[Εξώφυλλο]

Προσδιορισμός μονοδιάστατου μοντέλου ταχύτητας με την αντιστροφή δεδομένων μικροθορύβου μονού σταθμού και συνδυαστική ερμηνεία με ανεξάρτητες γεωλογικές, γεωτεχνικές και γεωφυσικές πληροφορίες

Νικόλαος Χατζής

Περίληψη


Ενώ η αξιολόγηση της ταχύτητας των εγκαρσίων κυμάτων έχει αναγνωριστεί ως μία σημαντική παράμετρος κατά την προσομοίωση της εδαφικής κίνησης από τις αρχές του 70s, αρκετοί κώδικες σεισμικής επικινδυνότητας και αναλύσεις κτιρίων έχουν ενσωματώσει τη χρήση της για την εκτίμηση των τοπικών επιδράσεων  στην εδαφική-κίνηση (με χρήση της Vs30), η εκτίμηση της Vs παραμένει ένα δύσκολο αντικείμενο. Οι περισσότερες τεχνικές παράγουν μονοδιάστατα μοντέλα χρησιμοποιώντας ενεργές πηγές, είτε εντός γεωτρήσεων ή χρησιμοποιώντας επιφανειακές μετρήσεις. Η χρήση ενεργών πηγών, και ειδικότερα γεωτρήσεων, αυξάνει τον χρόνο/κόστος και περιορίζει τα όρια της μεθόδου σε απαιτητικά περιβάλλοντα. Κατά τη διάρκεια των τελευταίων δεκαετιών, δεδομένα εδαφικού θορύβου έχουν χρησιμοποιηθεί όλο και περισσότερο για μελέτες επιφανειακών Vs δομών. Η προφανής και σταδιακά αυξανόμενη αξία των δεδομένων εδαφικού θορύβου είναι ότι παρέχουν έμμεσες πληροφορίες για τις ιδιότητες των επιφανειακών στρωμάτων. Στην παρούσα διατριβή ερευνούμε την εφαρμοσιμότητα της αντιστροφής των καμπυλών HVSR καταγραφών μονού σταθμού για τον προσδιορισμό της μονοδιάστατης δομής. Ενώ η συλλογή δεδομένων HVSR είναι οικονομικά εξαιρετικά αποδοτική, η σχέση της με την ελλειπτικότητα των Rayleigh κυμάτων έχει αμφισβητηθεί, ενώ η αντιστροφή της ελλειπτικότητας είναι εμφανώς μη-μοναδική. Το κύριο κίνητρο πίσω από το έργο μας βασίζεται στις πρόσφατες έρευνες των Hobiger et al. (2013), οι οποίοι έδειξαν ότι αν το πολύ επιφανειακό 1D προφίλ ταχυτήτων είναι γνωστό, η μοναδικότητα από την αντιστροφή της ελλειπτικότητας βελτιώνεται σημαντικά. Μετρήσεις εδαφικού θορύβου μονού σταθμού πραγματοποιήθηκαν σε 73 βαθμονομημένες θέσεις της Βόρειας Ελλάδας, επιλεγμένες από τη βάση δεδομένων των Stewart et al. (2014), η οποία περιλαμβάνει ανεξάρτητες πληροφορίες για την 1D Vs δομή και γεωλογία. Οι μετρήσεις πραγματοποιήθηκαν κυρίως με την χρήση ενός τυπικού συστήματος λήψης δεδομένων θορύβου, και η καμπύλη HVSR υπολογίστηκε με το λογισμικό GEOPSY (Wathelet et al., 2008). Η αξιοπιστία των καμπυλών HVSR ως εκδοχή καμπύλης ελλειπτικότητας των κυμάτων Rayleigh ελέγχθηκε με τη χρήση της προσέγγισης των Hobiger et al. (2008). Πραγματοποιήθηκαν αντιστροφές καμπυλών HVSR με τον περιορισμό της μέσης εγκάρσιας ταχύτητας των πρώτων 5 m, όπως αυτή παρέχεται από τις πληροφορίες της διαθέσιμης βάσης δεδομένων. Αναπτύχθηκε μια αυτόματη διαδικασία αντιστροφής, ώστε να επιτρέπει την εφαρμογή της μεθόδου ακόμα και από μη ειδικούς. Η αξιοπιστία του παραγόμενου 1D μοντέλου αξιολογήθηκε με την απευθείας σύγκριση με τη βάση δεδομένων, εστιάζοντας σε πληροφορίες όπως το σεισμικό υπόβαθρο, εκεί που αυτό ήταν γνωστό. Επιπλέον, τα αποτελέσματα από την αντιστροφή των HVSR για την τιμή της Vs30 συγκρίθηκαν με τις πραγματικές τιμές Vs30 της προαναφερόμενης βάσης δεδομένων, καθώς και την εκτίμηση των Vs30 από την Vs5 ακολουθώντας την ημι-εμπειρική σχέση των Stewart et al. (2014). Τα αποτελέσματα υποδηλώνουν ότι η αντιστροφή των καμπυλών HVSR χρησιμοποιώντας ως περιορισμό την Vs5 μπορεί να οδηγήσει, σε αρκετές περιπτώσεις, σε σημαντικά βελτιωμένες εκτιμήσεις της Vs30, κυρίως για σχηματισμούς κατηγορία εδάφους B κατά EC8, παρέχοντας επίσης ταυτόχρονα βελτιωμένες εκτιμήσεις της Vs30 για αρκετές πιο  θέσεις κατηγορία εδάφους C κατά EC8. Αυτά τα αποτελέσματα δείχνουν ότι η αντιστροφή δεδομένων HVSR μπορεί να θεωρηθεί ως ένα συμπληρωματικό εργαλείο για τον αποτελεσματικό, μεγάλης-κλίμακας/χαμηλού-κόστους προσδιορισμό εκτιμήσεων της Vs30, χρησιμοποιώντας μια απλή στρατηγική συλλογής δεδομένων και ημι-αυτοποιημένο φόρτο επεξεργασίας και ερμηνείας δεδομένων.


While the assessment of the shear-wave velocity has been recognized as an important parameter for ground motion simulations since the early 70s, and several seismic hazard and building codes have incorporated its use for site-effects assessment on ground-motions (typically through Vs30), obtaining Vs estimates remains a demanding task. Most techniques derive local 1-D Vs models using active sources methods, either using boreholes or surface measurements, with each approach having its merits and drawbacks. In all cases, the use of active sources, and especially boreholes, increases the time/cost demands and limit the method applicability in demanding environments (e.g. urban). During the last decades ambient noise data have been increasingly used for shallow Vs structure study. The obvious added value of ambient noise data is that they also provide indirect information on surface layers properties. We explore here the applicability of single-station HVSR curve inversion to determine the local 1D Vs structure. While HVSR data collection is extremely cost-efficient, its relation to Rayleigh wave ellipticity has been questioned, while ellipticity inversions are notoriously non-unique. The main motivation behind our work is based on the recent findings by Hobiger et al. (2013), who showed that if the shallow velocity profile is known, the uniqueness of the ellipticity inversion is severely improved. Since shallow information can be directly derived from small-scale active source or passive tests, or indirectly assessed from other (geophysical, geotechnical or geological) information, it is interesting to evaluate this approach at a practical level. Single station ambient noise measurements were performed at 73 calibration sites of Northern Greece, selected from the database of Stewart et al. (2014) which includes independently information on the local 1D Vs structure and geology. Measurements were mainly performed with the use of a conventional noise acquisition system, and  HVSR curves were calculated with the Geopsy software (Wathelet et al., 2008). The reliability of the HVSR curves as proxies for Rayleigh wave ellipticity has been checked using the approach of Hobiger et al.(2008). HVSR curve inversions have been performed by constraining the average shear-wave velocity of the first 5 m (Vs5), as provided from the database information. An automated inversion procedure was developed, allowing the method application even by non-experts. The reliability of the obtained 1D Vs models has been assessed by direct comparison with the database, focusing on information such as the inferred seismic bedrock depth. Moreover, Vs30 results from the HVSR inversions were compared with the actual Vs30 database reference values, as well as Vs30 estimates from Vs5 proxies following Stewart et al. (2014). The results suggest that the inversion of HVSR curves using Vs5 constraints can lead, in almost all cases, to significantly improved Vs30 estimates for stiffer formations (EC8, soil class B), while providing also improved Vs30 assessments for several softer (EC8, soil class C) sites. These observations suggest that the inversion of HVSR data can be considered as a supplementary tool for efficient, large-scale/low-cost Vs30 estimations, employing a simple data-collection strategy and a minimal amount of data processing and interpretation.

Πλήρες Κείμενο:

PDF

Αναφορές


Akamatsu, J., Fujita M. and Nishimura K., 1992. Vibrational characteristics of microseisms and their applicability to microzoning. Journal of Physics of the Earth 40, 137–150.

Aki, K., 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthquake Res. Inst. 35, 415– 457.

Al Yuncha, Z. and Luzon, F., 2000. On the Horizontal to Vertical Spectral ratio in Sedimentary Basins. Bull. Seismol. Soc. Am., 90, 1101–1106.

Albarello, D. and Lunedei, E., 2010. Alternative interpretations of horizontal to vertical spectral ratios of ambient vibrations: new insights from theoretical modeling. Bull. Earthq. Eng., 8, 519–534.

Ansary, M. A., Fuse, M., Yamazaki, F. and Katayama, T., 1995. Use of Microtremors for the Estimation of Ground Vibration Characteristics. 3rd International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics (Saint-Louis, USA), 571-574p.

Arai, H. and Tokimatsu, K., 1998. Evaluation of local site effects based on microtremor H/V spectra. Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion. Yokohama, Japan, pp. 673–680.

Arai, H. and Tokimatsu K., 2000. Effects of Rayleigh and love waves on microtremor H/V spectra. Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, No. 2232.

Asmussen, J. C., 1997. Modal analysis based on the random decrement technique. Ph.D. thesis, Univ. of Aalborg, Aalborg, Denmark.

Asten, W. M., 1978. Geological Control on the Three-Component Spectra of Rayleigh-Wave Microseism. Bulletin of the Seismological Society of America (Vol.68), 1623-1636p.

Asten, M. W., 2004. Comment on “Microtremor observations of deep sediment resonance in metropolitan Memphis, Tennessee” by Paul Bodin, Kevin Smith, Steve Horton and Howard Hwang. Engineering Geology 72, 334–343.

Asten, W. M. and Henstridge, D. J., 1984. Array Estimators and Use of Microseisms for Reconnaissance of Sedimentary Basins. Geophysics (49), 1828 1837p.

Asten, M. W. and Dhu, T., 2002. Enhanced interpretation of microtremor spectral ratios using multimode Rayleigh-wave particle-motion computations. Proceedings of Total Risk Management in the Privatised Era, Australian Earthquake Engineering Society Conference, Adelaide, Australia, Vol. 8.

Ανθυμίδης, Μ., 2008. Συμβολή στη μελέτη της γεωφυσικής δομής και της απόκρισης των επιφανειακών στρωμάτων της Γης με τη χρήση δεδομένων δικτύων μικροθορύβου και σεισμικών καταγραφών, Διατριβή, Τμ. Γεωλογίας ΑΠΘ, 262 σελ.

Bard, P.-Y., 1999. Microtremor Measurement: A Tool for Site Effect Estimation?. The Effects of Surface Geology on Seismic Motion, 1251-1279p.

Bard P.-Y., Cadet, H., Endrun, B., Hobiger, M., Renalier, F., Theodulidis, N., Ohrnberger, M., Fäh, D., Sabetta, F., Teves-Costa, P., Duval, A.M., Cornou, C.,

Guillier, B., Wathelet, M., Savvaidis, A., Köhler, A., Burjanek, J., Poggi, V., Gassner-Stamm, G., Havenith, H. B., Hailemikael, S., Almeida, J., Rodrigues, I., Veludo, I., Lacave, C., Thomassin, S. and Kristekova, M., 2010. From Non-invasive Site Characterization to Site Amplification: Recent Advances in the Use of Ambient Vibration Measurements. Geotechnical, Geological, and Earthquake Engineering Earthquake Engineering in Europe, 105-23.

Berger, J. and Davis, P., 2004. Ambient earth noise: a survey of the global seismographic network. Journal of Geophysical Research 109 (B11307).

Bernard, P., 1941a. Etude sur l'agitation microséismique. Presses Universitaires de France. (In French).

Bernard, P., 1941b. Etude sur l'agitation microséismique et ses variations. Annales de l'Institut de Physique du Globe de Paris 19, 77. (In French).

Bindi, D., Parolai, S., Spallarossa, D. and Catteneo, M., 2000. Site effects by H/V ratio: Comparison of two different procedures, J. Earthq. Eng., 4, 97 113.

Bromirski, P. D. and Duennebier, F. K., 2002. The near-coastal microseism spectrum: spatial and temporal wave climate relationships. Journal of Geophysical Research 107 (B8), 5.1–5.20.

Bodin, P., Smith,, K., Horton, S. and Hwang, H., 2001. Microtremor observations of deep sediment resonance in metropolitan Memphis. Tennessee. Engineering Geology 2, 159–168.

Bonnefoy-Claudet, S., Cornou, C., Kristek, J., Ohrnberger, M., Wathelet, M., Bard, P.-Y., Fah, D., Moczo, P. and Cotton, F., 2004. Simulation of Seismic Ambient Noise: I. H/V and Array Techniques on Canonical Models. Proceedings of the 13th World Conference on Earthquake Engineering (Vancouver, Canada), Paper No. 1120.

Bonnefoy-Claudet, S., Cornou, Cotton, F. and Bard P.-Y., 2006b. The Nature of Noise Wavefield and its Applications for Site Effects Studies. A Literature Review. Earth-Science Reviews (79), 205-227p,.

Bonnefoy-Claudet, S., K¨ohler, A., Cornou, C., Wathelet, M. and Bard, P.-Y., 2008. Effects of Love waves on microtremor H/V ratio. Bull. seism. Soc. Am., 98, 288–300.

Boore, D. M., 2015. Determining Generic Velocity and Density Models for Crustal Amplification Calculations, with an Update of the Generic Site Amplification for. Bulletin of the Seismological Society of America 106.1, 313-17.

Bowen, S. P., Richard, J. C., Mancini, J. D., Fessatidis, V. and Crooker, B., 2003. Microseism and infrasound generation by cyclones. Journal of the Acoustical Society of America 113 (5), 2562–2573.

Bour, M., Fouissac, D., Dominique, P. and Martin, C., 1998. On the use of microtremor recordings in seismic microzonation. Soil Dynamics and Earthquake Engineering, 17, 465-474.

Bromirski, P. D., 2001. Vibrations from the “perfect storm”. Geochemistry Geophysics Geosystems 2.

Capon, J., Greenfield, R. J. and Kolker, R. J., 1967. Multidimensional maximum-likehood processing of a large-aperture seismic array. IEEE 192–211.

Capon, J., 1969. High Resolution Frequency-Wavenumber Spectrum Analysis. Proceedings of the IEEE (Vol.57), 1408-1418p.

Carneil, R., Barazaa, F. and Pascolo, P., 2006. Improvement of Nakamura Technique by Singular Spectrum Analysis. Soil Dynamics and Earthquake Engineering (26), 55-63p.

CEN., Eurocode 8, 2004. Design of Structures for Earthquake Resistance—Part 1: general rules, seismic actions and rules for buildings. EN 1998-1: 2004. Comite Europeen de Normalisation, Brussels,.

Chávez-García, F. J., Pedoti, G., Hatzfeld, D., and Bard, P-Y., 1990. An experimental study near Thessaloniki (Northern Greece). Bull. Seism. Soc. Am., 80, 4, 784–800.

Chouet, B., De Luca, G., Milana, G., Dawson, P., Martini, M. and Scarpa, R., 1998. Shallow velocity of Stromboli volcano, Italy, derived from small-aperture array measurements of Strombolian tremor. Bulletin of the Seismological Society of America 88 (3), 653–666.

Cornou, C., 2002. Traitement d'antenne et imagerie sismique dans l'agglomération grenobloise (Alpes françaises): implications pour les effets de site. Ph.D. Thesis, University Joseph Fourier, Grenoble, France. (In French with English abstract).

Cornou, C., Bard, P.-Y. and Dietrich, M., 2003a. Contribution of dense array analysis to identification and quantification of basin-edge induced waves. Part I: methodology. Bulletin of the Seismological Society of America 93 (6), 2604–2623.

Cornou, C., Bard, P.-Y. and Dietrich, M., 2003b. Contribution of dense array analysis to identification and quantification of basin-edge induced waves. Part II: application to Grenoble basin (French Alps). Bulletin of the Seismological Society of America 93 (6), 2624–2648.

Cornou, C., Kristek, J., Bonnefoy-Claudet, S., Fäh, D., Bard, P.-Y., Moczo, P., Ohrnberger, M. and Wathelet, M., 2004. Simulation of seismic ambient vibrations: II. H/V and array techniques for real sites. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 2004, Paper # 1130.

Dravinski, M., Ding, G. and Wen, K.-L., 1996. Analysis of spectral ratios for estimating ground motion in deep basins, Bull. Seism. Soc. Am., 86, 3, 646–654.

Dobry, R., Martin, G. R., Parra, E. and Bhattacharyya, A., 1994. Development of site dependent ratios of elastic response spectra (RRS) and site categories for building seismic codes. Proceedings of 1992 NCEER/SEAOC/BSSC Workshop on Site Response During. p. 18-20.

Dolenc, D. and Dreger, D., 2005. Microseisms observations in the Santa Clara Valley, California. Bulletin of the Seismological Society of America 95 (3), 1137–1149.

Douze, E. J., 1964. Rayleigh waves in short-period seismic noise. Bulletin of the Seismological Society of America 54 (4), 1197–1212.

Douze, E.J., 1967. Short-period seismic noise. Bulletin of the Seismological Society of America 57 (1), 55–81.

Duval, A.-M., Bard, P.-Y., Mèneroud, J.-P. and Vidal S., 1994. Mapping site effects with microtremors. Proc. of 5th Intern. Confer. on Seismic Zonation, October 1995, (Nice, France) vol. 2, pp. 1522-1529.

Duval, A.-M., Vidal, S., Meneroud, J.-P., Singer, A., DeSantis, F., Ramos, C., Romero, G., Rodriguez, R., Pernia, A., Reyes, N. and Griman, C., 2001. Caracas, Venezuela, Site effect determination with Microtremors. Pure Appl. Geophys., 158, 2513-2523.

Endrun, B., 2011. Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements. J. Seismol., 15, 443– 472.

Essen, H.-H., Kruger, F., Dahm, T. and Grevemeyer, I., 2003. On the generation of secondary microseisms observed in northern and central Europe. Journal of Geophysical Research 108 (B10), 2506–2521.

Fäh D., Kind F. and Giardini D., 2001. A theoretical investigation of average H/V ratios. Geophys. J. Int., 145, 535549.

Fäh, D., Kind, F. and Giardini, D., 2003. Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. J. Seismol., 7, 449–467.

Field E. and Jacob K., 1993. The theoretical response of sedimentary layers to ambient seismic noise. Geophys. Res. Lett., 20-24, 2925–2928.

Field, E., Hough, S. E. and Jacob, K., 1990. Using microtremors to access potential earthquake response: A case study in Flushing Meadows, New York city. Bull. Seismol. Soc. Am., 80, 1456–1480.

Fowler, C. M. R., 2005. The Solid Earth: An Introduction to Global Geophysics, Cambridge University Press, 685.

Frantti, G., 1963. The Nature of High-Frequency Earth Noise Spectra. Geophysics (Vol. 28), 547-562p.

Frantti, G., Willis, D. E. and Wilson, J. T., 1962. The Spectrum of Seismic Noise. Bulletin of the Seismological Society of America (Vol.52), 113-121p.

Friedrich, A., Krüger, F. and Klinge, K., 1998. Ocean-generated microseismic noise located with the Gräfenberg array. Journal of Seismology 2 (1), 47–64.

Gardner, G. H. F., Gardner, L. W. and Gregory, A. R., 1974. Formation Velocity And Density—The Diagnostic Basics For Stratigraphic Traps. Geophysics 39.6, 770-80.

Gorbatikov, A.V., Kalinina, A.V., Volkov, V.A., Arnoso, J., Vieira, R. and Velez, E., 2004. Results of analysis of the data of microseismic survey at Lanzarote Island, Canary, Spain. Pure and Applied Geophysics 161 (7), 1561–1578.

Grevemeyer, I., Herber, R. and Essen, H.-H., 2000. Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean. Nature 408 (6810), 349–352.

Guillier, B., Cornou, C., Kristek, J., Moczo, P., Bonnefoy-Claudet, S., Bard, P.-Y., and Fäh, D., 2006. Simulation of seismic ambient vibrations: Does the H/V provides quantitative information in 2D-3D structures?. Proc. of the 3ESG Symposium, Paper Number 185.

Gutemberg, B., 1958. “Microseisms”, Advanced Geophysics (5), 53-92p,.

Haubrich, R. A., Munk, W. H. and Snodgrass, F. E., 1963. Comparative spectra of microseisms and swell. Bulletin of the Seismological Society of America 53 (1), 27–37.

Haghshenas, E., Bard, P.-Y. and Theodulidis, N., 2008. Empirical evaluation of microtremor H/V spectral ratio. Bulletin of Earthquake Engineering 6.1: 75-108.

Hobiger, M., Bard, P.-Y., Cornou, C. and Le Bihan, N., 2009. Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys. Res. Lett., 36, L14303, doi:10.1029/2009GL038863.

Hobiger, M., C. Cornou, M. Wathelet, G. D. Giulio, B. Knapmeyer-Endrun, F. Renalier, P.- Y. Bard, A. Savvaidis, S. Hailemikael, B. N. Le, M. Ohrnberger, and N. Theodoulidis, 2012. Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong-motion sites. Geophysical Journal International 192.1: 207-29.

Horike, M., 1985. Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas. Journal of Physics of the Earth 33, 59–96.

Horike, M., 1996. Geophysical Exploration Using Microtremor Measurements, Proceedings of the 10th World Conference on Earthquake Engineering (Acapulco,Mexico), Paper No. 2033.

Horike, M., Zhao, B. and Kawase, H., 2001. Comparison of site response characteristics inferred from microtremor and earthquake shear waves. Bull. Seism. Soc. Am., 91, 1526–1536.

Kanai, K. and Tanaka, T., 1961. On microtremors VIII. Bulletin of the Earthquake Research Institute 39, 97–114.

Konno, K. and Ohmachi, T., 1998. Ground Motion Characteristics Estimated from Spectral Ratio Between Horizontal and Vertical Components of

Microtremor. Bulletin of Seismological Society of America (Vol.88), 228- 241p.

Kudo K., 1995. Practical Estimates of Site Response: State of Art Report. Society of 5th International Conference on Seismic Zonation, 1878 1907p.

Lachet, C., and Bard, P.-Y., 1994. Numerical and Theoretical Investigations on the Possibilities and Limitations of Nakamura’s Technique, J. Phys. Earth., 42, 377–397.

Lacoss, R. T., Kelly, E. J. and Toksoz, M. N., 1969. Estimation of Seismic Noise

Structure Using Arrays. Geophysics (34), 21-38p.

Lermo, J. and Chavez-Garcia, F. J., 1994. Are microtremors useful in site response evaluation?. Bulletin of the Seismological Society of America 84 (5), 1350–1364.

Lermo, J. and Chavez-Garcia, F. J., 1994-b. Site effect evaluation at Mexico City: Dominant period and relative amplification from strong motion and microtremor records. Soil Dyn. Earthq. Eng., 13, 413-423.

Li, T. M. C., Ferguson, J. F., Herrin, E. and Durham, H. B., 1984. Highfrequency seismic noise at Lajitas, Texas. Bulletin of the Seismological Society of America 74 (5), 2015–2033.

Longuet-Higgins, M. S., 1950. A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London. A 243 (a), 1–35.

Maresca, R., Castellano, M., DeMatteis, R., Saccorotti, G. and Vaccariello, P., 2003. Local Site Effects in the town of Benevento (Italy) from Noise Measurements. Pure Appl. Geophys., 160, 1745–1764.

Martin, G. R., 1994. Earthquakes and Seismic Code Provisions. University of Southern California, National Center for Earthquake Engineering Research Special Publication NCEER-94-SP01, Buffalo, NY.

McNamara, D. and Buland, R., 2004. Ambient noise levels in the continental United States. Bulletin of the Seismological Society of America 94 (4) 1517-15-27.

Mucciarelli, M., 1998. Reliability and applicability of Nakamura's technique using microtremors: an experimental approach. Journal of Earthquake Engineering 2 (4), 1–14.

Μουντράκης, Δ., 1985.Γεωλογία της Ελλάδος, Θεσσαλονίκη, 207.

Nakamura, Y., 1989. A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Quarterly Report of Railway Technical Research Institute, (Vol. 30), 25-33p.

Nakamura, Y., 1996. Real-Time information systems for hazards mitigation. Proceedings of the 11th World Conference on Earthquake Engineering (Acapulco, Mexico).

Nakamura, Y., 2000. Clear Identification of Fundamental Idea of Nakamura’s Technique and its Applications. Proceedings of the 12th World Conference on Earthquake Engineering (Auckland, New Zealand), 8p.

Nguyen, F., Van Rompaey, G., Teerlynck, H., Van Camp, M., Jongmans, D. and Camelbeeck, T., 2004. Use of microtremor measurement for assessing site effects in Northern Belgium – interpretation of the observed intensity during the M = 5.0 June 11 1938 earthquake. J. Earthq. Eng., 8, 41-56.

Nogoshi, M. and Igarashi, T., 1971. On the Amplitude Characteristics of Microtremor (Part 2) (in Japanese with English Abstract). Journal of Seismological Society of Japan (Vol. 24), 24-40p.

Ohmachi, T. and Umezono, T., 1998. Rate of Rayleigh waves in microtremors. Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion. Yokohama. Japan, pp. 587–592.

Okada, H., 2003. The Microtremor Survey Method. Society of Exploration Geophysics (SEG), 135p.

Okeke, E. and Asor, V., 2000. On the microseisms associated with coastal sea waves. Geophysical Journal International 141 (3), 672–678.

Peterson, J., 1983. Observations and Modeling of Seismic Background Noise. US Geological Survey, Open File Report (Vol. 93), 42p.

Πάνου, Α., 2007. Ανάλυση μετρήσεων μικροθορύβου και συσχέτιση με μακροσεισμικά αποτελέσματα της περιοχής της Θεσσαλονίκης. Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Παπαδόπουλος, Η., 2013. Πειραματική και θεωρητική μελέτη της τοπικής εδαφικής ενίσχυσης με τη χρήση δεδομένων μικροθορύβου και γεωφυσικών μετρήσεων πεδίου, Διδακτορική Διατριβή, Τμ. Γεωλογίας ΑΠΘ, 416 σελ.

Raptakis, D., Theodulidis, N. and Pitilakis, K., 1998. Data analysis of the Euroseistest strong motion array in Volvi (Greece): standard and horizontal to vertical spectral ratio techniques. Earthq. Spectra, 14, 203–224.

Ridder, S. D. and Dellinger, J., 2011. Ambient seismic noise eikonal tomography for near-surface imaging at Valhall. The Leading Edge 30.5, 506-12.

Riepl, J., Bard, P.-Y., Hatzfeld, D., Papaioannou, Ch. and Nechtschein, S., 1998. Detailed evaluation of site-response estimation methods across and along the sedimentary valley of Volvi (EURO-SEISTEST). Bull. Seism. Soc. Am., 88, 488–502.

Rodriguez, V. H. S. and Midorikawa, S., 2002. Applicability of the H/V spectral ratio of microtremors in assessing site effects on seismic motion. Earthq. Eng. and Structural Dynamics, 31, 261-279.

Satoh, T., Kawase, H. and Shin'Ichi, M., 2001. Estimation of S-wave velocity structures in and around the Sendai Basin, Japan, using arrays records of microtremors. Bulletin of the Seismological Society of America, 91(2), 206-218.

Schmidt, R.O., 1981. A signal subspace approach to multiple emitter location and spectral estimation. Ph.D, thesis, Stanford University, California, USA, Society of America 91 (2), 206–218.

Seekins, L.C., Wennerberg, L., Marghereti, L. and Liu, H.-P., 1996. Site amplification at five locations in San Francisco, California: a comparison of S waves, codas, and microtremors. Bulletin of the Seismological Society of America 86 (3), 627–635.

Semblat, J.-F., Duval, A.-M. and Dangla, P., 2000. Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments. Soil Dynamics and Earthquake Engineering, 19, 347-362.

Seo, K., 1997. Comparison of measured microtremors with damage distribution. JICA. Research and Development Project on Earthquake Disaster Prevention, 306-320.

Stephenson, W. R., 2003. Factors bounding prograde Rayleigh-wave particle motion in a soft-soil layer. Pacific Conference on Earthquake Engineering, Vol. 13.

Stewart, J. P., Klimis, N., Savvaidis, A., Theodoulidis, N., Zargli, E., Athanasopoulos, G., Pelekis, P., Mylonakis, G. and Margaris, B., 2014. Compilation of a

Local VS Profile Database and Its Application for Inference of VS30 from Geologic- and Terrain-Based Proxies. Bulletin of the Seismological Society of America 104.6, 2827-841.

Stutzmann, E., Roult, G. and Astiz, L., 2000. GEOSCOPE station noise levels. Bulletin of the Seismological Society of America 90 (3), 690–701.

Teves-Costa, P., Matias, L. and Bard, P.-Y., 1996. Seismic behavior estimation of thin alluvium layers using microtremor recordings. Soil Dyn. Earthq. Eng., 15, 201-209.

Tindle, C. T. and Murphy, M. J., 1999. Microseisms and ocean wave measurements. IEEE Journal of Oceanic Engineering 24 (1), 112–115.

Tokimatsu, K., 1997. Geotechnical site characterization using surface waves. Proceedings of the First International Conference on Earthquake Geotechnical Engineering, vol. 3, pp. 1333–1368.

Tokimatsu, K., Aarai H. and Asaka, Y., 1996. Three-Dimensional Soil Profiling in Kobe Area Using Microtremors. 10th World Conference of Earthquake Engineering (Acapulco, Mexico), Paper No. 1764.

Toksöz, M. N., Lacoss and R. T., 1968. Microseisms: mode structure and sources. Science 159, 872–873.

Τσελέντης, A., 1997. Σύγχρονη Σεισμολογία, Εκδόσεις Παπασωτηρίου, Αθήνα 1997.

Yamanaka, H., Takemura, M., Ishida, H. and Niwa, M., 1994. Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bulletin of the Seismological Society of America 84 (6), 1831–1841.

Yamanaka, H., Dravinski, M. and Kagami, H., 1996. Continuous Measurements of Microtremor on Sediments and Basement in Los Angeles, California. Bulletin of the Seismological Society of America (Vol.63), 1227-1253p.

Yamamoto, H., 2000. Estimation of shallow S-wave velocity structures from phase velocities of Love- and Rayleigh-waves in microtremors. Proceedings of the 12thWorld Conference on Earthquake Engineering. Auckland, New Zealand.

Wakamatsu, K., and Yasui, Y., 1996. Possibility of estimation for amplification characteristics of soil deposits based on ratio of horizontal to vertical spectra of microtremors. Proceedings of the 11th World Conference on Earthquake Engineering. Acapulco.

Wathelet, M., 2005. Array recordings of ambient vibrations: surface-wave inversion. PhD Diss., Liége University, 161.

Wathelet, M., 2008. An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophysical Research Letters 35.9.

Zaslavsky, Y., Shapira and A. Arzi A., 2000. Amplification effects from earthquakes and ambient noise in the Dead Sea rift (Israel). Soil Dynamics and Earthquake Engineering, 20, 187-207.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.