[Εξωφυλλο}

Συνοπτική και αριθμητική μελέτη βαρομετρικών χαμηλών με χαρακτηριστικά τροπικού κυκλώνα στη Μεσόγειο

Χρυσόστομος Παρανός-Λιόλιος

Περίληψη


Η παρούσα εργασία μελετά την ύπαρξη και την ανάπτυξη βαρομετρικών χαμηλών με χαρακτηριστικά τροπικού κυκλώνα στη Μεσόγειο (Μεσογειακοί Τυφώνες – Μ.Τ.). Η εμφάνιση τέτοιων συστημάτων στη Μεσόγειο δεν είναι συχνή (περίπου 1.5 Μ.Τ. ανά έτος σύμφωνα με τη διεθνή βιβλιογραφία) και η αρχική αναγνώρισή τους γίνεται μέσω των δορυφορικών εικόνων. Αρχικά μελετήθηκαν τρεις περιπτώσεις (27/01/2009, 06/04/2009 και 08-09/11/2011) συστημάτων που εμφάνισαν ενδείξεις Μ.Τ. (όπως  κυκλωνική κυκλοφορία και ανέφελη περιοχή στο κέντρο τους). Έπειτα από έρευνα που πραγματοποιήθηκε με τις υψηλής χωρικής διακριτοποίησης παγκόσμιες επιχειρησιακές αναλύσεις του Ευρωπαϊκού Κέντρου Μεσοπρόθεσμων Προγνώσεων καιρού (ECMWF), διαπιστώθηκε ότι μόνο μία περίπτωση (08/11/2011 06UTC έως 9/11/2011 06UTC) εμφάνιζε ξεκάθαρα χαρακτηριστικά τροπικού κυκλώνα. Το “μητρικό” βαρομετρικό χαμηλό δημιουργήθηκε την 4η Νοεμβρίου 2011 στην Ισπανία πάνω από τα Πυρηναία όρη. Αιτία της κυκλογένεσης θεωρείται η ύπαρξη μιας βαθιάς ύφεσης στον ανατολικό Ατλαντικό ωκεανό συνοδευόμενη από μετωπική δραστηριότητα που προκάλεσε τη δημιουργία αποκομμένης ύφεσης στο δυτικό άκρο της Ευρωπαϊκής ηπείρου. Στη συνέχεια η ύφεση κινήθηκε πάνω από τη θάλασσα όπου και εμφάνισε χαρακτηριστικά τροπικού κυκλώνα στις 08/11/2011 06UTC ενώ μία ημέρα μετά πέρασε πάνω από την ξηρά στη νότια Γαλλία και σταδιακά διαλύθηκε, διατηρώντας χαρακτηριστικά Μ.Τ. για 24 ώρες. Έντονες ανοδικές κινήσεις σχετίζονταν με νέφη κατακόρυφης ανάπτυξης που προκάλεσαν ισχυρές βροχοπτώσεις τόσο στη θάλασσα όσο και στις ηπειρωτικές περιοχές πλησίον του κυκλώνα (Belauntza-Ισπανία, 350 χιλιοστά, Alghero-Ιταλία, 118 χιλιοστά, Τουλόν-Γαλλία, 193.2 χιλιοστά). Για την πληρέστερη μελέτη του συστήματος έγιναν πειράματα ευαισθησίας με το μη-υδροστατικό περιοχικό αριθμητικό μοντέλο πρόγνωσης καιρού Weather Research and Forecasting Model (WRF - ARW) και χωρική διακριτοποίηση 5 χλμ x 5 χλμ. Στο πείραμα ελέγχου, εφαρμόστηκε το σχήμα ανωμεταφοράς Betts-Miler-Janjic το οποίο εμφάνισε καλύτερα αποτελέσματα από το σχήμα Kain-Fritsch και παρόμοια αποτελέσματα με αυτά ενός πειράματος με απενεργοποιημένο το σχήμα ανωμεταφοράς. Η ανάλυση των αριθμητικών πειραμάτων έδειξε ότι οι ροές θερμότητας και η τοπογραφία της Ιβηρικής Χερσονήσου δεν έπαιξαν σημαντικό ρόλο στη δημιουργία του “μητρικού” χαμηλού, αλλά συντέλεσαν σημαντικά στην ανάπτυξή του ως Μ.Τ.

This study investigates the existence and development of low pressure systems with tropical cyclone characteristics, in the Mediterranean region (MEDIterranean hurriCANES - medicanes). The occurrence of such systems in the Mediterranean is not common (approximately 1.5 cases per year according to the international literature) and they are identified through satellite images. At first, three low-pressure systems (27/01/2009, 06/04/2009 and 08-09/11/2011) with medicane signs, such as cyclonic circulation and a free-cloud central region, were investigated. The examination of the high resolution global operational analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed that only one case (08/11/2011 06UTC to 9/11/2011 06UTC) exhibited obvious tropical cyclone characteristics. Its “parent” low-pressure system formed on November 4 2011, in Spain over the Pyrenees Mountains. The cyclogenesis was associated with a deep frontal depression in the Atlantic Ocean which caused a cut-off low over western Europe. Afterwards, the cyclone moved over the sea where it started to exhibit hurricane-like characteristics on 08/11/2011 06UTC and it was upgraded to a medicane. One day later it made landfall over southern France and gradually dissolved, keeping its medicane status for 24 hours. Heavy precipitation associated with deep convection was observed both over sea and inland areas in the vicinity of the system (Belauntza-Spain, 350mm, Alghero-Italy, 118mm, Toulon-France, 193.2mm). For the better investigation of the system, sensitivity experiments were carried out with the non-hydrostatic limited area numerical weather prediction model Weather Research and Forecasting (WRF - ARW) and a grid spacing of 5 km x 5 km. The control run employed the Betts-Miler-Janjic convective parameterization which produced better results than Kain-Fritsch scheme and similar evolution of the medicane with an experiment in which the convective parameterization was turned off. The analysis of the numerical experiments showed that the surface heat fluxes and the topography of Iberian Peninsula were very important for the development of the medicane.


Πλήρες Κείμενο:

PDF

Αναφορές


Aebischer, U. and C., Schar (1998). Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55, 186–207.

Alpert, P. and B., Ziv (1989). The Sharav cyclone: Observations and some theoretical considerations. J. Geophys. Res., 94, 18 495–18 514.

Alpert, P., B.U., Neeman and Y., Shay-El (1990): Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus, 42A, 65–77.

Bergeron, T. (1954). The problem of tropical hurricanes. Quart. J . Roy. Meteor. Soc., 80, 131-164.

Betts, A. K. (1986). A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-692.

Betts, A. K. and M.J., Miller (1986). A new convective adjustment scheme. Part II: Single column tests using GATE-wave, BOMEX, ATEX, and Arctic Airmass data sets. Quart. J. Roy. Meteor. Soc., 112, 693-710.

Blier, W. and Q., Ma (1997). A Mediterranean Sea hurricane?. In Preprints, 22nd Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., 592–595.

Burpee, R.W. (1986). Mesoscale structure of hurricanes. Mesoscale Meteorology and Forecasting, P.S. Ray, Ed., Amer. Meteor. Soc., 311-330.

Businger, S. (1985). The synoptic climatology of polar low outbreaks. Tellus 37A, 419-432.

Businger, S. and R.J., Reed (1989). Cyclogenesis in cold air masses. Weather Forecast. 4, 133–156.

Buzzi, A. and S., Tibaldi (1978). Cyclogenesis in the lee of the Alps: a case study. Quart. J. Roy. Meteor. Soc., 104, 271–287.

Charney, J. G. and A., Eliassen (1964). On the growth of the hurricane depression. J. Atmos. Sci., 21, 68-75.

Chen, F. and J., Dudhia (2001). Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. National Center for Atmospheric Research, Boulder, Colorado.

Conte, M. (1986). The meteorological bomb in the Mediterranean: a synoptic climatology. Rivista di Meteorologia Aeronautica, 46, 314: 121–130.

Craig, G.C. and S.L., Gray (1996). CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 3528–3540.

Egaña, J., S., Gaztelumendi, M., Ruiz, R., Hernández, I.R., Gelpi and K., Otxoa de Alda (2013). A study of flood episode in Basque country. 7th European Conference on Severe Storms, Helsinki, Finland.

Egger, J. (1988). Alpine lee cyclogenesis-Verification of theories. J. Atmos. Sci., 45, 2187–2203.

Emanuel, K.A. (1987): An air-sea interaction theory for tropical cyclones. J. Atmos. Sci., 43, 585-605.

Emanuel, K.A. (1987): An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324-2340.

Emanuel, Κ.Α. (1994). Atmospheric Convection. Oxford Univ.Press, Oxford.

Emanuel, K.A. (1995). Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.

Emanuel, K.A. (1997). Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014-1026.

Emanuel, K.A. (2005). Genesis and maintenance of ”Mediterranean hurricanes”.

Adv. in Geos., 2, 217–220.

Ferrier, B. S., Y. Jin, T. Black, E. Rogers and G. DiMego (2002). Implementation of a new grid-scale cloud and precipitation scheme in NCEP Eta model. Preprints, 15th Conf. on Nu-merical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280-283.

Flocas, H.A. and T.S., Karacostas (1996). Cyclogenesis over the Aegean Sea: Identifications and synoptic categories. Meteor. Appl., 3, 53–61.

Fita, L., R., Romero, A., Luque, K., Emanuel and C., Ramis (2007). Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat. Hazards Earth Syst. Sci., 7, 41–56.

Fita, L., R., Romero, A., Luque and C., Ramis (2009). Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms. Ann. Geophys., 27, 3297–3319.

Frisius, T. (2006). Surface-flux-induced tropical cyclogenesis within an axisymmetric

atmospheric balanced model. Quart. J. Roy. Meteor. Soc., 132, 2603–2623.

Genoves, A. and A., Jansa (1991). The use of potential vorticity maps in monitoring shallow and deep cyclogenesis in the Western Mediterranean. WMO/TD No 420, 55–65.

Gilliland, E. and M., Rowe (2007). A comparison of cumulus parameterization schemes in the WRF model. Preprints, 21 Conf. on Hydrology, San Antonio, TX, Amer. Meteor. Soc., P2.16.

Gray, W.M. (1979). Hurricanes: Their formation, structure and likely role in the tropical circulation, Meteorology Over Tropical Oceans. D. B. Shaw (Ed.), Roy. Meteor. Soc., James Glaisher House, Grenville Place, Bracknell, Berkshire, RG12 1BX, 155-218.

Grenos, S., A., Foss and M., Lystad (1987). Numerical simulations of polar lows in the Norwegian Sea. Tellus 39A, 334-353.

Harrold, J.W. and Browning, K. A. (1969). The polar low as a baroclinic disturbance. Quart. J. Roy. Meteor. Soc., 95, 71-723.

Hawkins, H.F. and D.T. Rubsam (1968). Hurricane Hilda, 1964 : II Structure and budgets of the hurricane on October 1, 1964, Mon. Wea. Rev., 104, 418-442.

Holton, J.R. (1972). An Introduction to Dynamic Meteorology. Academic Press, New York, 319.

Homar, V., C. Ramis, R. Romero and S. Alonso, J. A. García-Moya, and M. Alarcón, (1999). A case of convection development over the western Mediterranean Sea: A study through numerical simulations. Meteor. Atmos. Phys., 71, 169-188.

Homar V, C., Ramis and S., Alonso (2002). A deep cyclone of African origin over the western Mediterranean: diagnosis and numerical simulation. Ann. of Geophys., 20, 93–106.

Homar, V., R., Romero, D., Stensrud, C., Ramis and S., Alonso (2003). Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: Dynamical vs. boundary factors, Quart. J. Roy. Meteor. Soc., 129, 1469–1490.

Hoskins, B.J., M.E., McIntyre and A.W., Robertson (1985). On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946.

Hoskins, B.J. and P., Berrisford (1988). A potential vorticity perspective on the storm of 15–16 October 1987. Weather, 43, 122–129.

Hoskins, B.J. and K.I., Hodges (2002) New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 (6), 1041-1061.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough and W. D. Collins (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

Janjic, Z.I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945.

Janjic, Z. I. (2000). Comments on “Development and Evaluation of a Convection

Scheme for Use in Climate Models. J. Atmos. Sci., 57, 3686.

Jorgensen, D.P., E.J., Zispser and M.A., Lemone (1985). Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839-856.

Kain, J.S. and J.M., Fritsch (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.

Kain, J.S., and J.M., Fritsch (1993). Convective parameterization for mesoscale models: The Kain- Fritsch scheme. The representation of cumulus convection in numerical models. Μeteor. Monogr., No. 24, Amer. Meteor. Soc., 165-170

Karacostas, T.S. and A.A., Flocas (1983). The Development of the "Bomb" Over the Mediterranean Area. La Meteorologie, No 33, 351-358.

Karacostas, T.S., D., Brikas, I., Pytharoulis and P., Pennas (2010). Dynamic processes of the Mediterranean bomb of 2004. Proceedings of the 10th conference on Meteorology, Climatology and Atmospheric Physics, 25-28 May, Patras, Greece, 27-35.

Katsafados, P., E., Mavromatidis, A., Papadopoulos and I., Pytharoulis (2011). Numerical simulation of a deep Mediterranean storm and its sensitivity on sea surface temperature. Nat. Hazards Earth Syst. Sci., 11, 1233-1246.

Kerry, A. and Emanuel (1988). Polar lows as arctic hurricanes. Tellus 41A (1989), 1-17

Lagouvardos, K., V., Kotroni, S., Nickovic, D., Jovic and G., Kallos (1999). Observations and model simulations of a winter sub-synoptic vortex over the Central Mediterranean. Meteor. Appl., 6, 371–383.

Lagouvardos, K., V., Kotroni, E., Defer (2007). The 21–22 January 2004 explosive cyclogenesis over the Aegean Sea: observations and model analysis. Quart J. Roy. Meteor. Soc., 133, 1519–1531, DOI: 10.1002/qj.121.

Landsea, C.W., G.D., Bell, W.M., Gray and S.B., Goldenberg (1998). The extremely active 1995 Atlantic Hurricane Season: Environmental Conditions and Verification of Seasonal Forecasts. Mon. Wea. Rev., 126, 1174-1193.

Lawrence, M.B. and E.N., Rappaport (1994). Eastern North Pacific Hurricane Season of 1992. Mon. Wea. Rev., 122 (3), 549–558.

Lorenz, E., (1955). Available potential energy and the maintenance of the general circulation. Tellus, Vol 7, Issue 2, 157–167.

Malkus J. S. and H. Riehl (1960). On the Dynamics and Energy Transformations in Steady-State Hurricanes. Tellus, Vol. 12, 1-20.

Martın, A., R., Romero, V., Homar, A., Luque, S., Alonso, T., Rigo and M., Llasat (2007). Sensitivities of flash flood event over Catalonia: a numerical analysis. Mon. Wea. Rev., 2, 651–669.

McBride, J., and R., Zehr, (1981). Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132–1154.

Meneguzzo, F., M., Pasqui and D., Grifoni (2001). Sensitivity of mesoscale atmospheric modelling to vegetation and leaf area index. LAND surface Satellite Application Facility (LAND-SAF) Document, EUMETSAT.

Miglietta M.M., A., Moscatello, D., Conte, G., Mannarini, G., Lacorata and R., Rotunno (2011). Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res., 101, 412–426.

Moscatello, A., M.M., Miglietta and R., Rotunno (2008). Observational analysis of a Mediterranean “hurricane” over southeastern Italy. Weather, 63, 306-311.

Moulin, C., C.E., Lambert, U., Dayan, V., Masson, M., Ramonet, P., Bousquet, M., Legrand, Y.J., Balkanski, W., Guelle, B., Marticorena, G., Bergametti and F., Dulac (1998). Satellite climatology of African dust transport in the Mediterranean atmosphere. J. Geophys. Res., 103, 13 137–13 144.

Molinari, J., and M., Dudek (1992). Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon. Wea. Rev., 120, 326-344.

Ooyama, K. (1964). A dynamical model for the study of tropical cyclone development. Geofis. Intern. (Mexico), 4, 187-198.

Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3-40

Palmen, E. (1948). On the formation and structure of the tropical hurricane. Geophysica, 3, 26-38.

Perrot, P. (1998). A to Z of Thermodynamics. Oxford University Press. ISBN 0-19-856552-6.

Pettersen, S. (1956). Weather Analysis and Forecasting, Mac Graw Hill, New York.

Pichler, H., R., Steinacker, and A., Lazinger (1990). Cyclogenesis induced by the Alps. Meteor. Atmos. Phys., 43, 21–29.

Prezerakos, N. G., and H.A., Flocas (1996). The formation of a dynamically unstable ridge at 500 hPa as a precursor of surface cyclogenesis in the central Mediterranean. Meteor. Appl., 3, 101–111.

Pytharoulis, I., G.C., Craig, and S.P., Ballard (2000). The hurricane-like Mediterranean cyclone of January 1995, Meteorol. Appl., 7, 261–279.

Pytharoulis, I. (2008). Numerical study of the eastern Mediterannean “bomb” of January 2004, 8th Annual Meeting of the European Meteorological Society and European Conference on Applied Climatology, Amsterdam, Holland

Rasmussen, E. (1979). The polar low as an extratropical CISK disturbance. Quart. J. Roy. Meteor. Soc. 105, 531-549.

Rasmussen, E. (1985). A case study of a polar low development over the Barents Sea. Tellus 37A, 407-418.

Rasmussen, E. and C. Zick (1987). A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus, 39A, 408-425.

Raymond, D. (1994). Cumulus convection and the Madden-Julian oscillation of the tropical troposphere. Physica D, 77, 1-22.

Reed, R.J. (1979). Cyclogenesis in polar airstreams. Mon. Wea. Rev,. 107, 38-52.

Reiter, E. (1975). Handbook for forecasters in the Mediterranean. Part 1: general description of the meteorological processes. Naval Environmental Research Facility, Monterey, California.

Rielh, H., (1963). Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci., 20, 276-287.

Rodwell, M.J. and B.J., Hoskins (1996). Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 1385–1404.

Romero, R., C.A., Doswell III and C., Ramis (2000). Mesoscale numerical study of

two cases of long-lived quasistationary convective systems over eastern Spain. Mon. Wea. Rev., 128, 3731-3751.

Romero, R. and K.A., Emanuel (2013). Medicane risk in a changing climate. J. Geophys. Res. Atmos., 118, 5992–6001, doi:10.1002/jgrd.50475.

Rotunno. Ρ. and K.A., Emanuel (1987).An Air-sea Interaction for Tropical Cyclones. Part II: Evolutionary Study Using Nonhydrostatic Axisymmetric Numerical Model. J. Atmos. Sci., 44, 542-561.

Ruiz, M., J., Egana, S., Gaztelumendi, M., Maruri and I.R., Gelpi (2012). A case study of heavy and persistent rainfall: 4-7 November 2011. ERAD 2012 – The seventh European Conference on radar in meteorology and hydrology.

Sanders, F. and J.R., Gyakum (1980). Synoptic-Dynamic Climatology of the “Bomb”. Mon. Wea. Rev., 108, 1589–16

Sardie, J.M. and W.T., Warner (1985). A numerical study of the development mechanism of polar lows. Tellus 37A, 460-477.

Shapiro, M.A., L.S., Fedor and T., Hampel (1987). Research aircraft measurements of a polar low over the Norwegian Sea. Tellus 39A, 272-306.

Shapiro, L.J. and J.L., Franklin (1995). Potential Vorticity in Hurricane Gloria. Mon. Wea. Rev., 123, 1465-1475.

Shea, D.J. and W.M., Gray (1973) The hurricane’s inner core region: I. Symmetric and asymmetric structure, II: Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 1544-1576.

Smith, R.K., (1980). Tropical cyclone eye dynamics. J. Atmos. Sci., 37, 1227–1232

Speranza, A, A., Buzzi, A., Trevisan and P., Malguzzi (1985). A theory of deep cyclogenesis in the lee of the Alps. Part I: modifications of baroclinic instability by localized topography. J. Atmos. Sci., 42, 1521–1535.

Tafferner (1990). Lee cyclogenesis resulting from the combined outbreak of cold air and potential vorticity against the Alps. Meteor. Atmos. Phys., 43, 1-4, 31-47

Tous, M. and R., Romero (2013). Meteorological environments associated with medicane Development. Int. J. Climatol., DOI: 10.1002/joc.3428

Trigo, I.F., T.D., Davies and G.R., Bigg (1999). Objective climatology of cyclones in the Mediterranean region, J. Climate, 12, 1685–696.

Trigo, I.F., G.R., Bigg and T.D., Davies (2002). Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Wea. Rev., 130, 549-569, DOI: 10.1175/1520-0493.

Wallace, J.M. and P.V., Hobbs (1977). Atmospheric Science – an introductory survey. Academic Press.

Wang, W., D., Barker, J., Bray, C., Bruyère, M., Duda, J., Dudhia, J., Gill and J., Michalakes (2008). WRF-ARW Version 3 Modelling System user’s guide.

Wernli, H. and C., Schwierz (2006). Surface cyclones in the ERA40 data set (1958-2001). Part I: novel identification method and global climatology, J. Atmos. Sci., 63 (10), 2486–2507.

Winstanley, D. (1970). The North African flood disaster, September 1969. J. Roy. Meteor. Soc., 25 (9), 390–403.

Willoughby, H.E. (1995). Mature structure and evolution. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., WMO, 21–62.

Ziakopoulos, D. and A., Marinaki (1996). Mediterranean mesoscale vortices with tropical cyclone features. In Proc. of the 3rd Hellenic Conference on Meteorology, Climatology and Physics of the Atmosphere, 25–27 September, Athens, Greece, 154–159.

Zilitinkevich, S.S. (1995). Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flow. Air Pollution III, Vol. 1, (H. Power, N. Moussiopoulos, and C. A. Brebbia, eds), Computational Mechanics Publ, Southampton, Boston, 1, 53-60.

Zupanski, M. and J., McGinley (1989). Numerical Analysis of the Influence of Jets, Fronts, and Mountains on Alpine Lee Cyclogenesis. Mon. Wea. Rev., 117, 154–176.

Καρακώστας Θ. (2010). Σημειώσεις Δυναμικής Μετεωρολογίας. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Πυθαρούλης Ι. (2010). Σημειώσεις Συνοπτικής Μετεωρολογίας. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Φείδας Χ. (2010). Σημειώσεις Δορυφορικής Μετεωρολογίας. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Μπρίκας, Δ. (2006). Ο υποτροπικός αεροχείμαρρος και η συμβολή του στη δημιουργία και ένταση εξαιρετικών καιρικών φαινομένων στον ευρύτερο ελλαδικό χώρο. Διδακτορική διατριβή, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

http://www.dtcenter.org/wrf-nmm/users

http://www.meted.ucar.edu

http://www.mmm.ucar.edu

http://www.wrf-model.org


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.