Διαχρονική μεταβλητότητα των υδρολογικών παραμέτρων και επίπτωση στα αποθέματα υπόγειου νερού σε παράκτιους υδροφορείς
Περίληψη
Η παρούσα μεταπτυχιακή διατριβή έχει σκοπό τη μελέτη της διαχρονικής μεταβλητότητας των υδρολογικών παραμέτρων και τις επιπτώσεις τους στα αποθέματα υπόγειου νερού σε παράκτιους υδροφορείς, με εφαρμογή στο παράκτιο τμήμα Σωζόπολης-Ν. Φλογητών. Η περιοχή έρευνας έχει έκταση 98.44 Km2 και βρίσκεται στην νοτιοδυτική πλευρά του παράκτιου τμήματος της δυτικής Χαλκιδικής. Έχει μόνιμο πληθυσμό 7842 κατοίκους. Γεωλογικά ανήκει στη ζώνη της Παιονίας, ενώ το μεγαλύτερο τμήμα της καλύπτεται από Νεογενή-Τεταρτογενή ιζήματα. Στην περιοχή έρευνας απαντώνται τόσο επιφανειακά υδροφόρα στρώματα στο παράκτιο τμήμα, όσο και βαθύτερα υπο-πίεση στρώματα με μεταβαλλόμενα πάχη. Η τροφοδοσία τους γίνεται πλευρικά από τον καρστικό υδροφορέα που αναπτύσσεται στον ασβεστολιθικό όγκο της Μεγάλης Κατσίκας αλλά και κατά θέσεις που απαντώνται αμμούχες άργιλοι με ψηφίδες και κροκαλοπαγή μικρής συνοχής. Υδροχημικά υπάρχει ποιοτική υποβάθμιση λόγω της έντονης γεωργικής δραστηριότητας, που έχει επιφέρει υψηλές συγκεντρώσεις νιτρικών στο υπόγειο νερό. Λόγω των υπεραντλήσεων τα παράκτια υδροφόρα στρώματα έχουν υφαλμυρίσει, ενώ στο εσωτερικό της περιοχής έρευνας τα γεωθερμικά ρευστά έχουν ανέλθει και έχουν αναμειχθεί με τους επιφανειακούς ψυχρούς υδροφορείς. Από την ανάλυση των μετεωρολογικών δεδομένων και υδρολογικών παραμέτρων φαίνεται να υπάρχει πτωτική πορεία στο ύψος των κατακρημνισμάτων αναλύοντας την χρονοσειρά 1973-2015 όπως και μείωση της πραγματικής εξατμισοδιαπνοής για την περίοδο 1973-2015. Από την επεξεργασία των αποτελεσμάτων του δείκτη υδρολογικής ξηρασίας του Palmer και συγκρίνοντας τις περιόδους 1973-1993 και 1994-2014 φαίνεται ότι η περιοχή έρευνας έχει επέλθει από μια ήπια υγρή περίοδο σε μια ήπια ξηρή περίοδο αντίστοιχα. Λόγω των υπεραντλήσεων και σε μικρότερο βαθμό των κλιματικών μεταβολών, υπάρχει μια εμφανής πτώση στάθμης στην περιοχή έρευνας μελετώντας την περίοδο 1983-2016. Τέλος, από τον συνδυασμό των υδροχημικών δεδομένων και γεωφυσικών διασκοπήσεων που πραγματοποιήθηκαν, επιβεβαιώθηκε η ύπαρξη του φαινομένου της θαλάσσιας διείσδυσης ενώ εκτιμήθηκε ότι το μέτωπο της φτάνει έως και 1 Km από την ακτή προς την ενδοχώρα.
The aim of this Μaster Τhesis is the long term study of the variability of hydrological parameters and their impacts on groundwater reserves at coastal aquifers, as applied on the coastal part of Sozopolis – N. Flogita. The study area has extends of 98.44 Km2 and is located on the southwestern part of coastal area of western Chalkidiki. It has a population of 7842 citizens. Geologically, it belongs to Paionia zone, and its biggest part is covered by Neogenic and Quaternary sediments. Both surface aquifers, at the coastal part, as well as deeper under pressure layers with changing width, are encountered at the study area, which are hydraulically connected. They recharge either laterally from the karstic aquifer which is formed in the limestone massif of Megali Katsika, but also in positions where sandy clays and conglomerates of low cohesiveness. Hydrochemically there is a qualitatively degradation because of the intensive agricultural activities, which result in high concentrations of nitrate in groundwater. Due to over-pumping the coastal aquifers have been salinized, while in the interior of the study area the geothermal fluids have surfaced and have been mixed with the surface cold aquifers. A decreasing trend in precipitation and real evapotranspiration has been found during the period of 1973 – 2015 according to the meteorological data and hydrological parameters rephrase. From processing results of the hydrological drought index of Palmer and by comparing the periods of 1973-1993 and 1994-2014 it seems that the study area has moved from a mildly wet spell to a mildly dry period respectively. Due to over-pumping, and on a smaller scale of climate change, a clear groundwater level drop has been observed by studying the 1983-2016 period. Lastly, by combining hydrochemical data and from geophysical surveys have been confirmed the phenomenon of seawater intrusion, while the front has been calculated to be as long as 1km from the coastline towards inland.
Πλήρες Κείμενο:
PDFΑναφορές
Alkama, R., Decharme, B., Douville, H., and Ribes, A. (2011): Trends in global and basin scale runoff over the late twentieth century: methodological issues and sources of uncertainty. Journal of Climate, 24(12), 3000-3014.
American Meteorology Society. (1997): Meteorological drought – Policy statement. Bulletin of American Meteorological Society, 78: 847-849.
Aris, A.Z., Praveena, S.M., Abdullah, A.M.H. (2012): The influence of seawater on the chemical composition of groundwater in a small island: the example of Manukan Island, East Malaysia. Journal of Coastal. Research, 28 (1): 64-75.
Arndt, D.S., Baringer, M.O., and Johnson M.R. (eds.) (2010): State of the climate in 2009. Bulletin of the American Meteorological Society, 91(7), S1-S224.
Ballabo, C., Panagos, P., Montanarella, L. (2016): Mapping topsoil physical properties at European scale using the LUCAS database, Geoderma, 261: 110-123.
Barron, O., Pollock, D., Crosbie, R., Dawes, W., Charles, S., Mpelasoka, F., Aryal, S. Donn, M., Wurcker, B. (2010): The Impact of Climate Change on Groundwater Resources: The Climate Sensitivity of Groundwater Recharge in Australia. CSIRO, Water for a Healthy Country Report to National Water Commission.
Bates, B.C., Kundzewicz, Z.W., Wu, S., and Palutikof J.P.(eds.) (2008): Climate Change and Water. Intergovernmental Panel on Climate Change (IPCC) Technical Paper VI, IPCC Secretariat, Geneva, Switzerland, 210 pp.
Bighash, P., Murgulet, D. (2015): Application of factor analysis and electrical resistivity to understand groundwater contributions to coastal embayments in semi-arid and hypersaline coastal settings. Science of Total Environment, 532: 688–701.
Cayan, D.R., Kammerdiener, S.A., Dettinger, M.D., Caprio, J.M., and Peterson, D.H. (2001): Changes in the onset of spring in the western United States. Bulletin of the American Meteorological Society, 82(3), 399-415.
Chen, G., Tian, H., Zhang, C., Liu, M., Ren, W., Zhu, W., Chappelka, A.H., Prior, S.A., and Lockaby, G.B. (2012): Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change, 114(2), 379-397.
Clow, D.W. (2010): Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. Journal of Climate, 23(9), 2293-2306.
Cotecchia, V., Tadolini, T., Tulipano, L. (1981): Saline contamination phenomena in the karstic and fissured cardonatic aquifer of the Salentine peninsula (Southern Italy) and their evolution, Proceedings of the 7th Salt Water Intrusion meeting, Uppsala, pp 77-81.
Custodio, E. (2002): Aquifer overexploitation: what does it mean? Hydrogeology Journal 10, 254–277. http://dx.doi.org/10.1007/s10040-002-0188-6.
Davis, S.N., DeWiest, R.J.M. (1966): «Hydrogeology». 2nd edition, Wiley, New York, pp. 463.
Dikau, R. (1989): The application of a digital relief model to landform analysis. In: Raper, J.F. (ed.): Three dimensional applications in Geographical Information Systems. Taylor and Francis, London, pp 51-77.
Dragoni, W., Sukhija, B.S. (Eds.) (2008): Climate Change and Groundwater. Geological Society, London, pp. 1–12.
Duron, S.A. (1948): Natural water and graphical representation of their composition. Dokl. Akad. Nauk. U.S.S.R., V.59, P.87-90.
El Moujabber, M., BouSamra, B., Darwish, T., Atallah, T. (2006):Comparison of different indicators for groundwater contamination by seawater intrusion on the Lebanese Coast. Water Resources Management, 20: 161–180.
Fu, G., Charles, S.P., and Yu, J. (2009): A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 97(1-2), 193-214.
Galazoulas, E.C., Mertzanides, Y.C., Petalas, C.P., Kargiotis, E.K. (2015): Large scale electrical resistivity tomography survey correlated to hydrogeological data for mapping groundwater salinization: a case study from a multilayered coastal aquifer in Rhodope, Northeastern Greece. Environmental Processes, 2: 19–35.
Gavriilidou, E., Ntona, M., Kazakis, N., Vargemezis, G., Voudouris, K. (2017): Seawater intrusion mapping in the coastal aquifer of Nea Kallikratia-Flogita area, North Greece. Proccedings of 11th International Hydrogeological Congress of Greece, 4-6 October 2017, Athens.
Gerten, D., Rost, S., von Bloh, W., and Lucht, W. (2008): Causes of change in 20th century global river discharge. Geophysical Research Letters, 35(20), L20405, doi: 10.1029/2008GL035258.
Giuntoli, I., Renard, B., and Lang, M. (2012): Floods in France. In: Changes in Flood Risk in Europe [Kundzewicz, Z.W. (ed.) ]. CRC Press, Wallingford, UK, pp. 199-211.
Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H., and Aureli, A. (2011): Beneath the surface of global change: impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560.
Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H., Aureli, A. (2011): Beneath the surface: impacts of climate change on groundwater. Journal of Hydrology 405, 532–560.
Hattermann, F.F., Kundzewicz, Z.W., Huang, S., Vetter, T., Kron, W., Burghoff, O., Merz, B., Bronstert, A., Krysanova, V., Gerstengarbe, F.-W., Werner, P., and
Hauf, Y. (2012): Flood risk from a holistic perspective – observed changes in Germany. In: Changes in Flood Risk in Europe [Kundzewicz, Z.W. (ed.)]. CRC Press, Wallingford, UK, pp. 212-237. Hawkins, E. and R. Sutton.
Heim, R.R. (2002): A review of twentieth-century drought indices used in the United States. Bulletin of American Meteorological Society, 83:1149-1165.
Hiscock, K., Sparkes, R., Hodgens, A. (2012): Evaluation of future climate change impacts on European groundwater resources. In: Treidel, H., Martin-Bordes, J.J., Gurdak, J.J. (Eds.), Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations. IAH International Contributions to Hydrogeology, Taylor and Francis, London, pp. 351–366.
Hounslow, A.W. (1995): Water Quality Data Analysis and Interpretation. CRC Lewis, New York.
Ishak, E.H., Rahman, A., Westra, S., Sharma, A., and Kuczera, G. (2010): Preliminary analysis of trends in Australian flood data. In: World Environmental and Water Resources Congress 2010: Challenges of Change [Palmer, R.N. (ed.)]. Proceedings of the Congress, American Society of Civil Engineers, Reston, VA, USA, pp. 115-124.
Jeelani, G. (2008): Aquifer response to regional climate variability in a part of Kashmir Himalaya in India. Hydrogeology Journal, 16(8), 1625-1633.
Jiang, T., Kundzewicz, Z.W., and Su, B. (2008): Changes in monthly precipitation and flood hazard in the Yangtze River basin, China. International Journal of Climatology, 28(11), 1471-1481.
Jones, J.A. (2011): Hydrologic responses to climate change: considering geographic context and alternative hypotheses. Hydrological Processes, 25(12), 1996-2000.
Jyrkama, I.M., Sykes, J.F. (2007): The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). Journal of Hydrology. 338 (3–4), 237–250.
Kalra, A., T.C. Piechota, T.C., Davies, R., and Tootle, G.A. (2008): Changes in US streamflow and western US snowpack. Journal of Hydrologic Engineering, 13(3), 156-163.
Kazakis, N., Pavlou, A., Vargemezis, G., Voudouris, K.S., Soulios, G., Pliakas, F., Tsokas, G. (2016): Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Science of the Total Environment, 543: 373-387.
Kazakis, N., Mavromatis, T., Voudouris, K. (2008):Changes in extreme hydrological event frequencies in Greece. In: 9th Conference of meterology,climatology and atmospheric physics, Thessaloniki. Pp. 887-894.
Kim, J.H. (2009): DC2DPro-2D Interpretation System of DC Resistivity Tomography. User's Manual and Theory. KIGAM, S. Korea.
Knowles, N., Dettinger, M.D., and Cayan, D.R. (2006): Trends in snowfall versus rainfall in the western United States. Journal of Climate, 19(18), 4545-4559.
Konikow L.F., Kendy E. (2005): Groundwater depletion: A global problem. Hydrogeology Journal 13, 317–320.
Koppen, W., -Geiger, R. (1936): Handbuch der klimatologie. Berlin.
Korhonen, J., and Kuusisto, E. (2010): Long-term changes in the discharge regime in Finland. Hydrology Research, 41(3-4), 253-268.
Koutsoyiannis, D. & Georgakakos, A. (2006): Lessons from the long flow records of the Nile: determinism vs indeterminism and maximum entropy. In: 20 Years of Nonlinear Dynamics in Geosciences. Aegean Conferences. Rhodes, Greece.
Koutsoyiannis, D., Montanari, A., Lins, H.F., and Cohn, T.A. (2009): Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research. Hydrological Sciences Journal, 54(2), 394-405.
Kundzewicz, Z.W. and Döll, P. (2009):Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, 54(4), 665-675.
Kustu, M.D., Fan, Y., and Robock, A. (2010): Large-scale water cycle perturbation due to irrigation pumping in the US High Plains: a synthesis of observed streamflow changes. Journal of Hydrology, 390(3-4), 222-244.
Lambert, F.H., Stott, P.A., Allen, M.R., and Palmer, M.A. (2004): Detection and attribution of changes in 20th century land precipitation. Geophysical Research
Letters, 31(10), L10203, doi: 10.1029/2004GL019545.
Lenore, S., Clesceri, Arnold, E., Greenberg, Andrew, D., Eaton. (1998): Standard Methods for Examination of Water and Wastewater. 20th Edition.
Lins, H. F. & Stakhiv, E. Z. (1998): Managing the nation’s water in a changing climate. Journal of the American Water Resources Association 34(6), 1255–1264.
Loke, M.H. (2011a): Electrical resistivity surveys and data interpretation. In: Gupta, H.K.(Ed.), Encyclopedia of Solid Earth Geophysics, 2nd edn Springer, pp. 276–283.
Loke, M.H. (2011b) Tutorial: 2-D and 3-D electrical imaging surveys. [Online] Available at: www.geoelectrical.com [Accessed 15 June 2012].
Mario, Z., Joan, B., Rogelio, L., Xavier, M.P. (2011): Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Emporda, Northern Spain). Journal of Hydrology, 409: 407–422.
McVicar, T.R., Van Niel, T.G., Roderick, M.L., Li, L.T., Mo, X.G., Zimmermann, N.E., and
Meladiotis, I., Veranis, N.S., Nikolaidis, N.P. (2002): Arsenic contamination in Central Macedonia, Northern Greece: extent of the problem and potential solution. In: Conference of Protection and Restoration of the Environment VI, 1–5 July, Skiathos Island, Greece.
Melloul, A., Zeitoun, D. (1999): A semi-empirical approach to intrusion monitoring in Israeli coastal aquifer. In: Bear, J. (Ed.), Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices. Kluwer, London: 543–547.
Miralles, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., and Dolman, A.J. (2011): Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2), 453-469.
Mtoni, Y., Mjemah, I.C., Bakundukize, C., Van Camp, M., Martens, K., Walraevens, K. (2013): Saltwater intrusion and nitrate pollution in the coastal aquifer of Dar es Salaam, Tanzania. Environmental Earth Sciences, 70 (3): 1091–1111.
Palmer, W.C. (1965): Meteorological drought. U.S. Weather Bureau Research Paper 45, 58.
Petrow, T. and Merz, B. (2009): Trends in flood magnitude, frequency and seasonality in Germany in the period 1951-2002. Journal of Hydrology, 371(1-4), 129-141.
Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J ., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingst1ein, P., Liu, C., Tan, K., Yu, Y., Zhang, T., and Fang, J. (2010): The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43-51.
Piao, S., Friedlingstein, P., Ciais, P., Noblet-Ducoudre, N., Labat, D., and Zaehle, S. (2007): Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15242-15247.
Piper, A.M. (1944): A graphic procedure in the geochemical interpretation of water analyses. American Geophysical union, Transactions, v. 25, p. 914-923.
Pulido-Velazquez, D., García-Arostegui, J.L., Molina, J.L., Sanz, I., Pulido-Velazquez, M. (2011): Análisis de impactos futuros del cambio climático sobre los recursos hídricos subterráneos. El caso del acuífero Serral Salinas (Murcia-Alicante). Symposiym de Aguas Subterráneas (AEH), Zaragoza, 2011.
Pulido-Velazquez, D., Garrote, L., Andreu, J., Martin-Carrasco, F.J., Iglesias, A. (2011b): A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. Journal of Hydrology 405 (1), 110–122.
Roosmalen, V., Christensen, B.S.B., Sonnenborg, T.O. (2007): Regional differences in climate change impacts on groundwater and stream discharge in Denmark. Vadose Zone Journal 6 (3), 554–571. http://dx.doi.org/10.2136/vzj2006.0093.
Rosenzweig, C., Casassa, G., Karoly, D.J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T.L., Seguin, B., and Tryjanowski, P. (2007): Assessment of observed changes and responses in natural and managed systems. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E.
Hanson (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 79-131.
Schmatz, D.R. (2010): Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevation than lower elevations: 1960-2006. Geophysical Research Letters, 37, L06402, doi: 10.1029/2009GL042255.
Scibek, J., Allen, D.M., Cannon, A.J., Whitfield, P.H. (2007): Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology. 333 (2–4), 165–181.
Seneviratne, S.I., Lüthi, D., Litschi, M., and Schär, C. (2006): Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), 205-209.
Skaugen, T., Stranden, H.B., and Saloranta, T. (2012): Trends in snow water equivalent in Norway (1931-2009). Hydrology Research, 43(4), 489-499.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L.M., van Lanen, H.A.J., Sauquet, E., Demuth, S., Fendekova, M., and Jodar, J. (2010): Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences, 14(12), 2367-2382.
Stahl, K., Tallaksen, L.M., Hannaford, J., and van Lanen, H.A.J. (2012): Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble. Hydrology and Earth System Sciences, 16(7), 2035-2047.
Stoll, S., Franssen, H.J.H., Barthel, R., and Kinzelbach, W. (2011): What can we learn from long-term groundwater data to improve climate change impact studies? Hydrology and Earth System Sciences, 15(12), 3861-3875.
Stott, P.A., Gillett, N.P., Hegerl, G.C., Karoly, D.J., Stone, D.A., Zhang, X., and Zwiers, F. (2010): Detection and attribution of climate change: a regional perspective. Wiley Interdisciplinary Reviews: Climate Change, 1(2), 192-211.
Strahler, A.N. (1957): Quantitative analysis of watershed geomorphology. Trans. Amer. Geophys. Union 38, 913-20.
Suthar, S., Bishnoi, P., Singh, S., Mutiyar, P.K., Nema A.K., and Patil, N.S., (2009): Nitrate contamination in groundwater of some rural areas of Rajasthan Indian, Journal of hazardous materials, 171, pp. 189-199.
Takala, M., Pulliainen, J., Metsamaki, S.J., and Koskinen, J.T. (2009): Detection of snowmelt using spaceborne microwave radiometer data in Eurasia from 1979 to 2007. IEEE Transactions on Geoscience and Remote Sensing, 47(9), 2996-3007.
Tan, A., Adam, J.C., and Lettenmaier, D.P. (2011): Change in spring snowmelt timing in Eurasian Arctic rivers. Journal of Geophysical Research: Atmospheres, 116, D03101, doi: 10.1029/2010JD014337.
Thornthwaite, C., Mather, J. (1957): Instructions and tables for computing potential evapotranspiration and water balance. Publication in Climatology, Vol. 10, Nο 3, New Jersey.
Vengosh, A., Spivack, A.J., Artzi, Y., Ayalon, A. (1999): Geochemical and boron, strontium and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resources Research, 35: 1877-1894.
Voudouris, K., Baltas, E., Vasalakis, A., Diamantopoulou, P. (2006): Pressures on water resources and their impacts on coastal aquifers: case studies from Greek islands’. WSEAS (World Scientific and Engineering Academy and Society). Transactions on Environment and Development. Issue II, Vol. 2: 1427-1434.
Wang, D., and Cai, X. (2010): Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds. Geophysical Research Letters, 37, L06406, doi: 10.1029/2009GL041879.
Wells, N., Goddard, S., and Hayes, M.J. (2004): A Self-Calibrating Palmer Drought Severity Index, Journal of Climate, 17: 2335-2351.
Wilhite, D.A. (2000): Drought as a natural hazard: Concepts and definitions. In: Wilhite, D.A. (Ed.), Drought a global assessment. Rootledge, 3-18.
Wilson, D., Hisdal, H., and Lawrence, D. (2010): Has streamflow changed in the Nordic countries? – Recent trends and comparisons to hydrological projections. Journal of Hydrology, 394(3-4), 334-346.
Zhang, Y.K., and Schilling, K.E. (2006): Increasing streamflow and baseflow in Mississippi River since the 1940s: effect of land use change. Journal of Hydrology, 324(1-4), 412-422.
Zhang, Z., Zhang, Q., Xu, C., Liu, C., and Jiang, T. (2009): Atmospheric moisture budget and floods in the Yangtze River basin, China. Theoretical and Applied Climatology, 95(3-4), 331-340.
Βουδούρης, Κ. (2009): Υδρογεωλογία Περιβάλλοντος. Εκδόσεις Τζιόλα, Θεσσαλονίκη, σελ. 460.
Βουδούρης, Κ. (2013): Τεχνική Υδρογεωλογία. Εκδόσεις Τζιόλα, Θεσσαλονίκη, σελ. 429.
Διαμαντής, Ι. (2004): Παράκτια υδροφόρα στρώματα. Σημειώσεις προγράμματος μεταπτυχιακών σπουδών Τμήματος Γεωλογίας, Δ.Π.Θ., Ξάνθη , σελ. 75.
Ι.Γ.Μ.Ε. (2010): Υδρογεωλογική μελέτη: Υδροφόρα συστήματα Επανομής-Μουδανιών, Κασσάνδρας, Ορμύλιας και Σιθωνίας του υδατικού διαμερίσματος κεντρικής Μακεδονίας υπό Βεράνη, Ν., Χατσηκύρκου, ΑΘ., τεύχος 2Β, Θεσσαλονίκη.
Ι.Γ.Μ.Ε. (1978): Γεωλογικός χάρτης της Ελλάδος 1:50.000 φύλλο Βασιλικά υπό Mollat, M., Αντωνιάδη, Π., Χριστοδούλου, Γ., Παργινό, Δ., Κουρμούλη, Ν., Αθήνα.
Ι.Γ.Μ.Ε. (1978): Γεωλογικός χάρτης της Ελλάδος 1:50.000 φύλλο Βασιλικά υπό Kockel, F., Mollat, M., Αντωνιάδη, Π., Ιωαννίδη, Κ., Χριστοδούλου, Γ., Παργινό, Δ., Κουρμούλη, Ν., Αθήνα.
Ι.Γ.Μ.Ε. (1999): Ποιότητα νερών Νομού Χαλκιδικής (από Κ. Κατιρτζόγλου) Τελική μελέτη, Θεσσαλονίκη.
Καλλέργης, Γ. (2000): Εφαρμοσμένη –Περιβαλλοντική Υδρογεωλογία. 2η έκδοση, τόμος , Τ.Ε.Ε., Αθήνα.
Μουντράκης, Δ. (1985): Γεωλογία της Ελλάδας. University Studio Press, σελ. 204
Ντώνα, Μ., Γαβριηλίδου, Ε., Καζάκης, Ν., Βουδούρης, Κ. (2017): Ποιότητα του υπόγειου νερού σρον παράκτιο υδροφορέα Καλλικράτειας-Φλογητών (Χαλκιδική). Πρακτικά 6ου Περιβαλλόντικού Συνεδρίου Μακεδονίας, 5-7 Μαϊου, Θεσσαλονίκη.
Ξεφτέρης, Α.Δ.(2000): Διερεύνηση της ποιοτικής υποβάθμισης των υπόγειων νερών στον κάμπο της Καλαμαριάς με έμφαση στη νιτρορύπανση. Διδακτορική διατριβή. Τμήμα Πολιτικών Μηχανικών, Α.Π.Θ.
Σούλιος, Γ. (1986): Γενική Υδρογεωλογία , Πρώτος & Δεύτερος Τόμος. University Studio Press, Θεσσαλονίκη.
Σούλιος, Γ. (2006): Γενική Υδρογεωλογία, Τέταρτος Τόμος. University Studio Press, Θεσσαλονίκη.
Συρίδης, Γ. (1990): Λιθοστρωματογραφική, Βιοστρωματογραφική και Παλαιογραφική μελέτη των Νεογενών-Τεταρτογενών ιζηματογενών σχηματισμών της χερσονήσου Χαλκιδικής. Διδακτορική διατριβή. Τμήμα Γεωλογίας, Α.Π.Θ.
Ψιλοβίκος, Α., Συρίδης, Γ., Χαχαμίδου, Ε. (1988): Παράκτια φαινόμενα στη χερσόνησο της Κασσάνδρας της Χαλκιδικής, Δελτίο Ελληνικής Γεωλογικής Εταιρείας, Τόμος ΧΧ,325-339
ΔΙΑΔΙΚΤΥΟ
www.statistics.gr (Ελληνική Στατιστική αρχή)
http://www.ncdc.noaa.gov
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.