[Εξώφυλλο]

Study of dust aerosol-Climate interactions using a regional climate model

Athanasios Tsikerdekis

Περίληψη


Στην παρούσα διδακτορική διατριβή χρησιμοποιήθηκε το κλιματικό μοντέλο περιοχής RegCM4, για τη μελέτη των διάφορων διεργασιών που αφορούν την ατμοσφαιρική σκόνη και το κλίμα. Το RegCM4 περιλαμβάνει ένα λεπτομερές σχήμα εκπομπής, μεταφοράς και εναπόθεσης της σκόνης. Η αξιολόγηση του μοντέλου πραγματοποιείται με τη χρήση διάφορων δεδομένων παρατήρησης από επίγειους σταθμούς, δορυφορικές μετρήσεις και δεδομένα μοντέλων επ-ανάλυσης (LIVAS, CRU, ERA-interim, CERES, TRMM και CMSAF). Στο πρώτο κεφάλαιο αναλύονται περιγραφικά οι διεργασίες σκόνης που λαμβάνουν μέρος στην ατμόσφαιρα και μια αναλυτική περιγραφή του σχήματος σκόνης που χρησιμοποιεί το RegCM4. Στο δεύτερο κεφάλαιο γίνεται παρουσίαση του RegCM4 και δεδομένων παρατηρήσεων και δορυφορικών μετρήσεων. Το τρίτο κεφάλαιο εξετάζει την ευαισθησία του μοντέλου στον αριθμό των ομάδων μεγέθους σκόνης (bin) που χρησιμοποιεί. Η περίοδος αναφοράς είναι μεταξύ 2007 και 2014 και το χωρικό πεδίο ορισμού περιλαμβάνει την Σαχάρα την Μεσόγειο και ένα τμήμα της Ευρώπης. Δύο μέθοδοι διαχωρισμού των ομάδων μεγέθους σκόνης. Η πρώτη προκαθορισμένη μέθοδος του μοντέλου δημιουργεί 4 ομάδες μεγέθους σκόνης, όπου η έκταση κάθε ομάδες ορίζεται ισο-λογαριθμικά χρησιμοποιώντας την διάμετρο των σωματιδίων σκόνης (4bin-isolog). Στην δεύτερη περίπτωση οι ομάδες σκόνης είναι 12 και η έκταση κάθε ομάδας ορίζεται σύμφωνα με την ταχύτητα ξηρής εναπόθεσης των σωματιδίων σκόνης (12bin-isogradient). Η καινούργια μέθοδος διαχωρισμού των ομάδων σκόνης αυξάνει τις συγκεντρώσεις των μεγάλων και μικρών σωματιδίων σκόνης κατά 4% και 3% αντίστοιχα. Επίσης, αυξάνει το οπτικό βάθος της σκόνης κατά 10% πάνω από την Μεσόγειο και την Σαχάρα. Το τέταρτο κεφάλαιο μελετά την μεταφορά σκόνης από την Σαχάρα προς τον Ατλαντικό και την ήπειρο της Αμερικής χρησιμοποιώντας το κλιματικό μοντέλο περιοχής RegCM4 για την περίοδο Δεκέμβριος 2006 με Νοέμβριο 2014. Το μέσο οπτικό βάθος του μοντέλου προσομοιώνεται ικανοποιητικά, με μια μικρή (0.05) υποεκτίμηση/υπερεκτίμηση για το Νότιο και Βόρειο τμήμα του Ατλαντικού ωκεανού αντίστοιχα. Σύμφωνα με το RegCM4 η συνολική εναπόθεση σκόνης για την 8ετή περίοδο εξέτασης είναι 4.3±0.4 Tg·yr-1, 154.5±10.7 Tg·yr-1 και 10.3±0.6  Tg·yr-1 για την λεκάνη του Αμαζονίου, τον Ατλαντικό ωκεανό και την Καραϊβική αντίστοιχα. Η ξηρή εναπόθεση παίζει πρωταγωνιστικό ρόλο στον Ατλαντικό (88.9%) και την Καραϊβική (85.4%), ενώ η υγρή εναπόθεση είναι αρκετά σημαντική στην λεκάνη του Αμαζονίου (67.4%). Η τρίτη ενότητα αποτελεσμάτων εξετάζει την άμεση και ήμι-άμεση επιρροή της σκόνης στην ακτινοβολία πάνω από την Μεσόγειο, την Σαχάρα και την Σαχέλ για την πρώτη (1999-01-01 εώς 2009-11-30) και την τελευταία (2089-01-01 to 2099-11-30) δεκαετία του 21ου αιώνα. Η μελλοντική κλιματική αλλαγή προσομοιώνεται σύμφωνα με το σενάριο εκπομπών θερμοκηπικών αερίων RCP 4.5. Η άμεση επίδραση της σκόνης στην ακτινοβολία είναι ισχυρότερη από την ήμι-άμεση την ψυχρή και την θερμή περίοδο του έτους, αν και κατά την διάρκεια του καλοκαιριού η ήμι-άμεση επιρροή της σκόνης στην μεγάλου μήκους ακτινοβολίας φτάνει το 50% πάνω ορισμένες περιοχές της ερήμου. Στην μελλοντική δεκαετία οι συγκεντρώσεις της σκόνης και η επίδραση της στην ακτινοβολία, την θερμοκρασία και τα νέφη ενισχύεται. Επίσης, η επίδραση της σκόνης στις μελλοντικές κλιματικές προβολές μειώνει την άνοδο της θερμοκρασία λόγω κλιματικής αλλαγής κατά 0.3°C πάνω από την Σαχέλ και την ενισχύει κατά 0.2°C πάνω από την ευρύτερη περιοχή της Σαχάρας.

This PhD dissertation investigates various dust-climate intertwined processes using a regional climate model (RegCM4) that includes a detailed online dust production-transport-deposition scheme. The evaluation of the model is conducted using numerous ground-based gridded observational, satellite-derived and re-analysis datasets such as LIVAS, CRU, ERA-interim, CERES, TRMM and CMSAF. In the first one an encyclopedic description of dust related processes (emission, transport, deposition) is given followed by an analytical description of the online dust scheme of RegCM4. The second chapter describes the observational and modeling datasets used. In the third chapter the sensitivity of dust bin size discretization in the regional climate model RegCM4 for the period 2007-2014 over the Sahara and the Mediterranean is investigated. Two discretization methods of the dust size distribution are applied, keeping the total mass constant: 1) the default RegCM4 4-bin approach, where the size range of each bin is calculated using an equal, logarithmic separation of the total size range of dust, using the diameter of dust particles and 2) a newly implemented 12-bin approach with each bin defined according to an isogradient method where the size ranges are dependent on the dry deposition velocity of dust particles. The new dust binning approach increases the dust column burden by 4% and 3% for fine and coarse particles respectively, which increases DOD by 10% over the desert and the Mediterranean. In the fourth chapter the westward Trans-Atlantic transport of dust from the Sahara towards the South and Central America is simulated using the regional climate model RegCM4 for the period December 2006 to November 2014. According to RegCM4 the total dust deposition for the examined 8 year period is 4.3±0.4 Tg·yr-1, 154.5±10.7 Tg·yr-1 and 10.3±0.6 Tg·yr-1 for the Amazon basin, the Atlantic ocean and the Caribbean respectively. Dry deposition is the dominant deposition process in the Atlantic accounting for 88.9% of the total deposition in contrast to Caribbean where wet deposition accounts for 85.4%. In the Amazon basin dry deposition takes up to 67.4% of total deposition. In the fifth chapter the radiative direct and semi-direct effect of dust is explored using the regional climate model RegCM4 over the Mediterranean, Sahara and Sahel. The simulations cover a historical decade which spans from 1999-01-01 to 2009-11-30 and a future decade that ranges from 2089-01-01 to 2099-11-30. The future atmospheric climate changes are driven by the Representative Concentration Pathway 4.5 (RCP4.5). The results for the historical period show that the direct RE of dust dominates in comparison to the semi-direct RE in both winter and summer, although during summer the semi-direct effect in the longwave spectrum accounts for almost 50% of total radiative effect over some parts of the desert. In the future period the dust concentration are spatially similar to the historical period but enhanced over the desert (+8%). When dust is radiatively active in a future climate simulation it can decrease the summer daily maximum temperature by 0.3°C over Sahel and increase it locally in eastern Sahara and western Sahel up to 0.2°C.

Πλήρες Κείμενο:

PDF

Αναφορές


Ackerman a. S (2000) Reduction of Tropical Cloudiness by Soot. Science (80- ) 288:1042–1047. doi: 10.1126/science.288.5468.1042

Albrecht BA (1989) Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science (80- ) 245:1227–1230. doi: 10.1126/science.245.4923.1227

Alexandri G, Georgoulias a. K, Zanis P, et al. (2015) On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations. Atmos Chem Phys 15:13195–13216. doi: 10.5194/acp-15-13195-2015

Alexandri G, Georgoulias AK, Meleti C, et al. (2017) A high resolution satellite view of surface solar radiation over the climatically sensitive region of Eastern Mediterranean. Atmos Res 188:107–121. doi: 10.1016/j.atmosres.2016.12.015

Alfaro SC, Gaudichet A, Gomes L, Maillé M (1998) Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies. Geophys Res Lett 25:991–994. doi: 10.1029/98GL00502

Alfaro SC, Gaudichet A, Gomes L, Maillé M (1997) Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res 102:11239. doi: 10.1029/97JD00403

Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J Geophys Res 106:18075. doi: 10.1029/2000JD900339

Ali A, Lebel T (2009) The Sahelian standardized rainfall index revisited. Int J Climatol 29:1705–1714. doi: 10.1002/joc.1832

Alpert P, Kishcha P, Shtivelman a, et al. (2004a) Vertical distribution of Saharan dust based on 2.5-year model predictions. Atmos Res 70:109–130. doi: 10.1016/j.atmosres.2003.11.001

Alpert P, Osetinsky I, Ziv B, Shafir H (2004b) Semi-objective classification for daily synoptic systems: application to the eastern Mediterranean climate change. Int J Climatol 24:1001–1011. doi: 10.1002/joc.1036

Amiridis V, Marinou E, Tsekeri a., et al. (2015) LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET. Atmos Chem Phys 15:7127–7153. doi: 10.5194/acp-15-7127-2015

Amiridis V, Wandinger U, Marinou E, et al. (2013) Optimizing CALIPSO Saharan dust retrievals. Atmos Chem Phys 13:12089–12106. doi: 10.5194/acp-13-12089-2013

Anderson RS, Haff PK (1991) Aeolian Grain Transport 1. doi: 10.1007/978-3-7091-6706-9

Anderson RS, Haff PK (1988) Simulation of eolian saltation. Science (80- ) 241:820–823.

Aoki T, Tanaka TY, Uchiyama A, et al. (2005) Sensitivity Experiments of Direct Radiative Forcing Caused by Mineral Dust Simulated with a Chemical Transport Model. J Meteorol Soc Japan 83A:315–331.

Baars H, Kanitz T, Engelmann R, et al. (2016) An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling. Atmos Chem Phys 16:5111–5137. doi: 10.5194/acp-16-5111-2016

Bagnold RA (1941) The Physics of Blown Sand and Desert Dunes. Methuen, New York

Baker AR, French M, Linge KL (2006) Trends in aerosol nutrient solubility along a west-east transect of the Saharan dust plume. Geophys Res Lett 33:10–13. doi: 10.1029/2005GL024764

Baker AR, Jickells TD (2006) Mineral particle size as a control on aerosol iron solubility. Geophys Res Lett 33:1–4. doi: 10.1029/2006GL026557

Bangert M, Nenes a., Vogel B, et al. (2012) Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos Chem Phys 12:4045–4063. doi: 10.5194/acp-12-4045-2012

Basart S, Pérez C, Nickovic S, et al. (2012) Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B Chem Phys Meteorol 64:18539. doi: 10.3402/tellusb.v64i0.18539

Benas N, Finkensieper S, Stengel M, et al. (2017) The MSG-SEVIRI-based cloud property data record CLAAS-2. Earth Syst Sci Data 9:415–434. doi: 10.5194/essd-9-415-2017

Bohren CF, Huffman DR (1998) Absorption and Scattering of Light by Small Particles. doi: 10.1002/9783527618156

Boucher O, Randall D, Artaxo P, et al. (2013) The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K.

Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midg.

Bretherton CS, McCaa JR, Grenier H (2004) A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results. Mon Weather Rev 132:864–882. doi: 10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2

Brioude J, Cooper OR, Feingold G, et al. (2009) Effect of biomass burning on marine stratocumulus clouds off the California coast. Atmos Chem Phys Discuss 9:14529–14570. doi: 10.5194/acpd-9-14529-2009

Bristow CS, Hudson-Edwards K a., Chappell A (2010) Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys Res Lett 37:L14807. doi: 10.1029/2010GL043486

Cakmur R V., Miller RL, Perlwitz J, et al. (2006) Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations. J Geophys Res 111:D06207. doi: 10.1029/2005JD005791

Carlson TN, Prospero JM (1972) The Large-Scale Movement of Saharan Air Outbreaks over the Northern Equatorial Atlantic. J Appl Meteorol 11:283–297. doi: 10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2

Chadwick OA, Derry LA, Vitousek PM, et al. (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497. doi: 10.1038/17276

Cheng Y-S, Yeh H-C, Allen MD (1988) Dynamic Shape Factor of a Plate-Like Particle. Aerosol Sci Technol 8:109–123. doi: 10.1080/02786828808959176

Chin M, Diehl T, Tan Q, et al. (2014) Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos Chem Phys 14:3657–3690. doi: 10.5194/acp-14-3657-2014

Chomette O, Legrand M, Marticorena B (1999) Determination of the wind speed threshold for the emission of desert dust using satellite remote sensing in the thermal infrared. J Geophys Res Atmos 104:31207–31215. doi: 10.1029/1999JD900756

Choobari OA, Zawar-Reza P, Sturman A (2014) The global distribution of mineral dust and its impacts on the climate system: A review. Atmos Res 138:152–165. doi: 10.1016/j.atmosres.2013.11.007

Claquin T, Schulz M, Balkanski YJ (1999) Modeling the mineralogy of atmospheric dust sources. J Geophys Res Atmos 104:22243–22256. doi: 10.1029/1999JD900416

Cziczo DJ, Froyd KD, Hoose C, et al. (2013) Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science (80- ) 340:1320–1324. doi: 10.1126/science.1234145

d’Almeida GA, Schütz L (1983) Number, Mass and Volume Distributions of Mineral Aerosol and Soils of the Sahara. J Clim Appl Meteorol 22:233–243. doi: 10.1175/1520-0450(1983)022<0233:NMAVDO>2.0.CO;2

de Wrachien D, Ragab R, Giordano A (2006) CLIMATE CHANGE, LAND DEGRADATION, AND DESERTIFICATION IN THE MEDITERRANEAN ENVIRONMENT. Desertif. Mediterr. Reg. A Secur. Issue. Kluwer Academic Publishers, Dordrecht, pp 353–371

Dee DP, Uppala SM, Simmons AJ, et al. (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828

Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Codel. NCAR/TN-387+STR. Boulder, Colorado

Dubovik O, Holben B, Eck TF, et al. (2002) Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J Atmos Sci 59:590–608. doi: 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2

Emanuel KA (1991) A Scheme for Representing Cumulus Convection in Large-Scale Models. J Atmos Sci 48:2313–2329. doi: 10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2

Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth-Science Rev 79:73–100. doi: 10.1016/j.earscirev.2006.06.004

Engelstaedter S, Washington R (2007) Atmospheric controls on the annual cycle of North African dust. J Geophys Res 112:D03103. doi: 10.1029/2006JD007195

Fan S-M, Horowitz LW, Levy H, Moxim WJ (2004) Impact of air pollution on wet deposition of mineral dust aerosols. Geophys Res Lett 31:2–5. doi: 10.1029/2003GL018501

Fasham MJR (2003) Ocean Biogeochemistry. doi: 10.1007/978-3-642-55844-3

Fécan F, Marticorena B, Bergametti G (1999) Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys 17:149–157. doi: 10.1007/s00585-999-0149-7

Fletcher B (1976a) The erosion of dust by an airflow. J. Phys. D. Appl. Phys. 9:

Fletcher B (1976b) The incipient motion of granular materials. J. Phys. D. Appl. Phys. 9:

Foret G, Bergametti G, Dulac F, Menut L (2006) An optimized particle size bin scheme for modeling mineral dust aerosol. J Geophys Res 111:D17310. doi: 10.1029/2005JD006797

Formenti P, Schütz L, Balkanski Y, et al. (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos Chem Phys 11:8231–8256. doi: 10.5194/acp-11-8231-2011

Forster P, Ramaswamy V, Artaxo P, et al. (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Ma. Cambridge United Kingdom and New York, NY, USA.

Ganor E, Osetinsky I, Stupp A, Alpert P (2010) Increasing trend of African dust, over 49 years, in the eastern Mediterranean. J Geophys Res 115:D07201. doi: 10.1029/2009JD012500

Gao Y, Fan S-M, Sarmiento JL (2003) Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean. J Geophys Res 108:4221. doi: 10.1029/2002JD002420

Georgoulias AK, Alexandri G, Kourtidis KA, et al. (2016a) Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean. Atmos Chem Phys 16:13853–13884. doi: 10.5194/acp-16-13853-2016

Georgoulias AK, Alexandri G, Kourtidis K a., et al. (2016b) Differences between the MODIS Collection 6 and 5.1 aerosol

datasets over the greater Mediterranean region. Atmos Environ 147:310–319. doi: 10.1016/j.atmosenv.2016.10.014

Gibson ER, Hudson PK, Grassian VH (2006) Aerosol chemistry and climate: Laboratory studies of the carbonate component of mineral dust and its reaction products. Geophys Res Lett 33:L13811. doi: 10.1029/2006GL026386

Gillette DA, Marticorena B, Bergametti G (1998) Change in the aerodynamic roughness height by saltating grains: Experimental assessment, test of theory, and operational parameterization. J Geophys Res Atmos 103:6203–6209. doi: 10.1029/98JD00207

Giorgi F (1988) Dry deposition velocities of atmospheric aerosols as inferred by applying a particle dry deposition parameterization to a general circulation model. Tellus B 40B:23–41. doi: 10.1111/j.1600-0889.1988.tb00210.x

Giorgi F (1989) Two-dimensional simulations of possible mesoscale effects of nuclear war fires: 1. Model description. J Geophys Res 94:1127. doi: 10.1029/JD094iD01p01127

Giorgi F, Anyah R (2012) INTRODUCTION The road towards RegCM4 F. Giorgi1,*, R. O. Anyah2. Clim Res 52:3–6. doi: 10.3354/cr01089

Giorgi F, Chameides WL (1986) Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model. J Geophys Res 91:14367. doi: 10.1029/JD091iD13p14367

Giorgi F, Coppola E, Solmon F, et al. (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi: 10.3354/cr01018

Gkikas a., Hatzianastassiou N, Mihalopoulos N, et al. (2013) The regime of intense desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. Atmos Chem Phys 13:12135–12154. doi: 10.5194/acp-13-12135-2013

Goldstein H, Reynolds R, Reheis M, et al. (2005) Particle Size, CaCO3, Chemical, Magnetic, and Age Data from Surficial Deposits in and around Canyonlands National Park, Utah. Canyonlands Research Bibliography. Paper 1.

Gong SL (2003a) Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J Geophys Res 108:4262. doi: 10.1029/2002JD002633

Gong SL (2003b) Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J Geophys Res 108:4007. doi: 10.1029/2001JD002002

Goudie a. S, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth-Science Rev 56:179–204. doi: 10.1016/S0012-8252(01)00067-8

Greeley R, Iversen JD (1985) Wind as a Geological Process on Earth, Mars, Venus and Titan. Geol Mag 122:578. doi: 10.1017/S0016756800035640

Grell GA (1993) Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon Weather Rev 121:764–787. doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2

Grell GA, Dudhia J, Stauffer DR (1994) A Description of the Fifth-Generation Penn State / NCAR Mesoscale Model ( MM5 ). National Center for Atmospheric Research, Boulder, Colorado

Hänel A, Baars H, Althausen D, et al. (2012) One-year aerosol profiling with EUCAARI Raman lidar at Shangdianzi GAW station: Beijing plume and seasonal variations. J Geophys Res Atmos 117:D13201. doi: 10.1029/2012JD017577

Hansell R a., Tsay SC, Ji Q, et al. (2010) An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust during the NAMMA Field Campaign. J Atmos Sci 67:1048–1065. doi: 10.1175/2009JAS3257.1

Hansen J (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi: 10.1029/2005JD005776

Hansen J, Sato M, Lacis A, Ruedy R (1997) The missing climate forcing. Philos Trans R Soc B Biol Sci 352:231–240. doi: 10.1098/rstb.1997.0018

Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi: 10.1002/joc.3711

Helmert J, Heinold B, Tegen I, et al. (2007) On the direct and semidirect effects of Saharan dust over Europe: A modeling study. J Geophys Res Atmos 112:n/a-n/a. doi: 10.1029/2006JD007444

Hill AA, Dobbie S (2008) The impact of aerosols on non-precipitating marine stratocumulus. II: The semi-direct effect. Q J R Meteorol Soc 134:1155–1165. doi: 10.1002/qj.277

Hillel D (1982) Introduction to Soil Physics.

Holtslag AAM, De Bruijn EIF, Pan H-L (1990) A High Resolution Air Mass Transformation Model for Short-Range Weather

Forecasting. Mon Weather Rev 118:1561–1575. doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2

Hsu NC, Tsay S-C, King MD, Herman JR (2006) Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia. IEEE Trans Geosci Remote Sens 44:3180–3195. doi: 10.1109/TGRS.2006.879540

Huang N, Zhang Y, D’Adamo R (2007) A model of the trajectories and midair collision probabilities of sand particles in a steady state saltation cloud. J Geophys Res 112:D08206. doi: 10.1029/2006JD007480

Hudson-Edwards K a., Bristow CS, Cibin G, et al. (2014) Solid-phase phosphorus speciation in Saharan Bodélé Depression dusts and source sediments. Chem Geol 384:16–26. doi: 10.1016/j.chemgeo.2014.06.014

Huneeus N, Schulz M, Balkanski Y, et al. (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816. doi: 10.5194/acp-11-7781-2011

Iacono MJ, Mlawer EJ, Clough SA, Morcrette J-J (2000) Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J Geophys Res 105:14873. doi: 10.1029/2000JD900091

Intergovernmental Panel on Climate Change (2014) Climate Change 2013 - The Physical Science Basis. doi: 10.1017/CBO9781107415324

Israelevich P, Ganor E, Alpert P, et al. (2012) Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. J Geophys Res 117:D02205. doi: 10.1029/2011JD016482

Israelevich PL (2002) Desert aerosol transport in the Mediterranean region as inferred from the TOMS aerosol index. J Geophys Res 107:4572. doi: 10.1029/2001JD002011

Israelevich PL (2003) Annual variations of physical properties of desert dust over Israel. J Geophys Res 108:4381. doi: 10.1029/2002JD003163

Iversen JD, White BR (1982) Saltation threshold on Earth, Mars and Venus. Sedimentology 29:111–119. doi: 10.1111/j.1365-3091.1982.tb01713.x

Jickells TD (2005) Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science (80- ) 308:67–71. doi: 10.1126/science.1105959

Johnson BT, Shine KP, Forster PM (2004) The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Q J R Meteorol Soc 130:1407–1422. doi: 10.1256/qj.03.61

Journet E, Desboeufs K V., Caquineau S, Colin J-L (2008) Mineralogy as a critical factor of dust iron solubility. Geophys Res Lett 35:n/a-n/a. doi: 10.1029/2007GL031589

Kahn RA, Gaitley BJ, Garay MJ, et al. (2010) Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J Geophys Res 115:D23209. doi: 10.1029/2010JD014601

Kain JS (2004) The Kain–Fritsch Convective Parameterization: An Update. J Appl Meteorol 43:170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

Kain JS, Fritsch JM (1990) A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J Atmos Sci 47:2784–2802. doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2

Kallos G, Papadopoulos A, Katsafados P, Nickovic S (2006) Transatlantic Saharan dust transport: Model simulation and results. J Geophys Res 111:D09204. doi: 10.1029/2005JD006207

Kang J-Y, Yoon S-C, Shao Y, Kim S-W (2011) Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem. J Geophys Res 116:D09202. doi: 10.1029/2010JD014649

Karyampudi VM, Carlson TN (1988) Analysis and Numerical Simulations of the Saharan Air Layer and Its Effect on Easterly Wave Disturbances. J Atmos Sci 45:3102–3136. doi: 10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2

Karydis V a., Kumar P, Barahona D, et al. (2011) On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J Geophys Res Atmos 116:D23204. doi: 10.1029/2011JD016283

Kasibhatla P, Chameides WL, John JS (1997) A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic sulfate aerosols. J Geophys Res Atmos 102:3737–3759. doi: 10.1029/96JD03084

Katragkou E, García-Díez M, Vautard R, et al. (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618. doi: 10.5194/gmd-8-603-2015

Kaufman YJ, Koren I, Remer LA, et al. (2005) Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110:D10S12. doi: 10.1029/2003JD004436

Kiehl JT, Hack JJ, Bonan GB, et al. (1996) Description of the NCAR Community Climate Model ( CCM3 ). National Center for Atmospheric Research, Boulder, Colorado

Kim D, Chin M, Yu H, et al. (2014) Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data. J Geophys Res Atmos 119:6259–6277. doi: 10.1002/2013JD021099

Kinne S (2003) Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. J Geophys Res 108:4634. doi: 10.1029/2001JD001253

Kinne S, Schulz M, Textor C, et al. (2006) An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834. doi: 10.5194/acp-6-1815-2006

Klose M, Shao Y, Karremann MK, Fink AH (2010) Sahel dust zone and synoptic background. Geophys Res Lett 37:n/a-n/a. doi: 10.1029/2010GL042816

Knippertz P (2014) Mineral Dust. doi: 10.1007/978-94-017-8978-3

Koch D, Del Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10:7685–7696. doi: 10.5194/acp-10-7685-2010

Koffi B, Schulz M, Bréon F-M, et al. (2012) Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. J Geophys Res 117:D10201. doi: 10.1029/2011JD016858

Kok JF (2011a) Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos Chem Phys 11:10149–10156. doi: 10.5194/acp-11-10149-2011

Kok JF (2011b) A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc Natl Acad Sci U S A 108:1016–21. doi: 10.1073/pnas.1014798108

Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75:106901. doi: 10.1088/0034-4885/75/10/106901

Kok JF, Renno NO (2009) A comprehensive numerical model of steady state saltation (COMSALT). J Geophys Res 114:D17204. doi: 10.1029/2009JD011702

Koren I, Kaufman YJ, Washington R, et al. (2006) The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environ Res Lett 1:14005. doi: 10.1088/1748-9326/1/1/014005

Kosmas CS, Danalatos NG (1994) Climate Change, Desertification and the Mediterranean Region. Soil Responses to Clim. Chang. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 25–38

Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi: 10.1029/2006GL027546

Laurent B, Marticorena B, Bergametti G, et al. (2008) Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database. J Geophys Res 113:D14218. doi: 10.1029/2007JD009484

Levy RC, Remer LA, Kleidman RG, et al. (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–10420. doi: 10.5194/acp-10-10399-2010

Li W-Q, Zhou Y-H (2007) Statistical behaviors of different-sized grains lifting off in stochastic collisions between mixed sand grains and the bed in aeolian saltation. J Geophys Res 112:D22106. doi: 10.1029/2006JD007888

Liao H, Seinfeld JH (1998) Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J Geophys Res Atmos 103:31637–31645. doi: 10.1029/1998JD200036

Liu Z, Vaughan M, Winker D, et al. (2009) The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance. J Atmos Ocean Technol 26:1198–1213. doi: 10.1175/2009JTECHA1229.1

Loeb NG, Wielicki BA, Doelling DR, et al. (2009) Toward Optimal Closure of the Earth’s Top-of-Atmosphere Radiation Budget. J Clim 22:748–766. doi: 10.1175/2008JCLI2637.1

Lohmann U, Feichter J (2004) Global indirect aerosol effects: a review. Atmos Chem Phys Discuss 4:7561–7614. doi: 10.5194/acpd-4-7561-2004

Lohmann U, Feichter J (2001) Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys Res Lett 28:159–161. doi: 10.1029/2000GL012051

Loosmore G a, Hunt JR (2000) Dust resuspension without saltation. J Geophys Res 105:20663–20672. doi: 10.1029/2000JD900271

Mahowald N, Albani S, Kok JF, et al. (2014) The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res 15:53–71. doi: 10.1016/j.aeolia.2013.09.002

Mahowald NM, Artaxo P, Baker AR, et al. (2005a) Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochem Cycles 19:n/a-n/a. doi: 10.1029/2005GB002541

Mahowald NM, Baker AR, Bergametti G, et al. (2005b) Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19:n/a-n/a. doi: 10.1029/2004GB002402

Mahowald NM, Luo C (2003) A less dusty future? Geophys Res Lett 30:n/a-n/a. doi: 10.1029/2003GL017880

Mahowald NM, Muhs DR, Levis S, et al. (2006) Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res Atmos 111:n/a-n/a. doi: 10.1029/2005JD006653

Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100:16415. doi: 10.1029/95JD00690

Marticorena B, Bergametti G (1996) Two-year simulations of seasonal and interannual changes of the Saharan dust emissions. Geophys Res Lett 23:1921–1924. doi: 10.1029/96GL01432

Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343. doi: 10.1038/331341a0

Martínez-Garcia A, Rosell-Melé A, Geibert W, et al. (2009) Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography 24:1–14. doi: 10.1029/2008PA001657

Mbourou GN, Bertrand JJ, Nicholson SE (1997) The Diurnal and Seasonal Cycles of Wind-Borne Dust over Africa North of the Equator. J Appl Meteorol 36:868–882. doi: 10.1175/1520-0450(1997)036<0868:TDASCO>2.0.CO;2

Menut L, Forêt G, Bergametti G (2007) Sensitivity of mineral dust concentrations to the model size distribution accuracy. J Geophys Res 112:D10210. doi: 10.1029/2006JD007766

Menut L, Pérez C, Haustein K, et al. (2013) Impact of surface roughness and soil texture on mineral dust emission fluxes modeling. J Geophys Res Atmos 118:6505–6520. doi: 10.1002/jgrd.50313

Meskhidze N, Chameides WL, Nenes A, Chen G (2003) Iron mobilization in mineral dust: Can anthropogenic SO 2 emissions affect ocean productivity? Geophys Res Lett 30:10.1029/2003GL018035. doi: 10.1029/2003GL018035

Miller RL, Cakmur R V., Perlwitz J, et al. (2006) Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J Geophys Res 111:D06208. doi: 10.1029/2005JD005796

Mlawer EJ, Clough SA (1997) On the Extension of Rapid Radiative Transfer Model to the Shortwave Region Longwave Method and. U.S. Department of Energy, CONF-9603149

Mlawer EJ, Taubman SJ, Brown PD, et al. (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663. doi: 10.1029/97JD00237

Moulin C, Lambert CE, Dayan U, et al. (1998) Satellite climatology of African dust transport in the Mediterranean atmosphere. J Geophys Res 103:13137. doi: 10.1029/98JD00171

Myhre G, Shindell D, Bréon F-M, et al. (2013) Anthropogenic and Natural Radiative Forcing. In: Intergovernmental Panel on Climate Change (ed) Clim. Chang. 2013 - Phys. Sci. Basis. Cambridge University Press, Cambridge, pp 659–740

Nabat P, Solmon F, Mallet M, et al. (2012) Dust emission size distribution impact on aerosol budget and radiative forcing over the Mediterranean region: a regional climate model approach. Atmos Chem Phys 12:10545–10567. doi: 10.5194/acp-12-10545-2012

Nabat P, Somot S, Mallet M, et al. (2014) Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Clim Dyn 44:1127–1155. doi: 10.1007/s00382-014-2205-6

Nicholson SE (2013) The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol 2013:1–32. doi: 10.1155/2013/453521

Okin GS, Bullard JE, Reynolds RL, et al. (2011) Dust: Small-scale processes with global consequences. Eos (Washington DC) 92:241–242. doi: 10.1029/2011EO290001

Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles. doi: 10.1029/2003GB002145

Oleson KW, Lawrence DM, Bonan GB, et al. (2013) Technical Description of version 4.5 of the Community Land Model (CLM) Coordinating. NCAR/TN-503+STR NCAR. Boulder, Colorado

Omar AH, Winker DM, Vaughan M a., et al. (2009) The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J Atmos Ocean Technol 26:1994–2014. doi: 10.1175/2009JTECHA1231.1

Owen PR (1964) Saltation of uniform grains in air. J Fluid Mech 20:225–242. doi: 10.1017/S0022112064001173

Pal JS, Small EE, Eltahir E a. B (2000) Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos 105:29579–29594. doi: 10.1029/2000JD900415

Pincus R (2003) A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J Geophys Res 108:4376. doi: 10.1029/2002JD003322

Prenni AJ, Petters MD, Kreidenweis SM, et al. (2009) Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nat Geosci 2:402–405. doi: 10.1038/ngeo517

Priestley CHB (1959) Estimation of surface stress and heat flux from profile data. Q J R Meteorol Soc 85:415–418. doi: 10.1002/qj.49708536611

Prospero JM, Collard F-X, Molinié J, Jeannot A (2014) Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Global Biogeochem Cycles 28:757–773. doi: 10.1002/2013GB004802

Prospero JM, Ginoux P, Torres O, et al. (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002. doi: 10.1029/2000RG000095

Prospero JM, Glaccum RA, Nees RT (1981) Atmospheric transport of soil dust from Africa to South America. Nature 289:570–572. doi: 10.1038/289570a0

Qian Y, Giorgi F, Huang Y, et al. (2001) Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters. Tellus B 53:171–191. doi: 10.1034/j.1600-0889.2001.d01-14.x

Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–24. doi: 10.1126/science.1064034

Rice MA, Willetts BB, McEwan IK (1995) An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology 42:695–706. doi: 10.1111/j.1365-3091.1995.tb00401.x

Ridley D a., Heald CL, Ford B (2012) North African dust export and deposition: A satellite and model perspective. J Geophys Res 117:D02202. doi: 10.1029/2011JD016794

Rodríguez S, Cuevas E, Prospero JM, et al. (2015) Modulation of Saharan dust export by the North African dipole. Atmos Chem Phys 15:7471–7486. doi: 10.5194/acp-15-7471-2015

Ryder CL, Highwood EJ, Rosenberg PD, et al. (2013) Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmos Chem Phys 13:303–325. doi: 10.5194/acp-13-303-2013

Sayer AM, Hsu NC, Bettenhausen C, et al. (2015) Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. J Geophys Res Atmos 120:12,157-12,174. doi: 10.1002/2015JD023878

Sayer AM, Munchak LA, Hsu NC, et al. (2014) MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J Geophys Res Atmos 119:13,965-13,989. doi: 10.1002/2014JD022453

Schuster GL, Vaughan M, MacDonnell D, et al. (2012) Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust. Atmos Chem Phys 12:7431–7452. doi: 10.5194/acp-12-7431-2012

Seinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change.

Shalaby a., Zakey a. S, Tawfik a. B, et al. (2012) Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci Model Dev 5:741–760. doi: 10.5194/gmd-5-741-2012

Shao Y (2009) Physics and Modelling of Wind Erosion. doi: 10.1007/978-1-4020-8895-7

Shao Y, Ishizuka M, Mikami M, Leys JF (2011a) Parameterization of size-resolved dust emission and validation with measurements. J Geophys Res 116:D08203. doi: 10.1029/2010JD014527

Shao Y, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105:437–443.

Shao Y, Raupach MR, Findlater PA (1993) Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res 98:12719. doi: 10.1029/93JD00396

Shao Y, Wyrwoll K-H, Chappell A, et al. (2011b) Dust cycle: An emerging core theme in Earth system science. Aeolian Res 2:181–204. doi: 10.1016/j.aeolia.2011.02.001

Skibba R (2016) Climate-change study raises spectre of advancing Mediterranean desert. Nature. doi: 10.1038/nature.2016.20894

Slinn SA, Slinn WGN (1980) Predictions for particle deposition on natural waters. Atmos Environ 14:1013–1016. doi: 10.1016/0004-6981(80)90032-3

Slinn WG. (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ 16:1785–1794. doi: 10.1016/0004-6981(82)90271-2

Sokolik IN, Toon OB (1999) Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J Geophys Res Atmos 104:9423–9444. doi: 10.1029/1998JD200048

Sokolik IN, Winker DM, Bergametti G, et al. (2001) Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust. J Geophys Res Atmos 106:18015–18027. doi: 10.1029/2000JD900498

Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113. doi: 10.3354/cr01039

Solmon F, Giorgi F, Liousse C (2006) Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58:51–72. doi: 10.1111/j.1600-0889.2005.00155.x

Solmon F, Mallet M, Elguindi N, et al. (2008) Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys Res Lett 35:L24705. doi: 10.1029/2008GL035900

Spyrou C, Kallos G, Mitsakou C, et al. (2013) Modeling the radiative effects of desert dust on weather and regional climate. Atmos Chem Phys 13:5489–5504. doi: 10.5194/acp-13-5489-2013

Steiner A, Tawfik A, Shalaby A, et al. (2014) Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region. Clim Res 59:207–228. doi: 10.3354/cr01211

Stengel MS, Kniffka AK, Meirink JFM, et al. (2014) CLAAS: The CM SAF cloud property data set using SEVIRI. Atmos Chem Phys 14:4297–4311. doi: 10.5194/acp-14-4297-2014

Stephens GL, Wood NB, Pakula LA (2004) On the radiative effects of dust on tropical convection. Geophys Res Lett 31:1–4. doi: 10.1029/2004GL021342

Sullivan RC, Moore MJK, Petters MD, et al. (2009) Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos Chem Phys Discuss 9:2609–2644. doi: 10.5194/acpd-9-2609-2009

Swap R, Garstang M, Greco S, et al. (1992) Saharan dust in the Amazon Basin. Tellus B 44:133–149. doi: 10.1034/j.1600-0889.1992.t01-1-00005.x

Tegen I (2003) Modeling the mineral dust aerosol cycle in the climate system. Quat Sci Rev 22:1821–1834. doi: 10.1016/S0277-3791(03)00163-X

Tegen I, Koch D, Lacis AA, Sato M (2000) Trends in tropospheric aerosol loads and corresponding impact on direct radiative forcing between 1950 and 1990: A model study. J Geophys Res 105:26971. doi: 10.1029/2000JD900280

Tegen I, Schepanski K, Heinold B (2013) Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations. Atmos Chem Phys 13:2381–2390. doi: 10.5194/acp-13-2381-2013

Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31:n/a-n/a. doi: 10.1029/2003GL019216

Tesche M, Wandinger U, Ansmann a., et al. (2013) Ground-based validation of CALIPSO observations of dust and smoke in the Cape Verde region. J Geophys Res Atmos 118:2889–2902. doi: 10.1002/jgrd.50248

Textor C, Schulz M, Guibert S, et al. (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813. doi: 10.5194/acpd-5-8331-2005

Thomson AM, Calvin K V., Smith SJ, et al. (2011) RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi: 10.1007/s10584-011-0151-4

Tiedtke M (1989) A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon Weather Rev 117:1779–1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

Tiedtke M (1993) Representation of Clouds in Large-Scale Models. Mon Weather Rev 121:3040–3061. doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2

Tsikerdekis A, Zanis P, Steiner A, et al. (2015) Dust size parameterization in RegCM4: Impact on aerosol burden and radiative forcing. AGU 2015 Fall Meet. San Francisco, p A33L–0357

Tsikerdekis A, Zanis P, Steiner AL, et al. (2017a) Simulated Dust Over the Sahara and Mediterranean with a Regional Climate Model (RegCM4). pp 615–620. COMECAP 2016.

Tsikerdekis A, Zanis P, Steiner AL, et al. (2017b) Impact of dust size parameterizations on aerosol burden and radiative forcing in RegCM4. Atmos Chem Phys 17:769–791. doi: 10.5194/acp-17-769-2017

Tsikerdekis A, Zanis P, Steiner AL, et al. (2016a) Dust over the Mediterranean using an online climate-chemistry regional climate model (REGCM4). Mediterr. Clim. Var. 2016 Conf.

Tsikerdekis A, Zanis P, Steiner LA, et al. (2016b) Modeling the Trans-Atlantic transportation of Saharan dust. Proceeding 14th Int. Congr. Geol. Soc. Greece

Twomey S (1977) The Influence of Pollution on the Shortwave Albedo of Clouds. J Atmos Sci 34:1149–1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2

Van Der Does M, Korte LF, Munday CI, et al. (2016) Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmos Chem Phys 16:13697–13710. doi: 10.5194/acp-16-13697-2016

Vaughan M a., Powell K a., Winker DM, et al. (2009) Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements. J Atmos Ocean Technol 26:2034–2050. doi: 10.1175/2009JTECHA1228.1

Wandinger U, Tesche M, Seifert P, et al. (2010) Size matters: Influence of multiple scattering on CALIPSO light-extinction profiling in desert dust. Geophys Res Lett 37:L10801. doi: 10.1029/2010GL042815

Washington R, Bouet C, Cautenet G, et al. (2009) Dust as a tipping element: the Bodele Depression, Chad. Proc Natl Acad Sci U S A 106:20564–71. doi: 10.1073/pnas.0711850106

Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations. Ann Assoc Am Geogr 93:297–313. doi: 10.1111/1467-8306.9302003

Williams ER (2008) Comment on “Atmospheric controls on the annual cycle of North African dust” by S. Engelstaedter and R. Washington. J Geophys Res 113:D23109. doi: 10.1029/2008JD009930

Winker DM, Vaughan M a., Omar A, et al. (2009) Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J Atmos Ocean Technol 26:2310–2323. doi: 10.1175/2009JTECHA1281.1

Woodage MJ, Slingo A, Woodward S, Comer RE (2010) U.K. HiGEM: Simulations of Desert Dust and Biomass Burning Aerosols with a High-Resolution Atmospheric GCM. J Clim 23:1636–1659. doi: 10.1175/2009JCLI2994.1

Woodward S, Roberts DL, Betts R a. (2005) A simulation of the effect of climate change-induced desertification on mineral dust aerosol. Geophys Res Lett 32:n/a-n/a. doi: 10.1029/2005GL023482

Yamashita K, Murakami M, Hashimoto A, Tajiri T (2011) CCN Ability of Asian Mineral Dust Particles and Their Effects on Cloud Droplet Formation. J Meteorol Soc Japan 89:581–587. doi: 10.2151/jmsj.2011-512

Young S a., Vaughan M a. (2009) The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description. J Atmos Ocean Technol 26:1105–1119. doi: 10.1175/2008JTECHA1221.1

Yu H, Chin M, Bian H, et al. (2015) Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sens Environ 159:232–249. doi: 10.1016/j.rse.2014.12.010

Zakey a. S, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704. doi: 10.5194/acp-6-4687-2006

Zakey AS, Giorgi F, Bi X (2008) Modeling of sea salt in a regional climate model: Fluxes and radiative forcing. J Geophys Res 113:D14221. doi: 10.1029/2007JD009209

Zanis P, Katragkou E, Tegoulias I, et al. (2012a) Regional Air Quality Simulations Over Europe in Present and Future Climate: Evaluation and Climate Change Impacts on Near Surface Ozone. COMECAP, Athens, pp 1–6

Zanis P, Ntogras C, Zakey a, et al. (2012b) Regional climate feedback of anthropogenic aerosols over Europe using RegCM3. Clim Res 52:267–278. doi: 10.3354/cr01070

Zender CS, Bian H, Newman D (2003) Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J Geophys Res 108:4416. doi: 10.1029/2002JD002775

Zhang L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35:549–560. doi: 10.1016/S1352-2310(00)00326-5

Zimmermann F, Weinbruch S, Schütz L, et al. (2008) Ice nucleation properties of the most abundant mineral dust phases. J Geophys Res 113:D23204. doi: 10.1029/2008JD010655

Zipser EJ, Twohy CH, Tsay S-C, et al. (2009) The Saharan Air Layer and the Fate of African Easterly Waves—NASA’s AMMA Field Study of Tropical Cyclogenesis. Bull Am Meteorol Soc 90:1137–1156. doi: 10.1175/2009BAMS2728.1


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.