[Εξωφυλλο}

Ορυκτολογική και γεωχημική μελέτη του σχηματισμού Skarn του πλουτωνίτη του Πανοράματος, Δράμα Β.Ελλάδα

Μαρία-Άννα Γ. Παπασπύρου

Περίληψη


Ο Ολιγοκαινικός πλουτωνίτης του Πανοράματος που βρίσκεται στην περιοχή της Δράμας, διεισδύει σε ασβεστιτικά μάρμαρα με δολομιτικούς φακούς και ενστρώσεις δημιουργώντας στα περιθώριά του ζώνη skarn με πλάτος περίπου 20 μέτρα. Γεωλογικά η περιοχή ανήκει στην Κατώτερη Τεκτονική Ενότητα της μάζας της Ροδόπης. Η ζώνη skarn αποτελείται oρυκτολογικά από γρανάτη, βολλαστονίτη, βεζουβιανίτη, πυρόξενο, αμφίβολο, καλιούχους αστρίους, πλαγιόκλαστα, επίδοτο, αλλανίτη, κλινοζοϊσίτη, αμεσίτη, σερπεντίνη και κλινόχλωρο. Οι γρανάτες εμφανίζονται τόσο ισότροποι όσο και ανισότροποι. Η σύσταση τους κυμαίνεται μεταξύ γροσσουλάριου-ανδραδίτη. Ο βολλαστονίτης εμφανίζεται σε ευμεγέθεις κρυστάλλους στο νότιο τμήμα του πλουτωνίτη. Οι πυρόξενοι έχουν σύσταση διοψιδίου ενώ η κεροστίλβη ανήκει στις μαγνησιοκεροστίλβες. Οι καλιούχοι άστριοι έχουν σύσταση ορθοκλάστου και τα πλαγιόκλαστα έχουν σύσταση σε An 46,5- 81,3κ.β%. Από την ομάδα του επιδότου εμφανίζονται επίδοτο, κλινοζοϊσίτης και ζοϊσίτης ενώ κρύσταλλοι αλλανίτη εμφανίζονται ιδιόμορφοι με έντονη ζώνωση. Η ομάδα των χλωριτών εκπροσωπείται από χλωρίτες σύστασης κλινόχλωρου. Στην παραγένεση μετέχει και Mg-αμεσίτης, ένας χλωρίτης με δομή σερπεντίνη. Χαρακτηριστικό του skarn είναι το ρόδινο χρώμα που εμφανίζεται στο βορειοδυτικό τμήμα του και οφείλεται στο Μn. Στις θέσεις αυτές η παραγένεση αποτελείται από κλινοζοϊσίτη (MnO έως 4,1κ.β%), κλινόχλωρο (MnO έως 2,96 κ.β%) και αμεσίτη (MnO έως 4,69κ.β.%). Το skarn του Πανοράματος μπορεί να διαχωριστεί σε τρεις ζώνες. Η πρώτη, στο βορειοδυτικό τμήμα χαρακτηρίζεται από τις παραγενέσεις Px + Zoi (Ep) + Kf + Pl και Hbl + Zoi (Ep) + Kf + Pl + Qtz καθώς και Grt + Zoi (Ep) + Px +Cc + Chl και Grt + Chl + All + Qtz. Η δεύτερη, στο βορειοανατολικό τμήμα με παραγένεση Grt + Ep + Di + Pl και η τρίτη, στο νότιο τμήμα που χαρακτηρίζεται από την παραγένεση Wo + Grt + Px + Cc ± Ves. Η απουσία βολλαστονίτη από το βόρειο τμήμα της ζώνης επαφής αποδίδεται στη διαφορετική θερμοκρασία και/ή στη διαφορετική σύσταση των μετασωματικών ρευστών.  Η δημιουργία του skarn έγινε σε 4 στάδια. Το πρώτο στάδιο ξεκίνησε με την τοποθέτηση και ψύξη του μαγματικού όγκου του Πανοράματος. Τα μετασωματικά ρευστά με θερμοκρασία περίπου 580οC και ΧCO2=0,13 έδωσαν την παραγένεση βολλαστονίτης + γρανάτης + βεζουβιανίτης + διοψίδιος + ασβεστίτης. Στο επόμενο στάδιο, καθώς προχωρά η κρυστάλλωση του μάγματος, ο όγκος των μετασωματικών ρευστών αυξάνει και δημιουργείται γρανάτης και πυροξένος σε θερμοκρασίες 430-550οC και fO2 μεταξύ 10-26 και 10-23.Στο τρίτο στάδιο ξεκινά η διαδικασία της ανάδρομης μεταμόρφωσης με το σχηματισμό κεροστίλβης, επιδότου και κλινοζοϊσίτη. Η θερμοκρασία των υδροθερμικών ρευστών είναι χαμηλότερη των 430οC, η fO2 αυξάνει και ΧCO2=0,1. Στο τελευταίο στάδιο η fO2 των ρευστών είναι υψηλότερη και η θερμοκρασία <300οC. Σ’ αυτή τη φάση σχηματίζεται το κλινόχλωρο και ο αμεσίτης, ενώ κατά θέσεις, σχηματίζεται σερπεντίνης. Με τα μετασωματικά ρευστά μεταφέρονται Si, Al, Fe, Mg και Mn. Το Mn μετακινήθηκε μέσω της ρευστής φάσης από τον πλουτωνίτη προς τα ανθρακικά πετρώματα από το πρόδρομο στάδιο μεταμόρφωσης (γρανάτης και πυρόξενος) και κατά το τελευταίο στάδιο σχηματισμού του skarn (Τ<300οC) τα  υδροθερμικά ρευστά εξακολουθούν να είναι εμπλουτισμένα σε Mn, όπως διαπιστώνεται από την αυξημένη περιεκτικότητα Mn στο κλινόχλωρο και στον αμεσίτη.

The Oligocene pluton of Panorama is situated in the area of Drama and intrudes calcareous marbles with dolomitic intercalations that cover the mountain of Falakro, creating a skarn zone of about 20 metres. The area belongs to the Lower Tectonic Unit (LTU) of the Rhodope massif. Skarn consists of garnet, wollastonite, vesuvianite, pyroxene, amphibole, K-feldspar, plagioclase, epidote, allanite, klinozoisite, amesite, serpentine and clinochlore. Garnets appear both isotropic and anisotropic. Their composition ranges between grossular and andradite. Wollastonite occurs in the southern part of the pluton. Pyroxene has a composition of diopside while amphibole is characterized as Mg-hornblende. K-feldspars are of orthoclase composition while plagioclase ranges from An 46.5-81.3%. Epidote, clinozoisite and zoisite occur in the aureole, while allanite is idioblastic and zoned. Chlorites are represented by clinochlore. In the assemblage, Mg-amesite is also preent, a chlorite with a serpentine structure. In the northwestern part, the skarn appears pink in color which is attributed to the presence of Mn. At these sites the assemblage consists of klinozoisite (MnO 4.1wt%), clinochlore (MnO 2.96wt%) and amesite (MnO up to 4.69wt%). The skarn of Panorama, based on the different assemblages, can be divided into three zones. The first, at the northwestern part of the contact, consists of  Px + Zoi (Ep) + Kf + Pl and Hbl + Zoi (Ep) + Kf + Pl + Qtz as well as Grt + Zoi (Ep) + Px +Cc + Chl and Grt + Chl + All + Qtz. The second, at the northeastern part, is characterized by a large zone of garnet with the assemblage Grt + Ep + Di + Pl and the third, at the southern part which is characterized by the assemblage Wo + Grt + Px + Cc ± Ves. The absence of wollastonite from the northern part of the contact is attributed to the different temperature  and/or the different composition of the metasomatic fluids. Skarn formation took place at 4 stages. The first stage begins with the emplacement and the cooling of the Panorama magmatic intrusion. During the cooling and the crystallization of magma, metasomatic fluids led to the formation of the assemblage wollastonite + garnet + vesuvianite + diopside + calcite at temperatures of  580oC and XCO2=0.13. During the second stage and as crystallization of the magma continues, the volume of metasomatic fluids increases and garnet and pyroxene are formed at temperatures 430-550oC while fO2 increases and ΧCO2=0,1. At the third stage, retrograde metamorphism occurs with the formation of hornblende, epidote and clinozoisite. The temperature of the hydrothermal fluids is lower than 430oC, while fO2 increases and ΧCO2=0,1. At the last stage, fO2 increases and the temperature is lower than 300oC. During this stage, clinochlore and amesite form while serpentine appears where dolomitic intercalations occur. Metasomatic fluids transfer Si, Al, Fe, Mg and Mn. Metasomatic fluids transport Mn from the pluton to the marbles from the first prograde metamorphic stage (garnet and pyroxene compositions) up to the last metasomatic stage as evidenced by the composition of klinochlore and amesite.


Πλήρες Κείμενο:

PDF

Αναφορές


Βουδούρης Π., Κατερινόπουλος Α. και Μαγκανάς Α., 2005, Ορυκτολογία της ζώνης ματαμόρφωσης επαφής ενός σωσσονιτικού μαγματικού συμπλέγματος (Μαρώνεια, ΒΑ Ελλάδα), Ελληνική Γεωλογική Εταιρία, 19-28.

Κομνηνού Φ., 2006, Δομικός χαρακτηρισμός υλικών με τις τεχνικές της ηλεκτρονικής μικροσκοπίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Μαστρακας Ν., 2006, Ο πλουτωνίτης της Τήνου και οι συνδεόμενοι με αυτόν σχηματισμοί skarn, Διδακτορική Διατριβή, Πανεπιστήμιο Πατρών, Τμήμα Γεωλογίας.

Νταγκουνάκη Κ., 1999, Ο πλουτωνίτης του Πανοράματος Δράμας. Ορυκτολογία-πετρολογία - γεωχημεία. Α.Π.Θ. Μεταπτυχιακή διατριβή.

Παπαδοπούλου Λ., 2003, Ισορροπίας ορυκτών φάσεων, συνθήκες κρυστάλλωσης και εξέλιξη του πλουτωνίτη της Μαρώνειας, Θρακη, Α.Π.Θ., Διδακτορική διατριβή.

Σκλαβούνος Σ., 2011, Εργαστηριακές μέθοδοι έρευνας ορυκτών, Αριστοτέλειο Πανεπιστήμιο θεσσαλονίκης, Τμήμα εκδόσεων 2011-2012.

Φραnτζανά Α., Γεωχημική μελέτη επιδότου από τα πλουτωνικά πετρώματας της Ελατιάς και Σιθωνίας. Κατανομή κύριων στοιχειών ιχνοστοιχείων., Α.Π.Θ., Μεταπτυχιακή διατριβή.

Χατζηπαναγής Ι. και Βουγιούκας Δ., 2004, Η σημασία της λιθοστρωματογραφικής θέσης και τεκτονικής παραμόρφωσης στον εντοπισμό και την αξιοποίηση των δολομιτικών μαρμάρων του Φαλακρού όρους, Ελληνική Γεωλογική Εταιρία.

Χριστοφίδης Γ.Θ., 1977, Συμβολή εις την μελέτη των πλουτωνίων πετρωμάτων της περιοχής Ξάνθης. Διδακτορική διατριβή, Α.Π.Θ.

Abart R., 1995, Phase equilibrium and stable isotope constrains on metasomatis vein formation, Contribute Mineral Petrology, 122, 116-133.

Abu El-Enen, M.M., Okrusch, M., Will, T.M., 2004, Contact metamorphism and metasomatism at a dolerite–limestone contact in the Gebel Yelleq area, Northern Sinai, Egypt. Mineralogy and Petrology 81, 135– 164.

Ahmed-Said Y. and Leake B.E., 1996, The conditions of metamorphism of a grossular-wollastonite vesuvianite skarn from the Omey Granite, Connemara, western Ireland, with special reference to the chemistry of vesuvianite, Mineralogical magazine, 6, 401.

Altheerr R. Kreuzer H.A.N.S., Wendt I., Lenz H., Wagner G. A., Keller J. and Hohndorf, A., (1982), A late Oligocene/early Miocene high temperature belt in the Attic-Cycladic crystalline complex (SEPelagonian, Greece). Geol. Jahrb., E23, 97-164.

Angel R. J., 1985, Structural variation in wollastonite and bustamite, Minerological Magazine, 49, 37-48.

Arikas, K., and P. Voudouris. (1998) Hydrothermal alterations and mineralizations of magmatic rocks in the southeastern Rhodope Massif, Acta Vulcanologica 10 p.353-366.

Bailey S. W., 1980, Summary of recommendations of AIPEA nomenclature committeeon clay minerals, American Minerologist, 65, 1-7.

Barnes C., Prestvik T., Sundvoll B. and Surratt D., (2005), Pervasive assimilation of carbonate and silicate rocks in the Hortavaer igneous complex, north-central Norway, Lithos 80, 179-199.

Belov N. V. and Rumanova, J.M., (1954), The crystal structure of epidote Ca,Al,FeSirO,lOH) Doklady Akademia Nauk SSSR, 89, 853-856

Bonev N., and L. Beccaletto, (2007). From syn-to post-orogenic Tertiary extension in the north Aegean region: constraints on the kinematics in the eastern Rhodope–Thrace, Bulgaria–Greece and the Biga Peninsula, NW Turkey., Geological Society, London, Special Publications 291.1, 113-142.

Bowen N. L. (1922). The behavior of inclusions in igneous magmas, Journal of Geology, 30, 513-570.

Bowman J.R., 1998. Basic aspects and applications of phase equilibria in the analysis of metasomatic Ca–Mg–Al–Fe–Si-skarns. In:

Lentz, D.R. (Ed.), Mineralized Intrusion-Related Skarn Systems, Mineralogical Association of Canada Short Course, 26, 1 –49.

Buick I.S., Cartwright I., Hand M. and Powell, R., (1994). Evidence for pre-regional metamorphic fluid infiltration of the Lower Calcsilicate Unit, Reynolds Range Group (central Australia). Journal of metamorphic geology 12.6 789-810.

Burg J. Ivanov Z., Ricou L.E., Dimor D. and Klain L., (1990). Implications of shear-sense criteria for the tectonic evolution of the Central Rhodope massif, southern Bulgaria, Geology, 18, 451- 454.

Burg J. Ricou L.E., Ivano Z., Godfriaux I., Dimov D. and Klain, L. (1996). Syn-metamorphic nappe complex in the Rhodope Massif. Structure and kinematics, Terra Nova, 8, 6-15.

Burg, J., (2012). Rhodope: from Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame, In: Skourtsos, Emmanuel, Lister, Gordon S. (Eds.), The Geology of Greece, Electronic Edition, Journal of the Virtual Explorer1.

Brun J. and Sokoutis D., 2007. Kinematics of the Southern Rhodope Core Complex (North Greece). Int. Journal of Earth Science.

Brun, J and Facenna C., (2008). Exhumation of high-pressure rocks driven by slab rollback, Earth Planet. Science Letture, 272, 1–7.

Carrigan C. W., S. B. Mukasa, I. Haydoutov, and K. Kolcheva, (2005). Age of Variscan magmatism from the Balkan sector of the orogen, central Bulgaria, Lithos, 82(1-2), 125-147.10.1016/j.lithos.2004.12.010

Carrigan C. W., S. B. Mukasa, I. Haydoutov, and K. Kolcheva, (2006). Neoproterozoic magmatism and Carboniferous high-grade metamorphism in the Sredna Gora Zone, Bulgaria: An extension of the Gondwana-derived Avalonian-Cadomian belt?, Precamb. Res., 147(3-4), 404-416.10.1016/j.precamres.2006.01.026

Calagari A., (2004). Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran Journal Asian Earth Science, 23, 179–189.

Cartwright, I., and I. S. Buick, (1995). Formation of wollastonite‐bearing marbles during late regional metamorphic channelled fluid flow in the Upper Calcsilicate Unit of the Reynolds Range Group, central Australia. Journal of Metamorphic Geology 13.3 397-417.

Chenhall B.E. and Mazaheri, S.A., 1993, Skarn development from limestone adjacent to the Glenrock Granodiorite, Marulan Batholith, New South Wales, Australia. Australian Journal of Earth Sciences 40, 485–500

Christofides S., (1990). Regression models based on log-incre- mental payments. In: Claims Reserving Manual, Institute of Actuaries, London, 2.

Christofides D. and Armaou, A. (1998). Nonlinear control of Navier Stokes equations. In Proceedings of American control conference, Philadelphia, PA, 1355-1359.

Christofides et al. (2001). Petrology and K/Ar geochronology of the Tertiary Evros volcanic rocks, Thrace, noutheastern Greece. Pancardi Proc. II Abstracts, DP6-7.

Christofides G., Koroneos A., Soldatos T., Eleftheriadis G. and Kilias A. (2001). Eocene magmatism (Sithonia and Elatia plutons) in the Internal Hellenides and implications for Eocene-Miocene geological evolution of the Rhodope Massif (Northern Greece). Acta Vulcanologica, 13(1-2), 73-89.

Deer, Howie and Zussman, 1992. Rock Forming Minerals, 2nd edition.

Del Moro A. Innocenti F., Kyriakopoulos C., Manetti P. and Papadopoulos P,. (1988). Tertiary granitoids from Thrace (Northern Greece): Sr isotopic and petrochemical data. Neues Jahrbuch für Mineralogie Abhandlungen 159.2 113-115.

Dimitriadis S. and A. Godelitsas, (1991). Evidence for high pressure metamorphism in the Vertiskos Group of the Serbomacedonian Massif: The eclogite of Nea Roda, Chalkidiki., Bull. Geol. Soc. Greece 25.2: 67-80.

Dinter D. A. and L. Royden, (1993). Late Cenozoic extension in northeastern Greece: Strymon Valley detachment and Rhodope metamorphic core complex, Geology, 21, 45-48.

Dipple G.M., Gerdes, M., (1998). Reaction infiltration feedback and hydrodynamics at the skarn front. In: Lentz, D.R. (Ed.), Mineralized Intrusion-Related Skarn Systems, Mineralogical Association of Canada Short Course, 26, 71– 97.

Dion J.E. and Dimitriadis S. (1984). Metamorphosed ophiolitic rocks from the Serbo-Macedonian Massif, near Lake Volvi, North-east Greece, Spec. Publ. Gwl. SOC. London, 17, 603-618.

Duzs-Moore A., Leavens P.B., Jenkins Ii.R.E. and Altounian, N, (2003). Wollastonite at the Sterling Hill Fe–Zn–Mn ore body, Ogdensburg, New Jersey., Mineralogy and Petrology, 79, 225–324. Dúzs-Moore, A.,

Einaudi MT., Meinert LD., Newberry RJ (1981). Skarn deposits. Economic Geology, 75, 317–391.

Einaudi M. T., (1982a). Descriptions of skarns associated with porphyry copper plutons, south western North America, in Titley, S. R. ed., Advances in Geology of the Porphyry Copper Deposits, Southwestern North America: University of Arizona Press, 1592-1606.

Einaudi M.T., (1982). General features and origin of skarns associated with porphyry copper plutons. In: Titley S.R., (Ed.), Advances in geology of porphyry copper deposits. Southwestern North America, University of Arizona Press, Tucson, 185-210.

Einaudi MT. and Burt DM. (eds) (1982). A special issue devoted to skarn deposits – Introduction, terminology, classification and composition of skarn deposits. Economic Geology, 77, 4.

Eleftheriadis G., and H. J. Lippolt. (1984). Altersbestimmungen zum oligozänen Vulkanismus der Süd-Rhodopen/Nord-Griechenland. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte , 3 ,179-191.

Elefteriadis G., (1995). Petrogenesis of the Oligocene volcanicsfrom the Central Rhodope massif (N. Greesce). Eur. J. Mineral. 7, 1169-1182.

Ferry J.M., (1976). Metamorphism of calcareous sediments in the Waterville-Vassalboro area, south-central Maine: mineral reactions and graphical analysis. American Journal Science, 276, 841-882.

Fernandez-Caliani J.C. and Galan E., (1998). Effects of fluid infiltration on wollastonite genesis at the Merida contact-metamorphic deposits, SW Spain. Mineralogy and Petrology, 62, 247–267.

Foland K.A., Landoll J.D., Henderson C.M.B. and Chen J (1993). Formation of cogenetic quartz and nepheline syenites. Geochimica et Cosmochimica Acta, 57, 697-704.

Foose R.M. and Manheim F. (1975). Geology of Bulgaria: a Review, American Association Petrology Geol. Bull., 59, 303-335.

Frass A. (1989). Geologe of the Graben of Petrota (Thrace, NE Greece). In Soldatos K. (ED): Proceedings of the 2nd Hellinic-Bulgarian Sym Thesaloniki 1989, Geologica Rhodopica2, 2, 50-63.

Freda C. Gaeta, M., Giaccio, B., Marra, F., Palladino, D. M., Scarlato, P., & Sottili, G. (2011). CO2-driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy), Bulletin of Volcanology 73, 241-256.

Fulignati P., Marianelli P., Santacroce R. and Sbrana A., (2004). Probing theVesuvius magma chamber host rock interface through xenoliths, Geological Magazine 141, 417-428.

Gaeta M. Di Rocco T. and Freda C. (2009). Carbonate assimilation in open magmatic systems; the role of melt-bearing skarns and cumulate-forming processes, Journal of Petrology, 50, 361-385.

Gerdjikov I. and Milev P. (2005). Nestos Shear Zone and structure of the metamorphic basement in the area south of Mesta graben, SW Bulgaria. C. R. Acad. Bulg. Sci., 58(2), 197-204.

Glazner A.F., (2007). Thermal limitations on incorporation of wall-rock into magma. Geology, 35, 319-322.

Graham C.M,. Valley J.W., Eiler J.M. and Wada H., (1998) Timescales and mechanisms of fluid infiltration in a marble: an ion microprobe study, Contribute Minerology Petrology, 132, 371–389.

Grammatikopoulos T. A. and A. H. Clark, (2005). Petrogenesis of the Platinova skarn in the Belmont domain (Composite Arc Belt, SE Ontario, Canada), Mineralogy and Petrology, 85, 141–161.

Goldsmith J.R. and Newton R.C., (1969). P-T-X relations in the system CaCo3-MgCo3 at the high temperatures and pressures American Journal of Science, 267, 160-190.

Greenwood H. J., (1962). Metamorphic reactions involving two volatile components, Cornegie Institute Washington Yearbook, 61, 82-85.

Greenwood H.J., 1967. Mineral equilibria in the system MgO–SiO2–H2O–CO2. In: Abelson, P.H. (Ed.), Researches in Geochemistry, 2. John Wiley and Sons, New York, 542–567.

Greenwood H. J., (1975). The buffering of pore fluids by metamorphic reactions, American Journal Science, 276, 573-593.

Harkovska A., Marchev P., Machev P. and Pecskay Z. (1998). Paleogene magmatism in the Central Rhodope area, Bulgaria-a review and new data. Acta Vulcanologica, 10, 199-216.

Harkovska A., Y. Yanev, and P. Marchev (1989). General features of the Paleogene orogenic magmatism in Bulgaria. Geologica Balcanica, 37-72.

Harlov D. E and Austrheim H., (2013). Metasomatism and the chemical transformation of rock the role of fluids in terrestrial and extraterrestrial processes. Springer-Verlag Berlin Heidelberg, 203-252.

Himmerkus F., Reischmann T. and Kostopoulos D. (2009). Triassic riftrelated metagranites in the Internal Hellenides, Greece. Geol.Magazine, 146, 252-265.

Innocenti F., Kolios N., Manetti P., Mazzuoli R., Peccerillo G., Rita F. and Villari L. (1984). Evolution and geodynamic significance of the Tertiary orogenic volcanism in northeastern Greece, Bulletin of Volcanology, 47, 25–37.

Ivanov Z, (1988). Apercu general sur l’evolution geologique et structurale du massif des Rhodopes dans le cadre des Balkanides. Bulletin of Society Geological France, 8, 227–240.

Jackson JA. (2005). Glossary of geology. American Geological Institute, Alexandria, 779.

Jolivet L. and J. B. Brun (2010). Cenozoic geodynamic evolution of the Aegean, International Journal of Earth Science, 99, 109–138.

Jones C.E., Tamey J., Baker J.H. and Gerouki F., (1992). Tertiary granitoids of Rhodope, northern Greece: magmatism related to extensional collapse of the Hellenic Orogen, Tectonophysics, 210, 295-314.

Holness B. M. and Graham M. C., (1991). Equilibrium Dihedral angles in the system H2O-CO2- NaCl- calcite, and implications for fluid flow during metamorphism, Contrib Mineralogy Petrology, 108, 368-383.

Ito T., Morimoto N. and Sadanaga R., 1954, On the structure epidote, Acta Cryst., 7, 53-59.

Karfakis, I., and T. Doutsos, (1995). Late orogenic evolution of the Circum-Rhodope Belt, Greece. With 6 figures in the text. Neues Jahrbuch fur Geologie und Palaontologie-Monatshefte 5, 305.

Keiter M., Ballhaus C. and Tomaschek F., (2011), A new geological map of the Island of Syros (Aegean Sea, Greece): implications for lithostratigraphy and structural history of the Cycladic Blueschist Unit., Geological Society of America, 481, 1-43.

Kerrick DM. (1977). The genesis of zoned skarns in the Sierra Nevada California, Journal of Petrology, 18, 144–181.

Kilias A. and Mountrakis D. (1990). Kinematics of the crystalline sequences in the western Rhodope massif, Geological Rhodope, 2, 100–116.

Kober L., (1928). Der Bau der Erde. Borntraeger, Berlin, 2nd ed., 499 pp

Kolcheva K., Zeljazkova-Panajotova M., Dobrecov N. and Stojanova V., (1986). Eclogites in Central Rhodope metamorphic grou, Geochemisrty, Mineralogy and Petrology, 20–21, 130–144.

Kolceva K. and Eskenazy G., (1988). Geochemistry ofmetaeclogites from the Central and Eastern Rhodope Mts (Bulgaria). Geol. Balcanica, 18 (5), 61-78.

Kolokotroni C., (1992). The emplacement and petrogenesis of the Vrondou granitoid pluton, Rhodope Massif, NE Greece, PhD thesis, University of Edinburgh.

Kotopouli C.N., Pe-Piper G. and Katagas C.G. (1991). The metamorphism and migmatization of the Xanthe-Echinos metamorphic complex, Central Rhodope, Greece, Lithos, 27, 79–93.

Korzhinskii D. S., (1968). The theory of Metasomatic Zoning. Mineral. Deposita (Berl.) 3, 222-231

Korzhinski DS. (1970). Theory of Metasomatic Zoning, Clarendon Oxford.

Krenn K. et al., (2007). Tectonometamorphic evolution of an Alpine (U)HP suture zone within the Greek Rhodope. International Eclogite Field Symposium, Scotland, 63–64. renn, K., Bauer, C., Tirk, H., Puhr, B., Proyer, A., & Hoinkes, G.

Krenn K., (2008). Multiphase subduction and exhumation in the Greek Rhodope. IGC Oslo, Abstract, UHP05425

Krohe A. and Mposkos E. (2002). Multiple generations of extensional detachments in the Rhodope Mountains (northern Greece): evidence of episodic exhumation of high-pressure rocks. In:Blundell DJ, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen, Geological Society of London, 204, 151–178.

Kronberg P., Meyer W. and Pilger A., (1970). Geologie der Rila-Rhodope-Masse zwischen Strimon und Nestos (Nordgriechenland), Beiheffe Geology, 88, 133-180.

Kronberg P. and Raith M., (1977). Tectonics and metamorphism of the Rhodope crystalline complex in the eastern Greek Macedonia and parts of western Thrace. National Journal of Geolology Pal Monat, 45, 697–70.

Kyriakopoulos K. (1987). A geochronological, geochemical and mineralogical study of some Tertiary plutonic rocks of the Rhodope massif and their isotopic characteristics. University of Athens.

Leake B.E., Woolley A.R., Birch W.D., Burke E.A., Ferraris G., Grice J.D. and Stephenson N.C., (2004). Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature, American Mineralogist, 89, 883–887.

Liati A., (1986). Regional metamorphism and overprinting contact metamorphism of the Rhodope zone, near Xanthi, N. Greece: petrology, geochemistry, geochronology, Technology University Braunschweig, Germany.

Liati A. and Kreuzer H., (1990). K-Ar dating of metamorphic and magmatic rocks from the Xanthi and Drama areas, Greek part of the Rhodope zone (abstract). European Journal of Mineralogy, 2, 161.

Liati A. and Mposkos E., 1989. Petrological evolution of the eclogites of Rhodope, N. Greece, Third Intern. Eclogite Conference, Wfirzburg (Abstract).

Liati A. and Mposkos, E., (1990). Evolution of the eclogites in the Rhodope zone of northern Greece, Lithos, 25, 89-99.

Liati A. and Seidel E., (1994). Sapphirine and högbomite in overprinted kyanite-eclogites of central Rhodope, N. Greece: first evidence of granulite-facies metamorphism. Eur J Mineral 6, 733–738.

Liati A. Gebauer D. and Wysoczanski R. (2002). U–Pb SHRIMP-dating of zircon domains from UHP mafic rocks in the Rhodope zone (N’ Greece); evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism, Chemical Geology, 184, 281–300.

Liati A., (2005). Identification of repeated Alpine (ultra) high-pressure metamorphic events by U-Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of Nothern Greece, Contribution Mineralogy Petrology, 150, 608-630.

Lips AL.W. et al., (2000). Middle-late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece, Geodin Acta 13, 281–292.

Locock A.J., (2008). An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets, Computers and Geosciences, 34.

Marchev P., Lilov P., Amov B., Arnaudov V. and Yordanov Y., (1989). Major, trace element, and isotopic (Sr, Pb) zonality in the Eocene–Oligocene Rhodopes Magmatic Zone: evidence for subduction processes and crustal influence. XIV Congress of the Carpathian–Balkan Geological Association, Sofia, extended abstracts

Marchev P. and S. Shanov, (1991). Potassium and silica variations in the Paleogenic Macedonian–Rhodope–North Aegean Volcanic Belt: geodynamic and petrogenetic implications. Geologica Balcanica 21.2, 3-11.

Marchev P., Larson P., Rogers G., Vaselli O. and Raicheva R., 1994. Crustal thickness control on the Sr, Nd and O isotopic variation in the Macedonian–Rhodope–North Aegean magmatic belt (MRNAMB). International volcanol congress (IAVCEI), Ankara.

Machev P., Peytcheva I., Kostitsyn Y. and Rashkova, G., (2000). Magma mingling and mixing in the Teshovo granitoid pluton (south Pirin Mnts., Bulgaria.): II. Isotope-geochemical evidence. Annuaire de l’Université de Sofia, Faculté de Géologie et Géographie, 93, 163-172. chev, P.,

Marchev P., Kaiser-Rohrmeier M., Heinrich C., Ovtcharova M., von Quadt A. and Raicheva R., (2005). Hydrothermal ore deposits related to post-orogenic extensional magmatism and core complex formation: The Rhodope massif of Bulgaria and Greece, Ore Geology Review, 27, 53-89.

Machev P. and Kolcheva K., (2008). Eclogites from Arda tectonic unit— mineralogy and evidence for short leaved granulite facies overprint. In: Proceedings of national conference Sofia, Geosciences, 49–50.

Melfos V. et al. (2002). Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Mineralium Deposita 37.6-7, 648-668. elfos, V., Vavelidis, M., Christofides, G., & Seidel, E

Melfos V. and Voudouris P., (2012). Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals 2.4, p. 300-317.

Meinert L.D., (1995). Compositional variation of igneous rocks associated with skarn deposits- Chemical evidence for a genetic connection between Petrogenesis and mineralization. In: Thompson, J.F.H., (Ed.) magmas, Fluids and Ore Deposits. Mineralogical Association of Canada, Short Course Series, 23, 400-418.

Meinert LD., (1992). Skarns and skarn deposits. Geoscience Canada 19:145–162.

Meinert LD., Dipple G.M and Nicolescu S., (2005). World skarn deposits, Economic Geology 100th Anniversary, 299–336.

Meyer W., (1968). Alterstellung des Plutonismus im Südteil der Rila‐ Rhodope‐Masse, Geological Paleontology, 2, 177–192.

Michailidis K., Sofianska E., Михайлидис К. and Софиянска Е., 2010, Spheroidal and radiating aggregates of Mn-pyroxenoids in the Olympias carbonate-hosted polymetallic sulphide ore deposit, E. Chalkidiki peninsula, N. Greece, Bulgarian Geological Society, 59-68.

Mitchell, A.H.G., (1996). Distribution and genesis of some epizonal Zn–Pb and Au provinces in the Carpathian–Balkan region. Transactions of the Institution of Mining and Metallurgy (Section B, Applied Earth Science) 105, 127–138.

Mitchell, A.H.G., Carlie, J.C., (1994). Mineralization, antiforms and crustal extension in andesitic arcs. Geological Magazine 131,231–242.

Mokhtari M.A.A., (2012). The mineralogy and petrology of the Pahnavar Fe skarn, in the eastern Azarbaijan, NW Iran, Central European Journal of Geosciences, 4, 572-591.

Mollai, Habib, Georgia Pe-Piper and Rahim Dabiri, (2014), Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran., Geologica Carpathica, 65, 209-227.

Mollo S., Gaeta M., Freda C., Di Rocco T., Misiti V. & Scarlato P., (2010). Carbonate assimilation in magmas: a reappraisal based on experimental petrology, Lithos, 114, 503-514.

Morimoto N., (1988). Nomenclature of pyroxenes, American Mineralogist, 7, 1123-1133.

Mposkos E., Papadopoulos P. and Perdikatsis V., 1986, The Rhodope crystalline basement east of Komotini, Bull Geological Society Greece, XX (2), 259-273 (in Greek with English summary).

Mposkos E., (1989). High-pressure metamorphism in gneisses and politic schists in the East Rhodope Zone, Nothern Greece, Mineral. Petrol., 41, 15-39.

Mposkos E., (1998). Cretaceous and Tertiary tectonometamorphic events in Rhodope zone (Greece). Petrological and geochronological evidences, Bulletin of the Geological Society of Greece, 32, 59-67.

Mposkos E. and Kostopoulos D., (2001). Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established, Earth and Planetary Science Letters, 192, 497-506.

Mposkos E. and Liati A., (1993). Metamorphic evolution of metapelites in the high-pressure terrane of the Rhodope zone, Northern Greece, Canadian Mineralogy, 31, 401 – 424.

Mposkos E. and Krohe A., (2000), Petrological and structural evolution of the continental high pressure (HP) metamorphic rocks in the Alpine Rhodope Domain (N. Greece), Panayides, L, Xenipontos C. andMalpas,J. (eds) Proceedings of the 3rdInterantion Conf. on the Geology of the Eastern Mediterranean (Nicosia, Cyprus). Geological Survey, Nicosia, Cyprus, 221-232.

Newbwrry R.J., (1983). The formation of subcalcic garnet in sheelite-bearing skarns, Canadian Mineralogist, 21, 529-544.

Newberry RJ., (1991). Scheelite-bearing skarns in the Sierra Nevada region, California. Contrasts in zoning and mineral compositions and tests of the infiltration metasomatism theory. In Barto- Kyriakidis (ed) Skarns – their genesis and metallogeny, Theophrastus Publications, Athens, 343–384.

Neiva A.M.R., Christofides, G., Eleftheriadis and G., Soldatos, T., (1996). Geochemistry of granitic rocks and their minerals from the Kavala pluton, Northern Greece. Chemie der Erde 56, 117–142 Papanikolaou D, 1984, The three metamorphic belts of the Hellinides: a review and a kinematic interpaetation., Special Publication Geological Society of London, 17, 551-561.

Nimfopoulos M. and R. Pattrick., (1989). "Mineralogical evolution of the mineralization at K." Nevrokopi-Drama, Greece. Geol Rhodopica 1, p. 444-452.

Nymphopoulos M.K. and Pattrick R.A., (1991). Mineralogical and textural evolution of the economic manganese mineralization in western Rhodope massif, N.Greece, Minerological Magazine, 55, 423-434.

Papachristodoulou C., Oikonomou A., Ioannides K. and Gravani K., (2006). A study of ancient pottery by means of X-ray fluorescence, multivariate statistics and mineralogical analysis. Analytica Chimica Acta 573-574 347-353.

Papanikolaou D. and Panagopoulos A., (1981). On the structrural style of Southern Rhodope, Geological Balcan. 11, 13-22.

Papanikolaou D., Sassi F.P. and Scarpelis N., (1982). Outlines of the Pre-Alpine Metamorphisms in Greece: In Sassiand Varga edits., IGCP No 5, Newsletter 4, 56-62.

Perraki M., Proyer A., Mposkos E., Kaindl R. and Hoinkes, G., (2006). Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece, Earth and Planetary Science Letters 241, 672–685.

Petrik I. et al., (1995). Granitoid allanite-(Ce): Subsitution relations, redox conditions and REE distributions (on aexample of I-type granitoids, western Carpathians, Slovakia), 46, 79-94.

Peytcheva I. and A. von Quadt, (2004). Metagranitoids from the eastern part of the central Rhodopean Dome (Bulgaria): U-Pb, Rb-Sr and 40Ar/39Ar timing of emplacement and exhumation and isotope-geochemical features, Mineral. Petrol., 82, 1–31.

Piochi M., Ayuso R.A., De Vivo B. and Somma R. (2006). Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma Vesuvius volcano, Italy; geochemical and Sr isotope evidence. Lithos, 86, 303-329.

Pirajno F., (2009). Hydrothermal Processes and Mineral Systems, Geological Survey of Western Australia.

Pronost J., Harris C. and Pin, C.et al., (2008). Relationship between footwall composition, crustal contamination, and fluid rock interaction in the Platreef, Bushveld Complex, South Africa. Mineralium Deposita 43, 825-848.

Ricou, L. E. (1998). Rhodope and Vardar: The metamorphic olistostromic paired belts related to the Cretaceous subduction under Europe, Geodin. Acta, 11, 285– 309.

Rose A. and Burt D., (1979). Hydrothermal alteration. In: Barnes H.L.(Ed.): Geochemistry of hydrothermal ore deposits. 2nd edit. John Wiley 8, 173—235.

Rosen O., Desmons J. and Fettes D., (2007). Metacarbonate and related rocks. Provisional recommendations by the IUGS subcommission on the systematics of metamorphic rocks. Version of 01.02.07.

Sapountzis E. and Christofides G., (1982). A calcium-poor rhodonite from Xanthi (N. Greece). Mineralogical Magazine 46.340, 337-340.

Sengupta P., Dutta U., Bhui U. K. and Mukhopadhyay D. (2009). Genesis of wollastonite and grandite-rich skarns in a suite of marbles-calc-silicates rocks fron Sittampundi, Tamil Nadu: constrains on the P-T-fluid regime in the parts of the Pan-African mobile belt of South India, Miner Petrology, 95, 179-200.

Shand, S. J., (1930). Limestone and the origin of felspathoidal rocks: an aftermath of the Geological Congress. Geological Magazine 67, 415-427.

Smith M. and Henderson, (2000). Fluid Evolution and The Formation and Alteration of Allanite in Skarn from the Beinn an Dhubaich Granite Aureole, Skye, Journal of Conference Abstracts, 5(2), 939.

Smirnov VI., (1976). Geology of mineral deposits. MIR, Moscow.

Sofianska E., Michailidis K., Trontsios G., Kassoli-Fournaraki A., Софиянска Е., Михаилидис К. and Касоли-Фурнараки А., (2008). Contamination of the Xiropotamos stream sediments (Drama district, Western Rhodope massif, Northern Greece) by mining and manganese ore processing activities, Review of the Bulgarian Geological society, 69, 39-47.

Sokoutis D., Brun J. , Van Den Driessche J. and Pavlides S., (1993). A major Oligo-Miocene detachment in southern Rhodope controlling north Aegean extension. J. Geol. Sot., London 150, 243-2.

Soldatos, T., Poli G., Christofides G., Eleftheriadis G., Koroneos A. and Tommasini S., (1998). Petrology and evolution of transitional alkaline-subalkaline granitoids from Vrondou (NE Greece): evidence for fractional crystallization and magma mixing. Acta Vulcanologica, 10, 319-330.

Soldatos T. and Cluistofides G., (1986). Rb- Sr geochronology and origin of the Elatia Pluton, Central Rhodope, North Greece, Geology Balcunicu, 16 (l), 15-23.

Stoyanov, R., (1979). Metallogeny of the Rhodope central massif. Nedra, Moscow. 180 pp. (in Russian).

Surour A. and Moufti M. B A., (2011). A new occurrence of garnetiferous skarn rocks in Saudi Arabia: a case study from Bahrah area, Jeddah–Makkah Al Mukaramah highway, Arab J Geoscience, 4, 879–897.

Tanner S.B., Kerrick D.M. and Lasaga A.C, (1985). Experimental kinetic study of the reaction calcite+quartz wollastonite+carbon dioxide, from 1 to 3 kilobars and 500 to 800 8C. American Journal of Science, 285, 577– 620.

Theodorikas S., (1982). The mineralogy, petrology and geochemistry of the Serres-Drama granitic complex, northern Greece. PhD Thesis, University of Keele, and Scientific Annales of the Faculty of Physics-Mathematics, University of Thessaloniki, 22, no.28, Thessaloniki. 1983, 415.

Tilley C.E., (1951). The zoned contact-skarns of the Broadford area, Skye:A study of boron-fluorine metasomatism in dolomites. Mineralogical Magazine, 214, 621-666.

Tornebohm AE., 1875, Geognostisk beskrifning ofver Persbergets Grufvefalt: Sveriges Geologiska Undersokning. Norstedt, Stockholm, 21.

Tracy R. J. and Frost B. R., (1991). Phase equilibria and thermobarometry of calcareous, ultramafic and mafic rocks and iron formations, Reviews in mineralogy, 26, 207-290.

Valley J.W., Petersen E.U., Essene E.J. and Bowman J.R., (1982). Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C-O-H-F fluid compositions, American Mineralogy, 67, 545-557.

Valley J.W., Peacor D.R., Bowman J.R., Essene E.J. and Allard M.J., (1985). Crystal chemistry of a magnesium vesuvianite and implication of phase equilibria in the system CaO–MgO–Al2O3–SiO2–H2O–CO2. Journal of Metamorphic Geology, 3, 137– 153.

Van den Kerkhof AM, Hein UF., (2001). Fluid inclusion petrography. Lithos 55:27–47.

Voudouris P., Melfos V., Spry P.G., Moritz R., Papavassiliou C. and Falalakis G., (2011). Mineralogy and geochemical environment of formation of the Perama Hill high-sulfidation epithermal Au-Ag-Te-Se deposit, Petrota Graben, NE Greece. Mineralogy and Petrology 103.1-4 79-100.

Voudouris, P., Constantinidou S., Kati M., Mavrogonatos C., Kanellopoulos C. and Volioti E., (2013), Genesis of Alpinotype Fissure minerals from Thassos island, northern Greece. Mineralogy, mineral chemistry and crystallizing environment., Bulletin of the Geological Society of Greece 47 .

Vyhnal C.R., McSween Jr H.Y. and Speer J.A., (1991). Horneblende chemistry in southern Appalachian granitoids: implications for aluminum horneblende thermobarometry and magmatic epidote stability, American Mineralogy, 76, 176-188. Wenzel T. et al. (2002). Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko^Dovyren intrusion (North Baikal Region, Russia). Journal of Petrology 43, 2049-2074.

Wilkinson J., (2001), Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229–272.

Zachos S. and Dimadis E., (1983). The gwtectonic position of the Skaloti-Echinos granite and its relationship to the metamorphic formations of Greek Western and Central Rhodope, Geol. Balcanica, 13 (5), 17-24.

Zagorchev I., Lilov S. and Moorbath S., (1987). Radiochronological data on the Alpine igneous activity in the wastern part of the Rhodope Massif, Geological Balcanica, 17/2, 59-71.

Zharicov V. A., (2009). Skarns (Part 1).

Zidarov N. G. and P. Nenova, (1995). Basic and ultrabasic rocks and related eclogites from Serbo-Macedonian massif (SW Bulgaria). Proceeding of the XV Congress of the CBGA, Athens.

Zhiyu Z., Yangson D. and Jing Z., (2013). Alteration, mineralization and genesis of the zoned Tongshan skarn-type copper deposit, Anhui, China, Ore Geology Reviews, 53, 489-503.

www.link.springer.com/article/10.1007%2Fs00531-008-0409-x?LI=true#page-1

www.mindata.com

www.sciencedirect.com/science/article/pii/S0016703707005546#

www.sciencedirect.com/science/article/pii/S0009281912000669

www.webmineral.com


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.