[Εξώφυλλο]

Συμβολή στη μελέτη της τρισδιάστατης δομής απόσβεσης των σεισμικών κυμάτων στο χώρο του Αιγαίου

Χρυσάνθη Βεντούζη

Περίληψη


Με στόχο τη μελέτη της σεισμικής απόσβεσης στο χώρο του Ν. Αιγαίου καθορίστηκαν τρισδιάστατα μοντέλα απόσβεσης τόσο για τα επιμήκη  όσο και για τα εγκάρσια  κύματα χρησιμοποιώντας τους χρόνους απόσβεσης  που υπολογίστηκαν από τα φάσματα επιτάχυνσης των P και S κυμάτων για σεισμούς ενδιαμέσου βάθους. Για το σκοπό αυτό, χρησιμοποιήθηκαν περισσότεροι από 350 σεισμοί ενδιαμέσου βάθους (εστιακό βάθος μεγαλύτερο των 50km), οι οποίοι είχαν καταγραφεί από δύο τοπικά δίκτυα σεισμογράφων που είχαν εγκατασταθεί στην ευρύτερη περιοχή. Το πρώτο δίκτυο (CYCNET), είχε εγκατασταθεί στην περιοχή των Κυκλάδων (κεντρικό Αιγαίο), ενώ το δεύτερο δίκτυο είχε εγκατασταθεί στα πλαίσια του  προγράμματος  EGELADOS και αποτελούνταν από 65 σεισμογράφους και 24 υποθαλάσσια σεισμόμετρα (OBS) στην ευρύτερη περιοχή της ζώνης κατάδυσης του Αιγαίου. Υπολογίστηκαν οι χρόνοι απόσβεσης  και  ανεξάρτητα της συχνότητας χρησιμοποιώντας δύο τεχνικές. Στην πρώτη προσέγγιση, οι χρόνοι απόσβεσης καθορίστηκαν με αυτοματοποιημένο τρόπο μέσω κώδικα, από την κλίση του φάσματος επιτάχυνσης εξασθένισης της πηγής πάνω από τη γωνιακή συχνότητα θεωρώντας μοντέλο πηγής . Οι υπολογισμοί πραγματοποιήθηκαν στο εύρος συχνοτήτων 0.2-25Hz, χρησιμοποιώντας μόνο τα φάσματα με λόγο σήματος προς θόρυβο μεγαλύτερο από 3, και τα οποία βρισκόταν πάνω από το επίπεδο θορύβου για 4Hz τουλάχιστον για τα P κύματα και για 0.5Hz τουλάχιστον για τα S κύματα. Στη δεύτερη προσέγγιση η επιλογή του τμήματος του φάσματος στο οποίο υπολογίστηκαν οι χρόνοι απόσβεσης γινόταν από το χρήστη. Δημιουργήθηκαν διαγράμματα χρόνου απόσβεσης με την απόσταση αλλά δεν παρατηρήθηκε σημαντική εξάρτηση μεταξύ τους, πιθανότατα λόγω των σημαντικών διαφοροποιήσεων που παρατηρούνται τόσο στη χωρική όσο και σε βάθος κατανομή των τιμών των χρόνων απόσβεσης. Η χωρική μεταβολή των τιμών του  έδειξε ότι οι σταθμοί εξωτερικού τόξου παρουσιάζουν χαμηλές τιμές του  ενώ οι σταθμοί στο πίσω μέρος του τόξου εμφανίζουν σαφώς μεγαλύτερες τιμές. Η παρατηρούμενη αυτή διαφορά γίνεται εντονότερη καθώς το βάθος των σεισμών αυξάνει, ενδεικτικό της τοπικής επίδρασης της υψηλής απόσβεσης (χαμηλό ) της σφήνας του μανδύα πάνω από την καταδυόμενη λιθόσφαιρα, σε συμφωνία με ανεξάρτητες παρατηρήσεις.Πραγματοποιήθηκε τομογραφική αντιστροφή των χρόνων απόσβεσης που υπολογίστηκαν και με τους δύο τρόπους για τη δημιουργία τρισδιάστατου μοντέλου ανελαστικής απόσβεσης στο χώρο του Ν. Αιγαίου ακολουθώντας την προσέγγιση των Papazachos and Nolet [1997a, 1997b], αφού πραγματοποιήθηκε υπολογισμός της πορείας των σεισμικών ακτινών με τη χρήση ενός αλγορίθμου ο οποίος προτάθηκε από τους Moser et al. [1992] ο οποίος βασίζεται στην τεχνική τρισδιάστατης ανίχνευσης των ακτινών και μπορεί να εντοπίζει τις διαθλάσεις τους μέσα από περιοχές χαμηλών ταχυτήτων. Χρησιμοποιήθηκε ένα γραμμικό σύστημα εξισώσεων απόσβεσης που δημιουργήθηκε από ένα τρισδιάστατο κάναβο κόμβων με τρισδιάστατη γραμμική παρεμβολή. Στη συνέχεια με εφαρμογή κατάλληλου κώδικα επιλύθηκε το γραμμικό σύστημα χρησιμοποιώντας τη μέθοδο LSQR [Paige and Saunders, 1982]. Εφόσον το μοντέλο ταχύτητας δεν αλλάζει, άρα δεν αλλάζει και η γεωμετρία των σεισμικών ακτινών, τότε το σύστημα συγκλίνει σε μια επανάληψη (ως γραμμικό) και δεν απαιτείται επαναληπτική διαδικασία με εκ νέου ανίχνευση των σεισμικών ακτινών όπως συμβαίνει στη σεισμική τομογραφία ταχύτητας [Papazachos and Nolet, 1997a]. Με σκοπό την εκτίμηση της αξιοπιστίας των παραγόμενων μοντέλων απόσβεσης πραγματοποιήθηκε εξέταση  της διακριτικής τους ικανότητας  καθώς και εκτίμηση της επίδρασης της ποιότητας των δεδομένων και της παραμετροποίησης του μοντέλου [Kissling et al., 2001]. Για το λόγο αυτό πραγματοποιήθηκαν δοκιμές με τη χρήση συνθετικών χρόνων απόσβεσης χρησιμοποιώντας γνωστά μοντέλα απόσβεσης. Πραγματοποιήθηκαν δοκιμές διακριτικής ικανότητας (resolutions tests) τύπου «σκακιέρας» (checkerboard tests) [Papazachos and Nolet, 1997a; Pozgay et al., 2009; Chen and Clayton, 2012; Lin et al., 2015] κ.α. χρησιμοποιώντας ημιτονοειδής ανωμαλίες για διάφορα μήκη κύματος τόσο στις δύο οριζόντιες διατάσεις όσο και στην κατακόρυφη διεύθυνση, καθώς και δοκιμές με τη χρήση μοντέλων που προσομοιάζουν την πιθανή δομή απόσβεσης της ζώνης υποβύθισης στην περιοχή του Ν. Αιγαίου. Από την αντιστροφή των χρόνων απόσβεσης, και μετά τις δοκιμές διακριτικής ικανότητας, φαίνεται ότι η εντονότερη απόσβεση επικρατεί στην περιοχή κάτω από το ηφαιστειακό τόξο, με τις μεγαλύτερες τιμές ανελαστικής απόσβεσης ( ~300 και  ~200) να επικρατούν στα βάθη των 80-100km, στο ανατολικότερο τμήμα του ηφαιστειακού τόξου όπου και απαντώνται οι σεισμοί ενδιαμέσου βάθους με τα μεγαλύτερα εστιακά βάθη. Η προσδιοριζόμενη αυτή περιοχή υψηλής ανελαστικής απόσβεσης είναι σε εξαιρετική συμφωνία τόσο με την περιοχή χαμηλής ταχύτητας σεισμικών κυμάτων άνω μανδύα από τομογραφικά μοντέλα που έχουν υπολογιστεί με την εφαρμογή διαφορετικών μεθοδολογιών για την περιοχή μελέτης [Drakatos et al., 1997; Papazachos and Nolet, 1997a; Karagianni and Papazachos, 2007], καθώς και με άλλα μοντέλα απόσβεσης που έχουν προταθεί για το Ν. Αιγαίο [Hashida et al., 1988; Kassaras et al., 2008], όσο και με μοντέλα ανελαστικής απόσβεσης που έχουν προσδιοριστεί σε παρόμοιες ζώνες κατάδυσης [Pozgay et al., 2009; Chen and Clayton, 2012; Liu et al., 2014; Liu and Zhao, 2015]. Η προσδιοριζόμενη ζώνη υψηλής απόσβεσης κάτω από το ηφαιστειακό τόξο βρίσκεται σε άμεση εξάρτηση με την κύρια πηγή μάγματος της περιοχής της σφήνας του μανδύα. Η μαγματική αυτή πηγή δημιουργείται από την αφυδάτωση των ένυδρων πετρωμάτων του άνω τμήματος της βυθιζόμενης λιθοσφαιρικής πλάκας της Αν. Μεσογείου, δημιουργώντας την τροφοδοσία μάγματος και τη δημιουργία μαγματικών θαλάμων και ηφαιστείων στην περιοχή του ηφαιστειακού τόξου [Papazachos et al., 2005]. Μετά τον καθορισμό του τρισδιάστατου μοντέλου ανελαστικής απόσβεσης της περιοχής μελέτης του Ν. Αιγαίου με τη χρήση σεισμών ενδιαμέσου βάθους, έγινε η αξιολόγηση του μοντέλου ανελαστικής απόσβεσης σε σχέση με την απόσβεση της ισχυρής σεισμικής κίνησης στο Ν. Αιγαίο. Για να πραγματοποιηθεί η αξιολόγηση αυτή των αποτελεσμάτων της παρούσας διατριβής, πραγματοποιήθηκαν συγκρίσεις με ήδη δημοσιευμένα αποτελέσματα τα οποία αφορούν την απόσβεση των σεισμικών κινήσεων της περιοχής του Ν. Αιγαίου. Επίσης, έγινε σύγκριση των χρόνων απόσβεσης που μετρήθηκαν από τις κλίσεις των φασμάτων επιτάχυνσης (πειραματικά δεδομένα) σε σχέση με το μοντέλο χρόνων απόσβεσης το οποίο προέκυψε από την αντιστροφή. Επιπλέον, υπολογίστηκαν χρόνοι απόσβεσης για διαφορετικά σύνολα και κατανομές σεισμών ενδιαμέσου βάθους που εκδηλώνονται στην περιοχή μελέτης, με εφαρμογή του μοντέλου που προσδιορίστηκε στην παρούσα διατριβή. Από τις συγκριτικές αυτές αξιολογήσεις, επιβεβαιώθηκε η χαρακτηριστική διαφοροποίηση ανάμεσα στους χρόνους απόσβεσης των οπισθότοξων και εξωτερικού τόξου σταθμών, οι οποίες είχαν παρατηρηθεί και στις ισχυρές σεισμικές κινήσεις από τους Skarlatoudis et al. [2013], για τους σεισμούς που συμβαίνουν στο βυθιζόμενο τέμαχος της πλάκας της Αν. Μεσογείου, με τους οπισθότοξους σταθμούς να εμφανίζουν μεγαλύτερους χρόνους απόσβεσης, , ανάλογα με το εστιακό τους βάθος έπειτα από κάποια κρίσιμη υποκεντρική απόσταση ή σε όλες. Οι διαφορές αυτές στους χρόνους απόσβεσης ανάμεσα στους εσωτερικού και εξωτερικού τόξου σταθμούς ήταν παρόμοιες σε όλες τις κατηγορίες σεισμών ενδιαμέσου βάθους της τάξης των ~70-100msec. Σε ότι αφορά τους σεισμούς ενδιαμέσου βάθους που απαντώνται στο όριο διεπαφής των δύο πλακών (Αιγαίου-Αν. Μεσογείου) οι συντελεστές απόσβεσης που υπολογίστηκαν από τους συνθετικούς χρόνους απόσβεσης των εγκαρσίων κυμάτων, για τη συγκεκριμένη κατηγορία σεισμών ενδιαμέσου βάθους, παρουσιάζουν παρόμοιες τιμές με τους συντελεστές απόσβεσης των Skarlatoudis et al. [2013] που υπολογίστηκαν από τη μελέτη των ισχυρών σεισμικών κινήσεων, τουλάχιστον για το εύρος συχνοτήτων 2.5-10Hz.

The study of the anelastic attenuation structure plays a very important role for seismic wave propagation and provides not only valuable constraints for the Earth’s interior (temperature, relative viscosity, slab dehydration and melt transport)  [Stachnik et al., 2004; Pozgay et al., 2009] but also significant information for the simulation of strong ground motions. We examine the attenuation structure of the Southern Aegean area in terms of quality factor (-factor) for both P and S waves ( and ). For this investigation three dimensional P and S wave attenuation models were determined using a large number of  values measured from P and S wave acceleration spectra of intermediate depth earthquakes. More than 350 intermediate-depth events (focal depth above 50km) were employed, recorded by two local networks of portable and permanent instruments installed in the broader area. The first network, CYCNET, was installed in the broader region of Cyclades islands (central southern Aegean sea) while the second one was the large-scale EGELADOS seismic monitoring project, consisting of 65 land stations and 24 OBS recorders in the broader southern Aegean subduction zone. Frequency-independent path attenuation operator  values were estimated from amplitude spectra for P and S waves using two approaches. In the first approach,  was automatically calculated by the slope of the acceleration spectrum, assuming an ω2 source model for frequencies above the corner frequency, .  was measured using only spectra with a signal-to-noise ratio (SNR) larger than 3 for a frequency range of at least 4Hz for P-waves and 1Hz for S-waves in the frequency band of 0.2 to 25 Hz. In the second approach,  values were manually calculated from the linearly-decaying spectra as selected by the user. The observed  data from both approaches were examined against hypocentral distance. No significant linear trend could be observed, most probably because of the significant spatial and depth variations of the anelastic attenuation structure that superimposes the distance effect. The spatial variation of  values for different hypocentral-depth groups was also examined. The obtained results show that fore-arc stations exhibit very low values of , while back-arc stations exhibit much larger values. The observed  fore-arc/back-arc differences becomes more significant as the depth of the earthquakes increases, indicating the effect of the high-attenuation (low-) mantle wedge beneath the volcanic arc. Tomographic inversion, of  values calculated by both approaches (automatic and manual), was applied using the linearized attenuation equations generated for a 3-D node grid with cubic interpolation and a 1-D background velocity model, which was solved by LSQR (Paige and Saunders, 1982). In general, the highest anelastic attenuation with low  and  values is observed for the depths of 50-80km, with the high-attenuation area almost covering the volcanic-arc of the Southern Aegean Subduction. At greater depths low-Q anomalies are localized in the eastern part of the volcanic arc due to the location of the events with depths >100km. Also, a checkerboard resolution test was applied in order to evaluate the resolution of the tomographic images, showing adequate resolution for the largest part of the models and depths up to ~100-120km, as well other resolution tests which resemble the subducting structure. From the tomographic inversion of whole path attenuation operators, it appears that the highest attenuation is observed under the volcanic arc area, with the biggest values   ( ~300 and  ~200) at depths of 80-100km. The high attenuated region is in excellent agreement with tomography studies of seismic velocity produced for the area using different approaches  [Drakatos et al., 1997; Papazachos and Nolet, 1997a; Karagianni and Papazachos, 2007], with attenuation models proposed for S. Aegean [Hashida et al., 1988; Kassaras et al., 2008], as well as with  tomography attenuation models defined for other similar subduction zones  [Pozgay et al., 2009; Chen and Clayton, 2012; Liu et al., 2014; Liu and Zhao, 2015]. The high attenuation zone determined below the volcanic arc is in direct dependence with the main magma source of the area of mantle wedge. This magmatic source, in various depths in the upper mantle, is generated by the dehydration of hydrated rocks at the upper part of the E. Mediterranean subducting slab leading to magmatic chambers and volcanoes  in the area of the volcanic arc [Papazachos et al., 2005].


Πλήρες Κείμενο:

PDF

Αναφορές


Abers, G. a. et al. (2004), Constraints on absolute S velocities beneath the Aegean Sea from surface wave analysis, edited by P. Bormann, Geophys. J. Int., 31(1), 1–13, doi:10.1111/j.1365-246X.2005.02565.x.

Aizawa, Y., A. Barnhoorn, U. H. Faul, J. D. Fitz Gerald, I. Jackson, and I. Kovács (2008), Seismic properties of Anita Bay dunite: An exploratory study of the influence of water, J. Petrol., 49(4), 841–855,doi:10.1093/petrology/egn007.

Aki, K., and W. H. K. Lee (1976), Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes, 1. A homogeneous initial model, J. Geophys. Res., 81(23).

Aki, K., A. Christoffersson, and E. S. Husebye (1977), Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res., 82(2), doi:10.1029/JB082i002p00277.

Amante, C., and B. W. Eakins (2009), ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis.

Anderson, D. L. (1967), The Anelasticity of the Mantle ", Geophys. J. R. Astron. Soc., 14, 135–164.

Anderson, D. L. (1989), Theory of the Earth, Blackwell Scientific Publications, Boston.

Anderson, J. G., and S. E. Hough (1984), A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies, Bull. Seismol. Soc. Am., 74(5), 1969–1993.

Angelier, J. (1978), TECTONIC EVOLUTION OF THE HELLENIC ARC SINCE THE LATE MIOCENE, , 49, 23–36.

Armijo, R., B. Meyer, G. C. P. King, a Rigo, and D. Papanastassiou (1996), Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean, Geophys. J. Int.,126(1), 11–53, doi:10.1111/j.1365-246X.1996.tb05264.x.

Armijo, R., F. Flerit, G. King, and B. Meyer (2004), Linear elastic fracture mechanics explains the past and present evolution of the Aegean, Earth Planet. Sci. Lett., 217(1-2), 85–95, doi:10.1016/S0012-821X(03)00590-9.

Atkinson, G. M., and D. M. Boore (2003), Empirical Ground-Motion Relations for Subduction Zone Earthquakes and Their Application to Cascadia and Other Regions, Bull. Seismol. Soc. Am., 93(4), 1703–1729.

Becker, D. (2007), Spatio-temporal seismicity clustering in the Cretan region, Ruhr University Bochum.

Becker, D., T. Meier, M. Bohnhoff, and H. P. Harjes (2010), Seismicity at the convergent plate boundary offshore Crete, Greece, observed by an amphibian network, J. Seismol., 14(2), 369–392, doi:10.1007/s10950-009-9170-2.

Benetatos, C., a. Kiratzi, C. Papazachos, and G. Karakaisis (2004), Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc, J. Geodyn., 37(2), 253–296,doi:10.1016/j.jog.2004.02.002.

Berk Biryol, C., S. L. Beck, G. Zandt, and A. A. Ozacar (2011), Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography, Geophys. J. Int., 184(3), 1037–1057, doi:10.1111/j.1365-246X.2010.04910.x.

Bijwaard, H., and W. Spakman (2000), Non-linear global P-wave tomography by iterated linearized inversion, Geophys. J. Int., 141(1), 71–82, doi:10.1046/j.1365-246X.2000.00053.x.

Bijwaard, H., W. Spakman, and E. R. Engdahl (1998), Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103(B12), 30055, doi:10.1029/98JB02467.

Bohnhoff, M., J. Makris, D. Papanikolaou, and G. Stavrakakis (2001), Crustal investigation of the Hellenic subduction zone using wide aperture seismic data, Tectonophysics, 343(3-4), 239–262,doi:10.1016/S0040-1951(01)00264-5.

Bohnhoff, M., M. Rische, T. Meier, B. Endrun, D. Becker, H.-P. Harjes, and G. Stavrakakis (2004), CYC- NET: A Temporary Seismic Network on the Cyclades (Aegean Sea, Greece), Seismol. Res. Lett. , 75(3 ), 352–359, doi:10.1785/gssrl.75.3.352.

Bohnhoff, M., H. P. Harjes, and T. Meier (2005), Deformation and stress regimes in the Hellenic subduction zone from focal mechanisms, J. Seismol., 9(3), 341–366, doi:10.1007/s10950-005-8720-5.

Bohnhoff, M., M. Rische, T. Meier, D. Becker, G. Stavrakakis, and H. P. Harjes (2006), Microseismic activity in the Hellenic Volcanic Arc, Greece, with emphasis on the seismotectonic setting of the Santorini-Amorgos zone, Tectonophysics, 423(1-4), 17–33, doi:10.1016/j.tecto.2006.03.024.

Boore, D. M., A. A. Skarlatoudis, B. N. Margaris, B. P. Costas, and C. Ventouzi (2009a), Along-Arc and Back-Arc Attenuation, Site Response, and Source Spectrum for the Intermediate-Depth 8 January 2006 M 6.7 Kythera, Greece, Earthquake, Bull. Seismol. Soc. Am., 99(4), 2410–2434.

Boore, D. M., A. a. Skarlatoudis, B. N. Margaris, B. P. Costas, and C. Ventouzi (2009b), Along-Arc and Back-Arc Attenuation, Site Response, and Source Spectrum for the Intermediate-Depth 8 January 2006 M 6.7 Kythera, Greece, Earthquake, Bull. Seismol. Soc. Am., 99(4), 2410–2434,doi:10.1785/0120080229.

Bourova, E., I. Kassaras, H. a. Pedersen, T. Yanovskaya, D. Hatzfeld, and a. Kiratzi (2005), Constraints on absolute S velocities beneath the Aegean Sea from surface wave analysis, Geophys. J. Int., 160(3), 1006–1019, doi:10.1111/j.1365-246X.2005.02565.x.

Bruestle, A. (2012), Seismicity of the eastern Hellenic Subduction Zone, Ruhr University Bochum.

Bruestle, A., T. Meier, M. Rische, L. Kuperkoch, and W. Friederich (2014), Seismicity of the eastern Hellenic Subduction Zone betwwen 2002 and 2007 observed by temporary networks,

Brun, J.-P., and D. Sokoutis (2010), 45 m.y. of Aegean crust and mantle flow driven by trench retreat,Geol. , 38 (9 ), 815–818, doi:10.1130/G30950.1.

Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys.Res., 75(26), 4997, doi:10.1029/JB075i026p04997.

Brune, J. N. (1971), Correction [to “Tectonic stress and the spectra of seismic shear waves from earthquakes”], J. Geophys. Res., 76(20), 5002, doi:10.1029/JB076i020p05002.

Carminati, E., M. J. R. Wortel, W. Spakman, and R. Sabadini (1998), The role of slab detachment processes in the opening of the western-central Mediterranean basins: Some geological and geophysical evidence, Earth Planet. Sci. Lett., 160(3-4), 651–665, doi:10.1016/S0012-821X(98)00118-6.

Chaumillon, E., and J. Mascle (1995), Variation laterale des fronts de deformation de la Ride mediterraneennee (Mediterranee orientale), Bull. la Soc. Geol. Fr., 166(5), 463–478.

Chaumillon, E., and J. Mascle (1997), From foreland to forearc domains: New multichannel seismic reflection survey of the Mediterranean ridge accretionary complex (Eastern Mediterranean), Mar.Geol., 138(3-4), 237–259, doi:10.1016/S0025-3227(97)00002-9.

Chen, T., and R. W. Clayton (2009), Seismic attenuation structure in central Mexico: Image of a focused high-attenuation zone in the mantle wedge, J. Geophys. Res. Solid Earth, 114(7), 1–9,doi:10.1029/2008JB005964.

Chen, T., and R. W. Clayton (2012), Structure of central and southern Mexico from velocity and attenuation tomography, J. Geophys. Res., 117(B9), 1–13, doi:10.1029/2012JB009233.

Christodoulou, a., and D. Hatzfeld (1988), Three-dimensional crustal and upper mantle structure beneath Chalkidiki (northern Greece), Earth Planet. Sci. Lett., 88, 153–168, doi:10.1016/0012- 821X(88)90054-4.

Çiftçi, N. B., and E. Bozkurt (2009), Pattern of normal faulting in the Gediz Graben, SW Turkey,Tectonophysics, 473(1-2), 234–260, doi:10.1016/j.tecto.2008.05.036.

Clement, C., M. Sachpazi, P. Charvis, D. Graindorge, M. Laigle, A. Hirn, and G. Zafiropoulos (2004),Reflection-refraction seismics in the Gulf of Corinth: hints at deep structure and control of the deep marine basin, TECTONOPHYSICS, 391(1-4), 97–108, doi:10.1016/j.tecto.2004.07.010.

Comninakis, P. E., and B. C. Papazachos (1972), Seismicity of the Eastern Mediterranean and Some Tectonic Features of the Mediterranean Ridge, Geol. Soc. Am. Bull., 83(4), 1093–1102,doi:10.1130/0016-7606(1972)83[1093:SOTEMA]2.0.CO;2.

Cormier, V. (1982), The effect of attenuation on seismic body waves, Bull. Seismol. Soc. Am., 72(6).

Delibasis, N., J. Makris, and J. Drakopoulos (1988), Seismic investigation of the crust and upper mantle in western Greece, Ann. Geol. des Pays Hell., 33, 69–83.

Delibasis, N., M. Ziazia, N. Voulgaris, T. Papadopoulos, G. Stavrakakis, D. Papanastassiou, and G.Drakatos (1999), Microseismic activity and seismotectonics of Heraklion area (central Crete Island,Greece), Tectonophysics, 308(1-2), 237–248, doi:10.1016/S0040-1951(99)00076-1.

Delibasis, N. D. (1982), Seismic wave attenuation in the upper mantle beneath the Aegean Region, Pure Appl. Geophys., 120, 820–830.

Demets, C., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current plate motions, , 071, 425–478,doi:10.1111/j.1365-246X.1990.tb06579.x.

Dercourt, J. et al. (1986), Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS, Tectonophysics, 123(1-4), 241–315, doi:10.1016/0040-1951(86)90199-X.

Dewey, J. F., M. R. Hempton, W. S. F. Kidd, F. Saroglu, and A. M. C. Şengör (1986), Shortening of continental lithosphere: the neotectonics of Eastern Anatolia — a young collision zone, Geol. Soc.London, Spec. Publ. , 19 (1 ), 1–36, doi:10.1144/GSL.SP.1986.019.01.01.

Dimitriadis, I., E. Karagianni, D. Panagiotopoulos, C. Papazachos, P. Hatzidimitriou, and M. Bohnhoff (2009), Seismicity and active tectonics at Coloumbo Reef ( Aegean Sea , Greece ): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network, Tectonophysics, 465(1-4), 136–149, doi:10.1016/j.tecto.2008.11.005.

Drakatos, G. (1989), Seismic tomography-determination of high and low velocity zones beneath Greece and surrounding areas, University of Athens.

Drakatos, G., and J. Drakopoulos (1991), 3-D velocity structure beneath the crust and upper mantle of Aegean Sea region, Pure Appl. Geophys. PAGEOPH, 135(3), 401–420, doi:10.1007/BF00879472.

Drakatos, G., G. Karantonis, and G. N. Stavrakakis (1997), P-wave crustal tomography of Greece with use of an accurate two-point ray tracer, Ann. di Geofis., XL(1).

Dziewonski, A. M., and D. L. Anderson (1984), Seismic Tomography Interior of the Earth ’ s Interior,Amat. Sci., 72, 783–494.

Earth Data Ltd. (2002), Instruction manual for PR6-24 seismic data-logger, EDM021, Southampton, U. K.

Eberhart-Phillips, D. (1990), Three-dimensional P and S velocity structure in the Coalinga region,California, J. Geophys. Res., 95(90), 15343–15363, doi:10.1029/JB095iB10p15343.

Eberhart-Phillips, D., M. Reyners, M. Chadwick, and J. M. Chiu (2005), Crustal heterogeneity and subduction processes: 3-D Vp, Vp/Vs and Q in the southern North Island, New Zealand, Geophys. J.Int., 162(1), 270–288, doi:10.1111/j.1365-246X.2005.02530.x.

Eberhart-Phillips, D., M. Reyners, M. Chadwick, and G. Stuart (2008), Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North Island, New Zealand, Geophys. J.Int., 174(1), 418–434, doi:10.1111/j.1365-246X.2008.03816.x.

Endrun, B., T. Meier, M. Bischoff, and H. P. Harjes (2004), Lithospheric structure in the area of Crete constrained by receiver functions and disperation analysis of Rayleigh phase velocities, Geophys. J.Int., 158(2), 592–608, doi:10.1111/j.1365-246X.2004.02332.x.

Endrun, B., T. Meier, S. Lebedev, M. Bohnhoff, G. N. Stavrakakis, and H.-P. Harjes (2008), S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion, Geophys. J. Int.,174(2), 593–616, doi:10.1111/j.1365-246X.2008.03802.x.

Endrun, B., S. Lebedev, T. Meier, C. Tirel, and W. Friederich (2011), Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy, Nat. Geosci., 4(3), 203–207,doi:10.1038/ngeo1065.

Evangelidis, C. P., W. T. Liang, N. S. Melis, and K. I. Konstantinou (2011), Shear wave anisotropy beneath the Aegean inferred from SKS splitting observations, J. Geophys. Res. Solid Earth, 116(4), 1–14,doi:10.1029/2010JB007884.

Faccena, C., O. Bellier, J. Martinod, C. Piromallo, and V. Regard (2006), Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault, Earth Planet. Sci. Lett.,242(1-2), 85–97, doi:10.1016/j.epsl.2005.11.046.

Faccenna, C., L. Jolivet, C. Piromallo, and A. Morelli (2003), Subduction and the depth of convection in the Mediterranean mantle, J. Geophys. Res., 108(B2), 2099, doi:10.1029/2001JB001690.

Faul, U. H., and I. Jackson (2005), The seismological signature of temperature and grain size variations in the upper mantle, Earth Planet. Sci. Lett., 234, 119–134, doi:10.1029/2001JB001225.

Faul, U. H., J. D. Fitz Gerald, and I. Jackson (2004), Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications, J.Geophys. Res. B Solid Earth, 109(6), 1–20, doi:10.1029/2003JB002407.

Forster, M., and G. Lister (2009), Core-complex-related extension of the Aegean lithosphere initiated at the Eocene-Oligocene transition, J. Geophys. Res. Solid Earth, 114(B2), n/a–n/a,doi:10.1029/2007JB005382.

Friederich, W., and T. Meier (2008), Temporary Seismic Broadband Network Acquired Data on Hellenic Subduction Zone, Eos, Trans. Am. Geophys. Union, 89(40), 378, doi:10.1029/2008EO400002.

Friederich, W., A. Brüstle, L. Küperkoch, T. Meier, and S. Lamara (2014), Focal mechanisms in the southern Aegean from temporary seismic networks - Implications for the regional stress field and ongoing deformation processes, Solid Earth, 5(1), 275–297, doi:10.5194/se-5-275-2014.

Galanopoulos, A. G. (1967), The seismotectonic regime in Greece, Ann. Geophys., 20(1), 109–119,doi:10.4401/ag-4987.

Gauss, C. F. (1809), Theoria motus corporum coelestium sectionibus conicis solem ambientium, Werke, 7, 1–280.

Goldstein, P., and A. Snoke (2005), SAC availability for the IRIS community, DMS Electron. Newsl., 7(1).

Goldstein, P., D. Dodge, M. Firpo, and L. Minner (2003), 85.5 SAC2000: Signal processing and analysis tools for seismologists and engineers, Int. Geophys., 81(PART B), 1613–1614, doi:10.1016/S0074-6142(03)80284-X.

Govers, R., and M. J. R. Wortel (2005), Lithosphere tearing at STEP faults: Response to edges of subduction zones, Earth Planet. Sci. Lett., 236(1-2), 505–523, doi:10.1016/j.epsl.2005.03.022.

Granet, M., and J. Trampert (1989), Large-scale P-velocity structures in the Euro-Mediterranean area, Geophys. J. Int., 99, 583–594.

Gutenberg, B., and C. F. Richter (1942), Earthquake magnitude, intensity, energy, and acceleration, Bull.Seismol. Soc. Am. , 32 (3 ), 163–191.

Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway (2003), Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, J. Geophys. Res., 108, 2030, doi:10.1029/2001JB001129.

Hammond, W. C., and E. D. Humphreys (2000a), Effects of realistic partial melt distribution, J. Geophys. Res., 105, 10987–10999.

Hammond, W. C., and E. D. Humphreys (2000b), Upper mantle seismic wave velocity ’ Effects of realistic partial melt geometries, J. Geophys. Res., 105, 10975–10986.

Hanka, W., and R. Kind (1994), The GEOFON Program, Ann. di Geofis., 37(5).

Hashida, T. (1989), {3-Dimensional} seismic attenuation structure beneath the {Japanese} islands and its tectonic and thermal implications, Tectonophysics, 159, 163–180.

Hashida, T., and K. Shimazaki (1984), DETERMINATION OF SEISMIC ATTENUATION STRUCTURE AND SOURCE STRENGTH BY INVERSION OF SEISMIC INTENSITY DATA : METHOD AND NUMERICAL EXPERIMENT, J. Phys. Earth, 32, 299–316.

Hashida, T., and K. Shimazaki (1987), DETERMINATION OF SEISMIC ATTENUATION STRUCTURE AND SOURCE STRENGTH BY INVERSION OF SEISMIC INTENSITY DATA : TOHOKU DISTRICT,NORTHEASTERN JAPAN ARC, J. Phys. Earth, 35, 67–92.

Hashida, T., G. Stavrakakis, and K. Shimazaki (1988), Three-dimensional seismic attenuation structure beneath the Aegean region and its tectonic implication, Tectonophysics, 145(1-2), 43–54,doi:10.1016/0040-1951(88)90314-9.

Hatzfeld, D. (1993), Geodynamics of Aegean: a microseismotectonic approach, Ann. Geophys., 36(2),doi:10.4401/ag-4274.

Hatzfeld, D. (1994), On the shape of the subducting slab beneath the Peloponnese, Greece, Geophys.Res. Lett., 21(3), 173–176, doi:10.1029/93GL03079.

Hatzfeld, D., G. Pedotti, P. Hatzidimitriou, and K. Makropoulos (1990), The strain pattern in the western Hellenic arc deduced from a microearthquake survey, Geophys. J. Int., 101(1), 181–202,doi:10.1111/j.1365-246X.1990.tb00767.x.

Hatzfeld, D., M. Besnard, K. Makropoulos, and P. Hatzidimitriou (1993), Microearthquake seismicity and fault-plane solutions in the southern Aegean and its geodynamic implications, Geophys. J. Int.,115(3), 799–818, doi:10.1111/j.1365-246X.1993.tb01493.x.

Hatzfeld, D., E. Karagianni, I. Kassaras, a. Kiratzi, E. Louvari, H. Lyon-Caen, K. Makropoulos, P.Papadimitriou, G. Bock, and K. Priestley (2001), Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation, J. Geophys. Res., 106(B12), 30737,doi:10.1029/2001JB000387.

Hatzidimitriou, P., C. Papazachos, a. Kiratzi, and N. Theodulidis (1993), Estimation of attenuation structure and local earthquake magnitude based on acceleration records in Greece,Tectonophysics, 217(3-4), 243–253, doi:10.1016/0040-1951(93)90008-8.

Hauksson, E., and P. M. Shearer (2006), Attenuation models (QP and QS) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths, J. Geophys. Res. Solid Earth, 111(5), 1–21, doi:10.1029/2005JB003947.

Hauksson, E., D. Oppenheimer, and T. M. Brocher (2004), Imaging the source region of the 2003 San Simeon earthquake within the weak Franciscan subduction complex, central California, Geophys.Res. Lett., 31(20), 1–4, doi:10.1029/2004GL021049.

Hearn, T. M. (1999), Uppermost mantle velocities and anisotropy beneath Europe, J. Geophys. Res.Earth, 104(B7), 15123–15139, doi:10.1029/1998JB900088.

van Heijst, H. J., and J. Woodhouse (1997), Measuring surface-wave overtone phase velocities using a mode-branch stripping technique, Geophys. J. Int., 131(2), 209–230, doi:10.1111/j.1365-246X.1997.tb01217.x.

Hosa, A. (2008), Imaging of the Hellenic subduction zone by seismic tomography, M.I.T., Cambridge, MA,USA.

Huguen, C., J. Mascle, E. Chaumillon, J. M. Woodside, J. Benkhelil, A. Kopf, and A. Volkonskaïa (2001),Deformational styles of the Eastern Mediterranean ridge and surroundings from combined swath mapping and seismic reflection profiling, Tectonophysics, 343(1-2), 21–47, doi:10.1016/S0040-1951(01)00185-8.

Huguen, C., N. Chamot-Rooke, B. Loubrieu, and J. Mascle (2006), Morphology of a Pre-collisional, Salt-bearing, Accretionary Complex: The Mediterranean Ridge (Eastern Mediterranean), Mar. Geophys.Res., 27(1), 61–75, doi:10.1007/s11001-005-5026-5.

Humphreys, E., and R. Clayton (1990), Tomographic Image of the Southern California Mantle, J. Geophys.Res., 95(B12), 19725–19746.

Jackson, I. (1992), Seismic wave dispersion and attenuation in Åheim dunite: an experimental study,Geophys. J. Int., 517–534.

Jackson, I., J. D. F. Gerald, U. H. Faul, and B. H. Tan (2002), Grain-size-sensitive seismic wave attenuation in polycrystalline olivine, J. Geophys. Res., 107(September 2001), 1–16,doi:10.1029/2001JB001225.

Jackson, J. a, and G. King (1982), The neotectonics of the Aegean " an alternative view, Earth Planet. Sci.Lett., 61, 303–318.

Jolivet, L., and C. Faccenna (2000), Meditterranean extension and the Africa-Eurasia collision, Tectonics,19(6), 1095–1106, doi:10.1029/2000TC900018.

Jongsma, D., and J. Mascle (1981), Evidence for northward thrusting south-west of the Rhodes Basin,Nature, 293(5827), 49–51.

Kalogeras, I. S., and P. W. Burton (1996), Shear-Wave Velocity Models From Rayleigh-Wave Dispersion In the Broader Aegean Area, Geophys. J. Int., 125(3), 679–695, doi:10.1111/j.1365-246X.1996.tb06016.x.

Kanamori, H. (1967), Attenuation of P waves in the Upper and Lower Mantle, Bull. Earthq. Res. Institue, 45, 299–312.

Karagianni, E. E., and C. B. Papazachos (2007), Shear velocity structure in the Aegean area obtained by joint inversion of Rayleigh and Love waves, in The Geodynamics of the Aegean and Anatolia, vol.291, edited by T. Taymaz, Y. Yilmaz, and Y. Dilek, pp. 159–181, Geological Society, Special Publications, London.

Karagianni, E. E. et al. (2002), Rayleigh wave group velocity tomography in the Aegean area,Tectonophysics, 358(1-4), 187–209, doi:10.1016/ S0040-1951(02)00424-9.

Karagianni, E. E., C. B. Papazachos, D. G. Panagiotopoulos, P. Suhadolc, a. Vuan, and G. F. Panza (2004),Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves, Geophys. J.Int., 160(1), 127–143, doi:10.1111/j.1365-246X.2005.02354.x.

Karato, S. (1993), Importance of anelasticity in the interpretation of seismic tomography, , 20(15), 1623–1626.

Karato, S., and H. Jung (1998), Water , partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle, , 157, 193–207.

Karato, S., and H. A. Spetzler (1990), Defect microdynamics in minerals and solid-staet mechanisms of seismic wave attenuation and velocity dispersion in the mantle, , (90), 399–421.

Kassaras, I., F. Louis, K. Makropoulos, and A. Magganas (2008), Shear velocity and intrinsic attenuation variations within the Aegean lithosphere deduced from surface waves, in 31st General Assemply of the European Seismological Commision, pp. 1–9, Hersonissos, Crete, Greece.

Kastens, K. a., N. a. Breen, and M. B. Cita (1992), Progressive deformation of an evaporite-bearing accretionary complex: SeaMARC I, SeaBeam and piston-core observations from the Mediterranean Ridge, Mar. Geophys. Res., 14(4), 249–298, doi:10.1007/BF01203620.

Kenyon, N. H., R. H. Belderson, and A. H. Stride (1982), Detailed tectonic trends on the central part of the Hellenic Outer Ridge and in the Hellenic Trench System, Geol. Soc. London, Spec. Publ. , 10 (1 ),335–343, doi:10.1144/GSL.SP.1982.010.01.22.

Kiratzi, A. A., and C. B. Papazachos (1995), Active deformation on the shallow part of the subducting lithospheric slab in the southern aegean, J. Geodyn., 19(1), 65–78.

Kissling, E., S. Husen, and F. Haslinger (2001), Model parametrization in seismic tomography: A choice of consequence for the solution quality, Phys. Earth Planet. Inter., 123(2-4), 89–101,doi:10.1016/S0031-9201(00)00203-X.

Kkallas, C., C. B. Papazachos, E. M. Scordilis, and B. . N. Margaris (2013), RE-EXAMINING THE STRESS FIELD OF THE BROADER SOUTHERN AEGEAN SUBDUCTION AREA USING AN UPDATED FOCAL MECHANISM DATABASE, vol. XLVII, pp. 563–574, Geological Society of Greece, Chania, Greece.

Knapmeyer, M., and H. Harjes (2000), Imaging crustal discontinuities and the downgoing slab beneath western Crete, Geophys. J. Int., 143, 1–21.

Knopoff, L. (1964), Q, Rev. Geophys., 2(4), 625, doi:10.1029/RG002i004p00625.

Kobayashi, R., and D. Zhao (2004), Rayleigh-wave group velocity distribution in the Antarctic region,Phys. Earth Planet. Inter., 141(3), 167–181, doi:10.1016/j.pepi.2003.11.011.

Konno, K., and T. Ohmachi (1998), Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seismol. Soc. Am. , 88 (1 ), 228–241.

Konstantinou, K. I., and N. S. Melis (2008), High-Frequency Shear-Wave Propagation across the Hellenic Subduction Zone, Bull. Seismol. Soc. Am. , 98 (2 ), 797–803, doi:10.1785/0120060238.

Kovachev, S. a., I. P. Kuzin, O. Y. Shoda, and S. L. Soloviev (1991), Attenuation of S-waves in the lithosphere of the Sea of Crete according to OBS observations, Phys. Earth Planet. Inter., 69(1-2),101–111, doi:10.1016/0031-9201(91)90156-C.

Kovachev, S. A., I. P. Kuzin, and S. L. Soloviev (1992), Microseismicity of the frontal Hellenic arc according to OBS observations, Tectonophysics, 201(3-4), 317–327, doi:10.1016/0040-1951(92)90239-3.

Kreemer, C., and N. Chamot-Rooke (2004), Contemporary kinematics of the southern Aegean and the Mediterranean Ridge, Geophys. J. Int., 157(3), 1377–1392, doi:10.1111/j.1365-246X.2004.02270.x.

Kuperkoch, L. (2010), Automated Recognition , Phase Arrival Time Estimation , and Location of Local and Regional Earthquakes, Ruhr University Bochum.

Kurt, H., E. Demirbag, and I. Kuscu (1999), Investigation of the submarine active tectonism in the Gulf of Gokova, southwest Anatolia-southeast Aegean Sea, by multi-channel seismic reflection data,Tectonophysics, 305(4), 477–496, doi:10.1016/S0040-1951(99)00037-2.

Lay, T., and C. Wallace (1995), Modern Global Seismology, Academic Press, San Diego, California.

Lee, C. P., N. Hirata, B. S. Huang, W. G. Huang, and Y. Ben Tsai (2009), Anomalous seismic attenuation along the plate collision boundary in southeastern Taiwan: Observations from a linear seismic array, Bull. Seismol. Soc. Am., 99(5), 2662–2680, doi:10.1785/0120080302.

Lee, W. H. K., and J. C. Lahr (1972), HYPO71: a computer program for determining hypocenter,magnitude, and first motion pattern of local earthquakes, - ed.

Lee, W. H. K., and J. C. Lahr (1975), HYPO71 (revised): A Computer Program for Determining Hypocenter,Magnitude, and First Motion Pattern of Local Earthquakes.

LePichon, X., and J. Angelier (1979), The Hellenic arc and trench system: A key to the neotectonic evolution of the eastern Mediterranean area, Tectonophysics, 60, 1–42, doi:10.1016/0040-1951(79)90131-8.

Levenberg, K. (1944), A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164–168.

Li, X., G. Bock, A. Vafidis, R. Kind, H. Harjes, W. Hanka, K. Wylegalla, M. Van Der Meijde, and X. Yuan (2003), Receiver function study of the Hellenic subduction zone : imaging crustal thickness variations and the oceanic Moho of the descending African lithosphere, Geophys. J. Int., 155, 733–748.

Ligdas, C. N., and J. M. Lees (1993), Seismic velocity constraints in the Thessaloniki and Chalkidiki areas (Northern Greece) from a 3-D tomographic study, Tectonophysics, 228(1-2), 97–121,doi:10.1016/0040-1951(93)90216-7.

Ligdas, C. N., I. G. Main, and R. D. Adams (1990), 3-D structure of the lithosphere in the Aegean region,Geophys. J. Int., 102, 219–229.

Lin, G. (2014), Three-dimensional compressional wave attenuation tomography for the crust and uppermost mantle of Northern and central California, J. Geophys. Res. Solid Earth, 119(4), 3462–3477, doi:10.1002/2013JB010621.

Lin, G., P. M. Shearer, F. Amelung, and P. G. Okubo (2015), Seismic tomography of compressional wave attenuation structure for Kılauea Volcano , Hawai ‘ i, J. Geophys. Res. Solid earth, 1–15, doi:10.1002/2014JB011594.Abstract.

Liu, X., and D. Zhao (2015), Seismic attenuation tomography of the Southwest Japan arc: new insight into subduction dynamics, Geophys. J. Int., 201(1), 135–156, doi:10.1093/gji/ggv007.

Liu, X., D. Zhao, and L. Sanzhong (2014), Seismic attenuation tomography of the Northeast Japan arc:Insight into the 2011 Tohoku earthquake (Mw=9.0) and subduction dynamics, J. Geophys. Res.Solid earth, 119, 1094–1118, doi:10.1002/2013JB010591.

Louvari, E., A. A. Kiratzi, and B. C. Papazachos (1999), The Cephalonia Transform Fault and its extension to western Lefkada Island (Greece), Tectonophysics, 308(1-2), 223–236, doi:10.1016/S0040-1951(99)00078-5.

Makris, J. (1973), Some geophysical aspects of the evolution of the Hellides, Bull. Geol. Soc. Greece, 10, 206–213.

Makris, J. (1975), Crustal structure of the Aegean Sea and the Hellenides obtained from geophysical surveys, J. Geophys, 41, 441–443.

Makris, J. (1976), A dynamic model of the Hellenic Arc deduced from geophysical data, Tectonophysics,36(4), 339–346, doi:10.1016/0040-1951(76)90108-6.

Makris, J. (1978), The Crust and Upper Mantle of the Aegean Region From Deep Seismic SOundings,Tectonophysics, 46, 269–284.

Makris, J., and C. Stobbe (1984), Physical properties and state of the crust and upper mantle of the Eastern Mediterranean Sea deduced from geophysical data, Mar. Geol., 55(3-4), 347–363,doi:10.1016/0025-3227(84)90076-8.

Makropoulos, K. C., and P. W. Burton (1984), Greek tectonics and seismicity, Tectonophysics, 106(3-4),275–304, doi:10.1016/0040-1951(84)90181-1.

Marone, F. (2004), Three-dimensional upper-mantle S-velocity model for the Eurasia-Africa plate boundary region, Geophys. J. Int., 158(1), 109–130, doi:10.1111/j.1365-246X.2004.02305.x.

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind.Appl. Math., 11(2), 431–441, doi:10.1137/0111030.

Mascle, J., and L. Martin (1990), Shallow structure and recent evolution of the Aegean Sea: A synthesis based on continuous reflection profiles, Mar. Geol., 94(4), 271–299, doi:10.1016/0025- 3227(90)90060-W.

McClusky, S. et al. (2000), Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res., 105(B3), 5695, doi:10.1029/1999JB900351.

McElhinny, M. W., and P. L. McFadden (1999), Paleomagnetism : Continets and Ocean, Academic Press.

McKenzie, D. (1970), Plate Tectonics of the Mediterranean Region, Nature, 226(5242), 239–243.

McKenzie, D. (1972), Active Tectonics of the Mediterranean Region, Geophys. J. Int., 30(2), 109–185, doi:10.1111/j.1365-246X.1972.tb02351.x.

Mckenzie, D. (1978), Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophys. Res. Lett., 55, 217–254, doi:10.1111/j.1365-246X.1978.tb04759.x.

Meier, T., K. Dietrich, B. Stockhert, and S. P. Harjes (2004a), One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Geophys. J. Int., 156(1), 45–58, doi:10.1111/j.1365- 246X.2004.02121.x.

Meier, T., M. Rische, B. Endrun, A. Vafidis, and H.-P. Harjes (2004b), Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks,Tectonophysics, 383(3-4), 149–169, doi:10.1016/j.tecto.2004.02.004.

Mercier, J. L., E. Carey, H. Philip, and D. Sorel (1976), La neotectonique plio-quaternaire de l’Arc egeen externe et de la mer Egee et ses relations avec la seismicite, Bull. la Soc. Geol. Fr., Series 7 V(2),355–372, doi:10.2113/gssgfbull.S7-XVIII.2.355.

Meulenkamp, J. E., M. J. R. Wortel, W. a. van Wamel, W. Spakman, and E. Hoogerduyn Strating (1988), On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene, Tectonophysics, 146(1-4), 203–215, doi:10.1016/0040-1951(88)90091-1.

Moser, T. J. (1991), Shortest path calculation of seismic rays, geophysics, 56(1), 59–67.

Moser, T. J., G. Nolet, and R. Snieder (1992), Ray bending revisited, Bull. Seismol. Soc. Am., 82(1), 259–288.

Mueller, S., and H.-G. Kahle (2013), Crust-Mantle Evolution, Structure and Dynamics of the Mediterranean-Alpine Region, in Contributions of Space Geodesy to Geodynamics: Crustal Dynamics, pp. 249–298, American Geophysical Union.

Nakanishi, I., and D. L. Anderson (1982), Worldwide distribution of group velocity of mantle Rayleigh

waves as determined by spherical harmonic inversion, Bull. Seismol. Soc. Am. , 72 (4 ), 1185–1194.

Nanometrics (2005), Atlas Version 2.0 User Guide, , 1–137.

Olive, J. A., F. Pearce, S. Rondenay, and M. D. Behn (2014), Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance, Earth Planet. Sci. Lett., 391,100–109, doi:10.1016/j.epsl.2014.01.029.

Oncescu, M. C., V. Burlacu, M. Anghel, and V. Smalbergher (1984), Three-dimensional P-wave velocity image under the Carpathina Arc, Tectonophysics, 106, 305–319.

Oral, B., R. E. Reilinger, M. Nafi Toksöz, R. W. King, A. Aykut Barka, I. Kinik, and O. Lenk (1995), Global Positioning System offers evidence of plate motions in eastern Mediterranean, Eos, Trans. Am.Geophys. Union, 76(2), 9–11, doi:10.1029/EO076i002p00009-01.

Paige, C. C., and M. a. Saunders (1982), Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems, ACM Trans. Math. Softw., 8(2), 195–209, doi:10.1145/355993.356000.

Panagiotopoulos, D. G., and B. C. Papazachos (1985), Travel times of Pn -waves in the Aegean and surrounding area, Geophys. J. R. Astron. Soc., 80(1), 165–176, doi:10.1111/j.1365-246X.1985.tb05083.x.

Papazachos, B. C. (1969), Phase Velocities of Rayleigh Waves in Southeastern Europe and Eastern Mediterranean Sea, Pure Appl. Geophys., 75(1), 47–55.

Papazachos, B. C. (1990), Seismicity of the Aegean and surrounding area, Tectonophysics, 178(2-4), 287–308, doi:10.1016/0040-1951(90)90155-2.

Papazachos, B. C., and P. E. Comninakis (1970), Geophysical features of the Greek island arc and Eastern Mediterranean ridge, in Com. Rend. des Seances de la Conf. Reunie, pp. 74–75, Madrid.

Papazachos, B. C., and P. E. Comninakis (1971), Geophysical and tectonic features of the Aegean Arc, J.Geophys. Res., 76(35), 8517, doi:10.1029/JB076i035p08517.

Papazachos, B. C., and N. D. Delibasis (1969), Tectonic stress field and seismic faulting in the area of Greece, Tectonophysics, 7(3), 231–255, doi:10.1016/0040-1951(69)90069-9.

Papazachos, B. C., and D. G. Panagiotopoulos (1993), Normal faults associated with volcanic activity and deep rupture zones in the southern Aegean volcanic arc, , 220, 301–308.

Papazachos, B. C., and C. H. A. Papaioannou (1993), Long term earthquake prediction in the Aegean area based on a time and magnitude predictable model, Pure Appl. Geophys., 140(4), 595–612.

Papazachos, B. C., and C. B. Papazachou (2003), The earthquakes of Greece, 3rd ed., Ziti Publ., Thessaloniki, Greece.

Papazachos, B. C., P. E. Comninakis, and J. C. Drakopoulos (1966), Preliminary results of an investigation of crustal structure in Southeastern Europe, Bull. Seismol. Soc. Am. , 56 (6 ), 1241–1268.

Papazachos, B. C., M. Polatou, and N. Mandalos (1967), Dispersion of Surface Waves Recorded in Athens, Pure Appl. Geophys., 67(1), 95–106.

Papazachos, B. C., D. Mountrakis, A. Psilovikos, and G. Leventakis (1979), Surface Fault Traces and Fault

Plane Solutions of the May-June 1978 Major Shocks in the Thessaloniki Area, Greece, , 53, 171–183.

Papazachos, B. C., P. E. Comninakis, P. M. Hatzidimitriou, E. C. Kiriakidis, A. A. Kiratzi, D. G.Panagiotopoulos, E. E. Papadimitriou, C. A. Papaioannou, S. B. Pavlides, and E. P. Tzanis (1982),Atlas of isoseismal maps for earthquakes in Greece , 1902-1981, 1st ed., Publication of the Geophysical Laboratory, University of Thessaloniki, Thessaloniki.

Papazachos, B. C., E. E. Papadimitriou, a. a. Kiratzi, C. B. Papazachos, and E. K. Louvari (1998), Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication, Boll. diGeofis. Teor. ed Appl., 39(3), 199–218.

Papazachos, B. C., V. G. Karakostas, C. B. Papazachos, and E. M. Scordilis (2000), The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc, Tectonophysics, 319(4), 275–300, doi:10.1016/S0040-1951(99)00299-1.

Papazachos, B. C., S. T. Dimitriadis, D. G. Panagiotopoulos, C. B. Papazachos, and E. E. Papadimitriou (2005), Deep structure and active tectonics of the southern Aegean volcanic arc, South Aegean Act.Volcan. Arc - Present Knowl. Futur. Perspect. Milos Conf., 7(August 2015), 47–64,doi:10.1016/S1871-644X(05)80032-4.

Papazachos, C., and G. Nolet (1997a), P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times, J. Geophys. Res., 102, 8349–8367.

Papazachos, C. B. (1992), Anisotropic Radation Modelling of Macroseismic Intensities for Estimation of the Attenuation Structure of the Upper Crust in Greece, Pure Appl. Geophys., 138(3).

Papazachos, C. B., and A. A. Kiratzi (1996), A detailed study of the active crustal deformation in the Aegean and surrounding area, Tectonophysics, 253(1-2), 129–153, doi:10.1016/0040-1951(95)00047-X.

Papazachos, C. B., and G. Nolet (1997b), Non-linear arrival time tomography, Ann. di Geofis., 40(1), 85–97.

Papazachos, C. B., P. M. Hatzidimitriou, D. G. Panagiotopoulos, and G. N. Tsokas (1995), Tomography of the crust and upper mantle in southeast Europe, J. Geophys. Res., 100(B7), 12405,doi:10.1029/95JB00669.

Payo, G. (1967), Crustal structure of the Mediterranean sea by surface waves. Part I: Group velocity, Bull.Seismol. Soc. Am. , 57 (2 ), 151–172.

Payo, G. (1969), Crustal structure of the Mediterranean Sea Part II. Phase velocity and travel times, Bull.Seismol. Soc. Am. , 59 (1 ), 23–42.

Pearce, J. a., R. J. Stern, S. H. Bloomer, and P. Fryer (2005), Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components,Geochemistry, Geophys. Geosystems, 6(7), doi:10.1029/2004GC000895.

Perissoratis, C., and G. Papadopoulos (1999), Sediment instability and slumping in the southern Aegean Sea and the case history of the 1956 tsunami, Mar. Geol., 161(2-4), 287–305, doi:10.1016/S0025-3227(99)00039-0.

Le Pichon, X. et al. (1979), From subduction to transform motion: a seabeam survey of the Hellenic trench system, Earth Planet. Sci. Lett., 44(3), 441–450, doi:10.1016/0012-821X(79)90082-7.

Le Pichon, X., N. Lybéris, J. Angelier, and V. Renard (1982), Strain distribution over the east Mediterranean ridge: A synthesis incorporating new Sea-Beam data, Tectonophysics, 86(1-3), 243–274, doi:10.1016/0040-1951(82)90069-5.

Piromallo, C., and A. Morelli (1997), Imaging the Mediterranean upper mantle by P-wave travel time tomography, Ann. di Geofis., 40(4), 963–978.

Piromallo, C., and A. Morelli (2003), Wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., 108(B2), 1–23, doi:10.1029/2002JB001757.

Pozgay, S. H., D. a. Wiens, J. a. Conder, H. Shiobara, and H. Sugioka (2009), Seismic attenuation tomography of the Mariana subduction system: Implications for thermal structure, volatile distribution, and slow spreading dynamics, Geochemistry, Geophys. Geosystems, 10(4),doi:10.1029/2008GC002313.

Psencik, I., and V. Cerveny (1978), Ray Tracing Program, PDR2-A,

Rawlinson, N., and B. L. N. Kennett (2008), Teleseismic tomography of the upper mantle beneath the southern Lachlan Orogen, Australia, Phys. Earth Planet. Inter., 167(1-2), 84–97,doi:10.1016/j.pepi.2008.02.007.

Rawlinson, N., a. M. Reading, and B. L. N. Kennett (2006), Lithospheric structure of Tasmania from a novel form of teleseismic tomography, J. Geophys. Res. Solid Earth, 111(2), 1–21,doi:10.1029/2005JB003803.

Reilinger, R. et al. (2006), GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res.Solid Earth, 111(5), 1–26, doi:10.1029/2005JB004051.

Romanowicz, B. (2008), Using seismic waves to image Earth’s internal structure, Nature, 451(7176),266–268.

Rontogianni, S., N. S. Konstantinou, C. P. Melis, and Evangelidis (2011), Slab stress field in the Hellenic subduction zone as inferred from intermediate-depth earthquakes, Earth, Planets Sp., 63(2), 139–144, doi:10.5047/eps.2010.11.011.

Roth, E. G., D. a Wiens, L. M. Dorman, and C. Webb (1999), Seismic attenuation tomography of the Tonga-Fiji egion using phase pair methods, J. Geophys. Res., 104, 4795–4809.

Roth, G., A. Wiens, and D. Zhao (2000), An empirical relationship between seismic attenuation and velocity anomalies in the upper mantle, Geophys. Res. Lett., 27(5), 601–604.

Rychert, C. a., K. M. Fischer, G. a. Abers, T. Plank, E. Syracuse, J. M. Protti, V. Gonzalez, and W. Strauch (2008), Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua, Geochemistry, Geophys. Geosystems, 9(10), 1–26, doi:10.1029/2008GC002040.

Sachpazi, M. et al. (2000), Western Hellenic subduction and Cephalonia Transform: Local earthquakes and plate transport and strain, Tectonophysics, 319(4), 301–319, doi:10.1016/S0040-1951(99)00300-5.

Sachpazi, M., A. Galvé, M. Laigle, A. Hirn, E. Sokos, A. Serpetsidaki, J. M. Marthelot, J. M. Pi Alperin, B.Zelt, and B. Taylor (2007), Moho topography under central Greece and its compensation by Pn time-terms for the accurate location of hypocenters: The example of the Gulf of Corinth 1995 Aigion earthquake, Tectonophysics, 440(1-4), 53–65, doi:10.1016/j.tecto.2007.01.009.

Salah, M. K., and D. Zhao (2003), Three-dimensional attenuation structure beneath southwest Japanestimated from spectra of microearthquakes, Phys. Earth Planet. Inter., 136(3-4), 215–231,doi:10.1016/S0031-9201(03)00049-9.

Sato, H., I. S. Sacks, and T. Murase (1989), The Use of Laboratory Velocity Data for Estimating Temperature and Partial Melt Fraction in the Low-Velocity Zone : Comparison With Heat Flow and Electrical Conductivity Studies, J. Geophys. Res., 94, 5689–5704.

Schmid, C., S. van der Lee, J. C. VanDecar, E. R. Engdahl, and D. Giardini (2008), Three-dimensional S velocity of the mantle in the Africa-Eurasia plate boundary region from phase arrival times and regional waveforms, J. Geophys. Res. Solid Earth, 113(3), 1–16, doi:10.1029/2005JB004193.

Schmidt, A. (2012), Analyse seismischen Rauschens in amphibischen Netzwerken : Datenverarbeitung,Extrahierung der Greenschen Funktion, tomografische Interpretation, Ruhr University Bochum.

Scordilis, E. M., G. F. Karakaisis, B. G. Karacostas, D. G. Panagiotopoulos, P. E. Comninakis, and B. C. Papazachos (1985), Evidence for Transform faulting in the Ionian Sea: The Cephalonia island earthquake sequence of 1983, Pure Appl. Geophys. PAGEOPH, 123, 388–397.

Shaw, B., and J. Jackson (2010), Earthquake mechanisms and active tectonics of the Hellenic subduction zone, Geophys. J. Int., 181(2), 966–984, doi:10.1111/j.1365-246X.2010.04551.x.

Shearer, P. (2009), Introduction to Seismology, 2nd ed., Cambridge University Press, Cambridge.

Shito, A., S.-I. Karato, K. N. Matsukage, and Y. Nishihara (2013), Towards Mapping the Three-Dimensional Distribution of Water in the Upper Mantle from Velocity and Attenuation Tomography, in Earth’s Deep Water Cycle, pp. 225–236, American Geophysical Union.

Skarlatoudis, a. a. et al. (2009), Combination of acceleration-sensor and broadband velocity-sensor recordings for attenuation studies: The case of the 8 January 2006 Kythera intermediate-depth earthquake, Bull. Seismol. Soc. Am., 99(2 A), 694–704, doi:10.1785/0120070211.

Skarlatoudis, a. a., C. B. Papazachos, B. N. Margaris, C. Ventouzi, and I. Kalogeras (2013), Ground-motion prediction equations of intermediate-depth earthquakes in the Hellenic arc, southern Aegean subduction area, Bull. Seismol. Soc. Am., 103(3), 1952–1968, doi:10.1785/0120120265.

Sodoudi, F., R. Kind, D. Hatzfeld, K. Priestley, W. Hanka, K. Wylegalla, G. Stavrakakis, a. Vafidis, H. P. Harjes, and M. Bohnhoff (2006), Lithospheric structure of the Aegean obtained from P and S receiver functions, J. Geophys. Res. Solid Earth, 111, 1–23, doi:10.1029/2005JB003932.

Sodoudi, F., A. Bruestle, T. Meier, R. Kind, and W. Friederich (2015), Receiver function images of the Hellenic subduction zone and comparison to microseismicity, Solid Earth, 6(1), 135–151, doi:10.5194/se-6-135-2015.

Spakman, W. (1986), Subduction beneath Eurasia in connection with the Mesozoic Tethys, Geol. en Mijnb., 65, 145–153.

Spakman, W. (1988), Upper mantle delay time tomography with an application to the collision zone of the Eurasian, African and Arabian plates, University of Utrecht.

Spakman, W. (1990), Tomographic images on the upper mantle below Europe and the Mediterranean,Ter. Nov., 2, 542–553.

Spakman, W., M. J. R. Wortel, and N. J. Vlaar (1988a), The Hellenic subduction zone: A tomographic image and its gedynamic implications, , 15(1), 60–63.

Spakman, W., M. J. R. Wortel, and N. J. Vlaar (1988b), The Hellenic Subduction Zone: A tomographic image and its geodynamic implications, Geophys. Res. Lett., 15(1), 60–63,doi:10.1029/GL015i001p00060.

Spakman, W., S. van der Lee, and R. van der Hilst (1993), Travel-time tomography of the European-Mediterranean mantle down to 1400 km, Phys. Earth Planet. Inter., 79, 3–74, doi:10.1016/0031-9201(93)90142-V.

Stachnik, J. C., G. a. Abers, and D. H. Christensen (2004), Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res. B Solid Earth, 109(10), 1–17,doi:10.1029/2004JB003018.

Stavrakakis, G. N., G. Drakatos, G. Karantonis, and D. Papanastassiou (1997), A tomography image of the Aegean region (Greece) derived from inversion of macroseismic intensity data, Ann. di Geofis.,40(1).

Stein, S., and M. Wysession (2003), An Introduction to Seismology, Earthquakes and Earth Structure, Blackwell Publishing, Oxford.

Suckale, J., S. Rondenay, M. Sachpazi, M. Charalampakis, a. Hosa, and L. H. Royden (2009), High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves, Geophys. J. Int., 178(2), 775–791, doi:10.1111/j.1365-246X.2009.04170.x.

Tanimoto, T., and D. L. Anderson (1985), Lateral Heterogeneity and Azimuthal Anistotropy of the Upper Mantle: Love and Rayleigh Waves 100-250s, J. Geophys. Res., 90(B2), 1842–1858.

Tapley, W. C., and J. E. Tull (1992), SAC-Seismic Analysis Code : Users Manual, , 388.

Taymaz, T., J. a. Jackson, and R. Westaway (1990), Earthquake mechanisms in the Hellenic Trench near Crete, Geophys. J. Int., 102(3), 695–731, doi:10.1111/j.1365-246X.1990.tb04590.x.

Taymaz, T., J. Jackson, and D. McKenzie (1991), Active tectonics of the north and central Aegean Sea,Geophys. J. Int. , 106 (2 ), 433–490, doi:10.1111/j.1365-246X.1991.tb03906.x.

Thurber, C., and D. Eberhart-Phillips (1999), Local earthquake tomography with flexible gridding,Comput. Geosci., 25(7), 809–818, doi:10.1016/S0098-3004(99)00007-2.

Thurber, C. H. (1983), Earthquake locations and three-dimensional crustal structure in the Coyote Lake Area, central California, J. Geophys. Res., 88(B10), 8226, doi:10.1029/JB088iB10p08226.

Tirel, C., F. Gueydan, C. Tiberi, and J. P. Brun (2004), Aegean crustal thickness inferred from gravity inversion. Geodynamical implications, Earth Planet. Sci. Lett., 228(3-4), 267–280,doi:10.1016/j.epsl.2004.10.023.

Trnkoczy, A. (2002), Understanding and parameter setting of STA/LTA trigger algorithm, edited by P. Bormann, Deutsches GeoForschungsZentrum GFZ, Potsdam.

Tsokas, G. N., and R. O. Hansen (1997), Study of the crustal thickness and the subducting lithosphere in Greece from gravity data, J. Geophys. Res., 102(B9), 20585, doi:10.1029/97JB00730.

Tull, J. E. (1987), SAC-Seismic Analysis Code. Tutorial guide for new users, Livermore.

Uluǧ, A., M. Duman, Ş. Ersoy, E. Özel, and M. Avci (2005), Late Quaternary sea-level change, sedimentation and neotectonics of the Gulf of Gökova:Southeastern Aegean Sea, Mar. Geol.,221(1-4), 381–395, doi:10.1016/j.margeo.2005.03.002.

Um, J., and C. Thurber (1987), A fast algorithm for two-point seismic ray tracing, Bull. Seismol. Soc. Am. ,77 (3 ), 972–986.

Ten Veen, J. H., and K. L. Kleinspehn (2002), Geodynamics along an increasingly curved convergent plate margin: Late Miocene-Pleistocene Rhodes, Greece, Tectonics, 21(3), 1–21,doi:10.1029/2001TC001287.

Ten Veen, J. H., and K. L. Kleinspehn (2003), Incipient continental collision and plate-boundary curvature:Late Pliocene–Holocene transtensional Hellenic forearc, Crete, Greece, J. Geol. Soc. London.,160(2), 161–181, doi:10.1144/0016-764902-067.

Ten Veen, J. H., and P. Th. Meijer (1998), Late Miocene to recent tectonic evolution of Crete (Greece):Geological observations and model analysis, Tectonophysics, 298, 191–208, doi:10.1016/S0040-1951(98)00184-X.

Woodhouse, J. H., and A. M. Dziewonski (1984), Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms, J. Geophys. Res., 89(B7), 5953,doi:10.1029/JB089iB07p05953.

Woodside, J., J. Mascle, C. Huguen, and A. Volkonska"{i}a (2000), The Rhodes Basin, a post-Miocene tectonic trough, Mar. Geol., 165(1-4), 1–12, doi:10.1016/S0025-3227(99)00140-1.

Yolsal-Çevikbilen, S., and T. Taymaz (2012), Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean,Tectonophysics, 536-537, 61–100, doi:10.1016/j.tecto.2012.02.019.

Yoshizawa, K., K. Miyake, and K. Yomogida (2010), 3D upper mantle structure beneath Japan and its surrounding region from inter-station dispersion measurements of surface waves, Phys. Earth Planet. Inter., 183(1-2), 4–19, doi:10.1016/j.pepi.2010.02.012.

Zachariasse, W. J., D. J. J. van Hinsbergen, and a. R. Fortuin (2008), Mass wasting and uplift on Crete and Karpathos during the early Pliocene related to initiation of south Aegean left-lateral, strike-slip tectonics, Bull. Geol. Soc. Am., 120(7-8), 976–993, doi:10.1130/B26175.1.

Zhao, D. (2004), Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics, Phys. Earth Planet. Inter., 146(1-2), 3–34, doi:10.1016/j.pepi.2003.07.032.

Zhao, D. (2009), Multiscale seismic tomography and mantle dynamics, Gondwana Res., 15(3-4), 297–323, doi:10.1016/j.gr.2008.07.003.

Βαμβακάρης, Δ. (2010), Συμβολή στη μελέτη της χρονικά μεταβαλλόμενης σεισμικότητας και σεισμικής επικυνδυνότητας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.

Μπασκούτας, Ι. (1993), Συμβολή στη μελέτη της απόσβεσης των σεισμικών κυμάτων στην Κεντρική Ελλάδα (Με τη χρήση δεδομένων σεισμικών κυμάτων ουράς), Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ).

Παπαζάχος, Κ. Β. (1994), Συμβολή στη μελέτη της δομής του φλοιού και του πάνω μανδύα στη νοτιοανατολική Ευρώπη με αντιστροφή σεισμικών και βαρυτικών δεδομένων, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.