0 0 X	E-mu themisto		
HME		ΓΕΩΤΡΗΣΗ:		HMEPHZIA A	TPOODOS E	Α ΗΣΩΝΗΛΩΣ	0 104 E			ИЛЛ		(%)																	Du	FIA TON	on the second	Sc - TEXVIE	Theores Extravit	A: (+30) 6937318587		
	N	OI O.E.	ός αδόμητου	κράτι					ΠΟΣΟΣΤΟ	TCP TCP		(%)								60	-			50	40	80	70				đ	Ϋ́Ν.	ΔU ΔU	TH		
	Ū	MBOYA	ύτρηση εντά	μτης 50 Παγ					10111	AFILMATO-	AHITTOY /	KOITTIOY	M	M	M	M	M	M	M	Q	M	M	M	Q	D	D	Q			IADOXO						
		- 2	יווגון עני	iou Api						AIA	-Yodu		20 cm	50 cm	30 cm	50 cm	50 cm	45 cm	75 cm	60 cm	120 cm	120 cm	30 cm	50 cm	40 cm	80 cm	70 cm			TON AN						-
1			LEWTEX	οικοπέζ	OTHE		EPLOY	Ŧ	202	71171	ΕΩΣ	(LL)	0.20	0.70	1.00	1.50	2.00	2.45	3.20	3.80	4.10	5.00	5.30	5.80	6.20	7.00	7.70			LIA						2PHZH:
		LEO/	EPLO:	-	EPLOA		KDAIKOZ	ΣYMBAΣ	BAG		AIIO	(LL)	0.00	0.20	0.70	1.00	1.50	2.00	2.45	3.20	3.80	4.10	5.00	5.30	5.80	6.20	7.00									ANAGAG

DEPASTOS"

Ποσότητα			25/01/2023				-																				1			x 1		х 3	х 2			END/014.02
Mov.	Teµ.	Ωρες	р.р.	Ωρες	MÉPES	µ.µ.	h.p.	'n'n.	h.u.	h.µ.	p.h.	μ.μ.	μ.μ.	н.µ.	μ.μ.	цц.	Jup.	TEµ.	Teµ.	Tcµ.	TEµ.	Teµ.	TEµ.	Теµ.	Τεμ.	Teµ.	Teµ.	Τεμ.	Ωρες	TEµ.	µ.µ.	µ.µ.	μ.μ.	Médov	Ωρες	OTM/
ZIEZ	τρυπάνου	εωτρυπάνου	Δίκτυο	Avrλía	Βυτιοφόρο	0-20	20-40	40-60	60-80	0-50	20-40	40-60	60-80	0-20	20-40	40-60	60-80	τιο Δείγμα	0-20	20-40	40-60	60-80	0-20	20-40	40-60	60-80	ong (SPT)	pitc	. иүкротпр.	ιέτρου	γιση Πιεζομ.	ηται Πιεζομ.	ιάτρητοι Πιεζ.	η οδού	έλασης	
EPI A	Εισκόμιση Γεωι	Μετακίνηση Γ	:	Γρομηθεια			Διάτρηση	αε χαλαρα		Διάτρηση σε	αημοχάλικα	SuoXodd upax	error of		Διάτρηση σε	RQD>25%		Αδιατάρακ		1 Single of	χαλαρά εδάφη	South of the participation of the second	Aiáronan	εν ξηρώ	αμμοχάλικα 2ουγρα	κερμ. Βράχους	Δοκιμή Διείσδυ	Επί τόπου δοκ	Αργία γεωτρ. Σ	Κεφαλή Πιεζομ	Υπόγεια Σφρά	Σωλήνες Διάτρ	Σωλήνες Μη Δ	Διάνοιξ	Проот	
A/A DEATIOY:	MHNIA: 25/01/2023	Νεφελώδης	ΟΙΧΕΙΑ ΓΕΩΤΡΥΠΑΝΟΥ	IANO: TONE	ΗΣ Κόλιας Βαγγέλης	Σ Παναγιώτης		ΠΟ 8:00 EΩΣ 16:00		2YNTOMH EDIFDAMU EAAMOVY			1θρος έως τεφροπάστανος έντονα απόσαθοςπένος - οξειδευπένος	ορματισμένος (RQD = 0%) Αθηναϊκός ος - Μεταψαμμίτης με αραιούς	is opiζovreς.	IRS = RO για τα αποσαθρωμενα ήματα και R1 για τα βραχώδη τεμάχη	avalations and an available and south	1 GSI = 15 - 25 [Δομή αποδιοργανωμενη οδης, ποιότητα ασυνεχειών ΠΤΩΧΗ -	ποσαθρωμένες και εξαλλοιωμένες].	se selavérences adlevés Almunisés	ος έντονα αποσαθρωμένος και ισμένος με ωυλλώδη δουή (ROD = 0%).	α ως αργιλώδης χάλυτες.							AHMA		Shelby	Piston	Denisan	pó	ττικό με Διαμάντι	
ZENIDA:	HMEPON	KAIPOE:	2TC	ГЕΩТРΥ	XEIPIZT	BOHOO:		ΩPEΣ: A			-		Καστανέρυ πορουσοφο	και κατακε Σχιστόλιθ	χαλαζιακού	ESaptká ty	ownord.	Ταξινόμηστ έως φυλλώ	ο Scochains επιφάνειες	Melande és	Σχιστόλιθ	Аподірени	L						YNOMY	Qr	γμα τύπου	γμα τύπου	γμα τύπου	είγμα με νε	a, D:Kon	
×		ı		POY	0 m	0 m	100001	1 4040		VONINE	BUNINE																			λαφφ 3η αί	άρακτα δεί	άρακτο δεί	άρακτο δεί	φαγμένο δι	τικό με Βίδι	
PYLIANO	PORT	KAIEH:	Z	TAOMH NE	4.0	4H: 4.5	121 /0	0/TO 1	202.01	MATO2		S.P.T	1	•		1	1	1	1											Φ : Δείγμ	S : Aðiur	P : Aδiat	Τ: Αδιατ	Δ: Διστο	W : Kom	01/2023
) FEDT	RIG REI		EOTPHEH	Σ	TPOINF	BPAAYI	2 10	01.0	1117 10			EIDOE	Ø	s		so.	S	s	s					HZHZ-							aiou	Θ.Π.Θ	54645	ail.com		IA: 25/
DEATIC	DRILL		OIXEIA LI	.70 m	m 00.	.70 m	m 00.		E	Σ. El		No	- 13	14		15	- 16	17	- 18					TEQTPI		_				DIH	CTABEOBO	Solot	exviven M	emisto123@gr		HM/N
EPH2IO	DAILY	11	ΣT	AIIO: 7	EDZ: 15	ADO: 7	EOT: 15		ANDAE	YAATC		(%)												EPAS 1						N EPLOA	ПХа	SOS TE	1015 44	37 E-marth		
MH		ΓΕΩΤΡΗΣΗ		HMEPHZIA	ΠΡΟΟΔΟΣ	ΤΩΛΗΝΩΣΗ	↓ 104			RUD		(%)																		FIA TC	εμιστοκλής	Sc - TEXVI	rupeores Exmon	IA: (+30) 69373185		
	N	<u>o</u> E.	ο αξόμητου	κράτι					0130201	TCR		(%)	30	50	60	20	30	100	100	100	60	100									0	N.	YT At	Ξ.		
	Ū	YMBOYA	ώτρηση εντά	ήτης 50 Παγ					EIAOF	AEITMATO-	AHITOY /	KOITIOY	D	D	Q	D	Q	D	Q	Q	Q	Q								NADOXO						
			xvuxij ys	é Sou Af	:2	-	:70			AIA	Yndi		30 cm	50 cm	60 cm	70 cm	30 cm	140 cm	00 cm	0 100 cm	0 60 cm	00 cm								A TON A						1:1
): FEGTE	оцкол	DAOTH		OZ EPL	AZH:	4002		EDZ	(E)	8.00	8.50	9.10	9.80	10.10	0 11.50	0 12.4(0 13.40	0 14.10	0 15.00								C						ADPHZH
			EPLO		EPLC		KOAIK	EYMB	B		Allo	E)	7.70	8.00	8.50	9.10	9.80	10.10	11.50	12.4(13.4(14.10														ANAG

ΌΦΡΔΣΤΟ

170

Ψηφιακή συλλογή Βιβλιοθήκη		-	9																	
ΘΕΟΦΡΑΣΤΟ	$\sum_{i=1}^{n}$				σ_{θ}	Mpa	45								13.7					1
А.П.Ө	10	1	н кн	AIƏMHZ ZIT9Od	₅₀ (dia)	MPa	44								0.6				_	
					E _t Is,	GPa	43								3 47					
				ΤΑΣΕΩΝ	b	kPa	29				0-180							_	-	
			OTIOIHZHI M	ZAMIIIEZH METPO	$\mathbf{E}_{\mathbf{s}}$	kPa	28				7535 5									
			MH TTEPE	HZ ZLEFEOIIOI Z	$C_{v} x 10^{-4}$	cm ² /sec	27				14,02									
			NOKI	ZYNTEVES ZYMTIEZH AEIKTHZ	C _e (0	26				0,053								-	
			HP	HZH KAI FITIZH	φ'	(_)	25			37,5									-	
			AOKIN	AIATMHZ AIATMHZ ETEPEOIIOI AIIOETPA	c'	kPa	24			8,1									+	
			10A 30	KOPEZN BAØMO	s	%	19	36.52	45,64		110,63	41,11	90,29		115 00	98,05		121,35	109,34	-
	KON AG		NQN ZC	VOLOZ KI VDXIKO	e,		18	0.85	0,68		0,35	0,64	0,28		0 34	0,40		0,31	0,24	~~~
	ΣΤΗΡΙΑ		300	BAPO EIAIK	$\gamma_{\rm s}$		17	2.65	2,65		2,65	2,65	2,65		2 65	2,65		2,65	2,65	
	N EPLA	A	Z ENO)	ВАРО МОМАНО ОЧНЕ	$\gamma_{\rm d}$	t/m^3	16	1.43	1,57		1,96	1,62	2,07		1 97	1,89		2,02	2,14	
	ΕΜΑΤΩΙ	EILMAT	Z ENO	BAPO ØAINOM YTPC	γ	t/m^3	15	1.60	1,76		2,25	1,78	2,27		207	2,17		2,31	2,35	~
	OTEAE	ΦΙΚΑ Δ	iy Wenh	⊀LЬ∀Σ ЦЕЬІЕХОИ	ш	%	14	11.72	11,76		14,60	9,86	9,47		14 96	14,93		14,20	9,85	
	(ΑΣ ΑΠ	EDA	V1	АТАЕН КА' 2.0.2.0.6	KAT		13	SC	SC		SC-CL		SM			SM				
				N _{30SPT}			12		35			>50								
	ΩΤΙΚΟ		ŋ	АД АДТІКОТНТ ІЕІКТНД	¢V∐ ⊽	Id	Ξ				10									
	TKENTF		OPIA TTERBER	AZ AZTIKOTHT OPIO	¢V∐	Ы	10				22									
	ΣYI			OI9O ZATHTO9A	/⊽⊼	ΓΓ	6				32								_	
				ο αbαιφίτετb	<2μ		8	10.00	5,67		7,68					2,02				
			PIKH H		200	%	~	48.32	38,33		50,71		29,83			36,41				
			KKOMET ANAA YE	EKINA	40	διερχόμενο	9	73.05	61,56		72,71		40,11			54,27				
			KO	KO)	10		5	92.80	85,31		96,84		61,60			80,78			_	
					4		4	94.98	92,58		98,85		76,24			92,72	0	0	0	_
				(m) ZOØA	В		ю	0.00-1.00	2.00-2.45	2.45-3.20	3.80-5.00	5.00-5.30	5.30-6.20	6.20-7.00	7.00-8.00 8.00-9.00	9.00-10.10	10.10-11.50	11.50-13.00	13.00-14.00	14.00-15.0v
				AEITMA			2	1	3	4 4	9	7	8	6	10	12	13	14	15	- 01
Wagagan R.R. 100 million	064	10.4		нхнатоз	L		-	EE	Е	2 Z	LI LI	Ц×	Ы	E		E	Ы	E	EE	

τελειο Πανεπιστήμιο Θεσσαλονίκης

парартнма В

A ΠΟΤΕΛΕΣΜΑΤΑ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 2	BAΘOΣ: 1.00-2.00m

	1
Βάρος υγρού δείγματος και κάψας (gr)	53,26
Βάρος ξηρού δείγματος και κάψας (gr)	50,73
Βάρος κάψας (gr)	29,15
Βάρος νερού (gr)	2,53
Βάρος ξηρού δείγματος (gr)	21,58
Περιεχόμενη υγρασία (%)	11,72

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 3	ΒΑΘΟΣ: 2.00-2.45m

	1
Βάρος υγρού δείγματος και κάψας (gr)	55,78
Βάρος ξηρού δείγματος και κάψας (gr)	52,88
Βάρος κάψας (gr)	28,22
Βάρος νερού (gr)	2,9
Βάρος ξηρού δείγματος (gr)	24,66
Περιεχόμενη υγρασία (%)	11,76

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 6	ΒΑΘΟΣ: 3.80-4.10m

	1
Βάρος υγρού δείγματος και κάψας (gr)	79,41
Βάρος ξηρού δείγματος και κάψας (gr)	73,04
Βάρος κάψας (gr)	29,4
Βάρος νερού (gr)	6,37
Βάρος ξηρού δείγματος (gr)	43,64
Περιεχόμενη υγρασία (%)	14,60

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 7	BAΘOΣ: 5.00-5.30m

	1
Βάρος υγρού δείγματος και κάψας (gr)	60,16
Βάρος ξηρού δείγματος και κάψας (gr)	57,13
Βάρος κάψας (gr)	26,4
Βάρος νερού (gr)	3,03
Βάρος ξηρού δείγματος (gr)	30,73
Περιεχόμενη υγρασία (%)	9,86

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 8	BAΘOΣ: 6.00-6.30m

	1
Βάρος υγρού δείγματος και κάψας (gr)	86,76
Βάρος ξηρού δείγματος και κάψας (gr)	81,47
Βάρος κάψας (gr)	25,6
Βάρος νερού (gr)	5,29
Βάρος ξηρού δείγματος (gr)	55,87
Περιεχόμενη υγρασία (%)	9,47

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 11	BAΘOΣ: 8.00-8.40m

	1
Βάρος υγρού δείγματος και κάψας (gr)	69,07
Βάρος ξηρού δείγματος και κάψας (gr)	64,12
Βάρος κάψας (gr)	31,04
Βάρος νερού (gr)	4,95
Βάρος ξηρού δείγματος (gr)	33,08
Περιεχόμενη υγρασία (%)	14,96

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 12	BAΘOΣ: 9.00-9.30m

	1
Βάρος υγρού δείγματος και κάψας (gr)	62,61
Βάρος ξηρού δείγματος και κάψας (gr)	58,75
Βάρος κάψας (gr)	32,9
Βάρος νερού (gr)	3,86
Βάρος ξηρού δείγματος (gr)	25,85
Περιεχόμενη υγρασία (%)	14,93

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 14	BAΘOΣ: 12.00-12.20m

	1
Βάρος υγρού δείγματος και κάψας (gr)	66,52
Βάρος ξηρού δείγματος και κάψας (gr)	61,51
Βάρος κάψας (gr)	26,23
Βάρος νερού (gr)	5,01
Βάρος ξηρού δείγματος (gr)	35,28
Περιεχόμενη υγρασία (%)	14,20

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΤΗΣ ΠΕΡΙΕΧΟΜΕΝΗΣ ΥΓΡΑΣΙΑΣ Εδαφικού Δοκιμίου - ASTM D2216

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 15	BAΘOΣ: 13.00-13.50m

	1
Βάρος υγρού δείγματος και κάψας (gr)	70,92
Βάρος ξηρού δείγματος και κάψας (gr)	67,21
Βάρος κάψας (gr)	29,53
Βάρος νερού (gr)	3,71
Βάρος ξηρού δείγματος (gr)	37,68
Περιεχόμενη υγρασία (%)	9,85

μηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023	
ΔΕΙΓΜΑ: 2	ΒΑΘΟΣ: 1.00-2.00m	

Ύψος Δοκιμίου, Η	2,05	cm
Διάμετρος Δοκιμίου, D	5,05	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	41,04	cm ³
Βάρος δείγματος, G	65,56	gr
Φαινόμενο βάρος, γ=G/V	1,60	gr/cm ³

μηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 3	BAΘOΣ: 2.00-2.45m

Ύψος Δοκιμίου, Η	2,05	cm
Διάμετρος Δοκιμίου, D	5,05	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	41,04	cm ³
Βάρος δείγματος, G	72,32	gr
Φαινόμενο βάρος, γ=G/V	1,76	gr/cm ³

ψηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023	
ΔΕΙΓΜΑ: 6	BAΘOΣ: 3.80-4.10m	

Ύψος Δοκιμίου, Η	14,11	cm
Διάμετρος Δοκιμίου, D	8,23	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	750,23	cm ³
Βάρος δείγματος, G	1690,86	gr
Φαινόμενο βάρος, γ=G/V	2,25	gr/cm ³

ψηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023	
ΔΕΙΓΜΑ: 7	BAΘΟΣ: 5.00-5.30m	

Ύψος Δοκιμίου, Η	2,05	cm
Διάμετρος Δοκιμίου, D	5,05	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	41,04	cm ³
Βάρος δείγματος, G	73,04	gr
Φαινόμενο βάρος, γ=G/V	1,78	gr/cm ³

μηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023	
ΔΕΙΓΜΑ: 8	ΒΑΘΟΣ: 6.00-6.30m	

Ύψος Δοκιμίου, Η	2,05	cm
Διάμετρος Δοκιμίου, D	5,05	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	41,04	cm ³
Βάρος δείγματος, G	93,20	gr
Φαινόμενο βάρος, γ=G/V	2,27	gr/cm ³

μηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023	
ΔΕΙΓΜΑ: 11	ΒΑΘΟΣ: 8.00-9.00m	

Ύψος Δοκιμίου, Η	2,05	cm
Διάμετρος Δοκιμίου, D	5,05	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	41,04	cm ³
Βάρος δείγματος, G	93,21	gr
Φαινόμενο βάρος, γ=G/V	2,27	gr/cm ³

ψηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 12	ΒΑΘΟΣ: 9.00-9.30m

Ύψος Δοκιμίου, Η	2,05	cm
Διάμετρος Δοκιμίου, D	5,05	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	41,04	cm ³
Βάρος δείγματος, G	89,21	gr
Φαινόμενο βάρος, γ=G/V	2,17	gr/cm ³

ψηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 14	ΒΑΘΟΣ: 12.00-12.20m

Ύψος Δοκιμίου, Η	14,91	cm
Διάμετρος Δοκιμίου, D	7,27	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	618,61	cm ³
Βάρος δείγματος, G	1432,95	gr
Φαινόμενο βάρος, γ=G/V	2,32	gr/cm ³

μηφιακή συλλογή

A.II.U

ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΟΚΙΜΗΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΑΙΝΟΜΕΝΟΥ ΒΑΡΟΥΣ ΣΥΝ. ΕΔΑΦΩΝ (Με τη χρήση ογκομετρικού σωλήνα) - AASHTO T 147

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA: 15/2/2023
ΔΕΙΓΜΑ: 15	ΒΑΘΟΣ: 13.00-13.50m

Ύψος Δοκιμίου, Η	2,05	cm
Διάμετρος Δοκιμίου, D	5,05	cm
Πλάτος Δοκιμίου, Β		cm
Μήκος Δοκιμίου, L		cm
Ογκος Δείγματος, V	41,04	cm ³
Βάρος δείγματος, G	96,62	gr
Φαινόμενο βάρος, γ=G/V	2,35	gr/cm ³

Ψηφιακή συλλογή

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

π.Τμήμα Γεωλογίας

Α.Π.Θ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΟΡΙΩΝ ATTERBERG

BNQ-2501-092: Soils – Determination de la limite de liquidité à l'aide du pénétromètre suédois et de la limite de plasticité ASTM D 4318-83: Standard test method for liquid limit. plastic limit and plasticity index

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

ΓΕΩΤΡΗΣΗ: Γ-1	HMEPOMHNIA:	19/2/2023
ΔΕΙΓΜΑ: 6	BAΘOΣ: 3.80-4.10m	

	ΔΟΚΙΜΗ		Προσδιορισμός Ορίου Υδαρότητας			Προσδιορισμός Ορίου Πλαστικότητας				
	Αριθμός δοκιμής			2	3	4	1	2	3	4
	Βάθος διείδυσης (mm)		6,5	10	12					
А	Βάρος υγρού δείγματος + υποδοχέα	gr	38,570	48,160	49,370		17,240	16,300		
В	Βάρος ξηρού δείγματος + υποδοχέα	gr	35,890	43,230	44,510		16,300	15,550		
Г	Βάρος ύδατος	gr	2,680	4,930	4,860		0,940	0,750		
Δ	Βάρος υποδοχέα	gr	26,220	28,500	31,230		11,970	12,080		
Е	Βάρος ξηρού δείγματος	gr	9,670	14,730	13,280		4,330	3,470		
Ζ	Περιεχόμενη υγρασία	%	27,71	33,47	36,60		21,71	21,61		

Όριο υδαρότητας	LL :	32 %	
Όριο πλαστικότητας	PL :	22 %	
Δείκτης πλαστικότητας	IP :	10 %	

Περιγραφή δείγματος: Αργιλοϊλύς CL-ML

Παγκράτι Γ-1

ιβλιοθήκη

Γεώτρηση:

ΔΕΛΤΙΟ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΑSHTO T88 - ASTM D 422-72

είγμα: α τεαλογ2 5			Βάθος:	1,00-2,00m	0m		
Αοιθμός κοσκίνου	Ανοινμα κοσκίνου	γκοατούμενο βάι	000	Διεογόμενο βάρος			
1 propog nooninoo	mm	gr	%	gr	%		
2 in.	50	0	0,00	349,370	100,00		
1 in.	25	0	0,00	349,370	100,00		
3/4 in.	19	0	0,00	349,370	100,00		
1/2 in.	12,5	4,24	1,21	345,130	98,79		
3/8 in.	6,3	10,88	3,11	334,250	95,67		
No. 4	4,75	2,43	0,70	331,820	94,98		
No. 10	2	7,6	2,18	324,220	92,80		
No. 16	1,18	9,06	2,59	315,160	90,21		
No. 40	0,425	59,94	17,16	255,220	73,05		
No. 100	0,15	59,22	16,95	196,000	56,10		
No. 200	0,075	27,18	7,78	168,820	48,32		
	0,0497	42,70	12,22	126,12	36,10		
	0,0353	10,57	3,03	115,55	33,07		
	0,0227	14,09	4,03	101,46	29,04		
	0,0134	21,14	6,05	80,32	22,99		
	0,0091	14,09	4,03	66,23	18,96		
	0,0068	14,09	4,03	52,14	14,92		
	0,0035	10,57	3,03	41,57	11,90		
	0,0014	9,16	2,62	32,41	9,28		
		32,41	9,28				
		349,370	100,00				

Κοκκομετρία κατά	ASTM D2487				
Χαλίκια	Άμμος	Ιλύς	Άργιλος		
5,02	46,66	38,32	10,00		
FINES (F)	D60	D10	D30	Cu	Cc
48,32	0,2	0,002	0,025	100,00	1,56

Βιβλιοθήκη

ΔΕΛΤΙΟ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΑSHTO T88 - ASTM D 422-72						
εώτρηση:	Παγκράτι Γ-1					
Δείγμα: Ο Γ ΕΦΛΟ	395		Βάθος:	2,00-2,45m		
ΑΠΘ						
Αριθμός κοσκίνου	Ανοιγμα κοσκίνου	γκρατούμενο βάρ	ος	Διερχόμενο βάρος		
	mm	or	%	or		

	111111	gı	/0	gi	70
2 in.	50	0	0,00	392,720	100,00
1 in.	25	0	0,00	392,720	100,00
3/4 in.	19	0	0,00	392,720	100,00
1/2 in.	12,5	13,58	3,46	379,140	96,54
3/8 in.	6,3	9,11	2,32	370,030	94,22
No. 4	4,75	6,46	1,64	363,570	92,58
No. 10	2	28,56	7,27	335,010	85,31
No. 16	1,18	21,55	5,49	313,460	79,82
No. 40	0,425	71,71	18,26	241,750	61,56
No. 100	0,15	61,84	15,75	179,910	45,81
No. 200	0,075	29,37	7,48	150,540	38,33
	0,0497	13,20	3,36	137,34	34,97
	0,0356	18,97	4,83	118,37	30,14
	0,0229	11,38	2,90	106,99	27,24
	0,0135	26,56	6,76	80,43	20,48
	0,0091	11,38	2,90	69,05	17,58
	0,0069	15,18	3,86	53,87	13,72
	0,0035	18,97	4,83	34,90	8,89
	0,0015	15,18	3,86	19,73	5,02
		19,73	5,02		
		392,720	100,00		

Κοκκομετρία κατά	ASTM D2487				
Χαλίκια	Άμμος	Ιλύς	Άργιλος		
7,42	54,24	32,28	6,06		
	500	D 10			
FINES (F)	D60	D10	D30	Cu	CC
38,33	0,4	0,0045	0,04	88,89	0,89

Βιβλιοθήκη

ΕΟΦΡΑ	ΔΕΛΤΙΟ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΑSHTO T88 - ASTM D 422-72				
Γεώτρηση:	Παγκράτι Γ-1				
Δείγμα:	λογ6ας		Βάθος:	3,80-4,10m	

		· 0/			
Αριθμος κοσκινου	Ανοιγμα κοσκινου	γκρατουμένο ράρος		Διερχομενο βαρος	
	mm	gr	%	gr	%
2 in.	50	0	0,00	373,170	100,00
1 in.	25	0	0,00	373,170	100,00
3/4 in.	19	0	0,00	373,170	100,00
1/2 in.	12,5	0	0,00	373,170	100,00
3/8 in.	6,3	1,76	0,47	371,410	99,53
No. 4	4,75	2,52	0,68	368,890	98,85
No. 10	2	7,53	2,02	361,360	96,84
No. 16	1,18	11,63	3,12	349,730	93,72
No. 40	0,425	78,41	21,01	271,320	72,71
No. 100	0,15	56,28	15,08	215,040	57,63
No. 200	0,075	25,82	6,92	189,220	50,71
	0,0490	34,80	9,33	154,42	41,38
	0,0348	11,64	3,12	142,78	38,26
	0,0224	15,52	4,16	127,26	34,10
	0,0133	31,04	8,32	96,22	25,78
	0,0090	13,97	3,74	82,25	22,04
	0,0068	15,52	4,16	66,73	17,88
	0,0034	15,52	4,16	51,21	13,72
	0,0015	31,04	8,32	20,18	5,41
		20,18	5,41		
		373,170	100.00		

Κοκκομετρία κατά	ASTM D2487				
Χαλίκια	Άμμος	Ιλύς	Άργιλος		
1,15	48,15	43,03	7,68		
				-	-
FINES (F)	D60	D10	D30	Cu	Cc
50,71	0,18	0,0023	0,018	78,26	0,78

Ψηφιακή συλλογή Βιβλιοθήκη

Α.Π.Θ

ΔΕΛΤΙΟ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ						
	AASHTO T88 - ASTM D 422-72					
Γεώτρηση:	Παγκράτι Γ-1					
Δείγμα: 8 Βάθος: 6,00-6,30m						

	Ανοιγμα κοσκίνου	Συγκρατούμενο βάρος		Διερχόμεν	νο βάρος	
Αριθμός κοσκίνοι	mm	gr	%	gr	%	
2 in.	50	0	0,00	416,880	100,00	
1 in.	25	0	0,00	416,880	100,00	
3/4 in.	19	28,09	6,74	388,790	93,26	
1/2 in.	12,5	6,55	1,57	382,240	91,69	
1/4 in.	6,3	44,72	10,73	337,520	80,96	
No. 4	4,75	19,7	4,73	317,820	76,24	
No. 10	2	61,02	14,64	256,800	61,60	
No. 16	1,18	35,87	8,60	220,930	53,00	
No. 40	0,425	53,73	12,89	167,200	40,11	
No. 100	0,15	30,62	7,35	136,580	32,76	
No. 200	0,075	12,21	2,93	124,370	29,83	
	Παιπάλη	124,37	29,83			
	Ολικό Βάρος:	416,88	100,00			

Ιλυώδης Άμμος με Χάλικες SM

	Κοκκομετρία κα				
Χαλίκια	Άμμος	Ιλύς	Άργιλλος		
23,76	46,40				
FINES (F)	D60	D10	D30	Cu	Cc
29,83	1,85		0,075		

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

Βιβλιοθήκη

Ε ΟΦΡΑ	ΣΤΟΣ"4	ΔΕΛΤΙΟ ΚΟΚΚΟΜΕΤΡΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΑSHTO T88 - ASTM D 422-72						
Γεώτρηση:	Παγκράτι Γ-1							
Δείγμα:	JAOY12 S		Βάθος:	9,00-9,30m				

	0	(0(
Αριθμός κοσκίνου	Ανοιγμα κοσκίνου	γκρατούμενο βά	ρος	Διερχόμενο βάρος	
	mm	gr	%	gr	%
2 in.	50	0	0,00	312,510	100,00
1 in.	25	0	0,00	312,510	100,00
3/4 in.	19	0	0,00	312,510	100,00
1/2 in.	12,5	3,77	1,21	308,740	98,79
3/8 in.	6,3	9,32	2,98	299,420	95,81
No. 4	4,75	9,65	3,09	289,770	92,72
No. 10	2	37,33	11,95	252,440	80,78
No. 16	1,18	26,79	8,57	225,650	72,21
No. 40	0,425	56,04	17,93	169,610	54,27
No. 100	0,15	36,6	11,71	133,010	42,56
No. 200	0,075	19,21	6,15	113,800	36,41
	0,0500	29,21	9,35	84,59	27,07
	0,0358	10,19	3,26	74,40	23,81
	0,0230	10,19	3,26	64,21	20,55
	0,0135	10,19	3,26	54,02	17,29
	0,0092	15,29	4,89	38,73	12,39
	0,0069	7,64	2,45	31,09	9,95
	0,0035	15,29	4,89	15,80	5,06
	0,0015	12,74	4,08	3,06	0,98
		3,06	0,98		
		312.510	100.00		

Κοκκομετρία κατά	ASTM D2487				
Χαλίκια	Άμμος	Ιλύς	Άργιλος		
7,28	56,31	34,39	2,02		
FINES (F)	D60	D10	D30	Cu	Cc
36,41	0,6	0,007	0,059	85,71	0,83

ARISTOTLE UNIVERSITY OF THESSALONIKI (AUTH) DEPT. OF GEOLOGY - LAB.OF ENGINEERING GEOLOGY AND HYDROGEOLOGY

POINT LOAD INDEX TEST of Rock Sample E 103-84 (5), I.S.R.M. 1985

ΘΕΣΗ: ΠΑΓΚΡΑΤΙ ΔΕΙΓΜΑ: Γ1_Δ11

Ψηφιακή συλλογή Βιβλιοθήκη

Α.Π.Θ

HMEPOMHNIA: 21/2/2023 ΒΑΘΟΣ: 8.80-9.00m

Sample din	nensions:			Characte	eristic Dimer	nsion	Equivalent	Dimension
1. Acne Dis	stance D=	71,8	mm	VV =	102,12	mm	De (mm)=	96,65
	Load at failure	Correction. Factor	Point Load Index		Uniaxial Compr. strength		Εφαπτομεν ελαστικ	/ικό μέτρο ότητας
	P (KN)	F	I _s (Mpa)	I _{s(50)} (Mpa)	σ_{c} (M	lpa)	E _t (G	Spa)
1	4,17	1,345	0,45	0,60	13,	,2	3,4	7

Remarks :

□ (a) Axial test in core, (b) Test in cubic sample, (c) Test in irregular sample

 \Box Equivalent dimension: $D_e^2 = 4 D W/\pi$

 \Box I_s= P/D_e²

 \Box I_{s(50)}= F[·]Is, όπου F = (D_e/50)^{0.45}

 $\Box \sigma_{c} = 22^{-} I_{s(50)}$, (ISRM, 1985)

 \Box E_t=(0.588I_s+0.084)^{-10⁴} (Ifran & Dearman, 1978)

Sample Description:

Σχιστόλιθος

Strength Classification: BIENIAWSKI (1974)

Πολύ χαμηλή Αντοχή

Remarks :

Normal Failure

Strength Classification	l _{s(50)}	
Very high strength	> 8	
High strength	4-8	
Medium strength	2-4	
Low strength	1-2	
Very low strenth	No test recomm.	

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΕΡΓΟ: "Γεωτεχνική έρευνα μελέτη στα πλαίσια έργων κατασκευής υποσταθμού σε οικόπεδο επί της οδού Αρήτης 50, Δήμου Αθηναίων"

^{Ψηφιακή} συλλογή Βιβλιοθήκη

A.I.I.C

ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ: Γ-1 3.80-4.10m

ΑΝΤΙΚΕΙΜΕΝΟ: <u>ΜΟΝΟΔΙΑΣΤΑΤΗ ΔΟΚΙΜΗ ΣΤΕΡΕΟΠΟΙΗΣΗΣ</u>

Χαρακτηρισμός Δοκιμίου και Υπολογισμοί

Δοκίμιο: Αριθμ. Συσκευής:							
Διαστάσεις συσκευής: Ύψος (mm):	19.1	Διάμετρ.:	75.2	mm	Επιφ/εια Α:	4439.2	mm ²
Ειδικό βάρος εδάφους γ _s :	2.65	Φαινόμενο	ο βάρος γ:		2.16	t/m ³	

Παρατηρήσεις

Μέση υδροπερατότητα: 3.57E-07 cm/sec

Βάρος συσκευής + υγρού εδάφους:	W = 301.7	gr	Υγρασία	Πριν τη	Μετά τη
Βάρος συσκευής:	$W_{U} = 118.92$	gr	%	δοκιμή	δοκιμή
Βάρος υγρού δείγματος:	$W_{s} = 182.8$	gr	Αριθμ. κάψας		
Βάρος ξηρού δείγματος:	$W_{T} = 161.8$	gr	Κάψα + Υγρό βάρος	79.41	273.71
R ₁ = συσκευή μετά τύπου 30 mm		gr	Κάψα + Ξηρό βάρος	73.04	251.31
$ m R_2=$ συσκευή χωρίς φορτίο		gr	Βάρος νερού	6.37	22.4
R3= συσκευή με φορτίο	kg/cm ²	gr	Βάρος κάψας	29.4	89.51
Η ₀ = αρχικό ύψος δοκιμίου	19.1	mm	Βάρος ξηρού δείγμ.	43.64	161.8
H _s = ισοδύναμο ύψος κόκκων	13.75	mm	m %	14.60	13.84

Πίεση	Τελική	Υποχώρ.		Διάκενα	Λόγ. κεν.	Ξηρό φαινόμενο		C _V
kPa	ανάγνωση	σε 0.0001	H=Ho-∆R	H_o - H_s	H - Hs	βάρος	Cc	(cm ² /sec)
	R (mm)	(ΔR)			$c - \frac{Hs}{Hs}$	t/m ³		x10 ⁻⁴
0			19.1	5.346	0.389	1.91		
90	0.57		18.53	4.776	0.347	1.97	0.043	18.24
180	0.79		18.31	4.556	0.331	1.99	0.053	14.02
360	1.005		18.095	4.341	0.316	2.01	0.052	41.07
0	0.61		18.49	4.736	0.344	1.97	-0.018	20.57
				Αρχική	Τελική			
				κατάστ.	κατάσταση			
Ξηρό φαινο	όμενο βάροα	$\gamma_{\rm d} (t/m^3)$		1.908	1.971			
Συνολικό ύ	όψος Η (mm	l)		19.1	18.49			
Ύψος κόκι	cωv H _s (mm)		13.75	13.75			
Ύψος νερο	νύ H _w (mm)			0.5320	0.5046			
Ύψος αέρα	α H _a (mm)			4.8140	4.2314			
Περιεχόμε	νη υγρασία	m (%)		14.60	13.84			
Βαθμός κο	ρεσμού S (%	(0)		99.5	106.5			

Ψηφιακή συλλογή Βιβλιοθήκη	
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (ΑΠΘ) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ - ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ	ALL CONTRACTOR
Α.Π.Θ ΔΕΙΓΜΑ	Г-1
ΒΑΘΟΣ	3.80-4.10m

ΔΙΑΓΡΑΜΜΑΤΑ ΔΟΚΙΜΗΣ ΣΤΕΡΕΟΠΟΙΗΣΗΣ

A. ΔΙΑΓΡΑΜΜΑ ΛΟΓΟΥ ΚΕΝΩΝ - ΦΟΡΤΙΣΗΣ

B. $\Delta IA\Gamma PAMMA$ SYNTEAESTH STEPEOHOIHSHS - $\Phi OPTISHS$

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ (Α.Π.Θ.) ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ- ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ

ΔΟΚΙΜΗ ΑΜΕΣΗΣ ΔΙΑΤΜΗΣΗΣ ASTM D 3080, BS 1377

SHEAR TEST ASTM D 3080, BS 1377

Γεώτρηση (Borehole) :		Г1	Ημερομηνία (Date):			24/2/23	
Δείγμα (Sample):		4		Βάθ) ος (Depth) m:	2.45-3.20	
Sample data :							
Αριθμός Δοκιμής Test No			1	2		3	
Moisture content	%	26	.30	24.40	22.	.70	
Wet Bulk density	kN/m ³	19	9.75 20.10		20.	.35	
Dry Bulk Density	kN/m ³	15	.64	16.16	16.	.59	
Void ratio		0.	69	0.64	0.0	60	
Saturation	%	100).33	101.02	100).63	
Specific Gravity		26	6.5	26.5		i.5	
		Fa	ailure Measu	rements :			
Normal stress	kN/m ³	5	50 100		15	50	
Horizontal stress	kN/m ³	47	7.1	83.65 123		.85	
Pore Pressure	kN/m ³	N	/A	N/A	N/A N/		
Strain	%	21	.61	26.63	21.55		
Harizontal strass v Norma	al atraca	- mlat					

Horizontal stress v Normal stress plot

Horizontal stress v Shear strain Plot:

парартнма Г

ΦΩΤΟΓΡΑΦΙΚΗ ΑΠΟΤΥΠΩΣΗ (Χατζηγώγος 2023)

Ψηφιακή βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

<u>Γεώτρηση Γ-1</u>

<u>Εκτέλεση γεώτρησης</u>

парартнма Δ

ΑΝΑΛΥΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΓΕΩΤΕΧΝΙΚΩΝ ΕΛΕΓΧΩΝ ΘΕΜΕΛΙΩΣΗΣ

Ψηφιακή βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ, ΕΠΙΤΡΕΠΟΜΕΝΗΣ ΤΑΣΗΣ ΚΑΙ ΚΑΘΙΖΗΣΕΩΝ ΚΤΙΡΙΟΥ ΓΙΑ ΠΕΔΙΛΟΔΟΚΟ ΜΕ ΣΤΟΙΧΕΙΑ Β'=1,4m, L'=9m ΚΑΙ ΒΑΘΟΣ ΕΔΡΑΣΗΣ D=4,65m.

MAIN PARAMETERS

Ψηφιακή συλλογή Βιβλιοθήκη

Seismic action	EC7/8
Zone	Greece
Lat./ Long. [WGS84]	401512,5/241450,06
Foundation width	1,4 m
Foundation length	9,0 m
Depth of bearing surface	4,65 m
GWT depth	1,6
Correction parameters Terzaghi	

- 88

EARTHQUAKE

Maximum acceleration (ag/g) 0,16 Seismic effect according to EC7/8	
Horizontal seismic coefficient 0,08	

SOIL STRATIGRAPHY

Layer	Unit	Saturate	Angle of	Cohesio	Undrain	Elastic	Oedome	Poisson	Index of	Index of	Descript
thicknes	weight	d unit	friction	n	ed	modulus	tric		primary	secondar	ion
s	[kN/m ³]	weight	[°]	$[kN/m^2]$	cohesion	$[kN/m^2]$	modulus		consolid	у	
[m]		[kN/m ³]			$[kN/m^2]$		$[kN/m^2]$		ation	compres	
									[cmq/s]	sion	
3,7	16,8	18,1	37,5	8,11	210,0	0,0	7540,0	0,35	0,004	0,005	clayey
											sand
7,2	21,9	21,9	42,0	0,0	300,0	0,0	20800,0	0,25	0,0	0,0	silt and
											sandsilt
											with
											sand
2,6	22,9	22,9	42,0	0,0	300,0	0,0	20800,0	0,25	0,0	0,0	shaly
											rocks

Design loads acting on foundation

Nr.	Combinatio	Design	N	Mx	Му	Hx	Ну	Туре
	n name	normal	[kN]	[kN·m]	[kN·m]	[kN]	[kN]	
		stress						
		$[kN/m^2]$						
1	A1+M1+R1	0,00	0,00	0,00	0,00	0,00	0,00	Design
2	A2+M2+R2	0,00	0,00	0,00	0,00	0,00	0,00	Design
3	Earthquake	0,00	0,00	0,00	0,00	0,00	0,00	Design
4	S.L.E.	0,00	0,00	0,00	0,00	0,00	0,00	Design
5	S.L.D.	0,00	0,00	0,00	0,00	0,00	0,00	Design

Earthquake + Partial coef. soil geotechnical parameters + Resistances

Nr	Seismic	Tangent to	Effective	Undrained	Unit weight	Overburden	Red. Coef.	Red. Coef.
	correction	angle of	cohesion	cohesion	in	unit weight	Vertical	Horizontal
		shearing			foundation		bearing	bearing
		resistance					capacity	capacity
		angle						
1	No	1	1	1	1	1	1	1
2	No	1,25	1,25	1,4	1,3	1	1	1,1
3	No	1	1	1	1,35	1	1,4	1,1

FOUNDATION BEARING CAPACITY COMBINATION...S.L.D. Author: TERZAGHI (1955)

811,28 kN/m ²
811,28 kN/m ²

BOWLE'S SUBGRADE COEFFICIENT	(1982)
Costante di Winkler	32451,17 kN/m ³

A1+M1+R1

Author: TERZAGHI (1955) (Drained conditions)

		_
Factor [Nq]	25,59	
Factor [Nc]	40,76	
Factor [Ng]	23,81	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	1628,77 kN/m ²	_
Design resistance	1628,77 kN/m ²	

Author: Brinch - Hansen 1970 (Drained conditions)

Factor [Nq]	20,87	
Factor [Nc]	32,94	
Factor [Ng]	23,97	
Form factor [Sc]	1,08	
Depth factor [Dc]	1,38	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Form factor [Sq]	1,08	
Depth factor [Dq]	1,36	
Load inclination factor [Iq]	1,0	
Slope inclination factor [Gq]	1,0	
Base inclination factor [Bq]	1,0	
Form factor [Sg]	0,95	
Depth factor [Dg]	1,0	
Load inclination factor [Ig]	1,0	
Slope inclination factor [Gg]	1,0	
Base inclination factor [Bg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	1904,66 kN/m²	
Design resistance	1904,66 kN/m ²	

A2+M2+R2

Ψηφιακή συλλογή Βιβλιοθήκη ΕΟΦΡΑΣΤΟΣ"

Author: TERZAGHI (1955) (Drained conditions)

Factor [Nq]	13,84
Factor [Nc]	26,6
Factor [Ng]	10,94
Form factor [Sc]	1,0
Form factor [Sg]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	864,42 kN/m ²
Design resistance	864,42 kN/m ²

Author: Brinch - Hansen 1970 (Drained conditions)

Factor [Nq]	11,55	
Factor [Nc]	21,87	
Factor [Ng]	10,19	
Form factor [Sc]	1,07	
Depth factor [Dc]	1,43	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Form factor [Sq]	1,07	
Depth factor [Dq]	1,39	
Load inclination factor [Iq]	1,0	
Slope inclination factor [Gq]	1,0	
Base inclination factor [Bq]	1,0	
Form factor [Sg]	0,95	
Depth factor [Dg]	1,0	
Load inclination factor [Ig]	1,0	
Slope inclination factor [Gg]	1,0	
Base inclination factor [Bg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	1041,77 kN/m ²	
Design resistance	1041,77 kN/m ²	

Earthquake

Author: TERZAGHI (1955)) (Drained conditions)
-------------------------	------------------------

Factor [Nq]	25,59	
Factor [Nc]	40,76	
Factor [Ng]	23,81	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	1628,77 kN/m ²	
Design resistance	1163,41 kN/m ²	

Ψηφιακή συλλογή Βιβλιοθήκη ΟΦΡΑΣΤΟΣ"

rained conditions)

Factor [Nq]	20,87
Factor [Nc]	32,94
Factor [Ng]	23,97
Form factor [Sc]	1,08
Depth factor [Dc]	1,38
Load inclination factor [Ic]	1,0
Slope inclination factor [Gc]	1,0
Base inclination factor [Bc]	1,0
Form factor [Sq]	1,08
Depth factor [Dq]	1,36
Load inclination factor [Iq]	1,0
Slope inclination factor [Gq]	1,0
Base inclination factor [Bq]	1,0
Form factor [Sg]	0,95
Depth factor [Dg]	1,0
Load inclination factor [Ig]	1,0
Slope inclination factor [Gg]	1,0
Base inclination factor [Bg]	1,0
Inertial factor of seismic correction	[zq] 1,0
Inertial factor of seismic correction	[zg] 1,0
Inertial factor of seismic correction	[zc] 1,0
Bearing capacity	1904,66 kN/m ²
Design resistance	1360,47 kN/m ²

S.L.E.

Author: TERZAGHI (1955) (Drained conditions)

Factor [Nq]	25,59	
Factor [Nc]	40,76	
Factor [Ng]	23,81	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	0,95	
Inertial factor of seismic correction [zg]	0,95	
Inertial factor of seismic correction [zc]	0,97	
Bearing capacity	1549,65 kN/m ²	
Design resistance	1106,9 kN/m ²	

Author: Brinch - Hansen 1970 (Drained conditions)

Factor [Nq]	20,87	
Factor [Nc]	32,94	
Factor [Ng]	23,97	
Form factor [Sc]	1,08	
Depth factor [Dc]	1,38	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Form factor [Sq]	1,08	
Depth factor [Dq]	1,36	
Load inclination factor [Iq]	1,0	
Slope inclination factor [Gq]	1,0	

Βιβλιοθήκη	
"ZOTZAGAC	
Base inclination factor [Bq]	1,0
Form factor [Sg]	0,95
Depth factor [Dg]	1,0
Load inclination factor [Ig]	1,0
Slope inclination factor [Gg]	1,0
Base inclination factor [Bg]	1,0
Inertial factor of seismic correction	n [zq] 0,95
Inertial factor of seismic correction	n [zg] 0,95
Inertial factor of seismic correction	n [zc] 0,97
Bearing capacity	1812,14 kN/m ²
Design resistance	1294,38 kN/m ²

10

S.L.D.

Warnawh autho

Author: TERZAGHI (1955) (Drained conditions)

Factor [Nq]	13,84	
Factor [Nc]	26,6	
Factor [Ng]	10,94	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	0,94	
Inertial factor of seismic correction [zg]	0,94	
Inertial factor of seismic correction [zc]	0,97	
Bearing capacity	811,28 kN/m ²	
Design resistance	811,28 kN/m ²	

Author: Brinch - Hansen 1970 (Drained conditions)

Factor [Nq]	11,55	
Factor [Nc]	21,87	
Factor [Ng]	10,19	
Form factor [Sc]	1,07	
Depth factor [Dc]	1,43	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Form factor [Sq]	1,07	
Depth factor [Dq]	1,39	
Load inclination factor [Iq]	1,0	
Slope inclination factor [Gq]	1,0	
Base inclination factor [Bq]	1,0	
Form factor [Sg]	0,95	
Depth factor [Dg]	1,0	
Load inclination factor [Ig]	1,0	
Slope inclination factor [Gg]	1,0	
Base inclination factor [Bg]	1,0	
Inertial factor of seismic correction [zq]	0,94	
Inertial factor of seismic correction [zg]	0,94	
Inertial factor of seismic correction [zc]	0,97	
Bearing capacity	977,73 kN/m ²	
Design resistance	977,73 kN/m ²	

* Oedometric settlement calculated with: Terzaghi's monodimensional consolidation method

Design normal stress Settlement after T years Total settlement

Ψηφιακή συλλογή Βιβλιοθήκη

> 615,0 kN/m² 15,0 5 cm

Z: Average layer depth; Dp: Pressure increment; Wc: Consolidation settlement; Ws:Secondary settlement; Wt: Total settlement.

Layer	Ζ	Pressure	Dp	Method	Wc	Ws	Wt
	(m)	(kN/m^2)	(kN/m^2)		(cm)	(cm)	(cm)
2	7,775	93,574	147,273	Oedometric	4,43		4,43
3	12,2	148,386	45,966	Oedometric	0,57		0,57

ELASTIC SETTLEMENT

Design normal stress	615,0 kN/m ²
Layer thickness	6,2 m
Rock substrate depth	6,2 m
Elastic modulus	0,0 kN/m ²
Poisson's ratio	0,0
Influence coefficient I1	0,73
Influence coefficient I2	0,09
Influence coefficient Is	0,79
Settlement at foundation centre	0,12 mm
Influence coefficient I1	0,51
Influence coefficient I2	0,13
Influence coefficient Is	0,59
Settlement at edge	0,04 mm

SETTLEMENTS BURLAND BURBIDGE

Design normal stress	615,0 kN/m ²	
Time	15,0	
Significant depth Zi (m)	1	
Average Nspt values within Zi	32,5	
Form factor fs	1,448	
Compressible layer factor fh	1	
Time factor ft	1,44	
Compressibility index	0,013	
Settlement	19,879 mm	

LIQUEFACTION VERIFICATION - Method C.N.R. - GNDT from Seed and Idriss

Svo: Total confined stress; S'vo: Effective confined stress; T: Cyclic tangential stress; R: Soil resistance to liquefaction; Fs: Safety coefficient

1	3,70	35,00	51,664	64,889	44,295	0,000	0,000	0,00	
2	10,90	50,00	41,676	222,567	131,363	0,000	0,000	0,00	
3	13,50	50,00	35,615	282,106	165,404	0,000	0,000	0,00	

MAIN PARAMETERS

Ψηφιακή συλλογή Βιβλιοθήκη

Seismic action	EC7/8	
Zone	Greece	
Lat./ Long. [WGS84]	401512,5/241450,06	
Foundation width	3,9 m	
Foundation length	9,3 m	
Depth of bearing surface	4,45 m	
GWT depth	1,6	
Correction parameters Terzaghi		

- 88

EARTHQUAKE

Maximum acceleration (ag/g)	0,16
Seismic effect according to	EC7/8
Horizontal seismic coefficient	0,08

SOIL STRATIGRAPHY

Layer	Unit	Saturate	Angle of	Cohesio	Undrain	Elastic	Oedome	Poisson	Index of	Index of	Descript
thicknes	weight	d unit	friction	n	ed	modulus	tric		primary	secondar	ion
s	[kN/m ³]	weight	[°]	$[kN/m^2]$	cohesion	$[kN/m^2]$	modulus		consolid	у	
[m]		[kN/m ³]			$[kN/m^2]$		$[kN/m^2]$		ation	compres	
									[cmq/s]	sion	
3,7	16,8	18,1	37,5	8,11	210,0	0,0	7540,0	0,35	0,004	0,018	clayey
											sand
7,2	21,9	21,9	42,0	0,0	300,0	0,0	20800,0	0,25	0,0	0,0	silt and
											sandsilt
											with
											sand
2,6	13,67	22,9	42,0	0,0	300,0	0,0	20800,0	0,25	0,0	0,0	shaly
											rocks

Design loads acting on foundation

Nr.	Combinatio	Design	N	Mx	My	Hx	Hy	Туре
	n name	normal	[kN]	[kN·m]	[kN·m]	[kN]	[kN]	
		stress						
		$[kN/m^2]$						
1	A1+M1+R1	0,00	0,00	0,00	0,00	0,00	0,00	Design
2	A2+M2+R2	0,00	0,00	0,00	0,00	0,00	0,00	Design
3	Earthquake	0,00	0,00	0,00	0,00	0,00	0,00	Design
4	S.L.E.	0,00	0,00	0,00	0,00	0,00	0,00	Design
5	S.L.D.	0,00	0,00	0,00	0,00	0,00	0,00	Design

Earthquake + Partial coef. soil geotechnical parameters + Resistances

Nr	Seismic	Tangent to	Effective	Undrained	Unit weight	Overburden	Red. Coef.	Red. Coef.
	correction	angle of	cohesion	cohesion	in	unit weight	Vertical	Horizontal
		shearing			foundation		bearing	bearing
		resistance					capacity	capacity
		angle						
1	No	1	1	1	1	1	1	1
2	No	1,25	1,25	1,4	1,3	1	1	1,1

110	Βιβλιοθ	ήκη						
3	No	STOS	- ==	1	1.35	1	1.4	1.1
4	Yes	1	1	1	1,35	1	1,4	1,1
5	Yes	1,25	1,25	1,4	1,3	1	1	1,1

FOUNDATION BEARING CAPACITY COMBINATION...A2+M2+R2 Author: Brinch - Hansen 1970

Bearing capacity [Qult]	881,17 kN/m ²
Design resistance[Rd]	881,17 kN/m²
Safety factor [Fs=Qult/Ed]	

NO.

BOWLE'S SUBGRADE COEFFICIENT (19	982)
Costante di Winkler	35246,61 kN/m ³

A1+M1+R1

1.00

Author: TERZAGHI (1955) (Undrained conditions)

Factor [Nq]	1,0	
Factor [Nc]	5,7	
Factor [Ng]	0,0	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	1227,02 kN/m ²	
Design resistance	1227,02 kN/m ²	

Author: Brinch - Hansen 1970 (Undrained conditions)

1,0
5,14
0,0
1,08
1,0
1,0
1,0
1,0
1,0
1,0
1,0
1201,11 kN/m ²
1201,11 kN/m ²

A2+M2+R2

Author: TERZAGHI (1955) (Undrained conditions)

Factor [Nq]	1,0	
Factor [Nc]	5,7	
Factor [Ng]	0,0	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	

	Ψηφιακή συλλογή Βιβλιοθήκη	
(C)	Inertial factor of seismic correction [zc]	1,0
	Bearing capacity Design resistance	899,67 kN/m² 899,67 kN/m²

Author: Brinch - Hansen 1970 (Undrained conditions)

Factor [Nq]	1,0	
Factor [Nc]	5,14	
Factor [Ng]	0,0	
Form factor [Sc]	1,08	
Depth factor [Dc]	1,0	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity		
Design resistance	881,17 kN/m ²	

Earthquake

Author: TERZAGHI (1955) (Undrained conditions)

Factor [Nq]	1,0	
Factor [Nc]	5,7	
Factor [Ng]	0,0	
Form factor [Sc]	1,0	
Form factor [Sg]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	1227,02 kN/m ²	
Design resistance	876,44 kN/m ²	

Author: Brinch - Hansen 1970 (Undrained conditions)

		_
Factor [Nq]	1,0	
Factor [Nc]	5,14	
Factor [Ng]	0,0	
Form factor [Sc]	1,08	
Depth factor [Dc]	1,0	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	1201,11 kN/m ²	-
Design resistance	857,93 kN/m ²	

S.L.E.

Ψηφιακή συλλογή Βιβλιοθήκη ΕΟΦΡΑΣΤΟΣ"

Author: TERZAGHI (1955) (Undrained conditions)

Factor [Nq]	1,0
Factor [Nc]	5,7
Factor [Ng]	0,0
Form factor [Sc]	1,0
Form factor [Sg]	1,0
Inertial factor of seismic correction [zq]	1,0
Inertial factor of seismic correction [zg]	1,0
Inertial factor of seismic correction [zc]	1,0
Bearing capacity	1227,02 kN/m ²
Design resistance	876,44 kN/m ²

Author: Brinch - Hansen 1970 (Undrained conditions)

Factor [Nq]	1,0	
Factor [Nc]	5,14	
Factor [Ng]	0,0	
Form factor [Sc]	1,08	
Depth factor [Dc]	1,0	
Load inclination factor [Ic]	1,0	
Slope inclination factor [Gc]	1,0	
Base inclination factor [Bc]	1,0	
Inertial factor of seismic correction [zq]	1,0	
Inertial factor of seismic correction [zg]	1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity	1201,11 kN/m ²	
Design resistance	857.93 kN/m ²	

S.L.D.

Author: TERZAGHI (1955) (Undrained conditions)

1,0
5,7
0,0
1,0
1,0
1,0
1,0
1,0
899,67 kN/m²
899,67 kN/m ²

Author: Brinch - Hansen 1970 (Undrained conditions)

	1.0
Factor	1,0
Factor [Nc]	5,14
Factor [Ng]	0,0
Form factor [Sc]	1,08
Depth factor [Dc]	1,0
Load inclination factor [Ic]	1,0
Slope inclination factor [Gc]	1,0

Ψηφιακή συλλογή Βιβλιοθήκη		
Base inclination factor [Bc] Inertial factor of seismic correction [zq] Inertial factor of seismic correction [zg]	1,0 1,0 1,0	
Inertial factor of seismic correction [zc]	1,0	
Bearing capacity Design resistance	881,17 kN/m ² 881,17 kN/m ²	

-

SETTLEMENTS FOR EVERY LAYER

* Oedometric settlement calculated with: Terzaghi's monodimensional consolidation method

Design normal stress	526,0 kN/m ²
Settlement after T years	15,0
Total settlement	10 cm

Z: Average layer depth; Dp: Pressure increment; Wc: Consolidation settlement; Ws:Secondary settlement; Wt: Total settlement.

Layer	Ζ	Pressure	Dp	Method	Wc	Ws	Wt
	(m)	(kN/m^2)	(kN/m^2)		(cm)	(cm)	(cm)
2	7,675	92,365	281,541	Oedometric	8,73		8,73
3	12,2	148,386	101,678	Oedometric	1,27		1,27

ELASTIC SETTLEMENT

Design normal stress	526,0 kN/m ²
Layer thickness	6,2 m
Rock substrate depth	6,2 m
Elastic modulus	98000,0 kN/m ²
Poisson's ratio	0,25
Influence coefficient I1	0,42
Influence coefficient I2	0,09
Influence coefficient Is	0,48
Settlement at foundation centre	10,53 mm
Influence coefficient I1	0,22
Influence coefficient I2	0,12
Influence coefficient Is	0,3
Settlement at edge	3,29 mm

SETTLEMENTS BURLAND BURBIDGE

Design normal stress	526,0 kN/m ²	
Time	15,0	
Significant depth Zi (m)	1	
Average Nspt values within Zi	16,25	
Form factor fs	1,28	
Compressible layer factor fh	1	
Time factor ft	1,44	
Compressibility index	0,034	
Settlement	80,654 mm	

Settle3 Analysis Information

Aritis model-Settlements for strip and mat foundation-Senario with embnakment

Project Settings

Document NameA
SDate Created1Stress Computation MethodBTime-dependent Consolidation AnalysisTTime UnitsMPermeability UnitsMMinimum settlement ratio for subgrade modulus0Use average properties to calculate layered stressesImprove consolidation accuracyIgnore negative effective stresses in settlementcalculations

Aritis model-Settlements for strip and mat foundation-Senario with embnakment.s3z 12/18/2023, 6:24:31 PM Boussinesq

months meters/month 0.9

Building Excavation

Results

Time taken to compute: 0 seconds

Stage: Stage 1 = 0 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	0	3.36006
Total Consolidation Settlement	0	0
[cm]	0	0
Virgin Consolidation Settlement	0	0
[cm]	0	0
Recompression Consolidation	0	0
Settlement [cm]		
Immediate Settlement [cm]	0	3.36006
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	-44.7206	605.541
Loading Stress XX [kPa]	-571.491	590.542
Loading Stress YY [kPa]	-731.202	646.136
Effective Stress ZZ [kPa]	0	689.221
Effective Stress XX [kPa]	-480.015	675.262
Effective Stress YY [kPa]	-587.659	730.855
Total Stress ZZ [kPa]	0	689.221
Total Stress XX [kPa]	-471.113	676.449
Total Stress YY [kPa]	-573.387	732.042
Modulus of Subgrade Reaction	0	15160.6
(Total) [kPa/m]	0	15100.0
Modulus of Subgrade Reaction	0	15160.6
(Immediate) [kPa/m]	0	19100.0
Modulus of Subgrade Reaction	0	0
(Consolidation) [kPa/m]		
Total Strain	-0.000558822	0.0273272
Pore Water Pressure [kPa]	0	84.8565
Excess Pore Water Pressure [kPa]	0	0
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	0.2592	689.891
Over-consolidation Ratio	1	2.14627
Void Ratio	0	0
Permeability [m/mon]	0	0
Coefficient of Consolidation [m ² /mon]	0	0
Hydroconsolidation Settlement [cm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-1.05965	8.7792

Loads

1. Polygonal Load: "Strip 1"

Strip 1
Rigid
16.59 m2
284 kPa
4.65 m
Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
0	0
0	-11.85
1.4	-11.85
1.4	0

2. Polygonal Load: "Strip 2"

Label	Strip 2
Load Type	Rigid
Area of Load	16.59 m2
Load	284 kPa
Depth	4.65 m
Installation Stage	Stage $1 = 0$ mon

Coordinates

	X [m]	Y [m]
3.37		0
3.37		-11.85
4.77		-11.85
4.77		0

3. Polygonal Load: "Strip 3"

Label	Strip 3
Load Type	Rigid
Area of Load	15.89 m2
Load	284 kPa
Depth	4.65 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]	
6.79		-0.5	
6.79		-11.85	
8.19		-11.85	
8.19		-0.5	

4. Polygonal Load: "Strip 4"

Label	Strip 4
Load Type	Rigid
Area of Load	15.2605 m2
Load	284 kPa
Depth	4.65 m
Installation Stage	Stage $1 = 0$ mon

Coordinates

X [m]	Y [m]
11.27	0
11.257	-10.85
12.67	-10.85
12.67	0

5. Polygonal Load: "Strip 5"

Label	Strip 5
Load Type	Rigid
Area of Load	15.19 m2
Load	284 kPa
Depth	4.65 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
16.57	0
16.57	-10.85
17.97	-10.85
17.97	0

6. Polygonal Load: "Mat"

Label	Mat
Load Type	Rigid
Area of Load	42.315 m2
Load	50 kPa
Depth	4.45 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]
12.67		0
12.67		-10.85
16.57		-10.85
16.57		0

7. Polygonal Load: "Base"

Label	Base
Load Type	Flexible
Area of Load	202.189 m2
Load	2 kPa
Depth	4.75 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
0	0
0	-11.85
8.63	-11.85
8.63	-10.85
17.97	-10.85
17.97	0
8.63	0
8.63	-0.5
5.8	-0.5
5.8	0

8. Polygonal Load: "Mat base"

Label	Mat base
Load Type	Flexible
Area of Load	42.315 m2
Load	4 kPa
Depth	4.65 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X	n] Y [m]
12.67	0
12.67	-10.85
16.57	-10.85
16.57	0

9. Polygonal Load: "Embankment"

Label	Embankment
Load Type	Flexible
Area of Load	23.3445 m2
Load	95 kPa
Depth	4.65 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]
1.4		0
1.4		-11.85
3.37		-11.85
3.37		0

10. Polygonal Load: "Embankment"

Label	Embankment
Load Type	Flexible
Area of Load	23.442 m2
Load	95 kPa
Depth	4.65 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
4.77	0
4.77	-11.85
6.79	-11.85
6.79	-0.5
5.8	-0.5
5.8	0

11. Polygonal Load: "Embankment"

Label	Embankment
Load Type	Flexible
Area of Load	33.5675 m2
Load	95 kPa
Depth	4.65 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]
8.19		-0.5
8.19		-11.85
8.63		-11.85
8.63		-10.85
11.257		-10.85
11.27		0
8.63		0
8.63		-0.5

Excavations

1. Excavation: "Building Excavation "

Depth	4.75 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m] Y [m]
0	0
0	-11.85
8.63	-11.85
8.63	-10.85
17.97	-10.85
17.97	0
8.63	0
8.63	-0.5
5.8	-0.5
5.8	0

Soil Layers

Ground Surface Drained: Yes				
Layer #	Туре	Thickness	[m] Depth [m]	Drained at Bottom
1	S1	3.6	0	Yes
2	W1	7.2	3.6	No
3	R1	2.6	10.8	No
			- 3.6	
			10.8	
			13.4 m	

Soil Properties

Property	S1	W1	R1
Color			
Unit Weight [kN/m3]	16.2	18.4	20.3
Saturated Unit Weight [kN/m3]	18.3	20.7	22.8
ко	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled
Es [kPa]	7540	20800	20800
Esur [kPa]	35000	80000	80000
B-bar	-	-	-
Undrained Su A [kN/m2]	0	0	0
Undrained Su S	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8
Piezo Line ID	1	0	0

Groundwater

Groundwater method Water Unit Weight Generating excess pore pressure above water table

Piezometric Line Entities

ID	Depth (m)
1	1.6 m

Piezometric Lines

9.81 kN/m3

Settle3 Analysis Information

Aritis model-Settlements for strip and mat foundation-Senario with basement

Project Settings

Document Name

Date Created Stress Computation Method Time-dependent Consolidation Analysis Time Units Permeability Units Minimum settlement ratio for subgrade modulus Use average properties to calculate layered stresses Improve consolidation accuracy Ignore negative effective stresses in settlement calculations Aritis model-Settlements for strip and mat foundation-Senario with basement.s3z 12/18/2023, 6:24:31 PM Boussinesq

months meters/month 0.9

Building Excavation

Results

Time taken to compute: 0 seconds

Stage: Stage 1 = 0 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	-0.19407	1.20219
Total Consolidation Settlement	0	0
[cm]	0	0
Virgin Consolidation Settlement	0	0
[cm]	0	0
Recompression Consolidation	0	0
Settlement [cm]		
Immediate Settlement [cm]	-0.1940/	1.20219
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	-72.0489	243.11
Loading Stress XX [kPa]	-398.886	431.126
Loading Stress YY [kPa]	-489.36	469.254
Effective Stress ZZ [kPa]	0	326.79
Effective Stress XX [kPa]	-310.009	514.806
Effective Stress YY [kPa]	-379.518	552.934
Total Stress ZZ [kPa]	0	326.79
Total Stress XX [kPa]	-304.074	514.806
Total Stress YY [kPa]	-370.615	552.934
Modulus of Subgrade Reaction (Total) [kPa/m]	-783705	992224
Modulus of Subgrade Reaction (Immediate) [kPa/m]	-783705	992224
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.000899591	0.0115237
Pore Water Pressure [kPa]	0	84.8565
Excess Pore Water Pressure [kPa]	0	0
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	0.2592	346.956
Over-consolidation Ratio	1	7.03225
Void Ratio	0	0
Permeability [m/mon]	0	0
Coefficient of Consolidation	0	0
Hydroconsolidation Settlement [cm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-0.351281	5.24164
Loads

1. Polygonal Load: "Strip 1"

Label	Strip 1
Load Type	Rigid
Area of Load	16.59 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
0	0
0	-11.85
1.4	-11.85
1.4	0

2. Polygonal Load: "Strip 2"

Label	Strip 2
Load Type	Rigid
Area of Load	16.59 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
3.37	0
3.37	-11.85
4.77	-11.85
4.77	0

3. Polygonal Load: "Strip 3"

Label	Strip 3
Load Type	Rigid
Area of Load	15.89 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]	
6.79		-0.5	
6.79		-11.85	
8.19		-11.85	
8.19		-0.5	

4. Polygonal Load: "Strip 4"

Label	Strip 4
Load Type	Rigid
Area of Load	15.2605 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage $1 = 0$ mon

Coordinates

X [m]	Y [m]
11.27	0
11.257	-10.85
12.67	-10.85
12.67	0

5. Polygonal Load: "Strip 5"

Label	Strip 5
Load Type	Rigid
Area of Load	15.19 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
16.57	0
16.57	-10.85
17.97	-10.85
17.97	0

6. Polygonal Load: "Mat"

Label	Mat
Load Type	Rigid
Area of Load	42.315 m2
Load	50 kPa
Depth	4.45 m
Installation Stage	Stage 1 = 0 mon

Coordinates

Х	[m] Y [m]
12.67	0
12.67	-10.85
16.57	-10.85
16.57	0

7. Polygonal Load: "Base"

Label	Base
Load Type	Flexible
Area of Load	202.189 m2
Load	6.25 kPa
Depth	4.75 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
0	0
0	-11.85
8.63	-11.85
8.63	-10.85
17.97	-10.85
17.97	0
8.63	0
8.63	-0.5
5.8	-0.5
5.8	0

8. Polygonal Load: "Mat base"

Label	Mat base
Load Type	Flexible
Area of Load	42.315 m2
Load	1 kPa
Depth	4.5 m
Installation Stage	Stage $1 = 0$ mon

Coordinates

	X [m]	Y [m]
12.67		0
12.67		-10.85
16.57		-10.85
16.57		0

Excavations

1. Excavation: "Building Excavation "

Depth	4.75 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m] Y [m]
0	0
0	-11.85
8.63	-11.85
8.63	-10.85
17.97	-10.85
17.97	0
8.63	0
8.63	-0.5
5.8	-0.5
5.8	0

Soil Layers

Ground Surface	Drained: Yes			
Layer #	Туре	Thickness	[m] Depth [m]	Drained at Bottom
1	S1	3.6	0	Yes
2	W1	7.2	3.6	No
3	R1	2.6	10.8	No
			- 3.6	
			10.8	
			13.4 m	

Soil Properties

Property	S1	W1	R1
Color			
Unit Weight [kN/m3]	16.2	18.4	20.3
Saturated Unit Weight [kN/m3]	18.3	20.7	22.8
ко	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled
Es [kPa]	7540	20800	20800
Esur [kPa]	35000	80000	80000
B-bar	-	-	-
Undrained Su A [kN/m2]	0	0	0
Undrained Su S	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8
Piezo Line ID	1	0	0

Groundwater

Groundwater method Water Unit Weight Generating excess pore pressure above water table

Piezometric Line Entities

 ID
 Depth (m)

 1
 1.6 m

Piezometric Lines

9.81 kN/m3

Settle3 Analysis Information

Aritis model-Settlements for strip and mat foundation-Senario with basement and plus strips

Project Settings

Document Name

Date Created Stress Computation Method Time-dependent Consolidation Analysis Time Units Permeability Units Minimum settlement ratio for subgrade modulus Use average properties to calculate layered stresses Improve consolidation accuracy Ignore negative effective stresses in settlement calculations Aritis model-Settlements for strip and mat foundation-Senario with basement and plus strips.s3z 12/18/2023, 6:24:31 PM Boussinesq

months meters/month 0.9

Building Excavation

Results

Time taken to compute: 0 seconds

Stage: Stage 1 = 0 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	0	1.4689
Total Consolidation Settlement	0	0
[cm]	0	8
Virgin Consolidation Settlement	0	0
[cm]	0	0
Recompression Consolidation	0	0
Settlement [cm]		
Immediate Settlement [cm]	0	1.4689
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	-71.7085	243.17
Loading Stress XX [kPa]	-718.297	1757.45
Loading Stress YY [kPa]	-2801.23	904.657
Effective Stress ZZ [kPa]	0	326.85
Effective Stress XX [kPa]	-585.717	1841.39
Effective Stress YY [kPa]	-2639.67	988.597
Total Stress ZZ [kPa]	0	326.85
Total Stress XX [kPa]	-548.406	1841.69
Total Stress YY [kPa]	-2556.09	988.894
Modulus of Subgrade Reaction	0	57137 4
(Total) [kPa/m]	0	5/15/.4
Modulus of Subgrade Reaction	0	57137 4
(Immediate) [kPa/m]	0	5715711
Modulus of Subgrade Reaction	0	0
(Consolidation) [kPa/m]		
Total Strain	-0.000895053	0.0115268
Pore Water Pressure [kPa]	0	84.8565
Excess Pore Water Pressure [kPa]	0	0
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	0.2592	347.014
Over-consolidation Ratio	1	6.80864
Void Ratio	0	0
Permeability [m/mon]	0	0
Coefficient of Consolidation [m^2/mon]	0	0
Hydroconsolidation Settlement [cm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-0.483641	5.24245

Loads

1. Polygonal Load: "Strip 1"

Label	Strip 1
Load Type	Rigid
Area of Load	16.59 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
0	0
0	-11.85
1.4	-11.85
1.4	0

2. Polygonal Load: "Strip 2"

Label	Strip 2
Load Type	Rigid
Area of Load	16.59 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
3.37	0
3.37	-11.85
4.77	-11.85
4.77	0

3. Polygonal Load: "Strip 3"

Label	Strip 3
Load Type	Rigid
Area of Load	15.89 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]		Y [m]
6.79		-0.5	
6.79		-11.85	
8.19		-11.85	
8.19		-0.5	

4. Polygonal Load: "Strip 4"

Label	Strip 4
Load Type	Rigid
Area of Load	15.2605 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage $1 = 0$ mon

Coordinates

X [m]	Y [m]
11.27	0
11.257	-10.85
12.67	-10.85
12.67	0

5. Polygonal Load: "Strip 5"

Label	Strip 5
Load Type	Rigid
Area of Load	15.19 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
16.57	0
16.57	-10.85
17.97	-10.85
17.97	0

6. Polygonal Load: "Mat"

Label	Mat
Load Type	Rigid
Area of Load	42.315 m2
Load	50 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]	
12.67		0	
12.67		-10.85	
16.57		-10.85	
16.57		0	

7. Polygonal Load: "Base"

Label	Base
Load Type	Flexible
Area of Load	202.189 m2
Load	6.25 kPa
Depth	4.75 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
0	0
0	-11.85
8.63	-11.85
8.63	-10.85
17.97	-10.85
17.97	0
8.63	0
8.63	-0.5
5.8	-0.5
5.8	0

8. Polygonal Load: "Polygonal Load 8"

Label	Polygonal Load 8
Load Type	Rigid
Area of Load	2.76364 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]
1.37	-2	686
1.37	-4	091
3.337	-4	091
3.337	-2	686

9. Polygonal Load: "Polygonal Load 11"

Polygonal Load 11
Rigid
2.86339 m2
189 kPa
4.5 m
Stage 1 = 0 mon

Coordinates

	X [m]		Y [m]
4.742		-2.686	
4.742		-4.091	
6.78		-4.091	
6.78		-2.686	

10. Polygonal Load: "Polygonal Load 12"

Label	Polygonal Load 12
Load Type	Rigid
Area of Load	4.23604 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	[m] Y [m]
8.185	-4.091
11.277	-4.091
11.277	-2.721
8.185	-2.721

11. Polygonal Load: "Polygonal Load 14"

Label	Polygonal Load 14
Load Type	Rigid
Area of Load	2.93533 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]
4.707	-7.113	
4.742	-7.148	
4.742	-8.553	
6.78	-8.553	
6.78	-7.113	

12. Polygonal Load: "Polygonal Load 13"

Label	Polygonal Load 13
Load Type	Rigid
Area of Load	4.5607 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage $1 = 0$ mon

Coordinates

	X [m]	Y [m]
8.168	-7.113	
8.168	-8.588	
11.26	-8.588	
11.26	-7.113	

13. Polygonal Load: "Polygonal Load 15"

Label	Polygonal Load 15
Load Type	Rigid
Area of Load	2.78352 m2
Load	189 kPa
Depth	4.5 m
Installation Stage	Stage 1 = 0 mon

Coordinates

	X [m]	Y [m]
1.387	-	-7.113
1.422		-7.113
1.422	-	-8.553
3.355	-	-8.553
3.355	-	-7.113

Excavations

1. Excavation: "Building Excavation "

Depth	4.75 m
Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
0	0
0	-11.85
8.63	-11.85
8.63	-10.85
17.97	-10.85
17.97	0
8.63	0
8.63	-0.5
5.8	-0.5
5.8	0

Soil Layers

Ground Surface Drair	ned: Yes			
Layer #	Туре	Thickness [m]	Depth [m]	Drained at Bottom
1	S1	3.6	0	Yes
2	W1	7.2	3.6	No
3	R1	2.6	10.8	No
			- 3.6 - 10.8	

Soil Properties

Property	S1	W1	R1
Color			
Unit Weight [kN/m3]	16.2	18.4	20.3
Saturated Unit Weight [kN/m3]	18.3	20.7	22.8
ко	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled
Es [kPa]	7540	20800	20800
Esur [kPa]	35000	80000	80000
B-bar	-	-	-
Undrained Su A [kN/m2]	0	0	0
Undrained Su S	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8
Piezo Line ID	1	0	0

Groundwater

Groundwater method Water Unit Weight Generating excess pore pressure above water table

Piezometric Line Entities

 ID
 Depth (m)

 1
 1.6 m

Piezometric Lines

9.81 kN/m3

Settle3 Analysis Information

Aritis model-Ground water drop effect

Project Settings

Document Name Date Created Stress Computation Method Time-dependent Consolidation Analysis Time Units Permeability Units Minimum settlement ratio for subgrade modulus Calculate settlement with mean stress Use average properties to calculate layered stresses Improve consolidation accuracy Ignore negative effective stresses in settlement calculations Aritis model-Ground water drop effect.s3z 27/04/2023, 12:50:47 Boussinesq

months meters/year 0.9

Results

Time taken to compute: 0 seconds

Stage: Stage 1 = 0 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	-0.0910527	3.62839
Total Consolidation Settlement [cm]	-0.34308	1.68469
Virgin Consolidation Settlement [cm]	0	1.68469
Recompression Consolidation Settlement [cm]	-0.34308	0
Immediate Settlement [cm]	-0.0631544	2.48082
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	0	95.7
Loading Stress XX [kPa]	-9.64242	84.6377
Loading Stress YY [kPa]	-7.7489	90.5043
Effective Stress ZZ [kPa]	0	284.138
Effective Stress XX [kPa]	0	288.343
Effective Stress YY [kPa]	0	286.665
Mean Stress [kPa]	0	92.7556
Total Stress ZZ [kPa]	0	303.026
Total Stress XX [kPa]	0	307.231
Total Stress YY [kPa]	0	305.553
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.00402207	0.0075283
Pore Water Pressure [kPa]	0	95.7002
Excess Pore Water Pressure [kPa]	0	95.7002
Degree of Consolidation [%]	0	48.0852
Pre-consolidation Stress [kPa]	0.2592	283.653
Over-consolidation Ratio	1	2.32451
Void Ratio	0	0.636556
Permeability [m/y]	0	2.36492
Coefficient of Consolidation [m^2/y]	0	6.49
Hydroconsolidation Settlement [cm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-0.164926	1.24293

Stage: Stage 2 = 600 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	-0.0631544	7.40463
Total Consolidation Settlement	0	4 02291
[cm]	0	4.92381
Virgin Consolidation Settlement	0	4 97381
[cm]	0	4.92301
Recompression Consolidation	-3.21471e-05	0
Settlement [cm]		
Immediate Settlement [cm]	-0.0631544	2.48082
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	0	95.7
Loading Stress XX [kPa]	-9.64242	84.6377
Loading Stress YY [kPa]	-7.7489	90.5043
Effective Stress ZZ [kPa]	0	303.026
Effective Stress XX [kPa]	0	307.231
Effective Stress YY [kPa]	0	305.553
Mean Stress [kPa]	0	92.7556
Total Stress ZZ [kPa]	0	303.026
Total Stress XX [kPa]	0	307.231
Total Stress YY [kPa]	0	305.553
Modulus of Subgrade Reaction	0	0
(Iotal) [kPa/m]		
(Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [kPa/m]		
Total Strain	-0.00031094	0.0225144
Pore Water Pressure [kPa]	-0.00784827	24.9959
Excess Pore Water Pressure [kPa]	-0.00784827	0.00881789
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [kPa]	0.2592	302.594
Over-consolidation Ratio	1	1.00097
Void Ratio	0	0.630008
Permeability [m/y]	0	2.36492
Coefficient of Consolidation [m^2/y]	0	4.42
Hydroconsolidation Settlement	0	0
Average Degree of Consolidation		
[%]	0	0
Undrained Shear Strength	-0.00029374	2.63895

Stage: Stage 3 = 601 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	-3.70744	7.61077
Total Consolidation Settlement	0	4 02291
[cm]	0	4.92301
Virgin Consolidation Settlement	0	4 97381
[cm]	0	1.52501
Recompression Consolidation	-6.04293e-05	0
Settlement [cm]		
Immediate Settlement [cm]	-3.70744	2.68696
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	-78.1198	95.7
Loading Stress XX [kPa]	-67.6397	84.6377
Loading Stress YY [kPa]	-68.0385	90.5043
Effective Stress ZZ [kPa]	0	301.451
Effective Stress XX [kPa]	-52.0508	334.88
Effective Stress YY [kPa]	-52.4121	334.696
Mean Stress [kPa]	0	92.7556
Total Stress ZZ [kPa]	0	333.331
Total Stress XX [kPa]	-41.9658	366.76
Total Stress YY [kPa]	-42.3271	366.576
Modulus of Subgrade Reaction	0	0
(lotal) [kPa/m]	-	
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [kPa/m]	0	0
Total Strain	-0.005224	0.0225144
Pore Water Pressure [kPa]	-0.00716163	31.88
Excess Pore Water Pressure [kPa]	-0.00716163	31.88
Degree of Consolidation [%]	0	95.0518
Pre-consolidation Stress [kPa]	0.2592	302.594
Over-consolidation Ratio	1	14.5412
Void Ratio	0	0.63
Permeability [m/y]	0	2.36492
Coefficient of Consolidation [m^2/y]	0	4.42
Hydroconsolidation Settlement	0	0
Average Degree of Consolidation	0	0
Undrained Shear Strength	-11.2265	2.63895

Stage: Stage 4 = 602 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	0	7.57834
Total Consolidation Settlement	-0 00101803	4 95983
[cm]	-0.00191005	4.93905
Virgin Consolidation Settlement	0	4 96104
[cm]	0	
Recompression Consolidation	-0.0551523	0
Settlement [cm]	<u></u>	-
Immediate Settlement [cm]	0	5.26439
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	0	216.765
Loading Stress XX [kPa]	-17.8234	188.197
Loading Stress YY [kPa]	-16.3278	190.756
Effective Stress ZZ [kPa]	0	359.775
Effective Stress XX [kPa]	0	409.97
Effective Stress YY [kPa]	0	401.129
Mean Stress [kPa]	0	212.644
Total Stress ZZ [kPa]	0	408.17
Total Stress XX [kPa]	0	506.593
Total Stress YY [kPa]	0	509.908
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.00124369	0.0225133
Pore Water Pressure [kPa]	0	205.84
Excess Pore Water Pressure [kPa]	0	205.84
Degree of Consolidation [%]	0	95.7473
Pre-consolidation Stress [kPa]	0.2592	359.303
Over-consolidation Ratio	1	1.49966
Void Ratio	0	0.630756
Permeability [m/y]	0	2.36492
Coefficient of Consolidation [m^2/y]	0	6.49
Hydroconsolidation Settlement [cm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-0.976015	2.85087

Stage: Stage 5 = 603 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	0	7.61065
Total Consolidation Settlement [cm]	-0.001073	4.99196
Virgin Consolidation Settlement [cm]	0	4.99261
Recompression Consolidation Settlement [cm]	-0.0753838	0
Immediate Settlement [cm]	0	5.26439
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	0	216.765
Loading Stress XX [kPa]	-17.8234	188.197
Loading Stress YY [kPa]	-16.3278	190.756
Effective Stress ZZ [kPa]	0	408.17
Effective Stress XX [kPa]	0	506.593
Effective Stress YY [kPa]	0	509.908
Mean Stress [kPa]	0	212.644
Total Stress ZZ [kPa]	0	408.17
Total Stress XX [kPa]	0	506.593
Total Stress YY [kPa]	0	509.908
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.00124369	0.0225134
Pore Water Pressure [kPa]	0	17.9707
Excess Pore Water Pressure [kPa]	-7.76472	17.9707
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [kPa]	0.2592	407.871
Over-consolidation Ratio	1	1.13478
Void Ratio	0	0.630944
Permeability [m/y]	0	2.36492
Coefficient of Consolidation [m ² /y]	0	6.49
Hydroconsolidation Settlement [cm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-0.520656	5.36917

Stage: Stage 6 = 800 mon

Data Type	Minimum	Maximum
Total Settlement [cm]	0	7.59388
Total Consolidation Settlement		4.0750
[cm]	0	4.9752
Virgin Consolidation Settlement	0	F 0000F
[cm]	0	5.00095
Recompression Consolidation	-0.0530757	0
Settlement [cm]	-0.0339/3/	0
Immediate Settlement [cm]	0	5.26439
Secondary Settlement [cm]	0	0
Loading Stress ZZ [kPa]	0	216.765
Loading Stress XX [kPa]	-17.8234	188.197
Loading Stress YY [kPa]	-16.3278	190.756
Effective Stress ZZ [kPa]	0	408.17
Effective Stress XX [kPa]	0	506.593
Effective Stress YY [kPa]	0	509.908
Mean Stress [kPa]	0	212.644
Total Stress ZZ [kPa]	0	408.17
Total Stress XX [kPa]	0	506.593
Total Stress YY [kPa]	0	509.908
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction	-	-
(Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [kPa/m]	0	0
Total Strain	-0.00124369	0.0225148
Pore Water Pressure [kPa]	-1.14204e-06	24.9959
Excess Pore Water Pressure [kPa]	-1.14204e-06	1.2395e-06
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [kPa]	0.259212	407.871
Over-consolidation Ratio	1	1.14097
Void Ratio	0	0.629999
Permeability [m/y]	0	2.36492
Coefficient of Consolidation	0	6 49
[m^2/y]	0	0.49
Hydroconsolidation Settlement	0	0
[cm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-1.69402e-08	5.36917

Excavations

1. Excavation: "Excavation 1"

Bottom Elevation	-1.5 m
Installation Stage	Stage 1 = 0 mon
Load at Bottom of Excavation	120 kPa
Load Installation Stage	Stage 1 = 0 mon

Coordinates

X [m]	Y [m]
0	0
0	-2.36
25	-2.36
25	9.08
9.84	9.08
9.84	12.38
3.44	12.38
3.44	7.6
0	7.6

2. Excavation: "Excavation 2"

Bottom Elevation	-4.75 m
Installation Stage	Stage 3 = 601 mon
Load at Bottom of Excavation	284 kPa
Load Installation Stage	Stage 4 = 602 mon

Coordinates

X [m]	Y [m]
0	10.85
-9.34	10.85
-9.34	10.55
-12.17	10.55
-12.17	10.85
-17.97	10.85
-17.97	-1
-9.34	-1
-9.34	0
0	0

Soil Layers

Ground Surface Drained: Yes				
Layer #	Туре	Thickness [m]	Elevation [m]	Drained at Bottom
1	S1	4.2	-0	No
2	W1	7.2	-4.2	No
3	R1	2.6	-11.4	No
			-4.2 -11.4	

Soil Properties

Property	S1	W1	R1
Color			
Unit Weight [kN/m3]	16.2	18.4	20.3
Saturated Unit Weight [kN/m3]	18.3	20.7	22.8
Poisson's Ratio	0.3	0.375	0.375
ко	1	1	1
Immediate Settlement	Disabled	Enabled	Enabled
E [kPa]	-	20800	20800
Eur [kPa]	-	20800	20800
Primary Consolidation	Enabled	Disabled	Disabled
Material Type	Non-Linear		
Сс	0.053	-	-
Cr	0.018	-	-
e0	0.63	-	-
OCR	1	-	-
Cv [m2/y]	4.42	-	-
Cvr [m2/y]	6.49	-	-
B-bar	1	-	-
Undrained Su A [kN/m2]	0	0	0
Undrained Su S	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8
Piezo Line ID	Staged	0	0

Groundwater

Groundwater method	Piezometric Lines
Water Unit Weight	9.81 kN/m3
Generating excess pore pressure above water table	

Piezometric Line Entities

	ID	Elevation (m)	
1		-1.6 m	
2		-4.75 m	

парартнма Е

ΑΝΑΛΥΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΓΕΩΤΕΧΝΙΚΩΝ ΕΛΕΓΧΩΝ ΕΥΣΤΑΘΕΙΑΣ ΠΡΑΝΩΝ

Stability Analysis for circular failure NW slope Arkoulaki Eleni Date Created: 11/25/2023, 6:11:21 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of NW slope

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical		
Analysis Methods Used			
	Bishop simplified		
	Janbu corrected		
Number of slices:	50		
Tolerance:	0.005		
Maximum number of iterations:	75		
Check malpha < 0.2:	Yes		
Create Interslice boundaries at intersections with water tables and piezos:	Yes		
Initial trial value of FS:	1		
Steffensen Iteration:	Yes		

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1		
Distribution:	Constant	
Magnitude [kPa]:	120	
Orientation:	Normal to boundary	
Load Action:	Variable	
Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	0.595724
Center:	14.607, 0.995
Radius:	6.801
Left Slip Surface Endpoint:	7.879, 0.000
Right Slip Surface Endpoint:	10.000, -4.008
Left Slope Intercept:	7.879 0.000
Right Slope Intercept:	10.000 0.000
Resisting Moment:	294.11 kN-m
Driving Moment:	493.701 kN-m
Total Slice Area:	5.43218 m2
Surface Horizontal Width:	2.12081 m
Surface Average Height:	2.56137 m

Method: janbu corrected

FS	0.715849
Center:	14.607, 0.995
Radius:	6.801
Left Slip Surface Endpoint:	7.879, 0.000
Right Slip Surface Endpoint:	10.000, -4.008
Left Slope Intercept:	7.879 0.000
Right Slope Intercept:	10.000 0.000
Resisting Horizontal Force:	27.254 kN
Driving Horizontal Force:	38.0723 kN
Total Slice Area:	5.43218 m2
Surface Horizontal Width:	2.12081 m
Surface Average Height:	2.56137 m

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

	Number of Valid Surfaces:	8939	
	Number of Invalid Surfaces:	322	
	E	rror Codes	
	Error Code -108 reported for 298 surfaces		
	Error Code -112 reported for 24 surfaces		
Me	thod: janbu corrected		
	Number of Valid Surfaces:	8749	
	Number of Invalid Surfaces:	512	
	F	rror Codes	

Error Code -108 reported for 406 surfaces Error Code -111 reported for 74 surfaces Error Code -112 reported for 32 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = Safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.595724

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0419893	0.085481	-80.5153	S1	6.48	31.5442	1.81096	1.07883	-8.79867	0	-8.79867	2.041	2.041
2	0.0419893	0.241475	-78.5507	S1	6.48	31.5442	2.76128	1.64496	-7.87643	0	-7.87643	5.75745	5.75745
3	0.0419893	0.373262	-76.8803	S1	6.48	31.5442	3.69762	2.20276	-6.96777	0	-6.96777	8.89708	8.89708
4	0.0419893	0.48936	-75.3993	S1	6.48	31.5442	4.62001	2.75225	-6.07263	0	-6.07263	11.663	11.663
5	0.0419893	0.594164	-74.0538	S1	6.48	31.5442	5.52895	3.29373	-5.19054	0	-5.19054	14.1597	14.1597
6	0.0419893	0.690312	-72.8113	S1	6.48	31.5442	6.42519	3.82764	-4.32078	0	-4.32078	16.4502	16.4502
7	0.0419893	0.779537	-71.6509	S1	6.48	31.5442	7.30946	4.35442	-3.46263	0	-3.46263	18.5758	18.5758
8	0.0419893	0.863053	-70.5576	S1	6.48	31.5442	8.1825	4.87451	-2.61539	0	-2.61539	20.5653	20.5653
9	0.0419893	0.94175	-69.5206	S1	6.48	31.5442	9.04496	5.3883	-1.7784	0	-1.7784	22.44	22.44
10	0.0419893	1.0163	-68.5317	S1	6.48	31.5442	9.89748	5.89616	-0.951092	0	-0.951092	24.216	24.216
11	0.0419893	1.08724	-67.5845	S1	6.48	31.5442	10.7406	6.39842	-0.132891	0	-0.132891	25.9058	25.9058
12	0.0419893	1.15498	-66.674	S1	6.48	31.5442	11.5748	6.89539	0.676676	0	0.676676	27.5195	27.5195
13	0.0419893	1.21987	-65.7958	S1	6.48	31.5442	12.4006	7.38733	1.47806	0	1.47806	29.0652	29.0652
14	0.0419893	1.28219	-64.9467	S1	6.48	31.5442	13.2184	7.8745	2.27168	0	2.27168	30.5498	30.5498
15	0.0419893	1.34218	-64.1236	S1	6.48	31.5442	14.0285	8.35713	3.05789	0	3.05789	31.9789	31.9789
16	0.0419893	1.40005	-63.3243	S1	6.48	31.5442	14.8314	8.83543	3.83706	0	3.83706	33.3573	33.3573
17	0.042617	1.48181	-62.541	S1	6.48	31.5442	15.524	9.24799	4.91138	0.402229	4.50915	34.7848	34.3826
18	0.042617	1.54475	-61.7721	S1	6.48	31.5442	16.1029	9.5929	6.26489	1.19388	5.07101	36.2616	35.0678
19	0.042617	1.60571	-61.022	S1	6.48	31.5442	16.6734	9.93275	7.58537	1.96073	5.62464	37.6922	35.7315
20	0.042617	1.66484	-60.2892	S1	6.48	31.5442	17.236	10.2679	8.87509	2.7045	6.17059	39.0797	36.3752
21	0.042617	1.72226	-59.5725	S1	6.48	31.5442	17.7912	10.5986	10.1361	3.42672	6.70937	40.427	37.0003
22	0.042617	1.77807	-58.8707	S1	6.48	31.5442	18.3394	10.9252	11.3702	4.12875	7.24142	41.7366	37.6079
23	0.042617	1.83237	-58.1829	S1	6.48	31.5442	18.8812	11.248	12.5789	4.81179	7.76715	43.0109	38.1991
24	0.042617	1.88525	-57.5082	S1	6.48	31.5442	19.4168	11.567	13.7638	5.47693	8.28688	44.2516	38.7747
25	0.042617	1.93678	-56.8457	S1	6.48	31.5442	19.9466	11.8827	14.9262	6.12516	8.80105	45.4609	39.3357
26	0.042617	1.98704	-56.1948	S1	6.48	31.5442	20.4709	12.195	16.0672	6.75735	9.30988	46.6402	39.8829
27	0.042617	2.03609	-55.5547	S1	6.48	31.5442	20.99	12.5043	17.188	7.37431	9.81365	47.7911	40.4168
28	0.042617	2.08399	-54.9249	S1	6.48	31.5442	21.5042	12.8106	18.2895	7.97679	10.3127	48.9151	40.9383
29	0.042617	2.13078	-54.3048	S1	6.48	31.5442	22.0137	13.1141	19.3726	8.56545	10.8072	50.0133	41.4478
30	0.042617	2.17653	-53.6939	S1	6.48	31.5442	22.5187	13.4149	20.4382	9.14091	11.2973	51.0867	41.9458
31	0.042617	2.22128	-53.0917	S1	6.48	31.5442	23.0194	13.7132	21.4869	9.70374	11.7832	52.1367	42.4329
32	0.042617	2.26506	-52.4979	S1	6.48	31.5442	23.5161	14.0091	22.5195	10.2545	12.265	53.1639	42.9094
33	0.042617	2.30792	-51.912	S1	6.48	31.5442	24.0088	14.3026	23.5368	10.7936	12.7432	54.1696	43.376
34	0.042617	2.34989	-51.3336	S1	6.48	31.5442	24.4978	14.594	24.5394	11.3215	13.2179	55.1545	43.833
35	0.042617	2.39101	-50.7624	S1	6.48	31.5442	24.9833	14.8832	25.5277	11.8387	13.689	56.1192	44.2805
36	0.042617	2.4313	-50.1981	S1	6.48	31.5442	25.4653	15.1703	26.5024	12.3456	14.1568	57.0648	44.7192
37	0.042617	2.4708	-49.6405	S1	6.48	31.5442	25.944	15.4555	27.4638	12.8424	14.6214	57.9916	45.1492
38	0.042617	2.50953	-49.0891	S1	6.48	31.5442	26.4196	15.7388	28.4125	13.3296	15.0829	58.9004	45.5708
39	0.042617	2.54752	-48.5438	S1	6.48	31.5442	26.8921	16.0203	29.3488	13.8075	15.5413	59.7917	45.9842
40	0.042617	2.58479	-48.0043	S1	6.48	31.5442	27.3617	16.3	30.2734	14.2763	15.9971	60.6663	46.39
41	0.042617	2.62137	-47.4704	S1	6.48	31.5442	27.8285	16.5781	31.1865	14.7364	16.4501	61.5244	46.788
42	0.042617	2.65727	-46.9419	S1	6.48	31.5442	28.2926	16.8546	32.0885	15.188	16.9005	62.3669	47.1789
43	0.042617	2.69252	-46.4185	S1	6.48	31.5442	28.7541	17.1295	32.9798	15.6313	17.3485	63.194	47.5627
44	0.042617	2.72713	-45.9001	S1	6.48	31.5442	29.213	17.4029	33.8605	16.0667	17.7938	64.0061	47.9394
45	0.042617	2.76112	-45.3865	S1	6.48	31.5442	29.6696	17.6749	34.7311	16.4943	18.2368	64.8037	48.3094
46	0.042617	2.79451	-44.8775	S1	6.48	31.5442	30.1238	17.9455	35.5919	16.9143	18.6776	65.5873	48.673
47	0.042617	2.82732	-44.373	S1	6.48	31.5442	30.5757	18.2147	36.4432	17.3269	19.1163	66.357	49.0301
48	0.042617	2.85956	-43.8728	S1	6.48	31.5442	31.0254	18.4826	37.285	17.7324	19.5526	67.1132	49.3808
49	0.042617	2.89123	-43.3768	S1	6.48	31.5442	31.4731	18.7493	38.1181	18.1309	19.9872	67.8566	49.7257
50	0.042617	2.92237	-42.8848	S1	6.48	31.5442	31.9188	19.0148	38.9421	18.5226	20.4195	68.5871	50.0645
								-		-			

Global Minimum Query (janbu corrected) - Safety Factor: 0.715849

Slice	Width	Weight	Angle of Slice Base	Base	Base Cohesion	Base Friction	Shear Stress	Shear Strength	Base Normal	Pore Pressure	Effective Normal	Base Vertical	Effective Vertical
Number	[m]	[kN]	[deg]	Material	[kPa]	Angle [deg]	[kPa]	[kPa]	Stress [kPa]	[kPa]	Stress [kPa]	Stress [kPa]	Stress [kPa]
1	0.0419893	0.085481	-80.5153	S1	6.48	31.5442	1.70683	1.22183	-8.56572	0	-8.56572	1.65067	1.65067
2	0.0419893	0.241475	-78.5507	S1	6.48	31.5442	2.59261	1.85592	-7.5328	0	-7.5328	5.2683	5.2683
3	0.0419893	0.373262	-76.8803	S1	6.48	31.5442	3.46104	2.47758	-6.52006	0	-6.52006	8.32973	8.32973
4	0.0419893	0.48936	-75.3993	S1	6.48	31.5442	4.31296	3.08743	-5.52661	0	-5.52661	11.0303	11.0303
5	0.0419893	0.594164	-74.0538	S1	6.48	31.5442	5.14947	3.68624	-4.55112	0	-4.55112	13.471	13.471
6	0.0419893	0.690312	-72.8113	S1	6.48	31.5442	5.97165	4.2748	-3.59234	0	-3.59234	15.7125	15.7125
7	0.0419893	0.779537	-71.6509	S1	6.48	31.5442	6.78051	4.85382	-2.64909	0	-2.64909	17.7945	17.7945
8	0.0419893	0.863053	-70.5576	S1	6.48	31.5442	7.57698	5.42397	-1.72031	0	-1.72031	19.745	19.745
9	0.0419893	0.94175	-69.5206	S1	6.48	31.5442	8.36186	5.98583	-0.805023	0	-0.805023	21.5843	21.5843
10	0.0419893	1.0163	-68.5317	S1	6.48	31.5442	9.13589	6.53992	0.0976055	0	0.0976055	23.3281	23.3281
11	0.0419893	1.08724	-67.5845	S1	6.48	31.5442	9.89972	7.08671	0.988343	0	0.988343	24.9885	24.9885
12	0.0419893	1.15498	-66.674	S1	6.48	31.5442	10.654	7.62662	1.86788	0	1.86788	26.5751	26.5751
13	0.0419893	1.21987	-65.7958	S1	6.48	31.5442	11.3991	8.16002	2.73681	0	2.73681	28.0959	28.0959
14	0.0419893	1.28219	-64.9467	S1	6.48	31.5442	12.1356	8.68726	3.59571	0	3.59571	29.5575	29.5575
15	0.0419893	1.34218	-64.1236	S1	6.48	31.5442	12.864	9.20865	4.44506	0	4.44506	30.9652	30.9652
16	0.0419893	1.40005	-63.3243	S1	6.48	31.5442	13.5845	9.72447	5.28535	0	5.28535	32.3238	32.3238
17	0.042617	1.48181	-62.541	S1	6.48	31.5442	14.203	10.1672	6.40874	0.402229	6.00651	33.7401	33.3379
18	0.042617	1.54475	-61.7721	S1	6.48	31.5442	14.7166	10.5349	7.79942	1.19388	6.60554	35.2137	34.0199
19	0.042617	1.60571	-61.022	S1	6.48	31.5442	15.222	10.8966	9.15556	1.96073	7.19483	36.6416	34.6808
20	0.042617	1.66484	-60.2892	S1	6.48	31.5442	15.7195	11.2528	10.4795	2.7045	7.77505	38.0267	35.3222
21	0.042617	1.72226	-59.5725	S1	6.48	31.5442	16.2098	11.6038	11.7735	3.42672	8.34679	39.372	35.9453
22	0.042617	1.77807	-58.8707	S1	6.48	31.5442	16.6932	11.9498	13.0393	4.12875	8.91058	40.6801	36.5513
23	0.042617	1.83237	-58.1829	S1	6.48	31.5442	17.1703	12.2913	14.2786	4.81179	9.46678	41.9529	37.1411
24	0.042617	1.88525	-57.5082	S1	6.48	31.5442	17.6412	12.6284	15.4929	5.47693	10.016	43.1928	37.7159
25	0.042617	1.93678	-56.8457	S1	6.48	31.5442	18.1064	12.9614	16.6837	6.12516	10.5585	44.4014	38.2762
26	0.042617	1.98704	-56.1948	S1	6.48	31.5442	18.5661	13.2905	17.852	6.75735	11.0947	45.5803	38.8229
27	0.042617	2.03609	-55.5547	S1	6.48	31.5442	19.0207	13.616	18.9991	7.37431	11.6248	46.7311	39.3567
28	0.042617	2.08399	-54.9249	S1	6.48	31.5442	19.4704	13.9379	20.1259	7.97679	12.1491	47.855	39.8782
29	0.042617	2.13078	-54.3048	S1	6.48	31.5442	19.9154	14.2564	21.2334	8.56545	12.6679	48.9534	40.388
30	0.042617	2.17653	-53.6939	S1	6.48	31.5442	20.3559	14.5717	22.3225	9.14091	13.1816	50.0275	40.8866
31	0.042617	2.22128	-53.0917	S1	6.48	31.5442	20.7921	14.884	23.3941	9.70374	13.6903	51.0782	41.3744
32	0.042617	2.26506	-52.4979	S1	6.48	31.5442	21.2242	15.1933	24.4488	10.2545	14.1943	52.1066	41.8521
33	0.042617	2.30792	-51.912	S1	6.48	31.5442	21.6524	15.4999	25.4872	10.7936	14.6936	53.1134	42.3198
34	0.042617	2.34989	-51.3336	S1	6.48	31.5442	22.0769	15.8037	26.5101	11.3215	15.1886	54.0996	42.7781
35	0.042617	2.39101	-50.7624	S1	6.48	31.5442	22.4977	16.105	27.518	11.8387	15.6793	55.066	43.2273
36	0.042617	2.4313	-50.1981	S1	6.48	31.5442	22.915	16.4037	28.5116	12.3456	16.166	56.0132	43.6676
37	0.042617	2.4708	-49.6405	S1	6.48	31.5442	23.3291	16.7001	29.4912	12.8424	16.6488	56.942	44.0996
38	0.042617	2.50953	-49.0891	SI	6.48	31.5442	23.7398	16.9941	30.4575	13.3296	17.1279	57.8529	44.5233
39	0.042617	2.54752	-48.5438	S1	6.48	31.5442	24.1476	17.286	31.4108	13.8075	17.6033	58.7467	44.9392
40	0.042617	2.58479	-48.0043	SI	6.48	31.5442	24.5522	17.5757	32.3514	14.2763	18.0751	59.6236	45.3473
41	0.042617	2.62137	-4'/.4'/04	SI	6.48	31.5442	24.954	17.8633	33.2802	14.7364	18.5438	60.4845	45.7481
42	0.042617	2.65727	-46.9419	SI	6.48	31.5442	25.353	18.1489	34.1971	15.188	19.0091	61.3295	46.1415
43	0.042617	2.69252	-46.4185	SI	6.48	31.5442	25.7493	18.4326	35.1026	15.6313	19.4713	62.1595	46.5282
44	0.042617	2.72713	-45.9001	SI	6.48	31.5442	26.1431	18.7145	35.9969	16.0667	19.9302	62.9746	46.9079
45	0.042617	2.76112	-45.3865	SI	6.48	31.5442	26.5342	18.9945	36.8807	16.4943	20.3864	63.7753	47.281
46	0.042617	2.79451	-44.8775	SI	6.48	31.5442	26.9229	19.2727	37.754	16.9143	20.8397	64.562	47.6477
47	0.042617	2.82732	-44.373	SI	6.48	31.5442	27.3093	19.5493	38.6173	17.3269	21.2904	65.3353	48.0084
48	0.042617	2.85956	-43.8728	SI	6.48	31.5442	27.6933	19.8242	39.4707	17.7324	21.7383	66.0952	48.3628
49	0.042617	2.89123	-43.3768	S1	6.48	31.5442	28.0752	20.0976	40.3143	18.1309	22.1834	66.8422	48.7113
50	0.042617	2.92237	-42.8848	S1	6.48	31.5442	28.4549	20.3694	41.1489	18.5226	22.6263	67.5767	49.0541

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.595724

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		7.87919	0	0	0	0
2		7.92118	-0.251331	-2.28739	0	0
3		7.96317	-0.458654	-4.03624	0	0
4		8.00516	-0.638812	-5.44672	0	0
5		8.04715	-0.800003	-6.61947	0	0
6		8.08914	-0.946957	-7.61428	0	0
7		8.13113	-1.0827	-8.47045	0	0
8		8.17312	-1.2093	-9.21559	0	0
9		8.21511	-1.32825	-9.87011	0	0
10		8.2571	-1.44068	-10.4497	0	0
11		8.29909	-1.54745	-10.9666	0	0
12		8.34107	-1.64924	-11.4309	0	0
13		8.38306	-1.74662	-11.8508	0	0
14		8.42505	-1.84003	-12.2332	0	0
15		8.46704	-1.92986	-12.5839	0	0
16		8.50903	-2.01643	-12.9079	0	0
17		8.55102	-2.1	-13.2097	0	0
18		8.59364	-2.18201	-13.4682	0	0
19		8.63626	-2.2614	-13.6568	0	0
20		8.67887	-2.33835	-13.7833	0	0
21		8.72149	-2.41303	-13.8546	0	0
22		8.76411	-2.48559	-13.877	0	0
23		8.80672	-2.55616	-13.8559	0	0
24		8.84934	-2.62485	-13.7961	0	0
25		8.89196	-2.69176	-13.7022	0	0
26		8.93457	-2.757	-13.578	0	0
27		8.97719	-2.82065	-13.4274	0	0
28		9.01981	-2.88278	-13.2535	0	0
29		9.06243	-2.94348	-13.0595	0	0
30		9.10504	-3.0028	-12.848	0	0
31		9.14766	-3.0608	-12.6218	0	0
32		9.19028	-3.11754	-12.3831	0	0
33		9.23289	-3.17308	-12.1341	0	0
34		9.27551	-3.22745	-11.877	0	0
35		9.31813	-3.28071	-11.6136	0	0
36		9.36074	-3.3329	-11.3457	0	0
37		9.40336	-3.38404	-11.0749	0	0
38		9.44598	-3.43419	-10.8028	0	0
39		9.4886	-3.48337	-10.5309	0	0
40		9.53121	-3.53161	-10.2605	0	0
41		9.57383	-3.57895	-9.99288	0	0
42		9.61645	-3.62541	-9.72935	0	0
43		9.65906	-3.67102	-9.47101	0	0
44		9.70168	-3.7158	-9.21896	0	0
45		9.7443	-3.75978	-8.97424	0	0
46		9.78691	-3.80297	-8.73782	0	0
47		9.82953	-3.84541	-8.51063	0	0
48		9.87215	-3.8871	-8.29358	0	0
49		9.91477	-3.92808	-8.08749	0	0
50		9.95738	-3.96834	-7.89319	0	0
51		10	-4.00793	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 0.715849

Slice Numbe	r X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1	7.87919	0	0	0	0
2	7.92118	-0.251331	-2.2272	0	0
3	7.96317	-0.458654	-3.90189	0	0
4	8.00516	-0.638812	-5.22733	0	0
5	8.04715	-0.800003	-6.3061	0	0
6	8.08914	-0.946957	-7.19928	0	0
7	8.13113	-1.0827	-7.9471	0	0
8	8.17312	-1.2093	-8.57792	0	0
9	8.21511	-1.32825	-9.1127	0	0
10	8.2571	-1.44068	-9.56755	0	0
11	8.29909	-1.54745	-9.9552	0	0
12	8.34107	-1.64924	-10.2859	0	0
13	8.38306	-1.74662	-10.5683	0	0
14	8.42505	-1.84003	-10.8093	0	0
15	8.46704	-1.92986	-11.0151	0	0
16	8.50903	-2.01643	-11.1908	0	0
17	8.55102	-2.1	-11.341	0	0
18	8.59364	-2.18201	-11.4435	0	0
19	8.63626	-2.2614	-11.4752	0	0
20	8.67887	-2.33835	-11.4438	0	0
21	8.72149	-2.41303	-11.3563	0	0
22	8.76411	-2.48559	-11.2189	0	0
23	8.80672	-2.55616	-11.037	0	0
24	8.84934	-2.62485	-10.8156	0	0
25	8.89196	-2.69176	-10.559	0	0
26	8.93457	-2.757	-10.2713	0	0
27	8.97719	-2.82065	-9.95611	0	0
28	9.01981	-2.88278	-9.61677	0	0
29	9.06243	-2.94348	-9.2563	0	0
30	9.10504	-3.0028	-8.8775	0	0
31	9.14766	-3.0608	-8.48293	0	0
32	9.19028	-3.11754	-8.07497	0	0
33	9.23289	-3.17308	-7.65581	0	0
34	9.27551	-3.22745	-7.22749	0	0
35	9.31813	-3.28071	-6.79191	0	0
36	9.36074	-3.3329	-6.35085	0	0
37	9.40336	-3.38404	-5.90594	0	0
38	9.44598	-3.43419	-5.45875	0	0
39	9.4886	-3.48337	-5.01073	0	0
40	9.53121	-3.53161	-4.56324	0	0
41	9.57383	-3.57895	-4.11756	0	0
42	9.61645	-3.62541	-3.67492	0	0
43	9.65906	-3.67102	-3.23645	0	0
44	9.70168	-3.7158	-2.80325	0	0
45	9.7443	-3.75978	-2.37632	0	0
46	9.78691	-3.80297	-1.95666	0	0
47	9.82953	-3.84541	-1.54519	0	0
48	9.87215	-3.8871	-1.14278	0	0
49	9.91477	-3.92808	-0.75027	0	0
50	9.95738	-3.96834	-0.368464	0	0
51	10	-4.00793	0	0	0

Stability Analysis for circular failure NE slope Arkoulaki Eleni Date Created: 11/25/2023, 6:52:33 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of NE slope

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1			
Distribution:	Constant		
Magnitude [kPa]:	120		
Orientation:	Normal to boundary		
Load Action:	Variable		
Orientation: Load Action:	Normal to boundary Variable		

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	1
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	0.388741
Center:	-15.530, 0.995
Radius:	7.391
Left Slip Surface Endpoint:	-10.000, -3.909
Right Slip Surface Endpoint:	-8.206, 0.000
Left Slope Intercept:	-10.000 0.000
Right Slope Intercept:	-8.206 0.000
Resisting Moment:	704.382 kN-m
Driving Moment:	1811.96 kN-m
Total Slice Area:	4.42754 m2
Surface Horizontal Width:	1.79413 m
Surface Average Height:	2.46779 m

Method: janbu corrected

FS	0.374328
Center:	-16.034, 0.995
Radius:	7.334
Left Slip Surface Endpoint:	-10.000, -3.173
Right Slip Surface Endpoint:	-8.768, 0.000
Left Slope Intercept:	-10.000 0.000
Right Slope Intercept:	-8.768 0.000
Resisting Horizontal Force:	19.3004 kN
Driving Horizontal Force:	51.5601 kN
Total Slice Area:	2.40925 m2
Surface Horizontal Width:	1.23165 m
Surface Average Height:	1.95612 m

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Math	od: janbu corrected		
Er Er Er	ror Code -106 reported for 313 surfaces ror Code -108 reported for 798 surfaces ror Code -1000 reported for 3885 surfaces		
		Error Codes	
N	umber of Invalid Surfaces:	4996	
N	umber of Valid Surfaces:	4265	

Number of Valid Surfaces:	3517	
Number of Invalid Surfaces:	5744	
	Error Codes	

Error Code -106 reported for 300 surfaces Error Code -108 reported for 1087 surfaces Error Code -111 reported for 472 surfaces Error Code -1000 reported for 3885 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = Safety factor equation did not converge

-1000 = No valid slip surface is generated

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.388741

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0358267	2.39179	48.6418	S1	6.48	31.5442	33.9321	13.1908	28.4829	17.5508	10.9321	67.0279	49.4771
2	0.0358267	2.36491	49.0638	S1	6.48	31.5442	33.4139	12.9894	27.7525	17.1485	10.604	66.2775	49.129
3	0.0358267	2.33762	49.4895	S1	6.48	31.5442	32.8945	12.7875	27.0154	16.7403	10.2751	65.5157	48.7754
4	0.0358267	2.30992	49.919	S1	6.48	31.5442	32.3739	12.5851	26.271	16.3258	9.94522	64.7421	48.4163
5	0.0358267	2.28179	50.3523	S1	6.48	31.5442	31.852	12.3822	25.5197	15.9049	9.61476	63.9568	48.0519
6	0.0358267	2.25322	50.7896	S1	6.48	31.5442	31.3286	12.1787	24.7609	15.4774	9.28347	63.1593	47.6819
7	0.0358267	2.2242	51.231	S1	6.48	31.5442	30.8038	11.9747	23.9943	15.0432	8.9511	62.349	47.3058
8	0.0358267	2.19472	51.6767	S1	6.48	31.5442	30.2775	11.7701	23.2198	14.6021	8.61767	61.5256	46.9235
9	0.0358267	2.16476	52.1268	S1	6.48	31.5442	29.7495	11.5649	22.4372	14.1538	8.28338	60.689	46.5352
10	0.0358267	2.13431	52.5815	S1	6.48	31.5442	29.2199	11.359	21.6461	13.6982	7.94793	59.8386	46.1404
11	0.0358267	2.10335	53.041	S1	6.48	31.5442	28.6885	11.1524	20.8464	13.2349	7.61154	58.9741	45.7392
12	0.0358267	2.07187	53.5055	S1	6.48	31.5442	28.1552	10.9451	20.0377	12.7638	7.27386	58.0948	45.331
13	0.0358267	2.03984	53.975	S1	6.48	31.5442	27.62	10.737	19.2194	12.2847	6.93473	57.2003	44.9156
14	0.0358267	2.00726	54.45	S1	6.48	31.5442	38.4331	14.9405	25.5795	11.7971	13.7824	79.3613	67.5642
15	0.0358267	1.97409	54.9305	S1	6.48	31.5442	102.721	39.932	65.7952	11.3009	54.4943	212.118	200.818
16	0.0358267	1.94033	55.4168	S1	6.48	31.5442	101.23	39.3523	64.3457	10.7957	53.55	211.179	200.384
17	0.0358267	1.90594	55.9092	S1	6.48	31.5442	99.7253	38.7673	62.8782	10.2811	52.5971	210.223	199.942
18	0.0358267	1.8709	56.4079	S1	6.48	31.5442	98.2063	38.1768	61.392	9.75691	51.6351	209.249	199.492
19	0.0358267	1.8352	56.9133	S1	6.48	31.5442	96.6718	37.5803	59.886	9.22263	50.6634	208.255	199.033
20	0.0358267	1.79879	57.4256	S1	6.48	31.5442	95.1214	36.9776	58.3594	8.67787	49.6816	207.243	198.565
21	0.0358267	1.76165	57.9451	S1	6.48	31.5442	93.5538	36.3682	56.811	8.12219	48.6888	206.21	198.088
22	0.0358267	1.72375	58.4723	S1	6.48	31.5442	91.9682	35.7518	55.2398	7.55511	47.6847	205.156	197.601
23	0.0358267	1.68506	59.0076	S1	6.48	31.5442	90.3632	35.1279	53.6444	6.9761	46.6683	204.079	197.103
24	0.0358267	1.64553	59.5513	S1	6.48	31.5442	88.738	34.4961	52.0237	6.38461	45.6391	202.98	196.595
25	0.0358267	1.60512	60.1039	S1	6.48	31.5442	87.0909	33.8558	50.3759	5.78002	44.5959	201.855	196.075
26	0.0358267	1.56379	60.6659	S1	6.48	31.5442	85.4204	33.2064	48.6998	5.16165	43.5382	200.705	195.544
27	0.0358267	1.5215	61.238	S1	6.48	31.5442	83.7252	32.5474	46.9935	4.52879	42.4647	199.528	195
28	0.0358267	1.47818	61.8206	S1	6.48	31.5442	82.0034	31.8781	45.255	3.88062	41.3743	198.323	194.442
29	0.0358267	1.43378	62.4145	S1	6.48	31.5442	80.2532	31.1977	43.4822	3.21625	40.266	197.087	193.871
30	0.0358267	1.38823	63.0205	S1	6.48	31.5442	78.4723	30.5054	41.6729	2.53471	39.1382	195.82	193.285
31	0.0358267	1.34146	63.6393	S1	6.48	31.5442	76.6585	29.8003	39.8244	1.8349	37.9895	194.518	192.684
32	0.0358267	1.29338	64.2719	S1	6.48	31.5442	74.8087	29.0812	37.9337	1.1156	36.8181	193.18	192.064
33	0.0358267	1.24392	64.9194	S1	6.48	31.5442	72.9203	28.3471	35.9977	0.375445	35.6222	191.803	191.428
34	0.0359912	1.20131	65.5845	S1	6.48	31.5442	70.8768	27.5527	34.3281	0	34.3281	190.463	190.463
35	0.0359912	1.15432	66.2686	S1	6.48	31.5442	68.6789	26.6983	32.9362	0	32.9362	189.158	189.158
36	0.0359912	1.10577	66.9718	S1	6.48	31.5442	66.4339	25.8256	31.5146	0	31.5146	187.81	187.81
37	0.0359912	1.05551	67.696	S1	6.48	31.5442	64.1378	24.933	30.0605	0	30.0605	186.414	186.414
38	0.0359912	1.00337	68.4433	S1	6.48	31.5442	61.7846	24.0182	28.5703	0	28.5703	184.965	184.965
39	0.0359912	0.949168	69.2161	S1	6.48	31.5442	59.3681	23.0788	27.0399	0	27.0399	183.46	183.46
40	0.0359912	0.892668	70.0174	S1	6.48	31.5442	56.8803	22.1117	25.4645	0	25.4645	181.89	181.89
41	0.0359912	0.833596	70.8509	S1	6.48	31.5442	54.312	21.1133	23.8381	0	23.8381	180.248	180.248
42	0.0359912	0.771614	71.7209	S1	6.48	31.5442	51.6519	20.0792	22.1535	0	22.1535	178.526	178.526
43	0.0359912	0.7063	72.6331	S1	6.48	31.5442	48.8852	19.0037	20.4015	0	20.4015	176.711	176.711
44	0.0359912	0.637113	73.5943	S1	6.48	31.5442	45.9939	17.8797	18.5706	0	18.5706	174.787	174.787
45	0.0359912	0.563347	74.614	S1	6.48	31.5442	42.9538	16.6979	16.6452	0	16.6452	172.737	172.737
46	0.0359912	0.48404	75.7048	S1	6.48	31.5442	39.7316	15.4453	14.6047	0	14.6047	170.533	170.533
47	0.0359912	0.397828	76.8846	S 1	6.48	31.5442	36.2806	14.1038	12.4193	0	12.4193	168.136	168.136
48	0.0359912	0.302656	78.1804	S1	6.48	31.5442	32.5298	12.6457	10.0441	0	10.0441	165.49	165.49
49	0.0359912	0.19514	79.637	S1	6.48	31.5442	28.3618	11.0254	7.40461	0	7.40461	162.5	162.5
50	0.0359912	0.0688811	81.3389	S1	6.48	31.5442	23.5541	9.15644	4.36002	0	4.36002	158.989	158.989

Global Minimum Query (janbu corrected) - Safety Factor: 0.374328

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0245778	1.3107	55.5368	S1	6.48	31.5442	25.4603	9.53052	15.32	10.3506	4.96937	52.416	42.0654
2	0.0245778	1.29449	55.8776	S1	6.48	31.5442	25.0858	9.3903	14.738	9.99703	4.74097	51.7583	41.7613
3	0.0245778	1.27807	56.2214	S1	6.48	31.5442	24.7101	9.24968	14.1508	9.63889	4.51189	51.0922	41.4533
4	0.0245778	1.26143	56.5684	S1	6.48	31.5442	24.3333	9.10864	13.5582	9.27606	4.28214	50.4173	41.1413
5	0.0245778	1.24457	56.9186	S1	6.48	31.5442	23.9554	8.96717	12.9601	8.90839	4.05167	49.7336	40.8252
6	0.0245778	1.22749	57.272	S1	6.48	31.5442	23.5762	8.82525	12.3562	8.53575	3.82048	49.0406	40.5049
7	0.0245778	1.21017	57.6289	S1	6.48	31.5442	23.1959	8.68286	11.7465	8.15799	3.58853	48.3382	40.1802
8	0.0245778	1.19261	57.9894	S1	6.48	31.5442	22.8142	8.53999	11.1308	7.77497	3.35578	47.6261	39.8511
9	0.0245778	1.1748	58.3535	S1	6.48	31.5442	22.4312	8.39662	10.5087	7.38652	3.12223	46.9039	39.5174
10	0.0245778	1.15673	58.7214	S1	6.48	31.5442	22.0468	8.25272	9.88028	6.99247	2.88781	46.1714	39.1789
11	0.0245778	1.1384	59.0933	S1	6.48	31.5442	21.6609	8.10827	9.24516	6.59265	2.65251	45.4282	38.8356
12	0.0245778	1.1198	59.4692	S1	6.48	31.5442	21.2735	7.96326	8.60314	6.18687	2.41627	44.674	38.4871
13	0.0245778	1.10091	59.8493	S1	6.48	31.5442	20.8845	7.81766	7.954	5.77491	2.17909	43.9084	38.1335
14	0.0245778	1.08173	60.2339	S1	6.48	31.5442	20.4939	7.67144	7.29748	5.35658	1.9409	43.131	37.7744
15	0.0245778	1.06225	60.623	S1	6.48	31.5442	20.1016	7.52459	6.6333	4.93164	1.70166	42.3414	37.4098
16	0.0245778	1.04245	61.0169	S1	6.48	31.5442	19.7075	7.37706	5.9612	4.49986	1.46134	41.5391	37.0393
17	0.0245778	1.02233	61.4157	S1	6.48	31.5442	19.3115	7.22883	5.28085	4.06097	1.21988	40.7237	36.6627
18	0.0245778	1.00187	61.8197	S1	6.48	31.5442	18.9136	7.07988	4.59191	3.61469	0.977219	39.8947	36.28
19	0.0245778	0.981052	62.229	S1	6.48	31.5442	18.5136	6.93016	3.89407	3.16074	0.733328	39.0514	35.8907
20	0.0245778	0.959873	62.644	S1	6.48	31.5442	18.1115	6.77965	3.18694	2.6988	0.488144	38.1934	35.4946
21	0.0245778	0.938311	63.0649	S1	6.48	31.5442	65.6387	24.5704	31.6983	2.22853	29.4697	160.883	158.655
22	0.0245778	0.916351	63.492	S1	6.48	31.5442	75.857	28.3954	37.4504	1.74955	35.7009	189.543	187.793
23	0.0245778	0.893974	63.9255	S1	6.48	31.5442	74.5918	27.9218	36.1909	1.26149	34.9294	188.624	187.362
24	0.0245778	0.87116	64.3659	S1	6.48	31.5442	73.3095	27.4418	34.9115	0.763895	34.1476	187.687	186.923
25	0.0245778	0.847889	64.8134	S1	6.48	31.5442	72.0093	26.9551	33.6109	0.256317	33.3546	186.732	186.475
26	0.0246882	0.829174	65.2696	S1	6.48	31.5442	70.6137	26.4327	32.5037	0	32.5037	185.814	185.814
27	0.0246882	0.807503	65.7348	S1	6.48	31.5442	69.1241	25.8751	31.5952	0	31.5952	184.936	184.936
28	0.0246882	0.785353	66.2085	S1	6.48	31.5442	67.6142	25.3099	30.6746	0	30.6746	184.038	184.038
29	0.0246882	0.762696	66.6913	S1	6.48	31.5442	66.083	24.7367	29.7408	0	29.7408	183.12	183.12
30	0.0246882	0.739502	67.1838	S1	6.48	31.5442	64.5292	24.1551	28.7932	0	28.7932	182.181	182.181
31	0.0246882	0.715737	67.6865	S1	6.48	31.5442	62.9509	23.5643	27.8308	0	27.8308	181.218	181.218
32	0.0246882	0.691363	68.2002	S1	6.48	31.5442	61.3465	22.9637	26.8524	0	26.8524	180.231	180.231
33	0.0246882	0.66634	68.7257	S1	6.48	31.5442	59.7137	22.3525	25.8568	0	25.8568	179.218	179.218
34	0.0246882	0.64062	69.2639	S1	6.48	31.5442	58.0504	21.7299	24.8426	0	24.8426	178.176	178.176
35	0.0246882	0.61415	69.8158	S1	6.48	31.5442	56.3543	21.095	23.8083	0	23.8083	177.105	177.105
36	0.0246882	0.586868	70.3826	S1	6.48	31.5442	54.6221	20.4466	22.752	0	22.752	176.001	176.001
37	0.0246882	0.558707	70.9656	S1	6.48	31.5442	52.8507	19.7835	21.6719	0	21.6719	174.862	174.862
38	0.0246882	0.529585	71.5663	S1	6.48	31.5442	51.036	19.1042	20.5652	0	20.5652	173.684	173.684
39	0.0246882	0.499408	72.1865	S1	6.48	31.5442	49.1737	18.4071	19.4296	0	19.4296	172.464	172.464
40	0.0246882	0.468067	72.8284	S1	6.48	31.5442	47.2583	17.6901	18.2616	0	18.2616	171.197	171.197
41	0.0246882	0.435428	73.4946	S1	6.48	31.5442	45.2833	16.9508	17.0573	0	17.0573	169.878	169.878
42	0.0246882	0.401334	74.188	S1	6.48	31.5442	43.2411	16.1863	15.812	0	15.812	168.5	168.5
43	0.0246882	0.365588	74.9124	S1	6.48	31.5442	41.122	15.3931	14.5197	0	14.5197	167.056	167.056
44	0.0246882	0.327944	75.6727	S1	6.48	31.5442	38.9141	14.5666	13.1733	0	13.1733	165.536	165.536
45	0.0246882	0.28809	76.4748	S1	6.48	31.5442	36.6019	13.7011	11.7634	0	11.7634	163.926	163.926
46	0.0246882	0.245611	77.3267	S1	6.48	31.5442	34.1652	12.789	10.2776	0	10.2776	162.211	162.211
47	0.0246882	0.199942	78.2395	S1	6.48	31.5442	31.5762	11.8198	8.69881	0	8.69881	160.368	160.368
48	0.0246882	0.150277	79.2287	S1	6.48	31.5442	28.7949	10.7788	7.0028	0	7.0028	158.364	158.364
49	0.0246882	0.0953869	80.3183	S1	6.48	31.5442	25.7608	9.64299	5.15261	0	5.15261	156.149	156.149
50	0.0246882	0.0332243	81.5479	S1	6.48	31.5442	22.3721	8.3745	3.0862	0	3.0862	153.642	153.642

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.388741

Slice	e Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-10	-3.90942	0	0	0
2		-9.96417	-3.86872	0.0480536	0	0
3		-9.92835	-3.82742	0.0904776	0	0
4		-9.89252	-3.78548	0.127979	0	0
5		-9.85669	-3.74291	0.161297	0	0
6		-9.82087	-3.69968	0.191206	0	0
7		-9.78504	-3.65577	0.21852	0	0
8		-9.74921	-3.61116	0.244093	0	0
9		-9.71339	-3.56583	0.268821	0	0
10		-9.67756	-3.51976	0.29365	0	0
11		-9.64173	-3.47294	0.319578	0	0
12		-9.60591	-3.42532	0.347657	0	0
13		-9.57008	-3.3769	0.378999	0	0
14		-9.53425	-3.32763	0.414786	0	0
15		-9.49843	-3.27749	0.499727	0	0
16		-9.4626	-3.22646	0.796522	0	0
17		-9.42677	-3.17449	1.05424	0	0
18		-9.39095	-3.12156	1.27383	0	0
19		-9.35512	-3.06762	1.45632	0	0
20		-9.31929	-3.01264	1.60279	0	0
21		-9.28347	-2.95656	1.71444	0	0
22		-9.24764	-2.89935	1.79255	0	0
23		-9.21181	-2.84095	1.83853	0	0
24		-9.17599	-2.7813	1.85391	0	0
25		-9.14016	-2.72036	1.84035	0	0
26		-9.10433	-2.65804	1.79969	0	0
27		-9.06851	-2.59429	1.73396	0	0
28		-9.03268	-2.52902	1.64541	0	0
29		-8.99685	-2.46214	1.53651	0	0
30		-8.96103	-2.39357	1.41005	0	0
31		-8.9252	-2.3232	1.26914	0	0
32		-8.88937	-2.2509	1.11729	0	0
33		-8.85355	-2.17655	0.958468	0	0
34		-8.81772	-2.1	0.797206	0	0
35		-8.78173	-2.02071	0.608707	0	0
36		-8.74574	-1.93885	0.366927	0	0
37		-8.70975	-1.85417	0.0728701	0	0
38		-8.67376	-1.76643	-0.272235	0	0
39		-8.63776	-1.67533	-0.666866	0	0
40		-8.60177	-1.5805	-1.10912	0	0
41		-8.56578	-1.48152	-1.59661	0	0
42		-8.52979	-1.37788	-2.12624	0	0
43		-8.4938	-1.26891	-2.69401	0	0
44		-8.45781	-1.15383	-3.29462	0	0
45		-8.42182	-1.03159	-3.92087	0	0
46		-8.38583	-0.9008	-4.5627	0	0
47		-8.34983	-0.759552	-5.20555	0	0
48		-8.31384	-0.605078	-5.82731	0	0
49		-8.27785	-0.433092	-6.3921	0	0
50		-8.24186	-0.236276	-6.83577	0	0
51		-8.20587	0	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 0.374328

Slice	Number X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1	-10	-3.17301	0	0	0
2	-9.97542	-3.1372	0.0925415	0	0
3	-9.95084	-3.10093	0.189703	0	0
4	-9.92627	-3.06419	0.292011	0	0
5	-9.90169	-3.02696	0.400017	0	0
6	-9.87711	-2.98923	0.5143	0	0
7	-9.85253	-2.95099	0.635469	0	0
8	-9.82796	-2.91222	0.764164	0	0
9	-9.80338	-2.8729	0.901056	0	0
10	-9.7788	-2.83302	1.04686	0	0
11	-9.75422	-2.79256	1.20232	0	0
12	-9.72964	-2.75151	1.36822	0	0
13	-9.70507	-2.70984	1.54542	0	0
14	-9.68049	-2.66752	1.73478	0	0
15	-9.65591	-2.62455	1.93726	0	0
16	-9.63133	-2.58089	2.15386	0	0
17	-9.60676	-2.53652	2.38564	0	0
18	-9.58218	-2.49141	2.63374	0	0
19	-9.5576	-2.44554	2.89938	0	0
20	-9.53302	-2.39886	3.18384	0	0
21	-9.50844	-2.35136	3.48854	0	0
22	-9.48387	-2.30299	3.60816	0	0
23	-9.45929	-2.25371	3.67293	0	0
24	-9.43471	-2.20348	3.7336	0	0
25	-9.41013	-2.15226	3.79157	0	0
26	-9.38556	-2.1	3.84835	0	0
27	-9.36087	-2.0464	3.89234	0	0
28	-9.33618	-1.99163	3.91049	0	0
29	-9.31149	-1.93563	3.90311	0	0
30	-9.2868	-1.87833	3.87052	0	0
31	-9.26211	-1.81965	3.8131	0	0
32	-9.23743	-1.75949	3.73129	0	0
33	-9.21274	-1.69777	3.6256	0	0
34	-9.18805	-1.63436	3.49661	0	0
35	-9.16336	-1.56915	3.34501	0	0
36	-9.13867	-1.50199	3.17161	0	0
37	-9.11399	-1.43273	2.97736	0	0
38	-9.0893	-1.36117	2.76341	0	0
39	-9.06461	-1.2871	2.53113	0	0
40	-9.03992	-1.21026	2.28218	0	0
41	-9.01523	-1.13037	2.01859	0	0
42	-8.99054	-1.04705	1.74289	0	0
43	-8.96586	-0.959875	1.45827	0	0
44	-8.94117	-0.868297	1.16879	0	0
45	-8.91648	-0.771634	0.879761	0	0
46	-8.89179	-0.669	0.598289	0	0
47	-8.8671	-0.559211	0.334152	0	0
48	-8.84242	-0.440626	0.101349	0	0
49	-8.81773	-0.310852	-0.0790488	0	0
50	-8.79304	-0.166143	-0.173049	0	0
51	-8.76835	0	0	0	0

Stability analysis for circular failure SE slope Arkoulaki Eleni Date Created: 11/25/2023, 6:52:33 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of SE slope

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distribution:
Magnitude [kPa]:
Orientation:
Load Action:

Distributed Load 1 Constant 30 Normal to boundary Variable

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	0.514107
Center:	-15.530, 0.995
Radius:	7.577
Left Slip Surface Endpoint:	-10.000, -4.185
Right Slip Surface Endpoint:	-8.019, 0.000
Left Slope Intercept:	-10.000 0.000
Right Slope Intercept:	-8.019 0.000
Resisting Moment:	286.473 kN-m
Driving Moment:	557.224 kN-m
Total Slice Area:	5.26872 m2
Surface Horizontal Width:	1.9813 m
Surface Average Height:	2.65923 m

Method: janbu corrected

FS	0.637310
Center:	-15.530, 0.995
Radius:	7.577
Left Slip Surface Endpoint:	-10.000, -4.185
Right Slip Surface Endpoint:	-8.019, 0.000
Left Slope Intercept:	-10.000 0.000
Right Slope Intercept:	-8.019 0.000
Resisting Horizontal Force:	22.6298 kN
Driving Horizontal Force:	35.5083 kN
Total Slice Area:	5.26872 m2
Surface Horizontal Width:	1.9813 m
Surface Average Height:	2.65923 m

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	4265	
Number of Invalid Surfaces:	4996	
	Error Codes	
Error Code -106 reported for 313 surfaces Error Code -108 reported for 798 surfaces Error Code -1000 reported for 3885 surfaces		

Method: janbu corrected

	Error Codes
Number of Invalid Surfaces:	5983
Number of Valid Surfaces:	3278

Error Code -106 reported for 295 surfaces Error Code -108 reported for 1155 surfaces Error Code -111 reported for 648 surfaces Error Code -1000 reported for 3885 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = Safety factor equation did not converge

-1000 = No valid slip surface is generated

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.514107

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0396007	2.84261	47.0935	S1	6.48	31.5442	32.4816	16.699	36.8896	20.2427	16.6469	71.836	51.5933
2	0.0396007	2.81149	47.5352	S1	6.48	31.5442	32.0104	16.4568	36.0738	19.8215	16.2523	71.0501	51.2286
3	0.0396007	2.77988	47.9806	S1	6.48	31.5442	31.5375	16.2136	35.2501	19.3936	15.8565	70.2522	50.8586
4	0.0396007	2.74778	48.43	S1	6.48	31.5442	31.0627	15.9695	34.4179	18.9591	15.4588	69.4415	50.4824
5	0.0396007	2.71516	48.8833	S1	6.48	31.5442	30.586	15.7245	33.577	18.5175	15.0595	68.6178	50.1003
6	0.0396007	2.68202	49.3408	S1	6.48	31.5442	30.1073	15.4784	32.7275	18.0688	14.6587	67.7809	49.7121
7	0.0396007	2.64833	49.8026	S1	6.48	31.5442	29.6265	15.2312	31.8688	17.6128	14.256	66.9302	49.3174
8	0.0396007	2.61408	50.2689	S1	6.48	31.5442	29.1435	14.9829	31.0007	17.1492	13.8515	66.0655	48.9163
9	0.0396007	2.57926	50.7397	S1	6.48	31.5442	28.6583	14.7334	30.123	16.6779	13.4451	65.1861	48.5082
10	0.0396007	2.54385	51.2154	S1	6.48	31.5442	28.1707	14.4828	29.2353	16.1985	13.0368	64.2919	48.0934
11	0.0396007	2.50783	51.696	S1	6.48	31.5442	27.6808	14.2309	28.3373	15.7108	12.6265	63.3822	47.6714
12	0.0396007	2.47117	52.1817	S1	6.48	31.5442	27.1883	13.9777	27.4287	15.2147	12.214	62.4567	47.242
13	0.0396007	2.43387	52.6729	S1	6.48	31.5442	26.6932	13.7232	26.509	14.7097	11.7993	61.5145	46.8048
14	0.0396007	2.39589	53.1696	S1	6.48	31.5442	26.1954	13.4672	25.5781	14.1956	11.3825	60.5555	46.3599
15	0.0396007	2.35722	53.6721	S1	6.48	31.5442	25.6948	13.2099	24.6352	13.6721	10.9631	59.5788	45.9067
16	0.0396007	2.31782	54.1807	S1	6.48	31.5442	25.1912	12.951	23.6803	13.1388	10.5415	58.584	45.4452
17	0.0396007	2.27768	54.6957	S1	6.48	31.5442	24.6846	12.6905	22.7125	12.5954	10.1171	57.5702	44.9748
18	0.0396007	2.23675	55.2172	S1	6.48	31.5442	24.1747	12.4284	21.7315	12.0414	9.69009	56.5367	44.4953
19	0.0396007	2.19502	55.7457	S1	6.48	31.5442	23.6615	12.1645	20.7368	11.4765	9.26034	55.4828	44.0063
20	0.0396007	2.15245	56.2815	S1	6.48	31.5442	23.1448	11.8989	19.7279	10.9003	8.82758	54.4078	43.5075
21	0.0396007	2.109	56.8248	S1	6.48	31.5442	22.6245	11.6314	18.7038	10.3121	8.39172	53.3103	42.9982
22	0.0396007	2.06464	57.3762	S1	6.48	31.5442	22.1003	11.3619	17.6643	9.71152	7.95279	52.19	42.4784
23	0.0396007	2.01931	57.936	S1	6.48	31.5442	21.5721	11.0904	16.6084	9.098	7.51043	51.0453	41.9473
24	0.0396007	1.97299	58.5047	S1	6.48	31.5442	21.0397	10.8166	15.5354	8.47088	7.0645	49.8753	41.4044
25	0.0396007	1.92561	59.0827	S1	6.48	31.5442	20.5029	10.5407	14.4444	7.82952	6.61488	48.6787	40.8492
26	0.0396007	1.87712	59.6706	S1	6.48	31.5442	19.9614	10.2623	13.3347	7.17317	6.16149	47.4543	40.2811
27	0.0396007	1.82747	60.2691	S1	6.48	31.5442	19.4149	9.98135	12.2049	6.50105	5.7038	46.2002	39.6991
28	0.0396007	1.77659	60.8787	S1	6.48	31.5442	18.8633	9.69775	11.0541	5.81225	5.24182	44.915	39.1028
29	0.0396007	1.7244	61.5001	S1	6.48	31.5442	18.3062	9.41133	9.88105	5.10582	4.77523	43.597	38.4912
30	0.0396007	1.67083	62.1343	S1	6.48	31.5442	17.7432	9.12191	8.68444	4.38068	4.30376	42.2441	37.8634
31	0.0396007	1.61579	62.782	S1	6.48	31.5442	17.174	8.82929	7.4627	3.63563	3.82707	40.854	37.2183
32	0.0396007	1.55918	63.4443	S1	6.48	31.5442	16.5982	8.53327	6.21417	2.86933	3.34484	39.4242	36.5549
33	0.0396007	1.50089	64.1223	S1	6.48	31.5442	16.0153	8.2336	4.93694	2.08027	2.85667	37.9519	35.8717
34	0.0396007	1.4408	64.8173	S1	6.48	31.5442	15.4249	7.93003	3.62888	1.26674	2.36214	36.434	35.1673
35	0.0396007	1.37875	65.5306	S1	6.48	31.5442	14.8262	7.62224	2.28755	0.4268	1.86075	34.8668	34.44
36	0.0396847	1.32106	66.2649	S1	6.48	31.5442	14.106	7.25202	1.25765	0	1.25765	33.3388	33.3388
37	0.0396847	1.26197	67.0221	S1	6.48	31.5442	13.2685	6.82143	0.556201	0	0.556201	31.8484	31.8484
38	0.0396847	1.20062	67.8037	S1	6.48	31.5442	12.4248	6.38767	-0.150408	0	-0.150408	30.3012	30.3012
39	0.0396847	1.13678	68.6123	S1	6.48	31.5442	11.5746	5.95059	-0.862427	0	-0.862427	28.6912	28.6912
40	0.0396847	1.07018	69.4513	S1	6.48	31.5442	10.7177	5.51003	-1.58012	0	-1.58012	27.0114	27.0114
41	0.0396847	1.00047	70.3244	S1	6.48	31.5442	9.85361	5.06581	-2.30375	0	-2.30375	25.2533	25.2533
42	0.0396847	0.927247	71.2366	S1	6.48	31.5442	8.9821	4.61776	-3.03364	0	-3.03364	23.4064	23.4064
43	0.0396847	0.84998	72.1937	S1	6.48	31.5442	8.10273	4.16567	-3.77011	0	-3.77011	21.4574	21.4574
44	0.0396847	0.768001	73.2037	S1	6.48	31.5442	7.21511	3.70934	-4.51349	0	-4.51349	19.3897	19.3897
45	0.0396847	0.680428	74.2766	S1	6.48	31.5442	6.31882	3.24855	-5.26413	0	-5.26413	17.1807	17.1807
46	0.0396847	0.586049	75.4267	S1	6.48	31.5442	5.41345	2.78309	-6.02238	0	-6.02238	14.7999	14.7999
47	0.0396847	0.483128	76.6741	S1	6.48	31.5442	4.49864	2.31278	-6.78854	0	-6.78854	12.2036	12.2036
48	0.0396847	0.369001	78.0498	S1	6.48	31.5442	3.57418	1.83751	-7.56276	0	-7.56276	9.32452	9.32452
49	0.0396847	0.239182	79.6062	S1	6.48	31.5442	2.64025	1.35737	-8.34494	0	-8.34494	6.04936	6.04936
50	0.0396847	0.0848174	81.4468	S1	6.48	31.5442	1.69786	0.87288	-9.13416	0	-9.13416	2.15479	2.15479

Global Minimum Query (janbu corrected) - Safety Factor: 0.63731

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0396007	2.84261	47.0935	S1	6.48	31.5442	28.8632	18.3948	39.6523	20.2427	19.4096	70.7057	50.463
2	0.0396007	2.81149	47.5352	S1	6.48	31.5442	28.4642	18.1405	38.8168	19.8215	18.9953	69.9183	50.0968
3	0.0396007	2.77988	47.9806	S1	6.48	31.5442	28.0631	17.8849	37.9727	19.3936	18.5791	69.1187	49.7251
4	0.0396007	2.74778	48.43	S1	6.48	31.5442	27.66	17.628	37.1196	18.9591	18.1605	68.3066	49.3475
5	0.0396007	2.71516	48.8833	S1	6.48	31.5442	27.2547	17.3697	36.2572	18.5175	17.7397	67.4815	48.964
6	0.0396007	2.68202	49.3408	S1	6.48	31.5442	26.8474	17.1101	35.3855	18.0688	17.3167	66.6435	48.5747
7	0.0396007	2.64833	49.8026	S1	6.48	31.5442	26.4375	16.8489	34.5042	17.6128	16.8914	65.7917	48.1789
8	0.0396007	2.61408	50.2689	S1	6.48	31.5442	26.0255	16.5863	33.6128	17.1492	16.4636	64.926	47.7768
9	0.0396007	2.57926	50.7397	S1	6.48	31.5442	25.6111	16.3222	32.711	16.6779	16.0331	64.046	47.3681
10	0.0396007	2.54385	51.2154	S1	6.48	31.5442	25.1941	16.0564	31.7987	16.1985	15.6002	63.1511	46.9526
11	0.0396007	2.50783	51.696	S1	6.48	31.5442	24.7745	15.789	30.8756	15.7108	15.1648	62.2411	46.5303
12	0.0396007	2.47117	52.1817	S1	6.48	31.5442	24.3523	15.5199	29.9411	15.2147	14.7264	61.3152	46.1005
13	0.0396007	2.43387	52.6729	S1	6.48	31.5442	23.9273	15.2491	28.9949	14.7097	14.2852	60.3731	45.6634
14	0.0396007	2.39589	53.1696	S1	6.48	31.5442	23.4994	14.9764	28.0366	14.1956	13.841	59.4141	45.2185
15	0.0396007	2.35722	53.6721	S1	6.48	31.5442	23.0685	14.7018	27.0657	13.6721	13.3936	58.4377	44.7656
16	0.0396007	2.31782	54.1807	S1	6.48	31.5442	22.6346	14.4252	26.0819	13.1388	12.9431	57.4432	44.3044
17	0.0396007	2.27768	54.6957	S1	6.48	31.5442	22.1974	14.1466	25.0846	12.5954	12.4892	56.4301	43.8347
18	0.0396007	2.23675	55.2172	S1	6.48	31.5442	21.7569	13.8659	24.0732	12.0414	12.0318	55.3974	43.356
19	0.0396007	2.19502	55.7457	S1	6.48	31.5442	21.3129	13.5829	23.0474	11.4765	11.5709	54.3445	42.868
20	0.0396007	2.15245	56.2815	S1	6.48	31.5442	20.8653	13.2976	22.0065	10.9003	11.1062	53.2707	42.3704
21	0.0396007	2.109	56.8248	S1	6.48	31.5442	20.4139	13.01	20.9496	10.3121	10.6375	52.1749	41.8628
22	0.0396007	2.06464	57.3762	S1	6.48	31.5442	19.9585	12.7198	19.8763	9.71152	10.1648	51.0561	41.3446
23	0.0396007	2.01931	57.936	S1	6.48	31.5442	19.4991	12.427	18.7857	9.098	9.68775	49.9134	40.8154
24	0.0396007	1.97299	58.5047	S1	6.48	31.5442	19.0353	12.1314	17.6772	8.47088	9.20629	48.7456	40.2747
25	0.0396007	1.92561	59.0827	S1	6.48	31.5442	18.567	11.8329	16.5496	7.82952	8.72013	47.5515	39.722
26	0.0396007	1.87712	59.6706	S1	6.48	31.5442	18.0939	11.5314	15.4021	7.17317	8.2289	46.3297	39.1565
27	0.0396007	1.82747	60.2691	S1	6.48	31.5442	17.6158	11.2267	14.2336	6.50105	7.73256	45.0787	38.5777
28	0.0396007	1.77659	60.8787	S1	6.48	31.5442	17.1324	10.9187	13.043	5.81225	7.23075	43.797	37.9847
29	0.0396007	1.7244	61.5001	S1	6.48	31.5442	16.6435	10.6071	11.829	5.10582	6.72313	42.4826	37.3768
30	0.0396007	1.67083	62.1343	S1	6.48	31.5442	16.1487	10.2917	10.5901	4.38068	6.20937	41.1338	36.7531
31	0.0396007	1.61579	62.782	S1	6.48	31.5442	15.6475	9.97233	9.32475	3.63563	5.68912	39,7481	36.1124
32	0.0396007	1.55918	63,4443	S1	6.48	31.5442	15.1397	9.64871	8.03126	2.86933	5.16193	38.3231	35.4538
33	0.0396007	1.50089	64.1223	S1	6.48	31.5442	14.6248	9.32055	6.70762	2.08027	4.62735	36.8561	34.7759
34	0.0396007	1.4408	64.8173	S1	6.48	31.5442	14.1023	8.98754	5.35159	1.26674	4.08485	35.344	34.0772
35	0.0396007	1.37875	65.5306	S1	6.48	31.5442	13.5716	8.64929	3.96065	0.4268	3.53385	33.783	33.3562
36	0.0396847	1.32106	66.2649	S1	6.48	31.5442	12.9288	8.23965	2.86652	0	2.86652	32.2702	32.2702
37	0.0396847	1.26197	67.0221	S1	6.48	31.5442	12.1772	7.76067	2.08626	0	2.08626	30.8048	30.8048
38	0.0396847	1.20062	67.8037	S1	6.48	31.5442	11.4186	7.27721	1.29868	0	1.29868	29.2843	29.2843
39	0.0396847	1.13678	68.6123	S1	6.48	31.5442	10.6526	6.78903	0.50342	0	0.50342	27.7029	27.7029
40	0.0396847	1.07018	69.4513	S1	6.48	31.5442	9.87887	6.2959	-0.299905	0	-0.299905	26.054	26.054
41	0.0396847	1.00047	70.3244	S1	6.48	31.5442	9.09691	5.79755	-1.11173	0	-1.11173	24.3291	24.3291
42	0.0396847	0.927247	71.2366	S1	6.48	31.5442	8.3063	5,29369	-1.93254	0	-1.93254	22.5182	22.5182
43	0.0396847	0.84998	72.1937	S1	6.48	31.5442	7.50655	4.784	-2.76283	0	-2.76283	20.6085	20.6085
44	0.0396847	0.768001	73,2037	S1	6.48	31.5442	6.69712	4.26814	-3.60319	0	-3.60319	18,5839	18,5839
45	0.0396847	0.680428	74.2766	S1	6.48	31.5442	5.87738	3.74571	-4.45424	0	-4.45424	16.4225	16.4225
46	0.0396847	0.586049	75.4267	S1	6.48	31.5442	5.04671	3.21632	-5.31663	0	-5.31663	14.0951	14.0951
47	0.0396847	0.483128	76.6741	S1	6.48	31.5442	4.20445	2.67954	-6.19107	0	-6.19107	11.5591	11.5591
48	0.0396847	0.369001	78.0498	S1	6.48	31.5442	3.35	2.13499	-7.07814	0	-7.07814	8.74995	8.74995
49	0.0396847	0.239182	79.6062	S1	6.48	31.5442	2.4829	1.58238	-7.97838	0	-7.97838	5.5581	5.5581
50	0.0396847	0.0848174	81.4468	S1	6.48	31.5442	1.60321	1.02174	-8.89168	0	-8.89168	1.76795	1.76795
20	0.0000047	5.00 10174	01.1700	21	0.10	51.5142	1.00521		0.07100	9	0.07100		

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.514107

Slice Numb	er X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1	-10	-4.18478	0	0	0
2	-9.9604	-4.14217	-0.287418	0	0
3	-9.9208	-4.09891	-0.582667	0	0
4	-9.8812	-4.05495	-0.88498	0	0
5	-9.8416	-4.0103	-1.19356	0	0
6	-9.802	-3.96493	-1.50755	0	0
7	-9.7624	-3.91883	-1.82608	0	0
8	-9.72279	-3.87196	-2.14822	0	0
9	-9.68319	-3.82432	-2.47298	0	0
10	-9.64359	-3.77587	-2.79935	0	0
11	-9.60399	-3.72658	-3.12622	0	0
12	-9.56439	-3.67645	-3.45246	0	0
13	-9.52479	-3.62543	-3.77685	0	0
14	-9.48519	-3.5735	-4.0981	0	0
15	-9.44559	-3.52062	-4.41484	0	0
16	-9.40599	-3.46677	-4.72562	0	0
17	-9.36639	-3.4119	-5.02889	0	0
18	-9.32679	-3.35597	-5.32299	0	0
19	-9.28719	-3.29896	-5.60615	0	0
20	-9.24759	-3.24081	-5.87649	0	0
21	-9.20799	-3.18147	-6.13195	0	0
22	-9.16838	-3.1209	-6.37036	0	0
23	-9.12878	-3.05903	-6.58934	0	0
24	-9.08918	-2.99581	-6.78633	0	0
25	-9.04958	-2.93118	-6.95856	0	0
26	-9.00998	-2.86506	-7.103	0	0
27	-8.97038	-2.79737	-7.21635	0	0
28	-8.93078	-2.72803	-7.29499	0	0
29	-8.89118	-2.65694	-7.33494	0	0
30	-8.85158	-2.58401	-7.33181	0	0
31	-8.81198	-2.50911	-7.28073	0	0
32	-8.77238	-2.43211	-7.17627	0	0
33	-8.73278	-2.35288	-7.01236	0	0
34	-8.69318	-2.27124	-6.78216	0	0
35	-8.65357	-2.18702	-6.4779	0	0
36	-8.61397	-2.1	-6.09075	0	0
37	-8.57429	-2.00975	-5.64533	0	0
38	-8.5346	-1.91615	-5.17164	0	0
39	-8.49492	-1.81889	-4.66471	0	0
40	-8.45524	-1.71756	-4.1187	0	0
41	-8.41555	-1.6117	-3.52675	0	0
42	-8.37587	-1.50071	-2.88063	0	0
43	-8.33618	-1.3839	-2.17035	0	0
44	-8.2965	-1.26034	-1.38347	0	0
45	-8.25681	-1.12887	-0.504187	0	0
46	-8.21713	-0.987904	0.488229	0	0
47	-8.17744	-0.83526	1.622	0	0
48	-8.13776	-0.66772	2.9376	0	0
49	-8.09807	-0.480218	4.49726	0	0
50	-8.05839	-0.263862	6.40735	0	0
51	-8.0187	0	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 0.63731

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-10	-4.18478	0	0	0
2		-9.9604	-4.14217	-0.506809	0	0
3		-9.9208	-4.09891	-1.02015	0	0
4		-9.8812	-4.05495	-1.53927	0	0
5		-9.8416	-4.0103	-2.06336	0	0
6		-9.802	-3.96493	-2.5916	0	0
7		-9.7624	-3.91883	-3.12309	0	0
8		-9.72279	-3.87196	-3.65693	0	0
9		-9.68319	-3.82432	-4.19212	0	0
10		-9.64359	-3.77587	-4.72766	0	0
11		-9.60399	-3.72658	-5.26245	0	0
12		-9.56439	-3.67645	-5.79535	0	0
13		-9.52479	-3.62543	-6.32514	0	0
14		-9.48519	-3.5735	-6.85054	0	0
15		-9.44559	-3.52062	-7.37019	0	0
16		-9.40599	-3.46677	-7.88263	0	0
17		-9.36639	-3.4119	-8.38631	0	0
18		-9.32679	-3.35597	-8.87958	0	0
19		-9.28719	-3.29896	-9.36067	0	0
20		-9.24759	-3.24081	-9.82768	0	0
21		-9.20799	-3.18147	-10.2786	0	0
22		-9.16838	-3.1209	-10.7111	0	0
23		-9.12878	-3.05903	-11.123	0	0
24		-9.08918	-2.99581	-11.5117	0	0
25		-9.04958	-2.93118	-11.8743	0	0
26		-9.00998	-2.86506	-12.2079	0	0
27		-8.97038	-2.79737	-12.5091	0	0
28		-8.93078	-2.72803	-12.7743	0	0
29		-8.89118	-2.65694	-12.9995	0	0
30		-8.85158	-2.58401	-13.1803	0	0
31		-8.81198	-2.50911	-13.3119	0	0
32		-8.77238	-2.43211	-13.3887	0	0
33		-8.73278	-2.35288	-13.4047	0	0
34		-8.69318	-2.27124	-13.3531	0	0
35		-8.65357	-2.18702	-13.226	0	0
36		-8.61397	-2.1	-13.0146	0	0
37		-8.57429	-2.00975	-12.7425	0	0
38		-8.5346	-1.91615	-12.4377	0	0
39		-8.49492	-1.81889	-12.0952	0	0
40		-8.45524	-1.71756	-11.7088	0	0
41		-8.41555	-1.6117	-11.2714	0	0
42		-8.37587	-1.50071	-10.7745	0	0
43		-8.33618	-1.3839	-10.2077	0	0
44		-8.2965	-1.26034	-9.55814	0	0
45		-8.25681	-1.12887	-8.80944	0	0
46		-8.21713	-0.987904	-7.94024	0	0
47		-8.17744	-0.83526	-6.92147	0	0
48		-8.13776	-0.66772	-5.71159	0	0
49		-8.09807	-0.480218	-4.24686	0	0
50		-8.05839	-0.263862	-2.41874	0	0
51		-8.0187	0	0	0	0

Stability analysis for circular failure SW slope Arkoulaki Eleni Date Created: 11/25/2023, 6:11:21 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of SW slope

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes
Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1				
Distribution:	Constant			
Magnitude [kPa]:	120			
Orientation:	Normal to boundary			
Load Action:	Variable			

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	0.976494
Center:	11.015, 1.547
Radius:	2.241
Left Slip Surface Endpoint:	9.393, 0.000
Right Slip Surface Endpoint:	10.000, -0.452
Left Slope Intercept:	9.393 0.000
Right Slope Intercept:	10.000 0.000
Resisting Moment:	28.9634 kN-m
Driving Moment:	29.6606 kN-m
Total Slice Area:	0.15337 m2
Surface Horizontal Width:	0.607095 m
Surface Average Height:	0.252629 m

Method: janbu corrected

FS	0.965246
Center:	11.015, 1.547
Radius:	2.241
Left Slip Surface Endpoint:	9.393, 0.000
Right Slip Surface Endpoint:	10.000, -0.452
Left Slope Intercept:	9.393 0.000
Right Slope Intercept:	10.000 0.000
Resisting Horizontal Force:	9.68387 kN
Driving Horizontal Force:	10.0325 kN
Total Slice Area:	0.15337 m2
Surface Horizontal Width:	0.607095 m
Surface Average Height:	0.252629 m

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces:	9261 0	
Method: janbu corrected		
Number of Valid Surfaces:	9241	
Number of Invalid Surfaces:	20	
	Error Codes	

Error Code -108 reported for 20 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.976494

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0121419	0.0014040 9	-46.1476	S1	6.48	31.5442	63.3118	61.8236	90.2187	0.0619614	90.1567	156.119	156.057
2	0.0121419	0.0041905 7	-45.7014	S1	6.48	31.5442	63.7421	62.2438	91.0261	0.184984	90.8411	156.348	156.163
3	0.0121419	0.0069341	-45.2587	S1	6.48	31.5442	64.1677	62.6594	91.8241	0.306113	91.5179	156.574	156.268
4	0.0121419	0.0096357 8	-44.8195	S1	6.48	31.5442	64.5889	63.0707	92.6135	0.425391	92.1881	156.797	156.371
5	0.0121419	0.0122965	-44.3835	S1	6.48	31.5442	65.0057	63.4777	93.394	0.542861	92.8511	157.016	156.473
6	0.0121419	0.0149171	-43.9508	S1	6.48	31.5442	65.4183	63.8806	94.1658	0.658563	93.5073	157.231	156.573
7	0.0121419	0.0174986	-43.5213	S1	6.48	31.5442	65.827	64.2797	94.9298	0.772535	94.1572	157.444	156.671
8	0.0121419	0.0200417	-43.0947	S1	6.48	31.5442	66.2318	64.675	95.6861	0.884815	94.8013	157.653	156.769
9	0.0121419	0.0225473	-42.6711	S1	6.48	31.5442	55.4728	54.1689	78.6819	0.995437	77.6865	129.819	128.824
10	0.0121419	0.0250162	-42.2504	S1	6.48	31.5442	4.60656	4.49828	-2.12385	1.10444	-3.22829	2.06051	0.956074
11	0.0121419	0.0274489	-41.8325	S1	6.48	31.5442	4.66846	4.55872	-1.91798	1.21184	-3.12982	2.26087	1.04903
12	0.0121419	0.0298464	-41.4173	S1	6.48	31.5442	4.72998	4.6188	-1.71426	1.31769	-3.03195	2.45832	1.14063
13	0.0121419	0.0322092	-41.0047	S1	6.48	31.5442	4.79115	4.67853	-1.51265	1.42201	-2.93466	2.65292	1.23091
14	0.0121419	0.034538	-40.5947	S1	6.48	31.5442	4.85194	4.73789	-1.31312	1.52482	-2.83794	2.84471	1.31989
15	0.0121419	0.0368334	-40.1872	S1	6.48	31.5442	4.91238	4.79691	-1.11564	1.62617	-2.74181	3.03376	1.40759
16	0.0121419	0.039096	-39.7821	S1	6.48	31.5442	4.97247	4.85559	-0.920163	1.72606	-2.64622	3.22011	1.49405
17	0.0121419	0.0413264	-39.3794	S1	6.48	31.5442	5.03221	4.91392	-0.726662	1.82453	-2.55119	3.40381	1.57928
18	0.0121419	0.0435251	-38.979	S1	6.48	31.5442	5.0916	4.97192	-0.535108	1.92161	-2.45672	3.5849	1.66329
19	0.0121419	0.0456928	-38.5808	S1	6.48	31.5442	5.15065	5.02958	-0.34547	2.01731	-2.36278	3.76342	1.74611
20	0.0121419	0.0478298	-38.1849	S1	6.48	31.5442	5.20937	5.08692	-0.157717	2.11166	-2.26938	3.93943	1.82777
21	0.0121419	0.0499368	-37.7911	S1	6.48	31.5442	5.26775	5.14393	0.0281802	2.20468	-2.1765	4.11295	1.90827
22	0.0121419	0.0520141	-37.3993	S1	6.48	31.5442	5.32581	5.20062	0.212248	2.2964	-2.08415	4.28404	1.98764
23	0.0121419	0.0540623	-37.0097	S1	6.48	31.5442	5.38355	5.257	0.394514	2.38683	-1.99232	4.45273	2.0659
24	0.0121419	0.0560818	-36.622	S1	6.48	31.5442	5.44096	5.31306	0.575002	2.47599	-1.90099	4.61905	2.14306
25	0.0121419	0.058073	-36.2362	S1	6.48	31.5442	5.49805	5.36881	0.753742	2.5639	-1.81016	4.78304	2.21914
26	0.0121419	0.0600363	-35.8523	S1	6.48	31.5442	5.55483	5.42426	0.930748	2.65058	-1.71983	4.94474	2.29416
27	0.0121419	0.0619722	-35.4703	S1	6.48	31.5442	5.61131	5.47941	1.10606	2.73605	-1.62999	5.10418	2.36813
28	0.0121419	0.0638811	-35.0901	S1	6.48	31.5442	5.66748	5.53426	1.27968	2.82032	-1.54064	5.26139	2.44107
29	0.0121419	0.0657632	-34.7117	S1	6.48	31.5442	5.72334	5.58881	1.45165	2.90342	-1.45177	5.41641	2.51299
30	0.0121419	0.0676191	-34.335	S1	6.48	31.5442	5.77891	5.64307	1.62198	2.98536	-1.36338	5.56925	2.58389
31	0.0121419	0.069449	-33.9599	S1	6.48	31.5442	5.83418	5.69705	1.79069	3.06615	-1.27546	5.71996	2.65381
32	0.0121419	0.0712533	-33.5865	S1	6.48	31.5442	5.88916	5.75073	1.9578	3.14581	-1.18801	5.86856	2.72275
33	0.0121419	0.0730323	-33.2147	S1	6.48	31.5442	5.94385	5.80413	2.12334	3.22435	-1.10101	6.01507	2.79072
34	0.0121419	0.0747863	-32.8445	S1	6.48	31.5442	5.99825	5.85726	2.28732	3.30179	-1.01447	6.15954	2.85775
35	0.0121419	0.0765157	-32.4759	S1	6.48	31.5442	6.05237	5.9101	2.44976	3.37814	-0.928375	6.30197	2.92383
36	0.0121419	0.0782207	-32.1087	S1	6.48	31.5442	6.10621	5.96268	2.61068	3.45342	-0.842735	6.44239	2.98897
37	0.0121419	0.0799017	-31.743	S1	6.48	31.5442	6.15977	6.01498	2.7701	3.52764	-0.757542	6.58084	3.0532
38	0.0121419	0.081559	-31.3788	S1	6.48	31.5442	6.21305	6.06701	2.92803	3.60081	-0.672784	6.71733	3.11652
39	0.0121419	0.0831927	-31.0159	S1	6.48	31.5442	6.26606	6.11877	3.08448	3.67294	-0.588458	6.85188	3.17894
40	0.0121419	0.0848033	-30.6544	S1	6.48	31.5442	6.3188	6.17027	3.23949	3.74404	-0.504554	6.98452	3.24048
41	0.0121419	0.0863908	-30.2943	S1	6.48	31.5442	6.37128	6.22151	3.39305	3.81413	-0.421082	7.11527	3.30114
42	0.0121419	0.0879557	-29.9355	S1	6.48	31.5442	6.42349	6.2725	3.54519	3.88322	-0.338029	7.24416	3.36094
43	0.0121419	0.0894981	-29.578	S1	6.48	31.5442	6.47543	6.32322	3.69592	3.95132	-0.255399	7.37119	3.41987
44	0.0121419	0.0910183	-29.2217	S1	6.48	31.5442	6.52712	6.37369	3.84525	4.01844	-0.173187	7.49638	3.47794
45	0.0121419	0.0925165	-28.8667	S1	6.48	31.5442	6.57855	6.42391	3.99321	4.08458	-0.0913709	7.61977	3.53519
46	0.0121419	0.0939929	-28.5129	S1	6.48	31.5442	6.62972	6.47388	4.1398	4.14977	-0.0099692	7.74137	3.5916
47	0.0121419	0.0954478	-28.1602	S1	6.48	31.5442	6.68064	6.52361	4.28503	4.214	0.0710324	7.86119	3.64719
48	0.0121419	0.0968814	-27.8088	S1	6.48	31.5442	6.73131	6.57308	4.42893	4.27729	0.151642	7.97927	3.70198
49	0.0121419	0.0982939	-27.4584	S1	6.48	31.5442	6.78173	6.62232	4.5715	4.33965	0.23185	8.0956	3.75595
50	0.0121419	0.0996854	-27.1092	S1	6.48	31.5442	6.83191	6.67132	4.71275	4.40109	0.311663	8.2102	3.80911

Global Minimum Query (janbu corrected) - Safety Factor: 0.965246

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0121419	0.0014040 9	-46.1476	S1	6.48	31.5442	63.2528	61.0545	88.9657	0.0619614	88.9037	154.804	154.742
2	0.0121419	0.0041905 7	-45.7014	S 1	6.48	31.5442	63.6901	61.4766	89.7762	0.184984	89.5912	155.045	154.86
3	0.0121419	0.0069341 3	-45.2587	S1	6.48	31.5442	64.1228	61.8943	90.5776	0.306113	90.2715	155.282	154.976
4	0.0121419	0.0096357 8	-44.8195	S1	6.48	31.5442	64.5511	62.3077	91.3703	0.425391	90.9449	155.516	155.091
5	0.0121419	0.0122965	-44.3835	S1	6.48	31.5442	64.9749	62.7168	92.1544	0.542861	91.6115	155.746	155.203
6	0.0121419	0.0149171	-43.9508	S1	6.48	31.5442	65.3947	63.122	92.9301	0.658563	92.2716	155.973	155.314
7	0.0121419	0.0174986	-43.5213	S1	6.48	31.5442	65.8106	63.5234	93.6977	0.772535	92.9252	156.196	155.424
8	0.0121419	0.0200417	-43.0947	S1	6.48	31.5442	66.2225	63.921	94.458	0.884815	93.5732	156.416	155.532
9	0.0121419	0.0225473	-42.6711	S1	6.48	31.5442	55.471	53.5432	77.6628	0.995437	76.6673	128.798	127.803
10	0.0121419	0.0250162	-42.2504	S1	6.48	31.5442	4.60691	4.4468	-2.20771	1.10444	-3.31215	1.97697	0.872534
11	0.0121419	0.0274489	-41.8325	S1	6.48	31.5442	4.66931	4.50703	-2.00218	1.21184	-3.21402	2.17743	0.965592
12	0.0121419	0.0298464	-41.4173	S1	6.48	31.5442	4.73135	4.56692	-1.79878	1.31769	-3.11647	2.37501	1.05732
13	0.0121419	0.0322092	-41.0047	S1	6.48	31.5442	4.79303	4.62645	-1.59748	1.42201	-3.01949	2.56973	1.14772
14	0.0121419	0.034538	-40.5947	S1	6.48	31.5442	4.85436	4.68565	-1.39823	1.52482	-2.92305	2.76168	1.23686
15	0.0121419	0.0368334	-40.1872	S1	6.48	31.5442	4.91533	4.7445	-1.20101	1.62617	-2.82718	2.95088	1.32471
16	0.0121419	0.039096	-39.7821	S1	6.48	31.5442	4.97596	4.80303	-1.00578	1.72606	-2.73184	3.1374	1.41134
17	0.0121419	0.0413264	-39.3794	S1	6.48	31.5442	5.03625	4.86122	-0.812509	1.82453	-2.63704	3.32128	1.49675
18	0.0121419	0.0435251	-38.979	S1	6.48	31.5442	5.0962	4.91909	-0.621158	1.92161	-2.54277	3.50257	1.58096
19	0.0121419	0.0456928	-38.5808	S1	6.48	31.5442	5.15583	4.97664	-0.431707	2.01731	-2.44902	3.68131	1.664
20	0.0121419	0.0478298	-38.1849	S1	6.48	31.5442	5.21512	5.03387	-0.244123	2.11166	-2.35578	3.85754	1.74588
21	0.0121419	0.0499368	-37.7911	S1	6.48	31.5442	5.27409	5.09079	-0.0583765	2.20468	-2.26306	4.03131	1.82663
22	0.0121419	0.0520141	-37.3993	S1	6.48	31.5442	5.33274	5,14741	0.125559	2.2964	-2.17084	4.20265	1.90625
23	0.0121419	0.0540623	-37.0097	S1	6.48	31.5442	5.39107	5.20371	0.30771	2.38683	-2.07912	4.3716	1.98477
24	0.0121419	0.0560818	-36 622	S1	6.48	31 5442	5 4491	5 25972	0.488102	2 47599	-1 98789	4 5382	2 06221
25	0.0121419	0.058073	-36 2362	S1	6.48	31 5442	5 5068	5 31542	0.666759	2 5639	-1 89714	4 70248	2 13858
26	0.0121419	0.0600363	-35 8523	S1	6.48	31 5442	5 56421	5 37083	0.843707	2.5055	-1.80687	4 86447	2.13030
20	0.0121419	0.0619722	-35 4703	S1	6.48	31 5442	5 62131	5.42595	1 01897	2.03030	-1.71708	5.02422	2.21307
28	0.0121419	0.0638811	35,0001	S1	6.48	31.5442	5.67812	5.48078	1.10257	2.75005	1 62775	5 18176	2.20017
20	0.0121419	0.0657632	-34 7117	S1	6.48	31.5442	5 73463	5 53533	1.17257	2.02032	-1.5389	5 3371	2.30144
30	0.0121419	0.0676101	2/ 225	S1	6.48	31.5442	5 70085	5.5896	1.53486	2.90536	1 4505	5.40020	2.50493
31	0.0121419	0.069449	33 0500	S1	6.48	31.5442	5.84678	5.5670	1.7036	2.96550	1 36255	5.6/135	2.50475
31	0.0121419	0.009449	-33.9399	S1	6.48	31.5442	5 00242	5.60720	1.7050	3.14581	1.27506	5 70031	2.5752
32	0.0121419	0.0712555	22 21/7	S1 S1	6.48	21 5442	5.05770	5.09729	2.03634	2 22/25	-1.27300	5.0272	2.0445
33	0.0121419	0.0730323	22 8445	S1 S1	6.48	21 5442	6.01297	5.8020	2.03034	3.22433	1 10120	6.09205	2.71203
25	0.0121419	0.0747803	-52.0445	S1 S1	6.40	21 5442	6.06767	5.8039	2.2004	2 27014	-1.10139	6.06203	2.78020
26	0.0121419	0.0782207	-52.4/59	S1	6.40	21 5442	6 12221	5.00042	2.50295	2 45242	-1.01321	6 2657	2.04073
27	0.0121419	0.0782207	-52.1087	51	0.48	21.5442	0.12221	5.90943	2.52595	2.527(4	-0.92947	0.3037	2.91228
57 20	0.0121419	0.0799017	-31./43	51	0.48	21.5442	6.22046	5.90181	2.08349	2.60091	-0.844134	6.50450	2.97092
20	0.0121419	0.081339	-31.3/00	51	0.48	21.5442	0.23040	0.01392	2.84133	2.00081	-0.739236	0.0414/	3.04066
39	0.0121419	0.0831927	-31.0159	51	0.48	31.5442	0.28418	6.06578	2.99816	3.0/294	-0.6/4//5	0.//040	3.10352
40	0.0121419	0.0848033	-30.6544	SI	6.48	31.5442	6.33765	6.11739	3.15333	3.74404	-0.590708	6.90954	3.1655
41	0.0121419	0.0863908	-30.2943	SI	6.48	31.5442	6.39085	6.16874	3.30708	3.81413	-0.507051	7.04074	3.22661
42	0.0121419	0.0879557	-29.9355	S1	6.48	31.5442	6.44379	6.21984	3.45942	3.88322	-0.423797	7.17008	3.28686
43	0.0121419	0.0894981	-29.578	S1	6.48	31.5442	6.49648	6.2707	3.61036	3.95132	-0.340957	7.29757	3.34625
44	0.0121419	0.0910183	-29.2217	S1	6.48	31.5442	6.54892	6.32132	3.75993	4.01844	-0.258507	7.42326	3.40482
45	0.0121419	0.0925165	-28.8667	S1	6.48	31.5442	6.6011	6.37169	3.90814	4.08458	-0.176443	7.54713	3.46255
46	0.0121419	0.0939929	-28.5129	S1	6.48	31.5442	6.65304	6.42182	4.05498	4.14977	-0.0947869	7.66922	3.51945
47	0.0121419	0.0954478	-28.1602	S1	6.48	31.5442	6.70473	6.47171	4.20049	4.214	-0.0135082	7.78955	3.57555
48	0.0121419	0.0968814	-27.8088	S1	6.48	31.5442	6.75617	6.52137	4.34468	4.27729	0.0673936	7.90813	3.63084
49	0.0121419	0.0982939	-27.4584	S1	6.48	31.5442	6.80737	6.57079	4.48756	4.33965	0.147909	8.02498	3.68533
50	0.0121419	0.0996854	-27.1092	S1	6.48	31.5442	6.85834	6.61998	4.62913	4.40109	0.228036	8.14011	3.73902

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.976494

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		9.39291	0	0	0	0
2		9.40505	-0.0126383	0.371516	0	0
3		9.41719	-0.0250811	0.730225	0	0
4		9.42933	-0.0373332	1.07618	0	0
5		9.44147	-0.0493988	1.40942	0	0
6		9.45361	-0.0612822	1.73	0	0
7		9.46576	-0.0729874	2.03796	0	0
8		9.4779	-0.0845182	2.33335	0	0
9		9.49004	-0.0958783	2.61621	0	0
10		9.50218	-0.107071	2.82338	0	0
11		9.51432	-0.1181	2.74403	0	0
12		9.52647	-0.128969	2.6665	0	0
13		9.53861	-0.13968	2.59071	0	0
14		9.55075	-0.150236	2.51657	0	0
15		9.56289	-0.160641	2.444	0	0
16		9.57503	-0.170897	2.37291	0	0
17		9.58718	-0.181007	2.30324	0	0
18		9.59932	-0.190973	2.2349	0	0
19		9.61146	-0.200798	2.16782	0	0
20		9.6236	-0.210484	2.10194	0	0
21		9.63574	-0.220034	2.03718	0	0
22		9.64789	-0.229449	1.97349	0	0
23		9.66003	-0.238732	1.9108	0	0
24		9.67217	-0.247885	1.84905	0	0
25		9.68431	-0.256909	1.78818	0	0
26		9.69645	-0.265808	1.72813	0	0
27		9.70859	-0.274581	1.66885	0	0
28		9.72074	-0.283233	1.61029	0	0
29		9.73288	-0.291763	1.5524	0	0
30		9.74502	-0.300174	1.49512	0	0
31		9.75716	-0.308468	1.43841	0	0
32		9.7693	-0.316645	1.38222	0	0
33		9.78145	-0.324708	1.3265	0	0
34		9.79359	-0.332658	1.27121	0	0
35		9.80573	-0.340496	1.21631	0	0
36		9.81787	-0.348224	1.16176	0	0
37		9.83001	-0.355843	1.10752	0	0
38		9.84216	-0.363355	1.05354	0	0
39		9.8543	-0.37076	0.999785	0	0
40		9 86644	-0.37806	0.946224	0	0
41		9 87858	-0.385257	0.892817	0	0
42		9 89072	-0 39235	0.83953	0	0
43		9 90286	-0 399342	0.786328	0	0
44		9.91501	-0.406234	0.733177	0	0
45		9.92715	-0.413025	0.680046	0	0
46		9 93929	-0.419719	0.626902	0	0
47		9 95143	-0.426315	0.573715	0	0
48		9 96357	-0.432815	0.520454	0	0
40		9 97572	-0.439219	0.46709	0	0
50		9 98786	-0.445528	0.413594	0	0
51		10	-0.451744	0	0	0
51		10	-00.1/17	0	0	v

Global Minimum Query (janbu corrected) - Safety Factor: 0.965246

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		9.39291	0	0	0	0
2		9.40505	-0.0126383	0.341067	0	0
3		9.41719	-0.0250811	0.669419	0	0
4		9.42933	-0.0373332	0.985102	0	0
5		9.44147	-0.0493988	1.28816	0	0
6		9.45361	-0.0612822	1.57863	0	0
7		9.46576	-0.0729874	1.85657	0	0
8		9.4779	-0.0845182	2.122	0	0
9		9.49004	-0.0958783	2.37497	0	0
10		9.50218	-0.107071	2.55731	0	0
11		9.51432	-0.1181	2.47591	0	0
12		9.52647	-0.128969	2.39632	0	0
13		9.53861	-0.13968	2.31846	0	0
14		9.55075	-0.150236	2.24224	0	0
15		9.56289	-0.160641	2.16758	0	0
16		9.57503	-0.170897	2.09439	0	0
17		9.58718	-0.181007	2.0226	0	0
18		9.59932	-0.190973	1.95214	0	0
19		9.61146	-0.200798	1.88293	0	0
20		9.6236	-0.210484	1.8149	0	0
21		9.63574	-0.220034	1.74798	0	0
22		9.64789	-0.229449	1.68212	0	0
23		9.66003	-0.238732	1.61725	0	0
24		9.67217	-0.247885	1.5533	0	0
25		9.68431	-0.256909	1.49023	0	0
26		9.69645	-0.265808	1.42796	0	0
27		9.70859	-0.274581	1.36646	0	0
28		9.72074	-0.283233	1.30566	0	0
29		9.73288	-0.291763	1.24552	0	0
30		9.74502	-0.300174	1.18598	0	0
31		9.75716	-0.308468	1.127	0	0
32		9.7693	-0.316645	1.06852	0	0
33		9.78145	-0.324708	1.01051	0	0
34		9.79359	-0.332658	0.952923	0	0
35		9.80573	-0.340496	0.895708	0	0
36		9.81787	-0.348224	0.838829	0	0
37		9.83001	-0.355843	0.782243	0	0
38		9.84216	-0.363355	0.725913	0	0
39		9.8543	-0.37076	0.669799	0	0
40		9.86644	-0.37806	0.613865	0	0
41		9.87858	-0.385257	0.558073	0	0
42		9.89072	-0.39235	0.50239	0	0
43		9.90286	-0.399342	0.446779	0	0
44		9.91501	-0.406234	0.391209	0	0
45		9.92715	-0.413025	0.335646	0	0
46		9.93929	-0.419719	0.280059	0	0
47		9.95143	-0.426315	0.224416	0	0
48		9.96357	-0.432815	0.168688	0	0
49		9.97572	-0.439219	0.112846	0	0
50		9.98786	-0.445528	0.056859	0	0
51		10	-0.451744	0	0	0

парартнма ΣТ

ΥΠΟΛΟΓΙΣΤΙΚΟΙ ΕΛΕΓΧΟΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΜΕΤΡΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ

Ψηφιακή βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας - Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Stability Analysis for circular failure with sloping NW slope Arkoulaki Eleni Date Created: 11/25/2023, 6:11:21 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of NW slope with sloping

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1				
Distribution:	Constant			
Magnitude [kPa]:	120			
Orientation:	Normal to boundary			
Load Action:	Variable			

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	1.034450
Center:	14.102, 0.995
Radius:	6.586
Left Slip Surface Endpoint:	7.592, 0.000
Right Slip Surface Endpoint:	9.988, -4.148
Left Slope Intercept:	7.592 0.000
Right Slope Intercept:	9.988 -2.100
Resisting Moment:	331.832 kN-m
Driving Moment:	320.781 kN-m
Total Slice Area:	4.86877 m2
Surface Horizontal Width:	2.39582 m
Surface Average Height:	2.0322 m

Method: janbu corrected

FS	1.124490
Center:	14.607, 2.508
Radius:	8.093
Left Slip Surface Endpoint:	6.912, 0.000
Right Slip Surface Endpoint:	9.985, -4.135
Left Slope Intercept:	6.912 0.000
Right Slope Intercept:	9.985 -2.100
Resisting Horizontal Force:	42.0651 kN
Driving Horizontal Force:	37.4083 kN
Total Slice Area:	6.26197 m2
Surface Horizontal Width:	3.07224 m
Surface Average Height:	2.03824 m

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	9039				
Number of Invalid Surfaces:	222				
	Error Codes				
Error Code -108 reported for 210 surfaces					
Error Code -112 reported for 12 surfaces					
Method: janbu corrected					

Number of Valid Surfaces:	8829	
Number of Invalid Surfaces:	432	
	Error Codes	
Error Code -108 reported for 306 surfaces		

Error Code -111 reported for 110 surfaces Error Code -112 reported for 16 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = Safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.03445

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0464554	0.100507	-80.1336	S1	6.48	31.5442	1.71101	1.76995	-7.6728	0	-7.6728	2.16484	2.16484
2	0.0464554	0.283138	-77.9836	S1	6.48	31.5442	2.60884	2.69871	-6.15983	0	-6.15983	6.09652	6.09652
3	0.0464554	0.436259	-76.1677	S1	6.48	31.5442	3.47147	3.59106	-4.70618	0	-4.70618	9.39284	9.39284
4	0.0464554	0.570559	-74.5633	S1	6.48	31.5442	4.30411	4.45239	-3.30304	0	-3.30304	12.284	12.284
5	0.0464554	0.691431	-73.1087	S1	6.48	31.5442	5.11058	5.28664	-1.94402	0	-1.94402	14.8861	14.8861
6	0.0464554	0.802064	-71.7674	S1	6.48	31.5442	5.89382	6.09687	-0.624138	0	-0.624138	17.2677	17.2677
7	0.0464554	0.904536	-70.5157	S1	6.48	31.5442	6.65623	6.88554	0.660637	0	0.660637	19.4736	19.4736
8	0.0464554	1.0003	-69.3372	S1	6.48	31.5442	7.39977	7.65469	1.91361	0	1.91361	21.5351	21.5351
9	0.0464554	1.0904	-68.22	S1	6.48	31.5442	8.12606	8.406	3.13752	0	3.13752	23.4747	23.4747
10	0.0464554	1.17564	-67.1549	S1	6.48	31.5442	8.8365	9.14092	4.33473	0	4.33473	25.3097	25.3097
11	0.0464554	1.25664	-66.135	S1	6.48	31.5442	9.53227	9.86066	5.50721	0	5.50721	27.0535	27.0535
12	0.0464554	1.33391	-65.1546	S1	6.48	31.5442	10.2144	10.5663	6.65671	0	6.65671	28.7168	28.7168
13	0.0464554	1.40784	-64.2092	S1	6.48	31.5442	10.8838	11.2587	7.78474	0	7.78474	30.3082	30.3082
14	0.0464554	1.47876	-63.2951	S1	6.48	31.5442	11.5413	11.9389	8.89263	0	8.89263	31.835	31.835
15	0.0464554	1.54696	-62.4092	S1	6.48	31.5442	12.1874	12.6073	9.98152	0	9.98152	33.3031	33.3031
16	0.0485425	1.69117	-61.53	S1	6.48	31.5442	12.7392	13.178	11.3503	0.439045	10.9113	34.8423	34.4032
17	0.0485425	1.76929	-60.6562	S1	6.48	31.5442	13.1948	13.6493	12.9807	1.30165	11.6791	36.4514	35.1498
18	0.0485425	1.84469	-59.8055	S1	6.48	31.5442	13.64	14.1099	14.5637	2.13437	12.4294	38.0048	35.8704
19	0.0485425	1.91759	-58.976	S1	6.48	31.5442	14.0757	14.5606	16.103	2.93945	13.1635	39.5066	36.5671
20	0.0485425	1.98817	-58.166	S1	6.48	31.5442	14.5024	15.002	17.6016	3.71885	13.8827	40.9606	37.2417
21	0.0485425	2.05658	-57.374	S1	6.48	31.5442	14.9208	15.4348	19.062	4.47429	14.5877	42.3697	37.8954
22	0.0485425	2.12296	-56.5988	S1	6.48	31.5442	15.3314	15.8596	20.4869	5.20731	15.2796	43.7372	38.5299
23	0.0485425	2.18743	-55.8393	S1	6.48	31.5442	15.7346	16.2767	21.8784	5.91926	15.9591	45.0653	39.146
24	0.0485425	2.2501	-55.0942	S1	6.48	31.5442	16.1309	16.6866	23.2382	6.61137	16.6268	46.3563	39.745
25	0.0485425	2.31107	-54.3629	S1	6.48	31.5442	16.5206	17.0897	24.5684	7.28473	17.2836	47.6125	40.3277
26	0.0485425	2.37044	-53.6443	S1	6.48	31.5442	16.9041	17.4864	25.8701	7.94032	17.9298	48.8353	40.895
27	0.0485425	2.42828	-52.9377	S1	6.48	31.5442	17.2816	17.877	27.1452	8.57906	18.5661	50.0269	41.4479
28	0.0485425	2.48466	-52.2426	S1	6.48	31.5442	17.6536	18.2618	28.3946	9.20174	19.1929	51.1885	41.9867
29	0.0485425	2.53967	-51.5581	S1	6.48	31.5442	18.0202	18.641	29.6198	9.80913	19.8106	52.3215	42.5124
30	0.0485425	2.58383	-50.8838	S1	6.48	31.5442	18.3145	18.9454	30.7084	10.4019	20.3065	53.2313	42.8294
31	0.0485425	2.51035	-50.2192	S1	6.48	31.5442	17.7718	18.384	30.3726	10.9807	19.3919	51.7175	40.7368
32	0.0485425	2.40122	-49.5636	S1	6.48	31.5442	16.9589	17.5431	29.5682	11.5461	18.0221	49.4692	37.9231
33	0.0485425	2.29093	-48.9168	S1	6.48	31.5442	16.1201	16.6754	28.7072	12.0986	16.6086	47.1969	35.0983
34	0.0485425	2.17951	-48.2782	S1	6.48	31.5442	15.2561	15.7817	27.7914	12.6387	15.1527	44.9014	32.2627
35	0.0485425	2.06701	-47.6475	S1	6.48	31.5442	14.3678	14.8628	26.8227	13.1669	13.6558	42.5837	29.4168
36	0.0485425	1.95348	-47.0243	S1	6.48	31.5442	13.4559	13.9194	25.8027	13.6837	12.119	40.2446	26.5609
37	0.0485425	1.83894	-46.4084	S1	6.48	31.5442	12.5209	12.9523	24.7329	14.1893	10.5436	37.885	23.6957
38	0.0485425	1.72343	-45.7993	S1	6.48	31.5442	11.5635	11.9619	23.6145	14.6843	8.93023	35.5053	20.821
39	0.0485425	1.60698	-45.1968	S1	6.48	31.5442	10.5843	10.9489	22.4488	15.1688	7.28004	33.1061	17.9373
40	0.0485425	1.4897	-44.6006	S1	6.48	31.5442	9.58434	9.91452	21.2383	15.6434	5.59492	30.69	15.0466
41	0.0485425	1.41292	-44.0105	S1	6.48	31.5442	8.88506	9.19115	20.5248	16.1082	4.41662	29.1082	13
42	0.0485425	1.37013	-43.4262	S1	6.48	31.5442	8.44297	8.73383	20.2352	16.5636	3.67163	28.2267	11.6631
43	0.0485425	1.32652	-42.8474	S1	6.48	31.5442	7.98954	8.26478	19.9173	17.0098	2.9075	27.328	10.3182
44	0.0485425	1.28209	-42.2741	S1	6.48	31.5442	7.52499	7.78423	19.5718	17.4471	2.12468	26.4128	8.96568
45	0.0485425	1.23689	-41.7059	S1	6.48	31.5442	7.04952	7.29238	19.1991	17.8758	1.32332	25.4813	7.60552
46	0.0485425	1.19091	-41.1427	S1	6.48	31.5442	6.56332	6.78943	18.8	18.296	0.503966	24.5341	6.23814
47	0.0485425	1.1442	-40.5843	S1	6.48	31.5442	6.06658	6.27558	18.375	18,708	-0.333037	23.5718	4.86377
48	0.0485425	1.09675	-40.0305	S1	6.48	31.5442	5.55947	5.75099	17.9243	19.1119	-1.18759	22.5943	3,4824
49	0.0485425	1.0486	-39.4812	S1	6.48	31.5442	5.04213	5.21583	17.4487	19.5081	-2.05942	21.6023	2.09422
50	0.0485425	0.999761	-38.9362	S1	6.48	31.5442	4.51473	4.67026	16.9485	19.8966	-2.94813	20.5961	0.699505

Global Minimum Query (janbu corrected) - Safety Factor: 1.12449

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0612614	0.0896748	-71.2738	S1	6.48	31.5442	2.46329	2.76995	-6.04377	0	-6.04377	1.22277	1.22277
2	0.0612614	0.262713	-69.9652	S1	6.48	31.5442	3.18204	3.57817	-4.72717	0	-4.72717	3.99893	3.99893
3	0.0612614	0.424183	-68.7342	S1	6.48	31.5442	3.89623	4.38127	-3.4189	0	-3.4189	6.59208	6.59208
4	0.0612614	0.575927	-67.568	S1	6.48	31.5442	4.60427	5.17745	-2.12189	0	-2.12189	9.03119	9.03119
5	0.0612614	0.719333	-66.4567	S1	6.48	31.5442	5.30522	5.96567	-0.83787	0	-0.83787	11.3381	11.3381
6	0.0612614	0.855477	-65.3929	S1	6.48	31.5442	5.99855	6.74531	0.432198	0	0.432198	13.5299	13.5299
7	0.0612614	0.985217	-64.3707	S1	6.48	31.5442	6.68397	7.51606	1.68777	0	1.68777	15.62	15.62
8	0.0612614	1.10925	-63.3853	S1	6.48	31.5442	7.36135	8.27777	2.92863	0	2.92863	17.6195	17.6195
9	0.0612614	1.22814	-62.4325	S1	6.48	31.5442	8.03069	9.03043	4.15474	0	4.15474	19.5373	19.5373
10	0.0612614	1.34238	-61.5093	S1	6.48	31.5442	8.69203	9.7741	5.36619	0	5.36619	21.3811	21.3811
11	0.0612614	1.45237	-60.6127	S1	6.48	31.5442	9.34545	10.5089	6.56315	0	6.56315	23.1573	23.1573
12	0.0612614	1.55845	-59.7404	S1	6.48	31.5442	9.9911	11.2349	7.74587	0	7.74587	24.8713	24.8713
13	0.0612614	1.66093	-58.8903	S1	6.48	31.5442	10.6291	11.9523	8.91464	0	8.91464	26.528	26.528
14	0.0612614	1.76007	-58.0606	S1	6.48	31.5442	11.2596	12.6614	10.0697	0	10.0697	28.1314	28.1314
15	0.0612614	1.85609	-57.2498	S1	6.48	31.5442	11.8829	13.3622	11.2113	0	11.2113	29.6851	29.6851
16	0.0612614	1.9492	-56.4564	S1	6.48	31.5442	12.4989	14.0549	12.3398	0	12.3398	31.1925	31.1925
17	0.0612614	2.03959	-55.6793	S1	6.48	31.5442	13.108	14.7398	13.4555	0	13.4555	32.6563	32.6563
18	0.0615393	2.1429	-54.9157	S1	6.48	31.5442	13.6093	15.3036	14.8035	0.42971	14.3738	34.1789	33.7492
19	0.0615393	2.24022	-54.1646	S1	6.48	31.5442	14.0021	15.7452	16.3708	1.27743	15.0934	35.7599	34.4824
20	0.0615393	2.3349	-53.4268	S1	6.48	31.5442	14.3891	16.1804	17.9045	2.10225	15.8023	37.2984	35.1962
21	0.0615393	2.4271	-52.7017	S1	6.48	31.5442	14.7705	16.6093	19.4064	2.90535	16.501	38.7966	35.8913
22	0.0615393	2.51692	-51.9884	S1	6.48	31.5442	15.1467	17.0323	20.8778	3.6878	17.19	40.2566	36.5688
23	0.0615393	2.60449	-51.2864	S1	6.48	31.5442	15.5177	17.4495	22.3203	4.45058	17.8698	41.6802	37.2296
24	0.0615393	2.6899	-50.5948	S1	6.48	31.5442	15.8839	17.8613	23.7351	5.19457	18.5406	43.069	37.8744
25	0.0615393	2.77325	-49.9134	S1	6.48	31.5442	16.2454	18.2678	25.1233	5.92061	19.2026	44.4244	38.5038
26	0.0615393	2.85462	-49.2414	S1	6.48	31.5442	16.6023	18.6691	26.4859	6.62945	19.8565	45.748	39.1185
27	0.0615393	2.9341	-48.5784	S1	6.48	31.5442	16.9549	19.0656	27.8241	7.32178	20.5023	47.041	39.7192
28	0.0615393	3.01175	-47.924	S1	6.48	31.5442	17.3032	19.4573	29.1386	7.99825	21.1403	48.3046	40.3063
29	0.0615393	3.08766	-47.2778	S1	6.48	31.5442	17.6475	19.8444	30.4304	8.65945	21.771	49.54	40.8805
30	0.0615393	3.16188	-46.6394	S1	6.48	31.5442	17.9877	20.227	31.7002	9.30595	22.3942	50.7479	41.4419
31	0.0615393	3.23446	-46.0085	S1	6.48	31.5442	18.3241	20.6053	32.9488	9.93825	23.0106	51.9296	41.9914
32	0.0615393	3.30548	-45.3846	S1	6.48	31.5442	18.6569	20.9795	34.1769	10.5569	23.62	53.086	42.5291
33	0.0615393	3.37497	-44.7676	S1	6.48	31.5442	18.986	21.3496	35.3852	11.1622	24.223	54.2178	43.0556
34	0.0615393	3.44299	-44.1571	S1	6.48	31.5442	19.3116	21.7157	36.5742	11.7547	24.8195	55.3258	43.5711
35	0.0615393	3.38096	-43.5529	S1	6.48	31.5442	18.8911	21.2428	36.3839	12.3348	24.0491	54.344	42.0092
36	0.0615393	3.18849	-42.9546	S1	6.48	31.5442	17.7058	19.91	34.7807	12.9028	21.8779	51.2654	38.3626
37	0.0615393	2.99468	-42.3621	S1	6.48	31.5442	16.496	18.5496	33.1209	13.4591	19.6618	48.1638	34.7047
38	0.0615393	2.79956	-41.7752	S1	6.48	31.5442	15.2623	17.1623	31.4057	14.004	17.4017	45.0399	31.0359
39	0.0615393	2.60317	-41.1936	S1	6.48	31.5442	14.0051	15.7485	29.6366	14.5378	15.0988	41.8943	27.3565
40	0.0615393	2.40554	-40.6171	S1	6.48	31.5442	12.7248	14.3089	27.8145	15.0609	12.7536	38.7275	23.6666
41	0.0615393	2.20671	-40.0455	S1	6.48	31.5442	11.422	12.8439	25,9405	15.5735	10.367	35,5401	19.9666
42	0.0615393	2.0067	-39.4787	S1	6.48	31.5442	10.097	11.354	24.0156	16.0758	7.93984	32.3326	16.2568
43	0.0615393	1.85242	-38.9164	S1	6.48	31.5442	9.03584	10.1607	22.5641	16.5681	5.99598	29.8594	13.2913
44	0.0615393	1.77181	-38.3586	S1	6.48	31.5442	8.41554	9.46319	21.9105	17.0507	4.85977	28.5707	11.52
45	0.0615393	1.69108	-37.8051	S1	6.48	31.5442	7.7892	8.75888	21.2362	17.5238	3.71235	27.2792	9.75538
46	0.0615393	1.60928	-37.2556	S1	6.48	31.5442	7.15111	8.04135	20.531	17.9876	2.54339	25,9699	7.98233
47	0.0615393	1.52643	-36,7102	S1	6.48	31.5442	6.50141	7.31077	19,7956	18.4422	1.35342	24.6434	6.20122
48	0.0615393	1.442.56	-36,1686	S1	6.48	31.5442	5.84025	6.56731	19.0302	18.888	0.142156	23.2997	4.41166
49	0.0615393	1.35769	-35.6307	S1	6.48	31.5442	5.16778	5.81112	18.2354	19.325	-1.08962	21,9393	2.61434
50	0.0615393	1.27184	-35.0964	S1	6.48	31.5442	4.48413	5.04236	17.4114	19.7534	-2.34196	20.5625	0.809118

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.03445

Slice I	Number X c	oordinate [m] Y coord	linate - Bottom Interslic [m]	e Normal Force In [kN]	nterslice Shear Force [kN]	Interslice Force Angle [deg]
1	7.59176	0	0	0	0)
2	7.63821	-0.267101	-2.12889	0	0	
3	7.68467	-0.485349	-3.59444	0	0	
4	7.73112	-0.674023	-4.64362	0	0	
5	7.77758	-0.842258	-5.39923	0	0	
6	7.82403	-0.995244	-5.93402	0	0	
7	7.87049	-1.13627	-6.2958	0	0	
8	7.91694	-1.26757	-6.51823	0	0	
9	7.9634	-1.39075	-6.62622	0	0	
10	8.00985	-1.50702	-6.63889	0	0	
11	8.05631	-1.61729	-6.57135	0	0	
12	8.10277	-1.72229	-6.43583	0	0	
13	8.14922	-1.82262	-6.24241	0	0	
14	8.19568	-1.91876	-5.99955	0	0	
15	8.24213	-2.0111	-5.71442	0	0	
16	8.28859	-2.1	-5.3932	0	0	
17	8.33713	-2.18952	-4.99547	0	0	
18	8.38567	-2.27586	-4.51505	0	0	
19	8.43421	-2.35929	-3.96213	0	0	
20	8.48276	-2.44	-3.34561	0	0	
21	8.5313	-2.51818	-2.67328	0	0	
22	8.57984	-2.59401	-1.95204	0	0	
23	8.62838	-2.66763	-1.18802	0	0	
24	8.67693	-2.73916	-0.386677	0	0	
25	8.72547	-2.80873	0.44706	0	0	
26	8.77401	-2.87644	1.30875	0	0	
27	8.82255	-2.94239	2.19438	0	0	
28	8.8711	-3.00666	3.10029	0	0	
29	8.91964	-3.06934	4.02314	0	0	
30	8.96818	-3.13049	4.95987	0	0	
31	9.01672	-3.19019	5.90416	0	0	
32	9.06527	-3.24849	6.81238	0	0	
33	9.11381	-3.30545	7.67359	0	0	
34	9.16235	-3.36113	8.48955	0	0	
35	9.21089	-3.41557	9.26208	0	0	
36	9.25944	-3.46882	9.99302	0	0	
37	9.30798	-3.52092	10.6842	0	0	
38	9.35652	-3.57191	11.3376	0	0	
39	9.40506	-3.62183	11.9551	0	0	
40	9.45361	-3.67071	12.5387	0	0	
41	9.50215	-3.71858	13.0898	0	0	
42	9.55069	-3.76547	13.3991	0	0	
43	9.59923	-3.81142	13.2893	0	0	
44	9.64778	-3.85644	12.7609	0	0	
45	9.69632	-3.90057	11.8141	0	0)
46	9.74486	-3.94383	10.4495	0	0	
47	9.7934	-3.98624	8.66749	0	0	
48	9.84195	-4.02782	6.46859	0	0	
49	9.89049	-4.0686	3.85335	0	0	
50	9.93903	-4.10859	0.822313	0	0	
51	9.98757	-4.14781	20.5692	0	0	

Global Minimum Query (janbu corrected) - Safety Factor: 1.12449

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		6.91234	0	0	0	0
2		6.9736	-0.180717	-1.24812	0	0
3		7.03486	-0.348714	-2.24368	0	0
4		7.09612	-0.506119	-3.02844	0	0
5		7.15738	-0.654515	-3.63474	0	0
6		7.21864	-0.795116	-4.08833	0	0
7		7.2799	-0.928879	-4.41019	0	0
8		7.34117	-1.05657	-4.61772	0	0
9		7.40243	-1.17883	-4.7256	0	0
10		7.46369	-1.29618	-4.74635	0	0
11		7.52495	-1.40905	-4.6908	0	0
12		7.58621	-1.51783	-4.56838	0	0
13		7.64747	-1.62283	-4.38739	0	0
14		7.70874	-1.72435	-4.15517	0	0
15		7.77	-1.82262	-3.87829	0	0
16		7.83126	-1.91786	-3.56263	0	0
17		7.89252	-2.01026	-3.2135	0	0
18		7.95378	-2.1	-2.8357	0	0
19		8.01532	-2.18761	-2.40401	0	0
20		8.07686	-2.27283	-1.89924	0	0
21		8.1384	-2.35577	-1.32904	0	0
22		8.19994	-2.43656	-0.70038	0	0
23		8.26148	-2.51529	-0.0196226	0	0
24		8 32302	-2 59207	0 707417	0	0
25		8 38456	-2 66697	1 47539	0	0
26		8 4461	-2 74009	2 27939	0	0
20		8 50763	-2.81149	3 11/485	0	0
28		8 56917	-2.88124	3 97757	0	0
20		8 63071	-2.0012-4	4 86363	0	0
30		8 69225	-3.01604	5 76941	0	0
31		8 75379	-3.0812	6 69151	0	0
32		8 81533	-3.14495	7 62677	0	0
32		8 87687	3 20732	8 57221	0	0
33		8.07007	-3.20732	0.57221	0	0
25		8.93841	-5.20850	9.52505	0	0
26		0.06140	-3.32012	10.4627	0	0
27		9.00149	-3.38002	11.4105	0	0
20		9.12505	-3.44392	12.2775	0	0
20 20		9.16437	-3.30004	13.0872	0	0
39		9.24011	-3.33301	13.6433	0	0
40		9.30765	-3.00887	14.5491	0	0
41		9.36918	-3.00105	15.208	0	0
42		9.43072	-3./133/	15.8235	0	0
43		9.49226	-3./0400	10.3989	0	0
44		9.5538	-3.81375	16.695	0	0
45		9.01534	-3.86245	16.3264	0	0
46		9.67688	-3.91019	15.2891	0	0
4/		9./3842	-3.957	13.584	0	0
48		9.79996	-4.00289	11.2124	0	0
49		9.8615	-4.04787	8.17513	0	0
50		9.92304	-4.09198	4.4735	0	0
51		9.98458	-4.13523	20.3172	0	0

Stability Analysis for circular failure with micropile support NE slope Arkoulaki Eleni Date Created: 11/25/2023, 6:52:33 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of NE slope

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical						
Analysis Methods Used							
	Bishop simplified						
	Janbu corrected						
Number of slices:	50						
Tolerance:	0.005						
Maximum number of iterations:	75						
Check malpha < 0.2:	Yes						
Create Interslice boundaries at intersections with water tables and piezos:	Yes						
Initial trial value of FS:	1						
Steffensen Iteration:	Yes						

Groundwater Analysis

Groundwater Method: Pore Fluid Unit Weight [kN/m3]: Use negative pore pressure cutoff: Advanced Groundwater Method: Water Surfaces 9.81 No None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1					

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	1
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0

Support

Support 1	
Color	
Туре	RSPile
Force Application	Passive (Method B)
Out-Of-Plane Spacing	1.5 m
Apply Batter and Ground Slope Modifiers	Yes
Ground Slope and Batter Values	Calculate from Slide2 model
Soil Displacement Type	Maximum
Soil Displacement	25 mm

Global Minimums

Method: bishop simplified

1.106480

Method: janbu corrected

FS	1.020240
Center:	-16.149, 2.305
Radius:	8.384
Left Slip Surface Endpoint:	-10.000, -3.395
Right Slip Surface Endpoint:	-8.087, 0.000
Left Slope Intercept:	-10.000 0.000
Right Slope Intercept:	-8.087 0.000
Resisting Horizontal Force:	263.22 kN
Driving Horizontal Force:	257.997 kN
Passive Horizontal Support Force:	153.646 kN
Maximum Single Support Force:	153.646 kN
Total Support Force:	153.646 kN
Total Slice Area:	3.84484 m2
Surface Horizontal Width:	1.91276 m
Surface Average Height:	2.0101 m

Global Minimum Support Data

Method: bishop simplified

Number of Supports: 1								
			Support 1					
Support Type:	RSPile							
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)		
-10, 0.25	9	0.898653	8.10135	0.898653	8.10135	18.6085		

Method: janbu corrected

Number of Supports: 1								
			Support 1					
Support Type:	RSPile							
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)		
-10, 0.25	9	3.64522	5.35478	3.64522	5.35478	153.646		

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	6117	
Number of Invalid Surfaces:	3144	
	Error Codes	

Error Code -106 reported for 239 surfaces Error Code -108 reported for 1839 surfaces Error Code -112 reported for 268 surfaces Error Code -1000 reported for 798 surfaces

Method: janbu corrected

Number of Valid Surfaces:	6231	
Number of Invalid Surfaces:	3030	
	Error Codes	
Error Code -106 reported for 239 surfaces		

Error Code -108 reported for 1853 surfaces Error Code -112 reported for 140 surfaces

Error Code -1000 reported for 798 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number). -112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

-1000 = No valid slip surface is generated

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.10648

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.011219	0.11679	47.2201	S1	6.48	31.5442	7.27352	8.048	2.55431	-14.2972	2.55431	10.4145	10.4145
2	0.011219	0.114584	47.2958	S1	6.48	31.5442	7.19812	7.96458	2.41842	-14.4163	2.41842	10.2178	10.2178
3	0.011219	0.112371	47.3716	S1	6.48	31.5442	7.12267	7.88109	2.28243	-14.5357	2.28243	10.0206	10.0206
4	0.011219	0.110153	47.4476	S1	6.48	31.5442	7.04716	7.79754	2.14632	-14.6554	2.14632	9.82283	9.82283
5	0.011219	0.107929	47.5236	S1	6.48	31.5442	6.97159	7.71392	2.0101	-14.7755	2.0101	9.62456	9.62456
6	0.011219	0.105699	47.5998	S1	6.48	31.5442	6.89595	7.63023	1.87377	-14.8959	1.87377	9.42574	9.42574
7	0.011219	0.103463	47.6761	S1	6.48	31.5442	6.82026	7.54648	1.73732	-15.0165	1.73732	9.22641	9.22641
8	0.011219	0.101221	47.7525	S1	6.48	31.5442	6.7445	7.46265	1.60077	-15.1376	1.60077	9.02653	9.02653
9	0.011219	0.0989728	47.829	S1	6.48	31.5442	6.66868	7.37876	1.46411	-15.2589	1.46411	8.82612	8.82612
10	0.011219	0.0967188	47.9056	SI	6.48	31.5442	6.5928	7.2948	1.32734	-15.3806	1.32734	8.62516	8.62516
11	0.011219	0.0944586	47.9823	SI	6.48	31.5442	6.51686	7.21078	1.19046	-15.5026	1.19046	8.42367	8.42367
12	0.011219	0.0921924	48.0591	SI	6.48	31.5442	6.44086	7.12668	1.05346	-15.6249	1.05346	8.22163	8.22163
13	0.011219	0.08992	48.1361	SI	6.48	31.5442	6.3648	7.04252	0.916371	-15.7475	0.916371	8.01905	8.01905
14	0.011219	0.0876415	48.2132	SI	6.48	31.5442	6.28868	6.9583	0.779163	-15.8705	0.779163	7.81592	7.81592
15	0.011219	0.0853568	48.2904	SI	6.48	31.5442	6.2125	6.874	0.641845	-15.9938	0.641845	7.61224	7.61224
10	0.011219	0.0830659	48.36//	51	6.48	31.5442	6.13626	6.78964	0.50442	-16.11/5	0.50442	7.408	7.408
17	0.011219	0.0807687	48.4451	SI	6.48	31.5442	6.05995	6.70522	0.366888	-16.2415	0.366888	7.20321	7.20321
18	0.011219	0.0784653	48.5226	51	6.48	31.5442	15.1936	16.8114	16.8302	-16.3658	16.8302	34.01/1	34.01/1
19	0.011219	0.0728206	48.6003	51	6.48	31.5442	59.0385	65.3249	95.8602	-16.4905	95.8602	162.827	162.827
20	0.011219	0.0738396	48.6/81	51	6.48	31.5442	58.9058	65.1/81	95.6213	-10.0155	95.6213	162.621	162.621
21	0.011219	0.0/151/2	48./50	51	6.48	31.5442	58.775	64.8820	95.3810	-10./408	95.3810	162.413	162.413
22	0.011219	0.0691884	40.034	S1 S1	6.48	31.3442	58 5066	64.0039	93.1419	-10.8003	93.1419	161.007	161.007
23	0.011219	0.0606333	48.9121	S1 S1	6.48	31.5442	58.3000	64.7304	94.9014	-10.9920	94.9014	161.997	161.997
24	0.011219	0.0043110	40.9904	S1	6.48	31.5442	58 2306	64.3000	94.0009	-17.119	94.0009	161.789	161.58
25	0.011219	0.0508080	49.0000	S1	6.48	31.5442	58 1057	64 2028	94.4202	17 3728	04 1788	161.37	161.37
20	0.011219	0.0574478	49.1473	S1	6.48	31.5442	57 9716	64 1444	03 0372	-17.5002	03 0372	161.159	161.159
27	0.011219	0.0550801	49 3047	S1	6.48	31 5442	57 8374	63 9959	93 695	-17.628	93 695	160.948	160.948
20	0.011219	0.0527058	49 3836	S1	6.48	31 5442	57 7029	63 8471	93 4526	-17 7562	93 4526	160.737	160.737
30	0.011219	0.0503248	49 46 26	S1	6.48	31 5442	57 5681	63 698	93 2102	-17 8847	93 2102	160.525	160.525
31	0.011219	0.0479372	49.5417	S1	6.48	31.5442	57.4333	63.5488	92.967	-18.0136	92.967	160.312	160.312
32	0.011219	0.045543	49.621	S1	6.48	31.5442	57.2982	63,3993	92.7231	-18.1428	92.7231	160.098	160.098
33	0.011219	0.0431419	49.7004	S1	6.48	31.5442	57.1628	63.2495	92.4791	-18.2724	92.4791	159.884	159.884
34	0.011219	0.0407342	49,7799	S1	6.48	31.5442	57.0273	63.0996	92.235	-18.4024	92.235	159.67	159.67
35	0.011219	0.0383196	49.8596	S1	6.48	31.5442	56.8916	62.9494	91.9902	-18.5327	91.9902	159.454	159.454
36	0.011219	0.0358982	49.9393	S1	6.48	31.5442	56.7556	62.7989	91.7453	-18.6634	91.7453	159.239	159.239
37	0.011219	0.0334699	50.0193	S1	6.48	31.5442	56.6194	62.6482	91.4996	-18.7945	91.4996	159.022	159.022
38	0.011219	0.0310348	50.0993	S1	6.48	31.5442	56.483	62.4973	91.2539	-18.9259	91.2539	158.805	158.805
39	0.011219	0.0285927	50.1795	S1	6.48	31.5442	56.3464	62.3462	91.008	-19.0577	91.008	158.588	158.588
40	0.011219	0.0261437	50.2598	S1	6.48	31.5442	56.2096	62.1948	90.7609	-19.1899	90.7609	158.369	158.369
41	0.011219	0.0236876	50.3403	S1	6.48	31.5442	56.0725	62.0431	90.5142	-19.3225	90.5142	158.151	158.151
42	0.011219	0.0212245	50.4209	S1	6.48	31.5442	55.9352	61.8912	90.2668	-19.4554	90.2668	157.931	157.931
43	0.011219	0.0187544	50.5016	S1	6.48	31.5442	55.7978	61.7391	90.0187	-19.5887	90.0187	157.711	157.711
44	0.011219	0.0162771	50.5825	S1	6.48	31.5442	55.66	61.5867	89.7706	-19.7225	89.7706	157.49	157.49
45	0.011219	0.0137927	50.6635	S1	6.48	31.5442	55.5221	61.4341	89.5217	-19.8566	89.5217	157.268	157.268
46	0.011219	0.0113011	50.7447	S1	6.48	31.5442	55.3839	61.2812	89.2727	-19.991	89.2727	157.046	157.046
47	0.011219	0.0088023	50.826	S1	6.48	31.5442	55.2455	61.128	89.0236	-20.1259	89.0236	156.824	156.824
48	0.011219	0.0062962 4	50.9074	S1	6.48	31.5442	55.1069	60.9747	88.7738	-20.2612	88.7738	156.601	156.601
49	0.011219	0.0037828 8	50.989	S1	6.48	31.5442	54.968	60.821	88.5233	-20.3968	88.5233	156.376	156.376
50	0.011219	0.0012621 8	51.0707	S 1	6.48	31.5442	54.8289	60.6671	88.2727	-20.5329	88.2727	156.152	156.152
Global Minimum Query (janbu corrected) - Safety Factor: 1.02024

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress	Pore Pressure [kPa]	Effective Normal Stress	Base Vertical Stress	Effective Vertical Stress
1	0.0379004	2.17344	47.3577	S 1	6.48	31.5442	19.915	20.3181	35.0469	12.5043	22.5426	56.6722	44.1679
2	0.0379004	2.1447	47.7415	S1	6.48	31.5442	19.6813	20.0796	34.252	12.0978	22.1542	55.9129	43.8151
3	0.0379004	2.11557	48.1281	S1 S1	6.48	31.5442	19.446	19.8396	33,449	11.6858	21.7632	55,1433	43.4575
4	0.0379004	2.08604	48.5176	S1	6.48	31.5442	19.2092	19.598	32.6377	11.2681	21.3696	54.3632	43.0951
5	0.0379004	2.05611	48,9101	S1	6.48	31.5442	18.9707	19.3547	31.818	10.8447	20.9733	53.5723	42.7276
6	0.0379004	2.02575	49.3057	S1	6.48	31.5442	58.1527	59.3297	96.5092	10.4154	86.0938	164.132	153.716
7	0.0379004	1.99497	49.7046	S1	6.48	31.5442	72.6914	74.1627	120.237	9.97994	110.257	205.966	195.986
8	0.0379004	1.96374	50.1067	S1	6.48	31.5442	72.1214	73.5811	118.848	9.53831	109.31	205.125	195.587
9	0.0379004	1.93207	50.5123	S1	6.48	31.5442	71.5453	72.9934	117.443	9.09031	108.352	204.272	195.182
10	0.0379004	1.89993	50.9214	S1	6.48	31.5442	70.963	72.3993	116.02	8.63577	107.385	203.407	194.771
11	0.0379004	1.86732	51.334	S1	6.48	31.5442	70.3741	71.7985	114.58	8.17452	106.406	202.529	194.354
12	0.0379004	1.83422	51.7505	S1	6.48	31.5442	69.7786	71.1909	113.123	7.70637	105.416	201.638	193.931
13	0.0379004	1.80062	52.1708	S1	6.48	31.5442	69.1761	70.5762	111.646	7.23114	104.415	200.733	193.502
14	0.0379004	1.76651	52.5951	S1	6.48	31.5442	68.5664	69.9542	110.15	6.74863	103.401	199.815	193.067
15	0.0379004	1.73186	53.0236	S1	6.48	31.5442	67.9491	69.3244	108.634	6.25861	102.376	198.883	192.624
16	0.0379004	1.69667	53.4564	S1	6.48	31.5442	67.3241	68.6867	107.098	5.76087	101.337	197.936	192.175
17	0.0379004	1.66092	53.8936	S1	6.48	31.5442	66.6909	68.0407	105.54	5.25516	100.284	196.974	191.719
18	0.0379004	1.62458	54.3355	S1	6.48	31.5442	66.0493	67.3861	103.959	4.74124	99.218	195.997	191.256
19	0.0379004	1.58765	54.7822	S1	6.48	31.5442	65.3988	66.7225	102.356	4.21883	98.137	195.003	190.785
20	0.0379004	1.55009	55.2338	S1	6.48	31.5442	64.7392	66.0495	100.728	3.68766	97.0407	193.993	190.306
21	0.0379004	1.5119	55.6907	S1	6.48	31.5442	64.0699	65.3667	99.0758	3.14742	95.9284	192.966	189.819
22	0.0379004	1.47304	56.1529	S1	6.48	31.5442	63.3907	64.6737	97.3972	2.59779	94.7994	191.921	189.323
23	0.0379004	1.43349	56.6208	S1	6.48	31.5442	62.7009	63.97	95.6914	2.03843	93.653	190.857	188.819
24	0.0379004	1.39323	57.0945	S1	6.48	31.5442	62.0001	63.255	93.9573	1.46897	92.4883	189.775	188.306
25	0.0379004	1.35223	57.5744	S1	6.48	31.5442	61.2878	62.5283	92.1935	0.889029	91.3044	188.672	187.783
26	0.0379004	1.31045	58.0607	S1	6.48	31.5442	60.5634	61.7892	90.3986	0.298178	90.1005	187.549	187.251
27	0.0386397	1.29474	58.5586	S1	6.48	31.5442	59.7461	60.9554	88.7422	-0.310022	88.7422	186.463	186.463
28	0.0386397	1.25478	59.0685	S1	6.48	31.5442	58.8359	60.0267	87.2293	-0.936297	87.2293	185.414	185.414
29	0.0386397	1.214	59.5862	S1	6.48	31.5442	57.911	59.0831	85.6922	-1.57544	85.6922	184.345	184.345
30	0.0386397	1.17235	60.1119	S1	6.48	31.5442	56.9707	58.1238	84.1294	-2.22807	84.1294	183.252	183.252
31	0.0386397	1.12981	60.6462	S1	6.48	31.5442	56.0142	57.1479	82.5395	-2.89482	82.5395	182.136	182.136
32	0.0386397	1.08632	61.1895	S1	6.48	31.5442	55.0405	56.1545	80.9213	-3.57641	80.9213	180.996	180.996
33	0.0386397	1.04183	61.7423	S1	6.48	31.5442	54.0486	55.1425	79.2727	-4.27362	79.2727	179.83	179.83
34	0.0386397	0.996291	62.3052	S1	6.48	31.5442	53.0373	54.1108	77.5922	-4.98731	77.5922	178.636	178.636
35	0.0386397	0.949639	62.8789	S1	6.48	31.5442	52.0056	53.0582	75.8775	-5.71842	75.8775	177.413	177.413
36	0.0386397	0.90181	63.464	S1	6.48	31.5442	50.952	51.9833	74.1263	-6.46799	74.1263	176.16	176.16
37	0.0386397	0.85273	64.0614	S1	6.48	31.5442	49.875	50.8845	72.3363	-7.23718	72.3363	174.874	174.874
38	0.0386397	0.802315	64.6718	S1	6.48	31.5442	48.7729	49.7601	70.5046	-8.02727	70.5046	173.553	173.553
39	0.0386397	0.750475	65.2963	S1	6.48	31.5442	47.6438	48.6081	68.6279	-8.8397	68.6279	172.195	172.195
40	0.0386397	0.697105	65.936	S1	6.48	31.5442	46.4854	47.4263	66.7028	-9.6761	66.7028	170.798	170.798
41	0.0386397	0.642088	66.5921	S1	6.48	31.5442	45.2954	46.2122	64.7251	-10.5383	64.7251	169.357	169.357
42	0.0386397	0.58529	67.2661	S1	6.48	31.5442	44.071	44.963	62.69	-11.4285	62.69	167.87	167.87
43	0.0386397	0.526556	67.9595	S1	6.48	31.5442	42.8088	43.6753	60.5922	-12.3489	60.5922	166.333	166.333
44	0.0386397	0.465707	68.6744	S1	6.48	31.5442	41.505	42.3451	58.4254	-13.3025	58.4254	164.74	164.74
45	0.0386397	0.402533	69.4129	S1	6.48	31.5442	40.1554	40.9681	56.1822	-14.2926	56.1822	163.087	163.087
46	0.0386397	0.336787	70.1777	S1	6.48	31.5442	38.7542	39.5386	53.8536	-15.323	53.8536	161.366	161.366
47	0.0386397	0.268171	70.9719	S1	6.48	31.5442	37.2954	38.0503	51.429	-16.3983	51.429	159.571	159.571
48	0.0386397	0.196323	71.7996	S1	6.48	31.5442	35.771	36.495	48.8955	-17.5243	48.8955	157.691	157.691
49	0.0386397	0.120796	72.6654	S1	6.48	31.5442	34.1713	34.8629	46.2367	-18.7079	46.2367	155.715	155.715
50	0.0386397	0.0410252	73.5754	S1	6.48	31.5442	32.4838	33.1413	43.4322	-19.9581	43.4322	153.628	153.628

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.10648

Slice N	umber X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1	-10	-0.648653	0	0	0
2	-9.98878	-0.636529	16.8683	0	0
3	-9.97756	-0.624373	16.9196	0	0
4	-9.96634	-0.612185	16.9717	0	0
5	-9.95512	-0.599964	17.0245	0	0
6	-9.9439	-0.58771	17.078	0	0
7	-9.93269	-0.575424	17.1323	0	0
8	-9.92147	-0.563104	17.1874	0	0
9	-9.91025	-0.550752	17.2432	0	0
10	-9.89903	-0.538367	17.2999	0	0
11	-9.88781	-0.525948	17.3573	0	0
12	-9.87659	-0.513496	17.4155	0	0
13	-9.86537	-0.50101	17.4746	0	0
14	-9.85415	-0.48849	17.5345	0	0
15	-9.84293	-0.475936	17.5952	0	0
16	-9.83171	-0.463349	17.6568	0	0
17	-9.8205	-0.450727	17.7192	0	0
18	-9.80928	-0.43807	17.7826	0	0
19	-9.79806	-0.425379	17.7393	0	0
20	-9.78684	-0.412654	17.1814	0	0
21	-9.77562	-0.399893	16.6217	0	0
22	-9.7644	-0.387098	16.0603	0	0
23	-9.75318	-0.374267	15.497	0	0
24	-9.74196	-0.361401	14.932	0	0
25	-9.73074	-0.348499	14.3652	0	0
26	-9.71952	-0.335562	13.7967	0	0
27	-9.7083	-0.322589	13.2264	0	0
28	-9.69709	-0.309579	12.6544	0	0
29	-9.68587	-0.296534	12.0806	0	0
30	-9.67465	-0.283452	11.505	0	0
31	-9.66343	-0.270334	10.9278	0	0
32	-9.65221	-0.257178	10.3487	0	0
33	-9.64099	-0.243986	9.76798	0	0
34	-9.62977	-0.230757	9.18549	0	0
35	-9.61855	-0.217491	8.60128	0	0
36	-9.60733	-0.204187	8.01534	0	0
37	-9.59611	-0.190845	7.42769	0	0
38	-9.5849	-0.177466	6.83832	0	0
39	-9.57368	-0.164048	6.24723	0	0
40	-9.56246	-0.150592	5.65445	0	0
41	-9.55124	-0.137098	5.05996	0	0
42	-9.54002	-0.123565	4.46377	0	0
43	-9.5288	-0.109994	3.86589	0	0
44	-9.51758	-0.0963833	3.26631	0	0
45	-9.50636	-0.0827336	2.66506	0	0
46	-9.49514	-0.0690444	2.06212	0	0
47	-9.48392	-0.0553156	1.4575	0	0
48	-9.47271	-0.0415469	0.851217	0	0
49	-9.46149	-0.0277383	0.243262	0	0
50	-9.45027	-0.0138894	-0.366356	0	0
51	-9.43905	0	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 1.02024

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-10	-3.39522	0	0	0
2		-9.9621	-3.35407	154.003	0	0
3		-9.9242	-3.31236	153.343	0	0
4		-9.8863	-3.27007	152.689	0	0
5		-9.8484	-3.22721	152.041	0	0
6		-9.8105	-3.18375	151.399	0	0
7		-9.7726	-3.13968	149.418	0	0
8		-9.7347	-3.09498	146.885	0	0
9		-9.6968	-3.04964	144.315	0	0
10		-9.6589	-3.00364	141.709	0	0
11		-9.621	-2.95697	139.068	0	0
12		-9.5831	-2.9096	136.391	0	0
13		-9.5452	-2.86153	133.679	0	0
14		-9.5073	-2.81272	130.933	0	0
15		-9.46939	-2.76315	128.154	0	0
16		-9.43149	-2.71282	125.341	0	0
17		-9.39359	-2.66168	122.495	0	0
18		-9.35569	-2.60972	119.617	0	0
19		-9.31779	-2.5569	116.708	0	0
20		-9.27989	-2.50321	113.768	0	0
21		-9.24199	-2.44861	110.799	0	0
22		-9.20409	-2.39307	107.8	0	0
23		-9.16619	-2.33656	104.773	0	0
24		-9 12829	-2 27903	101 719	0	0
25		-9 09039	-2 22046	98 6386	0	0
26		-9.05249	-2 1608	95 5333	0	0
27		-9.01459	-2.1000	92 4043	0	0
28		-8 97595	-2.0368	89 1763	0	0
20		-8 93731	-1.97232	85 8959	0	0
30		-8 89867	-1.9065	82 5627	0	0
31		-8.86003	-1.83927	79 1767	0	0
32		8 82130	1 77056	75 7277	0	0
32		-0.02133 9 79275	1 70031	72 2456	0	0
24		9.74411	1 62842	68 7003	0	0
25		-0.74411	-1.02042	65 1016	0	0
26		-8./034/	-1.33481	61 4405	0	0
27		-8.00083	-1.4/93/	61.4495 57.7420	0	0
3/ 20		-0.02019	-1.40199	52 0949	0	0
30		-8.58955	-1.32233	50,1722	0	0
39		-8.55091	-1.24091	50.1722	0	0
40		-8.51227	-1.15692	40.3001	0	0
41		-8.4/363	-1.07039	42.3867	0	0
42		-8.43499	-0.981132	38.4143	0	0
43		-8.39635	-0.888914	34.3891	0	0
44		-8.35772	-0.793472	30.3117	0	0
45		-8.31908	-0.694497	26.1828	0	0
46		-8.28044	-0.591628	22.0033	0	0
47		-8.2418	-0.484433	17.7/46	0	0
48		-8.20316	-0.372393	13.4985	0	0
49		-8.16452	-0.254873	9.1775	0	0
50		-8.12588	-0.131079	4.81518	0	0
51		-8.08724	0	0	0	0

Stability Analysis for circular failure with micropile support (diameter180mm) NE slope Arkoulaki Eleni Date Created: 11/25/2023, 6:52:33 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of NE slope

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method: Pore Fluid Unit Weight [kN/m3]: Use negative pore pressure cutoff: Advanced Groundwater Method: Water Surfaces 9.81 No None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1				
Distribution:	Constant			
Magnitude [kPa]:	120			
Orientation:	Normal to boundary			
Load Action:	Variable			
Magnitude [kPa]: Orientation: Load Action:	120 Normal to boundary Variable			

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	1
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0

Support

Support 1	
Color	
Туре	RSPile
Force Application	Passive (Method B)
Out-Of-Plane Spacing	1.5 m
Apply Batter and Ground Slope Modifiers	Yes
Ground Slope and Batter Values	Calculate from Slide2 model
Soil Displacement Type	Maximum
Soil Displacement	25 mm

Global Minimums

Method: bishop simplified

Center: -16.149, 3.818 Radius: 9.721 Left Slip Surface Endpoint: -10.000, -3.712 Pickt Slip Surface Endpoint: 7.200, 0.000	
Radius:9.721Left Slip Surface Endpoint:-10.000, -3.712Dialet Slip Surface Endpoint:7.200, 0.000	
Left Slip Surface Endpoint: -10.000, -3.712	
Dialet Clin Conference Funda sinta	
Right Slip Sufface Endpoint: -7.209, 0.000	
Left Slope Intercept: -10.000 0.000	
Right Slope Intercept: -7.209 0.000	
Resisting Moment: 3608.81 kN-m	
Driving Moment: 3811.63 kN-m	
Passive Support Moment: 822.172 kN-m	
Maximum Single Support Force: 109.191 kN	
Total Support Force: 109.191 kN	
Total Slice Area: 6.05418 m2	
Surface Horizontal Width: 2.79148 m	
Surface Average Height: 2.16881 m	

Method: janbu corrected

гэ	0.843548
Center: -:	15.644, 1.801
Radius: 7	.957
Left Slip Surface Endpoint: -:	10.000, -3.807
Right Slip Surface Endpoint: -7	7.894, 0.000
Left Slope Intercept: -:	10.000 0.000
Right Slope Intercept: -7	7.894 0.000
Resisting Horizontal Force: 2	23.213 kN
Driving Horizontal Force: 2	64.612 kN
Passive Horizontal Support Force: 1	10.5 kN
Maximum Single Support Force: 1	10.5 kN
Total Support Force: 1	10.5 kN
Total Slice Area: 4	.89184 m2
Surface Horizontal Width: 2	.10607 m
Surface Average Height: 2	.32273 m

Global Minimum Support Data

Method: bishop simplified

Number of Sup	pports: 1					
			Support 1			
Support Type:	RSPile					
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)
-10, 0.25	9	3.96178	5.03822	3.96178	5.03822	109.191

Method: janbu corrected

Number of Su	pports: 1					
			Support 1			
Support Type:	RSPile					
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)
-10, 0.25	9	4.05748	4.94252	4.05748	4.94252	110.5

Valid and Invalid Surfaces

Method: bishop simplified

Error Code -106 reported for 239 surfaces Error Code -108 reported for 1839 surfaces Error Code -112 reported for 248 surfaces Error Code -1000 reported for 798 surfaces

Method: janbu corrected

Number of Valid Surfaces:	6233	
Number of Invalid Surfaces:	3028	
	Error Codes	
Error Code -106 reported for 239 surfaces		

Error Code -106 reported for 239 surfaces Error Code -108 reported for 1853 surfaces Error Code -111 reported for 10 surfaces Error Code -112 reported for 128 surfaces

Error Code -1000 reported for 798 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = Safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

-1000 = No valid slip surface is generated

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.94679

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0558469	3.52366	39.4476	S1	6.48	31.5442	24.5519	23.2455	42.8977	15.5861	27.3116	63.099	47.5129
2	0.0558469	3.47634	39.8752	S1	6.48	31.5442	24.2565	22.9658	41.9879	15.1319	26.856	62.2516	47.1197
3	0.0558469	3.42829	40.3054	S1	6.48	31.5442	23.9594	22.6845	41.0684	14.6707	26.3977	61.3913	46.7206
4	0.0558469	3.37951	40.7385	S1	6.48	31.5442	50.8415	48.1362	82.0616	14.2024	67.8592	125.852	111.649
5	0.0558469	3.32997	41.1743	S1	6.48	31.5442	87.907	83.2295	138.754	13.7269	125.028	215.642	201.915
6	0.0558469	3.27966	41.6131	S1	6.48	31.5442	87.243	82.6008	137.247	13.244	124.003	214.74	201.496
7	0.0558469	3.22856	42.0549	S1	6.48	31.5442	86.5737	81.9671	135.724	12.7535	122.971	213.826	201.072
8	0.0558469	3.17667	42.4998	S1	6.48	31.5442	85.899	81.3283	134.186	12.2554	121.931	212.897	200.642
9	0.0558469	3.12396	42.9478	S1	6.48	31.5442	85.2187	80.6842	132.63	11.7494	120.881	211.953	200.204
10	0.0558469	3.07041	43.3992	S1	6.48	31.5442	84.5326	80.0346	131.058	11.2354	119.823	210.994	199.759
11	0.0558469	3.016	43.8539	S1	6.48	31.5442	83.8406	79.3794	129.469	10.7132	118.755	210.02	199.307
12	0.0558469	2.96072	44.3121	S1	6.48	31.5442	83.1423	78.7183	127.861	10.1826	117.678	209.031	198.848
13	0.0558469	2.90455	44.774	S1	6.48	31.5442	82.4377	78.0512	126.235	9.64336	116.592	208.025	198.382
14	0.0558469	2.84746	45.2396	S1	6.48	31.5442	81.7265	77.3778	124.59	9.09535	115.495	207.003	197.907
15	0.0558469	2.78943	45.709	S1	6.48	31.5442	81.0084	76.6979	122.925	8.53833	114.387	205.964	197.425
16	0.0558469	2.73044	46.1824	S1	6.48	31.5442	80.2832	76.0113	121.241	7.97206	113.269	204.908	196.936
17	0.0558469	2.67045	46.6599	S1	6.48	31.5442	79.5506	75.3177	119.535	7.39631	112.139	203.834	196.437
18	0.0558469	2.60946	47.1416	S1	6.48	31.5442	78.8104	74.6169	117.808	6.81082	110.997	202.742	195.931
19	0.0558469	2.54742	47.6278	S1	6.48	31.5442	78.0622	73.9085	116.059	6.21532	109.843	201.631	195.415
20	0.0558469	2.48431	48.1185	S1	6.48	31.5442	77.3058	73.1924	114.286	5.60955	108.677	200.501	194.891
21	0.0558469	2.4201	48.614	S1	6.48	31.5442	76.5409	72.4682	112.49	4.99318	107.497	199.351	194.358
22	0.0558469	2.35475	49.1143	S1	6.48	31.5442	75.7671	71.7355	110.669	4.36593	106.303	198.181	193.815
23	0.0558469	2.28824	49.6198	S1	6.48	31.5442	74.9839	70.994	108.823	3.72745	105.095	196.99	193.263
24	0.0558469	2.22051	50.1306	S1	6.48	31.5442	74.1911	70.2434	106.95	3.07738	103.873	195.778	192.7
25	0.0558469	2.15154	50.6469	S1	6.48	31.5442	73.3882	69.4832	105.05	2.41537	102.634	194.543	192.128
26	0.0558469	2.08129	51.1689	S1	6.48	31.5442	72.5748	68.7131	103.121	1.74101	101.38	193.285	191.544
27	0.0558469	2.0097	51.6969	S1	6.48	31.5442	71.7503	67.9325	101.162	1.05387	100.108	192.003	190.95
28	0.0558469	1.93674	52.2311	S1	6.48	31.5442	70.9144	67.141	99.1723	0.353514	98.8188	190.697	190.344
29	0.0558074	1.86537	52.7717	S1	6.48	31.5442	69.9676	66.2446	97.3584	-0.360293	97.3584	189.443	189.443
30	0.0558074	1.7983	53.3188	S1	6.48	31.5442	68.9102	65.2435	95.7275	-1.08805	95.7275	188.241	188.241
31	0.0558074	1.72987	53.8731	S1	6.48	31.5442	67.8392	64.2295	94.0758	-1.83056	94.0758	187.015	187.015
32	0.0558074	1.66003	54.4348	S1	6.48	31.5442	66.7543	63.2023	92.4024	-2.58842	92.4024	185.764	185.764
33	0.0558074	1.58871	55.0043	S1	6.48	31.5442	65.6546	62.1611	90.7063	-3.36226	90.7063	184.486	184.486
34	0.0558074	1.51586	55.5821	S1	6.48	31.5442	64.5393	61.1052	88.9863	-4.15277	88.9863	183.18	183.18
35	0.0558074	1.4414	56.1684	S1	6.48	31.5442	63.408	60.0341	87.2413	-4.96069	87.2413	181.846	181.846
36	0.0558074	1.36526	56.7639	S1	6.48	31.5442	62.2596	58.9468	85.4701	-5.78684	85.4701	180.482	180.482
37	0.0558074	1.28736	57.3689	S1	6.48	31.5442	61.0934	57.8426	83.6713	-6.6321	83.6713	179.086	179.086
38	0.0558074	1.20762	57.9842	S1	6.48	31.5442	59.9081	56.7204	81.8433	-7.49742	81.8433	177.657	177.657
39	0.0558074	1.12592	58.6101	S1	6.48	31.5442	58,703	55.5794	79,9845	-8.38384	79,9845	176.194	176,194
40	0.0558074	1.04218	59.2475	S1	6.48	31.5442	57.4766	54.4183	78.0931	-9.29254	78.0931	174.693	174.693
41	0.0558074	0.956267	59.8971	S1	6.48	31.5442	56.2279	53.236	76.167	-10.2248	76.167	173.154	173.154
42	0.0558074	0.868056	60.5596	S1	6.48	31.5442	54.9553	52.0311	74.2041	-11.1819	74.2041	171.573	171.573
43	0.0558074	0.777402	61.2359	S1	6.48	31.5442	53.6571	50.802	72.2019	-12,1656	72.2019	169.949	169,949
44	0.0558074	0.684146	61.9272	S1	6.48	31.5442	52.3316	49.547	70.1575	-13,1775	70.1575	168.278	168.278
45	0.0558074	0.588105	62.6345	S1	6.48	31.5442	50.9768	48.2643	68.068	-14.2196	68.068	166.557	166.557
46	0.0558074	0.489077	63.359	S1	6.48	31.5442	49.5904	46.9517	65.9296	-15.2941	65.9296	164.783	164.783
47	0.0558074	0.386831	64,1024	S1	6.48	31.5442	48.1697	45.6066	63.7386	-16.4036	63.7386	162.951	162.951
48	0.0558074	0.281101	64 8661	S1	6.48	31 5442	46 7119	44 2264	61 4901	-17 5509	61 4901	161.056	161.056
49	0.0558074	0.171581	65.6522	S1	6.48	31.5442	45.2135	42.8077	59.179	-18,7392	59.179	159,094	159.094
50	0.0558074	0.0579163	66.463	S1	6.48	31.5442	43.6704	41.3467	56.799	-19.9726	56.799	157.057	157.057
20	5.0550074	0.0077105	00.105	~1	0.10	51.5142	15.0704	11.5 107	20.177	17.7120	20.177	101.001	101.001

Global Minimum Query (janbu corrected) - Safety Factor: 0.843548

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
2 0.0416368 2.60901 45.325 \$1 6.48 31.5442 24.0090 20.311 38.6666 51.702 22.3146 6.44823 47.3192 4 0.0416368 2.6077 4.66928 \$1 6.48 31.5442 23.7272 26.5958 15.7042 22.1146 26.3578 42.3574 21.6856 6.18498 46.574 5 0.0416368 2.59344 47.5722 \$1 6.48 31.5442 85.144 71.5381 12.1058 14.3257 21.6357 19.9595 8 0.0416368 2.47314 84.708 \$1 6.48 31.5442 84.738 17.3081 19.1058 11.0157 19.9518 21.1757 19.955 9 0.041638 2.47714 9.3385 \$1 6.48 31.5442 84.734 14.1453 12.0666 19.182 19.737 11 0.041638 2.27324 9.0373 \$1 6.48 31.5442 79.3166 65.777 10.67979 10.04166 2.101979	1	0.0416368	2.70142	45.3969	S1	6.48	31.5442	24.3866	20.5713	39.4984	16.5433	22.9551	64.2252	47.6819
3 0.0416/68 2.0501 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 37.8138 38.2486 91.3437 50.0764 5 0.0416668 2.36379 47.5742 51 6.48 31.5442 83.044 71.0301 119.569 14.8357 38.2466 99.995 8 0.0416668 2.4071 48.0251 81 6.48 31.5442 83.746 70.6763 118.662 13.4481 10.3518 211.782 198.571 10 0.0416368 2.3791 49.8462 81 6.48 31.5442 82.0447 6.3438 11.433 12.0466 10.366 20.971 97.9764 12 0.0416368 2.1795 50.315 6.48 31.5442 79.0256 666677 10.8249 11.0824 10.974 0.91.65 2.06.146 10.51 12 0.0416368 2.1795 52.2728	2	0.0416368	2.66901	45.8255	S1	6.48	31.5442	24.0806	20.3131	38.6606	16.126	22.5346	63.4452	47.3192
4 0.0416368 2.6027 4.66928 S1 6.48 31.5442 23.5428 91.3698 46.5774 6 0.0416368 2.53343 47.5742 S1 6.48 31.5442 85.3041 71.9881 121.058 13.9322 106.666 21.4337 70.991 7 0.0416368 2.43314 47.9783 11.9580 13.9481 0.101.5527 21.3578 71.9587 11.9580 13.9412 10.5512 21.3584 99.9783 8 0.0416368 2.4777 48.9251 S1 6.48 31.5442 83.15442 90.2354 11.851	3	0.0416368	2.63611	46.2574	S1	6.48	31.5442	23.7727	20.0534	37.8138	15.7024	22.1114	62.6535	46.9511
5 0.0416368 25879 47.312 S1 64.8 31.5442 35.1452 83.042 11.0158 14.3837 38.2468 91.3431 76.0741 7 0.0416368 2.3993 48.0056 S1 6.48 31.5442 83.547 76.7031 119.569 13.448 10.567 213.537 213.537 213.537 10.9391 10.5478 213.547 19.9951 9 0.0416368 2.3071 49.8452 S1 6.48 31.5442 83.051 116.333 12.0666 10.1456 2.9971 197.991 12 0.0416368 2.3179 50.3155 S1 6.48 31.5442 79.4547 60.3053 111.851 110.249 110.22 20.9042 91.970.171 13 0.0416368 2.3179 50.3155 S1 6.48 31.5442 79.326 66.577 108.625 10.572 99.165 20.614 19.51 14 0.0416368 2.31902 51.205 S1 6.48 31.5442	4	0.0416368	2.6027	46.6928	S1	6.48	31.5442	23.4628	19.792	36.958	15.2724	21.6856	61.8498	46.5774
6 0.0416368 253434 47.5742 S1 6.48 31.5442 85.3041 71.9381 21.057 19.599 13.537 19.599 8 0.0416368 2.4731 48.026 S1 6.48 31.5442 85.748 71.0371 118.0569 13.4812 14.578 21.782 19.8763 10 0.0416368 2.3571 49.8452 S1 6.48 31.5442 82.14473 68.7047 11.3433 11.056 20.971 197.044 11 0.0416368 2.3571 49.8452 S1 6.48 31.5442 86.7047 11.3433 11.0564 10.772 98.0477 10.041636 20.971 197.041 13 0.0416368 2.7724 50.1262 S1 6.48 31.5442 79.202 10.6371 10.862 20.0714 196.52 14 0.0416368 2.7714 51.2205 S1 6.48 31.5442 75.344 51.344 10.322 90.163 90.013 94.0692 90.171	5	0.0416368	2.56879	47.1317	S1	6.48	31.5442	35.5145	29.9582	53.0825	14.8357	38.2468	91.3431	76.5074
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	0.0416368	2.53434	47.5742	S1	6.48	31.5442	85.3041	71.9581	121.058	14.3922	106.666	214.394	200.001
8 0.0416368 244381 48.4784 81.7846 70.6763 118.062 13.442 10.782 121.782 198.763 10 0.0416368 2.3371 49.9355 S1 6.48 31.5442 82.2346 69.3688 114.995 12.5468 102.448 210.884 198.337 11 0.0416368 2.3373 49.9462 S1 6.442 31.5442 80.615 68.0334 111.831 11.5744 100.616 2.3374 10.0201636 2.3374 10.0201636 2.3374 10.0201636 2.3374 10.0201636 2.3774 51.262 51.648 31.5442 70.536 65.9727 10.6772 98.0477 201.171 195.63 16 0.0416368 2.0737 51.220 51 6.48 31.5442 75.3746 65.2027 10.6772 9.4071 201.171 195.63 17 0.0416368 2.01314 53.2207 51 6.48 31.5442 75.3746 65.8054 10.157 7.91614 9.22489 20	7	0.0416368	2.49936	48.0206	S1	6.48	31.5442	84.548	71.3203	119.569	13.9418	105.627	213.537	199.595
9 0.0416368 2.94277 44.9251 S1 6.48 31.5442 82.0135 70.0259 11.6388 1.0193 10.3.518 21.1782 198.337 11 0.0416368 2.35171 49.8462 S1 6.48 31.5442 81.4471 68.7047 11.3433 12.0666 10.1366 20.971 197.944 12 0.0416368 2.31579 50.3135 S1 6.48 31.5442 79.8467 67.3545 110.249 11.062 99.1665 208.099 70.171 13 0.0416368 2.1755 52.2305 S1 6.48 31.5442 77.3746 65.262 105.772 98.0477 201.648 20.151 195.52 16 0.0416368 2.1755 52.2205 S1 6.48 31.5442 77.374 65.262 105.181 90.013 94.0682 93.4327 20.312 194.669 10 0.0416368 1.9877 52.2734 S1 6.48 31.5442 73.0272 63.611 100.187 </td <td>8</td> <td>0.0416368</td> <td>2.46381</td> <td>48.4708</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>83.7846</td> <td>70.6763</td> <td>118.062</td> <td>13.4842</td> <td>104.578</td> <td>212.666</td> <td>199.182</td>	8	0.0416368	2.46381	48.4708	S1	6.48	31.5442	83.7846	70.6763	118.062	13.4842	104.578	212.666	199.182
$ 10 0.0416368 \ 2.39101 49.383 S1 6.48 31.5442 82.2346 69.3688 11.995 12.5468 102.448 210.884 198.397 \\ 12 0.0416368 \ 2.31579 50.3135 S1 6.48 31.5442 80.6515 68.034 111.851 11.578 100.272 209.042 197.047 \\ 13 0.0416368 \ 2.23772 50.733 S1 6.48 31.5442 79.846 67.354 110.82 91.165 208.99 197.017 \\ 10.0416368 \ 2.23752 52.230 S1 6.48 31.5442 79.846 67.354 110.82 91.057 290.147 207.14 196.562 \\ 15 0.0416368 \ 2.19813 51.747 S1 6.48 31.5442 77.374 65.2602 105.31 9.01053 99.156 206.164 196.15 \\ 10.0416368 \ 2.11623 52.230 S1 6.48 31.5442 77.374 65.2602 105.31 9.01053 90.915 206.164 196.15 \\ 10 0.0416368 \ 2.0173 52.230 S1 6.48 31.5442 77.374 65.2602 105.31 9.0013 9.4008 20.161 195.63 \\ 10 0.0416368 \ 2.0137 53.2207 S1 6.48 31.5442 75.6742 63.348 10.19 8.4672 93.4427 201.312 91.665 \\ 10 0.0416368 \ 1.9877 54.234 S1 6.48 31.5442 73.9272 62.361 98.365 7.3543 91.0322 201.018 193.664 \\ 21 0.0416368 \ 1.9877 54.234 S1 6.48 31.5442 73.9272 62.361 98.385 7.3543 91.0322 201.018 193.664 \\ 21 0.0416368 \ 1.9877 54.234 S1 6.48 31.5442 70.274 50.278 91.083 8.050 199.92 199.15 \\ 22 0.0416368 \ 1.89791 55.734 S1 6.48 31.5442 70.274 50.278 91.083 4.99575 8.6102 196.542 191.54 \\ 20 0.0416368 \ 1.80451 55.803 S1 6.48 31.5442 60.329 57.878 8.0123 196.542 195.36 \\ 20.991 55.642 191.54 \\ 20 0.0416368 \ 1.6056 55.805 S1 6.48 31.5442 60.329 57.863 8.1295 3.37492 8.3775 194.165 190.99 \\ 24 0.0416368 \ 1.6056 57.997 S1 6.48 31.5442 60.329 57.878 8.0125 195.46 190.99 \\ 25 0.0416368 \ 1.6056 57.997 S1 6.48 31.5442 60.329 57.878 8.0125 195.46 190.99 \\ 25 0.0416368 \ 1.6056 57.997 S1 6.48 31.5442 60.3292 57.878 8.30815 2.205 8.3715 194.48 \\ 189.249 \\ 20 $	9	0.0416368	2.4277	48.9251	S1	6.48	31.5442	83.0135	70.0259	116.538	13.0193	103.518	211.782	198.763
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.0416368	2.39101	49.3835	S1	6.48	31.5442	82.2346	69.3688	114.995	12.5468	102.448	210.884	198.337
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.0416368	2.35371	49.8462	S1	6.48	31.5442	81.4473	68.7047	113.433	12.0666	101.366	209.971	197.904
13 0.0416368 2.27724 50,7833 S1 6.48 31,5442 79,8427 6.73545 110.249 11.082 91.665 208,099 197.017 14 0.0416368 2.23802 S1,242 S1.8442 78,2806 65.9727 106.979 10.0516 96.164 196.12 16 0.0416368 2.15755 52.2305 S1 6.48 31.5442 77.3746 65.2092 10.0513 9.54102 95.7094 205.171 195.63 17 0.0416368 2.01417 53.2207 S1 6.48 31.5442 75.3742 63.8348 10.0119 8.46762 9.4327 20.182 194.665 20 0.0416368 1.9877 5.313 S1 6.48 31.5442 73.9272 62.311 9.8438 9.1983 9.1932 193.15 21 0.0416368 1.9879 55.273 S1 6.48 31.5442 71.291 60.0634 9.4795 56.011 98.824 19.2524 21	12	0.0416368	2.31579	50.3135	S1	6.48	31.5442	80.6515	68.0334	111.851	11.5784	100.272	209.042	197.464
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0.0416368	2.27724	50.7853	S1	6.48	31.5442	79.8467	67.3545	110.249	11.082	99.1665	208.099	197.017
15 0.0416368 2.19813 51.7437 S1 6.48 31.5442 77.3766 65.2692 106.379 10.0036 96.9156 206.164 196.1 16 0.0416368 2.17575 52.2305 S1 6.48 31.5442 77.376 65.2692 105.31 9.54102 95.7694 205.171 195.63 17 0.0416368 2.01423 53.2207 S1 6.48 31.5442 77.56742 63.3181 100.17 71614 92.2408 20.24085 194.169 20 0.0416368 1.9877 54.2343 S1 6.48 31.5442 73.0348 61.0644 96.5877 6.71818 89.809 199.932 193.15 20 0.0416368 1.89715 S1 6.48 31.5442 71.2091 60.0843 94.7975 6.1025 196.422 191.546 21 0.0416368 1.89164 56.3405 S1 6.48 31.5442 67.323 82.0424 192.91 195.642 191.546	14	0.0416368	2.23802	51.262	S1	6.48	31.5442	79.0325	66.6677	108.625	10.5772	98.0477	207.14	196.562
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.0416368	2.19813	51.7437	S1	6.48	31.5442	78.2086	65.9727	106.979	10.0636	96.9156	206.164	196.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	0.0416368	2.15755	52.2305	S1	6.48	31.5442	77.3746	65.2692	105.31	9.54102	95.7694	205.171	195.63
18 0.0416368 2.07417 53.2207 S1 6.48 31.5442 75.6742 63.8348 101.9 8.46762 93.4327 203.132 194.665 19 0.0416368 2.0314 53.7244 S1 6.48 31.5442 73.806 63.013 100.157 7.91614 92.2408 20.0085 194.169 20 0.0416368 1.94324 54.7505 S1 6.48 31.5442 73.1348 61.0843 94.7593 6.1982 88.5611 198.824 192.625 21 0.0416368 1.85168 55.8033 S1 6.48 31.5442 71.2091 60.0843 94.7593 6.1982 88.5611 198.824 192.091 24 0.0416368 1.75071 57.4383 S1 6.48 31.5442 67.3273 58.18 51.209 3.74302 83.375 194.165 190.492 25 0.0416368 1.55737 58.876 53.865 57.6623 87.1205 3.74302 83.3775 194.165 <td< td=""><td>17</td><td>0.0416368</td><td>2.11623</td><td>52.7228</td><td>S1</td><td>6.48</td><td>31.5442</td><td>76.53</td><td>64.5567</td><td>103.618</td><td>9.00913</td><td>94.6088</td><td>204.161</td><td>195.152</td></td<>	17	0.0416368	2.11623	52.7228	S1	6.48	31.5442	76.53	64.5567	103.618	9.00913	94.6088	204.161	195.152
19 0.0416368 2.03134 5.3724 5.1 6.48 31.5442 74.8068 62.1031 100.157 7.91614 92.2085 194.169 20 0.0416368 1.9877 5.4234 5.1705 S1 6.48 31.5442 73.9272 62.161 98.3865 7.35434 91.0322 201.018 193.664 21 0.0416368 1.89791 55.2734 S1 6.48 31.5442 77.129 60.4833 94.7593 6.1982 88.5611 198.824 192.625 23 0.0416368 1.87637 56.8854 S1 6.48 31.5442 70.2744 59.2798 91.0083 4.99575 86.0125 196.542 191.546 24 0.0416368 1.57637 56.8854 S1 6.48 31.5442 67.3723 56.8318 81.024 61.3043 87.1025 37.404 193.648 193.642 29 0.0416368 1.6054 58.701 S1 6.48 31.5442 63.3262 53.4287 10.0	18	0.0416368	2.07417	53.2207	S1	6.48	31.5442	75.6742	63.8348	101.9	8.46762	93.4327	203.132	194.665
20 0.0416368 1.9877 54.243 S1 6.48 31.5442 73.9272 62.3611 98.3865 7.35434 91.0322 20.018 193.664 21 0.0416368 1.9791 55.2734 S1 6.48 31.5442 72.1048 61.6844 96.5877 6.78183 89.8059 199.932 193.15 22 0.0416368 1.85168 55.8033 S1 6.48 31.5442 71.201 60.0843 92.901 5.603 87.271 197.694 192.091 24 0.0416368 1.85637 56.854 S1 6.48 31.5442 67.3239 58.478 89.0824 4.37595 84.7065 195.366 190.992 25 0.0416368 1.65698 57.9977 S1 6.48 31.5442 66.3262 55.9886 83.015 2.4336 80.462 191.648 189.249 20 0.0416368 1.65698 57.9977 S1 6.48 31.5442 67.302 58.986 83.015 2.4336	19	0.0416368	2.03134	53.7244	S1	6.48	31.5442	74.8068	63.1031	100.157	7.91614	92.2408	202.085	194.169
21 0.0416368 1.94324 54.7505 S1 6.48 31.5442 73.0348 61.6084 96.5877 6.78183 89.8059 199.932 193.15 22 0.0416368 1.8791 55.2734 S1 6.48 31.5442 72.129 60.0843 92.7901 5.603 87.2971 197.604 192.091 24 0.0416368 1.87637 56.834 S1 6.48 31.5442 70.2744 59.2798 91.0083 4.99575 86.0125 196.542 191.546 25 0.0416368 1.7071 57.4333 S1 6.48 31.5442 63.329 57.4633 87.1205 37.4302 83.3775 194.165 190.422 26 0.0416368 1.60564 58.5701 S1 6.48 31.5442 65.3463 55.127 8.9938 82.0246 192.938 189.842 28 0.0416368 1.69498 59.7397 S1 6.48 31.5442 65.3463 55.127 89.995 17.8061 189.08	20	0.0416368	1.9877	54.2343	S1	6.48	31.5442	73.9272	62.3611	98.3865	7.35434	91.0322	201.018	193.664
22 0.0416368 1.89791 55.2734 S1 6.48 31.5442 71.219 60.8433 94.7593 6.1982 88.5611 198.824 192.021 23 0.0416368 1.85168 55.8033 S1 6.48 31.5442 70.2744 59.2799 10.0633 499575 86.0125 196.542 191.546 25 0.0416368 1.70721 57.4383 S1 6.48 31.5442 69.3239 58.478 89.0824 4.37595 84.7065 195.366 190.492 26 0.0416368 1.67071 57.4383 S1 6.48 31.5442 67.3723 56.8318 85.1209 3.09638 82.0246 192.938 189.842 28 0.0416368 1.6954 58.5701 S1 6.48 31.5442 66.3692 55.9856 83.0815 2.43336 80.6462 191.684 189.249 29 0.0416368 1.49385 59.7397 S1 6.48 31.5442 63.2062 53.3428 76.6996 <td< td=""><td>21</td><td>0.0416368</td><td>1.94324</td><td>54.7505</td><td>S1</td><td>6.48</td><td>31.5442</td><td>73.0348</td><td>61.6084</td><td>96.5877</td><td>6.78183</td><td>89.8059</td><td>199.932</td><td>193.15</td></td<>	21	0.0416368	1.94324	54.7505	S1	6.48	31.5442	73.0348	61.6084	96.5877	6.78183	89.8059	199.932	193.15
23 0.0416368 1.85168 55.8033 S1 6.48 31.5442 71.2091 60.0683 92.9001 5.603 87.2971 197.694 192.091 24 0.0416368 1.85461 56.3405 S1 6.48 31.5442 70.2748 89.0824 43.7595 86.0125 196.542 195.366 100.99 26 0.0416368 1.70721 57.4383 S1 6.48 31.5442 67.3253 56.8318 85.1209 3.04638 80.0424 192.938 189.842 27 0.0416368 1.65649 57.5701 S1 6.48 31.5442 67.3262 55.9585 83.0812 24336 80.6462 191.684 189.249 28 0.0416368 1.69048 9.7397 S1 6.48 31.5442 64.3224 76.390 0.35865 70.811 187.745 187.387 32 0.042123 1.43301 60.614 S1 6.48 31.5442 60.3260 0.35805 71.341 187.745 187.7	22	0.0416368	1.89791	55.2734	S1	6.48	31.5442	72.129	60.8443	94.7593	6.1982	88.5611	198.824	192.625
24 0.0416368 1.80451 56.3405 S1 6.48 31.5442 70.2744 59.2798 91.0083 4.99575 86.0125 196.542 191.546 25 0.0416368 1.75637 56.8854 S1 6.48 31.5442 69.329 58.478 89.0824 4.37595 84.7065 195.366 190.99 26 0.0416368 1.60564 57.9997 S1 6.48 31.5442 67.3723 56.8318 85.1209 3.0632 83.2775 194.165 190.492 29 0.0416368 1.60564 58.5701 S1 6.48 31.5442 65.3663 55.1227 80.9999 1.75926 79.2406 190.402 188.642 30 0.0416368 1.44934 60.3401 S1 6.48 31.5442 63.2362 53.3428 76.696 0.358605 76.341 187.745 187.387 32 0.0429123 1.3266 62.614 S1 6.48 31.5442 59.3404 50.0555 51.41763	23	0.0416368	1.85168	55.8033	S1	6.48	31.5442	71.2091	60.0683	92.9001	5.603	87.2971	197.694	192.091
25 0.0416368 1.75637 56.8854 S1 6.48 31.5442 69.3239 58.478 89.0824 4.37595 84.7065 195.366 190.99 26 0.0416368 1.70721 57.4883 S1 6.48 31.5442 67.3523 56.8318 85.1209 3.09638 82.0246 192.938 189.842 27 0.0416368 1.6564 58.5701 S1 6.48 31.5442 66.3692 55.9856 83.0815 2.43536 80.6462 191.684 189.249 29 0.0416368 1.49938 59.7397 S1 6.48 31.5442 65.3463 55.1227 80.9999 1.75926 79.2406 190.402 188.642 30 0.0416368 1.4938 59.7397 S1 6.48 31.5442 62.3262 53.3428 76.6996 0.358605 76.341 187.745 187.347 32 0.0429123 1.3325 61.6046 S1 6.48 31.5442 69.0275 1.8075 1.81.48	24	0.0416368	1.80451	56.3405	S1	6.48	31.5442	70.2744	59.2798	91.0083	4.99575	86.0125	196.542	191.546
26 0.0416368 1.70721 57.4383 S1 6.48 31.5442 68.3569 57.6623 87.1205 3.74302 83.3775 194.165 190.422 27 0.0416368 1.65698 57.9997 S1 6.48 31.5442 66.3723 56.8318 85.1209 3.09638 82.0246 192.938 189.842 28 0.0416368 1.65694 58.571 S1 6.48 31.5442 65.3463 55.1227 80.9999 1.75926 79.2406 190.402 188.642 30 0.0416368 1.49938 59.7397 S1 6.48 31.5442 64.3024 54.2422 78.8734 1.06729 77.8061 189.089 188.022 31 0.041231 1.37855 61.6046 S1 6.48 31.5442 60.3027 51.2056 72.8595 -1.14763 72.8595 185.148 185.148 34 0.0429123 1.26504 62.929 S1 6.48 31.5442 55.219 47.6789 67.1143 <	25	0.0416368	1.75637	56.8854	S1	6.48	31.5442	69.3239	58.478	89.0824	4.37595	84.7065	195.366	190.99
27 0.0416368 1.65698 57.9997 S1 6.48 31.5442 67.3723 56.8318 85.1209 3.09638 82.0246 192.938 189.842 28 0.0416368 1.60564 58.5701 S1 6.48 31.5442 66.3692 55.9856 83.0815 2.43536 80.6462 191.684 189.249 29 0.0416368 1.54434 60.3401 S1 6.48 31.5442 64.3024 54.2422 78.8734 1.06729 77.8061 189.089 188.022 31 0.0416368 1.44434 60.3011 S1 6.48 31.5442 60.3067 52.3309 74.6925 -0.379151 74.6925 188.432 186.432 188.642 33 0.0429123 1.237855 61.6046 S1 6.48 31.5442 59.3040 50.0565 70.9875 1.14763 78.859 186.432 188.438 34 0.0429123 1.26504 62.9329 S1 6.48 31.5442 59.304 50.056 70.9875 1.14763 78.859 188.148 188.148 185.448	26	0.0416368	1.70721	57.4383	S1	6.48	31.5442	68.3569	57.6623	87.1205	3.74302	83.3775	194.165	190.422
28 0.0416368 1.60564 58.5701 S1 6.48 31.5442 66.3692 55.9856 83.0815 2.43536 80.6462 191.684 189.249 29 0.0416368 1.55313 59.1499 S1 6.48 31.5442 65.3463 55.1227 80.9999 1.75926 79.2406 190.402 188.642 30 0.0416368 1.49938 59.7397 S1 6.48 31.5442 63.3262 53.3428 76.6996 0.358605 76.341 187.745 187.387 32 0.0429123 1.37855 61.6046 S1 6.48 31.5442 60.7027 51.2056 72.8595 11.4763 72.8595 185.148 185.148 34 0.0429123 1.2256 62.2614 S1 6.48 31.5442 57.9476 48.8816 69.0736 -2.74941 69.0736 1.83.83 183.83 35 0.0429123 1.20564 62.9239 S1 6.48 31.5442 57.9476 48.8816 69.0736	27	0.0416368	1.65698	57.9997	S1	6.48	31.5442	67.3723	56.8318	85.1209	3.09638	82.0246	192.938	189.842
29 0.0416368 1.55313 59.1499 S1 6.48 31.5442 65.3463 55.1227 80.9999 1.75926 79.2406 190.402 188.642 30 0.0416368 1.44938 59.7397 S1 6.48 31.5442 64.3024 53.3428 76.6996 0.358605 76.341 187.745 187.387 31 0.0416368 1.44344 60.3901 S1 6.48 31.5442 62.0267 52.3302 74.6925 -0.379151 74.6925 186.432 186.432 32 0.0429123 1.37855 61.6046 S1 6.48 31.5442 50.3655 70.9875 -1.14763 72.8955 185.148 185.148 34 0.0429123 1.26504 62.9239 S1 6.48 31.5442 57.9476 48.8816 69.0736 -2.74941 69.0736 183.83 183.83 35 0.0429123 1.1468 64.3245 S1 6.48 31.5442 55.0165 46.442 65.1062 -4.44794	28	0.0416368	1.60564	58.5701	S1	6.48	31.5442	66.3692	55.9856	83.0815	2.43536	80.6462	191.684	189.249
30 0.0416368 1.49938 59.7397 S1 6.48 31.5442 64.3024 54.2422 78.8734 1.06729 77.8061 189.089 188.022 31 0.0416368 1.44434 60.3401 S1 6.48 31.5442 63.2362 53.3428 76.6996 0.358605 76.341 187.745 187.387 32 0.0429123 1.37855 61.6046 S1 6.48 31.5442 60.027 51.2056 72.8595 -1.14763 72.8595 185.148 185.148 34 0.0429123 1.3226 62.2614 S1 6.48 31.5442 59.3404 50.0565 70.9875 F1.93725 70.9875 183.813 183.83 33 35 0.0429123 1.26504 62.9329 S1 6.48 31.5442 55.0405 46.462 65.1062 -4.44794 65.1062 179.639 179.639 36 0.0429123 1.04468 64.3224 S1 64.8 31.5442 55.0405 46.4462 65.1062 -4.44794 65.1062 179.639 179.639 179.639 179.639	29	0.0416368	1.55313	59.1499	S1	6.48	31.5442	65.3463	55.1227	80.9999	1.75926	79.2406	190.402	188.642
31 0.0416368 1.44434 60.3401 S1 6.48 31.5442 63.2362 53.3428 76.6996 0.358605 76.341 187.745 187.387 32 0.0429123 1.43301 60.9614 S1 6.48 31.5442 62.0367 52.3309 74.6925 -0.379151 74.6925 186.432 186.432 33 0.0429123 1.3226 62.2614 S1 6.48 31.5442 59.3404 50.0565 70.9875 -1.14763 72.8595 182.174 182.474	30	0.0416368	1.49938	59.7397	S1	6.48	31.5442	64.3024	54.2422	78.8734	1.06729	77.8061	189.089	188.022
32 0.0429123 1.43301 60.9614 S1 6.48 31.5442 62.0367 52.3309 74.6925 -0.379151 74.6925 186.432 186.432 33 0.0429123 1.37855 61.6046 S1 6.48 31.5442 60.7027 51.2056 72.8595 -1.14763 72.8595 185.148 185.148 34 0.0429123 1.2266 62.2614 S1 6.48 31.5442 57.9476 48.8816 69.0736 -2.74941 69.0736 182.474 182.474 36 0.0429123 1.20578 63.6202 S1 6.48 31.5442 55.0605 46.4462 65.1062 -4.44794 65.1062 179.639 179.639 38 0.0429123 1.08159 65.0473 S1 6.48 31.5442 55.0603 45.1807 63.0447 -5.3813 63.0447 178.153 178.153 39 0.0429123 0.048795 66.5554 S1 6.48 31.5442 50.4289 42.5392 58.7416 -7.21213 58.7416 175.027 175.027 41 0.0429123 </td <td>31</td> <td>0.0416368</td> <td>1.44434</td> <td>60.3401</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>63.2362</td> <td>53.3428</td> <td>76.6996</td> <td>0.358605</td> <td>76.341</td> <td>187.745</td> <td>187.387</td>	31	0.0416368	1.44434	60.3401	S1	6.48	31.5442	63.2362	53.3428	76.6996	0.358605	76.341	187.745	187.387
33 0.0429123 1.37855 61.6046 S1 6.48 31.5442 60.7027 51.2056 72.8595 -1.14763 72.8595 185.148 185.148 34 0.0429123 1.3226 62.2614 S1 6.48 31.5442 59.3404 50.0565 70.9875 -1.93725 70.9875 183.83 183.83 35 0.0429123 1.20578 63.6202 S1 6.48 31.5442 55.9476 48.816 69.0736 -2.74941 69.0736 182.474 182.474 36 0.0429123 1.20578 63.6202 S1 6.48 31.5442 55.0605 46.462 65.1062 -4.44794 65.1062 179.639 179.639 38 0.0429123 1.01636 65.7903 S1 6.48 31.5442 53.5603 45.1807 63.0427 -5.33813 63.0427 178.153 178.153 39 0.0429123 0.948795 66.5554 S1 6.48 31.5442 43.7896 60.9252 -6.25863 60.9252 176.618 175.027 41 0.0429123 0.87866	32	0.0429123	1.43301	60.9614	S1	6.48	31.5442	62.0367	52.3309	74.6925	-0.379151	74.6925	186.432	186.432
340.04291231.322662.2614S16.4831.544259.340450.056570.9875-1.9372570.9875183.83183.83350.04291231.2650462.9329S16.4831.544257.947648.881669.0736-2.7494169.0736182.474182.474360.04291231.2057863.6202S16.4831.544256.521947.678967.1143-3.5857167.1143181.078370.04291231.1446864.3245S16.4831.544255.060546.446265.1062-4.4479465.1062179.639179.639380.04291231.0815965.0473S16.4831.544253.660345.180763.0447-5.3381363.0447178.153178.153390.04291230.94879566.5554S16.4831.544250.428942.539258.7416-7.2121358.7416175.027410.04291230.88766467.3448S16.4831.544248.788641.155556.4875-8.2017856.4875173.377420.04291230.80570968.1613S16.4831.544245.329638.237751.7343-10.305151.7343169.871430.04291230.56642370.8078S16.4831.544243.495836.690849.2144-11.428449.2144167.998450.04291230.56642370.8078S16.4831.5442	33	0.0429123	1.37855	61.6046	S1	6.48	31.5442	60.7027	51.2056	72.8595	-1.14763	72.8595	185.148	185.148
350.04291231.2650462.9329S16.4831.544257.947648.881669.0736-2.7494169.0736182.474182.474360.04291231.2057863.6202S16.4831.544256.521947.678967.1143-3.5857167.1143181.078181.078370.04291231.1446864.3245S16.4831.544255.060546.446265.1062-4.4479465.1062179.639179.639380.04291231.0815965.0473S16.4831.544253.560345.180763.0447-5.3381363.0447178.153178.153390.04291230.94879566.5554S16.4831.544250.428942.539258.7416-7.2121358.7416175.027175.027410.04291230.87866467.3448S16.4831.544248.788641.155556.4875-8.2017856.4875173.377173.377420.04291230.80570968.1613S16.4831.544247.091139.723654.1549-9.2312954.1549171.661171.661430.04291230.5600969.8885S16.4831.544243.495836.690849.2144-11.428449.2144167.998167.998450.04291230.56642370.8078S16.4831.544235.767333.376943.8159-13.851843.8159163.961163.961460.042912	34	0.0429123	1.3226	62.2614	S1	6.48	31.5442	59.3404	50.0565	70.9875	-1.93725	70.9875	183.83	183.83
360.04291231.2057863.6202S16.4831.544256.521947.678967.1143-3.5857167.1143181.078181.078370.04291231.1446864.3245S16.4831.544255.060546.446265.1062-4.4479465.1062179.639179.639380.04291231.0815965.0473S16.4831.544253.560345.180763.0447-5.3381363.0447178.153178.153390.04291231.0163665.7903S16.4831.544252.017943.879660.9252-6.2586360.9252176.618176.618400.04291230.94879566.5554S16.4831.544250.428942.539258.7416-7.2121358.7416175.027175.027410.04291230.80570968.1613S16.4831.544248.788641.155556.4875-8.2017856.4875173.377173.377420.04291230.80570968.1613S16.4831.544247.091139.723654.1549-9.2312954.1549171.661171.661430.04291230.6500969.8885S16.4831.544243.495836.690849.2144-11.428449.2144167.998167.998450.04291230.56642370.8078S16.4831.544239.567333.376943.8159-13.851843.8159163.961163.961460.042912	35	0.0429123	1.26504	62.9329	S1	6.48	31.5442	57.9476	48.8816	69.0736	-2.74941	69.0736	182.474	182.474
370.04291231.1446864.3245S16.4831.544255.060546.446265.1062-4.4479465.1062179.639179.639380.04291231.0815965.0473S16.4831.544253.560345.180763.0447-5.3381363.0447178.153178.153390.04291231.0163665.7903S16.4831.544252.017943.879660.9252-6.2586360.9252176.618175.027410.04291230.94879566.5554S16.4831.544250.428942.539258.7416-7.2121358.7416175.027173.377420.04291230.80570968.1613S16.4831.544247.091139.723654.1549-9.2312954.1549171.661171.661430.04291230.72961669.0079S16.4831.544243.495836.690849.2144-11.428449.2144167.998167.998440.04291230.56642370.8078S16.4831.544231.544235.074246.5808-12.60846.5808166.033166.033450.04291230.56642370.8078S16.4831.544237.442931.584940.8966-15.170440.8966161.764161.764460.04291230.3848472.7878S16.4831.544237.442931.584940.8966-15.170440.8966161.764161.764470.042912	36	0.0429123	1.20578	63.6202	S1	6.48	31.5442	56.5219	47.6789	67.1143	-3.58571	67.1143	181.078	181.078
38 0.0429123 1.08159 65.0473 S1 6.48 31.5442 53.5603 45.1807 63.0447 -5.33813 63.0447 178.153 178.153 39 0.0429123 1.01636 65.7903 S1 6.48 31.5442 52.0179 43.8796 60.9252 -6.25863 60.9252 176.618 176.618 40 0.0429123 0.948795 66.5554 S1 6.48 31.5442 50.4289 42.5392 58.7416 -7.21213 58.7416 175.027 175.027 41 0.0429123 0.878664 67.3448 S1 6.48 31.5442 48.7886 41.1555 56.4875 -8.20178 56.4875 173.377 173.377 42 0.0429123 0.805709 68.1613 S1 6.48 31.5442 45.3296 38.2377 51.7343 -10.3051 51.7343 169.871 169.871 44 0.0429123 0.560423 70.8078 S1 6.48 31.5442 43.4958 36.6908 49.2144 -11.4284 49.2144 167.998 167.998 45 0.04291	37	0.0429123	1.14468	64.3245	S1	6.48	31.5442	55.0605	46.4462	65.1062	-4.44794	65.1062	179.639	179.639
39 0.0429123 1.01636 65.7903 S1 6.48 31.5442 52.0179 43.8796 60.9252 -6.25863 60.9252 176.618 176.018 40 0.0429123 0.948795 66.5554 S1 6.48 31.5442 50.4289 42.5392 58.7416 -7.21213 58.7416 175.027 175.027 41 0.0429123 0.878664 67.3448 S1 6.48 31.5442 48.7886 41.1555 56.4875 -8.20178 56.4875 173.377 173.377 42 0.0429123 0.805709 68.1613 S1 6.48 31.5442 47.0911 39.7236 54.1549 -9.23129 54.1549 171.661 171.661 43 0.0429123 0.729616 69.0079 S1 6.48 31.5442 45.3296 38.2377 51.7343 -10.3051 51.7343 169.871 169.871 44 0.0429123 0.566423 70.8078 S1 6.48 31.5442 43.4958 36.6908 49.2144 -11.4284 49.2144 167.998 167.998 45 0.0429	38	0.0429123	1.08159	65.0473	S1	6.48	31.5442	53.5603	45.1807	63.0447	-5.33813	63.0447	178.153	178.153
40 0.0429123 0.948795 66.5554 S1 6.48 31.5442 50.4289 42.5392 58.7416 -7.21213 58.7416 175.027 175.027 41 0.0429123 0.878664 67.3448 S1 6.48 31.5442 48.7886 41.1555 56.4875 -8.20178 56.4875 173.377 173.377 42 0.0429123 0.805709 68.1613 S1 6.48 31.5442 47.0911 39.7236 54.1549 -9.23129 54.1549 171.661 171.661 43 0.0429123 0.729616 69.0079 S1 6.48 31.5442 45.3296 38.2377 51.7343 -10.3051 51.7343 169.871 169.871 44 0.0429123 0.65009 69.8885 S1 6.48 31.5442 43.4958 36.6908 49.2144 -11.4284 49.2144 167.998 167.998 45 0.0429123 0.566423 70.8078 S1 6.48 31.5442 39.5673 33.3769 43.8159 -13.8518 43.8159 163.961 163.961 163.961 4	39	0.0429123	1.01636	65.7903	S1	6.48	31.5442	52.0179	43.8796	60.9252	-6.25863	60.9252	176.618	176.618
41 0.0429123 0.878664 67.3448 S1 6.48 31.5442 48.7886 41.1555 56.4875 -8.20178 56.4875 173.377 173.377 42 0.0429123 0.805709 68.1613 S1 6.48 31.5442 47.0911 39.7236 54.1549 -9.23129 54.1549 171.661 171.661 43 0.0429123 0.729616 69.0079 S1 6.48 31.5442 45.3296 38.2377 51.7343 -10.3051 51.7343 169.871 169.871 44 0.0429123 0.650009 69.8885 S1 6.48 31.5442 43.4958 36.6908 49.2144 -11.4284 49.2144 167.998 167.998 45 0.0429123 0.566423 70.8078 S1 6.48 31.5442 39.5673 33.3769 43.8159 -13.8518 43.8159 163.961 163.961 46 0.0429123 0.38484 72.7878 S1 6.48 31.5442 37.4429 31.5849 40.8966 -15.1704 40.8966 161.764 161.764 48 0.0429	40	0.0429123	0.948795	66.5554	S1	6.48	31.5442	50.4289	42.5392	58.7416	-7.21213	58.7416	175.027	175.027
42 0.0429123 0.805709 68.1613 S1 6.48 31.5442 47.0911 39.7236 54.1549 -9.23129 54.1549 171.661 171.661 43 0.0429123 0.729616 69.0079 S1 6.48 31.5442 45.3296 38.2377 51.7343 -10.3051 51.7343 169.871 169.871 44 0.0429123 0.650009 69.8885 S1 6.48 31.5442 43.4958 36.6908 49.2144 -11.4284 49.2144 167.998 167.998 45 0.0429123 0.566423 70.8078 S1 6.48 31.5442 41.5794 35.0742 46.5808 -12.608 46.5808 166.033 166.033 46 0.0429123 0.47828 71.7717 S1 6.48 31.5442 39.5673 33.3769 43.8159 -13.8518 43.8159 163.961 163.961 47 0.0429123 0.38484 72.7878 S1 6.48 31.5442 37.4429 31.5849 40.8966 -15.1704 40.8966 161.764 161.764 48 0.042912	41	0.0429123	0.878664	67.3448	S1	6.48	31.5442	48.7886	41.1555	56.4875	-8.20178	56.4875	173.377	173.377
43 0.0429123 0.729616 69.0079 S1 6.48 31.5442 45.3296 38.2377 51.7343 -10.3051 51.7343 169.871 169.871 44 0.0429123 0.650009 69.8885 S1 6.48 31.5442 43.4958 36.6908 49.2144 -11.4284 49.2144 167.998 167.998 45 0.0429123 0.566423 70.8078 S1 6.48 31.5442 41.5794 35.0742 46.5808 -12.608 46.5808 166.033 166.033 46 0.0429123 0.47828 71.7717 S1 6.48 31.5442 39.5673 33.3769 43.8159 -13.8518 43.8159 163.961 163.961 47 0.0429123 0.38484 72.7878 S1 6.48 31.5442 37.4429 31.5849 40.8966 -15.1704 40.8966 161.764 161.764 48 0.0429123 0.285129 73.8659 S1 6.48 31.5442 32.7614 27.6358 34.4634 -18.0917 34.4634 156.898 156.898 49 0.042912	42	0.0429123	0.805709	68.1613	S1	6.48	31.5442	47.0911	39.7236	54.1549	-9.23129	54.1549	171.661	171.661
44 0.0429123 0.650009 69.8885 S1 6.48 31.5442 43.4958 36.6908 49.2144 -11.4284 49.2144 167.998 167.998 45 0.0429123 0.566423 70.8078 S1 6.48 31.5442 41.5794 35.0742 46.5808 -12.608 46.5808 166.033 166.033 166.033 46 0.0429123 0.47828 71.7717 S1 6.48 31.5442 39.5673 33.3769 43.8159 -13.8518 43.8159 163.961 163.961 47 0.0429123 0.38484 72.7878 S1 6.48 31.5442 37.4429 31.5849 40.8966 -15.1704 40.8966 161.764 161.764 48 0.0429123 0.285129 73.8659 S1 6.48 31.5442 35.1842 29.6796 37.793 -16.5774 37.793 159.42 159.42 49 0.0429123 0.177824 75.0196 S1 6.48 31.5442 30.1309 25.4169 30.8488 -19.7397 30.8488 154.154 154.154 50	43	0.0429123	0.729616	69.0079	S1	6.48	31.5442	45.3296	38.2377	51.7343	-10.3051	51.7343	169.871	169.871
450.04291230.56642370.8078S16.4831.544241.579435.074246.5808-12.60846.5808166.033166.033460.04291230.4782871.7717S16.4831.544239.567333.376943.8159-13.851843.8159163.961163.961470.04291230.3848472.7878S16.4831.544237.442931.584940.8966-15.170440.8966161.764161.764480.04291230.28512973.8659S16.4831.544235.184229.679637.793-16.577437.793159.42159.42490.04291230.17782475.0196S16.4831.544232.761427.635834.4634-18.091734.4634156.898156.898500.04291230.061040276.2682S16.4831.544230.130925.416930.8488-19.739730.8488154.154154.154	44	0.0429123	0.650009	69.8885	S1	6.48	31.5442	43.4958	36.6908	49.2144	-11.4284	49.2144	167.998	167.998
460.04291230.4782871.7717S16.4831.544239.567333.376943.8159-13.851843.8159163.961163.961470.04291230.3848472.7878S16.4831.544237.442931.584940.8966-15.170440.8966161.764161.764480.04291230.28512973.8659S16.4831.544235.184229.679637.793-16.577437.793159.42159.42490.04291230.17782475.0196S16.4831.544232.761427.635834.4634-18.091734.4634156.898156.898500.04291230.061040276.2682S16.4831.544230.130925.416930.8488-19.739730.8488154.154154.154	45	0.0429123	0.566423	70.8078	S1	6.48	31.5442	41.5794	35.0742	46.5808	-12.608	46.5808	166.033	166.033
47 0.0429123 0.38484 72.7878 S1 6.48 31.5442 37.4429 31.5849 40.8966 -15.1704 40.8966 161.764 161.764 48 0.0429123 0.285129 73.8659 S1 6.48 31.5442 35.1842 29.6796 37.793 -16.5774 37.793 159.42 159.42 49 0.0429123 0.177824 75.0196 S1 6.48 31.5442 32.7614 27.6358 34.4634 -18.0917 34.4634 156.898 156.898 50 0.0429123 0.0610402 76.2682 S1 6.48 31.5442 30.1309 25.4169 30.8488 -19.7397 30.8488 154.154 154.154	46	0.0429123	0.47828	71.7717	S1	6.48	31.5442	39.5673	33.3769	43.8159	-13.8518	43.8159	163.961	163.961
48 0.0429123 0.285129 73.8659 S1 6.48 31.5442 35.1842 29.6796 37.793 -16.5774 37.793 159.42 159.42 49 0.0429123 0.177824 75.0196 S1 6.48 31.5442 32.7614 27.6358 34.4634 -18.0917 34.4634 156.898 156.898 50 0.0429123 0.0610402 76.2682 S1 6.48 31.5442 30.1309 25.4169 30.8488 -19.7397 30.8488 154.154 154.154	47	0.0429123	0.38484	72.7878	S1	6.48	31.5442	37.4429	31.5849	40.8966	-15.1704	40.8966	161.764	161.764
49 0.0429123 0.177824 75.0196 S1 6.48 31.5442 32.7614 27.6358 34.4634 -18.0917 34.4634 156.898 156.898 50 0.0429123 0.0610402 76.2682 S1 6.48 31.5442 30.1309 25.4169 30.8488 -19.7397 30.8488 154.154 154.154	48	0.0429123	0.285129	73.8659	S1	6.48	31.5442	35.1842	29.6796	37.793	-16.5774	37.793	159.42	159.42
50 0.0429123 0.0610402 76.2682 S1 6.48 31.5442 30.1309 25.4169 30.8488 -19.7397 30.8488 154.154 154.154	49	0.0429123	0.177824	75.0196	S1	6.48	31.5442	32.7614	27.6358	34.4634	-18.0917	34.4634	156.898	156.898
	50	0.0429123	0.0610402	76.2682	S1	6.48	31.5442	30.1309	25.4169	30.8488	-19.7397	30.8488	154.154	154.154

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.94679

S	lice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-10	-3.71178	0	0	0
2		-9.94415	-3.66582	114.727	0	0
3		-9.88831	-3.61917	114.123	0	0
4		-9.83246	-3.5718	113.515	0	0
5		-9.77661	-3.5237	112.406	0	0
6		-9.72077	-3.47485	110.537	0	0
7		-9.66492	-3.42525	108.6	0	0
8		-9.60907	-3.37487	106.596	0	0
9		-9.55323	-3.32369	104.526	0	0
10		-9.49738	-3.27171	102.389	0	0
11		-9.44153	-3.2189	100.188	0	0
12		-9.38568	-3.16524	97.9227	0	0
13		-9.32984	-3.11072	95.5938	0	0
14		-9.27399	-3.05531	93.2024	0	0
15		-9.21814	-2.999	90.7493	0	0
16		-9.1623	-2.94175	88.2354	0	0
17		-9.10645	-2.88355	85.6618	0	0
18		-9.0506	-2.82437	83.0295	0	0
19		-8.99476	-2.76418	80.3396	0	0
20		-8.93891	-2.70296	77.5932	0	0
21		-8.88306	-2.64068	74.7916	0	0
22		-8.82722	-2.5773	71.9361	0	0
23		-8.77137	-2.5128	69.028	0	0
24		-8.71552	-2.44713	66.0689	0	0
25		-8.65968	-2.38027	63.0603	0	0
26		-8.60383	-2.31217	60.0039	0	0
27		-8.54798	-2.24278	56.9014	0	0
28		-8.49213	-2.17208	53.7549	0	0
29		-8.43629	-2.1	50.5663	0	0
30		-8.38048	-2.02655	47.3195	0	0
31		-8.32467	-1.95163	43.9923	0	0
32		-8.26887	-1.87517	40.5848	0	0
33		-8.21306	-1.79712	37.0974	0	0
34		-8.15725	-1.71741	33.5301	0	0
35		-8.10144	-1.63596	29.8833	0	0
36		-8.04564	-1.55269	26.1571	0	0
37		-7.98983	-1.46753	22.3519	0	0
38		-7.93402	-1.38037	18.468	0	0
39		-7.87821	-1.29111	14.5057	0	0
40		-7.82241	-1.19965	10.4654	0	0
41		-7.7666	-1.10585	6.34772	0	0
42		-7.71079	-1.00959	2.1531	0	0
43		-7.65498	-0.910714	-2.11781	0	0
44		-7.59918	-0.809049	-6.46428	0	0
45		-7.54337	-0.704412	-10.8855	0	0
46		-7.48756	-0.59659	-15.3804	0	0
47		-7.43175	-0.485344	-19.9478	0	0
48		-7.37595	-0.370401	-24.5864	0	0
49		-7.32014	-0.251448	-29.2944	0	0
50		-7.26433	-0.128122	-34.07	0	0
51		-7.20852	0	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 0.843548

Slice	e Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-10	-3.80748	0	0	0
2		-9.95836	-3.76526	134.488	0	0
3		-9.91673	-3.72241	133.86	0	0
4		-9.87509	-3.67891	133.231	0	0
5		-9.83345	-3.63473	132.601	0	0
6		-9.79182	-3.58988	131.738	0	0
7		-9.75018	-3.54432	129.869	0	0
8		-9.70854	-3.49804	127.95	0	0
9		-9.66691	-3.45103	125.98	0	0
10		-9.62527	-3.40326	123.961	0	0
11		-9.58363	-3.35471	121.893	0	0
12		-9.542	-3.30536	119.776	0	0
13		-9.50036	-3.25518	117.611	0	0
14		-9.45872	-3.20416	115.398	0	0
15		-9.41709	-3.15226	113.138	0	0
16		-9.37545	-3.09945	110.832	0	0
17		-9.33381	-3.04572	108.48	0	0
18		-9.29218	-2.99101	106.083	0	0
19		-9.25054	-2.93532	103.641	0	0
20		-9.2089	-2.87858	101.157	0	0
21		-9.16726	-2.82078	98.6291	0	0
22		-9.12563	-2.76186	96.0601	0	0
23		-9.08399	-2.70179	93.4506	0	0
24		-9.04235	-2.64052	90.8018	0	0
25		-9.00072	-2.57799	88.1148	0	0
26		-8.95908	-2.51416	85.3912	0	0
27		-8.91744	-2.44895	82.6324	0	0
28		-8.87581	-2.38232	79.8401	0	0
29		-8.83417	-2.31419	77.0163	0	0
30		-8.79253	-2.24448	74.1629	0	0
31		-8.7509	-2.17312	71.2823	0	0
32		-8.70926	-2.1	68.3771	0	0
33		-8.66635	-2.02271	65.3366	0	0
34		-8.62344	-1.94333	62.227	0	0
35		-8.58052	-1.86173	59.0482	0	0
36		-8.53761	-1.77775	55.8002	0	0
37		-8.4947	-1.69123	52.4831	0	0
38		-8.45179	-1.60196	49.0969	0	0
39		-8.40887	-1.50974	45.642	0	0
40		-8.36596	-1.4143	42.1186	0	0
41		-8.32305	-1.31534	38.5274	0	0
42		-8.28014	-1.21253	34.8689	0	0
43		-8.23723	-1.10546	31.1445	0	0
44		-8.19431	-0.993619	27.3555	0	0
45		-8.1514	-0.876429	23.504	0	0
46		-8.10849	-0.753147	19.593	0	0
47		-8.06558	-0.622845	15.6266	0	0
48		-8.02266	-0.484323	11.6109	0	0
49		-7.97975	-0.335981	7.55447	0	0
50		-7.93684	-0.17561	3.47069	0	0
51		-7.89393	0	0	0	0

Stability Analysis for circular failure with sloping SE slope, east section Arkoulaki Eleni Date Created: 12/5/2023, 5:41:43 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of SE slope, east section, with sloping

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1			
Distribution:	Constant		
Magnitude [kPa]:	30		
Orientation:	Normal to boundary		
Load Action:	Variable		
Load Action.	Valiable		

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	1.035630
Center:	-16.496, 5.813
Radius:	11.070
Left Slip Surface Endpoint:	-11.274, -3.948
Right Slip Surface Endpoint:	-7.075, 0.000
Left Slope Intercept:	-11.274 -2.100
Right Slope Intercept:	-7.075 0.000
Resisting Moment:	1156.64 kN-m
Driving Moment:	1116.85 kN-m
Total Slice Area:	8.42254 m2
Surface Horizontal Width:	4.19907 m
Surface Average Height:	2.00581 m

Method: janbu corrected

FS	1.024840
Center:	-15.277, 4.289
Radius:	9.164
Left Slip Surface Endpoint:	-11.279, -3.957
Right Slip Surface Endpoint:	-7.178, 0.000
Left Slope Intercept:	-11.279 -2.100
Right Slope Intercept:	-7.178 0.000
Resisting Horizontal Force:	74.1086 kN
Driving Horizontal Force:	72.3121 kN
Total Slice Area:	8.61272 m2
Surface Horizontal Width:	4.10046 m
Surface Average Height:	2.10043 m

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	7200
Number of Invalid Surfaces:	2061
	Error Codes

Error Code -106 reported for 4 surfaces Error Code -108 reported for 1801 surfaces Error Code -112 reported for 256 surfaces

Method: janbu corrected

	Error Codes	
Number of Invalid Surfaces:	3439	
Number of Valid Surfaces:	5822	

Error Code -106 reported for 3 surfaces Error Code -108 reported for 1909 surfaces Error Code -111 reported for 1407 surfaces Error Code -112 reported for 120 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = Safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.03563

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0839875	1.63112	28.3938	S1	6.48	31.5442	5.41815	5.6112	16.4924	17.9077	-1.41528	19.4213	1.51355
2	0.0839875	1.84652	28.8891	S1	6.48	31.5442	6.73758	6.97764	18.2684	17.4577	0.81068	21.9861	4.52836
3	0.0839875	2.05918	29.3868	S1	6.48	31.5442	8.03284	8.31905	19.9943	16.9984	2.99592	24.5182	7.51976
4	0.0839875	2.26904	29.8869	S1	6.48	31.5442	9.30386	9.63536	21.6698	16.5296	5.14021	27.0169	10.4873
5	0.0839875	2.47607	30.3896	S1	6.48	31.5442	10.5505	10.9264	23.2946	16.0513	7.24333	29.482	13.4307
6	0.0839875	2.68022	30.8948	S1	6.48	31.5442	11.7727	12.1922	24.8685	15.5632	9.30529	31.9129	16.3497
7	0.0839875	2.88145	31.4028	S1	6.48	31.5442	12.9703	13.4325	26.391	15.0652	11.3258	34.309	19.2438
8	0.0839875	3.07971	31.9135	S1	6.48	31.5442	14.1432	14.6471	27.8617	14.5571	13.3046	36.6697	22.1126
9	0.0839875	3.27496	32.427	S1	6.48	31.5442	15.2912	15.836	29.2802	14.0389	15.2413	38.9944	24.9555
10	0.0839875	3.46713	32.9435	S1	6.48	31.5442	16.4142	16.999	30.6461	13.5102	17.1359	41.2826	27.7724
11	0.0839875	3.65618	33.463	S1	6.48	31.5442	17.5119	18.1359	31.9589	12.971	18.9879	43.5336	30.5626
12	0.0839875	3.78246	33.9857	S1	6.48	31.5442	18.2839	18.9354	32.7113	12.421	20.2903	45.0373	32.6163
13	0.0839875	3.84531	34.5116	S1	6.48	31.5442	18.732	19.3994	32.906	11.86	21.046	45.7857	33.9257
14	0.0839875	3.90487	35.0408	S1	6.48	31.5442	19.161	19.8437	33.0578	11.2879	21.7699	46.4948	35.2069
15	0.0839875	3.96105	35.5735	S1	6.48	31.5442	19.5711	20.2684	33.166	10.7043	22.4617	47.1639	36.4596
16	0.0839875	4.01381	36.1097	S1	6.48	31.5442	19.962	20.6732	33.2304	10.1092	23.1212	47.7921	37.6829
17	0.0839875	4.06306	36.6496	S1	6.48	31.5442	20.3335	21.058	33.2502	9.50214	23.748	48.3785	38.8764
18	0.0839875	4.10874	37.1934	S1	6.48	31.5442	20.6856	21.4226	33.225	8.88302	24.342	48.9225	40.0395
19	0.0839875	4.15076	37.7411	S1	6.48	31.5442	21.0179	21.7668	33.1543	8.25153	24.9027	49.4228	41.1713
20	0.0839875	4.18905	38.2929	S1	6.48	31.5442	21.3305	22.0905	33.0373	7.6074	25.4299	49.8788	42.2714
21	0.0839875	4.22352	38.8489	S1	6.48	31.5442	21.6229	22.3933	32.8737	6.95033	25.9234	50.2893	43.339
22	0.0839875	4.25408	39.4092	S1	6.48	31.5442	21.8951	22.6752	32.6625	6.28003	26.3825	50.6532	44.3732
23	0.0839875	4.28064	39.9742	S1	6.48	31.5442	22.1467	22.9358	32.4032	5.59618	26.8071	50.9695	45.3733
24	0.0839875	4.27503	40.5438	S1	6.48	31.5442	22.2462	23.0388	31.8732	4.89843	26.9748	50.9027	46.0043
25	0.0839875	4.09381	41.1183	S1	6.48	31.5442	21.5292	22.2963	29.9517	4.18643	25.7652	48.7449	44.5585
26	0.0839875	3.87918	41.6979	S1	6.48	31.5442	20.6696	21.4061	27.7749	3.45981	24.3151	46.1895	42.7297
27	0.0839875	3.66013	42.2828	S1	6.48	31.5442	19.8036	20.5092	25.5723	2.71817	22.8541	43.5813	40.8631
28	0.0839875	3.43651	42.8731	S1	6.48	31.5442	18.9312	19.6057	23.3433	1.96108	21.3822	40.9187	38.9576
29	0.0839875	3.2082	43.4692	S1	6.48	31.5442	18.0524	18.6956	21.0877	1.18811	19.8995	38.2003	37.0122
30	0.0839875	2.97505	44.0712	S1	6.48	31.5442	17.1671	17.7788	18.8049	0.398785	18.4061	35.4243	35.0255
31	0.083972	2.80025	44.6793	S1	6.48	31.5442	16.4074	16.992	17.1243	0	17.1243	33.3491	33.3491
32	0.083972	2.68607	45.2938	S1	6.48	31.5442	15.7728	16.3348	16.0538	0	16.0538	31.9892	31.9892
33	0.083972	2.56939	45.9151	S1	6.48	31.5442	15.1334	15.6726	14.9751	0	14.9751	30.5998	30.5998
34	0.083972	2.45014	46.5434	S1	6.48	31.5442	14.4891	15.0054	13.8881	0	13.8881	29.1797	29.1797
35	0.083972	2.32823	47.179	S1	6.48	31.5442	13.84	14.3331	12.7929	0	12.7929	27.7278	27.7278
36	0.083972	2.20356	47.8224	S1	6.48	31.5442	13.186	13.6558	11.6896	0	11.6896	26.2431	26.2431
37	0.083972	2.07602	48.4738	S1	6.48	31.5442	12.5271	12.9734	10.578	0	10.578	24.7243	24.7243
38	0.083972	1.94551	49.1337	S1	6.48	31.5442	11.8633	12.286	9.4582	0	9.4582	23.1699	23.1699
39	0.083972	1.8119	49.8025	S1	6.48	31.5442	14.4322	14.9464	13.792	0	13.792	30.8717	30.8717
40	0.083972	1.67507	50.4807	S1	6.48	31.5442	23.9734	24.8276	29.8888	0	29.8888	58.951	58.951
41	0.083972	1.53487	51.1687	S1	6.48	31.5442	23.1572	23.9823	28.5118	0	28.5118	57.2814	57.2814
42	0.083972	1.39116	51.8672	S1	6.48	31.5442	22.3329	23.1286	27.1211	0	27.1211	55.5698	55.5698
43	0.083972	1.24376	52.5767	S1	6.48	31.5442	21.5004	22.2665	25.7167	0	25.7167	53.8145	53.8145
44	0.083972	1.0925	53.2979	S1	6.48	31.5442	20.6596	21.3957	24.2982	0	24.2982	52.0131	52.0131
45	0.083972	0.937172	54.0315	S1	6.48	31.5442	19.8103	20.5161	22.8653	0	22.8653	50.1633	50.1633
46	0.083972	0.777567	54.7783	S1	6.48	31.5442	18.9522	19.6275	21.4177	0	21.4177	48.2626	48.2626
47	0.083972	0.61344	55.5391	S1	6.48	31.5442	18.0853	18.7297	19.9552	0	19.9552	46.308	46.308
48	0.083972	0.444525	56.315	S1	6.48	31.5442	17.2094	17.8226	18.4774	0	18.4774	44.2965	44.2965
49	0.083972	0.270525	57.1069	S1	6.48	31.5442	16.3243	16.9059	16.9841	0	16.9841	42.2243	42.2243
50	0.083972	0.0911071	57.9162	S1	6.48	31.5442	15.4297	15.9795	15.475	0	15.475	40.0875	40.0875

Global Minimum Query (janbu corrected) - Safety Factor: 1.02484

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress IkPal	Pore Pressure [kPa]	Effective Normal Stress IkPal	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
2 0.082961 1.44495 26.7361 S1 6.48 31.5442 6.0212 7.04996 18.6152 7.0415 1.00010 22.1021 4.48705 4 0.0623961 2.27936 2.7936 2.7936 2.7936 1.5442 9.57612 9.8199 2.2035 1.7741 5.3185 2.2763 1.5442 1.5491 2.5589 9.6643 3.2972 1.64667 7 0.6839611 2.07013 2.06494 S1 6.448 31.5442 1.51394 1.54708 1.5478 1.5379 2.54867 9 0.6839611 3.10373 30.2782 S1 6.48 31.5442 1.5351 1.48941 1.5479 1.55478 3.52797 2.51867 10 0.6839611 3.0977 S1 6.48 31.5442 1.5818 11.5442 1.5471 1.5487 1.5487 1.54981 1.5492 1.54981 1.5492 1.5491 1.5491 1.5491 1.5491 1.5491 1.5411 1.5411 1.5411 1.5412 </th <th>1</th> <th>0.0829631</th> <th>1.62319</th> <th>26.1567</th> <th>S1</th> <th>6.48</th> <th>31.5442</th> <th>5.55167</th> <th>5.68957</th> <th>16.7322</th> <th>18.0198</th> <th>-1.28764</th> <th>19.4587</th> <th>1.43892</th>	1	0.0829631	1.62319	26.1567	S1	6.48	31.5442	5.55167	5.68957	16.7322	18.0198	-1.28764	19.4587	1.43892
3 0.0629611 2.06369 2.7388 S1 6.48 31.5442 8.2679 2.0439 3.23982 2.47081 7.57616 10.5029 5 0.0639631 2.41992 28.4922 S1 6.48 31.5442 10.8597 11.1295 23.9119 15.3777 7.5716 2.90641 S1 7 0.0639631 2.00748 2.90748 S1 6.48 31.5442 12.5171 1.00817 3.1492 1.1716 37.1396 21.3663 9 0.0629631 3.00902 30.8077 S1 6.48 31.5442 1.5551 1.8964 1.5424 7.1266 31.5446 1.5441 1.5421 1.5421 1.5421 1.5421 1.5421 1.5421 1.5421 1.5421 1.5421 1.5421 1.5421 1.5440 1.5421 1.5421 1.5441 1.5431 1.5422 2.5431 3.4413 1.5422 2.5431 3.5442 2.5431 3.5442 2.5431 3.5441 2.5451 3.5442 2.5551 3.5442 <td>2</td> <td>0.0829631</td> <td>1.84495</td> <td>26.7361</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>6.92202</td> <td>7.09396</td> <td>18.6152</td> <td>17.615</td> <td>1.00018</td> <td>22.1021</td> <td>4.48705</td>	2	0.0829631	1.84495	26.7361	S1	6.48	31.5442	6.92202	7.09396	18.6152	17.615	1.00018	22.1021	4.48705
4 0.082961 2.2936 2.2936 2.2936 10.5022 5 0.082961 2.9119 10.237 2.29119 10.377 7.716 2.9806 13.6466 6 0.082961 2.0131 2.0644 S1 6.48 31.5442 12.1392 2.21461 15.8905 9.6643 32.2972 16.4466 7 0.0829611 3.10692 20.6794 S1 6.48 31.5442 16.8371 14.818 15.6578 3.7554 41.8379 22.8479 21.9697 9 0.0029611 3.30697 3.2073 S1 6.48 31.5442 17.8571 41.8578 3.9527 27.8679 22.8479 10 0.0029611 3.46987 3.9533 S1 6.48 31.5442 19.2571 9.7483 3.4407 2.4644 4.752 2.2534 47.525 3.8522 3.5665 3.5667 3.2665 3.5667 3.2665 3.5668 3.5442 2.16162 2.0619 3.43181 2.0636 3.5134	3	0.0829631	2.06369	27.3183	S1	6.48	31.5442	8.26352	8.46879	20.4396	17.1998	3.23982	24.7081	7.50829
5 0.082961 2,9192 28,4922 S1 6.48 31.5442 12.11295 25,919 15,377 7,57416 29,8064 31.2027 16,4667 7 0.082961 2,0013 29,6794 S1 6.48 31.5442 12,3171 16,708 27,163 14,922 11,714 34,785 15,3169 31,1547 31,535 14,8964 15,351 14,897 11,912 31,1547 15,542 14,537 14,901 31,1547 15,554 41,857 27,8677 27,867 27,867 13,6987 32,0771 S1 6,48 31,5442 17,951 18,3099 32,8471 19,441 19,4512 44,1437 30,659 12 0.0029661 3,9097 33,303 S1 6,48 31,5442 19,251 19,444 40,4005 12,4914 44,642 44,324 13 0.002961 4,01029 35,214 S1 6,48 31,5442 19,1712 20,019 44,207 14,352 6,8952 13,44 44,202 44,201	4	0.0829631	2.27936	27.9037	S1	6.48	31.5442	9.57612	9.81399	22.2053	16.7741	5.43115	27.2763	10.5022
6 0.0829631 207043 29.0744 15 16.467 0.0829631 11037 20.752 51 6.48 31.5442 14.5353 14.8964 28.071 31.7105 37.1596 22.197 0 0.0829631 3.1092 0.0837 31.5442 16.8383 17.2566 31.5442 14.8753 14.8964 28.072 14.8575 14.857 27.0877 10 0.0829631 3.09876 3.2073 33.1 6.48 31.5442 15.8457 12.2083 33.8443 12.6681 20.872 22.3554 41.8579 27.8687 11 0.0829631 3.0873 3.3333 51 6.48 31.5442 19.7122 20.019 13.447 19.4022 44.1437 30.659 15 0.0829631 4.16492 3.5144 20.4575 34.2139 11.343 23.0278 48.238 36.862 36.8413 15.442 20.6159 34.2397 10.752 23.564 44.238 36.862 36.862 36.8413 <t< td=""><td>5</td><td>0.0829631</td><td>2.49192</td><td>28.4923</td><td>S1</td><td>6.48</td><td>31.5442</td><td>10.8597</td><td>11.1295</td><td>23.9119</td><td>16.3377</td><td>7.57416</td><td>29.8063</td><td>13.4686</td></t<>	5	0.0829631	2.49192	28.4923	S1	6.48	31.5442	10.8597	11.1295	23.9119	16.3377	7.57416	29.8063	13.4686
7 0.0829631 2.90748 2.90748 2.90748 13.6470 13.6708 27.1464 24.732 14.701 3.7195 2.21969 9 0.0829631 3.09972 0.0287 S1 6.48 31.5442 15.7017 16.0017 0.1406 14.4818 15.6788 39.5970 25.0479 10 0.08290631 3.60968 31.487 S1 6.48 31.5442 17.8551 18.3099 3.28871 13.4847 19.4025 27.8687 12 0.008290631 3.69875 3.3333 S1 6.48 31.5442 19.2933 3.4347 12.0414 6.7614 43.2342 14 0.008290531 4.01629 3.51548 11.642 2.04975 2.1067 34.3798 11.8475 2.14847 45.256 3.3216 15 0.08290531 4.10299 3.51548 31.5442 2.04975 2.1067 3.41377 10.7752 2.3645 3.1314 10 0.08290531 4.5273 3.51548 31.5442	6	0.0829631	2.70131	29.0841	S1	6.48	31.5442	12.1142	12.4151	25.5589	15.8905	9.66843	32.2972	16.4067
8 0.0829631 31.1037 30.2782 S1 6.48 31.5442 14.5353 14.8964 28.672 13.7015 71.1596 22.1969 10 0.0829631 3.50608 31.487 S1 6.48 31.5442 16.8383 17.2566 31.5447 13.4902 14.1877 30.639 12 0.0829631 3.69876 3.2073 33.333 S1 6.48 31.5442 18.2579 21.384 12.4414 46.7634 34.329 13 0.0829631 3.9073 33.333 S1 6.48 31.5442 19.7122 20.019 34.2599 12.3975 22.3554 44.232 34.251 52.353 47.2526 55.6261 15 0.0829631 4.10492 34.5141 21.0475 34.4377 10.175 23.5645 44.2333 36.933 51.348 15.442 21.175 34.213 55.995 37.311 17 0.0829631 4.20733 37.1438 S1 6.48 31.5442 21.7175 34.2137<	7	0.0829631	2.90748	29.6794	S1	6.48	31.5442	13.3394	13.6708	27.1463	15.4322	11.7141	34.7486	19.3164
9 0.0829631 3.0992 3.0997 S1 6.48 3.15442 15.717 16.0917 3.0196 14.4818 15.6578 3.9297 2.7.8687 11 0.0829631 3.69876 3.0977 S1 6.48 3.15442 1.9.8309 3.28479 1.3.4847 19.4932 4.1.417 30.659 12 0.0829631 3.0333 S1 6.48 3.15442 19.2857 19.74648 34.0805 12.4991 1.6.414 4.6.7614 4.2.234 14 0.0829631 4.10429 3.5.333 S1 6.48 3.15442 2.0.1679 3.4.708 1.3.333 2.3.6852 16.6852 14.3079 10.7752 2.3.664 48.0903 3.8.111 10 0.0829631 4.1077 5.8.508 1.6.48 3.1.5442 2.1.011 2.1.0175 3.4.4577 10.7.752 2.3.664 48.0903 3.8.111 10 0.0829631 4.2.0798 3.5.442 2.1.012 2.1.037 2.1.0473 3.4.9797 10.7.752 <td< td=""><td>8</td><td>0.0829631</td><td>3.11037</td><td>30.2782</td><td>S1</td><td>6.48</td><td>31.5442</td><td>14.5353</td><td>14.8964</td><td>28.6732</td><td>14.9627</td><td>13.7105</td><td>37.1596</td><td>22.1969</td></td<>	8	0.0829631	3.11037	30.2782	S1	6.48	31.5442	14.5353	14.8964	28.6732	14.9627	13.7105	37.1596	22.1969
10 0.082963 1 5.0608 31.487 51 6.48 31.5442 1.08383 17.2566 31.2846 13.9892 17.555 41.879 27.867 12.0082963 1 3.8498 32.7116 51 6.48 31.5442 19.2857 19.2933 33.8413 12.9681 20.8732 44.1437 30.659 12 0.082963 3.9827 33.3303 51 6.48 31.5442 19.2857 19.7648 34.0805 12.4391 21.6414 46.7614 43.234 14 0.082963 3.9827 33.9303 51 6.48 31.5442 19.2857 19.7648 34.0805 12.4391 21.6414 46.7614 43.234 73.256 10.082963 4.04692 34.581 51 6.48 31.5442 20.1162 20.6159 34.2609 11.343 22.0278 48.2382 36.8952 10.0082963 4.10429 35.2134 51 6.48 31.5442 20.1162 20.6159 34.3708 11.343 23.0278 48.2382 36.8952 10.0082963 4.10429 35.2134 51 6.48 31.5442 20.8753 21.1017 1.775 23.6646 48.9063 38.1311 17 0.082963 4.1577 35.8508 51 6.48 31.5442 20.8552 21.374 34.4257 10.194 24.2627 49.2666 39.3326 19.3026 19.2082963 4.25233 37.1418 51 6.48 31.5442 21.503 22.0137 34.4213 9.89866 25.3431 50.0619 41.65 20 0.082963 4.25233 37.7948 51 6.48 31.5442 21.091 22.3325 34.19 8.36585 25.841 51.0898 42.724 21.00282963 4.3296 38.4542 51 6.48 31.5442 22.0554 22.0033 33.992 7.073 26.6662 51.807 47.704 22.0082963 4.36212 39.1196 51 6.48 31.5442 22.0554 22.003 33.9292 7.073 26.6662 51.8171 44.7784 20.082963 4.36212 39.1196 51 6.48 31.5442 22.0554 22.603 33.9292 7.073 26.6662 51.8171 44.7784 20.082963 4.36212 39.1196 51 6.48 31.5442 22.0554 22.603 33.9292 7.073 26.6662 51.8171 44.7784 20.082963 4.36212 39.1196 51 6.48 31.5442 22.0554 22.603 33.9292 7.073 26.6662 51.8171 44.7784 20.082963 4.36212 39.1196 51 6.48 31.5442 22.0554 22.603 33.9292 7.073 26.6662 51.8171 44.7784 20.082963 4.3697 40.4099 51 6.48 31.5442 21.807 21.828 29.2043 23.8570 23.5073 48.834 50.8864 42.2885 28.0082963 1.3694 42.784 51.548 15.447 7.140 11.6143 20.122 50.025 45.746 42.2885 28.0082963 1.3694 42.548 51 6.48 31.5442 13.007 11.6170 31.012 2.5005 45.7464 42.2885 28.0082963 1.3694 42.2885 28.0082963 1.3694 42.2885 28.448 31.5442 13.907 11.9985 24.8006 2.79962 22.001 43.1493 40.3497 20.0082963 1.3694 44.5984 51 6.48 31.5442 13.097 11.9985 24.8006 2.79962 25.005 45.3964 52.2925 31.	9	0.0829631	3.30992	30.8807	S1	6.48	31.5442	15.7017	16.0917	30.1396	14.4818	15.6578	39.5297	25.0479
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	0.0829631	3.50608	31.487	S1	6.48	31.5442	16.8383	17.2566	31.5446	13.9892	17.5554	41.8579	27.8687
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.0829631	3.69876	32.0973	S1	6.48	31.5442	17.9451	18.3909	32.8879	13.4847	19.4032	44.1437	30.659
13 0.082961 3.92073 3.3303 SI 6.48 3.1542 19.768 3.0805 1.8975 2.3534 47.7236 3.3623 14 0.0829631 4.0402 34.581 SI 6.48 31.5442 20.1163 34.890 11.8975 22.3534 47.7236 35.6261 15 0.0829631 4.10429 32.134 SI 6.48 31.5442 20.4075 21.0467 34.4397 10.194 24.227 45.266 93.336 16 0.0829631 4.20708 36.4933 SI 6.48 31.5442 21.1911 21.737 34.4213 9.59806 25.341 50.0197 41.63 20 0.0829631 4.20708 38.4542 SI 6.48 31.5442 22.0571 34.337 9.5806 5.1075 43.7804 21 0.0829631 4.3294 SI 6.48 31.5442 22.0535 3.0416 5.1699 7.7329 2.6665 SI.5174 4.73844 21 0.082963	12	0.0829631	3.84988	32.7116	S1	6.48	31.5442	18.8257	19.2933	33.8413	12.9681	20.8732	45.9326	32.9645
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0.0829631	3.92073	33.3303	S1	6.48	31.5442	19.2857	19.7648	34.0805	12.4391	21.6414	46.7634	34.3243
15 0.0829631 4.04692 34.818 S1 6.48 31.5442 20.162 20.1067 34.378 11.33 23.028 48.2382 36.8952 16 0.0829631 4.1072 35.580 S1 6.48 31.5442 20.4975 21.0067 34.4377 10.1752 23.6645 48.9063 38.131 18 0.0829631 4.2207 36.433 S1 6.48 31.5442 21.037 34.4237 9.5982 24.8224 50.0981 40.392 20 0.0829631 4.22323 37.1418 S1 6.48 31.5442 21.031 3.3926 7.7770 26.2655 51.5075 43.7804 21 0.0829631 4.3294 S1 6.48 31.5442 22.054 22.6033 3.3926 6.71729 26.2655 51.5075 43.7804 22 0.0829631 4.39794 S1 6.48 31.5442 22.8494 33.7426 6.6122 51.612 5.6112 5.6112 5.6488 52.199	14	0.0829631	3.98571	33.9533	S1	6.48	31.5442	19.7122	20.2019	34.2509	11.8975	22.3534	47.5236	35.6261
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.0829631	4.04692	34.581	S1	6.48	31.5442	20.1162	20.6159	34.3708	11.343	23.0278	48.2382	36.8952
17 0.0829631 4.1577 35.8508 S1 6.48 31.5442 20.8559 21.717 34.4567 10.194 24.2627 49.5266 9.3326 18 0.0829631 4.22033 37.1418 S1 6.48 31.5442 21.511 21.717 34.4213 9.59892 24.824 50.0981 4.3084 20 0.0829631 4.29332 37.7948 S1 6.48 31.5442 21.5012 22.323 37.197 8.6585 5.8241 51.6975 43.7804 21 0.0829631 4.36926 3.7914 S1 6.48 31.5442 22.2556 22.8494 33.7392 7.073 26.6662 51.871 44.798 23 0.0829631 4.3697 9.1196 S1 6.48 31.5442 22.6993 3.3322 7.073 26.6662 51.871 44.798 24 0.0829631 4.3896 39.7914 S1 6.48 31.5442 22.4903 3.2939 2.5013 84.8763 44.6823 27 0.0829631 4.2674 81.876 S1.5442 21.3007 <t< td=""><td>16</td><td>0.0829631</td><td>4.10429</td><td>35.2134</td><td>S1</td><td>6.48</td><td>31.5442</td><td>20.4975</td><td>21.0067</td><td>34.4397</td><td>10.7752</td><td>23.6645</td><td>48.9063</td><td>38.1311</td></t<>	16	0.0829631	4.10429	35.2134	S1	6.48	31.5442	20.4975	21.0067	34.4397	10.7752	23.6645	48.9063	38.1311
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	0.0829631	4.1577	35.8508	S1	6.48	31.5442	20.8559	21.374	34.4567	10.194	24.2627	49.5266	39.3326
19 0.0829631 4.25233 37,1413 S1 6.48 31,5442 21.031 22.0371 34.327 8.98966 25,3431 50,6197 41.63 20 0.0829631 4.29323 37,7948 S1 6.48 31,5442 22.0554 22.6033 33.9926 7.7709 26.2655 51.5075 43.7804 21 0.0829631 4.36921 39.1196 S1 6.48 31.5442 22.2656 22.6033 33.4292 6.40112 27.026 52.179 45.7759 24 0.0829631 4.38994 42.548 S1 6.48 31.5442 22.6899 23.235 3.0416 5.71699 27.3246 52.999 46.8824 25 0.0829631 4.7525 41.8478 S1 6.48 31.5442 21.898 22.74 31.5022 50.1412 2.6481 50.8965 44.0343 44.037 26 0.0829631 3.0525 41.814 81.5442 10.5011 19.9855 24.8006 2.79962 22.01	18	0.0829631	4.20708	36.4933	S1	6.48	31.5442	21.1911	21.7175	34.4213	9.59892	24.8224	50.0981	40.4992
20 0.0829631 4.29332 37.7948 S1 6.48 31.5442 22.3325 34.19 8.36585 25.8241 51.0898 42.724 21 0.0829631 4.3296 38.4542 S1 6.48 31.5442 22.0554 22.6033 33.7926 7.7709 26.665 51.871 43.7804 23 0.0829631 4.38968 39.7914 S1 6.48 31.5442 22.2556 22.8494 33.7927 7.070 26.665 51.871 44.7579 24 0.0829631 4.40997 S1 6.48 31.5442 22.1892 33.0416 5.71699 27.3246 52.3999 46.6829 25 0.0829631 4.07525 41.8478 S1 6.48 31.5442 21.007 21.8298 29.2993 4.29399 25.0053 48.3764 40.823 26 0.0829631 3.4592 53.1646 31.5442 15.911 19.9855 24.8066 2.70656 3.55602 23.5095 45.7946 42.2385	19	0.0829631	4.25233	37.1413	S1	6.48	31.5442	21.503	22.0371	34.3327	8.98966	25.3431	50.6197	41.63
21 0.0829631 4.32996 38.4542 S1 6.48 31.5442 22.0554 22.0033 33.9926 7.72709 26.2655 51.5075 43.7804 22 0.0829631 4.36948 39.1196 S1 6.48 31.5442 22.2956 22.2956 6.40312 27.026 52.179 45.7759 24 0.0829631 4.40997 40.4699 S1 6.48 31.5442 22.1888 33.0416 5.71699 27.3246 52.3999 46.6829 25 0.0829631 4.2557 41.478 S1 6.48 31.5442 22.1888 29.2933 3.0416 5.71699 27.3246 52.3999 46.6823 26 0.0829631 3.65925 41.8478 S1 6.48 31.5442 12.007 21.8298 29.2993 42.9399 25.0053 48.3763 40.8423 27 0.0829631 3.6925 43.2561 S1 6.48 31.5442 19.011 27.065 3.55602 23.005 45.7946 42.2385 28 0.0829631 3.18096 44.6978 S1 6.48 <td>20</td> <td>0.0829631</td> <td>4.29332</td> <td>37.7948</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>21.7912</td> <td>22.3325</td> <td>34.19</td> <td>8.36585</td> <td>25.8241</td> <td>51.0898</td> <td>42.724</td>	20	0.0829631	4.29332	37.7948	S1	6.48	31.5442	21.7912	22.3325	34.19	8.36585	25.8241	51.0898	42.724
22 0.0829631 4.36212 39.1196 S1 6.48 31.5442 22.2956 22.8494 33.7392 7.073 26.6662 51.871 44.798 23 0.0829631 4.39068 39.7914 S1 6.48 31.5442 22.119 23.0703 33.4292 6.4012 7.026 52.179 45.7759 25 0.0829631 4.0997 0.40499 S1 6.448 31.5442 22.1898 22.74 31.5022 5.01412 26.4881 50.8965 45.8824 26 0.0829631 3.6594 2.548 S1 6.48 31.5442 21.3007 21.8298 29.2993 4.29399 25.0053 45.7944 42.2385 27 0.0829631 3.63925 43.2561 S1 6.48 31.5442 19.5011 29.9939 4.29381 85.7944 42.2385 28 0.0829631 3.1994 45.452 S1 6.48 31.5442 19.5011 29.986 2.79962 22.0011 43.1493 40.3493 <td>21</td> <td>0.0829631</td> <td>4.32996</td> <td>38.4542</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>22.0554</td> <td>22.6033</td> <td>33.9926</td> <td>7.72709</td> <td>26.2655</td> <td>51.5075</td> <td>43.7804</td>	21	0.0829631	4.32996	38.4542	S1	6.48	31.5442	22.0554	22.6033	33.9926	7.72709	26.2655	51.5075	43.7804
23 0.0829631 4.38968 39.7914 S1 6.48 31.5442 22.5111 23.0703 33.4292 6.40312 27.026 52.179 45.7759 24 0.0829631 4.40997 40.4699 S1 6.48 31.5442 22.1858 23.253 33.0416 5.71699 27.3246 52.3999 46.6829 26 0.0829631 4.07525 41.8478 S1 6.48 31.5442 20.407 21.8288 29.2933 4.29399 25.0053 48.3763 44.0823 27 0.0829631 3.63924 42.548 S1 6.48 31.5442 19.5011 19.9555 28.006 2.79962 22.001 43.1433 40.4833 38.4141 30 0.0829631 3.14094 44.6978 S1 6.48 31.5442 19.5015 22.5036 2.02414 20.4738 37.6591 36.4302 31 0.0829631 2.48244 45.1648 31.5442 15.9575 15.6775 14.9819 11.3796 34.3099	22	0.0829631	4.36212	39.1196	S1	6.48	31.5442	22.2956	22.8494	33.7392	7.073	26.6662	51.871	44.798
24 0.0829631 4.40997 40.4699 S1 6.48 31.5442 22.6899 23.2535 33.0416 5.71699 27.3246 52.3999 46.6829 25 0.0829631 4.28537 41.1552 S1 6.48 31.5442 22.18007 21.8298 29.2993 4.29399 25.0053 48.3763 44.0823 27 0.0829631 3.63925 43.2541 S1 6.48 31.5442 20.4047 20.9116 27.0656 3.55602 23.095 45.7946 42.2385 28 0.0829631 3.4299 43.9726 S1 6.48 31.5442 19.5011 19.9855 22.001 43.143 40.3497 29 0.0829631 3.41299 43.9726 S1 6.48 31.5442 16.7073 18.12888 18.9449 37.6591 36.4302 31 0.0829631 2.4924 45.4322 S1 6.48 31.5442 15.6757 14.9829 0 14.9829 14.9829 14.9829 14.9829 14.	23	0.0829631	4.38968	39.7914	S1	6.48	31.5442	22.5111	23.0703	33.4292	6.40312	27.026	52.179	45.7759
25 0.0829631 4.28537 41.1552 S1 6.48 31.5442 22.1888 22.74 31.5022 5.01412 26.4881 50.8965 45.8824 26 0.0829631 4.07525 41.8478 S1 6.48 31.5442 20.1007 21.8298 29.2993 4.29399 25.0053 48.3763 44.0823 27 0.0829631 3.63925 43.2561 S1 6.48 31.5442 19.0017 29.9953 24.8006 2.79962 22.001 43.1493 40.3497 29 0.0829631 3.18096 44.6978 S1 6.48 31.5442 18.5897 19.0515 22.5036 2.02414 20.4794 40.4383 38.4141 30 0.0829631 2.94294 45.4322 S1 6.48 31.5442 15.7477 18.1096 20.1738 12.2888 18.9449 37.6591 36.4302 31 0.0829631 2.54241 46.1649 S1 6.48 31.5442 15.975 16.6775 14.9829 0 14.9829 31.328 31.328 32 0.080453 2.542	24	0.0829631	4.40997	40.4699	S1	6.48	31.5442	22.6899	23.2535	33.0416	5.71699	27.3246	52.3999	46.6829
26 0.0829631 4.07525 41.8478 S1 6.48 31.5442 21.3007 21.8298 29.2993 4.29399 25.0053 48.3763 44.0823 27 0.0829631 3.85994 42.548 S1 6.48 31.5442 19.0407 20.9116 27.0656 3.55002 23.5095 45.7946 42.2385 28 0.0829631 3.4129 43.9726 S1 6.48 31.5442 19.5011 19.9855 24.8006 2.79962 22.001 43.1493 40.3497 29 0.0829631 3.4129 43.9726 S1 6.48 31.5442 17.6707 18.1096 20.1738 1.22888 18.9449 37.6591 36.4302 31 0.0829631 2.94294 45.4322 S1 6.48 31.5442 15.9529 16.3492 16.0773 0 16.0773 24.0794 40.4383 38.4141 30 0.080453 2.57178 46.8961 S1 6.48 31.5442 15.9529 16.3492 16.0773 0 16.0773 2.09252 32.02925 32.02925 32.02925 <td< td=""><td>25</td><td>0.0829631</td><td>4.28537</td><td>41.1552</td><td>S1</td><td>6.48</td><td>31.5442</td><td>22.1888</td><td>22.74</td><td>31.5022</td><td>5.01412</td><td>26.4881</td><td>50.8965</td><td>45.8824</td></td<>	25	0.0829631	4.28537	41.1552	S1	6.48	31.5442	22.1888	22.74	31.5022	5.01412	26.4881	50.8965	45.8824
27 0.0829631 3.85994 42.548 S1 6.48 31.5442 20.4047 20.9116 27.0656 3.55602 23.5095 45.7946 42.2385 28 0.0829631 3.63925 43.2561 S1 6.48 31.5442 19.5011 19.9855 24.8066 2.70962 22.001 43.1493 40.3497 29 0.0829631 3.18096 44.6978 S1 6.48 31.5442 17.6707 18.1096 2.0214 20.4794 40.4383 38.4141 30 0.0829631 2.94294 45.4322 S1 6.48 31.5442 15.6777 18.1096 0.1338 19.348 94.93 37.6591 3.6402 31 0.080453 2.6821 46.1649 S1 6.48 31.5442 15.975 15.6775 14.9829 0 14.9829 31.328 31.328 34 0.080453 2.4827 47.6374 S1 6.48 31.5442 13.2652 11.6413 0 11.6413 27.0191 27.0191 37 0.080453 2.4829 2.48299 2.48299 <t< td=""><td>26</td><td>0.0829631</td><td>4.07525</td><td>41.8478</td><td>S1</td><td>6.48</td><td>31.5442</td><td>21.3007</td><td>21.8298</td><td>29.2993</td><td>4.29399</td><td>25.0053</td><td>48.3763</td><td>44.0823</td></t<>	26	0.0829631	4.07525	41.8478	S1	6.48	31.5442	21.3007	21.8298	29.2993	4.29399	25.0053	48.3763	44.0823
28 0.0829631 3.63925 43.2561 S1 6.48 31.5442 19.5011 19.9855 24.8006 2.79962 22.001 43.1493 40.3497 29 0.0829631 3.18096 44.6978 S1 6.48 31.5442 18.5897 19.0515 22.5036 2.02414 20.4794 40.4383 38.4141 30 0.0829631 2.94294 45.4322 S1 6.48 31.5442 16.7438 17.1597 17.8109 0.413091 17.3976 34.809 34.3959 31 0.0820631 2.68241 46.1649 S1 6.48 31.5442 15.2975 15.6775 14.9829 0 14.9829 31.328 31.328 34 0.080453 2.51778 46.8901 S1 6.48 31.5442 13.2959 13.6751 0 12.7651 28.4929 36 2.48227 47.6374 S1 6.48 31.5442 13.2959 13.6262 11.6413 27.0191 27.0191 27.0191 27.0191 27.019	27	0.0829631	3.85994	42.548	S1	6.48	31.5442	20.4047	20.9116	27.0656	3.55602	23.5095	45.7946	42.2385
29 0.0829631 3.41299 43.9726 S1 6.48 31.5442 18.5897 19.0515 22.5036 2.02414 20.4794 40.4383 38.4141 30 0.0829631 3.18096 44.6978 S1 6.48 31.5442 17.6707 18.1096 20.1738 1.22888 18.9449 37.6591 36.4302 31 0.0829631 2.94294 45.4322 S1 6.48 31.5442 15.7977 17.8107 0.413091 17.3976 34.809 34.3959 32 0.080453 2.57178 46.8961 S1 6.48 31.5442 15.9529 16.3492 16.0773 0 16.0773 32.6925 32.6925 33 0.080453 2.45827 47.6374 S1 6.48 31.5442 13.699 14.316 12.7651 0 12.7651 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.4929 28.5056 25.5056 55.5056 </td <td>28</td> <td>0.0829631</td> <td>3.63925</td> <td>43.2561</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>19.5011</td> <td>19.9855</td> <td>24.8006</td> <td>2.79962</td> <td>22.001</td> <td>43.1493</td> <td>40.3497</td>	28	0.0829631	3.63925	43.2561	S1	6.48	31.5442	19.5011	19.9855	24.8006	2.79962	22.001	43.1493	40.3497
30 0.0829631 3.18096 44.6978 S1 6.48 31.5442 17.6707 18.1096 20.1738 1.22888 18.9449 37.6591 36.4302 31 0.0829631 2.94294 45.4322 S1 6.48 31.5442 16.7438 17.1597 17.8107 0.413091 17.3976 34.809 34.3959 32 0.080453 2.68241 46.1649 S1 6.48 31.5442 15.9529 16.3492 16.0773 0 16.0773 32.6925 32.6925 32.6925 33 0.080453 2.45827 47.6574 S1 6.48 31.5442 14.6362 14.9829 0 13.878 9.9286 29.9286 35 0.080453 2.45827 47.6574 S1 6.48 31.5442 13.662 11.6413 0 11.6413 27.0191 27.0191 37 0.080453 1.97271 50.7157 S1 6.48 31.5442 12.9303 10.5078 0 10.5078 25.056 25.5056 25.5056 25.5056 25.5056 25.5056 25.5056 25.5056	29	0.0829631	3.41299	43.9726	S1	6.48	31.5442	18.5897	19.0515	22.5036	2.02414	20.4794	40.4383	38.4141
31 0.0829631 2.94294 45.4322 S1 6.48 31.5442 16.7438 17.1597 17.8107 0.413091 17.3976 34.809 34.3959 32 0.080453 2.68241 46.1649 S1 6.48 31.5442 15.9529 16.3492 16.0773 0 16.0773 32.6925 32.6925 33 0.080453 2.57178 46.8961 S1 6.48 31.5442 15.2975 15.6775 14.9829 0 14.9829 31.328 31.228 34 0.080453 2.45827 47.6374 S1 6.48 31.5442 14.6362 14.9997 13.8789 0 13.8789 29.286 29.9286 35 0.080453 2.34175 48.3894 S1 6.48 31.5442 13.2959 13.6262 11.6413 0 11.6413 27.0191 27.0191 27.0191 37 0.080453 1.97271 50.7157 S1 6.48 31.5442 11.932 12.2283 9.36425 0 9.36425 23.9504 23.9504 39 0.080453 1.7878 <td>30</td> <td>0.0829631</td> <td>3.18096</td> <td>44.6978</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>17.6707</td> <td>18.1096</td> <td>20.1738</td> <td>1.22888</td> <td>18.9449</td> <td>37.6591</td> <td>36.4302</td>	30	0.0829631	3.18096	44.6978	S1	6.48	31.5442	17.6707	18.1096	20.1738	1.22888	18.9449	37.6591	36.4302
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	0.0829631	2.94294	45.4322	S1	6.48	31.5442	16.7438	17.1597	17.8107	0.413091	17.3976	34.809	34.3959
33 0.080453 2.57178 46.8961 S1 6.48 31.542 15.2975 15.6775 14.9829 0 14.9829 31.328 31.328 34 0.080453 2.45827 47.6374 S1 6.48 31.5442 14.6362 14.9997 13.8789 0 13.8789 29.9286 29.9286 35 0.080453 2.34175 48.3894 S1 6.48 31.5442 13.969 14.316 12.7651 0 12.7651 28.4929 28.4929 36 0.080453 2.2208 49.1526 S1 6.48 31.5442 12.26169 12.9303 10.5078 0 10.5078 25.5056 25.5056 38 0.080453 1.97271 50.7157 S1 6.48 31.5442 11.2411 11.5203 8.21079 0 8.21079 22.3514 22.3514 40 0.080453 1.7088 52.3328 S1 6.48 31.5442 22.6008 23.1622 27.1759 0 27.1759 57.3473 57.3473 41 0.080453 1.42871 54.0114	32	0.080453	2.68241	46.1649	S1	6.48	31.5442	15.9529	16.3492	16.0773	0	16.0773	32.6925	32.6925
340.0804532.4582747.6374S16.4831.544214.636214.999713.8789013.878929.928629.9286350.0804532.3417548.3894S16.4831.544213.96914.31612.7651012.765128.492928.4929360.0804532.2220849.1526S16.4831.544213.295913.626211.6413011.641327.019127.0191370.0804532.0991249.9278S16.4831.544212.2616912.930310.5078010.507825.505625.5056380.0804531.9727150.7157S16.4831.544211.93212.22839.3642509.3642523.950423.9504390.0804531.708852.3328S16.4831.544211.241111.52038.2107908.2107922.351422.3514400.0804531.5708953.1639S16.4831.544221.712822.252125.6933025.693355.5908420.0804531.4287154.014S16.4831.544221.712822.252125.6933025.693555.5908430.0804531.2819854.8765S16.4831.544221.712822.252125.6933025.693555.5908440.0804530.97367256.6653S16.4831.544219.901120.395422.6686 <t< td=""><td>33</td><td>0.080453</td><td>2.57178</td><td>46.8961</td><td>S1</td><td>6.48</td><td>31.5442</td><td>15.2975</td><td>15.6775</td><td>14.9829</td><td>0</td><td>14.9829</td><td>31.328</td><td>31.328</td></t<>	33	0.080453	2.57178	46.8961	S1	6.48	31.5442	15.2975	15.6775	14.9829	0	14.9829	31.328	31.328
350.0804532.3417548.3894S16.4831.544213.96914.31612.7651012.765128.492928.4929360.0804532.2220849.1526S16.4831.544213.295913.626211.6413011.641327.019127.0191370.0804532.0991249.9278S16.4831.544212.616912.930310.5078010.507825.505625.5056380.0804531.9727150.7157S16.4831.544211.93212.22839.3642509.3642523.950423.9504390.0804531.8426651.5171S16.4831.544211.241111.52038.2107908.2107922.351422.3514400.0804531.708852.3328S16.4831.544222.600823.162227.1759027.175957.347357.3473410.0804531.4287154.0114S16.4831.544221.712822.252125.6933025.693355.5908430.0804531.2819854.8765S16.4831.544219.901120.395422.6686022.668651.908951.9089450.0804530.97367256.6653S16.4831.544218.038718.486819.5594019.559447.975447.9754470.0804530.81137257.5922S16.4831.544218.0387<	34	0.080453	2.45827	47.6374	S1	6.48	31.5442	14.6362	14.9997	13.8789	0	13.8789	29.9286	29.9286
360.0804532.2220849.1526S16.4831.544213.295913.626211.6413011.641327.019127.0191370.0804532.0991249.9278S16.4831.544212.616912.930310.5078010.507825.505625.5056380.0804531.9727150.7157S16.4831.544211.93212.22839.3642509.3642523.950423.9504390.0804531.8426651.5171S16.4831.544211.241111.52038.2107908.2107922.351422.3514400.0804531.708852.3328S16.4831.544216.334416.740116.714016.71437.873237.8732410.0804531.5708953.1639S16.4831.544221.712822.252125.6933025.693355.5908420.0804531.2819854.8765S16.4831.544219.901120.395422.6686022.668651.908951.9089430.0804531.304155.7606S16.4831.544219.901120.395422.6686022.668651.908951.9089450.0804530.97367256.6653S16.4831.544218.976419.447821.125021.12549.975749.9757460.0804530.81137257.5922S16.4831.544217.0874	35	0.080453	2.34175	48.3894	S1	6.48	31.5442	13.969	14.316	12.7651	0	12.7651	28.4929	28.4929
37 0.080453 2.09912 49.9278 S1 6.48 31.5442 12.6169 12.9303 10.5078 0 10.5078 25.5056 25.5056 38 0.080453 1.97271 50.7157 S1 6.48 31.5442 11.932 12.2283 9.36425 0 9.36425 23.9504 23.9504 39 0.080453 1.84266 51.5171 S1 6.48 31.5442 11.2411 11.5203 8.21079 0 8.21079 22.3514 22.3514 40 0.080453 1.7088 52.3328 S1 6.48 31.5442 16.3344 16.7401 16.714 0 16.714 37.8732 37.8732 41 0.080453 1.57089 53.1639 S1 6.48 31.5442 21.7128 22.2521 25.6933 0 25.6933 55.5908 43 0.080453 1.28198 54.8765 S1 6.48 31.5442 20.813 21.33 24.1911 0 24.1911 53.7792 53.7792 44 0.080453 0.973672 56.653 S1 6	36	0.080453	2.22208	49.1526	S1	6.48	31.5442	13.2959	13.6262	11.6413	0	11.6413	27.0191	27.0191
38 0.080453 1.97271 50.7157 S1 6.48 31.5442 11.932 12.2283 9.36425 0 9.36425 23.9504 23.9504 39 0.080453 1.84266 51.5171 S1 6.48 31.5442 11.2411 11.5203 8.21079 0 8.21079 22.3514 22.3514 40 0.080453 1.7088 52.3328 S1 6.48 31.5442 16.3344 16.7011 16.714 0 16.714 37.8732 37.8732 41 0.080453 1.57089 53.1639 S1 6.48 31.5442 22.6008 23.1622 27.1759 0 27.1759 57.3473 57.3473 42 0.080453 1.42871 54.0114 S1 6.48 31.5442 20.813 21.33 24.1911 0 24.1911 53.7792 53.7792 43 0.080453 1.28198 54.8765 S1 6.48 31.5442 19.817 21.33 24.1911 0 24.1911 53.7792 53.7792 44 0.080453 0.973672 56.6653 <t< td=""><td>37</td><td>0.080453</td><td>2.09912</td><td>49.9278</td><td>S1</td><td>6.48</td><td>31.5442</td><td>12.6169</td><td>12.9303</td><td>10.5078</td><td>0</td><td>10.5078</td><td>25.5056</td><td>25.5056</td></t<>	37	0.080453	2.09912	49.9278	S1	6.48	31.5442	12.6169	12.9303	10.5078	0	10.5078	25.5056	25.5056
390.0804531.8426651.5171S16.4831.544211.241111.52038.2107908.2107922.351422.3514400.0804531.708852.3328S16.4831.544216.334416.740116.714016.71437.873237.8732410.0804531.5708953.1639S16.4831.544222.600823.162227.1759027.175957.347357.3473420.0804531.4287154.0114S16.4831.544221.712822.252125.6933025.693355.590855.5908430.0804531.2819854.8765S16.4831.544220.81321.3324.1911024.191153.779253.7792440.0804531.1304155.7606S16.4831.544219.901120.395422.6686022.668651.908951.9089450.0804530.97367256.6653S16.4831.544218.976419.447821.125021.12549.975749.9757460.0804530.81137257.5922S16.4831.544217.087417.511817.9711017.971145.902645.9026470.0804530.64308158.5434S16.4831.544216.121616.522116.3589016.358943.751143.7511490.0804530.28644260.5282S16.4831.5442 <td< td=""><td>38</td><td>0.080453</td><td>1.97271</td><td>50.7157</td><td>S1</td><td>6.48</td><td>31.5442</td><td>11.932</td><td>12.2283</td><td>9.36425</td><td>0</td><td>9.36425</td><td>23.9504</td><td>23.9504</td></td<>	38	0.080453	1.97271	50.7157	S1	6.48	31.5442	11.932	12.2283	9.36425	0	9.36425	23.9504	23.9504
40 0.080453 1.7088 52.3328 S1 6.48 31.5442 16.3344 16.714 0 16.714 37.8732 37.8732 41 0.080453 1.57089 53.1639 S1 6.48 31.5442 22.6008 23.1622 27.1759 0 27.1759 57.3473 57.3473 42 0.080453 1.42871 54.0114 S1 6.48 31.5442 21.7128 22.2521 25.6933 0 25.6933 55.5908 55.5908 43 0.080453 1.28198 54.8765 S1 6.48 31.5442 20.813 21.33 24.1911 0 24.1911 53.7792 53.7792 44 0.080453 0.973672 56.6653 S1 6.48 31.5442 19.9011 20.3954 22.6686 0 22.6686 51.9089 51.9089 45 0.080453 0.973672 56.6653 S1 6.48 31.5442 18.9764 19.478 21.125 0 21.125 49.9757 49.9757 46 0.080453 0.811372 57.5922 S1	39	0.080453	1.84266	51.5171	S1	6.48	31.5442	11.2411	11.5203	8.21079	0	8.21079	22.3514	22.3514
41 0.080453 1.57089 53.1639 S1 6.48 31.5442 22.6008 23.1622 27.1759 0 27.1759 57.3473 57.3473 42 0.080453 1.42871 54.0114 S1 6.48 31.5442 21.7128 22.2521 25.6933 0 25.6933 55.5908 55.5908 43 0.080453 1.28198 54.8765 S1 6.48 31.5442 20.813 21.33 24.1911 0 24.1911 53.7792 53.7792 44 0.080453 1.13041 55.7606 S1 6.48 31.5442 19.9011 20.3954 22.6686 0 22.6686 51.9089 51.9089 45 0.080453 0.973672 56.6653 S1 6.48 31.5442 18.9764 19.4478 21.125 0 21.125 49.9757 49.9757 46 0.080453 0.811372 57.5922 S1 6.48 31.5442 18.0387 18.4868 19.5594 0 19.5594 47.9754 47.9754 47 0.080453 0.643081 58.5434	40	0.080453	1.7088	52.3328	S1	6.48	31.5442	16.3344	16.7401	16.714	0	16.714	37.8732	37.8732
42 0.080453 1.42871 54.0114 S1 6.48 31.5442 21.7128 22.2521 25.6933 0 25.6933 55.5908 55.5908 43 0.080453 1.28198 54.8765 S1 6.48 31.5442 20.813 21.33 24.1911 0 24.1911 53.7792 53.7792 44 0.080453 1.13041 55.7606 S1 6.48 31.5442 19.9011 20.3954 22.6686 0 22.6686 51.9089 51.9089 45 0.080453 0.973672 56.6653 S1 6.48 31.5442 18.9764 19.478 21.125 0 21.125 49.9757 49.9757 46 0.080453 0.811372 57.5922 S1 6.48 31.5442 18.0387 18.4868 19.5594 0 19.5594 47.9754 47.9754 47 0.080453 0.643081 58.5434 S1 6.48 31.5442 17.0874 17.5118 17.9711 0 17.9711 45.9026 45.9026 48 0.080453 0.468298 59.5212	41	0.080453	1.57089	53.1639	S1	6.48	31.5442	22.6008	23.1622	27.1759	0	27.1759	57.3473	57.3473
43 0.080453 1.28198 54.8765 S1 6.48 31.5442 20.813 21.33 24.1911 0 24.1911 53.7792 53.7792 44 0.080453 1.13041 55.7606 S1 6.48 31.5442 19.9011 20.3954 22.6686 0 22.6686 51.9089 51.9089 45 0.080453 0.973672 56.6653 S1 6.48 31.5442 18.9764 19.4478 21.125 0 21.125 49.9757 49.9757 46 0.080453 0.811372 57.5922 S1 6.48 31.5442 18.0387 18.4868 19.5594 0 19.5594 47.9754 47.9754 47 0.080453 0.643081 58.5434 S1 6.48 31.5442 17.0874 17.5118 17.9711 0 17.9711 45.9026 45.9026 48 0.080453 0.468298 59.5212 S1 6.48 31.5442 16.1216 16.5221 16.3589 0 16.3589 43.7511 43.7511 49 0.080453 0.286442 60.5282	42	0.080453	1.42871	54.0114	S1	6.48	31.5442	21.7128	22.2521	25.6933	0	25.6933	55.5908	55.5908
44 0.080453 1.13041 55.7606 S1 6.48 31.5442 19.9011 20.3954 22.6686 0 22.6686 51.9089 51.9089 45 0.080453 0.973672 56.6653 S1 6.48 31.5442 18.9764 19.4478 21.125 0 21.125 49.9757 49.9757 46 0.080453 0.811372 57.5922 S1 6.48 31.5442 18.0387 18.4868 19.5594 0 19.5594 47.9754 47.9754 47 0.080453 0.643081 58.5434 S1 6.48 31.5442 17.0874 17.5118 17.9711 0 17.9711 45.9026 45.9026 48 0.080453 0.468298 59.5212 S1 6.48 31.5442 16.1216 16.5221 16.3589 0 16.3589 43.7511 43.7511 49 0.080453 0.286442 60.5282 S1 6.48 31.5442 15.141 15.5171 14.7218 0 14.7218 41.5141 41.5141 49 0.080453 0.0968341 61.5676<	43	0.080453	1.28198	54.8765	S1	6.48	31.5442	20.813	21.33	24.1911	0	24.1911	53.7792	53.7792
45 0.080453 0.973672 56.6653 S1 6.48 31.5442 18.9764 19.4478 21.125 0 21.125 49.9757 49.9757 46 0.080453 0.811372 57.5922 S1 6.48 31.5442 18.0387 18.4868 19.5594 0 19.5594 47.9754 47.9754 47 0.080453 0.643081 58.5434 S1 6.48 31.5442 17.0874 17.5118 17.9711 0 17.9711 45.9026 45.9026 48 0.080453 0.468298 59.5212 S1 6.48 31.5442 16.1216 16.5221 16.3589 0 16.3589 43.7511 43.7511 49 0.080453 0.286442 60.5282 S1 6.48 31.5442 15.141 15.5171 14.7218 0 14.7218 41.5141 41.5141 49 0.080453 0.0968434 61.5676 S1 6.48 31.5442 14.1448 14.4961 13.0586 0 14.7218 41.5141 41.5141 50 0.0968453 0.1968544 61.56	44	0.080453	1.13041	55.7606	S1	6.48	31.5442	19.9011	20.3954	22.6686	0	22.6686	51.9089	51.9089
46 0.080453 0.811372 57.5922 S1 6.48 31.5442 18.0387 18.4868 19.5594 0 19.5594 47.9754 47.9754 47 0.080453 0.643081 58.5434 S1 6.48 31.5442 17.0874 17.5118 17.9711 0 17.9711 45.9026 45.9026 48 0.080453 0.468298 59.5212 S1 6.48 31.5442 16.1216 16.5221 16.3589 0 16.3589 43.7511 43.7511 49 0.080453 0.286442 60.5282 S1 6.48 31.5442 15.141 15.5171 14.7218 0 14.7218 41.5141 41.5141 50 0.080453 0.0968341 61.5676 S1 6.48 31.5442 14.1448 14.4961 13.0586 0 13.0586 39.1834 39.1834	45	0.080453	0.973672	56.6653	S1	6.48	31.5442	18.9764	19.4478	21.125	0	21.125	49.9757	49.9757
47 0.080453 0.643081 58.5434 S1 6.48 31.5442 17.0874 17.5118 17.9711 0 17.9711 45.9026 45.9026 48 0.080453 0.468298 59.5212 S1 6.48 31.5442 16.1216 16.5221 16.3589 0 16.3589 43.7511 43.7511 49 0.080453 0.286442 60.5282 S1 6.48 31.5442 15.141 15.5171 14.7218 0 14.7218 41.5141 41.5141 50 0.080453 0.0968341 61.5676 S1 6.48 31.5442 14.448 14.4961 13.0586 0 13.0586 39.1834 39.1834	46	0.080453	0.811372	57.5922	S1	6.48	31.5442	18.0387	18.4868	19.5594	0	19.5594	47.9754	47.9754
48 0.080453 0.468298 59.5212 S1 6.48 31.5442 16.1216 16.5221 16.3589 0 16.3589 43.7511 43.7511 49 0.080453 0.286442 60.5282 S1 6.48 31.5442 15.141 15.5171 14.7218 0 14.7218 41.5141 41.5141 50 0.080453 0.0968341 61.5676 S1 6.48 31.5442 14.1448 14.4661 13.0586 0 13.0586 39.1834 39.1834	47	0.080453	0.643081	58.5434	S1	6.48	31.5442	17.0874	17.5118	17.9711	0	17.9711	45.9026	45.9026
49 0.080453 0.286442 60.5282 S1 6.48 31.5442 15.141 15.5171 14.7218 0 14.7218 41.5141 41.5141 50 0.080453 0.0968341 61.5676 S1 6.48 31.5442 14.1448 14.4961 13.0586 0 13.0586 39.1834 39.1834 50 0.080453 0.0968341 61.5676 S1 6.48 31.5442 14.1448 14.4961 13.0586 0 13.0586 39.1834 39.1834	48	0.080453	0.468298	59.5212	S1	6.48	31.5442	16.1216	16.5221	16.3589	0	16.3589	43.7511	43.7511
50 0.080453 0.0968341 61 5676 81 6.48 31 5442 14 1448 14 4061 13 0586 0 13 0586 30 1834 39 1834	49	0.080453	0.286442	60.5282	S1	6.48	31.5442	15.141	15.5171	14.7218	0	14.7218	41.5141	41.5141
TI-101 11-000 0 11-01-00 01 01-00 01 01-01-01-01 11-00-00 0 11-01-00 00 00 00 00 00 00 00 00 00 00 00 00	50	0.080453	0.0968341	61.5676	S1	6.48	31.5442	14.1448	14.4961	13.0586	0	13.0586	39.1834	39.1834

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.03563

Slic	ce Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-11.2741	-3.94816	16.7539	0	0
2		-11.1901	-3.90276	2.61331	0	0
3		-11.1061	-3.85641	4.96278	0	0
4		-11.0221	-3.80912	7.04513	0	0
5		-10.9381	-3.76085	8.85714	0	0
6		-10.8541	-3.71159	10.3957	0	0
7		-10.7702	-3.66134	11.6576	0	0
8		-10.6862	-3.61006	12.6401	0	0
9		-10.6022	-3.55776	13.34	0	0
10		-10.5182	-3.5044	13.7546	0	0
11		-10.4342	-3.44998	13.881	0	0
12		-10.3502	-3.39447	13.7166	0	0
13		-10.2662	-3.33785	13.4	0	0
14		-10.1822	-3.2801	13.0728	0	0
15		-10.0983	-3.2212	12.7349	0	0
16		-10.0143	-3.16113	12.3862	0	0
17		-9.93028	-3.09986	12.0267	0	0
18		-9.84629	-3.03738	11.6565	0	0
19		-9.7623	-2.97364	11.2761	0	0
20		-9.67832	-2.90863	10.8858	0	0
21		-9.59433	-2.84232	10.4863	0	0
22		-9.51034	-2.77467	10.0784	0	0
23		-9.42635	-2.70566	9.66308	0	0
24		-9.34237	-2.63525	9.24145	0	0
25		-9.25838	-2.56341	8.81978	0	0
26		-9.17439	-2.4901	8.43189	0	0
27		-9.0904	-2.41527	8.08945	0	0
28		-9.00642	-2.3389	7.79941	0	0
29		-8.92243	-2.26092	7.56909	0	0
30		-8.83844	-2.18131	7.4062	0	0
31		-8.75445	-2.1	7.3189	0	0
32		-8.67048	-2.01696	7.27456	0	0
33		-8.58651	-1.93212	7.23693	0	0
34		-8.50254	-1.84543	7.20927	0	0
35		-8.41857	-1.7568	7.19502	0	0
36		-8.33459	-1.66619	7.19784	0	0
37		-8.25062	-1.57351	7.22158	0	0
38		-8.16665	-1.47868	7.27033	0	0
39		-8.08268	-1.38163	7.34844	0	0
40		-7.99871	-1.28225	7.18962	0	0
41		-7.91473	-1.18046	6.15994	0	0
42		-7.83076	-1.07613	5.12984	0	0
43		-7.74679	-0.969164	4.1039	0	0
44		-7.66282	-0.859426	3.08704	0	0
45		-7.57884	-0.746777	2.08453	0	0
46		-7.49487	-0.631065	1.10209	0	0
47		-7.4109	-0.512123	0.145912	0	0
48		-7.32693	-0.389764	-0.777278	0	0
49		-7.24296	-0.263782	-1.66014	0	0
50		-7.15898	-0.133947	-2.49464	0	0
51		-7.07501	0	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 1.02484

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-11.2786	-3.95726	16.9193	0	0
2		-11.1957	-3.91651	2.6849	0	0
3		-11.1127	-3.87472	5.12164	0	0
4		-11.0297	-3.83187	7.30597	0	0
5		-10.9468	-3.78793	9.23374	0	0
6		-10.8638	-3.7429	10.9009	0	0
7		-10.7809	-3.69676	12.3033	0	0
8		-10.6979	-3.64947	13.4373	0	0
9		-10.6149	-3.60104	14.2989	0	0
10		-10.532	-3.55142	14.8845	0	0
11		-10.449	-3.50061	15.1904	0	0
12		-10.366	-3.44857	15.2132	0	0
13		-10.2831	-3.39529	15.0378	0	0
14		-10.2001	-3.34073	14.8409	0	0
15		-10.1171	-3.28487	14.6269	0	0
16		-10.0342	-3.22767	14.3952	0	0
17		-9.95122	-3.16912	14.1456	0	0
18		-9 86826	-3 10917	13 8779	0	0
19		-9 78529	-3 0478	13 592	0	0
20		-9 70233	-2 98496	13 2882	0	0
20		-9.61937	-2.90490	12 9669	0	0
21		-9 5364	-2.85474	12.5005	0	0
22		0 45344	2.8377	12.0280	0	0
23		0 37048	2.78727	11 0047	0	0
24		0 28751	-2./101/ 2.64738	11.5047	0	0
25		-9.28/51	-2.04/30	11.3210	0	0
20		-9.20455	-2.5/48/	10.8004	0	0
21		-9.12139	-2.30037	10.8094	0	0
20		-9.03802	-2.42442	10.3073	0	0
29		-8.93300	-2.34636	10.2324	0	0
30		-8.8/2/	-2.20032	10.0557	0	0
31		-8./89/4	-2.18422	9.92087	0	0
32		-8./06//	-2.1	9.86414	0	0
33		-8.62632	-2.01621	9.85056	0	0
34		-8.54587	-1.93024	9.84138	0	0
35		-8.46541	-1.84202	9.84045	0	0
36		-8.38496	-1.75144	9.85189	0	0
37		-8.30451	-1.65839	9.88013	0	0
38		-8.22405	-1.562/5	9.92992	0	0
39		-8.1436	-1.4644	10.0064	0	0
40		-8.06315	-1.3632	10.1151	0	0
41		-7.9827	-1.25898	9.7387	0	0
42		-7.90224	-1.15158	8.70925	0	0
43		-7.82179	-1.0408	7.67802	0	0
44		-7.74134	-0.926426	6.65106	0	0
45		-7.66088	-0.808218	5.63507	0	0
46		-7.58043	-0.685901	4.63747	0	0
47		-7.49998	-0.559166	3.66654	0	0
48		-7.41952	-0.427655	2.73155	0	0
49		-7.33907	-0.290957	1.84302	0	0
50		-7.25862	-0.148594	1.01289	0	0
51		-7.17816	0	0	0	0

Stability Analysis for circular failure with sloping SE slope, west section Arkoulaki Eleni Date Created: 12/5/2023, 5:41:43 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of SE slope, west section, with sloping

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined
Loading

1 Distributed Load present

	Distributed Load 1	
Distribution:	Constant	
Magnitude [kPa]:	30	
Orientation:	Normal to boundary	
Load Action:	Variable	

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Global Minimums

Method: bishop simplified

FS	0.894598
Center:	-15.887, 3.984
Radius:	9.575
Left Slip Surface Endpoint:	-10.600, -3.999
Right Slip Surface Endpoint:	-7.180, 0.000
Left Slope Intercept:	-10.600 -2.100
Right Slope Intercept:	-7.180 0.000
Resisting Moment:	874.162 kN-m
Driving Moment:	977.156 kN-m
Total Slice Area:	7.73905 m2
Surface Horizontal Width:	3.42029 m
Surface Average Height:	2.26269 m

Method: janbu corrected

FS	0.886960
Center:	-15.887, 3.984
Radius:	9.575
Left Slip Surface Endpoint:	-10.600, -3.999
Right Slip Surface Endpoint:	-7.180, 0.000
Left Slope Intercept:	-10.600 -2.100
Right Slope Intercept:	-7.180 0.000
Resisting Horizontal Force:	59.6914 kN
Driving Horizontal Force:	67.2988 kN
Total Slice Area:	7.73905 m2
Surface Horizontal Width:	3.42029 m
Surface Average Height:	2.26269 m

Global Minimum Support Data

No Supports Present

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	7095
Number of Invalid Surfaces:	2166
	Error Codes

Error Code -106 reported for 38 surfaces Error Code -108 reported for 1940 surfaces Error Code -112 reported for 188 surfaces

Method: janbu corrected

Number of Valid Surfaces:	5438	
Number of Invalid Surfaces:	3823	
	Error Codes	

Error Code -106 reported for 28 surfaces Error Code -108 reported for 2059 surfaces Error Code -111 reported for 1680 surfaces Error Code -112 reported for 56 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = Safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.894598

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0679725	1.38879	33.7579	S1	6.48	31.5442	5.919	5.29513	16.4804	18.4105	-1.93015	20.4365	2.02599
2	0.0679725	1.63225	34.2485	S1	6.48	31.5442	7.77084	6.95178	18.7292	17.9607	0.76849	24.0199	6.05918
3	0.0679725	1.87371	34.742	S1	6.48	31.5442	9.59044	8.57959	20.9227	17.5025	3.42022	27.5739	10.0714
4	0.0679725	2.11314	35.2385	S1	6.48	31.5442	11.3776	10.1784	23.0605	17.0357	6.0248	31.098	14.0623
5	0.0679725	2.35048	35.7381	S1	6.48	31.5442	13.1321	11.7479	25.1419	16.5603	8.58165	34.5915	18.0312
6	0.0679725	2.58571	36.2407	S1	6.48	31.5442	14.8536	13.288	27.1665	16.076	11.0905	38.0539	21.9779
7	0.0679725	2.81878	36.7467	S1	6.48	31.5442	16.542	14.7984	29.1336	15.5827	13.5509	41.4845	25.9018
8	0.0679725	3.04965	37.256	S1	6.48	31.5442	18.1968	16.2788	31.0428	15.0801	15.9627	44.883	29.8029
9	0.0679725	3.27828	37.7687	S1	6.48	31.5442	19.818	17.7291	32.8934	14.5682	18.3252	48.2484	33.6802
10	0.0679725	3.45374	38.2851	S1	6.48	31.5442	21.0716	18.8506	34.1988	14.0468	20.152	50.8312	36.7844
11	0.0679725	3.55745	38.8051	S1	6.48	31.5442	21.8434	19.5411	34.7924	13.5155	21.2769	52.3582	38.8427
12	0.0679725	3.65836	39.329	S1	6.48	31.5442	22.5882	20.2074	35.3365	12.9742	22.3623	53.8439	40.8697
13	0.0679725	3.75682	39.8568	S1	6.48	31.5442	23.3085	20.8517	35.8345	12.4227	23.4118	55.2936	42.8709
14	0.0679725	3.85278	40.3888	S1	6.48	31.5442	24.0037	21.4737	36.2859	11.8607	24.4252	56.7065	44.8458
15	0.0679725	3.94619	40.9249	S1	6.48	31.5442	24.6739	22.0732	36.6898	11.288	25.4018	58.0818	46.7938
16	0.0679725	4.03696	41.4654	S1	6.48	31.5442	25.3186	22.65	37.0457	10.7043	26.3414	59.4185	48.7142
17	0.0679725	4.12505	42.0105	S1	6.48	31.5442	25.9376	23.2037	37.3527	10.1094	27.2433	60.7157	50.6063
18	0.0679725	4.21038	42.5603	S1	6.48	31.5442	26.5304	23.734	37.6102	9.50293	28.1072	61.9722	52.4693
19	0.0679725	4.29287	43.115	S1	6.48	31.5442	27.0966	24.2406	37.8172	8.88462	28.9325	63.1871	54.3025
20	0.0679725	4.28382	43.6748	S1	6.48	31.5442	27.0952	24.2393	37.1846	8.25413	28.9305	63.0545	54.8004
21	0.0679725	4.13185	44.2398	S1	6.48	31.5442	26.2278	23.4633	35.2775	7.61113	27.6664	60.8184	53.2072
22	0.0679725	3.97506	44.8103	S1	6.48	31.5442	25.3443	22.673	33.3342	6.95525	26.3789	58.5113	51.556
23	0.0679725	3.81511	45.3865	S1	6.48	31.5442	24.4556	21.8779	31.3698	6.28611	25.0836	56.1575	49.8714
24	0.0679725	3.65188	45.9687	S1	6.48	31.5442	23.5614	21.078	29.3838	5.60331	23.7805	53.7557	48.1524
25	0.0679725	3.48529	46.557	S1	6.48	31.5442	22.6619	20.2733	27.376	4.9064	22.4696	51.3043	46.3979
26	0.0679725	3.31521	47.1518	S1	6.48	31.5442	21.7569	19.4637	25.3458	4.19492	21.1509	48.8016	44.6066
27	0.0679725	3.14154	47.7533	S1	6.48	31.5442	20.8467	18.6494	23.2928	3.46839	19.8244	46.2459	42.7775
28	0.0679725	2.96414	48.3619	S1	6.48	31.5442	19.9312	17.8304	21.2164	2.72628	18.4901	43.6354	40.9091
29	0.0679725	2.78288	48.9778	S1	6.48	31.5442	19.0103	17.0066	19.1163	1.96802	17.1482	40.968	39
30	0.0679725	2.59762	49.6014	S1	6.48	31.5442	18.0843	16.1782	16.9917	1.19301	15.7987	38.2418	37.0488
31	0.0679725	2.40819	50.2331	S1	6.48	31.5442	17.1531	15.3451	14.8422	0.400607	14.4416	35.4542	35.0536
32	0.0691129	2.30365	50.8788	S1	6.48	31.5442	16.3432	14.6206	13.2613	0	13.2613	33.3563	33.3563
33	0.0691129	2.20737	51.5389	S1	6.48	31.5442	15.6535	14.0036	12.2561	0	12.2561	31.9627	31.9627
34	0.0691129	2.10876	52.2088	S1	6.48	31.5442	14.9591	13.3824	11.2442	0	11.2442	30.5355	30.5355
35	0.0691129	2.00773	52.889	S1	6.48	31.5442	14.2601	12.757	10.2255	0	10.2255	29.0731	29.0731
36	0.0691129	1.90415	53.58	S1	6.48	31.5442	13.5563	12.1275	9.19995	0	9.19995	27.5739	27.5739
37	0.0691129	1.7979	54.2824	S1	6.48	31.5442	12.848	11.4938	8.16761	0	8.16761	26.0359	26.0359
38	0.0691129	1.68885	54.9971	S1	6.48	31.5442	14.0598	12.5779	9.93369	0	9.93369	30.011	30.011
39	0.0691129	1.57683	55.7248	S1	6.48	31.5442	24.7606	22.1508	25.5282	0	25.5282	61.8597	61.8597
40	0.0691129	1.46168	56.4662	S1	6.48	31.5442	23.8516	21.3376	24.2034	0	24.2034	60.1932	60.1932
41	0.0691129	1.34321	57.2225	S1	6.48	31.5442	22.9323	20.5152	22.8638	0	22.8638	58.4785	58.4785
42	0.0691129	1.22122	57.9946	S1	6.48	31.5442	22.0026	19.6835	21.5089	0	21.5089	56.713	56.713
43	0.0691129	1.09547	58.7837	S1	6.48	31.5442	21.0619	18.8419	20.138	0	20.138	54.8929	54.8929
44	0.0691129	0.9657	59.5912	S1	6.48	31.5442	20.1098	17.9902	18.7505	0	18.7505	53.0147	53.0147
45	0.0691129	0.831618	60.4186	S1	6.48	31.5442	19.1459	17.1279	17.3457	0	17.3457	51.0741	51.0741
46	0.0691129	0.692885	61.2676	S1	6.48	31.5442	18.1696	16.2545	15.923	0	15.923	49.066	49.066
47	0.0691129	0.549113	62.1402	S1	6.48	31.5442	17.1805	15.3697	14.4815	0	14.4815	46.985	46.985
48	0.0691129	0.399854	63.0388	S1	6.48	31.5442	16.1779	14.4727	13.0204	0	13.0204	44.8244	44.8244
49	0.0691129	0.244585	63.9659	S1	6.48	31.5442	15.1612	13.5632	11.5387	0	11.5387	42.5769	42.5769
50	0.0691129	0.0826889	64.925	S1	6.48	31.5442	14.1297	12.6404	10.0355	0	10.0355	40.2334	40.2334

Global Minimum Query (janbu corrected) - Safety Factor: 0.88696

1 0.0679725 1.8379 31.7879 51.744 5.9079 5.2075 1.6374 7.4105 -2.0150 2.3171 1.0066 3 0.0679725 1.8771 34.748 5 6.48 3.1542 7.146 6.8602 2.7373 3.7385 7.8378 5 0.0679725 2.1314 3.7384 3.7384 5.442 1.1307 1.1579 2.8471 1.0503 8.3172 3.4002 7.7464 6 0.0679725 2.53173 3.7364 5.442 1.6476 1.16044 2.8486 1.0503 8.3172 4.11246 2.35297 9 0.0679725 3.5745 3.7826 31.5442 1.7914 1.5027 1.51280 1.5144 4.466 2.3571 10 0.0679725 3.5745 3.8258 S1 6.48 31.5442 2.1791 1.2575 3.5374 3.5864 3.5441 1.4049 3.5492 1.0583 3.5474 1.40648 2.3576 1.1080 5.2567 3.511 1.2	Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
2 0.0679725 18.282 34.742 SI 6.48 31.5442 9.724 18.5898 17.5025 28.373 9.37044 4 0.0679725 11314 35.288 SI 6.48 31.5442 11.308 10.05 22.8313 17.0057 5.8156 30.8377 18.827 5 0.0679725 2.58871 30.7467 SI 6.48 31.5442 14.7787 11.1162 2.68861 10.8007 15.6114 44.465 32.554 41.1124 2.55397 8 0.0679725 3.4796 SI 6.48 31.5442 18.1044 10.6023 30.6011 15.6114 44.665 33.559 14.6063 19.507 14.5043 19.755 50.3304 36.2856 10 0.0679725 3.45374 38.8011 16.48 31.5442 21.1683 31.5783 12.0667725 3.5371 12.0667725 3.5374 18.802 14.8056 14.8056 14.8056 14.8056 14.8179 12.9944 4.7078 4.22516	1	0.0679725	1.38879	33.7579	S1	6.48	31.5442	5.89739	5.23075	16.3754	18.4105	-2.03509	20.3171	1.9066
3 0.0679725 137171 34.742 81.5442 9.55247 8.47266 20.7485 7.10255 3.24012 27.3733 9.87084 5 0.0679725 2.13187 35.7381 81.6 6.48 31.5442 13.076 11.5979 2.48975 10.6106 3.7728 2.43075 7 0.0679725 2.31878 36.7407 S1 6.48 31.5442 10.7728 3.20102 11.2245 2.5997 8 0.0679725 3.32758 S1 6.48 31.5442 10.7206 17.4014 14.0662 9.03891 15.6114 44.466 29.3859 9 0.0679725 3.53743 38.2051 S1 6.48 31.5442 20.9648 18.5949 33.7274 2.0899 13.225 0.33291 33.2282 3.3312 13.0452 2.03953 3.5371 12.4227 2.9945 3.4124 13.1545 2.0399 3.2867 3.2817 3.28484 5.3124 11.8807 2.9945 5.3124 14.8005 3.29176	2	0.0679725	1.63225	34.2485	S1	6.48	31.5442	7.74128	6.8662	18.5898	17.9607	0.629127	23.8604	5.89969
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0.0679725	1.87371	34.742	S1	6.48	31.5442	9.55247	8.47266	20.7485	17.5025	3.24602	27.3733	9.87084
5 0.0679725 235874 35.784 51 6.48 31.5442 15.775 21.8167 15.372 15.372 15.372 15.372 15.372 15.372 15.372 15.3451 15.323 41.112 25.357 0.0679725 2.81878 37.266 15 6.48 31.5442 15.414 15.032 15.614 41.466 23.359 9 0.0679725 3.5473 38.351 81 6.48 31.5442 19.720 14.2728 14.365 14.466 23.359 3.3782 14.466 19.275 3.5474 3.2887 3.3881 81 6.48 31.5442 21.721 19.2728 3.4537 12.9742 12.9041 3.2867 40.3154 12 0.0679725 3.5858 31 6.48 31.5442 23.1863 3.3571 12.422 12.848 4.7078 42.2851 14 0.0679725 3.5426 41.454 31.5442 23.1878 3.5478 1.8467 3.5111 12.4012 2.8484	4	0.0679725	2.11314	35.2385	S1	6.48	31.5442	11.3308	10.05	22.8513	17.0357	5.8156	30.8557	13.82
6 0.0679725 25.8871 36.7467 81 6.48 31.5442 16.47876 18.1162 26.886 16.076 10.8106 37.728.8 21.648 9 0.0679725 3.04965 37.256 81 6.48 31.5442 16.461 16.0632 30.6915 15.8601 15.6114 44.466 29.3859 9 0.0679725 3.4574 38.2851 81 6.48 31.5442 20.948 18.5494 3.7822 14.0468 19.7355 3.8173 11 0.0679725 3.57863 39.295 1 6.48 31.5442 21.781 19.272 3.43574 21.8091 53.867 0.3125 13 0.0679725 3.57862 39.5868 16.48 31.5442 23.5785 3.57873 11.860 23.8076 0.3125 14 0.0679725 3.5086 1.648 31.5442 2.5755 3.61747 11.288 2.8484 4.5011 17 0.0679725 4.2084 4.40514 4.57352	5	0.0679725	2.35048	35.7381	S1	6.48	31.5442	13.076	11.5979	24.8975	16.5603	8.3372	34.3067	17.7464
7 0.0679725 281878 36.7467 S1 6.48 31.542 14.6048 28.818 15.5827 13.2544 4.1124 25.527 9 0.0679725 3.2756 S1 6.48 31.5442 19.700 17.4914 25.022 14.5642 17.938 47.7859 33.2171 10 0.0679725 3.54574 38.8051 S1 6.48 31.5442 21.791 19.272 3.3552 14.4066 29.8351 12 0.0679725 3.5636 39.290 S1 6.48 31.5442 22.1648 35.3571 12.422 21.8478 35.3857 40.3154 13 0.0679725 3.5688 S1 6.48 31.5442 23.2861 31.6362 1.7838 1.8607 23.976 56.0124 44.0151 16 0.0679725 4.2105 S1 6.48 31.5442 23.802 37.033 9.5023 2.531 61.234 47.904 18 0.0679725 4.2103 4.483 1.442	6	0.0679725	2.58571	36.2407	S1	6.48	31.5442	14.7878	13.1162	26.8866	16.076	10.8106	37.7258	21.6498
8 0.0679725 3.04965 37.568 S1 6.48 31.5442 18.1104 16.0632 3.06915 15.0801 15.6114 44.666 29.389 10 0.0679725 3.45374 37.5685 S1 6.48 31.5442 20.9648 18.5949 33.75852 15.515 20.8399 51.8292 38.3137 12 0.0679725 3.57685 39.329 S1 6.48 31.5442 21.7291 19.2728 43.4554 13.5155 20.8399 51.8297 40.3125 13 0.0679725 3.94619 40.2342 S1 6.48 31.5442 23.1871 20.556 55.7883 11.6807 23.9267 66.0919 44.2312 15 0.0679725 40.366 44.4551 6.48 31.5442 25.1683 23.7895 10.1044 25.6865 60.0128 49.9044 16 0.0679725 42.015 S1 6.48 31.5442 26.3992 25.511 85.200 23.317 63.22141 55.576	7	0.0679725	2.81878	36.7467	S1	6.48	31.5442	16.4661	14.6048	28.8181	15.5827	13.2354	41.1124	25.5297
9 0.0679725 3.27828 37.787 S1 6.48 31.5442 19.7206 17.4914 3.5202 14.5682 17.938 47.7899 3.3217 11 0.0679725 3.55745 38.8051 S1 6.48 31.5442 21.791 19.2728 3.43554 13.5155 20.8399 51.8202 38.3137 12 0.0679725 3.56836 39.229 S1 6.48 31.5442 21.1873 0.5586 35.3571 12.427 2.9.944 4.70081 4.70081 4.2281 13 0.0679725 3.85278 40.3888 S1 6.48 31.5442 2.51861 2.5755 2.6183 5.0794 7.61094 2.66865 60.0128 49.034 16 0.0679725 4.2084 S1 6.48 31.5442 2.5175 2.8183 5.07042 2.8374 6.4214 5.3595 10 0.0679725 4.20284 4.5484 1.5442 2.6178 2.3.862 2.8374 6.24244 5.3595	8	0.0679725	3.04965	37.256	S1	6.48	31.5442	18.1104	16.0632	30.6915	15.0801	15.6114	44.466	29.3859
10 0.0679725 4.3574 38.281 S1 6.48 31.5442 20.9648 18.5949 33.7823 14.0468 19.7355 50.3304 6.2836 19.0679725 3.5856 38.8051 S1 6.48 31.5442 21.729 19.2728 4.3554 13.515 20.839 51.822 4.3317 12 0.0679725 3.5826 39.866 S1 6.48 31.5442 22.4663 19.9267 34.8793 12.9742 21.9051 53.2867 40.3125 14 0.0679725 3.58278 40.388 51 6.48 31.5442 23.1787 20.556 35.571 12.4227 22.9344 54.7078 4.22851 15 0.0679725 3.58278 40.388 51 6.48 31.5442 24.528 21.755 36.1724 11.288 24.8844 57.4381 46.1501 0.0679725 4.02972 5.40396 41.4654 51 6.48 31.5442 24.528 21.755 36.0919 40.704 25.8465 40.0128 48.0411 17 0.0679725 4.2108 42.605 S1 6.48 31.5442 25.755 22.618 36.7989 10.1094 25.6865 60.0128 49.9034 18 0.0679725 4.2108 42.5603 51 6.48 31.5442 25.755 22.618 36.7989 10.1094 25.6865 60.0128 49.9034 18 0.0679725 4.2108 42.5603 51 6.48 31.5442 26.9178 23.875 37.2217 8.8462 28.337 6.2421 35.3595 20 0.0679725 4.2108 42.5685 16.48 31.5442 26.9178 23.875 37.2217 8.8462 28.337 6.2421 35.3595 20 0.0679725 4.3184 24.5983 51 6.48 31.5442 26.9178 23.875 37.2217 8.8462 28.337 6.2421 35.3595 20 0.0679725 4.1384 23.6987 51 6.48 31.5442 26.9178 23.875 37.2217 8.8462 28.337 6.2421 35.3595 20 0.0679725 3.4184 41.35 16 6.48 31.5442 25.1634 22.3189 32.733 6.5522 25.8021 57.754 6.02797 49.1266 24 0.0679725 3.4184 42.3987 81 6.48 31.5442 23.843 20.419 4.3064 21.833 50.8555 45.6791 22.00679725 3.4158 4.39887 S1 6.48 31.5442 23.481 23.24867 4.19492 20.6181 45.9127 94.1266 24 0.0679725 3.4154 47.753 S1 6.48 31.5442 23.481 23.484 5.4031 34.23.231 53.0325 47.4020 25 0.0679725 3.4154 47.753 S1 6.48 31.5442 23.481 23.484 5.43114 4.904 23.484 5.4351 43.2022 27.7 19.4262 24.8461 1.9080 23.31 53.5557 42.0848 30.00699725 3.4154 47.753 S1 6.48 31.5442 12.4571 19.9452 26.8414 3.45631 12.4267 41.8367 30.2567 42.0883 0.0679725 3.4154 47.5138 13.644 13.442 17.001 15.0784 13.406 01.8489 13.717 31.4300 22.773 44.5517 42.0843 31.5442 14.8163 13.1442 14.121 12.2388 9.54418 0.98.8418 37.544 13.9022 37.314 37.5547 32.5567 34.55578 34.5578 34.5579 34.5559 35.5558 34.56791 3	9	0.0679725	3.27828	37.7687	S1	6.48	31.5442	19.7206	17.4914	32.5062	14.5682	17.938	47.7859	33.2177
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.0679725	3.45374	38.2851	S1	6.48	31.5442	20.9648	18.5949	33.7823	14.0468	19.7355	50.3304	36.2836
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.0679725	3.55745	38.8051	S1	6.48	31.5442	21.7291	19.2728	34.3554	13.5155	20.8399	51.8292	38.3137
13 0.0679725 3.75682 9.8568 S1 6.48 31.5442 23.1787 20.5568 3.5.781 1.2427 22.344 54.7078 42.281 14 0.0679725 3.85278 40.3888 S1 6.48 31.5442 23.8661 21.1683 35.783 11.8607 23.9276 56.0919 44.2312 16 0.0679725 42.0105 42.0105 S1 6.48 31.5442 25.755 36.1724 11.288 25.8685 10.7043 25.8002 88.7454 48.0411 18 0.0679725 42.0103 42.5603 S1 6.48 31.5442 26.9178 23.875 37.217 8.8462 28.337 62.4241 35.359 20 0.0679725 4.13185 44.238 S1 6.48 31.5442 26.9178 23.875 37.217 8.8462 28.387 62.8217 5.9021 57.7546 5.0794 20 0.0679725 3.4151 45.3657 S1 6.48 31.5442 23.8151	12	0.0679725	3.65836	39.329	S1	6.48	31.5442	22.4663	19.9267	34.8793	12.9742	21.9051	53.2867	40.3125
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0.0679725	3.75682	39.8568	S1	6.48	31.5442	23.1787	20.5586	35.3571	12.4227	22.9344	54.7078	42.2851
15 0.0679725 3.94619 40.9249 S1 6.48 31.5442 24.5283 21.755 36.1724 11.288 24.8844 57.481 46.1501 16 0.0679725 4.12055 42.0105 S1 6.48 31.5442 25.7755 22.8018 36.7959 10.1044 26.8655 60.0128 49.9034 18 0.0679725 4.21038 42.5003 S1 6.48 31.5442 26.3799 23.0805 36.7939 9.50293 27.513 61.2344 51.33955 20 0.0679725 4.2382 43.6748 S1 6.48 31.5442 26.0163 23.1011 3.6874 7.61113 27.072 6.9255 2.8.302 6.7724 53.925 20 0.0679725 3.81511 45.3865 S1 6.48 31.5442 2.24.843 2.0.348 5.0031 2.2.1774 53.0235 47.4022 25 0.0679725 3.8151 45.3865 S1 6.48 31.5442 2.4.374 2.1.942 2.8	14	0.0679725	3.85278	40.3888	S1	6.48	31.5442	23.8661	21.1683	35.7883	11.8607	23.9276	56.0919	44.2312
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.0679725	3.94619	40.9249	S1	6.48	31.5442	24.5283	21.7556	36.1724	11.288	24.8844	57.4381	46.1501
17 0.0679725 4.12505 42.0105 S1 6.48 31.5442 25.7755 22.8.18 36.7959 10.1094 26.8656 60.1239 49.0034 18 0.0679725 4.2038 42.1038 S1 6.48 31.5442 26.3599 23.3802 37.0339 9.50233 75.231 61.2394 51.7365 20 0.0679725 4.28382 43.6748 S1 6.48 31.5442 26.9116 23.8959 36.821 8.25413 28.328 62.2767 54.0226 21 0.0679725 3.97506 44.8103 S1 6.48 31.5442 25.1634 22.31801 34.6874 7.61113 27.0726 60.0505 52.4394 23 0.0679725 3.81511 45.3865 S1 6.48 31.5442 22.42674 21.322 30.8065 6.28611 24.204 53.023 47.4002 24 0.0679725 3.4152 47.573 6.9525 2.8001 7.7246 50.023 47.4002 25 0.0679725 3.4152 47.579 18.3045 21.8345 16.348 <t< td=""><td>16</td><td>0.0679725</td><td>4.03696</td><td>41.4654</td><td>S1</td><td>6.48</td><td>31.5442</td><td>25.1648</td><td>22.3202</td><td>36.5085</td><td>10.7043</td><td>25.8042</td><td>58.7454</td><td>48.0411</td></t<>	16	0.0679725	4.03696	41.4654	S1	6.48	31.5442	25.1648	22.3202	36.5085	10.7043	25.8042	58.7454	48.0411
18 0.0679725 4.21038 4.25003 S1 6.48 31.5442 26.3599 23.802 37.033 9.50293 27.531 61.2394 51.35395 19 0.0679725 4.29287 43.115 S1 6.48 31.5442 26.9178 23.875 37.2217 8.88462 28.337 62.2421 53.3395 20 0.0679725 4.18185 44.2398 S1 6.48 31.5442 26.0453 23.1011 34.6874 7.61113 27.072 60.0505 52.4394 22 0.0679725 3.81511 45.3865 S1 6.48 31.5442 22.42764 21.5322 30.8065 6.28611 24.504 55.4127 49.1266 24 0.0679725 3.61582 95.57 S1 6.48 31.5442 22.42764 21.5322 30.8055 6.28611 24.504 55.4127 49.1266 26 0.0679725 3.45142 15.4427 15.648 31.5442 20.68179 48.8303 50.8555 45.0331	17	0.0679725	4.12505	42.0105	S1	6.48	31.5442	25.7755	22.8618	36.7959	10.1094	26.6865	60.0128	49.9034
19 0.0679725 4.29287 43.115 S1 6.48 31.5442 26.9116 23.875 37.2217 8.88402 28.337 62.4241 53.3395 20 0.0679725 4.2882 43.6748 S1 6.48 31.5442 26.0453 23.101 34.6874 7.61113 27.0762 60.0505 52.4394 21 0.0679725 3.97506 4.48103 S1 6.48 31.5442 25.1634 23.1893 32.7573 6.95525 25.8021 57.7546 50.7994 23 0.0679725 3.81511 45.3865 S1 6.48 31.5442 22.42764 21.5322 30.8065 6.28611 24.5204 55.1025 47.4202 25 0.0679725 3.4529 46.557 S1 6.48 31.5442 22.4871 19.9452 28.817 4.9042 20.6318 48.8071 43.9022 27 0.0679725 3.4154 47.7533 S1 6.48 31.5442 20.6779 18.3405 27.784 1.46831 49.263 40.236 29 0.0679725 2.7828 4.897	18	0.0679725	4.21038	42.5603	S1	6.48	31.5442	26.3599	23.3802	37.0339	9.50293	27.531	61.2394	51.7365
20 0.0679725 4.28382 43.6748 S1 6.48 31.5442 26.9116 23.8695 36.5821 8.25413 28.328 62.2767 54.0226 21 0.0679725 4.13185 44.2398 S1 6.48 31.5442 25.1634 22.3189 32.7573 65525 52.8021 57.7546 50.7994 23 0.0679725 3.81511 45.3865 S1 6.48 31.5442 23.843 5.6031 23.2315 53.0235 47.4202 24 0.0679725 3.81524 47.557 S1 6.48 31.5442 21.851 19.1451 24.8067 4.19492 20.6318 48.0971 43.9022 25 0.0679725 3.1451 9.115 6.48 31.5442 20.6779 17.5314 20.26318 48.0971 43.9022 27 0.0679725 3.14154 9.17657 17.5314 20.7262 18.0031 42.9623 40.236 29 0.0679725 2.97414 43.0542 19.7657	19	0.0679725	4.29287	43.115	S1	6.48	31.5442	26.9178	23.875	37.2217	8.88462	28.337	62.4241	53.5395
21 0.0679725 4.13185 44.2398 S1 6.48 31.5442 26.0453 23.1011 34.6874 7.61113 27.0726 60.0505 52.4394 22 0.0679725 3.97506 44.8103 S1 6.48 31.5442 22.3189 22.7573 6.95255 25.8021 57.7546 50.7994 23 0.0679725 3.65184 45.9687 S1 6.48 31.5442 23.843 20.7092 28.8348 56.0311 23.215 53.0235 47.4202 25 0.0679725 3.45124 47.753 S1 6.48 31.5442 22.4871 19.9452 2.68417 4.9064 21.9353 50.5855 45.6791 26 0.0679725 3.4154 47.733 S1 6.48 31.5442 20.6719 18.3405 22.7894 3.46339 9.321 45.5567 42.0833 28 0.0679725 2.57862 49.6014 S1 6.48 31.5442 19.718 18.4661 1.9600 1.6781 40.31	20	0.0679725	4.28382	43.6748	S1	6.48	31.5442	26.9116	23.8695	36.5821	8.25413	28.328	62.2767	54.0226
22 0.0679725 3.97506 44.8103 S1 6.48 31.5442 22.3189 32.7573 6.95525 25.8021 57.7546 50.7994 23 0.0679725 3.81511 45.3865 S1 6.48 31.5442 24.2764 21.5322 30.8065 6.28611 24.5204 55.4127 49.1266 24 0.0679725 3.6158 45.9687 S1 6.48 31.5442 22.3843 20.7409 28.8144 5.0051 23.2315 50.5855 45.6791 25 0.0679725 3.1514 47.7518 S1 6.48 31.5442 21.881 19.451 24.8267 4.19492 20.618 48.0971 45.302 26 0.0679725 2.78288 48.9778 S1 6.48 31.5442 19.7657 17.5314 20.7262 18.031 42.9623 40.236 29 0.0679725 2.78288 48.9778 S1 6.48 31.5442 19.767 17.5314 20.7262 18.031 42.9623 40.23	21	0.0679725	4.13185	44.2398	S1	6.48	31.5442	26.0453	23.1011	34.6874	7.61113	27.0762	60.0505	52.4394
23 0.0679725 3.81511 45.3865 S1 6.48 31.5442 24.2764 21.5322 30.8065 6.28611 24.5204 55.4127 49.1266 24 0.0679725 3.65188 45.9687 S1 6.48 31.5442 23.843 20.7409 28.8348 5.60331 23.2315 50.0325 47.4020 25 0.0679725 3.31521 47.1518 S1 6.48 31.5442 21.4851 19.1451 24.8267 4.19492 20.6318 48.0971 43.9022 27 0.0679725 2.9414 48.3619 S1 6.48 31.5442 19.7677 17.514 20.7294 2.7628 18.0031 42.9623 40.236 29 0.0679725 2.9762 49.6014 S1 6.48 31.5442 17.908 16.5391 1.901 15.3461 37.604 36.411 31 0.0697125 2.9772 9.1321 45.857 S1 6.48 31.5442 17.901 15.918 16.481 11.9301 <td>22</td> <td>0.0679725</td> <td>3.97506</td> <td>44.8103</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>25.1634</td> <td>22.3189</td> <td>32.7573</td> <td>6.95525</td> <td>25.8021</td> <td>57.7546</td> <td>50.7994</td>	22	0.0679725	3.97506	44.8103	S1	6.48	31.5442	25.1634	22.3189	32.7573	6.95525	25.8021	57.7546	50.7994
24 0.0679725 3.65188 45.9687 S1 6.48 31.5442 23.3843 20.7409 28.8348 5.60331 23.2315 53.0235 47.4202 25 0.0679725 3.48529 46.557 S1 6.48 31.5442 21.5851 19.1451 24.8267 4.19492 20.6318 48.0971 43.0922 27 0.0679725 3.14154 47.7533 S1 6.48 31.5442 21.6757 17.5314 20.7294 2.72628 18.0031 42.9623 40.236 29 0.0679725 2.78284 48.9778 S1 6.48 31.5442 19.7657 17.5314 20.7294 2.72628 18.0031 42.9623 40.236 29 0.0679725 2.7894 48.0519 50.2331 S1 6.48 31.5442 17.9268 15.9003 16.5391 1.19301 15.3461 37.604 36.411 31 0.0691129 2.20737 51.5389 S1 6.48 31.5442 15.9003 16.5391	23	0.0679725	3.81511	45.3865	S1	6.48	31.5442	24.2764	21.5322	30.8065	6.28611	24.5204	55.4127	49.1266
25 0.0679725 3.48529 46.557 S1 6.48 31.5442 22.4871 19.9452 26.8417 4.9064 21.9353 50.5855 45.6791 26 0.0679725 3.1151 47.1518 S1 6.48 31.5442 21.5851 19.1451 24.8267 4.19492 20.6318 48.0971 43.9022 27 0.0679725 2.94414 48.3619 S1 6.48 31.5442 19.7571 17.5314 20.7294 2.72628 18.0031 42.9623 40.236 29 0.0679725 2.7828 48.9778 S1 6.48 31.5442 17.8014 20.7262 16.6781 40.312 38.344 30 0.0679725 2.7828 48.9778 S1 6.48 31.5442 17.0001 15.0784 14.4076 0.400671 14.0375 34.4351 32 0.0691129 2.00375 51.589 S1 6.48 31.5442 15.009 13.754 11.8406 11.8496 31.3717 31.3177 31.3	24	0.0679725	3.65188	45.9687	S1	6.48	31.5442	23.3843	20.7409	28.8348	5.60331	23.2315	53.0235	47.4202
26 0.0679725 3.31521 47.1518 S1 6.48 31.5442 21.5851 19.1451 24.8267 4.19492 20.6318 48.0971 43.9022 27 0.0679725 3.14154 47.7533 S1 6.48 31.5442 20.6779 18.3405 22.7894 3.46839 19.321 45.5567 42.0883 28 0.0679725 2.96414 48.3619 S1 6.48 31.5442 18.8487 16.718 18.6461 1.06602 16.6781 40.312 38.344 30 0.0679725 2.49614 S1 6.48 31.5442 17.9268 15.9003 16.5391 1.19301 15.3461 37.604 36.411 31 0.0679725 2.40819 50.2331 S1 6.48 31.5442 15.9003 16.5391 1.19301 15.3461 37.644 31.5171 31.3171 32 0.0691129 2.00737 51.5389 S1 6.48 31.5442 14.109 1.8496 0 1.8496 31.3717 31.3717 34 0.0691129 2.00737 52.889 S1	25	0.0679725	3.48529	46.557	S1	6.48	31.5442	22.4871	19.9452	26.8417	4.9064	21.9353	50.5855	45.6791
27 0.0679725 3.14154 47.7533 S1 6.48 31.5442 20.6779 18.3405 22.7894 3.46839 19.321 45.5567 42.0883 28 0.0679725 2.96414 48.3619 S1 6.48 31.5442 19.7657 17.5314 20.7294 2.72628 18.0011 42.9623 40.236 29 0.0679725 2.59762 49.6014 S1 6.48 31.5442 17.9268 15.9003 16.5391 1.19301 15.3461 37.604 36.411 31 0.069725 2.40819 50.2331 S1 6.48 31.5442 16.1938 14.3633 12.842 0 12.842 32.7534 32 0.0691129 2.0085 50.8788 S1 6.48 31.5442 16.1938 14.3633 12.842 0 12.842 32.7534 32.7534 33 0.0691129 2.10876 52.2088 S1 6.48 31.5442 14.12 12.5238 9.84562 0 9.84562 28.5081 28.5081 34 0.0691129 1.90415 53.58 S	26	0.0679725	3.31521	47.1518	S1	6.48	31.5442	21.5851	19.1451	24.8267	4.19492	20.6318	48.0971	43.9022
28 0.0679725 2.96414 48.3619 S1 6.48 31.5442 19.7657 17.5314 20.7294 2.72628 18.0031 42.9623 40.236 29 0.0679725 2.78288 48.9778 S1 6.48 31.5442 18.8487 16.718 18.6461 1.96802 16.6781 40.312 38.344 30 0.0679725 2.59762 49.6014 S1 6.48 31.5442 17.9008 15.0784 14.4076 0.400607 14.007 34.8357 34.4351 32 0.0691129 2.30365 50.8788 S1 6.48 31.5442 15.1938 14.3633 12.842 0 11.8496 31.3717 31.3717 34 0.0691129 2.10876 52.2088 S1 6.48 31.5442 14.12 12.5238 9.84562 0 9.84562 28.9957 29.957 35 0.0691129 1.9073 52.889 S1 6.48 31.5442 13.4199 11.0209 8.84518 0 9.84562 28.9081 25.5005 25.5005 25.5005 25.5005 25.5005	27	0.0679725	3.14154	47.7533	S1	6.48	31.5442	20.6779	18.3405	22.7894	3.46839	19.321	45.5567	42.0883
29 0.0679725 2.78288 48.9778 S1 6.48 31.5442 18.8487 16.718 18.6461 1.96802 16.6781 40.312 38.344 30 0.0679725 2.59762 49.6014 S1 6.48 31.5442 17.9268 15.9003 16.5391 1.19301 15.3461 37.604 36.411 31 0.0697725 2.40819 50.2331 S1 6.48 31.5442 17.0001 15.0784 14.4076 0.400607 14.007 34.8357 34.4351 32 0.0691129 2.20335 50.8788 S1 6.48 31.5442 16.938 14.3633 12.842 0 12.842 32.7534 31.717 31.3717 34 0.0691129 2.00773 52.889 S1 6.48 31.5442 14.12 12.5238 9.84562 0 9.84562 28.5081 28.5081 36 0.0691129 1.90415 53.58 S1 6.48 31.5442 12.7155 11.2782 7.81639 0 7.81639 2.7.0232 27.0232 37 0.0691129	28	0.0679725	2.96414	48.3619	S1	6.48	31.5442	19.7657	17.5314	20.7294	2.72628	18.0031	42.9623	40.236
30 0.0679725 2.59762 49.6014 \$1 6.48 31.5442 17.9268 15.9003 16.5391 1.19301 15.3461 37.604 36.411 31 0.0697725 2.40819 50.2331 \$1 6.48 31.5442 17.0001 15.0784 14.4076 0.400607 14.007 34.8357 34.4351 32 0.0691129 2.20737 51.5389 \$1 6.48 31.5442 15.5069 13.754 11.8496 0 11.8496 31.3717 31.3717 34 0.0691129 2.20737 52.888 \$1 6.48 31.5442 14.12 12.5238 9.84562 0 9.84562 28.5081 28.5081 36 0.0691129 1.90415 53.58 \$1 6.48 31.5442 13.4199 11.9029 8.83418 0 8.83418 27.0232 27.0232 37 0.0691129 1.6885 54.9971 \$1 6.48 31.5442 13.4199 11.9029 8.83418 0 7.81639 25.5005 25.5005 25.5005 25.5005 25.5005 25.5005	29	0.0679725	2.78288	48.9778	S1	6.48	31.5442	18.8487	16.718	18.6461	1.96802	16.6781	40.312	38.344
31 0.0679725 2.40819 50.2331 S1 6.48 31.5442 17.0001 15.0784 14.4076 0.400607 14.007 34.8357 34.4351 32 0.0691129 2.30365 50.8788 S1 6.48 31.5442 16.1938 14.3633 12.842 0 12.842 32.7534 32.7534 33 0.0691129 2.20737 51.5389 S1 6.48 31.5442 14.8156 13.1409 10.8508 0 10.8508 29.957 29.957 35 0.0691129 1.09015 53.58 S1 6.48 31.5442 14.12 12.5238 9.84562 0 9.84562 22.70232 27.0232 36 0.0691129 1.90415 53.58 S1 6.48 31.5442 12.7155 11.2782 7.81639 0 7.81639 25.5005 25.5005 25.5005 25.5005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.9005 25.	30	0.0679725	2.59762	49.6014	S1	6.48	31.5442	17.9268	15.9003	16.5391	1.19301	15.3461	37.604	36.411
32 0.0691129 2.30365 50.8788 S1 6.48 31.5442 16.1938 14.3633 12.842 0 12.842 32.7534 32.7534 33 0.0691129 2.20737 51.5389 S1 6.48 31.5442 15.5069 13.754 11.8496 0 11.8496 31.3717 31.3717 34 0.0691129 2.00876 52.2088 S1 6.48 31.5442 14.12 12.5238 9.84562 0 9.84562 28.5081 28.5081 36 0.0691129 1.90415 53.58 S1 6.48 31.5442 13.4199 11.9029 8.83418 0 8.83418 27.0232 27.0232 37 0.0691129 1.7979 54.2824 S1 6.48 31.5442 13.714 12.3388 9.54418 0 9.54418 29.4095 29.4095 38 0.0691129 1.57683 55.7248 S1 6.48 31.5442 23.5872 20.9209 23.5247 0 23.5247 59.1155 59.1155 41 0.0691129 1.46168 56.4662	31	0.0679725	2.40819	50.2331	S1	6.48	31.5442	17.0001	15.0784	14.4076	0.400607	14.007	34.8357	34.4351
33 0.0691129 2.20737 51.5389 S1 6.48 31.5442 15.5069 13.754 11.8496 0 11.8496 31.3717 31.3717 34 0.0691129 2.10876 52.2088 S1 6.48 31.5442 14.8156 13.1409 10.8508 0 10.8508 29.957 29.957 35 0.0691129 1.90415 53.58 S1 6.48 31.5442 14.12 12.5238 9.84562 0 9.84562 28.5081 28.5081 36 0.0691129 1.90415 53.58 S1 6.48 31.5442 12.7155 11.2782 7.81639 0 7.81639 25.5005 25.5005 38 0.0691129 1.56885 54.9971 S1 6.48 31.5442 24.4928 21.7241 24.8332 0 24.8332 60.7716 60.49716 39 0.0691129 1.46168 56.4662 S1 6.48 31.5442 23.5872 20.9209 23.5247 0 23.5247 59.1155 59.1155 41 0.0691129 1.34321 57.2225	32	0.0691129	2.30365	50.8788	S1	6.48	31.5442	16.1938	14.3633	12.842	0	12.842	32.7534	32.7534
340.06911292.1087652.2088S16.4831.544214.815613.140910.8508010.850829.95729.957350.06911292.0077352.889S16.4831.544214.1212.52389.8456209.8456228.508128.5081360.06911291.9041553.58S16.4831.544213.419911.90298.8341808.8341827.023227.0232370.06911291.797954.2824S16.4831.544212.715511.27827.8163907.8163925.500525.5005380.06911291.6888554.9971S16.4831.544213.911412.33889.5441809.5441829.409529.4095390.06911291.5768355.7248S16.4831.544223.587220.920923.5247023.524759.115559.1155410.06911291.4616856.4662S16.4831.544222.671920.109122.2022022.202257.412557.4125420.06911291.2212257.9946S16.4831.544220.810618.458219.5129019.512953.853353.8533440.06911291.0954758.7837S16.4831.544219.863817.618418.1448018.144851.989951.9899450.06911290.905759.5912S16.4831.5442 <td>33</td> <td>0.0691129</td> <td>2.20737</td> <td>51.5389</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>15.5069</td> <td>13.754</td> <td>11.8496</td> <td>0</td> <td>11.8496</td> <td>31.3717</td> <td>31.3717</td>	33	0.0691129	2.20737	51.5389	S1	6.48	31.5442	15.5069	13.754	11.8496	0	11.8496	31.3717	31.3717
350.06911292.0077352.889S16.4831.544214.1212.52389.8456209.8456228.508128.5081360.06911291.9041553.58S16.4831.544213.419911.90298.8341808.8341827.023227.0232370.06911291.797954.2824S16.4831.544212.715511.27827.8163907.8163925.500525.5005380.06911291.6888554.9971S16.4831.544213.911412.33889.5441809.5441829.409529.4095390.06911291.5768355.7248S16.4831.544224.492821.724124.8332024.833260.771660.7716400.06911291.4616856.4662S16.4831.544223.587220.920923.5247023.524759.115559.1155410.06911291.3432157.2225S16.4831.544221.746519.288320.8651020.865155.659555.6595430.06911291.0954758.7837S16.4831.544219.868817.618418.1448018.144851.989951.9899450.06911290.83161860.4186S16.4831.544219.905716.768616.7605016.760550.065650.0656460.06911290.83161860.4186S16.4831.54	34	0.0691129	2.10876	52.2088	S1	6.48	31.5442	14.8156	13.1409	10.8508	0	10.8508	29.957	29.957
360.06911291.9041553.58S16.4831.544213.419911.90298.8341808.8341827.023227.0232370.06911291.797954.2824S16.4831.544212.715511.27827.8163907.8163925.500525.5005380.06911291.6888554.9971S16.4831.544213.911412.33889.5441809.5441829.409529.4095390.06911291.5768355.7248S16.4831.544224.492821.724124.8332024.833260.771660.7716400.06911291.4616856.4662S16.4831.544223.587220.920923.5247023.524759.115559.1155410.06911291.3432157.2225S16.4831.544221.746519.288320.8651020.865155.659555.6595430.06911291.0954758.7837S16.4831.544220.810618.458219.5129019.512953.853353.8533440.06911290.965759.5912S16.4831.544219.863817.618418.1448018.144851.989951.9899450.06911290.83161860.4186S16.4831.544217.935815.037113.9398013.939846.0138460.06911290.69288561.2676S16.4831.544216.	35	0.0691129	2.00773	52.889	S1	6.48	31.5442	14.12	12.5238	9.84562	0	9.84562	28.5081	28.5081
370.06911291.797954.2824S16.4831.544212.715511.27827.8163907.8163925.500525.5005380.06911291.6888554.9971S16.4831.544213.911412.33889.5441809.5441829.409529.4095390.06911291.5768355.7248S16.4831.544224.492821.724124.8332024.833260.771660.7716400.06911291.4616856.4662S16.4831.544223.587220.920923.5247023.524759.115559.1155410.06911291.3432157.2225S16.4831.544222.671920.109122.022022.202257.412557.4125420.06911291.2212257.9946S16.4831.544221.746519.288320.8651020.865155.659555.6595430.06911291.0954758.7837S16.4831.544219.863817.618418.1448018.144851.989951.9899450.06911290.965759.5912S16.4831.544218.905716.7665016.760550.065650.0656460.06911290.69288561.2676S16.4831.544217.935815.037113.9398013.939846.0138470.06911290.54911362.1402S16.4831.544216.953515	36	0.0691129	1.90415	53.58	S1	6.48	31.5442	13.4199	11.9029	8.83418	0	8.83418	27.0232	27.0232
38 0.0691129 1.68885 54.9971 S1 6.48 31.5442 13.9114 12.3388 9.54418 0 9.54418 29.4095 29.4095 39 0.0691129 1.57683 55.7248 S1 6.48 31.5442 24.4928 21.7241 24.8332 0 24.8332 60.7716 60.7716 40 0.0691129 1.46168 56.4662 S1 6.48 31.5442 23.5872 20.9209 23.5247 0 23.5247 59.1155 59.1155 41 0.0691129 1.34321 57.2225 S1 6.48 31.5442 22.6719 20.1091 22.022 0 22.2022 57.4125 57.4125 42 0.0691129 1.22122 57.9946 S1 6.48 31.5442 20.8106 18.4582 19.5129 0 19.5129 53.8533 53.8533 43 0.0691129 0.9657 59.5912 S1 6.48 31.5442 19.8638 17.6184 18.1448 0 18.1448 51.9899 51.9899 45 0.0691129 0.831618 60.418	37	0.0691129	1.7979	54.2824	S1	6.48	31.5442	12.7155	11.2782	7.81639	0	7.81639	25.5005	25.5005
39 0.0691129 1.57683 55.7248 S1 6.48 31.5442 24.4928 21.7241 24.8332 0 24.8332 60.7716 60.7716 40 0.0691129 1.46168 56.4662 S1 6.48 31.5442 23.5872 20.9209 23.5247 0 23.5247 59.1155 59.1155 41 0.0691129 1.34321 57.2225 S1 6.48 31.5442 22.6719 20.1091 22.022 0 22.2022 57.4125 57.4125 42 0.0691129 1.22122 57.9946 S1 6.48 31.5442 21.7465 19.2883 20.8651 0 20.8651 55.6595 55.6595 43 0.0691129 1.09547 58.7837 S1 6.48 31.5442 19.8638 17.6184 18.1448 0 18.1448 51.9899 51.9899 44 0.0691129 0.831618 60.4186 S1 6.48 31.5442 18.9057 16.7665 0 16.7605 50.0656 50.0656 46 0.0691129 0.692885 61.2676 S1 </td <td>38</td> <td>0.0691129</td> <td>1.68885</td> <td>54.9971</td> <td>S1</td> <td>6.48</td> <td>31.5442</td> <td>13.9114</td> <td>12.3388</td> <td>9.54418</td> <td>0</td> <td>9.54418</td> <td>29.4095</td> <td>29.4095</td>	38	0.0691129	1.68885	54.9971	S1	6.48	31.5442	13.9114	12.3388	9.54418	0	9.54418	29.4095	29.4095
400.06911291.4616856.4662S16.4831.544223.587220.920923.5247023.524759.115559.1155410.06911291.3432157.2225S16.4831.544222.671920.109122.2022022.202257.412557.4125420.06911291.2212257.9946S16.4831.544221.746519.288320.8651020.865155.659555.6595430.06911291.0954758.7837S16.4831.544220.810618.458219.5129019.512953.853353.8533440.06911290.965759.5912S16.4831.544219.863817.618418.1448018.144851.989951.9899450.06911290.83161860.4186S16.4831.544217.935815.908315.359015.35948.0754460.06911290.69288561.2676S16.4831.544216.953515.037113.9398013.939846.0138470.06911290.54911362.1402S16.4831.544215.958414.154512.5019013.939846.0138480.06911290.39985463.0388S16.4831.544215.958414.154512.5019012.501943.874543.8745490.06911290.24485563.9659S16.4831.544214.949813.2599 <td< td=""><td>39</td><td>0.0691129</td><td>1.57683</td><td>55.7248</td><td>S1</td><td>6.48</td><td>31.5442</td><td>24.4928</td><td>21.7241</td><td>24.8332</td><td>0</td><td>24.8332</td><td>60.7716</td><td>60.7716</td></td<>	39	0.0691129	1.57683	55.7248	S1	6.48	31.5442	24.4928	21.7241	24.8332	0	24.8332	60.7716	60.7716
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	0.0691129	1.46168	56.4662	S1	6.48	31.5442	23.5872	20.9209	23.5247	0	23.5247	59.1155	59.1155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	0.0691129	1.34321	57.2225	S1	6.48	31.5442	22.6719	20.1091	22.2022	0	22.2022	57.4125	57.4125
43 0.0691129 1.09547 58.7837 S1 6.48 31.5442 20.8106 18.4582 19.5129 0 19.5129 53.8533 53.8533 44 0.0691129 0.9657 59.5912 S1 6.48 31.5442 19.8638 17.6184 18.1448 0 18.1448 51.9899 51.9899 45 0.0691129 0.831618 60.4186 S1 6.48 31.5442 18.9057 16.7686 16.7605 0 16.7605 50.0656 50.0656 46 0.0691129 0.692885 61.2676 S1 6.48 31.5442 17.9358 15.9083 15.359 0 15.359 48.0754 48.0754 47 0.0691129 0.549113 62.1402 S1 6.48 31.5442 16.9535 15.0371 13.9398 0 13.9398 46.0138 46.0138 48 0.0691129 0.399854 63.0388 S1 6.48 31.5442 15.9584 14.1545 12.5019 0 12.5019 43.8745 43.8745 49 0.0691129 0.244585 63.	42	0.0691129	1.22122	57.9946	S1	6.48	31.5442	21.7465	19.2883	20.8651	0	20.8651	55.6595	55.6595
44 0.0691129 0.9657 59.5912 S1 6.48 31.5442 19.8638 17.6184 18.1448 0 18.1448 51.9899 51.9899 45 0.0691129 0.831618 60.4186 S1 6.48 31.5442 18.9057 16.7686 16.7605 0 16.7605 50.0656 50.0656 46 0.0691129 0.692885 61.2676 S1 6.48 31.5442 17.9358 15.9083 15.359 0 15.359 48.0754 48.0754 47 0.0691129 0.549113 62.1402 S1 6.48 31.5442 16.9535 15.0371 13.9398 0 13.9398 46.0138 48 0.0691129 0.399854 63.0388 S1 6.48 31.5442 15.9584 14.1545 12.5019 0 12.5019 43.8745 43.8745 49 0.0691129 0.244585 63.9659 S1 6.48 31.5442 14.9498 13.2599 11.0447 0 11.0447 41.6502 41.6502	43	0.0691129	1.09547	58.7837	S1	6.48	31.5442	20.8106	18.4582	19.5129	0	19.5129	53.8533	53.8533
45 0.0691129 0.831618 60.4186 S1 6.48 31.5442 18.9057 16.7686 16.7605 0 16.7605 50.0656 50.0656 46 0.0691129 0.692885 61.2676 S1 6.48 31.5442 17.9358 15.9083 15.359 0 15.359 48.0754 48.0754 47 0.0691129 0.549113 62.1402 S1 6.48 31.5442 16.9535 15.0371 13.9398 0 13.9398 46.0138 48 0.0691129 0.399854 63.0388 S1 6.48 31.5442 15.9584 14.1545 12.5019 0 12.5019 43.8745 43.8745 49 0.0691129 0.244585 63.9659 S1 6.48 31.5442 14.9498 13.2599 11.0447 0 11.0447 41.6502 41.6502	44	0.0691129	0.9657	59.5912	S1	6.48	31.5442	19.8638	17.6184	18.1448	0	18.1448	51.9899	51.9899
46 0.0691129 0.692885 61.2676 S1 6.48 31.5442 17.9358 15.9083 15.359 0 15.359 48.0754 48.0754 47 0.0691129 0.549113 62.1402 S1 6.48 31.5442 16.9535 15.0371 13.9398 0 13.9398 46.0138 46.0138 48 0.0691129 0.399854 63.0388 S1 6.48 31.5442 15.9584 14.1545 12.5019 0 12.5019 43.8745 43.8745 49 0.0691129 0.244585 63.9659 S1 6.48 31.5442 14.9498 13.2599 11.0447 0 11.0447 41.6502	45	0.0691129	0.831618	60.4186	S1	6.48	31.5442	18.9057	16.7686	16.7605	0	16.7605	50.0656	50.0656
47 0.0691129 0.549113 62.1402 S1 6.48 31.5442 16.9535 15.0371 13.9398 0 13.9398 46.0138 46.0138 48 0.0691129 0.399854 63.0388 S1 6.48 31.5442 15.9584 14.1545 12.5019 0 12.5019 43.8745 43.8745 49 0.0691129 0.244585 63.9659 S1 6.48 31.5442 14.9498 13.2599 11.0447 0 11.0447 41.6502 41.6502	46	0.0691129	0.692885	61.2676	S1	6.48	31.5442	17.9358	15.9083	15.359	0	15.359	48.0754	48.0754
48 0.0691129 0.399854 63.0388 S1 6.48 31.5442 15.9584 14.1545 12.5019 0 12.5019 43.8745 43.8745 49 0.0691129 0.244585 63.9659 S1 6.48 31.5442 14.9498 13.2599 11.0447 0 11.0447 41.6502 41.6502 49 0.0691129 0.244585 63.9659 S1 6.48 31.5442 14.9498 13.2599 11.0447 0 11.0447 41.6502 41.6502	47	0.0691129	0.549113	62.1402	S1	6.48	31.5442	16.9535	15.0371	13.9398	0	13.9398	46.0138	46.0138
49 0.0691129 0.244585 63.9659 \$1 6.48 31.5442 14.9498 13.2599 11.0447 0 11.0447 41.6502 41.6502	48	0.0691129	0.399854	63.0388	S1	6.48	31.5442	15.9584	14.1545	12.5019	0	12.5019	43.8745	43.8745
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	49	0.0691129	0.244585	63.9659	S1	6.48	31.5442	14.9498	13.2599	11.0447	0	11.0447	41.6502	41.6502
50 0.0691129 0.0826889 64.925 S1 6.48 31.5442 13.9272 12.3528 9.567 0 9.567 39.3321 39.3321	50	0.0691129	0.0826889	64.925	S1	6.48	31.5442	13.9272	12.3528	9.567	0	9.567	39.3321	39.3321

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.894598

Slice I	Number X coo	ordinate [m] Y coord	linate - Bottom Interslice [m]	Normal Force Interslic [kN]	e Shear Force Interslice Force Angle [kN] [deg]
1	-10.5998	-3.99943	17.6964	0	0
2	-10.5318	-3.954	3.33566	0	0
3	-10.4639	-3.90772	6.24989	0	0
4	-10.3959	-3.86058	8.739	0	0
5	-10.3279	-3.81256	10.7993	0	0
6	-10.26	-3.76365	12.4272	0	0
7	-10.192	-3.71383	13.6191	0	0
8	-10.124	-3.66307	14.3714	0	0
9	-10.056	-3.61138	14.6807	0	0
10	-9.98806	-3.55871	14.5435	0	0
11	-9.92009	-3.50506	14.1406	0	0
12	-9.85212	-3.4504	13.7217	0	0
13	-9.78414	-3.3947	13.2872	0	0
14	-9.71617	-3.33796	12.8361	0	0
15	-9.6482	-3.28013	12.3675	0	0
16	-9.58023	-3.2212	11.8804	0	0
17	-9.51225	-3.16114	11.3741	0	0
18	-9.44428	-3.09991	10.8481	0	0
19	-9.37631	-3.03749	10.3017	0	0
20	-9.30834	-2.97385	9.73451	0	0
21	-9.24036	-2.90895	9.16075	0	0
22	-9.17239	-2.84276	8.60623	0	0
23	-9.10442	-2.77524	8.07599	0	0
24	-9.03645	-2.70634	7.57501	0	0
25	-8.96847	-2.63603	7.10858	0	0
26	-8.9005	-2.56426	6.68227	0	0
27	-8.83253	-2.49098	6.30199	0	0
28	-8.76456	-2.41614	5.97401	0	0
29	-8.69658	-2.33968	5.70499	0	0
30	-8.62861	-2.26155	5.50199	0	0
31	-8.56064	-2.18168	5.37258	0	0
32	-8.49267	-2.1	5.32479	0	0
33	-8.42355	-2.01502	5.326	0	0
34	-8.35444	-1.92801	5.34015	0	0
35	-8.28533	-1.83888	5.37058	0	0
36	-8.21622	-1.74754	5.42086	0	0
37	-8.1471	-1.65386	5.49484	0	0
38	-8.07799	-1.55775	5.59665	0	0
39	-8.00888	-1.45905	5.5868	0	0
40	-7.93976	-1.35764	4.70717	0	0
41	-7.87065	-1.25336	3.82955	0	0
42	-7.80154	-1.14602	2.95845	0	0
43	-7.73243	-1.03544	2.09878	0	0
44	-7.66331	-0.921398	1.256	0	0
45	-7.5942	-0.803639	0.436118	0	0
46	-7.52509	-0.681886	-0.354161	0	0
47	-7.45597	-0.555819	-1.10732	0	0
48	-7.38686	-0.425065	-1.81489	0	0
49	-7.31775	-0.289197	-2.46722	0	0
50	-7.24864	-0.147708	-3.05327	0	0
51	-7.17952	0	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 0.88696

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-10.5998	-3.99943	17.6964	0	0
2		-10.5318	-3.954	3.35109	0	0
3		-10.4639	-3.90772	6.28569	0	0
4		-10.3959	-3.86058	8.80008	0	0
5		-10.3279	-3.81256	10.8906	0	0
6		-10.26	-3.76365	12.5535	0	0
7		-10.192	-3.71383	13.7853	0	0
8		-10.124	-3.66307	14.5824	0	0
9		-10.056	-3.61138	14.9412	0	0
10		-9.98806	-3.55871	14.8583	0	0
11		-9.92009	-3.50506	14.5136	0	0
12		-9.85212	-3.4504	14.1556	0	0
13		-9.78414	-3.3947	13.7845	0	0
14		-9.71617	-3.33796	13.3994	0	0
15		-9.6482	-3.28013	12.9992	0	0
16		-9.58023	-3.2212	12.5832	0	0
17		-9.51225	-3.16114	12.1505	0	0
18		-9 44428	-3.09991	11.7006	0	0
19		-9.37631	-3.03749	11.2328	0	0
20		-9.30834	-2.97385	10.7468	0	0
21		-9.24036	-2.90895	10.255	0	0
22		-9 17239	-2 84276	9 78077	0	0
23		-9 10442	-2 77524	9 32895	0	0
24		-9.03645	-2 70634	8 90455	0	0
25		-8 96847	-2.63603	8 5128	0	0
25		-8 9005	-2.55005	8 15924	0	0
20		-8.83253	-2.50420	7 84974	0	0
27		-8.76456	-2.49098	7 5905	0	0
20		-8.69658	-2 33968	7 38814	0	0
30		-8.62861	-2.35908	7 24968	0	0
31		8 56064	2 18168	7.18250	0	0
31		8 40267	-2.18108	7.10488	0	0
32		-0.49207 9.40255	-2.1	7.19488	0	0
24		-0.42555 9.25444	-2.01302	7.23328	0	0
25		-0.33444	-1.92801	7.41260	0	0
26		-0.20335	-1.03000	7.51952	0	0
27		-8.21022	-1./4/34	7.51855	0	0
3/		-8.14/1	-1.03380	7.04343	0	0
20		-8.07799	-1.33/73	7.84580	0	0
39		-8.00888	-1.45905	7.84389	0	0
40		-7.93976	-1.33/04	7.06948	0	0
41		-7.87065	-1.25336	6.29373	0	0
42		-7.80154	-1.14602	5.52309	0	0
43		-7.73243	-1.03544	4.76243	0	0
44		-/.66331	-0.921398	4.01/12	0	0
45		-7.5942	-0.803639	3.29312	0	0
46		-7.52509	-0.681886	2.59/06	0	0
4/		-/.4559/	-0.555819	1.93638	0	0
48		-7.38686	-0.425065	1.31944	0	0
49		-7.31775	-0.289197	0.755774	0	0
50		-7.24864	-0.147708	0.256305	0	0
51		-7.17952	0	0	0	0

Stability Analysis for circular failure with sloping and micropile support SE slope, west section Arkoulaki Eleni Date Created: 12/5/2023, 5:41:43 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of SE slope, west section, with sloping and micropile support

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical					
Analysis Methods Used						
	Bishop simplified					
	Janbu corrected					
Number of slices:	50					
Tolerance:	0.005					
Maximum number of iterations:	75					
Check malpha < 0.2:	Yes					
Create Interslice boundaries at intersections with water tables and piezos:	Yes					
Initial trial value of FS:	1					
Steffensen Iteration:	Yes					

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [kN/m3]:	9.81
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [kPa]:	0
Advanced Groundwater Method:	None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1							
Distribution:	Constant						
Magnitude [kPa]:	30						
Orientation:	Normal to boundary						
Load Action:	Variable						

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0

Support

Support 1	
Color	
Туре	RSPile
Force Application	Passive (Method B)
Out-Of-Plane Spacing	2.5 m
Apply Batter and Ground Slope Modifiers	Yes
Ground Slope and Batter Values	Calculate from Slide2 model
Soil Displacement Type	Maximum
Soil Displacement	25 mm

Global Minimums

Method: bishop simplified

FS	1.488620
Center:	-14.667, -0.283
Radius:	5.486
Left Slip Surface Endpoint:	-10.582, -3.944
Right Slip Surface Endpoint:	-9.182, -0.283
Left Slope Intercept:	-10.582 -2.100
Right Slope Intercept:	-9.182 0.000
Resisting Moment:	200.008 kN-m
Driving Moment:	134.358 kN-m
Passive Support Moment:	18.4767 kN-m
Maximum Single Support Force:	16.3364 kN
Total Support Force:	16.3364 kN
Total Slice Area:	2.53578 m2
Surface Horizontal Width:	1.39979 m
Surface Average Height:	1.81154 m

Method: janbu corrected

FS	1.617700
Center:	-15.582, 4.898
Radius:	10.179
Left Slip Surface Endpoint:	-10.591, -3.973
Right Slip Surface Endpoint:	-6.659, 0.000
Left Slope Intercept:	-10.591 -2.100
Right Slope Intercept:	-6.659 0.000
Resisting Horizontal Force:	191.181 kN
Driving Horizontal Force:	118.181 kN
Passive Horizontal Support Force:	89.1105 kN
Maximum Single Support Force:	89.1105 kN
Total Support Force:	89.1105 kN
Total Slice Area:	9.18888 m2
Surface Horizontal Width:	3.93195 m
Surface Average Height:	2.33698 m

Global Minimum Support Data

Method: bishop simplified

Number of Supports: 1										
Support 1										
Support Type:	RSPile									
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)				
-9.3, 0.234187	9.25	1.64852	7.60148	1.64852	7.60148	16.3364				

Method: janbu corrected

Number of Su	oports: 1									
			Support 1							
Support Type:	Support Type: RSPile									
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)				
-9.3, 0.234187	9.25	3.34471	5.90529	3.34471	5.90529	89.1105				

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces:	7037	
Number of Invalid Surfaces:	2224	
	Error Codes	
Error Code -106 reported for 38 surfaces		

Error Code -108 reported for 1940 surfaces Error Code -112 reported for 246 surfaces

Method: janbu corrected

	Error Codes	
Number of Invalid Surfaces:	2669	
Number of Valid Surfaces:	6592	

Error Code -106 reported for 38 surfaces Error Code -108 reported for 2093 surfaces Error Code -111 reported for 466 surfaces Error Code -112 reported for 72 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = Safety factor equation did not converge

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.48862

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0279548	0.520107	48.3633	S1	6.48	31.5442	3.16356	4.70934	15.0471	17.9316	-2.88447	18.6057	0.674139
2	0.0279548	0.548911	48.8047	S1	6.48	31.5442	3.52392	5.24578	15.6101	17.6207	-2.01059	19.6361	2.01543
3	0.0279548	0.577233	49.25	S1	6.48	31.5442	3.87681	5.77109	16.1501	17.3049	-1.15484	20.6493	3.34442
4	0.0279548	0.60506	49.6994	S1	6.48	31.5442	4.22205	6.28503	16.6665	16.9841	-0.317635	21.6448	4.66073
5	0.0279548	0.63238	50.153	S1	6.48	31.5442	4.55951	6.78738	17.1588	16.6581	0.500718	22.6222	5.96409
6	0.0279548	0.659178	50.6109	S1	6.48	31.5442	4.88901	7.27788	17.6266	16.3268	1.29976	23.5808	7.25405
7	0.0279548	0.685438	51.0733	S1	6.48	31.5442	5.21038	7.75628	18.0691	15.99	2.07913	24.5203	8.53028
8	0.0279548	0.711143	51.5404	S1	6.48	31.5442	5.52344	8.22231	18.4859	15.6476	2.83831	25.4399	9.79229
9	0.0279548	0.736278	52.0123	S1	6.48	31.5442	5.828	8.67568	18.8763	15.2994	3.57686	26.3391	11.0397
10	0.0279548	0.760823	52.4893	S1	6.48	31.5442	6.12385	9.11608	19.2395	14.9452	4.29428	27.2171	12.2719
11	0.0279548	0.784759	52.9715	S1	6.48	31.5442	6.41078	9.54321	19.5749	14.5848	4.99007	28.0735	13.4887
12	0.0279548	0.808065	53.4591	S1	6.48	31.5442	6.68854	9.9567	19.8817	14.218	5.66369	28.9073	14.6893
13	0.0279548	0.830721	53.9524	S1	6.48	31.5442	6.95693	10.3562	20.1591	13.8446	6.31447	29.7177	15.8731
14	0.0279548	0.852702	54.4516	S1	6.48	31.5442	7.21566	10.7414	20.4062	13.4643	6.94189	30.5041	17.0398
15	0.0279548	0.873983	54.957	S1	6.48	31.5442	7.46446	11.1117	20.6221	13.0769	7.54521	31.2654	18.1885
16	0.0279548	0.894539	55.4688	S1	6.48	31.5442	7.70304	11.4669	20.806	12.6821	8.12385	32.0009	19.3188
17	0.0279548	0.914339	55.9873	S1	6.48	31.5442	7.9311	11.8064	20.9565	12.2796	8.67686	32.7092	20.4296
18	0.0279548	0.933355	56.5129	S1	6.48	31.5442	8.14829	12.1297	21.0728	11.8692	9.20355	33.3895	21.5203
19	0.0279548	0.951551	57.0459	S1	6.48	31.5442	8.35427	12.4363	21.1534	11.4504	9.70302	34.0405	22.5901
20	0.0279548	0.968894	57.5867	S1	6.48	31.5442	8.54865	12.7257	21.1973	11.0229	10.1744	34.6609	23.638
21	0.0279548	0.985344	58.1356	S1	6.48	31.5442	8.73102	12.9972	21.203	10.5864	10.6166	35.2495	24.6631
22	0.0279548	0.997585	58.6931	S1	6.48	31.5442	8.87216	13.2073	21.0993	10.1403	10.959	35.6875	25.5472
23	0.0279548	0.993626	59.2597	S1	6.48	31.5442	8.86829	13.2015	20.6338	9.68431	10.9495	35.5458	25.8615
24	0.0279548	0.986717	59.8359	S1	6.48	31.5442	8.83746	13.1556	20.0926	9.21781	10.8748	35.2988	26.081
25	0.0279548	0.978724	60.4222	S1	6.48	31.5442	8.79615	13.0941	19.515	8.74029	10.7747	35.0129	26.2726
26	0.0279548	0.969588	61.0193	S1	6.48	31.5442	8.74392	13.0164	18.8991	8.25114	10.6479	34.686	26.4349
27	0.0279548	0.959242	61.6278	S1	6.48	31.5442	8.68033	12.9217	18.2434	7.74968	10.4937	34.316	26.5663
28	0.0279548	0.947614	62.2486	S1	6.48	31.5442	8.60487	12.8094	17.5459	7.23519	10.3107	33.9001	26.6649
29	0.0279548	0.934624	62.8824	S1	6.48	31.5442	8.51698	12.6785	16.8045	6.70684	10.0976	33.4355	26.7287
30	0.0279548	0.920181	63.5302	S1	6.48	31.5442	8.41604	12.5283	16.0165	6.1637	9.85285	32.9189	26.7552
31	0.0279548	0.904184	64.1931	S1	6.48	31.5442	8.30141	12.3576	15.1796	5.60477	9.57485	32.3467	26.7419
32	0.0279548	0.886519	64.8723	S1	6.48	31.5442	8.17231	12.1655	14.2907	5.02886	9.26181	31.7148	26.6859
33	0.0279548	0.867056	65.5691	S1	6.48	31.5442	8.02795	11.9506	13.3464	4.43467	8.91173	31.0186	26.5839
34	0.0279548	0.845647	66.2851	S1	6.48	31.5442	7.86738	11.7115	12.343	3.82068	8.52235	30.2528	26.4321
35	0.0279548	0.822121	67.0221	S1	6.48	31.5442	7.68956	11.4468	11.2763	3.18516	8.09114	29.4112	26.2261
36	0.0279548	0.79628	67.7822	S1	6.48	31.5442	7.49332	11.1547	10.1413	2.52608	7.61526	28.4868	25.9608
37	0.0279548	0.767888	68.5678	S1	6.48	31.5442	7.2773	10.8331	8.93246	1.84107	7.09139	27.4713	25.6302
38	0.0279548	0.736671	69.382	S1	6.48	31.5442	7.03992	10.4798	7.64306	1.12732	6.51574	26.3546	25.2272
39	0.0279548	0.702294	70.2281	S1	6.48	31.5442	6.77937	10.0919	6.26534	0.38142	5.88392	25.1248	24.7434
40	0.0281414	0.689824	71.1138	S1	6.48	31.5442	6.55776	9.76201	5.3465	0	5.3465	24.5152	24.5152
41	0.0281414	0.690753	72.0446	S1	6.48	31.5442	6.37005	9.48258	4.8913	0	4.8913	24.5483	24.5483
42	0.0281414	0.68942	73.0247	S1	6.48	31.5442	6.14939	9.1541	4.35619	0	4.35619	24.501	24.501
43	0.0281414	0.685416	74.0633	S1	6.48	31.5442	5.89079	8.76915	3.72909	0	3.72909	24.3588	24.3588
44	0.0281414	0.678195	75.1729	S1	6.48	31.5442	5.58769	8.31794	2.99406	0	2.99406	24.1022	24.1022
45	0.0281414	0.666981	76.371	S1	6.48	31.5442	5.23102	7.787	2.12915	0	2.12915	23.7038	23.7038
46	0.0281414	0.64985	77.6837	S1	6.48	31.5442	4.80377	7.15099	1.09307	0	1.09307	23.0951	23.0951
47	0.0281414	0.599705	79.1538	S1	6.48	31.5442	4.16902	6.20609	-0.44621	0	-0.44621	21.3132	21.3132
48	0.0281414	0.526354	80.8601	S1	6.48	31.5442	3.38669	5.0415	-2.34336	0	-2.34336	18.7066	18.7066
49	0.0281414	0.434318	82.9896	S1	6.48	31.5442	2.46204	3.66504	-4.58565	0	-4.58565	15.436	15.436
50	0.0281414	0.255659	87.0969	S1	6.48	31.5442	0.88705	1.32048	-8.40503	0	-8.40503	9.08701	9.08701

Global Minimum Query (janbu corrected) - Safety Factor: 1.6177

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0774354	1.5917	29.6108	S1	6.48	31.5442	4.02112	6.50497	18.1978	18.1571	0.0406813	20.4831	2.326
2	0.0774354	1.92845	30.1134	S1	6.48	31.5442	5.48594	8.87461	21.6218	17.7209	3.90087	24.8036	7.08268
3	0.0774354	2.26277	30.6186	S1	6.48	31.5442	6.93258	11.2148	24.989	17.2758	7.71319	29.0919	11.8161
4	0.0774354	2.59462	31.1265	S1	6.48	31.5442	8.36086	13.5254	28.2988	16.8217	11.4771	33.3477	16.526
5	0.0774354	2.92397	31.637	S1	6.48	31.5442	9.77061	15.8059	31.5505	16.3583	15.1922	37.5701	21.2118
6	0.0774354	3.25076	32.1504	S1	6.48	31.5442	11.1616	18.0562	34.7435	15.8856	18.8579	41.7589	25.8733
7	0.0774354	3.57496	32.6667	S1	6.48	31.5442	12.5337	20.2758	37.8772	15.4033	22.4739	45.9134	30.5101
8	0.0774354	3.89499	33.186	S1	6.48	31.5442	13.8808	22.4549	40.935	14.9114	26.0236	50.0135	35.1021
9	0.0774354	4.11523	33.7085	S1	6.48	31.5442	14.8311	23.9923	42.9376	14.4096	28.528	52.8319	38.4223
10	0.0774354	4.27473	34.234	S1	6.48	31.5442	15.5406	25.14	44.2954	13.8977	30.3977	54.8703	40.9726
11	0.0774354	4.43145	34.763	S1	6.48	31.5442	16.2352	26.2637	45.604	13.3757	32.2283	56.8722	43.4965
12	0.0774354	4.58532	35.2953	S1	6.48	31.5442	16.9149	27.3633	46.8627	12.8432	34.0195	58.8371	45.9939
13	0.0774354	4.7363	35.8311	S1	6.48	31.5442	17.5795	28.4384	48.0709	12.3	35.7709	60.7641	48.4641
14	0.0774354	4.88433	36.3706	S1	6.48	31.5442	18.2287	29.4886	49.2277	11.746	37.4817	62.6527	50.9067
15	0.0774354	5.02934	36.9138	S1	6.48	31.5442	18.8623	30.5136	50.3325	11.181	39.1515	64.5019	53.3209
16	0.0774354	5.17128	37.461	S1	6.48	31.5442	19.4802	31.5131	51.3843	10.6046	40.7797	66.311	55.7064
17	0.0774354	5.29422	38.0122	S1	6.48	31.5442	20.0225	32.3904	52.2256	10.0167	42.2089	67.8757	57.859
18	0.0774354	5.19886	38.5675	S1	6.48	31.5442	19.7458	31.9428	50.8967	9.417	41.4797	66.6413	57.2243
19	0.0774354	5.03224	39.1272	S1	6.48	31.5442	19.2082	31.0731	48.8681	8.80517	40.063	64.4934	55.6882
20	0.0774354	4.86225	39.6914	S1	6.48	31.5442	18.6646	30.1938	46.8115	8.18096	38.6305	62.3024	54.1214
21	0.0774354	4.68881	40.2602	S1	6.48	31.5442	18.115	29.3047	44.7262	7.54407	37.1822	60.0673	52.5232
22	0.0774354	4.51182	40.8338	S1	6.48	31.5442	17.5594	28.4058	42.612	6.89417	35.7178	57.787	50.8928
23	0.0774354	4.3312	41.4125	S1	6.48	31.5442	16.9976	27.497	40.4682	6.23092	34.2373	55.4602	49.2292
24	0.0774354	4.14685	41.9963	S1	6.48	31.5442	16.4296	26.5781	38.2944	5.55397	32.7404	53.0857	47.5318
25	0.0774354	3.95866	42.5856	S1	6.48	31.5442	15.8554	25.6492	36.0901	4.86293	31.2272	50.6625	45.7995
26	0.0774354	3.76653	43.1805	S1	6.48	31.5442	15.2748	24.71	33.8546	4.15741	29.6972	48.1888	44.0314
27	0.0774354	3.57034	43.7812	S1	6.48	31.5442	14.6878	23.7605	31.5874	3.43699	28.1504	45.6633	42.2263
28	0.0774354	3.36997	44.388	S1	6.48	31.5442	14.0945	22.8006	29.2879	2.7012	26.5867	43.0845	40.3833
29	0.0774354	3.16528	45.0012	S1	6.48	31.5442	13.4946	21.8302	26.9555	1.94957	25.0059	40.4506	38.5011
30	0.0774354	2.95614	45.6211	S1	6.48	31.5442	12.8882	20.8492	24.5894	1.18159	23.4078	37.7601	36.5785
31	0.0774354	2.74239	46.2478	S1	6.48	31.5442	12.2751	19.8574	22.189	0.396706	21.7923	35.0108	34.6141
32	0.0806028	2.68588	46.895	S1	6.48	31.5442	11.7403	18.9923	20.3829	0	20.3829	32.9267	32.9267
33	0.0806028	2.5721	47.5631	S1	6.48	31.5442	11.2839	18.2539	19.18	0	19.18	31.5215	31.5215
34	0.0806028	2.4556	48.2399	S1	6.48	31.5442	19.7356	31.9262	41.4527	0	41.4527	63.5567	63.5567
35	0.0806028	2.33628	48.9258	S1	6.48	31.5442	20.5667	33.2708	43.6432	0	43.6432	67.2407	67.2407
36	0.0806028	2.21403	49.6213	S1	6.48	31.5442	20.0154	32.3789	42.1902	0	42.1902	65.7259	65.7259
37	0.0806028	2.0887	50.3268	S1	6.48	31.5442	19.4561	31.4741	40.7162	0	40.7162	64.1735	64.1735
38	0.0806028	1.96017	51.043	S1	6.48	31.5442	18.8885	30.556	39.2206	0	39.2206	62.5818	62.5818
39	0.0806028	1.82828	51.7704	S1	6.48	31.5442	18.3126	29.6243	37.7028	0	37.7028	60.9492	60.9492
40	0.0806028	1.69287	52.5097	S1	6.48	31.5442	17.7279	28.6785	36.162	0	36.162	59.2736	59.2736
41	0.0806028	1.55377	53.2617	S1	6.48	31.5442	17.1342	27.718	34.5974	0	34.5974	57.5526	57.5526
42	0.0806028	1.41076	54.0271	S1	6.48	31.5442	16.5312	26.7425	33.0082	0	33.0082	55.7841	55.7841
43	0.0806028	1.26364	54.807	S1	6.48	31.5442	15.9185	25.7513	31.3935	0	31.3935	53.9652	53.9652
44	0.0806028	1.11216	55.6021	S1	6.48	31.5442	15.2957	24.7439	29.7525	0	29.7525	52.0932	52.0932
45	0.0806028	0.956049	56.4138	S1	6.48	31.5442	14.6626	23.7197	28.0841	0	28.0841	50.1646	50.1646
46	0.0806028	0.79501	57.2431	S1	6.48	31.5442	14.0187	22.6781	26.3872	0	26.3872	48.176	48.176
47	0.0806028	0.628702	58.0916	S1	6.48	31.5442	13.3635	21.6182	24.6605	0	24.6605	46.1229	46.1229
48	0.0806028	0.45674	58.9608	S1	6.48	31.5442	12.6966	20.5393	22.903	0	22.903	44.001	44.001
49	0.0806028	0.278686	59.8524	S1	6.48	31.5442	12.0174	19.4406	21.1132	0	21.1132	41.8047	41.8047
50	0.0806028	0.0940391	60.7687	S1	6.48	31.5442	11.3255	18.3212	19.2897	0	19.2897	39.5282	39.5282

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.48862

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		-10.5817	-3.94361	16.6717	0	0
2		-10.5537	-3.91217	1.13462	0	0
3		-10.5258	-3.88023	2.18135	0	0
4		-10.4978	-3.84779	3.13995	0	0
5		-10.4699	-3.81483	4.01022	0	0
6		-10.4419	-3.78133	4.79195	0	0
7		-10.4139	-3.74728	5.48495	0	0
8		-10.386	-3.71267	6.08907	0	0
9		-10.358	-3.67748	6.60415	0	0
10		-10.3301	-3.64168	7.03007	0	0
11		-10.3021	-3.60526	7.36673	0	0
12		-10.2742	-3.5682	7.61406	0	0
13		-10.2462	-3.53048	7.77201	0	0
14		-10.2183	-3.49207	7.84057	0	0
15		-10.1903	-3.45295	7.81977	0	0
16		-10.1624	-3.41309	7.70966	0	0
17		-10.1344	-3.37246	7.51034	0	0
18		-10.1064	-3.33104	7.22199	0	0
19		-10.0785	-3.28878	6.8448	0	0
20		-10.0505	-3.24566	6.37905	0	0
21		-10.0226	-3.20163	5.82508	0	0
22		-9.99462	-3.15666	5.18331	0	0
23		-9.96667	-3.11069	4.4683	0	0
24		-9.93871	-3.06369	3.74626	0	0
25		-9.91076	-3.01559	3.02682	0	0
26		-9.8828	-2.96633	2.3115	0	0
27		-9.85485	-2.91586	1.60203	0	0
28		-9.82689	-2.8641	0.900344	0	0
29		-9.79894	-2.81097	0.208641	0	0
30		-9.77098	-2.75638	-0.470607	0	0
31		-9.74303	-2.70024	-1.13458	0	0
32		-9.71507	-2.64243	-1.78008	0	0
33		-9.68712	-2.58283	-2.40341	0	0
34		-9.65916	-2.52129	-3.00033	0	0
35		-9.63121	-2.45765	-3.56591	0	0
36		-9.60326	-2.39172	-4.0944	0	0
37		-9.5753	-2.32328	-4.57903	0	0
38		-9.54735	-2.25207	-5.01174	0	0
39		-9.51939	-2.17777	-5.38286	0	0
40		-9.49144	-2.1	-5.6806	0	0
41		-9.46329	-2.01774	-5.93588	0	0
42		-9.43515	-1.9309	-6.1814	0	0
43		-9.40701	-1.83871	-6.40996	0	0
44		-9.37887	-1.74016	-6.61172	0	0
45		-9.35073	-1.63385	-6.77278	0	0
46		-9.32259	-1.51779	-6.87272	0	0
47		-9.29445	-1.38889	4.09579	0	0
48		-9.2663	-1.24202	4.27863	0	0
49		-9.23816	-1.0671	4.78381	0	0
50		-9.21002	-0.838254	5.90251	0	0
51		-9.18188	-0.283323	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 1.6177

Slice Nu	mber X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1	-10.5912	-3.97288	17.2052	0	0
2	-10.5138	-3.92887	3.61948	0	0
3	-10.4363	-3.88396	6.62885	0	0
4	-10.3589	-3.83813	9.02271	0	0
5	-10.2814	-3.79137	10.7957	0	0
6	-10.204	-3.74366	11.9425	0	0
7	-10.1266	-3.69499	12.4577	0	0
8	-10.0491	-3.64534	12.336	0	0
9	-9.9717	-3.5947	11.5778	0	0
10	-9.89427	-3.54304	10.5444	0	0
11	-9.81683	-3.49035	9.45171	0	0
12	-9.7394	-3.4366	8.29758	0	0
13	-9.66196	-3.38178	7.07981	0	0
14	-9.58453	-3.32587	5.79629	0	0
15	-9.50709	-3.26884	4.44496	0	0
16	-9.42966	-3.21067	3.02384	0	0
17	-9.35222	-3.15134	1.53102	0	0
18	-9.27478	-3.09081	56.793	0	0
19	-9.19735	-3.02907	55.2277	0	0
20	-9.11991	-2.96608	53.6837	0	0
21	-9.04248	-2.90181	52.1661	0	0
22	-8.96504	-2.83623	50.6801	0	0
23	-8.88761	-2.76931	49.2311	0	0
24	-8.81017	-2.70101	47.8249	0	0
25	-8.73274	-2.6313	46.4676	0	0
26	-8.6553	-2.56013	45.1656	0	0
27	-8.57787	-2.48746	43.9256	0	0
28	-8.50043	-2.41325	42.7548	0	0
29	-8.423	-2.33746	41.6606	0	0
30	-8.34556	-2.26002	40.6512	0	0
31	-8.26812	-2.18088	39.7348	0	0
32	-8 19069	-2.1	38.9206	0	0
33	-8 11009	-2.01388	38.1414	0	0
34	-8 02948	-1.92572	37.3887	0	0
35	-7 94888	-1 83545	35 2875	0	0
36	-7 86828	-1 74297	32 9614	0	0
37	-7.78768	-1.64819	30.6268	0	0
38	-7.70707	-1.55101	28.2877	0	0
39	-7 62647	-1.45132	25.9484	0	0
40	-7 54587	-1 349	23 6133	0	0
41	-7 46526	-1 24392	21 2874	0	0
42	-7 38466	-1 13593	18 976	0	0
42	-7 30406	-1 02488	16 6849	0	0
43	-7 22346	-0.910593	14 4204	0	0
45	-7.14285	-0 792866	12 1895	0	0
46	-7.06225	-0 671485	9 9998	0	0
47	-6.98165	-0 546207	7 85966	0	0
48	-6.90103	-0.416756	5 77843	0	0
40	-6.20104	-0.282818	3.76652	0	0
50	-6.73984	-0.144037	1 8356	0	0
51	-6 65924	0	0	0	0
~ 1	-0.03727	v	v	v	•

Stability Analysis for circular failure with micropile support SW slope Arkoulaki Eleni Date Created: 11/25/2023, 6:11:21 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of SW slope with micropile support

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method: Pore Fluid Unit Weight [kN/m3]: Use negative pore pressure cutoff: Advanced Groundwater Method: Water Surfaces 9.81 No None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1				
Distribution:	Constant			
Magnitude [kPa]:	120			
Orientation:	Normal to boundary			
Load Action:	Variable			

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0

Support

Support 1	
Color	
Туре	RSPile
Force Application	Passive (Method B)
Out-Of-Plane Spacing	2 m
Apply Batter and Ground Slope Modifiers	Yes
Ground Slope and Batter Values	Calculate from Slide2 model
Soil Displacement Type	Maximum
Soil Displacement	25 mm

Global Minimums

Method: bishop simplified

1.008730

Method: janbu corrected

FS	0.978670
Center:	11.407, 1.547
Radius:	2.452
Left Slip Surface Endpoint:	9.504, 0.000
Right Slip Surface Endpoint:	10.000, -0.462
Left Slope Intercept:	9.504 0.000
Right Slope Intercept:	10.000 0.000
Resisting Horizontal Force:	27.8584 kN
Driving Horizontal Force:	28.4655 kN
Passive Horizontal Support Force:	7.84505 kN
Maximum Single Support Force:	7.84505 kN
Total Support Force:	7.84505 kN
Total Slice Area:	0.125083 m2
Surface Horizontal Width:	0.495884 m
Surface Average Height:	0.252242 m

Global Minimum Support Data

Method: bishop simplified

Number of Supports: 1							
			Support 1				
Support Type:	Support Type: RSPile						
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)	
10, 0.25	5.25	0.711627	4.53837	0.711627	4.53837	7.84505	

Method: janbu corrected

Number of Supports: 1								
			Support 1					
Support Type:	Support Type: RSPile							
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)		
10, 0.25	5.25	0.711627	4.53837	0.711627	4.53837	7.84505		

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces:	9261 0	
Method: janbu corrected		
Number of Valid Surfaces:	9251	
Number of Invalid Surfaces:	10	
	Error Codes	

Error Code -108 reported for 10 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.00873

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0099176 8	0.0010999 6	-50.7096	S1	6.48	31.5442	58.0926	58.5997	84.9643	0.0594249	84.9049	155.964	155.904
2	0.0099176 8	0.0032857	-50.345	S1	6.48	31.5442	58.4498	58.9601	85.6691	0.177568	85.4915	156.185	156.007
3	0.0099176 8	0.0054434 2	-49.9832	S 1	6.48	31.5442	58.8031	59.3165	86.3667	0.294196	86.0725	156.404	156.11
4	0.0099176 8	0.0075737 5	-49.6241	S 1	6.48	31.5442	59.1527	59.6691	87.0561	0.409343	86.6467	156.619	156.21
5	0.0099176 8	0.0096772 9	-49.2676	S1	6.48	31.5442	59.4986	60.018	87.7381	0.523043	87.215	156.832	156.309
6	0.0099176 8	0.0117546	-48.9137	S1	6.48	31.5442	59.8409	60.3633	88.4128	0.635325	87.7775	157.043	156.407
7	0.0099176 8	0.0138063	-48.5622	S1	6.48	31.5442	60.1798	60.7052	89.0805	0.746222	88.3343	157.25	156.504
8	0.0099176 8	0.0158328	-48.2132	S1	6.48	31.5442	60.5154	61.0437	89.7419	0.85576	88.8861	157.456	156.6
9	0.0099176 8	0.0178348	-47.8666	S1	6.48	31.5442	60.8477	61.3789	90.3958	0.963968	89.4318	157.658	156.694
10	0.0099176 8	0.0198126	-47.5223	S1	6.48	31.5442	61.177	61.7111	91.0444	1.07087	89.9735	157.859	156.789
11	0.0099176 8	0.0217668	-47.1802	S1	6.48	31.5442	61.5032	62.0401	91.6858	1.1765	90.5093	158.057	156.881
12	0.0099176 8	0.0236978	-46.8403	S1	6.48	31.5442	61.8266	62.3663	92.3215	1.28087	91.0406	158.253	156.972
13	0.0099176 8	0.025606	-46.5025	S1	6.48	31.5442	62.147	62.6895	92.9509	1.38401	91.5669	158.446	157.062
14	0.0099176 8	0.0274919	-46.1668	S1	6.48	31.5442	62.4646	63.0099	93.5749	1.48595	92.089	158.637	157.151
15	0.0099176 8	0.0293559	-45.8332	S1	6.48	31.5442	62.7796	63.3277	94.1936	1.5867	92.6069	158.826	157.239
16	0.0099176 8	0.0311983	-45.5015	S1	6.48	31.5442	63.092	63.6428	94.8063	1.68629	93.12	159.013	157.326
17	0.0099176 8	0.0330196	-45.1718	S1	6.48	31.5442	63.4018	63.9553	95.414	1.78473	93.6293	159.197	157.412
18	0.0099176 8	0.0348201	-44.844	S1	6.48	31.5442	63.7092	64.2654	96.016	1.88205	94.1339	159.379	157.497
19	0.0099176 8	0.0366002	-44.518	S1	6.48	31.5442	64.0142	64.573	96.6138	1.97827	94.6355	159.56	157.582
20	0.0099176 8	0.0383602	-44.1939	S1	6.48	31.5442	64.3168	64.8783	97.2061	2.0734	95.1327	159.738	157.665
21	0.0099176 8	0.0401005	-43.8715	S1	6.48	31.5442	64.6172	65.1813	97.7937	2.16746	95.6262	159.914	157.747
22	0.0099176 8	0.0418213	-43.5509	S1	6.48	31.5442	64.9154	65.4821	98.3767	2.26047	96.1163	160.089	157.828
23	0.0099176 8	0.043523	-43.2319	S1	6.48	31.5442	65.2114	65.7807	98.9553	2.35245	96.6029	160.261	157.909
24	0.0099176 8	0.0452058	-42.9146	S1	6.48	31.5442	65.5053	66.0772	99.5295	2.44341	97.0861	160.432	157.989
25	0.0099176 8	0.0468701	-42.599	S1	6.48	31.5442	65.7973	66.3717	100.099	2.53337	97.5653	160.6	158.067
26	0.0099176 8	0.0485162	-42.2849	S1	6.48	31.5442	66.0873	66.6642	100.664	2.62235	98.042	160.767	158.145
27	0.0099176 8	0.0501443	-41.9724	S1	6.48	31.5442	66.3752	66.9547	101.225	2.71035	98.5148	160.932	158.221
28	0.0099176 8	0.0517546	-41.6614	S1	6.48	31.5442	66.6613	67.2433	101.783	2.79739	98.9853	161.095	158.298
29	0.0099176 8	0.0533475	-41.3519	S1	6.48	31.5442	66.9457	67.5301	102.336	2.88349	99.4527	161.257	158.374
30	0.0099176 8	0.0549232	-41.0439	S1	6.48	31.5442	56.9336	57.4306	85.9685	2.96865	82.9999	135.537	132.568

Stability Analysis of SW slope with micropile support

Saturday, February 10, 2024

31	0.0099176 8	0.0564819	-40.7373	S1	6.48	31.5442	5.26603	5.312	1.15019	3.0529	-1.90271	5.68566	2.63276
32	0.0099176 8	0.0580239	-40.4321	S1	6.48	31.5442	5.31443	5.36083	1.31308	3.13625	-1.82317	5.84116	2.70491
33	0.0099176 8	0.0595493	-40.1283	S1	6.48	31.5442	5.36261	5.40943	1.47471	3.2187	-1.74399	5.99499	2.77629
34	0.0099176 8	0.0610585	-39.8259	S1	6.48	31.5442	5.41058	5.45781	1.6351	3.30028	-1.66518	6.14717	2.84689
35	0.0099176 8	0.0625516	-39.5248	S1	6.48	31.5442	5.45833	5.50598	1.79427	3.38098	-1.58671	6.29774	2.91676
36	0.0099176 8	0.0640288	-39.2249	S1	6.48	31.5442	5.50587	5.55394	1.95224	3.46083	-1.50859	6.44671	2.98588
37	0.0099176 8	0.0654904	-38.9264	S1	6.48	31.5442	5.5532	5.60168	2.10901	3.53983	-1.43082	6.5941	3.05427
38	0.0099176 8	0.0669365	-38.6291	S1	6.48	31.5442	5.60031	5.6492	2.2646	3.61799	-1.35339	6.73992	3.12193
39	0.0099176 8	0.0683673	-38.333	S1	6.48	31.5442	5.64722	5.69652	2.41902	3.69533	-1.27631	6.88422	3.18889
40	0.0099176 8	0.0697831	-38.0382	S1	6.48	31.5442	5.69393	5.74364	2.57229	3.77185	-1.19956	7.02699	3.25514
41	0.0099176 8	0.0711839	-37.7445	S1	6.48	31.5442	5.74043	5.79055	2.72442	3.84757	-1.12315	7.16826	3.32069
42	0.0099176 8	0.07257	-37.452	S1	6.48	31.5442	5.78673	5.83725	2.87543	3.92249	-1.04706	7.30804	3.38555
43	0.0099176 8	0.0739415	-37.1606	S1	6.48	31.5442	5.83283	5.88375	3.02532	3.99662	-0.971302	7.44636	3.44974
44	0.0099176 8	0.0752987	-36.8703	S1	6.48	31.5442	5.87874	5.93006	3.17411	4.06998	-0.895875	7.58322	3.51324
45	0.0099176 8	0.0766417	-36.5811	S1	6.48	31.5442	5.92444	5.97616	3.32181	4.14257	-0.820764	7.71866	3.57609
46	0.0099176 8	0.0779705	-36.2931	S1	6.48	31.5442	5.96996	6.02208	3.46842	4.2144	-0.745976	7.85268	3.63828
47	0.0099176 8	0.0792855	-36.006	S1	6.48	31.5442	6.01528	6.06779	3.61397	4.28547	-0.671498	7.9853	3.69983
48	0.0099176 8	0.0805867	-35.72	S1	6.48	31.5442	6.06041	6.11331	3.75847	4.35581	-0.597345	8.11653	3.76072
49	0.0099176 8	0.0818744	-35.4351	S1	6.48	31.5442	6.10535	6.15865	3.90191	4.4254	-0.52349	8.24638	3.82098
50	0.0099176 8	0.0831485	-35.1511	S1	6.48	31.5442	6.1501	6.20379	4.04431	4.49427	-0.449955	8.37488	3.88061
Global Minimum Query (janbu corrected) - Safety Factor: 0.97867

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0099176 8	0.0010999 6	-50.7096	S1	6.48	31.5442	58.7352	57.4824	83.144	0.0594249	83.0845	154.929	154.869
2	0.0099176 8	0.0032857	-50.345	S1	6.48	31.5442	59.1047	57.844	83.8513	0.177568	83.6737	155.157	154.98
3	0.0099176 8	0.0054434 2	-49.9832	S1	6.48	31.5442	59.4703	58.2018	84.5507	0.294196	84.2565	155.382	155.088
4	0.0099176 8	0.0075737 5	-49.6241	S1	6.48	31.5442	59.8321	58.5559	85.2429	0.409343	84.8335	155.605	155.196
5	0.0099176 8	0.0096772 9	-49.2676	S1	6.48	31.5442	60.1902	58.9063	85.9274	0.523043	85.4044	155.825	155.302
6	0.0099176 8	0.0117546	-48.9137	S1	6.48	31.5442	60.5447	59.2533	86.6045	0.635325	85.9691	156.042	155.406
7	0.0099176 8	0.0138063	-48.5622	S1	6.48	31.5442	60.8957	59.5968	87.2754	0.746222	86.5292	156.256	155.51
8	0.0099176 8	0.0158328	-48.2132	S1	6.48	31.5442	61.2434	59.9371	87.9392	0.85576	87.0834	156.468	155.612
9	0.0099176 8	0.0178348	-47.8666	S1	6.48	31.5442	61.5879	60.2742	88.5965	0.963968	87.6325	156.677	155.713
10	0.0099176 8	0.0198126	-47.5223	S1	6.48	31.5442	61.9291	60.6082	89.2475	1.07087	88.1766	156.884	155.813
11	0.0099176 8	0.0217668	-47.1802	S1	6.48	31.5442	62.2674	60.9392	89.8923	1.1765	88.7158	157.088	155.912
12	0.0099176 8	0.0236978	-46.8403	S1	6.48	31.5442	62.6026	61.2673	90.531	1.28087	89.2501	157.29	156.009
13	0.0099176 8	0.025606	-46.5025	S1	6.48	31.5442	62.935	61.5926	91.1645	1.38401	89.7805	157.49	156.106
14	0.0099176 8	0.0274919	-46.1668	S1	6.48	31.5442	63.2646	61.9152	91.7914	1.48595	90.3055	157.687	156.201
15	0.0099176 8	0.0293559	-45.8332	S1	6.48	31.5442	63.5915	62.2351	92.4134	1.5867	90.8267	157.882	156.295
16	0.0099176 8	0.0311983	-45.5015	S1	6.48	31.5442	63.9157	62.5524	93.0304	1.68629	91.3441	158.075	156.389
17	0.0099176 8	0.0330196	-45.1718	S1	6.48	31.5442	64.2374	62.8672	93.6412	1.78473	91.8564	158.265	156.48
18	0.0099176 8	0.0348201	-44.844	S1	6.48	31.5442	64.5566	63.1796	94.2473	1.88205	92.3652	158.453	156.571
19	0.0099176 8	0.0366002	-44.518	S1	6.48	31.5442	64.8735	63.4897	94.8487	1.97827	92.8705	158.64	156.662
20	0.0099176 8	0.0383602	-44.1939	S1	6.48	31.5442	65.1879	63.7974	95.445	2.0734	93.3716	158.824	156.75
21	0.0099176 8	0.0401005	-43.8715	S1	6.48	31.5442	65.5	64.1029	96.0368	2.16746	93.8694	159.006	156.839
22	0.0099176 8	0.0418213	-43.5509	S1	6.48	31.5442	65.8099	64.4062	96.6243	2.26047	94.3639	159.187	156.926
23	0.0099176 8	0.043523	-43.2319	S1	6.48	31.5442	66.1177	64.7074	97.2069	2.35245	94.8544	159.365	157.012
24	0.0099176 8	0.0452058	-42.9146	S1	6.48	31.5442	66.4234	65.0066	97.7853	2.44341	95.3419	159.541	157.098
25	0.0099176 8	0.0468701	-42.599	S1	6.48	31.5442	66.727	65.3037	98.3589	2.53337	95.8255	159.715	157.182
26	0.0099176 8	0.0485162	-42.2849	S1	6.48	31.5442	67.0286	65.5989	98.9293	2.62235	96.3069	159.888	157.266
27	0.0099176 8	0.0501443	-41.9724	S1	6.48	31.5442	67.3283	65.8922	99.495	2.71035	96.7846	160.059	157.349
28	0.0099176 8	0.0517546	-41.6614	S1	6.48	31.5442	67.6261	66.1836	100.057	2.79739	97.2595	160.228	157.43
29	0.0099176 8	0.0533475	-41.3519	S1	6.48	31.5442	67.9221	66.4733	100.614	2.88349	97.7308	160.394	157.511
30	0.0099176 8	0.0549232	-41.0439	S1	6.48	31.5442	57.7703	56.5381	84.5153	2.96865	81.5466	134.812	131.843
31	0.0099176 8	0.0564819	-40.7373	S1	6.48	31.5442	5.34401	5.23002	1.01665	3.0529	-2.03625	5.61928	2.56638
32	0.0099176 8	0.0580239	-40.4321	S1	6.48	31.5442	5.39372	5.27867	1.17924	3.13625	-1.95701	5.77487	2.63862
33	0.0099176 8	0.0595493	-40.1283	S1	6.48	31.5442	5.4432	5.3271	1.3406	3.2187	-1.8781	5.9288	2.7101

Stability Analysis of SW slope with micropile support

Saturday, February 10, 2024

34	0.0099176 8	0.0610585	-39.8259	S1	6.48	31.5442	5.49248	5.37533	1.50073	3.30028	-1.79955	6.08111	2.78083
35	0.0099176 8	0.0625516	-39.5248	S1	6.48	31.5442	5.54155	5.42335	1.65966	3.38098	-1.72132	6.23179	2.85081
36	0.0099176 8	0.0640288	-39.2249	S1	6.48	31.5442	5.5904	5.47116	1.8174	3.46083	-1.64343	6.38088	2.92005
37	0.0099176 8	0.0654904	-38.9264	S1	6.48	31.5442	5.63906	5.51878	1.97396	3.53983	-1.56587	6.5284	2.98857
38	0.0099176 8	0.0669365	-38.6291	S1	6.48	31.5442	5.6875	5.56619	2.12936	3.61799	-1.48863	6.67436	3.05637
39	0.0099176 8	0.0683673	-38.333	S 1	6.48	31.5442	5.73574	5.6134	2.28361	3.69533	-1.41172	6.81879	3.12346
40	0.0099176 8	0.0697831	-38.0382	S1	6.48	31.5442	5.78378	5.66041	2.43672	3.77185	-1.33513	6.96171	3.18986
41	0.0099176 8	0.0711839	-37.7445	S1	6.48	31.5442	5.83162	5.70723	2.58871	3.84757	-1.25886	7.10313	3.25556
42	0.0099176 8	0.07257	-37.452	S1	6.48	31.5442	5.87926	5.75386	2.73958	3.92249	-1.18291	7.24307	3.32058
43	0.0099176 8	0.0739415	-37.1606	S1	6.48	31.5442	5.92671	5.80029	2.88936	3.99662	-1.10726	7.38156	3.38494
44	0.0099176 8	0.0752987	-36.8703	S1	6.48	31.5442	5.97396	5.84654	3.03805	4.06998	-1.03193	7.51859	3.44861
45	0.0099176 8	0.0766417	-36.5811	S1	6.48	31.5442	6.02102	5.89259	3.18567	4.14257	-0.956904	7.6542	3.51163
46	0.0099176 8	0.0779705	-36.2931	S1	6.48	31.5442	6.06789	5.93846	3.33222	4.2144	-0.882183	7.78839	3.57399
47	0.0099176 8	0.0792855	-36.006	S1	6.48	31.5442	6.11457	5.98415	3.47771	4.28547	-0.807763	7.92118	3.63571
48	0.0099176 8	0.0805867	-35.72	S1	6.48	31.5442	6.16106	6.02965	3.62217	4.35581	-0.733645	8.05261	3.6968
49	0.0099176 8	0.0818744	-35.4351	S1	6.48	31.5442	6.20737	6.07496	3.76558	4.4254	-0.659816	8.18265	3.75725
50	0.0099176 8	0.0831485	-35.1511	S1	6.48	31.5442	6.25349	6.1201	3.90799	4.49427	-0.586282	8.31136	3.81709

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.00873

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		9.50412	0	0	0	0
2		9.51403	-0.0121212	0.452525	0	0
3		9.52395	-0.0240862	0.896669	0	0
4		9.53387	-0.0358985	1.33246	0	0
5		9.54379	-0.0475617	1.75994	0	0
6		9.5537	-0.0590789	2.17912	0	0
7		9.56362	-0.0704532	2.59004	0	0
8		9.57354	-0.0816877	2.99274	0	0
9		9.58346	-0.0927851	3.38723	0	0
10		9.59338	-0.103748	3.77354	0	0
11		9.60329	-0.11458	4.15171	0	0
12		9.61321	-0.125283	4.52176	0	0
13		9.62313	-0.135859	4.88371	0	0
14		9.63305	-0.146311	5.2376	0	0
15		9.64296	-0.156641	5.58345	0	0
16		9.65288	-0.166851	5.92128	0	0
17		9.6628	-0.176944	6.25112	0	0
18		9.67272	-0.186921	6.57299	0	0
19		9.68263	-0.196785	6.88692	0	0
20		9.69255	-0.206537	7.19293	0	0
21		9.70247	-0.21618	7.49104	0	0
22		9.71239	-0.225714	7.78127	0	0
23		9.72231	-0.235143	8.06365	0	0
24		9.73222	-0.244466	8.33819	0	0
25		9.74214	-0.253687	8.60492	0	0
26		9.75206	-0.262807	8.86385	0	0
27		9.76198	-0.271826	9.11502	0	0
28		9.77189	-0.280748	9.35842	0	0
29		9.78181	-0.289572	9.59409	0	0
30		9.79173	-0.298301	9.82204	0	0
31		9.80165	-0.306935	9.99854	0	0
32		9.81156	-0.315477	9.95602	0	0
33		9.82148	-0.323927	9.9143	0	0
34		9.8314	-0.332287	9.87334	0	0
35		9.84132	-0.340558	9.83309	0	0
36		9.85123	-0.348741	9.79353	0	0
37		9.86115	-0.356837	9.75461	0	0
38		9.87107	-0.364847	9.71632	0	0
39		9.88099	-0.372772	9.67861	0	0
40		9.89091	-0.380614	9.64145	0	0
41		9.90082	-0.388373	9.60482	0	0
42		9.91074	-0.396051	9.56869	0	0
43		9.92066	-0.403647	9.53302	0	0
44		9.93058	-0.411165	9.4978	0	0
45		9.94049	-0.418603	9.46298	0	0
46		9.95041	-0.425963	9.42856	0	0
47		9.96033	-0.433247	9.39449	0	0
48		9.97025	-0.440454	9.36075	0	0
49		9.98016	-0.447586	9.32733	0	0
50		9.99008	-0.454643	9.29419	0	0
51		10	-0.461627	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 0.97867

Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1	9.50412	0	0	0	0
2	9.51403	-0.0121212	0.415691	0	0
3	9.52395	-0.0240862	0.823136	0	0
4	9.53387	-0.0358985	1.22236	0	0
5	9.54379	-0.0475617	1.61339	0	0
6	9.5537	-0.0590789	1.99625	0	0
7	9.56362	-0.0704532	2.37097	0	0
8	9.57354	-0.0816877	2.73757	0	0
9	9.58346	-0.0927851	3.09608	0	0
10	9.59338	-0.103748	3.44651	0	0
11	9.60329	-0.11458	3.78891	0	0
12	9.61321	-0.125283	4.12328	0	0
13	9.62313	-0.135859	4.44965	0	0
14	9.63305	-0.146311	4.76805	0	0
15	9 64296	-0.156641	5.07849	0	0
16	9 65288	-0.166851	5 381	0	0
17	9.6628	-0 176944	5 6756	0	0
18	9 67272	-0.186921	5 96232	0	0
19	9.68263	-0.196785	6 24116	0	0
20	9,60255	-0.206537	6 51216	0	0
20	9.70247	0.21618	6 77533	0	0
21	9.70247	0.225714	7.03068	0	0
22	9.71239	-0.223714	7.03008	0	0
23	9.72231	0.244466	7.51905	0	0
24	9.73222	-0.244466	7.31803	0	0
25	9.74214	-0.253087	7.75009	0	0
26	9.75206	-0.262807	1.9/439	0	0
27	9.76198	-0.2/1826	8.19098	0	0
28	9.7/189	-0.280/48	8.39980	0	0
29	9.78181	-0.289572	8.60106	0	0
30	9.79173	-0.298301	8.79458	0	0
31	9.80165	-0.306935	8.94196	0	0
32	9.81156	-0.315477	8.89677	0	0
33	9.82148	-0.323927	8.85236	0	0
34	9.8314	-0.332287	8.80869	0	0
35	9.84132	-0.340558	8.76574	0	0
36	9.85123	-0.348741	8.72345	0	0
37	9.86115	-0.356837	8.68181	0	0
38	9.87107	-0.364847	8.64077	0	0
39	9.88099	-0.372772	8.60031	0	0
40	9.89091	-0.380614	8.5604	0	0
41	9.90082	-0.388373	8.521	0	0
42	9.91074	-0.396051	8.48209	0	0
43	9.92066	-0.403647	8.44363	0	0
44	9.93058	-0.411165	8.4056	0	0
45	9.94049	-0.418603	8.36798	0	0
46	9.95041	-0.425963	8.33073	0	0
47	9.96033	-0.433247	8.29383	0	0
48	9.97025	-0.440454	8.25725	0	0
49	9.98016	-0.447586	8.22097	0	0
50	9.99008	-0.454643	8.18497	0	0
51	10	-0.461627	0	0	0

Stability Analysis for circular failure with micropile support (diameter 180mm) SW slope Arkoulaki Eleni Date Created: 11/25/2023, 6:11:21 PM Software Version: 9.019

Slide Analysis Information

Stability Analysis of SW slope with micropile support

Design Standard

Selected Type:	Eurocode 7 - Design Approach 3
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1.25
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Janbu corrected
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method: Pore Fluid Unit Weight [kN/m3]: Use negative pore pressure cutoff: Advanced Groundwater Method: Water Surfaces 9.81 No None

Surface Options

Surface Type: Search Method: Radius Increment: Composite Surfaces: Reverse Curvature: Minimum Elevation: Minimum Depth: Minimum Area: Minimum Weight: Circular Grid Search 10 Enabled Create Tension Crack Not Defined Not Defined Not Defined Not Defined

Loading

1 Distributed Load present

Distributed Load 1			
Distribution:	Constant		
Magnitude [kPa]:	120		
Orientation:	Normal to boundary		
Load Action:	Variable		

Materials

S1	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	16.2
Saturated Unit Weight [kN/m3]	18.3
Cohesion [kPa]	8.1
Friction Angle [deg]	37.5
Water Surface	Water Table
Hu Value	Automatically Calculated
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0
W1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	20.7
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0
R1	
Color	
Strength Type	Undrained
Unit Weight [kN/m3]	22.8
Cohesion [kPa]	300
Cohesion Type	Constant
Water Surface	None
Ru Value	0
Unsat. Shear Strength Phi b [deg]	0
Unsat. Shear Strength Air Entry Value [kPa]	0

Support

Support 1	
Color	
Туре	RSPile
Force Application	Passive (Method B)
Out-Of-Plane Spacing	2 m
Apply Batter and Ground Slope Modifiers	Yes
Ground Slope and Batter Values	Calculate from Slide2 model
Soil Displacement Type	Maximum
Soil Displacement	25 mm

Global Minimums

Method: bishop simplified

FS	0.932511
Center:	11.407, 1.547
Radius:	2.452
Left Slip Surface Endpoint:	9.504, 0.000
Right Slip Surface Endpoint:	10.000, -0.462
Left Slope Intercept:	9.504 0.000
Right Slope Intercept:	10.000 0.000
Resisting Moment:	78.8927 kN-m
Driving Moment:	84.6024 kN-m
Passive Support Moment:	11.3499 kN-m
Maximum Single Support Force:	5.6519 kN
Total Support Force:	5.6519 kN
Total Slice Area:	0.125083 m2
Surface Horizontal Width:	0.495884 m
Surface Average Height:	0.252242 m
ethod: janbu corrected	

Method: janbu corrected

FS	0.910115
Center:	11.407, 1.547
Radius:	2.452
Left Slip Surface Endpoint:	9.504, 0.000
Right Slip Surface Endpoint:	10.000, -0.462
Left Slope Intercept:	9.504 0.000
Right Slope Intercept:	10.000 0.000
Resisting Horizontal Force:	25.0617 kN
Driving Horizontal Force:	27.5369 kN
Passive Horizontal Support Force:	5.6519 kN
Maximum Single Support Force:	5.6519 kN
Total Support Force:	5.6519 kN
Total Slice Area:	0.125083 m2
Surface Horizontal Width:	0.495884 m
Surface Average Height:	0.252242 m

Global Minimum Support Data

Method: bishop simplified

Number of Supports: 1								
			Support 1					
Support Type:	Support Type: RSPile							
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)		
10, 0.25	5.25	0.711627	4.53837	0.711627	4.53837	5.6519		

Method: janbu corrected

Number of Supports: 1							
			Support 1				
Support Type:	RSPile						
Start (x, y)	Length (m)	L Inside SS (m)	L Outside SS (m)	Li (m)	Lo (m)	Force (kN)	
10, 0.25	5.25	0.711627	4.53837	0.711627	4.53837	5.6519	

Valid and Invalid Surfaces

Method: bishop simplified

Number of Valid Su Number of Invalid	urfaces: Surfaces:	9261 0
Method: janbu co	orrected	
Number of Valid Su	urfaces:	9251
Number of Invalid	Surfaces:	10
	Erre	or Codes

Error Code -108 reported for 10 surfaces

Error Code Descriptions

The following errors were encountered during the computation:

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.932511

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0099176 8	0.0010999 6	-50.7096	S1	6.48	31.5442	60.7864	56.684	81.8433	0.0594249	81.7839	156.135	156.076
2	0.0099176 8	0.0032857	-50.345	S1	6.48	31.5442	61.175	57.0464	82.5521	0.177568	82.3746	156.356	156.178
3	0.0099176 8	0.0054434 2	-49.9832	S 1	6.48	31.5442	61.5596	57.405	83.2527	0.294196	82.9585	156.573	156.279
4	0.0099176 8	0.0075737 5	-49.6241	S1	6.48	31.5442	61.9402	57.7599	83.9457	0.409343	83.5363	156.787	156.378
5	0.0099176 8	0.0096772 9	-49.2676	S1	6.48	31.5442	62.317	58.1113	84.6319	0.523043	84.1089	156.999	156.476
6	0.0099176 8	0.0117546	-48.9137	S1	6.48	31.5442	62.6901	58.4592	85.311	0.635325	84.6756	157.209	156.573
7	0.0099176 8	0.0138063	-48.5622	S1	6.48	31.5442	63.0596	58.8038	85.9835	0.746222	85.2373	157.416	156.669
8	0.0099176 8	0.0158328	-48.2132	S1	6.48	31.5442	63.4256	59.1451	86.6491	0.85576	85.7934	157.62	156.764
9	0.0099176 8	0.0178348	-47.8666	S1	6.48	31.5442	63.7883	59.4833	87.3079	0.963968	86.3439	157.821	156.857
10	0.0099176 8	0.0198126	-47.5223	S1	6.48	31.5442	64.1478	59.8185	87.9612	1.07087	86.8903	158.021	156.95
11	0.0099176 8	0.0217668	-47.1802	S1	6.48	31.5442	64.504	60.1507	88.6079	1.1765	87.4314	158.218	157.041
12	0.0099176 8	0.0236978	-46.8403	S1	6.48	31.5442	64.8573	60.4801	89.2488	1.28087	87.968	158.412	157.131
13	0.0099176 8	0.025606	-46.5025	S1	6.48	31.5442	65.2075	60.8067	89.884	1.38401	88.5	158.604	157.22
14	0.0099176 8	0.0274919	-46.1668	S1	6.48	31.5442	65.5548	61.1306	90.5135	1.48595	89.0276	158.794	157.308
15	0.0099176 8	0.0293559	-45.8332	S1	6.48	31.5442	65.8994	61.4519	91.1376	1.5867	89.5509	158.982	157.395
16	0.0099176 8	0.0311983	-45.5015	S1	6.48	31.5442	66.2413	61.7707	91.7569	1.68629	90.0706	159.168	157.482
17	0.0099176 8	0.0330196	-45.1718	S1	6.48	31.5442	66.5804	62.087	92.3702	1.78473	90.5855	159.351	157.566
18	0.0099176 8	0.0348201	-44.844	S1	6.48	31.5442	66.9171	62.4009	92.979	1.88205	91.0969	159.533	157.651
19	0.0099176 8	0.0366002	-44.518	S1	6.48	31.5442	67.2512	62.7125	93.5827	1.97827	91.6044	159.712	157.734
20	0.0099176 8	0.0383602	-44.1939	S1	6.48	31.5442	67.5829	63.0218	94.182	2.0734	92.1086	159.889	157.816
21	0.0099176 8	0.0401005	-43.8715	S1	6.48	31.5442	67.9123	63.329	94.7764	2.16746	92.609	160.065	157.897
22	0.0099176 8	0.0418213	-43.5509	S1	6.48	31.5442	68.2393	63.6339	95.3659	2.26047	93.1055	160.238	157.977
23	0.0099176 8	0.043523	-43.2319	S1	6.48	31.5442	68.5641	63.9368	95.9514	2.35245	93.599	160.409	158.057
24	0.0099176 8	0.0452058	-42.9146	S1	6.48	31.5442	68.8868	64.2377	96.5329	2.44341	94.0895	160.579	158.136
25	0.0099176 8	0.0468701	-42.599	S1	6.48	31.5442	69.2073	64.5366	97.1098	2.53337	94.5764	160.747	158.214
26	0.0099176 8	0.0485162	-42.2849	S1	6.48	31.5442	69.5258	64.8336	97.682	2.62235	95.0597	160.912	158.29
27	0.0099176 8	0.0501443	-41.9724	S1	6.48	31.5442	69.8424	65.1288	98.2513	2.71035	95.541	161.077	158.366
28	0.0099176 8	0.0517546	-41.6614	S1	6.48	31.5442	70.1569	65.4221	98.8162	2.79739	96.0188	161.239	158.442
29	0.0099176 8	0.0533475	-41.3519	S1	6.48	31.5442	70.4695	65.7136	99.3767	2.88349	96.4932	161.399	158.515
30	0.0099176 8	0.0549232	-41.0439	S1	6.48	31.5442	59.9419	55.8965	83.4696	2.96865	80.501	135.657	132.688

Stability Analysis of SW slope with micropile support

Sunday, February 11, 2024

31	0.0099176 8	0.0564819	-40.7373	S 1	6.48	31.5442	5.54532	5.17107	0.920619	3.0529	-2.13228	5.69663	2.64373
32	0.0099176 8	0.0580239	-40.4321	S1	6.48	31.5442	5.59734	5.21958	1.08299	3.13625	-2.05326	5.85211	2.71586
33	0.0099176 8	0.0595493	-40.1283	S1	6.48	31.5442	5.64913	5.26788	1.24413	3.2187	-1.97457	6.00592	2.78722
34	0.0099176 8	0.0610585	-39.8259	S1	6.48	31.5442	5.70072	5.31598	1.40405	3.30028	-1.89623	6.15808	2.8578
35	0.0099176 8	0.0625516	-39.5248	S1	6.48	31.5442	5.75209	5.36389	1.56279	3.38098	-1.81819	6.30863	2.92765
36	0.0099176 8	0.0640288	-39.2249	S1	6.48	31.5442	5.80325	5.41159	1.72036	3.46083	-1.74047	6.45758	2.99675
37	0.0099176 8	0.0654904	-38.9264	S1	6.48	31.5442	5.85419	5.4591	1.87675	3.53983	-1.66308	6.60494	3.06511
38	0.0099176 8	0.0669365	-38.6291	S1	6.48	31.5442	5.90493	5.50642	2.03199	3.61799	-1.586	6.75075	3.13276
39	0.0099176 8	0.0683673	-38.333	S1	6.48	31.5442	5.95547	5.55354	2.18609	3.69533	-1.50924	6.89501	3.19968
40	0.0099176 8	0.0697831	-38.0382	S1	6.48	31.5442	6.0058	5.60047	2.33907	3.77185	-1.43278	7.03776	3.26591
41	0.0099176 8	0.0711839	-37.7445	S1	6.48	31.5442	6.05593	5.64722	2.49094	3.84757	-1.35663	7.179	3.33143
42	0.0099176 8	0.07257	-37.452	S1	6.48	31.5442	6.10585	5.69378	2.6417	3.92249	-1.28079	7.31876	3.39627
43	0.0099176 8	0.0739415	-37.1606	S1	6.48	31.5442	6.15558	5.74015	2.79139	3.99662	-1.20523	7.45705	3.46043
44	0.0099176 8	0.0752987	-36.8703	S1	6.48	31.5442	6.20512	5.78634	2.93999	4.06998	-1.12999	7.59389	3.52391
45	0.0099176 8	0.0766417	-36.5811	S1	6.48	31.5442	6.25445	5.83235	3.08753	4.14257	-1.05504	7.7293	3.58673
46	0.0099176 8	0.0779705	-36.2931	S1	6.48	31.5442	6.3036	5.87818	3.234	4.2144	-0.980397	7.86328	3.64888
47	0.0099176 8	0.0792855	-36.006	S1	6.48	31.5442	6.35255	5.92383	3.37944	4.28547	-0.906027	7.99586	3.71039
48	0.0099176 8	0.0805867	-35.72	S1	6.48	31.5442	6.40132	5.9693	3.52386	4.35581	-0.831953	8.12707	3.77126
49	0.0099176 8	0.0818744	-35.4351	S1	6.48	31.5442	6.44989	6.0146	3.66725	4.4254	-0.758154	8.25689	3.83149
50	0.0099176 8	0.0831485	-35.1511	S1	6.48	31.5442	6.49828	6.05972	3.80963	4.49427	-0.684644	8.38536	3.89109

Global Minimum Query (janbu corrected) - Safety Factor: 0.910115

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [deg]	Base Material	Base Cohesion [kPa]	Base Friction Angle [deg]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.0099176 8	0.0010999 6	-50.7096	S1	6.48	31.5442	61.149	55.6526	80.1634	0.0594249	80.104	154.898	154.839
2	0.0099176 8	0.0032857	-50.345	S1	6.48	31.5442	61.5479	56.0157	80.8727	0.177568	80.6951	155.126	154.949
3	0.0099176 8	0.0054434 2	-49.9832	S1	6.48	31.5442	61.9428	56.3751	81.5747	0.294196	81.2805	155.351	155.057
4	0.0099176 8	0.0075737 5	-49.6241	S1	6.48	31.5442	62.3338	56.7309	82.2696	0.409343	81.8603	155.574	155.165
5	0.0099176 8	0.0096772 9	-49.2676	S1	6.48	31.5442	62.721	57.0833	82.9575	0.523043	82.4344	155.794	155.271
6	0.0099176 8	0.0117546	-48.9137	S1	6.48	31.5442	63.1043	57.4322	83.6378	0.635325	83.0024	156.01	155.375
7	0.0099176 8	0.0138063	-48.5622	S1	6.48	31.5442	63.4842	57.7779	84.312	0.746222	83.5657	156.225	155.479
8	0.0099176 8	0.0158328	-48.2132	S1	6.48	31.5442	63.8605	58.1204	84.9795	0.85576	84.1237	156.437	155.581
9	0.0099176 8	0.0178348	-47.8666	S1	6.48	31.5442	64.2334	58.4598	85.6405	0.963968	84.6765	156.646	155.682
10	0.0099176 8	0.0198126	-47.5223	S1	6.48	31.5442	64.6032	58.7963	86.2957	1.07087	85.2248	156.853	155.782
11	0.0099176 8	0.0217668	-47.1802	S1	6.48	31.5442	64.9697	59.1299	86.9446	1.1765	85.7681	157.057	155.88
12	0.0099176 8	0.0236978	-46.8403	S1	6.48	31.5442	65.3332	59.4607	87.588	1.28087	86.3071	157.259	155.978
13	0.0099176 8	0.025606	-46.5025	S1	6.48	31.5442	65.6937	59.7888	88.2259	1.38401	86.8419	157.459	156.075
14	0.0099176 8	0.0274919	-46.1668	S1	6.48	31.5442	66.0512	60.1142	88.8578	1.48595	87.3719	157.656	156.17
15	0.0099176 8	0.0293559	-45.8332	S1	6.48	31.5442	66.406	60.4371	89.4845	1.5867	87.8978	157.85	156.264
16	0.0099176 8	0.0311983	-45.5015	S1	6.48	31.5442	66.7582	60.7576	90.106	1.68629	88.4197	158.043	156.357
17	0.0099176 8	0.0330196	-45.1718	S1	6.48	31.5442	67.1076	61.0756	90.7225	1.78473	88.9378	158.234	156.449
18	0.0099176 8	0.0348201	-44.844	S1	6.48	31.5442	67.4543	61.3912	91.334	1.88205	89.4519	158.422	156.54
19	0.0099176 8	0.0366002	-44.518	S1	6.48	31.5442	67.7988	61.7047	91.9413	1.97827	89.963	158.609	156.631
20	0.0099176 8	0.0383602	-44.1939	S1	6.48	31.5442	68.1406	62.0158	92.5431	2.0734	90.4697	158.793	156.719
21	0.0099176 8	0.0401005	-43.8715	S1	6.48	31.5442	68.4802	62.3249	93.1402	2.16746	90.9727	158.975	156.807
22	0.0099176 8	0.0418213	-43.5509	S1	6.48	31.5442	68.8176	62.6319	93.7334	2.26047	91.4729	159.155	156.895
23	0.0099176 8	0.043523	-43.2319	S1	6.48	31.5442	69.1526	62.9368	94.322	2.35245	91.9695	159.333	156.981
24	0.0099176 8	0.0452058	-42.9146	S1	6.48	31.5442	69.4854	63.2397	94.9068	2.44341	92.4634	159.51	157.066
25	0.0099176 8	0.0468701	-42.599	S1	6.48	31.5442	69.8162	63.5408	95.4873	2.53337	92.9539	159.684	157.151
26	0.0099176 8	0.0485162	-42.2849	S1	6.48	31.5442	70.1449	63.8399	96.0633	2.62235	93.441	159.856	157.234
27	0.0099176 8	0.0501443	-41.9724	S1	6.48	31.5442	70.4716	64.1373	96.6359	2.71035	93.9255	160.027	157.317
28	0.0099176 8	0.0517546	-41.6614	S1	6.48	31.5442	70.7963	64.4328	97.2042	2.79739	94.4068	160.196	157.399
29	0.0099176 8	0.0533475	-41.3519	S1	6.48	31.5442	71.1193	64.7267	97.7691	2.88349	94.8856	160.363	157.48
30	0.0099176 8	0.0549232	-41.0439	S1	6.48	31.5442	60.5007	55.0626	82.1114	2.96865	79.1428	134.785	131.817
31	0.0099176 8	0.0564819	-40.7373	S1	6.48	31.5442	5.59759	5.09445	0.795804	3.0529	-2.2571	5.61684	2.56394
32	0.0099176 8	0.0580239	-40.4321	S1	6.48	31.5442	5.65067	5.14276	0.957854	3.13625	-2.1784	5.77242	2.63617
33	0.0099176 8	0.0595493	-40.1283	S1	6.48	31.5442	5.70354	5.19088	1.11869	3.2187	-2.10001	5.92635	2.70765

Stability Analysis of SW slope with micropile support

Sunday, February 11, 2024

34	0.0099176 8	0.0610585	-39.8259	S1	6.48	31.5442	5.75621	5.23881	1.27834	3.30028	-2.02194	6.07863	2.77835
35	0.0099176 8	0.0625516	-39.5248	S1	6.48	31.5442	5.80866	5.28655	1.4368	3.38098	-1.94418	6.22931	2.84833
36	0.0099176 8	0.0640288	-39.2249	S1	6.48	31.5442	5.8609	5.33409	1.59411	3.46083	-1.86672	6.37839	2.91756
37	0.0099176 8	0.0654904	-38.9264	S1	6.48	31.5442	5.91295	5.38146	1.75026	3.53983	-1.78957	6.52591	2.98608
38	0.0099176 8	0.0669365	-38.6291	S 1	6.48	31.5442	5.96477	5.42863	1.90528	3.61799	-1.71271	6.67185	3.05386
39	0.0099176 8	0.0683673	-38.333	S1	6.48	31.5442	6.01642	5.47563	2.05917	3.69533	-1.63616	6.81628	3.12095
40	0.0099176 8	0.0697831	-38.0382	S1	6.48	31.5442	6.06785	5.52244	2.21196	3.77185	-1.55989	6.9592	3.18735
41	0.0099176 8	0.0711839	-37.7445	S1	6.48	31.5442	6.11909	5.56908	2.36364	3.84757	-1.48393	7.1006	3.25303
42	0.0099176 8	0.07257	-37.452	S1	6.48	31.5442	6.17013	5.61553	2.51425	3.92249	-1.40824	7.24054	3.31805
43	0.0099176 8	0.0739415	-37.1606	S1	6.48	31.5442	6.22099	5.66181	2.66377	3.99662	-1.33285	7.37901	3.38239
44	0.0099176 8	0.0752987	-36.8703	S1	6.48	31.5442	6.27165	5.70792	2.81224	4.06998	-1.25774	7.51605	3.44607
45	0.0099176 8	0.0766417	-36.5811	S1	6.48	31.5442	6.32212	5.75385	2.95965	4.14257	-1.18292	7.65164	3.50907
46	0.0099176 8	0.0779705	-36.2931	S1	6.48	31.5442	6.3724	5.79962	3.10603	4.2144	-1.10837	7.78583	3.57143
47	0.0099176 8	0.0792855	-36.006	S1	6.48	31.5442	6.42249	5.84521	3.25137	4.28547	-1.0341	7.91862	3.63315
48	0.0099176 8	0.0805867	-35.72	S1	6.48	31.5442	6.4724	5.89063	3.39571	4.35581	-0.960099	8.05004	3.69423
49	0.0099176 8	0.0818744	-35.4351	S 1	6.48	31.5442	6.52213	5.93589	3.53903	4.4254	-0.886371	8.18008	3.75468
50	0.0099176 8	0.0831485	-35.1511	S1	6.48	31.5442	6.57168	5.98098	3.68135	4.49427	-0.812916	8.30877	3.8145

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 0.932511

	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		9.50412	0	0	0	0
2		9.51403	-0.0121212	0.389373	0	0
3		9.52395	-0.0240862	0.770589	0	0
4		9.53387	-0.0358985	1.14367	0	0
5		9.54379	-0.0475617	1.50864	0	0
6		9.5537	-0.0590789	1.86553	0	0
7		9.56362	-0.0704532	2.21435	0	0
8		9.57354	-0.0816877	2.55512	0	0
9		9.58346	-0.0927851	2.88788	0	0
10		9.59338	-0.103748	3.21263	0	0
11		9.60329	-0.11458	3.52941	0	0
12		9.61321	-0.125283	3.83822	0	0
13		9.62313	-0.135859	4.13911	0	0
14		9.63305	-0.146311	4.43208	0	0
15		9.64296	-0.156641	4.71715	0	0
16		9.65288	-0.166851	4,99434	0	0
17		9.6628	-0.176944	5.26368	0	0
18		9 67272	-0.186921	5 52518	0	0
19		9 68263	-0.196785	5 77886	0	0
20		9.69255	-0.206537	6 02474	0	0
20		9 70247	-0.21618	6 26284	0	0
21		9.71239	-0.225714	6 49317	0	0
22		9 72231	-0.2257/14	6 71575	0	0
23		0.73222	0.244466	6 9306	0	0
25		9.74214	-0.253687	7 13773	0	0
25		9.75206	-0.253087	7 33717	0	0
20		9.76198	-0.271826	7 52891	0	0
27		0.77180	0.280748	7 71200	0	0
20		9.77189	-0.280748	7.88041	0	0
20		0.70172	0.209301	2 05 2 1 0	0	0
21		9.79175	-0.298301	0.03019	0	0
22		0.81156	0.215477	0.10 1 05	0	0
22		9.01130	-0.313477	8.13/31 8.00117	0	0
24		9.02140	-0.323927	8.09117	0	0
34 25		9.8314	-0.332287	8.04330	0	0
26		9.04132	-0.340338	7.05641	0	0
27		9.63125	-0.346/41	7.93041	0	0
31 20		9.80113	-0.550857	7.91281	0	0
30 20		9.8/10/	-0.304847	7.8098	0	0
39 40		9.88099	-0.3/2//2	7.79546	0	0
40		9.89091	-0.380614	7.78546	0	0
41		9.90082	-0.388373	7.74406	0	0
42		9.910/4	-0.396051	7.70314	0	0
43		9.92066	-0.40364/	/.00208	0	0
44		9.95058	-0.411105	7.52203	0	0
45		9.94049	-0.418603	1.58298	0	0
46		9.95041	-0.425963	/.543/	0	0
47		9.96033	-0.433247	/.504/5	0	0
48		9.97025	-0.440454	/.40613	0	0
49 50		9.98016	-0.44/586	7.42779	0	0
50		9.99008	-0.454643	1.389/3	0	0
51		10	-0.461627	0	0	0

Global Minimum Query (janbu corrected) - Safety Factor: 0.910115

s	lice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [deg]
1		9.50412	0	0	0	0
2		9.51403	-0.0121212	0.355373	0	0
3		9.52395	-0.0240862	0.702699	0	0
4		9.53387	-0.0358985	1.04199	0	0
5		9.54379	-0.0475617	1.37328	0	0
6		9.5537	-0.0590789	1.69657	0	0
7		9.56362	-0.0704532	2.0119	0	0
8		9.57354	-0.0816877	2.31926	0	0
9		9.58346	-0.0927851	2.6187	0	0
10		9.59338	-0.103748	2.91021	0	0
11		9.60329	-0.11458	3.19383	0	0
12		9.61321	-0.125283	3.46957	0	0
13		9.62313	-0.135859	3.73745	0	0
14		9.63305	-0.146311	3.99748	0	0
15		9.64296	-0.156641	4.24968	0	0
16		9.65288	-0.166851	4.49407	0	0
17		9.6628	-0.176944	4.73067	0	0
18		9.67272	-0.186921	4.95948	0	0
19		9.68263	-0.196785	5.18054	0	0
20		9.69255	-0.206537	5.39385	0	0
21		9.70247	-0.21618	5.59943	0	0
22		9.71239	-0.225714	5.79729	0	0
23		9.72231	-0.235143	5.98745	0	0
24		9.73222	-0.244466	6.16992	0	0
25		9.74214	-0.253687	6.34472	0	0
26		9.75206	-0.262807	6.51186	0	0
27		9.76198	-0.271826	6.67135	0	0
28		9.77189	-0.280748	6.82321	0	0
29		9.78181	-0.289572	6.96745	0	0
30		9.79173	-0.298301	7.10408	0	0
31		9.80165	-0.306935	7.20331	0	0
32		9.81156	-0.315477	7.1537	0	0
33		9.82148	-0.323927	7.10484	0	0
34		9.8314	-0.332287	7.05671	0	0
35		9.84132	-0.340558	7.00927	0	0
36		9.85123	-0.348741	6.96248	0	0
37		9.86115	-0.356837	6.91631	0	0
38		9.87107	-0.364847	6.87074	0	0
39		9.88099	-0.372772	6.82572	0	0
40		9.89091	-0.380614	6.78123	0	0
41		9.90082	-0.388373	6.73724	0	0
42		9.91074	-0.396051	6.69372	0	0
43		9.92066	-0.403647	6.65063	0	0
44		9.93058	-0.411165	6.60796	0	0
45		9.94049	-0.418603	6.56566	0	0
46		9.95041	-0.425963	6.52373	0	0
47		9.96033	-0.433247	6.48213	0	0
48		9.97025	-0.440454	6.44083	0	0
49		9.98016	-0.447586	6.39982	0	0
50		9.99008	-0.454643	6.35906	0	0
51		10	-0.461627	0	0	0

RSPile Analysis Information

W130X24 diameter 250mm

Soil Layers

Soil Properties

S1

Property	Value
Name	S1
Color	
Soil Type	Silt (Cemented C - Phi Coil)
Unit Weight (kN/m3)	16.2
Sat. Unit Weight (kN/m3)	18.3

W1

Property	Value
Name	W1
Color	
Soil Type	Weak Rock
Unit Weight (kN/m3)	18.5
Sat. Unit Weight (kN/m3)	20.7

R1

Property	Value
Name	R1
Color	
Soil Type	Strong Rock (Vuggy Limestone)
Unit Weight (kN/m3)	20.4
Sat. Unit Weight (kN/m3)	22.8

Pile Section Properties

Pile Section 1

Property	Value
Name	Pile Section 1
Color	
Pile Type	Reinforced Concrete
Pile Cross Section	Circular
Diameter (m)	0.25
250mm	W130x24
I-Beam	
Name	W130x24
Steel Type	Canadian
Depth (mm)	127
Width (mm)	127

Pile Types

Pile Type 1

Property	1		Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.00000	
Total Length		9	
Section Property	Colour	Length	Top Elevation
Pile Section 1		9.000000	0.000000

Pile Settings

Pile 1

General		
Туре		Pile Type 1
Location		0, 0
Elevation (m)		0
Length (m)		9
Orientation		
Ground Slope Angle (°)		0
Alpha Angle (°)		0
Beta Angle (°)		90
Rotation Angle (°)		0
Soil Displacement (mm)	15	
Sliding Depth (m)	4.2	
Advanced Anal	ysis	
Soil Resistance Graph		On
Maximum Allowable Displacemer	it (mm)	15
Number of Intervals		20

RSPile Analysis Information

W100X19 diameter 180mm

Soil Layers

Soil Properties

S1

Property	Value
Name	S1
Color	
Soil Type	Silt (Cemented C - Phi Coil)
Unit Weight (kN/m3)	16.2
Sat. Unit Weight (kN/m3)	18.3

W1

Property	Value
Name	W1
Color	
Soil Type	Weak Rock
Unit Weight (kN/m3)	18.5
Sat. Unit Weight (kN/m3)	20.7

R1

Property	Value
Name	R1
Color	
Soil Type	Strong Rock (Vuggy Limestone)
Unit Weight (kN/m3)	20.4
Sat. Unit Weight (kN/m3)	22.8

Pile Section Properties

Pile Section 1

Proper	ty		Value
Name	Pi	le Section 1	
Color			
Pile Type	Re	einforced Concrete	
Pile Cross Section	Ci	rcular	
Diameter (m)	0.	18	
Compressive Strength (kPa)	34	4000	
180mm		W100x19	
I-Bear	n		
Name	W	100x19	
Steel Type	Ca	anadian	
Depth (mm)	10	J6	
Width (mm)	10)3	

Pile Types

Pile Type 1

Property			Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.000000	
Total Length		9	
Section Property	Colour	Length	Top Elevation
Pile Section 1		9.000000	0.000000
		-9 m	

Pile Settings

Pile 1

General		
Туре		Pile Type 1
Location		0, 0
Elevation (m)		0
Length (m)		9
Orientation		
Ground Slope Angle (°)		0
Alpha Angle (°)		0
Beta Angle (°)		90
Rotation Angle (°)		0
Soil Displacement (mm)	15	
Sliding Depth (m)	4.2	
Advanced Anal	ysis	
Soil Resistance Graph		On
Maximum Allowable Displacemen	it (mm)	15
Number of Intervals		20

RSPile Analysis Information

W150X24 diameter 250mm

Soil Layers

Soil Properties

S1

Property	Value
Name	S1
Color	
Soil Type	Silt (Cemented C - Phi Coil)
Unit Weight (kN/m3)	16.2
Sat. Unit Weight (kN/m3)	18.3

W1

Property	Value
Name	W1
Color	
Soil Type	Weak Rock
Unit Weight (kN/m3)	18.5
Sat. Unit Weight (kN/m3)	20.7

R1

Property	Value
Name	R1
Color	
Soil Type	Strong Rock (Vuggy Limestone)
Unit Weight (kN/m3)	20.4
Sat. Unit Weight (kN/m3)	22.8

Pile Section Properties

Pile Section 1

Property	Value	
Name	Pile Section 1	
Color		
Pile Type	Reinforced Concrete	
Pile Cross Section	Circular	
Diameter (m)	0.25	
Compressive Strength (kPa)	34000	
I-Beam		
1-веат		
Name	W150x24	
Steel Type	Canadian	
Depth (mm)	160	
Width (mm)	102	

Pile Types

Pile Type 1

Property			Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.000000	
Total Length		9	
Section Property	Colour	Length	Top Elevation
Pile Section 1		9.000000	0.000000

Pile Settings

Pile 1

General		
Туре		Pile Type 1
Location		0, 0
Elevation (m)		0
Length (m)		9
Orientation		
Ground Slope Angle (°)		0
Alpha Angle (°)		0
Beta Angle (°)		90
Rotation Angle (°)		0
Soil Displacement (mm)	15	
Sliding Depth (m)	4.2	
Advanced Analysis		
Soil Resistance Graph		On
Maximum Allowable Displacement (mm)		15
Number of Intervals		20
W150X22 diameter 250mm

S1

Property	Value
Name	S1
Color	
Soil Type	Silt (Cemented C - Phi Coil)
Unit Weight (kN/m3)	16.2
Sat. Unit Weight (kN/m3)	18.3

W1

Property	Value
Name	W1
Color	
Soil Type	Weak Rock
Unit Weight (kN/m3)	18.5
Sat. Unit Weight (kN/m3)	20.7

Property	Value
Name	R1
Color	
Soil Type	Strong Rock (Vuggy Limestone)
Unit Weight (kN/m3)	20.4
Sat. Unit Weight (kN/m3)	22.8

Property	Value
Name	Pile Section 1
Color	
Pile Type	Reinforced Concrete
Pile Cross Section	Circular
Diameter (m)	0.25
Compressive Strength (kPa)	34000
250mm	
I-Beam	
Name	W150x22
Steel Type	Canadian
Depth (mm)	152
Width (mm)	152

Property			Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.000000	
Total Length		9	
Section Property	Colour	Length	Top Elevation
Pile Section 1		9.000000	0.000000
		-9 m	

General		
Туре		Pile Type 1
Location		0, 0
Elevation (m)		0
Length (m)		9
Orientation		
Ground Slope Angle (°)		0
Alpha Angle (°)		0
Beta Angle (°)		90
Rotation Angle (°)		0
Soil Displacement (mm)	15	
Sliding Depth (m)	4.2	
Advanced Anal	ysis	
Soil Resistance Graph		On
Maximum Allowable Displacemen	it (mm)	15
Number of Intervals		20

W100X19 diameter 250mm

S1

Property	Value
Name	S1
Color	
Soil Type	Silt (Cemented C - Phi Coil)
Unit Weight (kN/m3)	16.2
Sat. Unit Weight (kN/m3)	18.3

W1

Property	Value
Name	W1
Color	
Soil Type	Weak Rock
Unit Weight (kN/m3)	18.5
Sat. Unit Weight (kN/m3)	20.7

Property	Value
Name	R1
Color	
Soil Type	Strong Rock (Vuggy Limestone)
Unit Weight (kN/m3)	20.4
Sat. Unit Weight (kN/m3)	22.8

Property	Value
Name	Pile Section 1
Color	
Pile Type	Reinforced Concrete
Pile Cross Section	Circular
Diameter (m)	0.25
Compressive Strength (kPa)	34000
250mm	
т-реат	1/// 00 / 0
Name Chaol Turne	W100X19
Steel Type	
Deptn (mm)	106
wiath (mm)	103

Property			Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.00000	
Total Length		9	
Section Property	Colour	Length	Top Elevation
Pile Section 1		9.000000	0.000000

General		
Туре		Pile Type 1
Location		0, 0
Elevation (m)		0
Length (m)		9
Orientation		
Ground Slope Angle (°)		0
Alpha Angle (°)		0
Beta Angle (°)		90
Rotation Angle (°)		0
Soil Displacement (mm)	15	
Sliding Depth (m)	4.2	
Advanced Anal	ysis	
Soil Resistance Graph		On
Maximum Allowable Displacemen	it (mm)	15
Number of Intervals		20

S150X26 diameter 250mm

S1

Property	Value
Name	S1
Color	
Soil Type	Silt (Cemented C - Phi Coil)
Unit Weight (kN/m3)	16.2
Sat. Unit Weight (kN/m3)	18.3

W1

Property	Value
Name	W1
Color	
Soil Type	Weak Rock
Unit Weight (kN/m3)	18.5
Sat. Unit Weight (kN/m3)	20.7

Property	Value
Name	R1
Color	
Soil Type	Strong Rock (Vuggy Limestone)
Unit Weight (kN/m3)	20.4
Sat. Unit Weight (kN/m3)	22.8

Property	Value
Name	Pile Section 1
Color	
Pile Type	Reinforced Concrete
Pile Cross Section	Circular
Diameter (m)	0.25
I-Beam	
Name	S150x26
Steel Type	Canadian
Depth (mm)	152
Width (mm)	91

Property			Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.000000	
Total Length		9	
Section Property	Colour	Length	Top Elevation
Pile Section 1		9.000000	0.000000

General		
Туре		Pile Type 1
Location		0, 0
Elevation (m)		0
Length (m)		9
Orientation		
Ground Slope Angle (°)		0
Alpha Angle (°)		0
Beta Angle (°)		90
Rotation Angle (°)		0
Soil Displacement (mm)	15	
Sliding Depth (m)	4.2	
Advanced Anal	ysis	
Soil Resistance Graph		On
Maximum Allowable Displacemen	it (mm)	15
Number of Intervals		20

S130X15 diameter 250mm

S1

Property	Value
Name	S1
Color	
Soil Type	Silt (Cemented C - Phi Coil)
Unit Weight (kN/m3)	16.2
Sat. Unit Weight (kN/m3)	18.3

W1

Property	Value
Name	W1
Color	
Soil Type	Weak Rock
Unit Weight (kN/m3)	18.5
Sat. Unit Weight (kN/m3)	20.7

Property	Value
Name	R1
Color	
Soil Type	Strong Rock (Vuggy Limestone)
Unit Weight (kN/m3)	20.4
Sat. Unit Weight (kN/m3)	22.8

Property	Value
Name	Pile Section 1
Color	
Pile Type	Reinforced Concrete
Pile Cross Section	Circular
Diameter (m)	0.25
I-Beam	
Name	S130x15
Steel Type	Canadian
Depth (mm)	127
Width (mm)	76

Prope	rty		Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.00000	
Total Length		9	
Section Property	Colour	Length	Top Elevation
Pile Section 1		9.000000	0.000000

General		
Туре		Pile Type 1
Location		0, 0
Elevation (m)		0
Length (m)		9
Orientation		
Ground Slope Angle (°)		0
Alpha Angle (°)		0
Beta Angle (°)		90
Rotation Angle (°)		0
Soil Displacement (mm)	15	
Sliding Depth (m)	4.2	
Advanced Analy	vsis	
Soil Resistance Graph		On
Maximum Allowable Displacement	t (mm)	15
Number of Intervals		20

S130X15 diameter 180mm

S1

Property	Value
Name	S1
Color	
Soil Type	Silt (Cemented C - Phi Coil)
Unit Weight (kN/m3)	16.2
Sat. Unit Weight (kN/m3)	18.3

W1

Property	Value
Name	W1
Color	
Soil Type	Weak Rock
Unit Weight (kN/m3)	18.5
Sat. Unit Weight (kN/m3)	20.7

Property	Value
Name	R1
Color	
Soil Type	Strong Rock (Vuggy Limestone)
Unit Weight (kN/m3)	20.4
Sat. Unit Weight (kN/m3)	22.8

Property	Value
Name	Pile Section 1
Color	
Pile Type	Reinforced Concrete
Pile Cross Section	Circular
Diameter (m)	0.18
I-Beam	
Name	S130x15
Steel Type	Canadian
Depth (mm)	127
Width (mm)	76

Property	1		Value
Name		Pile Type 1	
Color			
Pile Head Elevation (m)		0.000000	
Cross Section Type		Uniform	
Ground Slope Angle (°)		0.000000	
Rotation Angle (°)		0.000000	
Alpha Angle (°)		0.000000	
Beta Angle (°)		90.00000	
Total Length		9	
Section Property	Colour	Length	Top Elevation
Pile Section 1		9.000000	0.000000
		-9 m	

General		
Туре		Pile Type 1
Location		0, 0
Elevation (m)		0
Length (m)		9
Orientation		
Ground Slope Angle (°)		0
Alpha Angle (°)		0
Beta Angle (°)		90
Rotation Angle (°)		0
Soil Displacement (mm)	15	
Sliding Depth (m)	4.2	
Advanced Analys	sis	
Soil Resistance Graph		On
Maximum Allowable Displacement	(mm)	15
Number of Intervals		20