Δίκτυα συσχέτισης κλάδων του ελληνικού χρηματιστηρίου = Correlation networks of branches of the greek stock market.

Μιχαήλ Θεοδωρίδης

Περίληψη


Τις τελευταίες δεκαετίες ένας νέος κλάδος έρευνας έχει κάνει την εμφάνιση του, όπου θεωρίες και μέθοδοι της φυσικής χρησιμοποιούνται για την εκτίμηση και μοντελοποίηση χρηματοοικονομικών δεδομένων. Ο κλάδος αυτός ονομάζεται Οικονοφυσική, όπου σκοπός είναι η ανάλυση χρηματοοικονομικών δεδομένων και η εξαγωγή συμπερασμάτων για την περιγραφή, εκτίμηση και ανάλυση των χρηματοοικονομικών κινδύνων. Πολλές μελέτες εστιάζουν την προσοχή τους και εξετάζουν ενδελεχώς τις συσχετίσεις της χρονοσειράς ενός χρηματιστηριακού δείκτη ή και μεταξύ χρηματιστηριακών δεικτών, καθώς πιθανή αύξηση της μεταβλητότητας επιφέρει και αύξηση της αβεβαιότητας.

Για τη μελέτη της αλληλοεξάρτησης και συσχέτισης μεταξύ των παρατηρούμενων μεταβλητών ενός πολυμεταβλητού δυναμικού συστήματος ή στοχαστικής διαδικασίας έχουν αναπτυχθεί διάφορες μέθοδοι με γραμμικά ή μη γραμμικά μέτρα. Στις περισσότερες μεθόδους που εφαρμόζονται, κόμβοι είναι οι μεταβλητές και συνδέσεις η συσχέτιση ή η εξάρτηση που έχουν. Στη παρούσα διπλωματική ακολουθείται μια διαφορετική προσέγγιση, όπου αναλύονται δύο μέτρα γραμμικής συσχέτισης, η ανάλυση κανονικοποιημένης συσχέτισης (Canonical Correlation Analysis) και η διασυσχέτιση (Cross-Correlation) δημιουργώντας δίκτυα συσχέτισης με κόμβους να είναι οι ομάδες των μεταβλητών και συνδέσεις οι συσχετίσεις που έχουν οι ομάδες μεταξύ τους.
Πραγματοποιείται εφαρμογή στο Ελληνικό χρηματιστήριο και επιλέγονται οι κλάδοι που διαπραγματεύονται οι μετοχές για την περίοδο 2007 – 2011, όπου η περίοδος χωρίζεται σε χρονικά παράθυρα. Για την μελέτη των δικτύων και τις αλληλοεπιδράσεις των δομικών μονάδων χρησιμοποιούνται στατιστικά μέτρα δικτύων και τέλος, πραγματοποιείται σύγκριση μεταξύ των δύο μεθόδων.

In recent decades, a new research industry has emerged, where theories and methods of physics are used to estimate and model financial data. This field called Econophysics, where the purpose is to analyze financial data and extrapolated conclusions for the description, estimation, and analysis of financial risks. Many studies focus and examine the correlations of the time series of a stock market index or between stock market indices as a possible increase in volatility, resulting in an increase in uncertainty.
For the study of the interdependence and correlation between the observed variables of a multivariate dynamic system or a stochastic process, various methods have developed with linear or non-linear measures. In most methods that have applied, nodes are the variables and connections are the correlation or the dependency they have. In the present thesis, a different approach followed where two linear correlation measures are analyzed, canonical correlation analysis and cross-correlation by constructing correlation networks, where nodes are the groups of variables and connections are the correlations the groups have.
An application to the Greek stock market held, where the branches traded for the period 2007 - 2011 have selected and the period divided into time windows. For the study of the networks and the interactions of the structural units, statistical network measures used and at the end, a comparison made between the two methods.


Πλήρες Κείμενο:

PDF

Αναφορές


Pareto, V. (1897). Cours d'Economie Politique, (Lausanne and Paris, 1897)

Bachelier, L. (1900). Theorie de la speculation' [Ph.D. thesis in mathematics], Annales Scientifiques de I'Ecole Normale Superieure III-17, pp. 21-86

Georgescu-Roegen, N. (1971). The Entropy Law and the Economic Proces, (Maxwellian demon quote, pp. 307; pp. 282), Cambridge, Massachusetts: Harvard University Press

Bouchaud, J., P. (2008). Economics needs a scientific revolution, Science & Finance, Capital Fund Management, Nature, 455, pp. 1181

Mantegna, Rosario N. and Stanley., H., E. (2000). An Introduction to Econophysics Correlations and Complexity in Finance. Cambridge, UK: Cambridge University Press

Maslov, S. and Zhang, Y.-C. (1999). Probability Distribution of Drawdowns in Risky Investments, Physica,262, pp. 232-241

Mandelbrot, Benoit B. (1963). The Variation of Certain Speculative Prices, Journal of Business, 36, pp. 394-419

Mantegna, Rosario N. (1997). Cross – Correlation between stock prices in financial markets, First Econοphysics Workshop

Bouchaud, J. P. and Sornette, D. (1994). The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes, Phys. I France, 4, pp. 863 - 881

Marsili, M., Maslov, S. and Y.-C. Zhang. (1998). Dynamical Optimization Theory of a Diversified Portfolio, Physica A, 253, pp. 403-418

Tannous C. and Fessant A. (2001). Combustion Models in Finance, Quantitative Finance Papers, arXiv:physics/0101042, submitted to European Physical Journal on December 2000

Battiston S. and Caldarelli G.(2013). Systemic Risk in Financial Networks, Journal of Financial Management, Markets and Institutions, 1, n. 2, pp. 129-154

Chan, N. C. (2002). Time Series Application to Finance. Wiley-Interscience publication, pp, 1 -13

Hyndman, R. J., Athana­sopou­los, G. (2013). Forecasting: principles and practice. Otexts publication (on-line, open accesss)

Ζαχαροπούλου, Χ. (2011). Στατιστική Μέθοδοι – Εφαρμογές τόμος β΄, Εκδόσεις σοφία

David M. M. (2015). Applied Time Series Analysis, GEOS 585A, Spring Notes, University of Arizona

Richard, A. J, Wichern, W., D. (2007). Applied Multivariate Statistical Analysis, Pearson education

Wei W. (2005). Time Series Analysis: Univariate and multivariate methods, Second Edition. Addison Wesley Publications, pp. 382 - 422

Damos P. (2016) Using multivariate cross correlations, Granger causality and graphical models to quantify spatiotemporal synchronization and causality between pest populations, BMC Ecology

Hotelling., H. (1936). Relations between two sets of variates. Biometrika, 28, pp. 321–377

Sherry A., Henson K. R.. (2005). Conducting and Interpreting Canonical Correlation Analysis in Personality Research: A User-Friendly Primer, Journal of Personality Assessment, pp. 37-48

Martinez-Martin, P., Rojo-Abuin, J. M., Dujardin, K., Pontone, G. M., Weintraub, D., Forjaz, M. J., et al. (2013). Designing a new scale to measure anxiety symptoms in Parkinson's disease: item selection based on canonical correlation analysis, European Journal of Neurology, 20, pp. 1198-1203

Gossmann A., Zille P., Calhoun V., Wang Y. (2017). FDR-Corrected Sparse Canonical Correlation Analysis with Applications to Imaging Genomics, IEEE Transactions on Medical Imaging, pp. 1-14

Weenink, D. (2003). Canonical Correlation Analysis, Institute of Phonetic Sciences, University of Amsterdam, 25, pp. 81–99

Skourkeas, A., Kolyva-Machera, F. and Maheras, P. (2013). Improved statistical downscaling models based on canonical correlation analysis, for generating temperature scenarios over Greece, Environmental and Ecological Statistics, 20, pp. 445-465

Mazuruse, P. (2014). Canonical correlation analysis: Macroeconomic variables versus stock returns, Journal of Financial Economic Policy, 6, pp. 179-196

Malacarne, R. L. (2014). Canonical Correlation Analysis. The Mathematica Journal, 16, pp. 1-22

Timm, N. H., Carlson, J. E. (1976). Part and Bipartial Canonical Correlation Analysis, Psychometrica, 41, pp. 159-176

Yu G.-H. and Huang C.-C. (2001). A distribution free plotting position, Stochastic Environmental Research and Risk Assessment, 15, pp. 462-476

Benjamini, Y., Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society, 57, pp. 289-300

Freeman, L. C. (1979). Centrality in social networks conceptual clarification, Social networks, 1, pp. 215-239

Freeman L. C. (1977). A set of measures of centrality based on betweenness, Sociometry, 40, pp. 35-4

Bonacich, P. (1987). Power and centrality: a family of measures, American Journal of Sociology, 92, pp. 1170–1182

Barrat, A., Barthelemy, M. and Vespignani, A. (2008). Dynamical processes on complex networks, Cambridge university press, 40, pp. 35-41

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work, The Journal of Finance, 25, pp. 383–417

Mantegna, R., S. (1998). Hierarchical Structure in Financial Markets, The European Physical Journal B, 11, pp. 193–197

Plerou, V., Gopikrishnan, P., Rosenow, B., L. A. N. Amaral, Guhr, T., H. E.Stanley. (2002). Random matrix approach to cross correlations in financial data, Physical Reiew E, 65, 066126, pp. 1-18

Shouwei Li , Jianmin He and Kai Song. (2016). Network Entropies of the Chinese Financial Market, journal of Entropy, 18, pp. 331

Papadimitriou, T., Tabak, B. M., Gogas, P., (2013). Complex Networks and Banking Systems Supervision, Physica A: Statistical Mechanics and its Applications, 392, 19, pp. 4429-4434

Χορόζογλου Δ., Κουγιουμτζής Δ. (2014). Έλεγχος τυχαιότητας συσχέτισης δικτύων από πολυμεταβλητές χρονοσειρές, Πρακτικά 27ου Πανελληνίου Συνεδρίου Στατιστικής, σελ. 301-314


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.