[Εξώφυλλο]

Γεωχημική έρευνα για την αναζήτηση Σπανίων Γαιών στο γρανίτη Παρανεστίου (Μάζα Ροδόπης)

Γιάνια Μιχαήλοβιτς

Περίληψη


Η δειγματοληψία έγινε στην περιοχή του Παρανεστίου Δράμας από το διμαρμαρυγιακό γρανίτη (γρανίτης Παρανεστίου) ο οποίος αποτελεί το ανατολικό τμήμα μίας μεγαλύτερης διείσδυσης γνωστή ως BBESP. Η περιοχή γεωτεκτονικά ανήκει στη Μάζα Ροδόπης και η ηλικία της διείσδυσης έχει υπολογιστεί ως Παλαιοκαινική-Ηωκαινική. Λήφθηκαν συνολικά 15 δείγματα, 12 από τα οποία χρησιμοποιήθηκαν για την παρασκευή λεπτών στιλπνών τομών και για τις χημικές αναλύσεις κύριων στοιχείων, ιχνοστοιχείων και REE. Πρόκειται για γρανιτικά και πηγματιτικά δείγματα, τα οποία βρίσκονται κοντά σε σημεία γεωτρήσεων του ΙΓΜΕ όπου εντοπίστηκαν ουρανιούχα ορυκτά. Η ορυκτολογική σύσταση των πετρωμάτων περιέχει χαλαζία, πλαγιόκλαστο, μικροκλινή, βιοτίτη και μοσχοβίτη. Η δράση μεταμαγματικών ρευστών έχει αποτυπωθεί σε πολλά δείγματα με την ύπαρξη αποχρωματισμένων βιοτιτών, σερικιτίωσης, χλωριτίωσης, χαλαζιακών και ασβεστιτικών φλεβών, διάσπαρτου σκουρόχρωμου χαλαζία και σιδηροπυρίτη. Η παρατήρηση των δειγμάτων με τη χρήση του SEM έδειξε ότι σε τρεις από τις δώδεκα τομές εντοπίστηκαν ορυκτά σπανίων γαιών τα οποία περιλαμβάνουν μοναζίτη, αλλανίτη και άλλα, απροσδιόριστα ορυκτά REE. Η μορφή του μοναζίτη και των απροσδιόριστων ορυκτών υποδεικνύει τη δευτερογενή προέλευση τους. Σε στενή σύμφυση με τα ορυκτά αυτά συνήθως βρίσκεται ρουτίλιο. Στα δείγματα δεν έχουν βρεθεί ουρανιούχα ορυκτά. Η συγκέντρωση REE κυμαίνεται από 17.43ppm έως 287.3ppm. Συγκριτικά με τις τιμές προηγούμενων εργασιών μόνο ένα δείγμα φαίνεται να έχει εμπλουτιστεί σε σπάνιες γαίες ενώ εννέα δείγματα φαίνεται να έχουν μειωμένη συγκέντρωση REE. Το ουράνιο και το θόριο εμφανίζουν μέση θετική γραμμική συσχέτιση με τις REE στα δείγματα που αναλύθηκαν ωστόσο, με βάση τα παραπάνω δεδομένα, δεν μπορεί να περιγραφεί η σχέση της συγκέντρωσης ουρανίου με τις REE. Είναι απαραίτητη η επιπρόσθετη μελέτη της περιοχής για τον ακριβή καθορισμό της σχέσης των παραπάνω στοιχείων. Τέλος, η ύπαρξη σημαντικών συγκεντρώσεων REE δεν μπορεί να επιβεβαιωθεί. Ενδέχεται να συντελέστηκε απόσπαση των REE από τα αρχικά ορυκτά και μεταφορά τους μέσω μεταμαγματικών ρευστών σε άλλες περιοχές του γρανίτη με την κρυστάλλωση νέων ορυκτών υπό ευνοϊκές γεωχημικές συνθήκες.

The sampling for this current study was conducted in the region of Paranesti, Drama in N. Greece. The subject of the sampling was the two mica granite (Paranesti granite) that constitutes the eastern part of the BBESP plutonic intrusion. The BBESP pluton intruded the Rhodope Massif approximately at Paleocene-Eocene. Fifteen samples were collected, of which twelve were used for the preparation of thin polished sections and for the chemical analyses. The studied samples consist of granitic and pegmatitic rocks with the sampling region being in the proximity of old drillholes, performed by IGME in search of uranium mineralization. The mineralogical composition includes quartz, plagioclase, microcline, biotite and muscovite. The hydrothermal activity has been imprinted through the existence of bleached biotites, sericitization, chloritization, dark quartz veins, calcite veins and disseminated dark quartz and pyrite. In three thin sections REE minerals have been recognized with the use of SEM. The minerals include allanite, monazonite and undefined REE oxides. Secondary origin of monazite and undefined REE minerals are suggested based on the SEM images. Rutile is commonly found in intergrown with the REE minerals. No uranium minerals were detected. The REE concentration values range between 17.43-287.3ppm. Comparing to the reported REE concentration in other studies, only one sample is enriched in REE while 9 samples have values lower than the average mean. Thorium and uranium exhibit positive linear correlation with the REE. Taking into consideration all the available data, no conclusions can be made about the relationship of the uranium mineralization with the REE and about a possible existence of REE mineralization. Further studies must be conducted in order to determine the relationship of uranium and REE. An initial hypothesis involves the REE extraction from primary minerals under the influence of post-magmatic fluids and the re-deposition under favorable geochemical conditions.

Πλήρες Κείμενο:

PDF

Αναφορές


Έντυπη Βιβλιογραφία

Boynton, W.V. (1984). Geochemistry of the rare-earth elements: meteorite studies. In: Henderson, P. ed. Rare Earth Element Geochemistry. Elsevier, Amsterdam.

Brun, J. P., Sokoutis, D. (2007). Kinematics of the southern Rhodope core complex (North Greece). International Journal of Earth Sciences, 96(6), 1079-1099.

Castor, S. B., Hedrick, J. B. (2006). Rare earth elements. Industrial minerals volume, 7th edition: Society for mining, metallurgy, and exploration, Littleton, Colorado, 769-792.

Chang L.LY, Howie R.A., Zussman L. (1990). Rock foming minerals: Non-silicates (2nd edition). 5B.

Chen, Z. (2011). Global rare earth resources and scenarios of future rare earth industry. Journal of rare earths, 29(1), 1-6.

Drew, L. J., Qingrun, M., Weijun, S. (1990). The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos, 26(1), 43-65.

Fanderlik, I., 1991. Silica Glass and Its Application. Elsevier, Amsterdam.

Flem, B., Larsen, R. B., Grimstvedt, A., & Mansfeld, J. (2002). In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182(2), 237-247.

Georgiev, N., Pleuger, J., Froitzheim, N., Sarov, S., Jahn-Awe, S., & Nagel, T. J. (2010). Separate Eocene–Early Oligocene and Miocene stages of extension and core complex formation in the Western Rhodopes, Mesta Basin, and Pirin Mountains (Bulgaria). Tectonophysics, 487(1), 59-84.

Henderson, P. (1984). Rare earth element geochemistry. Elsevier, Amsterdam.

Jaireth, S., Hoatson, D. M., Miezitis, Y. (2014). Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geology Reviews, 62, 72-128.

Jones, C. E., Tarney, J., Baker, J. H., Gerouki, F. (1992). Tertiary granitoids of Rhodope, northern Greece: magmatism related to extensional collapse of the Hellenic Orogen. Tectonophysics, 210(3-4), 295-314.

Kanazawa, Y., Kamitani, M. (2006). Rare earth minerals and resources in the world. Journal of alloys and compounds, 408, 1339-1343.

Kilias, A., Mountrakis, D. (1990). Kinematics of the crystalline sequences in the western Rhodope massif. Geologica Rhodopica, 2, 100-116.

Kotopouli, C. N., Smith, A. Y., Brown, A. A., Lundberg, B. R. (1982). Petrographic relations and uranium distribution in the Skaloti granitoid complex, Paranestion District, Greek Macedonia. Economic Geology, 77(8), 1875-1892.

Krauskopf, K. B., Bird D. K. (1995). Introduction to Geochemistry. McGRAW-HILL INTERNATIONAL EDITIONS, New York, NY.

Krohe, A., Mposkos, E. (2002). Multiple generations of extensional detachments in the Rhodope Mountains (northern Greece): evidence of episodic exhumation of high-pressure rocks. Geological Society, London, Special Publications, 204(1), 151-178.

Leroy, J. L., Turpin, L. (1988). REE, Th and U behaviour during hydrothermal and supergene processes in a granitic environment. Chemical Geology, 68(3), 239-251.

Massari, S., Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36-43.

Meinhold, G., Reischmann, T., Kostopoulos, D., Frei, D., Larionov, A. N. (2010). Mineral chemical and geochronological constraints on the age and provenance of the eastern Circum-Rhodope Belt low-grade metasedimentary rocks, NE Greece. Sedimentary Geology, 229(4), 207-223.

Nassau, K., Prescott, B. E. (1975). A reinterpretation of smoky quartz. Physica status solidi (a), 29(2), 659-663.

Pan, Y., Fleet, M. E., & MacRae, N. D. (1993). Late alteration in titanite (CaTiSiO5): redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochimica et Cosmochimica Acta, 57(2), 355-367.

Papadopoulos A., Christofides G., Koroneos A., Papastefanou C., Stoulos S. (2014) Distribution of 238U, 232Th and 40K in plutonic rocks of Greece. Chemie Erde 74 (4), 749-764.

Papanikolaou, D., Panagopoulos, A. (1981). On the structural style of southern Rhodope, Greece. Geologica Balcanica, 11(3), 13-22.

Pipera, K. (2015). Study of the high potassium magmatism in Northern Greece: implications for the mantle geochemistry and the geodynamic evolution of the area. Unpublished Ph. D. thesis, Aristotle University of Thessaloniki, Thessaloniki, 302pp.

Schandl, E. S., & Gorton, M. P. (2004). A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology, 99(5), 1027-1035.

Sklavounos, S., Filippidis, A. (1989). Meta-autunite and autunite occurrence in the Dipotama granite, Drama, North Greece. Geologica Rhodopica, 1, 431-437

Sokoutis, D., Brun, J. P., Van Den Driessche, J., Pavlides, S. (1993). A major Oligo-Miocene detachment in southern Rhodope controlling north Aegean extension. Journal of the Geological Society, 150(2), 243-246.

Soldatos, T., Koroneos, A., Kamenov, B. K., Peytcheva, I., von Quadt, A., Christofides, G., Sang, H. (2008). New U-Pb and Ar-Ar mineral ages for the Barutin-Buynovo-Elatia-Skaloti-Paranesti batholith (Bulgaria and Greece): refinement of its debatable age. Geochem Mineral Petrol, 46, 85-102.

Soldatos, T., Koroneos, A., del Moro, A., Christofides, G. (2001). Evolution of the Elatia plutonite (Hellenic Rhodope Massif, N. Greece).Chemie der Erde-Geochemistry, 61(2), 92-116.

Turpaud, P. (2006). Characterization of igneous terranes by zircon dating: implications for the UHP relicts occurrences and suture identification in the Central Rhodope, Northern Greece. Unpublished Ph. D. thesis, Johannes-Gutenberg-Universität, Mainz, 107pp.

Uher, P., Ondrejka, M., Bačík, P., Broska, I., & Konečný, P. (2015). Britholite, monazite, REE carbonates, and calcite: Products of hydrothermal alteration of allanite and apatite in A-type granite from Stupné, Western Carpathians, Slovakia. Lithos, 236, 212-225.

Vlach, S. R., Gualda, G. A. (2007). Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos, 97(1), 98-121.

Voncken, J. H. L. (2016). The Rare Earth Elements: An Introduction. Delft: Springer

Zhongxin, Y., Ge, B., Chenyu, W., Zhongqin, Z., Xianjiang, Y. (1992). Geological features and genesis of the Bayan Obo REE ore deposit, Inner Mongolia, China. Applied Geochemistry, 7(5), 429-442.

Θεοδόσογλου Ε., Κορωναίος Α., Σολδάτος Τ., Σκλαβούνος Σ. (2001). Γεωχημεία και πετρογένεση του γρανίτη του Παρανεστίου (Κεντρική Ροδόπη). 2ο Συνέδριο της επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας & Γεωχημείας, 84-94.

Λυμπεροπούλου, Θ. (1996). Προσδιορισμός και ανάκτηση σπάνιων γαιών από βωξίτες και ερυθρά ιλύ. Διδακτορική Διατριβή, Χημικό Πανεπιστήμιο Πατρών, Πάτρα, 183σ

Σκλαβούνος, Σ. (1981). Ο γρανίτης του Παρανεστίου (Ορυκτολογία-Πετρογραφία). Διδακτορική Διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Θεσσαλονίκη, 175σ.

Ηλεκτρονική Βιβλιογραφία

Rare Earth Elements (2011) Ανακτήθηκε από www.mineralsUK.com


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.