[Εξώφυλο]

Συμβολή στη μελέτη σμηνοσεισμών = Modeling of earthquake swarms: Occurrence patterns, evolution mecahnisms and possible triggering.

Μαρία Μεσημέρη

Περίληψη


Η μελέτη των σμηνοσειρών αποτελεί ένα από τα πλέον σύγχρονα πεδία έρευνας στον τομέα της Σεισμολογίας, λόγω των ιδιαίτερων χωρο-χρονικών τους χαρακτηριστικών και του τρόπου δημιουργίας και εξέλιξής τους. Οι σμηνοσειρές συνιστούν μία κατηγορία σεισμικών εξάρσεων στην οποία απουσιάζει «ο κύριος σεισμός», δηλαδή αυτός που υπερέχει σε μέγεθος σε σχέση με τους υπόλοιπους σεισμούς της έξαρσης. Τα αίτια που προκαλούν τις σμηνοσειρές μπορεί να οφείλονται στην τεκτονική φόρτιση της περιοχής αλλά επίσης και στην ύπαρξη ρευστών ή σε ανθρωπογενείς παράγοντες, όπως στη διάνοιξη γεωτρήσεων και εισπίεση ρευστών που στοχεύει στην οικονομική εκμετάλλευση. Σκοπό της παρούσας διατριβής αποτελεί η διερεύνηση των ιδιοτήτων των σμηνοσειρών στον ελληνικό χώρο με βάση τη μεταβολή των χωρο-χρονικών τους ιδιοτήτων στοχεύοντας στη συσχέτισή τους με τις διαδικασίες γένεσης των ισχυρών σεισμών και τελικό σκοπό τη συμβολή στην εκτίμηση της σεισμικής επικινδυνότητας. Ο κύριος όγκος της έρευνας αφορά την περιοχή του Κορινθιακού κόλπου, με έμφαση στο δυτικό τμήμα του, ο οποίος αποτελεί μία από τις πιο ενεργά σεισμικές περιοχές του ελληνικού χώρου. Επιπλέον, χρησιμοποιήθηκαν δεδομένα από τοπικό πείραμα στην περιοχή της Φλώρινας (ΒΔ Ελλάδα) με σκοπό την ερμηνεία του μηχανισμού δημιουργίας των σμηνοσειρών στην περιοχή. Αρχικά, συλλέγονται τα απαραίτητα σεισμολογικά δεδομένα με σκοπό τη σύνταξη καταλόγων σεισμών για κάθε περιοχή, οι οποίοι ελέγχονται ως προς τις κλίμακες μεγεθών που έχουν χρησιμοποιηθεί και ανάγονται σε μία κλίμακα. Το σημαντικότερο τμήμα της διατριβής αποτελεί ο προσδιορισμός των εστιακών συντεταγμένων με μεγάλη ακρίβεια, χρησιμοποιώντας τις μεθόδους των διπλών διαφορών και της διασυσχέτισης κυματομορφών. Η ακρίβεια στις εστιακές συντεταγμένες κάνει εφικτή τη μελέτη των χωρο-χρονικών ιδιοτήτων των σμηνοσειρών. Έτσι, χρησιμοποιώντας κατάλληλους αλγορίθμους αποσυσταδοποίησης καταλόγων σεισμών, αναγνωρίζονται οι σεισμικές εξάρσεις. Οι σεισμικές εξάρσεις συσχετίζονται με τμήματα ρηγμάτων και προσδιορίζονται οι γεωμετρικές τους ιδιότητες με βάση τη χωρική κατανομή των σεισμών στις τρεις διαστάσεις. Σημαντικό εργαλείο για την επαλήθευση της γεωμετρίας αυτής αποτελούν οι μηχανισμοί γένεσης οι οποίοι συμβάλλουν επιπλέον στην ερμηνεία του πεδίου τάσεων στην περιοχή μελέτης. Ως προς τις χρονικές ιδιότητες οι σεισμικές εξάρσεις διακρίθηκαν σε σμηνοσειρές και εξάρσεις του τύπου μετασεισμικών ακολουθιών με κυριότερο κριτήριο την έκλυση της σεισμικής ροπής σε μία έξαρση. Στη συνέχεια, εξετάστηκαν ενδελεχώς οι χρονικές ιδιότητες κυρίως των σμηνοσειρών εφαρμόζοντας τόσο στοχαστικά μοντέλα, όσο και μελετώντας την κατανομή των χρόνων μεταξύ διαδοχικών σεισμών. Αναφορικά με τον μηχανισμό δημιουργίας και εξέλιξης των σμηνοσειρών, γίνεται συσχέτιση της ύπαρξης ρευστών στις περιοχές μελέτης με την εκδήλωση σμηνοσειρών. Το κυριότερο χαρακτηριστικό που οδηγεί σε αυτή την ερμηνεία είναι η μετανάστευση των εστιών, η οποία παρατηρείται κατά την εκδήλωση των σμηνοσεισμών. Επίσης, σημαντικό ρόλο διαδραματίζουν οι μεταβολές των τάσεων Coulomb στη χωρο-χρονική εξέλιξη των σμηνοσειρών. Κατά τη διάρκεια των σμηνοσειρών, ειδικότερα σε περιπτώσεις όπου η εκδήλωση τους οφείλεται σε ύπαρξη ρευστών, παρατηρούνται επαναληπτικοί σεισμοί, δηλαδή σεισμοί οι οποίοι έχουν όμοια σεισμογράμματα.

 

The study of earthquake swarms is one of the most modern topics in the field of Seismology due to their unique triggering and evolution mechanisms. Earthquake swarms are a type of earthquake sequence, where a dominant in magnitude earthquake is absent. The triggering mechanism of earthquake swarms could be either due to tectonic loading or to the existence of fluids or anthropogenic activity in an area, such as fluid intrusion in wells for commercial use. The main goal of this study is to investigate the spatiotemporal properties of earthquake swarms in Greece aiming to associate their occurrence with the triggering of strong earthquakes and contribute to the seismic hazard assessment. The main study area is the Gulf of Corinth, and especially its western part, where frequent seismic excitations occur. This study also uses data from a local network that operated in the area of Florina (NW Greece) for six months, in order to interpret the triggering mechanism of earthquake swarms. First, all available seismological data are gathered in order to compile earthquake catalogs for each area. These catalogs are checked regarding the magnitude scales that were used and are homogenized into one. The fundamental part of this thesis is the relocation of the earthquakes using the double difference method and waveform cross correlation techniques. The high accuracy in earthquake location allows the study of the spatiotemporal properties of earthquake swarms. It was then possible to identify seismic excitations using declustering algorithms. The identified seismic excitations are associated with certain fault segments and their characteristics are defined based on the three dimensional distribution of the earthquake focal parameters. An important tool in order to verify the geometry of the identified fault segments is the computation of fault plane solutions, which also contribute to the understanding of the stress field in the study area. Regarding the temporal properties, seismic excitations are distinguished into earthquake swarm and mainshock – aftershock sequences, taking into account the seismic moment release history in each excitation. Then, the temporal properties of the identified earthquake swarms are investigated in detail by applying stochastic models and examining the interevent time distribution. Regarding the triggering mechanism and the evolution of earthquake swarms, an attempt to associate their occurrence with the existence of fluids is made. The migration of the epicenters, which is commonly observed in earthquake swarms, is investigated in this study. Coulomb stress changes could also play an important role to earthquake triggering and the evolution of an earthquake swarm. Repeating earthquakes (i.e. earthquakes with identical seismograms) are observed during the evolution of earthquake swarms, especially when their occurrence is due to fluid intrusion.


Πλήρες Κείμενο:

PDF

Αναφορές


Abers, G. A. (2009). Slip on shallow-dipping normal faults. Geology, 37 (8), 767–768, 10.1130/focus082009.1.

Abers, G. A., Mutter, C. Z., & Fang, J. (1997). Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark-D’Entrecasteaux rift system, Papua New Guinea. Journal of Geophysical Research, 102 (B7), 15, 301-315.

Aki, K. (1965). Maximum Likelihood Estimate of b in the Formula logN=a-bM and its Confidence Limits. Bulletin of the Earthquake Research Institute, (43), 237-239.

Aki, K. (1966). Generation an propagation of G waves from the Niigata earthquake of June 16, 1964. Bulletin of the Earthquake Research Institute, (44), 23–88.

Aki, K., & Richards, P. G. (2002). Quantitative Seismology (2nd ed.). University Science Books.

Ambraseys, N. N., & Jackson, J. A. (1997). Seismicity and Strain in the Gulf of Corinth (Greece) Since 1694. Journal of Earthquake Engineering (Vol. 1), 10.1080/13632469708962374

Amorèse, D. (2007). Applying a Change-Point Detection Method on Frequency-Magnitude Distributions. Bulletin of the Seismological Society of America, 97(5), 1742–1749, 10.1785/0120060181

Anderlini, L., Serpelloni, E., & Belardinelli, M. E. (2016). Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy). Geophysical Research Letters, 43(9), 4321–4329, 10.1002/2016GL068604

Anooshehpoor, A., & Brune, J. N. (2001). Quasi-Static slip-rate shielding by locked and creeping zones as an explanation for small repeating earthquakes at parkfield. Bulletin of the Seismological Society of America, 91(2), 401–403, 10.1785/0120000105

Aoyama, H., Takeo, M., & Ide, S. (2002). Evolution mechanisms of an earthquake swarm under the Hida Mountains, central Japan, in 1998. Journal of Geophysical Research, 107, 10.1029/2001JB000540.

Armijo, R., Meyer, B., King, G. C. P., Rigo, A., & Papanastassiou, D. (1996). Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophysical Journal International, 126(1), 11–53.

Avallone, A., Briole, P., Agatza-Balodimou, A. M., Billiris, H., Charade, O., Mitsakaki, C., Nercessian, A., Papazissi, K., Paradissis, D., & Veis, G. (2004). Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. Comptes Rendus - Geoscience, 336(4–5), 301–311, 10.1016/j.crte.2003.12.007

Axen, G. J. (1999). Low-angle normal fault earthquakes and triggering. Geophysical Research Letters, 26(24), 3693–3696.

Baba, A. B., Papadimitriou, E. E., Papazachos, B. C., Papaioannou, C. A., & Karakostas, B. G. (2000). Unified Local Magnitude Scale for Earthquakes of South Balkan Area. Pure and Applied Geophysics, 157(5), 765–783, 10.1007/PL00001117

Bai, L., Wu, Z., Zhang, T., & Kawasaki, I. (2006). The effect of distribution of stations upon location error: Statistical tests based on the double-difference earthquake location algorithm and the bootstrap method. Earth, Planets and Space, 58(12), 58–61.

Bak, P., Christensen, K., Danon, L., & Scanlon, T. (2002). Unified Scaling law for Eartquakes. Physical Review Letters, 88(17), 10–13, 10.1103/PhysRevLett.88.178501

Baker, C., Hatzfeld, D., Lyon-Caen, H., Papadimitriou, E., & Rigo, A. (1997). Earthquake mechanisms of the Adriatic Sea and Western Greece: implications for the oceanic subduction-continental collision transition. Geophysical Journal International, 131(3), 559–594, 10.1111/j.1365-246X.1997.tb06600.x

Bakun , W.H & Joyner, W.B. (1984). The ML scale in central California. Bulletin of the Seismological Society of America, 74(5), 1827-1843.

Båth, M. (1965). Lateral inhomogeneities of the upper mantle. Tectonophysics, 2(6), 483–514, 10.1016/0040-1951(65)90003-X

Becker, D., Meier, T., Rische, M., Bohnhoff, M., & Harjes, H. P. (2006). Spatio-temporal microseismicity clustering in the Cretan region. Tectonophysics, 423(1–4), 3–16, 10.1016/j.tecto.2006.03.022

Beckers, A., Hubert-Ferrari, A., Beck, C., Bodeux, S., Tripsanas, E., Sakellariou, D., & De Batist, M. (2015). Active faulting at the western tip of the Gulf of Corinth, Greece, from high-resolution seismic data. Marine Geology, 360, 55–69, 10.1016/j.margeo.2014.12.003

Beeler, N.M, Lockner, D.L. & Hickman, S.H. (2001). A simple stick-slip and creep-slip model for repeating earthquakes and its implication for microearthquakes at Parkfield. Bulletin of the Seismological Society of America, 91(6), 1797-1804.

Bell, R. E., McNeill, L. C., Bull, J. M., & Henstock, T. J. (2008). Evolution of the offshore western Gulf of Corinth. Bulletin of the Geological Society of America, 120(1–2), 156–178, 10.1130/B26212.1

Bell, R. E., McNeill, L. C., Bull, J. M., Henstock, T. J., Collier, R. E. L., & Leeder, M. R. (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth rift, central Greece. Basin Research, 21(6), 824–855, 10.1111/j.1365-2117.2009.00401.x

Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of the Seismological Society of America, 73(3), 831–851.

Benetatos, C., Kiratzi, A., Kementzetzidou, K., Roumelioti, Z., Karakaisis, G., Scordilis, E., Latoussakis, I., & Drakatos, G. (2004). The Psachna (Evia Island) Earthquake Swarm of June 2003. Bulletin of the Geological Society of Greece, XXXVI, 1379–1388.

Benoit, J., & McNutt, S. (1996). Global volcanic earthquake swarms database and preliminary analysis of volcanic earthquake swarm duration. Annali Di Geofisica, XXXIX(2), 221–229.

Bernard, P., Briole, P., Meyer, B., Gomez, J., Tiberi, C., Berge, C., Cattin, R., Hatzfeld, D., Lachet, C., Lebrun, B., Dechamps, A., Courboulex, F., Larroque, C., Rigo, A., Massonet, D., Papadimitriou, P., Kassaras, I., Diagourtas, D., Makropoulos, K., Veis, G., Papazisi, E., Mitsakaki, C., Karakostas, V., Papadimitriou, E., Papanastasiou, D., Couliaras, M., & Stavrakakis, G. (1997). The Ms=6.2 June 15, 1995 Aigion earthquake (Greece): evidence for low angle. Journal of Seismology, 1, 131–150.

Bernard, P., Lyon-Caen, H., Briole, P., Deschamps, A., Boudin, F., Makropoulos, K., Papadimitriou, P., Lemeille, F., Patau, G., Billiris, H., Paradissis, D., Papazissi, D., Castarede, H., Charade, O., Nercessian, A., Avallone, A., Pacchiani, F., Zahradnik, J., Sacks, S., & Linde, A. (2006). Seismicity, deformation and seismic hazard in the western rift of Corinth: New insights from the Corinth Rift Laboratory (CRL). Tectonophysics, 426(1–2), 7–30.

Beroza, G. C., Cole, A. T., & Ellsworth, W. L. (1995). Stability of coda wave attenuation during the Loma-Prieta, California, earthquake sequence. Journal Of Geophysical Research-Solid Earth, 100(B3), 3977–3987, 10.1029/94JB02574

Billings, S. D. (1994). Simulated annealing for earthquake location. Geophysical Journal International, 118(3), 680–692, 10.1111/j.1365-246X.1994.tb03993.x

Billiris, H., Paradissis, D., Veis, G., England, P., Featherstone, W., Parsons, B., Cross, P., Rands, P., Rayson, M., Seleers, P., Ashkenazi, V., Davison, M., Jackson, J., & Ambraseys N. (1991). Geodetic determination of tectonic deformation in central Greece from 1900 to 1988. Nature, 350, 124–129.

Bisrat, S., DeShon, H. R., & Rowe, C. (2012). Microseismic Swarm Activity in the New Madrid Seismic Zone. Bulletin of the Seismological Society of America, 102(3), 1167–1178, 10.1785/0120100315

Bisztricsany, E. (1958). A new method for the determination of the magnitude of earthquakes. Geof. Kozl., 1, 69-96.

Bohnhoff, M., Rische, M., Meier, T., Becker, D., Stavrakakis, G., & Harjes, H. P. (2006). Microseismic activity in the Hellenic Volcanic Arc, Greece, with emphasis on the seismotectonic setting of the Santorini-Amorgos zone. Tectonophysics, 423(1–4), 17–33, 10.1016/j.tecto.2006.03.024

Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media. Bulletin of Seismological Society of America, 71(4), 959–971.

Bourouis, S., & Cornet, F. H. (2009). Microseismic activity and fluid fault interactions : some results from the Corinth Rift Laboratory (CRL),Greece. Geophysical Journal International, 178, 561–580.

Briole, P., Rigo, A., Lyon-Caen, H., Ruegg, J. C., Papazissi, K., Mitsakaki, C., Balodimou, A., Veis, G., Hatzfeld, D., & Deschamps, A. (2000). Active deformation of the Corinth rift, Greece: Results from repeated global positioning system surveys between 1990 and 1995. Journal of Geophysical Research B: Solid Earth, 105(B11), 25605–25625.

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75(26), 4997, 10.1029/JB075i026p04997

Buforn, E., Bezzeghoud, M., Udias, A., & Pro, C. (2004). Seismic Sources on the Iberia-African Plate Boundary and their Tectonic Implications. Pure and Applied Geophysics, 161(3), 623–646, 10.1007/s00024-003-2466-1

Burridge, R., & Knopoff, L. (1967). Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57(3), 341–371.

Cao, A., & Gao, S. (2002). Temporal variation of seismic b -values beneath northeastern Japan island arc. Geophysical Research Letters, 29(9), 10–12, 10.1029/2001GL013775

Čermáková, H., & Horálek, J. (2015). The 2011 West Bohemia (Central Europe) earthquake swarm compared with the previous swarms of 2000 and 2008. Journal of Seismology, 19(4), 899–913, 10.1007/s10950-015-9502-3

Chen, C.-H., Wang, J.-P., Wu, Y.-M., Chan, C.-H., & Chang, C.-H. (2013). A study of earthquake inter-occurence times distribution models in Taiwan. Natural Hazards, 69, 1335–1350.

Chen, X., & Shearer, P. M. (2011). Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California. Journal of Geophysical Research, 116(B09), doi:10.1029/2011JB008263.

Chen, X., Shearer, P. M., & Abercrombie, R. E. (2012). Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fluid diffusion. Journal of Geophysical Research, 117(4), 1–7, 10.1029/2011JB008973

Chiaraluce, L., Amato, A., Cocco, M., Chiarabba, C., Selvaggi, G., Di Bona, M., Piccinini, D., Dechamps, A., Margheriti, F., Courboulex, F., & Ripepe, M. (2004). Complex normal faulting in the Apennines thrust-and-fold belt: The 1997 seismic sequence in central Italy. Bulletin of the Seismological Society of America, 94(1), 99–116, 10.1785/0120020052

Chiaraluce, L., Chiarabba, C., Collettini, C., Piccinini, D., & Cocco, M. (2007). Architecture and mechanics of an active low-angle normal fault: Alto Tiberina Fault,

northern Apennines, Italy. Journal of Geophysical Research, 112(10), 10.1029/2007JB005015

Chouliaras, G., Drakatos, G., Pavlou, K., & Makropoulos, K. (2013). Stress distribution and seismicity patterns of the 2011 seismic swarm in the Messinia basin, (South-Western Peloponnesus), Greece. Natural Hazards and Earth System Science, 13(1), 45–51, 10.5194/nhess-13-45-2013

Chouliaras, G., Kassaras, I., Kapetanidis, V., Petrou, P., & Drakatos, G. (2015). Seismotectonic analysis of the 2013 seismic sequence at the western Corinth Rift. Journal of Geodynamics, 90, 42–57, 10.1016/j.jog.2015.07.001

Chousianitis, K., Ganas, A., & Evangelidis, C. P. (2015). Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. Journal of Geophysical Research, 120(5), 3909–3931, 10.1002/2014JB011762

Civgin, B. (2015). Regression Relations for Conversion of Various Magnitude Types and Catalogs for the Earthquakes of Turkey and Vicinity. Seismological Research Letters, 86(3), 876–889, 10.1785/0220140154

Clarke, P. J., Davies, R. R., England, P. C., Parsons, B., Billiris, H., Paradissis, D., Veis, G., Cross, P.A., Denys, P.H., Ashkenazi, V., Bingley, R., Kahle, H. G., Muller, M.V., & Briole, P. (1998). Crustal strain in Greece from repeated GPS measurements in the interval 1989-1997. Geophysical Journal International, 135(1), 195–214,10.1046/j.1365-246X.1998.00633.x

Collettini, C. (2011). The mechanical paradox of low-angle normal faults: Current understanding and open questions. Tectonophysics, 510(3–4), 253–268, 10.1016/j.tecto.2011.07.015

Console, R., Falcone, G., Karakostas, V., Murru, M., Papadimitriou, E., & Rhoades, D. (2013). Renewal models and coseismic stress transfer in the Corinth Gulf, Greece, fault system. Journal of Geophysical Research, 118(7), 3655–3673.

Corral, A. (2004). Long-Term Clustering, Scaling, and Universality in the Temporal Occurrence of Earthquakes. Physical Review Letters, 92(10), 10.1103/PhysRevLett.92.108501

Corral, A. (2006). Dependence of earthquake recurrence times and independence of magnitudes on seismicity history. Tectonophysics, 424(3–4), 177–193, 10.1016/j.tecto.2006.03.035

Cristelli, M., Zaccaria, A., & Pietronero, L. (2012). Universal relation between skewness and kurtosis in complex dynamics. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85(6), doi:10.1103/PhysRevE.85.066108.

Crosson, R. S. (1976). Crustal structure modeling of earthquake data 1. Simultaneous Least Squares Estimation of Hypocenter and Velocity Parameters. Journal of Geophysical Research, 81(17), 3036–3046.

Davidsen, J., & Goltz, C. (2004). Are seismic waiting time distributions universal? Geophysical Research Letters, 31(21), 1–4., 10.1029/2004GL020892

Davidsen, J., & Kwiatek, G. (2013). Earthquake interevent time distribution for induced micro-, nano-, and picoseismicity. Physical Review Letters, 110(6), 1–5, 10.1103/PhysRevLett.110.068501

van Decar, J. C., & Crosson, R. S. (1990). Determination of teleseismic relative phase arrival times using multi-channnel cross-correlation and least-squares. Bulletin of Seismological Society of America, (80), 150–169.

Deichmann, N., & Garcia-Fernandez, M. (1992). Rupture geometry from high-precision relative hypocentre locations of microearthquake clusters. Geophysical Journal International, 110(3), 501–517, 10.1111/j.1365-246X.1992.tb02088.x

Deng, J., & Sykes, L. R. (1997). Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective. Journal of Geophysical Research, 102(B5), 9859–9886.

Dominguez, L. A., Taira, T., & Santoyo, M. A. (2016). Spatiotemporal variations of characteristic repeating earthquake sequences along the Middle America Trench in Mexico. Journal of Geophysical Research, 1–16, 10.1002/2016JB013242

Domínguez Cerdeña, I., del Fresno, C., & Gomis Moreno, A. (2014). Seismicity patterns prior to the 2011 El Hierro eruption. Bulletin of the Seismological Society of America, 104(1), 567–575, 10.1785/0120130200

Drakatos, G., Voulgaris, N., Pirli, M., Melis, N., & Karakostas, B. (2005). 3-D Crustal Velocity Structure in Northwestern Greece. Pure and Applied Geophysics, 162(1), 37–51, 10.1007/s00024-004-2578-2

Duverger, C., Godano, M., Bernard, P., Lyon-caen, H., & Lambotte, S. (2015). The 2003-2004 seismic swarm in the western Corinth rift: Evidence for a multiscale pore pressure diffusion process along a permeable fault system. Geophysical Research Letters, 42(18), 1–9, 10.1002/2015GL065298

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM. Philadelphia, 10.1137/1.9781611970319

Enescu, B., & Ito, K. (2005). The 1998 Hida Mountain, Central Honshu, Japan, earthquake swarm: Double-difference event relocation, frequency-magnitude distribution and Coulomb stress changes. Tectonophysics, 409(1–4), 147–157, 10.1016/j.tecto.2005.08.013

Erickson, L. (1986). User’s manual for DIS3D: a three dimensional dislocation program with applications to faulting in the Earth. Stanford University.

Evangelidis, C. P., Konstantinou, K. I., Melis, N. S., Charalambakis, M., & Stavrakakis, G. N. (2008). Waveform relocation and focal mechanism analysis of an earthquake swarm in Trichonis Lake, Western Greece. Bulletin of the Seismological Society of America, 98(2), 804–811, 10.1785/0120070185

Evison, F. F., & Rhoades, D. A. (1993). The precursory earthquake swarm in New Zealand : hypothesis tests. New Zealand Journal of Geology and Geophysics, 36, 51–60.

Evison, F. F., & Rhoades, D. A. (1999a). The precursory earthquake swarm and the inferred precursory quarm. New Zealand Journal of Geology and Geophysics, 42, 229–236.

Evison, F. F., & Rhoades, D. A. (1999b). The precursory earthquake swarm in Japan: Hypothesis test. Earth, Planets and Space, 51(12), 1267–1277.

Evison, F., & Rhoades, D. (2000). The Precursory Earthquake Swarm in Greece. Annali Di Geofisica, 43(5), 991–1009.

Farrell, J., Husen, S., & Smith, R. B. (2009). Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. Journal of Volcanology and Geothermal Research, 188(1–3), 260–276, 10.1016/j.jvolgeores.2009.08.008

Fischer, T., Horálek, J., Hrubcová, P., Vavryčuk, V., Bräuer, K., & Kämpf, H. (2014). Intra-continental earthquake swarms in West-Bohemia and Vogtland: A review. Tectonophysics, 611, 1–27., 10.1016/j.tecto.2013.11.001

Francis, T. J. G. (1974). A New Interpretation of the 1968 Fernandina Caldera Collapse and its Implications for the Mid-Oceanic Ridges. Geophysical Journal of the Royal Astronomy Society, 39(2), 301–318, 10.1111/j.1365-246X.1974.tb05456.x

Frechet, J. (1985). Simsogene et doublets sismiques. Universite Scientifique et MEdicale de Grenoble.

Freed, A. M. (2005). Earthquake Triggering By Static, Dynamic, and Postseismic Stress Transfer. Annual Review of Earth and Planetary Sciences, 33(1), 335–367, 10.1146/annurev.earth.33.092203.122505

Frémont, M.-J., & Malone, S. D. (1987). High precision relative locations of earthquakes at Mount St. Helens, Washington. Journal of Geophysical Research, 92(B10), 10,223-10,236, 10.1029/JB092iB10p10223

Frohlich, C., & Apperson, D. K. (1992). Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11(2), 279–296.

Ganas, A., & Parsons, T. (2009). Three-dimensional model of hellenic arc deformation and origin of the cretan uplift. Journal of Geophysical Research: Solid Earth, 114(6), 1–14, 10.1029/2008JB005599

Ganas, A., Serpelloni, E., Drakatos, G., Kolligri, M., Adamis, I., Tsimi, Ch. & Batsi, E. (2009). The Mw 6.4 SW Achaia (Western Greece) earthquake of 8 June 2008Q Seismological, Field, GPS observations, and Stress Modeling.Journal of Earthquake Engineering,13(8),1101-1124.

Ganas, A., Chousianitis, K., Batsi, E., Kolligri, M., Agalos, A., Chouliaras, G., & Makropoulos, K. (2013). The January 2010 Efpalion earthquakes (Gulf of Corinth, Central Greece): Earthquake interactions and blind normal faulting. Journal of Seismology, 17(2), 465–484, 10.1007/s10950-012-9331-6

Gardner, J., & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.

Gasperini, P., Lolli, B., Vannucci, G., & Boschi, E. (2012). A comparison of moment magnitude estimates for the European-Mediterranean and Italian regions. Geophysical Journal International, 190(3), 1733–1745, 10.1111/j.1365-246X.2012.05575.x

Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only (translated from Geiger’s 1910 German article). Bulletin of St. Louis University, 8(1), 56–71.

Geller, R. J., & Mueller, C. S. (1980). Four similar earthquakes in central California. Geophysical Research Letters, 7(10), 821–824.

Gkarlaouni, C., Lasocki, S., & Papadimitriou, E. (2015). Investigation of earthquake magnitude and interevent time distribution in Corinth Gulf and Mygdonia Basin with the use of stochastic tools. Proceedings of the 28th Panhellenic Statistics Conference (pp. 385–399).

Godano, C. (2015). A new expression for the earthquake interevent time distribution. Geophysical Journal International, 202(1), 219–223. https://doi.org/10.1093/gji/ggv135

Godano, M., Deschamps, A., Lambotte, S., Lyon-Caen, H., Bernard, P., & Pacchiani, F. (2014). Focal mechanisms of earthquake multiplets in the western part of the Corinth Rift (Greece): Influence of the velocity model and constraints on the geometry of the active faults. Geophysical Journal International, 197(3), 1660–1680, 10.1093/gji/ggu059

Godey, S., Bossu, R. & Guilbert, J. (2013). Improving the Mediterranean seismicity picture thanks to international collaborations. Physics and Chemistry of the Earth, 63, 3-11, 10.1016/j.pce.2013.04.012

Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J., & Brodsky, E. E. (2017). The 2016 Mw5 . 1 Fairview , Oklahoma earthquakes : Evidence for long-range poroelastic triggering at > 40 km from fluid disposal wells. Earth and Planetary Science Letters, 472, 50–61, 10.1016/j.epsl.2017.05.011

Goldstein, P., & Snoke, A. (2005). SAC availability for the IRIS Community. Incorporated Institutions for Seismology Data Management Center Electronic Newsletter (http://www.iris.edu).

Got, J.-L., Fréchet, J., & Klein, F. W. (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research, 99(B8), 15375–15386, 10.1029/94JB00577

Govers, R., & Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236(1–2), 505–523, 10.1016/j.epsl.2005.03.022

Gutenberg, B. (1945a). Amplitude of surface waves and magnitudes of shallow earhtquakes. Bulletinof the Seismological Society of America, 35, 57–69.

Gutenberg, B. (1945b). Magnitude determination for deep-focus earthquakes. Bulletin of the Seismological Society of America, 35, 117–130.

Gutenberg, B., & Richter, C. F. (1942). Earthquake magnitude, intensity, energy and acceleration. Bulletin of the Seismological Society of America, 32, 163–191.

Gutenberg, B., & Richter, C. F. (1945). Magnitude and energy of earthquakes. Annals of Geophysics, 53(1), 1–15, 10.1126/science.83.2147.183

Hainzl, S., & Fischer, T. (2002). Indications for a successively triggered rupture growth underlying the 2000 earthquake swarm in Vogtland/NW Bohemia. Journal of

Geophysical Research, 107(B12), 1–9, 10.1029/2002JB001865

Hainzl, S. (2003). Self-organization of earthquake swarms. Journal of Geodynamics, 35, 157–172.

Hainzl, S. (2004). Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophysical Journal International, 159(3), 1090–1096, 10.1111/j.1365-246X.2004.02463.x

Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling. Journal of Geophysical Research, 110(5), 1–10, 10.1029/2004JB003247

Hainzl, S., Scherbaum, F., & Beauval, C. (2006). Estimating background activity based on interevent-time distribution. Bulletin of the Seismological Society of America, 96(1), 313–320, 10.1785/0120050053

Hainzl, S., Fischer, T., & Dahm, T. (2012). Seismicity-based estimation of the driving fluid pressure in the case of swarm activity in Western Bohemia. Geophysical Journal International, 191(1), 271–281, 10.1111/j.1365-246X.2012.05610.x

Hainzl, S., Zakharova, O., & Marsan, D. (2013). Impact of aseismic transients on the estimation of aftershock productivity parameters. Bulletin of the Seismological Society of America, 103(3), 1723–1732, 10.1785/0120120247

Hajati, T., Langenbruch, C., & Shapiro, S. A. (2015). A statistical model for seismic hazard assessment of hydraulic-fracturing-induced seismicity, 601–606, 10.1002/2015GL066652.Received

Hanks, T. C., & Kanamori, H. (1979). A Moment Magnitude Scale. Journal of Geophysical Research, 84(B5), 2348–2350.

Hardebeck, J. L., & Shearer, P. M. (2002). A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264–2276, 10.1785/0120010200

Harris, R. A. (1998). Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. Journal of Geophysical Research, 103(B10), 24347–24358, 10.1029/98JB01576

Haslinger, F., Kissling, E., Ansorge, J., Hatzfeld, D., Papadimitriou, E., Karakostas, V., Markopoulos, K., Kahle, H.G., & Peter, Y. (1999). 3D crustal structure from local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece). Tectonophysics, 304(3), 201–218, 10.1016/S0040-1951(98)00298-4

Hatzfeld, D., Kementzetzidou, D., Karakostas, V., Ziazia, M., Nothard, S., Diagourtas, D., Deschamps, A., Karakaisis, G., Papadimitriou, P., Scordilis, M., Smith, P.,

Voulgaris, N., Kiratzi, S., Makropoulos, K., Bouin, M. P., & Bernard, P. (1996). The Galaxidi earthquake of 18 November 1992: A possible asperity within the normal fault system of the Gulf of Corinth (Greece). Bulletin of the Seismological Society of America, 86(6), 1987–1991.

Hatzfeld, D., Karakostas, V., Ziazia, M., Selvaggi, G., Leborgne, S., Berge, C., & Makropoulos, K. (1997). The Kozani-Grevena (Greece) Earthquake of 13 May 1995 Reviseted from a Detailed Seismological Study. Bulletin of Seismological Society of America, 87(2), 463–473.

Hatzfeld, D., Karakostas, V., Ziazia, M., Kassaras, I., Papadimitriou, E., Makropoulos, K., Voulgaris, N., & Papaioannou, C. (2000). Microseismicity and faulting geometry in the Gulf of Corinth (Greece). Geophysical Journal International, 141(2), 438–456.

Hatzidimitriou, P., Papazachos, C., Kiratzi, A., & Theodulidis, N. (1993). Estimation of attenuation structure and local earthquake magnitude based on acceleration records in Greece. Tectonophysics, 217(3–4), 243–253, 10.1016/0040-1951(93)90008-8

Hauksson, E., & Shearer, P. (2005). Southern California hypocenter relocation with waveform cross-correlation, part 1: Results using the double-difference method. Bulletin of the Seismological Society of America, 95(3), 896–903, 10.1785/0120040167

Hauksson, E., Yang, W., & Shearer, P. M. (2012). Waveform relocated earthquake catalog for Southern California (1981 to June 2011). Bulletin of the Seismological Society of America, 102(5), 2239–2244, 10.1785/0120120010

Hauksson, E., Stock, J., Bilham, R., Boese, M., Chen, X., Fielding, E. J., Galetzka, J., Hudnut, K. W., Hutton, K., Jones, L. M., Kanamori, H., Shearer, P. M., Steidl, J., Treiman, J., Wei, S., & Yang, W. (2013). Report on the August 2012 Brawley Earthquake Swarm in Imperial Valley, Southern California. Seismological Research

Letters, 84(2), 177–189, 10.1785/0220120169

Hauksson, E., Andrews, J., Plesch, A., Shaw, J. H., & Shelly, D. R. (2016). The 2015 Fillmore Earthquake Swarm and Possible Crustal Deformation Mechanisms near the Bottom of the Eastern Ventura Basin , California. Seismological Research Letters, 87(4), 10.1785/0220160020

Havskov, J., & Ottemoller, L. (2010). Routine data processing in earthquake seismology: With sample data, exercises and software. Routine Data Processing in Earthquake Seismology: With Sample Data, Exercises and Software, 10.1007/978-90-481-8697-6

Hill, D. P. (1977). A model for earthquake swarms. Journal of Geophysical Research, 82(8), 1347, 10.1029/JB082i008p01347

Holtkamp, S. G., & Brudzinski, M. R. (2011). Earthquake swarms in circum-Pacific subduction zones. Earth and Planetary Science Letters, 305(1–2), 215–225, 10.1016/j.epsl.2011.03.004

Holtkamp, S. G., Pritchard, M. E., & Lohman, R. B. (2011). Earthquake swarms in South America. Geophysical Journal International, 187(1), 128–146, 10.1111/j.1365-246X.2011.05137.x

Hutton, L. K., & Boore, D. M. (1987). The Ml Scale in Southern California. Bulletin Of The Seismological Society Of America, 77(6), 2074–2094.

Hutton, K., Woessner, J., & Hauksson, E. (2010). Earthquake monitoring in southern California for seventy-seven years (1932-2008). Bulletin of the Seismological Society of America, 100(2), 423–446, 10.1785/0120090130

Ibs-von Seht, M., Plenefish, T., & Klinge, K. (2008). Earthquake swarms in continental rifts- A comparison of selected cases in America,Africa and Europe. Tectonophysics, 452, 66–77.

Igarashi, T., Matsuzawa, T. & Hasegawa, A. (2003). Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone. Journal of Geophysical Research, 108(B5), 2249, 10.1029/2002JB001920

Ito, A. (1985). High resolution relative hypocenters of similar earthquakes by cross-spectral analysis method. Journal of Physics of the Earth, 33(4), 279–294, 10.4294/jpe1952.33.279

Ito, T., & Zoback, M. D. (2000). Fracture permeability and in situ stress to 7 km depth in the KTB Scientific Drillhole. Geophysical Research. Letters, 27(7), 1045–1048.

Jackson, J. A., Gagnepain, J., Houseman, G., King, G. C. P., Papadimitriou, P., Soufleris, C., & Virieux, J. (1982). Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981. Earth and Planetary Science Letters, 57(2), 377–397, 10.1016/0012-821X(82)90158-3

Jackson, J., & McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International, 93(1), 45–73, 10.1111/j.1365-246X.1988.tb01387.x

Jacobs, K. M., Smith, E. G. C., Savage, M. K., & Zhuang, J. (2013). Cumulative rate analysis (CURATE): A clustering algorithm for swarm dominated catalogs. Journal of Geophysical Research, 118(2), 553–569, 10.1029/2012JB009222

Jenatton, L., Guiguet, R., Thouvenot, F., & Daix, N. (2007). The 16,000-event 2003-2004 earthquake swarm in Ubaye (French Alps). Journal of Geophysical Research, 112(11), 1–13, 10.1029/2006JB004878

Jenkins, G. M., & Watts, D. G. (1968). Spectral Analysis and Its Applications. San Francisco: Holden-Day.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate Distributions.

Kagan, Y. Y. (1991). 3D rotation of double - couple earthquake sources. Geophysical Journal International, 106(3), 709–716, 10.1111/j.1365-246X.1991.tb06343.x

Kagan, Y. Y., & Jackson, D. D. (1991). Long-Term Earthquake Clustering. Geophysical Journal International, 104(1), 117–134, 10.1111/j.1365-246X.1991.tb02498.x

Kanamori, H. (1983). Magnitude scale and quantification of earthquakes. Tectonophysics, 93(3–4), 185–199, 10.1016/0040-1951(83)90273-1

Kanu, C. O., Snieder, R., & O’Connell, D. (2013). Estimation of velocity change using repeating earthquakes with different locations and focal mechanisms. Journal of Geophysical Research, 118(6), 2905–2914, 10.1002/jgrb.50206

Kapetanidis, V., Deschamps, A., Papadimitriou, P., Matrullo, E., Karakonstantis, A., Bozionelos, G., Kaviris, G., Serpetsidaki, A., Lyon-Caen, H., Voulgaris, N., Bernard, P., Sokos, E. & Makropoulos, K. (2015). The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophysical Journal International, 202(3), 2044–2073, 10.1093/gji/ggv249

Karakostas, V., Karagianni, E., & Paradisopoulou, P. (2012). Space-time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth Gulf. Natural Hazards, 63(2), 1181–1202.

Karakostas, V., Papadimitriou, E., & Gospodinov, D. (2014). Modelling the 2013 North Aegean (Greece) seismic sequence: Geometrical and frictional constraints, and aftershock probabilities. Geophysical Journal International, 197(1), 525–541, 10.1093/gji/ggt523

Karakostas, V., Mirek, K., Mesimeri, M., Papadimitriou, E., & Mirek, J. (2017). The Aftershock Sequence of the 2008 Achaia, Greece, Earthquake: Joint Analysis of Seismicity Relocation and Persistent Scatterers Interferometry. Pure and Applied Geophysics, 174(1), 151–176, 10.1007/s00024-016-1368-y

Kassaras, I., Kapetanidis, V., Karakonstantis, A., Kouskouna, V., Ganas, A., Chouliaras, G., Drakatos, G., Moshou, A., Mitropoulou, V., Argyrakis, P., Lekkas, E., &

Makropoulos, K. (2014b). Constraints on the dynamics and spatio-temporal evolution of the 2011 Oichalia seismic swarm (SW Peloponnesus, Greece). Tectonophysics, 614, 100–127, 10.1016/j.tecto.2013.12.012

Kassaras, I., Kapetanidis, V., Karakonstantis, A., Kaviris, G., Papadimitriou, P., Voulgaris, N., Markopoulos, K., Popandopoulos, G., & Moshou, A. (2014a). The April-June 2007 Trichonis Lake earthquake swarm (W. Greece): New implications toward the causative fault zone. Journal of Geodynamics, 73, 60–80, 10.1016/j.jog.2013.09.004

Kaviris, G. (2003). Study of seismic source properties of the eastern Gulf of Corinth. National and Kapodistrian University of Athens.

Kaviris, G., Papadimitriou, P. & Makropoulos K. (2007). Magnitudes scales in Central Greece. Bulletin of the Geological Society of Greece, XXXX, 1114-1124.

Kaviris, G., Kapetanidis, V., Kravvariti, Ph., Karakonstantis, A., Bozionelos, G., Papadimitriou, P., Voulgaris, N. & Makropoulos, K. (2014). Anisotropy study in Villia (E. Corinth Gulf, Greece). Full Paper, 2nd ECEES, Istanbul, Turkey.

Kaviris, G., Spingos, I., Kapetanidis, V., Papadimitriou, P., Voulgaris, N., & Makropoulos, K. (2017). Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the Western Gulf of Corinth (Greece) during 2013. Physics of the Earth and Planetary Interiors, 269, 10.1016/j.pepi.2017.06.006

Keilis-Borok, V. I. (1959). On the estimation of the displacement in an earthquake source and of source dimensions. Annals of Geophysics., 12, 205–214.

Kikuchi, M., & Kanamori, H. (1991). Inversion of Complex Body Waves-III. Bulletin of the Selsmologmal Socmty of America, 81(6), 2335–2350.

King, G. C. P., Ouyang, Z. X., Papadimitriou, P., Deschamps, A., Gagnepain, J., Houseman, G., Jackson, J.,A, Soufleris, C., & Virieux, J. (1985). The evolution of the Gulf of Corinth (Greece): an aftershock study of the 1981 earthquakes. Geophysical Journal of the Royal Astronomy Society, 80, 677–693.

Kiratzi, A. A., & Papazachos, B. C. (1984). Magnitude scales for earthquakes in Greece. Bulletin of the Seismoligal Society of America, 74, 969–985.

Kiratzi, A.A., Wagner, G.S. & Langston, C.A. (1991). Source parameters of some large earthquakes in Northern Aegean determined by body waveform inversion. Pure and Applied Geophysics, 135(4), 515-527.

Kiratzi, A., Sokos, E., Ganas, A., Tselentis, A., Benetatos, C., Roumelioti, Z., Serpetsidaki, A., Andriopoulos, G., Galanis, O., & Petrou, P. (2008). The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece. Tectonophysics, 452(1–4), 51–65, 10.1016/j.tecto.2008.02.009

Kissling, E. (1988). Geotomography with local earthquake data. Reviews of Geophysics, 26(4), 659–698.

Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research, 99(B10), 19,635-19,646.

Klein, F. W. (2002). User’s guide to HYPOINVERSE-2000, a Fortran program to solve earthquakes locations and magnitudes. U.S. Geological Survey Open File Report 02-171,version 1.0.

Kondopoulou, D. (2000). Palaeomagnetism in Greece: Cenozoic and Mesozoic components and their geodynamic implications. Tectonophysics, 326(1–2), 131–151, 10.1016/S0040-1951(00)00150-5

Koukouzas, N., Tasianas, A., Gemeni, V., Alexopoulos, D., & Vasilatos, C. (2015). Geological modelling for investigating CO2 emissions in Florina basin, Greece. Open Geosciences, 7(1), 465–489, 10.1515/geo-2015-0039

Kourouklas, C., Papadimitriou, E., & Karakostas, V. (2014). Στατιστικές Κατανομές των χρόνων επανάληψης των σεισμών στην περιοχή των Κεντρικών Ιονίων Νήσων. Πρακτικά 27ου Πανελληνίου Συνεδρίου Στατιστικής (pp. 117–129).

Kourouklas, C., Papadimitriou, E., Tsaklidis, G., & Karakostas, V. (2016a). Statistics of earthquake recurrence time in North Aegean trough. Bulletin of the Geological Society of Greece, Vol. L, pp. 1349–1358.

Kourouklas, C., Papadimitriou, E., Karakostas, V., & Tsaklidis, G. (2016b). Long range correlations and probability distribution of the earthquake interevent time in Greece. Proceedings of the 29th Panhellenic Statistics Conference (pp. 307–321).

Kümpel, H. ‐J. (1991). Poroelasticity: parameters reviewed. Geophysical Journal International, 105(3), 783–799, 10.1111/j.1365-246X.1991.tb00813.x

Kurz, J. H., Jahr, T., & Jentzsch, G. (2004). Earthquake swarm examples and a look at the generation mechanism of the Vogtland/Western Bohemia earthquake swarms. Physics of the Earth and Planetary Interiors, 142(1–2), 75–88, 10.1016/j.pepi.2003.12.007

Kyriakopoulos, C., Chini, M., Bignami, C., Stramondo, S., Ganas, A., Kolligri, M., & Moshou, A. (2013). Monthly migration of a tectonic seismic swarm detected by DInSAR: Southwest Peloponnese, Greece. Geophysical Journal International, 194(3), 1302–1309, 10.1093/gji/ggt196

Läderach, C., Korger, E. I. M., Schlindwein, V., Müller, C., & Eckstaller, A. (2012). Characteristics of tectonomagmatic earthquake swarms at the Southwest Indian Ridge between 16°E and 25°E. Geophysical Journal International, 190(1), 429–441, 10.1111/j.1365-246X.2012.05480.x

Lambotte, S., Lyon-Caen, H., Bernard, P., Deschamps, A., Patau, G., Nercessian, A., Pacchiani, F., Bourouis, S., Drilleau, M., & Adamova, P. (2014). Reassessment of the rifting process in the Western Corinth Rift from relocated seismicity. Geophysical Journal International, 197(3), 1822–1844, 10.1093/gji/ggu096

Langenbruch, C., Dinske, C., & Shapiro, S. A. (2011). Inter event times of fluid induced earthquakes suggest their Poisson nature. Geophysical Research Letters, 38(21), 1–6, 10.1029/2011GL049474

Latorre, D., Virieux, J., Monfret, T., Monteiller, V., Vanorio, T., Got, J. L., & Lyon-Caen, H. (2004). A new seismic tomography of Aigion area (Gulf of Corinth, Greece) from the 1991 data set. Geophysical Journal International, 159(3), 1013–1031, 10.1111/j.1365-246X.2004.02412.x

Lecomte, E., Le Pourhiet, L., & Lacombe, O. (2012). Mechanical basis for slip along low-angle normal faults. Geophysical Research Letters, 39(3), 1–6, 10.1029/2011GL050756

Lees, J. M. (1998). Multiplet analysis at Coso geothermal. Bulletin of the Seismological Society of America, 88(5), 1127–1143.

Leptokaropoulos, K. M., Karakostas, V. G., Papadimitriou, E. E., Adamaki, A. K., Tan, O., & Inan, S. (2013). A homogeneous earthquake catalog for western Turkey and magnitude of completeness determination. Bulletin of the Seismological Society of America, 103(5), 2739–2751, 10.1785/0120120174

Lindenfeld, M., Rümpker, G., Link, K., Koehn, D., & Batte, A. (2012). Fluid-triggered earthquake swarms in the Rwenzori region, East African Rift-Evidence for rift initiation. Tectonophysics, 566–567, 95–104, 10.1016/j.tecto.2012.07.010

Llenos, A. L., McGuire, J. J., & Ogata, Y. (2009). Modeling seismic swarms triggered by aseismic transients. Earth and Planetary Science Letters, 281(1–2), 59–69, 10.1016/j.epsl.2009.02.011

Lohman, R. B., & McGuire, J. J. (2007). Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research: Solid Earth, 112(4), 1–10, 10.1029/2006JB004596

Lombardi, A. M., Marzocchi, W., & Selva, J. (2006). Exploring the evolution of a volcanic seismic swarm: The case of the 2000 Izu Islands swarm. Geophysical Research Letters, 33(7), 2–5, 10.1029/2005GL025157

Lombardi, M., Cocco, M., & Marzocchi, W. (2010). On the Increase of Background Seismicity Rate during the 1997 – 1998 Umbria-Marche , Central Italy , Sequence : Apparent Variation or Fluid-Driven Triggering ?, 100(3), 1138–1152, 10.1785/0120090077

Louvari, E., Kiratzi, A. A., & Papazachos, B. C. (1999). The Cephalonia Transform Fault and its extension to western Lefkada Island (Greece). Tectonophysics, 308(1–2), 223–236, 10.1016/S0040-1951(99)00078-5

Lyon-Caen, H., Papadimitriou, P., Deschamps, A., Bernard, P., Makropoulos, K., Pacchiani, F., & Patau, G. (2004). First results of the CRLN seismic network in the western Corinth Rift: Evidence for old-fault reactivation. Geoscience, 336(4–5), 343–351.

Margaris, B. N., & Papazachos, C. B. (1999). Moment-magnitude relations based on strong-motion records in Greece. Bulletin of the Seismological Society of America, 89(2), 442–455.

Makropoulos, K., Kaviris, G. & Kouskouna, V. (2012). An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Natural Hazards and Earth System Sciences, 12(5), 1425–1430. http://dx.doi.org/10.5194/nhess-12-1425-2012.

Marsan, D., Prono, E., & Helmstetter, A. (2013). Monitoring Aseismic Forcing in Fault Zones Using Earthquake Time Series, 103(1), 169–179, 10.1785/0120110304

Matsu’ura, R. S., & Karakama, I. (2005). A point-process analysis of the Matsushiro earthquake swarm sequence: The effect of water on earthquake occurrence. Pure and Applied Geophysics, 162(6–7), 1319–1345, 10.1007/s00024-005-2672-0

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R.,

Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Relinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M. N., Veis, G. (2000). Global Positioning System constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105(B3), 5,695-5,719.

McKenzie, D. P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomy Society, 30, 109–185.

McKenzie, D. (1978). Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal of the Royal Astronomy Society, 55, 217–254.

Melis, N. S., & Tselentis, G. A. (1998). 3-D P-wave velocity structure in western Greece determined from tomography using earthquake data recorded at the University of Patras Seismic Network (PATNET). Pure and Applied Geophysics, 152(2), 329–348, 10.1007/s000240050157

Mesimeri, M., Papadimitriou, E., Karakostas, V., & Tsaklidis, G. (2013). Earthquake clusters in NW Peloponnese. In Bulletin of the Geological Society of Greece, vol. XLVII.

Mesimeri, M., Karakostas, V., & Papadimitriou, E. (2014). Σχέση κύρτωσης και λοξότητας για τον χαρακτηρισμό των σεισμικών εξάρσεων. Πρακτικά 27ου Πανελληνίου Συνεδρίου Στατιστικής (pp. 142–154).

Mesimeri, M., Karakostas, V., Papadimitriou, E., & Tsaklidis, G. (2015). Χωροχρονικές ιδιότητες σεισμικότητας στο δυτικό Κορινθιακο Κόλπο. Πρακτικά 28ου Πανελληνίου Συνεδρίου Στατιστικής (pp. 222–235).

Mesimeri, M., Karakostas, V., Papadimitriou, E., Schaff, D., & Tsaklidis, G. (2016). Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece). Journal of Seismology, 20(2), 595–614, 10.1007/s10950-015-9546-4

Mesimeri, M., & Karakostas, V. (2016). Earthquake Interevent times distribution: Application to Corinth Gulf. Proceedings of the 29th Panhellenic Statistics Conference (pp. 360–372).

Mesimeri, M., Karakostas, V., Papadimitriou, E., & Tsaklidis, G. (2016). Characteristics of seismic excitations in corinth gulf ( Greece ), L.

Mesimeri, M., Karakostas, V., Papadimitriou, E., Tsaklidis, G., & Tsapanos, T. (2017). Detailed microseismicity study in the area of Florina ( Greece ): Evidence for fluid driven seismicity. Tectonophysics, 694, 424–435, 10.1016/j.tecto.2016.11.027

Mesimeri, M., Karakostas, V., Papadimitriou, E., Tsaklidis, G., & Jacobs, K. (2018). Relocation of recent seismicity and seismotectonic properties in the Gulf of Corinth (Greece). Geophysical Journal International, 212(2), 1123–1142, 10.1093/gji/ggx450

Mesimeri, M. & Karakostas V. Repeating earthquakes in western Corinth Gulf (Greece): Implications for aseismic slip near locked faults (under review in Geophysical Journal International).

Mignan, A. Werner, M. J., Wiemer, S., Chen, C. C., & Wu, Y. M. (2011). Bayesian estimation of the spatially varying completeness magitude of earthquake catalogs. Bulletin of the Seismological Society of America, 101,1371-1385, doi: 10.1785/0120100223

Mignan, A., & Woessner, J. (2012). Estimating the magnitude of completeness in earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis, 1–32, 10.5078/corssa-00180805.

Mignan, A. & Chouliaras, G. (2014). Fifty years of seismic network performance in Greece (1964-2013): Spaiotemporal evolution of the completeness magnitude. Seismological Research Letters, 85(3), 657-667, doi: 10.1785/0220130209

Mogi, K. (1963). 38. Some discussions on Afterschocks, Foreshocks and Earthquake Swarms- the Fracture of a Semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena. Bulletin of the Earthquake Research Institute, 41, 615–658.

Molchan, G. (2005). Interevent time distribution in seismicity: A theoretical approach. Pure and Applied Geophysics, 162(6–7), 1135–1150, 10.1007/s00024-004-2664-5

Moriya, H., Niitsuma, H., & Baria, R. (2003). Multiplet-Clustering Analysis Reveals Structural Details within the Seismic. Bulletin of the Seismological Society of America, 93(4), 1606–1620, 10.1785/0120020072

Nadeau, R. M., & Johnson, L. R. (1998). Seismological studies at Parkfield VI: moment release rates and estimates of source parameters for small repeating earthquakes. Bulletin of the Seismological Society of America, 88(3), 790–814.

Nadeau, R. M., & McEvilly, T. V. (1999). Fault Slip Rates at Depth from Recurrence Intervals of Repeating Microearthquakes. Science, 285(5428), 718–721, 10.1126/science.285.5428.718

Novotný, O., Janskü, J., Plicka, V., & Lyon-Caen, H. (2008). A layered model of the upper crust in the Aigion region of Greece, inferred from arrival times of the 2001 earthquake sequence. Studia Geophysica et Geodaetica, 52(1), 123–131, 10.1007/s11200-008-0009-z

Ogata, Y. (1988). Statistical Models for Earthquake Occurences and Residual Analysis for Point Processes. Journal of the American Statistical Association, 83(401), 9–27.

Ogata, Y. (1992). Detection of precursory relative quiescence before great earthquakes through a statistical model. Journal of Geophysical Research, 97(B13), 19845, 10.1029/92JB00708

Ogata, Y., & Katsura, K. (1993). Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophysical Journal International, 113, 727–738.

Orlecka-Sikora, B. (2010). The role of static stress transfer in mining induced seismic events occurrence, a case study of the Rudna mine in the Legnica-Glogow Copper District in Poland. Geophysical Journal International, 182(2), 1087–1095, 10.1111/j.1365-246X.2010.04672.x

Pacchiani, F., & Lyon-Caen, H. (2010). Geometry and spatio-temporal evolution of the 2001 Agios Ioanis earthquake swarm (Corinth Rift, Greece). Geophysical Journal International, 180(1), 59–72, 10.1111/j.1365-246X.2009.04409.x

Paige, C., & Saunders, M. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. MAth. Softw., 8(1), 43–71.

Panagiotopoulos, D. G., & Papazachos, B. C. (1985). Travel times of Pn -waves in the Aegean and surrounding area. Geophysical Journal of the Royal Astronomical Society, 80, 165–176.

Papadimitriou, E., Gospodinov, D., Karakostas, V., & Astiopoulos, A. (2013). Evolution of the vigorous 2006 swarm in Zakynthos (Greece) and probabilities for strong aftershocks occurrence. Journal of Seismology, 17(2), 735–752, 10.1007/s10950-012-9350-3

Papazachos, B. C., & Delibasis, N. D. (1969). Tectonic stress field and seismic faulting in the area of Greece. Tectonophysics, 7(3), 231–255, 10.1016/0040-1951(69)90069-9

Papazachos, B. C., & Comninakis, P. E. (1971). Geophysical and tectonic Features of the Aegean arc. Journal of Geophysical Research, 76(35), 8517–8533, 10.1029/JB076i035p08517

Papazachos, B. C., Comninakis, P. E., Papadimitriou, E. E., & Scordilis, E. M. (1984). Properties of the February-March 1981 seismic sequence in the Alkyonides gulf in central Greece. Annales Geophysicae, 2(5), 537–544.

Papazachos, C. B., Kiratzi, A. A., & Papazachos, B. C. (1992). Rates of active crustal deformation in the Aegean and the surrounding area. Journal of Geodynamics, 16(3), 147–179, 10.1016/0264-3707(92)90024-M

Papazachos, B. C., Kiratzi, a. a., & Karacostas, B. G. (1997). Toward a homogeneous moment-magnitude determination for earthquakes in Greece and the surrounding area. Bulletin of the Seismological Society of America, 87(2), 474–483.

Papazachos, B. C., Papadimitriou, E. E., Kiratzi, A. A., Papazachos, C. B., & Louvari, E. K. (1998). Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Bollotino Geofisica Teorica Applicata, 39(3), 199–218.

Papazachos, B. C., Karakostas, V. G., Kiratzi, A. A., Margaris, B. N., Papazachos, C. B., & Scordilis, E. M. (2002). Uncertainties in the estimation of earthquake magnitudes in Greece. Journal of Seismology, 6(4), 557–570, 10.1023/A:1021214126748

Papazachos, B. C., & Papazachou. (2003). The earthquakes of Greece. Thessaloniki: Ziti publications.

Parotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophysical Research Letters, 30(20), 10–13, 10.1029/2003GL018110

Parotidis, M., Shapiro, S. A., & Rothert, E. (2004). Back front of seismicity induced after termination of borehole fluid injection. Geophysical Research Letters, 31(2), 1–5, 10.1029/2003GL018987

Parotidis, M., Shapiro, S. A., & Rothert, E. (2005). Evidence for triggering of the Vogtland swarms 2000 by pore pressure diffusion. Journal of Geophysical Research, 110(5), 1–12, 10.1029/2004JB003267

Parsons, T., Stein, R. S., Simpson, R. W., & Reasenberg, P. A. (1999). Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults. Journal of Geophysical Research, 104(B9), 20183, 10.1029/1999JB900056

Patane, D., Chiarabba, C., Cocina, O, De Gori, P., Moretti, M. & Boschi, E. (2002). Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dyke intrusion. Geophysical Research Letters, 29(10), 3–6, 10.1029/2001GL014391

Pavlides, S. B., & Mountrakis, D. M. (1987). Extensional tectonics of northwestern Macedonia, Greece, since the late Miocene. Journal of Structural Geology, 9(4), 385–392, 10.1016/0191-8141(87)90115-5

Phillips, W. S. (2000). Precise microearthquake locations and fluid flow in the geothermal reservoir at Soultz-sous-Forets, France. Bulletin of the Seismological Society of America, 90(1), 212–228, 10.1785/0119990047

Potanina, M. G., Smirnov, V. B., & Bernard, P. (2011). Patterns of seismic swarm activity in the Corinth Rift in 2000-2005. Izvestiya - Physics of the Solid Earth, 47(7), 610–622.

Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research, 89(B7), 5719, 10.1029/JB089iB07p05719

Reasenberg, P. (1985). Second-Order Moment of Central California Seismicity, 1969-1982. Journal of Geophysical Research, 90(B7), 5479–5495.

Reasenberg, P., & Oppenheimer, D. H. (1985). FPFIT, FPPLOT and FPPAGE; Fortran computer programs for calculating and displaying earthquake fault-plane solutions. U.S. Geological Survey Open File Report.

Rice, J. R., & Cleary, M. P. (1976). Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media With Compressible Constituents. Reviews of Geophysics and Space Physics, 14(2), 227–241.

Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of Seismological Society of America, 25, 1–32.

Rietbrock, A., Tiberi, C., Scherbaum, F., & Lyon-caen, H. (1996). Seismic slip on a low angle normal fault in the Gulf of Corinth: Evidence from high-resolution cluster analysis of microearthquakes. Geophysical Research Letters, 23(14), 1817–1820.

Rigo, A., Lyon-Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., … Kassaras, I. (1996). A microseismic study in the western part of the Gulf of Corinth (Greece): implications for large-scale normal faulting mechanisms. Geophysical Journal International, 126, 663–688.

Ristau, J. (2009). Comparison of magnitude estimates for New Zealand earthquakes: Moment magnitude, local magnitude, and teleseismic body-wave magnitude. Bulletin of the Seismological Society of America, 99(3), 1841–1852, 10.1785/0120080237

Robinson, R., & McGinty, P. J. (2000). The enigma of the Arthur’s Pass, New Zealand, earthquake: 2. The aftershock distribution and its relation to regional and induced stress fields. Journal of Geophysical Research, 105(B7), 16139, 10.1029/2000JB900012

Roland, E., & McGuire, J. J. (2009). Earthquake swarms on transform faults. Geophysical Journal International, 178(3), 1677–1690.

Roumelioti, Z., Kiratzi, A., & Benetatos, C. (2010). The instability of the MW and ML comparison for earthquakes in Greece for the period 1969 to 2007. Journal of Seismology, 14(2), 309–337, 10.1007/s10950-009-9167-x

Rubin, A. A. M., Gillard, D., & Got, J. J. (1999). Streaks of microearthquakes along creeping faults. Nature, 400, 635–641, 10.1038/23196

Rubinstein, J. L., Ellsworth, W. L., Chen, K. H., & Uchida, N. (2012). Fixed recurrence and slip models better predict earthquake behavior than the time-and slip-predictable models: 1. Repeating earthquakes. Journal of Geophysical Research: Solid Earth, 117(2), 1–13, 10.1029/2011JB008724

Rydelek, P. A., & Sacks, I. S. (1989). Testing the completeness of earthquake catalogs and the hypothesis of self-similarity. Nature, 337, 251–253.

Sachpazi, M., Clement, C., Laigle, M., Hirn, A., & Roussos, N. (2003). Rift structure, evolution, and earthquakes in the Gulf of Corinth, from reflection seismic images. Earth and Planetary Science Letters, 216(3), 243–257, 10.1016/S0012-821X(03)00503-X

Saichev, A., & Sornette, D. (2007). Theory of earthquake recurrence times. Journal of Geophysical Research: Solid Earth, 112(4), 1–26, 10.1029/2006JB004536

Sammis, C. G., & Rice, J. R. (2001). Repeating earthquakes as low-stress-drop events at a border etween locked and creeping fault patches. Bulletin of the Seismological Society of America, 91(3), 532–537, 10.1785/0120000075

Sattin, F., Agostini, M., Cavazzana, R., Serianni, G., Scarin, P., & Vianello, N. (2009). About the parabolic relation existing between the skewness and the kurtosis in time series of experimental data. Physica Scripta, 79.

Schaff, D. P., Beroza, G. C., & Shaw, B. E. (1998). Postseismic response of repeating aftershocks. Geophysical Research Letters, 25(24), 4549, 10.1029/1998GL900192

Schaff, D. P., Bokelmann, G. H. R., Beroza, G. C., Waldhauser, F., & Ellsworth, W. L. (2002). High-resolution image of Calaveras Fault seismicity. Journal of Geophysical Research, 107(B9), 1–16, 10.1029/2001JB000633

Schaff, D. P., & Beroza, G. C. (2004). Coseismic and postseismic velocity changes measured by repeating earthquakes. Journal of Geophysical Research, 109(10), 10.1029/2004JB003011

Schaff, D. P., Bokelmann, G. H. R., Ellsworth, W. L., Zanzerkia, E., Waldhauser, F., & Beroza, G. C. (2004). Optimizing correlation techniques for improved earthquake location. Bulletin of the Seismological Society of America, 94(2), 705–721.

Schaff, D. P., & Richards, P. G. (2004). Repeating Seismic Events in China. Science, 303, 1176–1179.

Schaff, D. P., & Waldhauser, F. (2005). Waveform cross-correlation-based differential travel-time measurements at the northern California seismic network. Bulletin of the Seismological Society of America, 95(6), 2446–2461.

Schaff, D. P., & Richards, P. G. (2011). On finding and using repeating seismic events in and near China. Journal of Geophysical Research, 116(3), 1–20, 10.1029/2010JB007895

Scherbaum, F., & Wendler, J. (1986). Cross spectral analysis of Swabian Jura (SW Germany) three-component microearthquake recordings. Journal of Geophysics, 60, 157–166.

Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting (2nd Edition). Cambridge University Press.

Scordilis, E.M. (1985) Μικροσεισμική μελέτη της Σερβομακεδονικής ζώνης και των γύρω περιοχών. Aristotle University of Thessaloniki.

Scordilis, E. M. (2006). Empirical global relations converting MS and mbto moment magnitude. Journal of Seismology, 10(2), 225–236, 10.1007/s10950-006-9012-4

Scordilis, E. M., Karakaisis, G. F., Karacostas, B. G., Panagiotopoulos, D. G., Comninakis, P. E., & B.C., P. (1985). Evidence for Transform Faulting in the Ionian Sea: The Cephalonia Island Earthquake Sequence of 1983. Pure and Applied Geophysics, 123, 388–397.

Scordilis, E. M., Kementzetzidou, D., & Papazachos, B. C. (2016). Local magnitude calibration of the Hellenic Unified Seismic Network. Journal of Seismology, 20(1), 319–332, 10.1007/s10950-015-9529-5

Segou, M., Ellsworth, W. L., & Parsons, T. (2014). Stress Transfer by the 2008 Mw 6.4 Achaia Earthquake to the Western Corinth Gulf and Its Relation with the 2010 Efpalio Sequence, Central Greece. Bulletin of the Seismological Society of America, 104(4), 1723–1734, 10.1785/0120130142

Serpetsidaki, A., Elias, P., Ilieva, M., Bernard, P., Briole, P., Deschamps, A., … Tselentis, G. A. (2014). New constraints from seismology and geodesy on the Mw = 6.4 2008 Movri (Greece) earthquake: Evidence for a growing strike-slip fault system. Geophysical Journal International, 198(3), 1373–1386, 10.1093/gji/ggu212

Shapiro, S. A. (2015). Fluid-Induced Seismicity. Cambridge University Press.

Shapiro, S. A., Huenges, E., & Borm, G. (1997). Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International, 131(2), F15–F18, 10.1111/j.1365-246X.1997.tb01215.x

Shapiro, S. A., Rothert, E., Rath, V., & Rindschwentner, J. (2002). Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics, 67(1), 212, 10.1190/1.1451597

Shapiro, S. A., Patzig, R., Rothert, E., & Rindschwentner, J. (2003). Triggering of Seismicity by Pore-pressure Perturbations: Permeability-related Signatures of the Phenomenon. Pure and Applied Geophysics, 160(5), 1051–1066, 10.1007/PL00012560

Shapiro, S. a., Audigane, P., & Royer, J. J. (1999). Large-scale in situ permeability tensor of rocks from induced microseismicity. Geophysical Journal International, 137(1), 207–213, 10.1046/j.1365-246X.1999.00781.x

Shearer, P., Hauksson, E., & Lin, G. (2005). Southern California hypocenter relocation with waveform cross-correlation, part 2: Results using source-specific station terms and cluster analysis. Bulletin of the Seismological Society of America, 95(3), 904–915, 10.1785/0120040168

Shearer, P. M. (1997). Improving local earthquake locations using the L1 norm and waveform cross correlation: Application to the Whittier aftershock sequence Narrows California, aftershock sequence. Journal of Geophysical Research, 102(134), 8269–8283.

Shelly, D. R., Ellsworth, W. L., & Hill, D. P. (2016). Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California, earthquake swarm. Journal of Geophysical Research, 121, 1776–1795, 10.1002/2015JB012719.Received

Shelly, D. R., Hill, D. P., Massin, F., Farrell, J., Smith, R. B., & Taira, T. (2013a). A fluid-driven earthquake swarm on the margin of the Yellowstone caldera. Journal of Geophysical Research E: Planets, 118(9), 4872–4886, 10.1002/jgrb.50362

Shelly, D. R., Moran, S. C., & Thelen, W. A. (2013b). Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophysical Research Letters, 40(8), 1506–1512, 10.1002/grl.50354

Shi, Y.-L., & Bolt, A. (1982). The standard error of the magnitude-frequency b value. Bulletin of Seismological Society of America, 72(5), 1677–1687.

Smirnov, V. B., Ponomarev, A. V., Benard, P., & Patonin, A. V. (2010). Regularities in transient modes in the seismic process according to the laboratory and natural modeling. Izvestiya, Physics of the Solid Earth, 46(2), 104–135, 10.1134/S1069351310020023

Snoke, A. (2003). FOCMEC: FOCal MEChanism determinations. In W. H. K. Lee, H. Kanamori, P. C. Jennings, & C. Kisslinger (Eds.), International handbook of earthquake and engineering seismology. San Diego: Academic Press.

Sokos, E. N., & Zahradnik, J. (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers and Geosciences, 34(8), 967–977, 10.1016/j.cageo.2007.07.005

Sokos, E. N., & Zahradnik, J. (2013). Evaluating Centroid-Moment-Tensor Uncertainty in the New Version of ISOLA Software. Seismological Research Letters, 84(4), 656–665, 10.1785/0220130002

Sokos, E., Zahradník, J., Kiratzi, A., Janský, J., Gallovič, F., Novotny, O., Kostelecky, J., Serpetsidaki, A., Tselentis, G. A. (2012). The January 2010 Efpalio earthquake sequence in the western Corinth Gulf (Greece). Tectonophysics, 530–531(January 2010), 299–309, 10.1016/j.tecto.2012.01.005

Sorel, D. (2000). A Pleistocene and still-active detachment fault and the origin of the Corinth-Patras rift, Greece. Geology, 28(1), 83–86.

Stucchi, M., Rovida, A., Gomez Capera, A.A., Alexandre, P., Camelbeeck, T., Demircioglu, M.B., Gasperini, P., Kouskouna, V., Musson, R.M.W., Radulian, M., Sesetyan, K., Vilanova, S., Baumont, D., Bungum, H., Fäh, D., Lenhardt, W., Makropoulos, K., Martinez Solares, J.M., Scotti, O.,Zˇivcic , M., Albini, P., Batllo, J., Papaioannou, C., Tatevossian, R., Locati, M., Meletti, C., Viganò, D. & Giardini, D. (2013). The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. Journal of Seismology, 17(2), 523–544. http://dx.doi.org/10.1007/s10950-012-9335-2.

van Stiphout, T., Zhuang, J., & Marsan, D. (2012). Seismicity declustering. Community Online Resource for Statistical Seismicity Analysis, doi:10.507, 1–25, 10.5078/corssa-52382934.

Suárez, G., Sánchez‐Alvaro, E., Lomas‐Delgado, E., & Arvizu‐Lara, G. (2016). The 2013 Seismic Swarm in Chihuahua, Mexico: Evidence of Active Extensional Deformation in the Southern Basin and Range. Bulletin of the Seismological Society of America, 106(6), 2686–2694, 10.1785/0120160179

Sykes, L. (1970). Earthquake swarms and sea floor spreading. Journal of Geophysical Research, 75(32), 6598–6611.

Talbi, A., & Yamazaki, F. (2010). A mixed model for earthquake interevent times, 289–307, 10.1007/s10950-009-9166-y

Talwani, P., & Acree, S. (1984). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure and Applied Geophysics, 122(6), 947–965, 10.1007/BF00876395

Taylor, B., Weiss, J. R., Goodliffe, A. M., Sachpazi, M., Laigle, M., & Hirn, A. (2011). The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophysical Journal International, 185(3), 1189–1219, 10.1111/j.1365-246X.2011.05014.x

Taymaz, T., Jackson, J. A., & McKenzie, D. P. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106, 433–490.

Thurber, C. H. (1992). Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors, 75(1–3), 55–62, 10.1016/0031-9201(92)90117-E

Toda, S., Stein, R. S., & Sagiya, T. (2002). Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature, 419, 58–61.

Touati, S., Naylor, M., & Main, I. G. (2009). Origin and nonuniversality of the earthquake interevent time distribution. Physical Review Letters, 102(16), 1–4, 10.1103/PhysRevLett.102.168501

Touati, S., Naylor, M., Main, I. G., & Christie, M. (2011). Masking of earthquake triggering behavior by a high background rate and implications for epidemic-type aftershock sequence inversions. Journal of Geophysical Research, 116(B03304), 1–16, 10.1029/2010JB007544

Touati, S., Naylor, M., & Main, I. G. (2014). Statistical Modeling of the 1997 – 1998 Colfiorito Earthquake Sequence : Locating a Stationary S


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.