[Εξώφυλλο]

Δορυφορική μελέτη μαρομετρικών χαμηλών με χαρακτηριστικά τροπικού κυκλωνα στην Μεσόγειο

Κρυσταλλία Δημητριάδου

Περίληψη


Η παρουσία κυκλώνων μέσης κλίμακας στη Μεσόγειο, οι οποίοι παρουσιάζουν ομοιότητες με τους τροπικούς κυκλώνες, αν και μικρότερου μεγέθους, είναι γνωστή εδώ και μερικές δεκαετίες. Αυτοί οι κυκλώνες ονομάζονται συνήθως "Μεσογειακoί Κυκλώνες" ή Medicanes και μπορούν να προκαλέσουν σημαντικές καταστροφές έως και ανθρώπινες απώλειες στις περιοχές που επηρεάζουν. Στόχος της παρούσας διπλωματικής εργασίας είναι η δορυφορική μελέτη και ανάλυση ενός κυκλώνα στη Μεσόγειο με χαρακτηριστικά τροπικού κυκλώνα την περίοδο 7-8 Νοεμβρίου 2014. Με τη χρήση των μεθόδων δορυφορικής τηλεπισκόπησης καθώς και προσομοιώσεων αριθμητικών μοντέλων, γίνεται προσπάθεια αποσαφήνισης των διεργασιών που συνέτειναν στη δημιουργία, στην ενδυνάμωση και την περαιτέρω εξέλιξη του Μεσογειακού κυκλώνα. Χρησιμοποιήθηκαν δεδομένα εικόνων και προϊόντων βροχόπτωσης τριών δορυφόρων καθώς και το αριθμητικό μοντέλο WRF για τη προσομοίωση του κυκλώνα. Το σύστημα βρέθηκε να εμφανίζει διακοπτόμενη δραστηριότητα ανωμεταφοράς, με ισχυρότερη στα στάδια της δημιουργίας του και της ανατροφοδότησής του πριν τη Σικελία. Τα μικροφυσικά χαρακτηριστικά των νεφών αποκάλυψαν νέφη με μεγάλη περιεκτικότητα σε παγοκρυστάλλους γύρω από τον κυκλωνικό κέντρο στα στάδια έντονης ανωμεταφοράς. Αποδείχτηκε ο ρόλος των ροών λανθάνουσας θερμότητας στην ισχυροποίησή του κυκλώνα αλλά και στην αύξηση της ανωμεταφοράς στις σπειροειδής ζώνες γύρω από το κυκλωνικό κέντρο με την εκδήλωση των μεγαλύτερων ποσών βροχόπτωσης κάτω από αυτές τις περιοχές. Υπογραμμίστηκε ο ρόλος της προϋπάρχουσας δυναμικής ανωμαλίας της τροπόπαυσης τόσο στο στάδιο γένεσής του όσο και στο στάδιο που έφτασε τη μεγαλύτερη έντασή του. Ενδιαφέρον παρουσίασε η ψυχρή μετωπική ζώνη μπροστά από το κυκλωνικό κέντρο με την εμφάνιση δύο MCSs και πολύ μεγάλων ποσών βροχόπτωσης. Αναφορικά με το μοντέλο, προσομοίωσε ικανοποιητικά την τροχιά και τα χαρακτηριστικά του κυκλώνα, ανέδειξε το θερμό πυρήνα του συστήματος και τη συμβολή των ροών θερμότητας και της δυναμικής ανωμαλίας της τροπόπαυσης στη γένεση και στην ισχυροποίηση του. Τέλος, τα αποτελέσματα της δορυφορικής ανάλυσης βρήκαν καλή συμφωνία με τα αποτελέσματα της αριθμητικής προσομοίωσης καθιστώντας το σύστημα μία χαρακτηριστική περίπτωση Μεσογειακού κυκλώνα με τροπικά χαρακτηριστικά.
 

The presence of mesoscale vortices in the Mediterranean region, which are similar to tropical cyclones, is known for some decades. These cyclones are commonly called "Mediterranean Hurricanes" or Medicanes and can cause major disasters and human losses in the affected areas. The  aim of this thesis is the satellite study and analysis of a Mediterranean cyclone with tropical-like features on November 7-8, 2014. Attempts are made to clarify the processes that contributed to the creation, intensification and further development of the Mediterranean tropical-like cyclone using the methods of satellite remote sensing and the numerical model simulation. Data from four weather satellites were used in the satellite analysis as well as the WRF numerical model for the simulation. The system was found to display intermittent convection activity, stronger in the stages of its creation and before reaching Sicily. The microphysical characteristics of the clouds revealed high ice particle content around the cyclone center in the convection stages. It was demonstrated that sensible and latent heat fluxes contributed to its strength, as well as the increase of convection activity in the spiral zones around the low pressure cyclonic center, with the greatest rainfall occurring below these areas. The role of the pre-existing dynamic tropopause anomaly was emphasized both at the stage of its generation and at the stage of its greatest intensity. Interesting was the existence of a cold frontal zone in front of the cyclonic center with the appearance of two Mesoscale Convective Systems (MCSs) and very large amounts of rainfall. The model adequately simulated the trajectory and the characteristics of the cyclone, highlighted the warm core of the system and the contribution of the heat fluxes and the dynamic tropopause anomaly to its generation and intensity. Finally, the results of the satellite analysis were in agreement with the results of the numerical simulation, revealing the fact that the system  was a typical case of a Mediterranean cyclone with tropical characteristics.

Πλήρες Κείμενο:

PDF

Αναφορές


Ξένη Βιβλιογραφία

Aebischer, U. and Schar, C. (1998). Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55, 186–207.

Akriditis, D., Zanis, P., Pytharoulis, I., Mavrakis, A. and Karacostas, Th. (2010). A deep stratospheric intrusion event down to the earth’s surface of the megacity of Athens. Meteorol. Atmos. Phys. 109, 9-18.

Alpert, P. and Ziv, C. (1989). The Sharav cyclone: Observations and some theoretical considerations. J. Geophys. Res., 94, 18 495–18 514.

Bergeron, T. (1954). The problem of tropical hurricanes. Quart. J . Roy. Meteor. Soc., 80, 131-164.

Burpee, R.W. (1986). Mesoscale structure of hurricanes. Mesoscale Meteorology and Forecasting, P.S. Ray, Ed., Amer. Meteor. Soc., 311-330.

Businger, S. (1985). The synoptic climatology of polar low outbreaks. Tellus 37A, 419-432.

Businger, S. and Reed, R.J. (1989). Cyclogenesis in cold air masses. Weather Forecast. 4, 133–156.

Buzzi, A. and Tibaldi, S. (1978). Cyclogenesis in the lee of the Alps: a case study. Quart. J. Roy. Meteor. Soc., 104, 271–287.

Carrio, D.S., Homar, V., Jansa, A., Romero, R. and Picornell, M.A. (2017). Tropicalization process of the 7 November 2014 Medeterranean cyclone: Numerical sensitivity study. Atmos. Res., 197, 300–312.

Cattani, E., Torricella, F., Laviola, S. and Levizzani, V. (2009). On the statistical relationship between cloud optical and microphysical characteristics and rainfall intensity for convective storms over the Mediterranean. Nat Hazards Earth Syst Sci 9: 2135–2142

Cavicchia, L., and von Storch, H. (2012). The simulation of medicanes in a high-resolution regional climate model. Clim. Dyn. 39, 2273–2290.

Cavicchia, L., von Storch, H. and Gualdi, S. (2014). A long-term climatology of medicanes. Clim. Dyn. 43, 1183–1195.

Charney, J. G. and Eliassen, A. (1964). On the growth of the hurricane depression. J. Atmos. Sci., 21, 68-75.

Conte, M. (1986). The meteorological bomb in the Mediterranean: a synoptic climatology. Rivista di Meteorologia Aeronautica, 46, 314: 121–130.

Chaboureau, J.-P., Pantillon, F., Lambert, D., Richard, E. and Claud, C. (2012). Tropical transition of a Mediterranean storm by jet crossing. Q. J. R. Meteorol. Soc. 138, 596–611.

Cioni, G., Malguzzi, P. and Buzzi, A. (2016). Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone: Thermal Structure and Precursor of a MTLC. Q. J. R. Meteorol. Soc. 142, 1757–1766.

Craig, G.C. and Gray S.L. (1996). CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 3528–3540.

Davolio, S., Miglietta, M.M., Moscatello, A., Pacifico, F., Buzzi, A. and Rotunno, R. (2009). Numerical forecast and analysis of a tropical-like cyclone in the Ionian Sea. Nat. Hazards Earth Syst. Sci. 9, 551–562.

Egger, J. (1988). Alpine lee cyclogenesis-Verification of theories. J. Atmos. Sci., 45, 2187–2203.

Emanuel, K.A. (1987). An air-sea interaction theory for tropical cyclones. J. Atmos. Sci., 43, 585-605.

Emanuel, K.A. (1987). An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324-2340.

Emanuel, Κ.Α. (1994). Atmospheric Convection. Oxford Univ.Press, Oxford.

Emanuel, K.A. (1995). Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.

Emanuel, K.A. (1997). Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014-1026.

Emanuel, K.A. (2005). Genesis and maintenance of ”Mediterranean hurricanes”. Adv. in Geos., 2, 217–220.

Feidas, H. (2016). Spectral features of convective cloud tops, Presentation for EUMETSAT Training Workshop 2016 on Use of Satellite Data in Nowcasting, Nei EPivates, Thessaloniki, Greece, 12-16 September 2016

Feidas, H. and Giannakos, A. (2011): Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation satellite data. Theor Appl Climatol 104:25-42

Flocas, H.A. and Karacostas, T.S. (1996). Cyclogenesis over the Aegean Sea: Identifications and synoptic categories. Meteor. Appl., 3, 53–61.

Fita, L.R., Romero, A., Luque, K., Emanuel, K.A. and Ramis, C. (2007). Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat. Hazards Earth Syst. Sci., 7, 41–56.

Fita, L.R., Romero, Luque, A. and Ramis, C. (2009). Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms. Ann. Geophys., 27, 3297–3319.

Genoves, A. and Jansa, A. (1991). The use of potential vorticity maps in monitoring shallow and deep cyclogenesis in the Western Mediterranean. WMO/TD No 420, 55–65.

Georgiev, C., Santurette, P. and Maynard, K. (2016). Weather Analysis and Forecasting 2nd Edition Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis. Academic Press, New York

Georgiev, C. (2017). Thermodynamic environment of Mediterranean Severe Convection

as seen in satellite imagery, Presentation for EUMETSAT Training Workshop 2017 on use of satellite information in nowcasting, Nei EPivates, Thessaloniki, Greece, 11-15 September 2017

Georgiev, C. (2017). Use of MSG information in air mass analysis and upper-level diagnosis for convection nowcasting, Presentation for EUMETSAT Training Workshop 2017 on use of satellite information in nowcasting, Nei EPivates, Thessaloniki, Greece, 11-15 September 2017

Georgiev, C. (2017). Diagnosing upper-level dynamics by WV imagery as a key forecast issue, Presentation for EUMETSAT Training Workshop 2017 on use of satellite information in nowcasting, Nei EPivates, Thessaloniki, Greece, 11-15 September 2017

Gray, W.M. (1979). Hurricanes: Their formation, structure and likely role in the tropical circulation, Meteorology Over Tropical Oceans. D. B. Shaw (Ed.), Roy. Meteor. Soc., James Glaisher House, Grenville Place, Bracknell, Berkshire, RG12 1BX, 155-218.

Harrold, J.W. and Browning, K.A. (1969). The polar low as a baroclinic disturbance. Quart. J. Roy. Meteor. Soc., 95, 71-723.

Hart, R.E. (2003). A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 131, 585–616.

Hawkins, H.F. and Rubsam, D.T. (1968). Hurricane Hilda, 1964 : II Structure and budgets of the hurricane on October 1, 1964, Mon. Wea. Rev., 104, 418-442.

Holton, J.R. (1972). An Introduction to Dynamic Meteorology. Academic Press, New York, 319.

Homar V, Rami, C. and Alonso, S. (2002). A deep cyclone of African origin over the western Mediterranean: diagnosis and numerical simulation. Ann. of Geophys., 20, 93–106.

Hoskins, B.J., McIntyre, M.E. and Robertson, A.W. (1985). On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946.

Hoskins, B.J. and Berrisford, P. (1988). A potential vorticity perspective on the storm of 15–16 October 1987. Weather, 43, 122–129.

Hoskins, B.J. and Hodges, K.I. (2002) New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 (6), 1041-1061.

Jansa, A., Genoves, A., Picornell, M.A., Campins, J., Riosalido, R. and Carretero, O. (2001). Western Mediterranean cyclones and heavy rain. Part 2: Statistical approach. Meteor. App., 8 (1), 43-56

Japan Meteorological Agency (2002), Analysis and Use of Meteorological Satellite Images, First Edition, Meteorological Satellite Center, 187

Karacostas, T.S. and Flocas, A.A. (1983). The Development of the "Bomb" Over the Mediterranean Area. La Meteorologie, No 33, 351-358.

Karacostas, T.S., Brikas, D., Pytharoulis, I. and Pennas P. (2010). Dynamic processes of the Mediterranean bomb of 2004. Proceedings of the 10th conference on Meteorology, Climatology and Atmospheric Physics, 25-28 May, Patras, Greece, 27-35.

Katsafados, P., E., Mavromatidis, A., Papadopoulos and Pytharoulis I. (2011). Numerical simulation of a deep Mediterranean storm and its sensitivity on sea surface temperature. Nat. Hazards Earth Syst. Sci., 11, 1233-1246.

Kerkmann J. (2010) Applications of Meteosat Second Generation (MSG) – The Airmass RGB Product. Eumetsat, 110pp.

Kerry, A. and Emanuel, K.A. (1988). Polar lows as arctic hurricanes. Tellus 41A (1989), 1-17

Lagouvardos, K., Kotroni, V., Nickovic, S., Jovic, D. and Kallos G. (1999). Observations and model simulations of a winter sub-synoptic vortex over the Central Mediterranean. Meteor. Appl., 6, 371–383.

Lagouvardos, K., Kotroni, V. and Defer E. (2007). The 21–22 January 2004 explosive cyclogenesis over the Aegean Sea: observations and model analysis. Quart J. Roy. Meteor. Soc., 133, 1519–1531, DOI: 10.1002/qj.121.

Laviola, S., Moscatello, A., Miglietta, M.M., Cattani, E. and Levizzani, V. (2011). Satellite and numerical model investigation of two heavy rain events over the central Mediterranean. J. Hydrometeorol. 12, 634–649.

Luque, A., Fita, L., Romero, R., and Alonso, S. (2008). Analysis of convection in three tropical-like Mediterranean storms using satellite and lightning networks.

Malkus, J.S. and Riehl, H. (1960). On the Dynamics and Energy Transformations in Steady-State Hurricanes. Tellus, Vol. 12, 1-20.

Martın, A., Romero, R., Homar, V., Luque, A., Alonso, S., Rigo, T., and Llasat, M. (2007). Sensitivities of flash flood event over Catalonia: a numerical analysis. Mon. Wea. Rev., 2, 651–669.

Meneguzzo, F., Pasqui, M., and Grifoni, D. (2001). Sensitivity of mesoscale atmospheric modelling to vegetation and leaf area index. LAND surface Satellite Application Facility (LAND-SAF) Document, EUMETSAT.

Miglietta, M.M., Davolio, S., Moscatello, A., Pacifico, F. and Rotunno, R. (2008). The role of surface fluxes in the development of a tropical-like cyclone in southern Italy. Adv. Sci. Res. 2, 35–39.

Miglietta, M.M., Moscatello, A., Conte, D., Mannarini, G., Lacorata G. and Rotunno R. (2011). Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res., 101, 412–426.

Miglietta, M.M., Laviola, S., Malvaldi, A., Conte, D., Levizzani, V. and Price, C. (2013). Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophys. Res., 40, 2400-2405

Miglietta, M.M., Mastrangelo, D. and Conte, D. (2015). Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmospheric Res. 153, 360–375.

Moscatello, A., Miglietta M.M. and Rotunno, R. (2008). Observational analysis of a Mediterranean “hurricane” over southeastern Italy. Weather, 63, 306-311.

Ooyama, K. (1964). A dynamical model for the study of tropical cyclone development. Geofis. Intern. (Mexico), 4, 187-198.

Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3-40

Pettersen, S. (1956). Weather Analysis and Forecasting, Mac Graw Hill, New York.

Pichler, H., Steinacker, R. and Lazinger, A. (1990). Cyclogenesis induced by the Alps. Meteor. Atmos. Phys., 43, 21–29.

Picornell, M.A., Campins, J. and Jansà, A. (2014). Detection and thermal description of medicanes from numerical simulation. Nat. Hazards Earth Syst. Sci. 14, 1059–1070.

Prezerakos, N.G., and Flocas, H.A. (1996). The formation of a dynamically unstable ridge at 500 hPa as a precursor of surface cyclogenesis in the central Mediterranean. Meteor. Appl., 3, 101–111.

Pytharoulis, I., Craig, G.C. and Ballard S.P. (2000). The hurricane-like Mediterranean cyclone of January 1995, Meteorol. Appl., 7, 261–279.

Pytharoulis, I. (2008). Numerical study of the eastern Mediterannean “bomb” of January 2004, 8th Annual Meeting of the European Meteorological Society and European Conference on Applied Climatology, Amsterdam, Holland

Pytharoulis, I. (2017). Analysis of a Mediterannean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res., 1-13

Rasmussen, E. (1979). The polar low as an extratropical CISK disturbance. Quart. J. Roy. Meteor. Soc. 105, 531-549.

Rasmussen, E. (1985). A case study of a polar low development over the Barents Sea. Tellus 37A, 407-418.

Rasmussen, E. and Zick, C. (1987). A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus, 39A, 408-425.

Reed, R.J. (1979). Cyclogenesis in polar airstreams. Mon. Wea. Rev,. 107, 38-52. Reiter, E. (1975). Handbook for forecasters in the Mediterranean. Part 1: general description of the meteorological processes. Naval Environmental Research Facility, Monterey, California.

Reiter, E. (1975). Handbook for forecasters in the Mediterranean. Part 1: general description of the meteorological processes. Naval Environmental Research Facility, Monterey, California.

Rielh, H., (1963). Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci., 20, 276-287.

Romero, R. and Emanuel, K.A. (2013). Medicane risk in a changing climate. J. Geophys. Res. Atmos., 118, 5992–6001, doi:10.1002/jgrd.50475.

Rotunno. Ρ. and Emanuel, K.A. (1987). An Air-sea Interaction for Tropical Cyclones. Part II: Evolutionary Study Using Nonhydrostatic Axisymmetric Numerical Model. J. Atmos. Sci., 44, 542-561.

Sardie, J.M. and Warner, W.T. (1985). A numerical study of the development mechanism of polar lows. Tellus 37A, 460-477.

Schmid J.(2000) The SEVIRI instrument. In Proc. of the 2000 EUMETSAT Meteorological Satellite Data User's Conference., Bologna, Italy, 23-32.

Setvak, M., Novak, P., Lindsey, D.T., Rabin, R.M., Wang, P.K. and Radova, M. (2007). Central European convective storms penetrating deep into the lower stratosphere–MSG IR and radar observations and radiative transfer modeling. On 4th European Conference on Severe Storms, Trieste, Italy, 10-14 September 2007

Setvak M. (2016) Satellite observations of storm tops (Part 2). Presentation for EUMETSAT Training Workshop 2016 on Use of Satellite Data in Nowcasting, Nei EPivates, Thessaloniki, Greece, 12-16 September 2016

Setvak M. (2016) Satellite observations of storm tops (Part 3). Presentation for EUMETSAT Training Workshop 2016 on Use of Satellite Data in Nowcasting, Nei EPivates, Thessaloniki, Greece, 12-16 September 2016

Shapiro, M.A., Fedor, L.S., and Hampel, T. (1987). Research aircraft measurements of a polar low over the Norwegian Sea. Tellus 39A, 272-306.

Shapiro, L.J. and Franklin, J.L. (1995). Potential Vorticity in Hurricane Gloria. Mon. Wea. Rev., 123, 1465-1475.

Shea, D.J. and Gray, W.M. (1973). The hurricane’s inner core region: I. Symmetric and asymmetric structure, II: Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 1544-1576.

Smith, R.K. (1980). Tropical cyclone eye dynamics. J. Atmos. Sci., 37, 1227–1232

Tous, Μ. (2011). Medicanes: cataloguing criteria and exploration of meteorological environments. Tethys J. Weather Clim. West. Mediterr.

Tous, M. and Romero, R. (2013). Meteorological environments associated with medicane Development. Int. J. Climatol., DOI: 10.1002/joc.3428

Trigo, I.F., Davies, T.D. and Bigg, G.R. (1999). Objective climatology of cyclones in the Mediterranean region, J. Climate, 12, 1685–696.

Trigo, I.F., Bigg, G.R. and Davies, T.D. (2002). Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Wea. Rev., 130, 549-569, DOI: 10.1175/1520-0493.

Wallace, J.M. and Hobbs, P.V. (1977). Atmospheric Science – an introductory survey. Academic Press.

Willoughby, H.E. (1995). Mature structure and evolution. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., WMO, 21–62.

Ziakopoulos, D. and Marinaki, A. (1996). Mediterranean mesoscale vortices with tropical cyclone features. In Proc. of the 3rd Hellenic Conference on Meteorology, Climatology and Physics of the Atmosphere, 25–27 September, Athens, Greece, 154–159.

Ελληνική Βιβλιογραφία

Γιαννακός, Α. (2013). Συμβολή στην ανάπτυξη τεχνικής για την εκτίμηση της βροχόπτωσης από πολυφασματικά δορυφορικά δεδομένα. Διδακτορική Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Καρακώστας, Θ. (2010). Σημειώσεις Δυναμικής Μετεωρολογίας. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Καρτάλης, Κ. και Φείδας, Χ. (2012). Αρχές και εφαρμογές δορυφορικής τηλεπισκόπησης. Εκδόσεις Τζιόλα. Θεσσαλονίκη

Κέππας, Σ. (2013). Μελέτη των χαρακτηριστικών ενός μέσης κλίμακας νεφικού συστήματος κατακόρυφης ανάπτυξης με τη χρήση δορυφορικών δεδομένων. Μεταπτυχιακή Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Παρανός, Χ. (2016). Συνοπτική και αριθμητική μελέτη βαρομετρικών χαμηλών με χαρακτηριστικά τροπικού κυκλώνα στη Μεσόγειο. Μεταπτυχιακή Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Πυθαρούλης, Ι. (2010). Σημειώσεις Συνοπτικής Μετεωρολογίας. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Φείδας, Χ. και Καρτάλης, Κ. (2003). Δορυφορική Μετεωρολογία-Κλιματολογία. Τμήμα Γεωλογίας, Α.Π.Θ.

Φείδας, Χ. (2010). Σημειώσεις Δορυφορικής Μετεωρολογίας. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Φλόκας, Α. (1994). Μαθήματα Μετεωρολογίας και Κλιματολογίας. εκδόσεις Ζήτη

Φλόκα, Ε. (1993). Συμβολή στη μελέτη του προβλήματος της κυκλογένεσης στο Αιγαίο Πέλαγος. Διδακτορική Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Διαδίκτυο

https://www.eumetsat.int/

http://www.eumetrain.org/

http://www.goes-r.gov/

http://www.nhc.noaa.gov/

https://pmm.nasa.gov/

https://www.nesdis.noaa.gov/

https://giovanni.sci.gsfc.nasa.gov/giovanni/

https://www.metoffice.gov.uk/

http://www.wetterzentrale.de/

https://www.wunderground.com/

http://www1.wetter3.de/


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.