[Εξώφυλο]

Βιοτίτες σε Α- και Ι-τύπου γρανιτικά πετρώματα. = Biotites in A- and I-type granitic rock.

Άννα-Μαρία Λασκαρίδου

Περίληψη


Οι γρανίτες Α-τύπου, χαρακτηρίζονται από ανορογενετικές συνθήκες σχηματισμού, είναι άνυδροι στη σύσταση τους και αλκαλικοί. Συνδέονται με εκτατική τεκτονική και χαρακτηρίζονται από υψηλές τιμές K2O, Na2O και χαμηλές MgO, CaO. Η γένεσή τους συνδέεται με κλασματική κρυστάλλωση μάγματος ενδιάμεσης έως βασικής σύστασης, που η γεωχημεία του αντιστοιχεί σε αλκαλινατριούχα σειρά ή σε υψηλού K. Οι Α-τύπου γρανίτες μπορούν να προέλθουν από την τήξη υψηλού βαθμού μεταμορφωμένων πετρωμάτων ή από πυριγενή πετρώματα που έχουν υποστεί μετασωμάτωση από μανδυακά ρευστά ή τέλος από κλασματική κρυστάλλωση θολεειϊτικού μάγματος με μέσου-υψηλού K χαρακτήρα. Οι γρανίτες Ι-τύπου, έχουν μεταργιλική γεωχημεία και χαρακτηρίζονται από υψηλές τιμές Na2O. Επιπλέον, η δημιουργία τους, συνδέεται με ζώνη υποβύθισης κάτω από ενεργό ηπειρωτικό περιθώριο. Προέρχονται από τη μερική τήξη ενός πυριγενούς πρωτόλιθου που δεν έχει υποστεί έντονα το φαινόμενο της διάβρωσης και της αποσάθρωσης ή από την κλασματική κρυστάλλωση του μάγματος. Όσον αφορά τους γρανίτες του Ελληνικού χώρου, δύο από αυτούς έχουν χαρακτηριστικά Α-τύπου γρανιτών. Ο λευκογρανίτης της Δεσκάτης, ανήκει στην Πελαγονική ζώνη και έχει υπεραργιλική γεωχημεία. Η γένεση του πλουτωνίτη θεωρείται ότι σχετίζεται με ωκεάνια υποβύθιση κάτω από ένα μεγάλο ηπειρωτικό τέμαχος που συμμετέχει στην αρχική σύσταση του μάγματος. Ο γρανιτικός όγκος της Κερκίνης ανήκει στη Σερβομακεδονική μάζα και πετρογραφικά είναι διμαρμαρυγιακός γρανίτης με υπεραργιλική σύσταση. Η γένεσή του συνδέεται με την άνυδρη τήξη μιας βιοτιτικής τοναλιτικής πηγής που έδωσε ως υπόλειμμα γρανουλίτη. Από τα διαγράμματα οξειδίων του βιοτίτη με τα αντίστοιχα οξείδια του ολικού πετρώματος, παρατηρήθηκε πως οι βιοτίτες των Ι- και οι Α-τύπου γρανιτών παρουσιάζουν μεγάλη αλληλεπικάλυψη στα περισσότερα από αυτά και έτσι δεν είναι σαφής ο διαχωρισμός τους. Ωστόσο, οι βιοτίτες των Ι-τύπου γρανιτών εμφανίζουν λίγο πιο υψηλές τιμές Al2O3 και MgO, ενώ οι βιοτίτες των Α-τύπου γρανιτών εμφανίζουν πιο υψηλές τιμές FeO και K2O. Όσον αφορά τα δείγματα της Δεσκάτης και της Κερκίνης, παρατηρήθηκε πως προβάλλονται στο κοινό πεδίο βιοτιτών Ι- και Α-τύπου γρανιτών στα περισσότερα διαγράμματα. Μόνο στο διάγραμμα FeO-SiO2R, ένα δείγμα της Δεσκάτης προβάλλεται στο πεδίο βιοτιτών των Α-τύπου γρανιτών και στο διάγραμμα MgO-SiO2R, ένα δείγμα της Κερκίνης προβάλλεται στο πεδίο βιοτιτών των Ι-τύπου γρανιτών. Εν συνεχεία, από τα διαγράμματα του SiO2R με τα κατιόντα του βιοτίτη, παρατηρήθηκε πως οι βιοτίτες στους Ι- και οι Α-τύπου γρανίτες παρουσιάζουν μεγάλη αλληλεπικάλυψη στα περισσότερα από αυτά και έτσι δεν είναι σαφής ο διαχωρισμός τους. Παρόλα αυτά κάποιες διαφοροποιήσεις μπορούν να παρατηρηθούν. Συγκεκριμένα, οι βιοτίτες Ι-τύπου γρανιτών εμφανίζουν πιο υψηλές τιμές στα κατιόντα K, Na και Mn, ενώ οι βιοτίτες Α-τύπου γρανιτών εμφανίζουν πιο υψηλές τιμές στα κατιόντα Alt, Fet, Ca, Mg, όπως επίσης και πιο υψηλό λόγο (Fe/Fe+Mg). Όσον αφορά τα δείγματα της Δεσκάτης και της Κερκίνης, παρατηρήθηκε πως προβάλλονται στο κοινό πεδίο βιοτιτών Ι- και Α-τύπου γρανιτών στα περισσότερα διαγράμματα. Ωστόσο, τα δείγματα της Δεσκάτης προβάλλονται κυρίως στο κοινό πεδίο βιοτιτών Ι- και Α-τύπου γρανιτών, ενώ τα δείγματα της Κερκίνης στα διαγράμματα Fet-SiO2R, Mg- SiO2R και (Fe/Fe+Mg)- SiO2R προβάλλονται στο πεδίο βιοτιτών των Α-τύπου γρανιτών. Εξαίρεση αποτελεί ένα δείγμα της Κερκίνης όπου στα διαγράμματα Fet-SiO2R, Mg- SiO2R και (Fe/Fe+Mg)- SiO2R προβάλλεται στο κοινό πεδίο βιοτιτών Ι- και Α-τύπου γρανιτών, ενώ στα διαγράμματα K-SiO2R και Na- SiO2R προβάλλεται στο πεδίο βιοτιτών των Ι-τύπου γρανιτών. Τέλος, από τα υπόλοιπα διαγράμματα, παρατηρήθηκε πως οι βιοτίτες των Ι-τύπου γρανιτών έχουν πιο υψηλές τιμές στο διάγραμμα (Mg/(Mg+Fet))-TiBi.. Οι βιοτίτες των Α-τύπου γρανιτών επιπλέον, παρατηρήθηκε πως έχουν πιο υψηλές τιμές Fe στο διάγραμμα MgOBi-FeOBi και ακόμη δείχνουν να έχουν λίγο πιο χαμηλές τιμές MgO και Al2O3 σε σύγκριση με τους βιοτίτες των Ι-τύπου γρανίτων. Όσον αφορά τα δείγματα της Δεσκάτης και της Κερκίνης, τα πρώτα προβάλλονται στο κοινό πεδίο βιοτιτών Ι-και Α-τύπου γρανιτών, ενώ τα δείγματα της Κερκίνης προβάλλονται κατά κύριο λόγο στο πεδίο των βιοτιτών Α-τύπου γρανιτών. Εξαίρεση αποτελούν δύο δείγματα της Κερκίνης που στα διαγράμματα (Mg/(Mg+Fet))-TiBi, MgO-FeO-Al2O3, Al2O3Bi-MgOBi και Al2O3-FeOBitot προβάλλονται στο πεδίο των βιοτιτών Ι-τύπου γρανιτών, ενώ στο διάγραμμα MgOBi- FeOBi, ένα δείγμα της Κερκίνης προβάλλεται στο κοινό πεδίο βιοτιτών Ι-και Α-τύπου γρανιτών. Από την παραπάνω λοιπόν επεξεργασία και μελέτη των αναλύσεων του ορυκτού βιοτίτη σε Α- και Ι-τύπου γρανιτικά πετρώματα και λαμβάνοντας υπόψιν την πετρογραφία, την ορυκτολογία, την γεωχημεία και την πετρογένεση των γρανιτών, τόσο του Ελληνικού χώρου, όσο και άλλων περιοχών, συμπεραίνεται πως οι βιοτίτες της Κερκίνης έχουν τα χαρακτηριστικά ώστε να χαρακτηριστεί ο συγκεκριμένος πλουτωνίτης ως Α-τύπου γρανίτης, ενώ οι βιοτίτες της Δεσκάτης βρίσκονται στα όρια των βιοτιτών Ι-τύπου γρανιτών, παρόλο που έχουν χαρακτηριστικά και βιοτιτών Α-τύπου γρανιτών.

A-type granites are characterized by anorogenic forming conditions, their chemical composition is anhydrous and alkaline. A-type granites are also associated with extensional tectonics and are characterized by high K2O, Na2O contents and low MgO, CaO contents. Their petrogenesis is associated with fractional crystallization of a magma with an intermediate to basic chemical composition which has a silica-saturated alcaline sodic or ultrapotassic character. A-type granites can be produced by melting of high grade metamorphic rocks or from igneous rocks that might have been metasomatized by mantle-derived fluids. Finally, they can derive by fractional crystallization of medium to high-K tholeiitic magmas. On the other hand, I-type granites have metaluminous geochemistry and are characterized by high contents of Na2O. Their formation is associated with the subduction zone that occurs during plate convergence under a continental margin. I-type granites derive from the partial melting of igneous protoliths that have not suffered intense surface weathering processes or from the fractional crystallization of a magma. As regards the Greek granitic rocks, two of them have characteristics of A-type granites. The leucogranite of Deskati belongs to the Pelagonian zone and has peraluminous geochemistry. The pluton is considered to have formed during an oceanic subduction under a large continental margin which takes part in the initial composition of the magma. Kerkinis’s pluton belongs to the Serbomacedonian massif and petrologically is a two-mica granite with peraluminous geochemistry. The pluton’s petrogenesis is associated with the anhydrous melting of a biotite-tonalitic source, leaving behind a granulitic residue. Taking into account the diagrams of biotite and corresponding whole rock oxides, it is evident that biotites of I- and A–type granites overlap in most of them and as a result it is difficult to separate them. However, biotites of I-type granites have slightly higher contents of Al2O3 and MgO while biotites of A-type granites have higher contents of FeO and K2O. The samples of Deskati and Kerkini plot in the common field of I- and A-type granites in most of the diagrams, except for one sample of Deskati which plots in the biotite field of A-type granites in the FeO-SiO2R diagram and one sample of Kerkini which plots in the I-type granites field. In addition, biotites from I- and A–type granites show overlapping when plotted in the diagrams of SiO2R versus biotite cations, making their separation ambiguous. However, some variations can be distinguished. Biotites of I-type granites have high contents of K, Na and Mn, in contrast to  biotites of A-type granites that exhibit higher contents of Alt, Fet, Ca, Mg and higher (Fe/Fe+Mg) ratios as well. The samples of Deskati and Kerkini plot in the common I-and A-type granites field in most of the diagrams. However, the samples from Deskati mainly plot in the common A-and I-type granites field, while those from Kerkini in the diagrams Fet-SiO2R, Mg-SiO2R and (Fe/Fe+Mg)-SiO2R plot in the A-type granites field, with the exception of Kerkini one sample that plots in the common A-and I-type granites field of the Fet-SiO2R, Mg- SiO2R and (Fe/Fe+Mg)-SiO2R diagrams whereas in the K-SiO2R and Na- SiO2R diagrams, it plots in the I-type granites field. Finally, from the rest of the diagrams it appears that biotites from I-type granites have higher (Mg/(Mg+Fet))-TiBi.ratios. Biotites from A-type granites have higher contents of Fe, as noted on the MgOBi-FeOBi diagram and in addition A-type granites have slightly lower contents of MgO and Al2O3 in comparison to biotites from I-type granites. The samples of Deskati  plot in the common field of I-and A-type granites but the samples of Kerkini mainly plot in the field of A-type granites, with the exception of two samples that plot in the I-type granites field in (Mg/(Mg+Fet))-TiBi, MgO-FeO-Al2O3, Al2O3Bi-MgOBi and Al2O3-FeOBitot diagrams. Also one sample from Kerkini plots in the common field of I- and A-type granites in MgOBi- FeOBi diagram. From the studied chemical composition of biotites from A- and I-type granites and the petrography, mineralogy, geochemistry and petrogenesis of granitic rocks from Greece and other regions, we can conclude that biotites from Kerkini’s granite characterize this pluton as of A-type granites. On the contrary, biotites from Deskati’s granite have common characteristics of I- and A-type granites.

Πλήρες Κείμενο:

PDF

Αναφορές


Αυγερινάς, Α., Κίλιας, ∆., Κορωναίος, Α. & Μουντράκης, ∆. (2004). Γεωχημεία, γένεση και παραμόρφωση των Ερκύνιων γρανιτικών πετρωμάτων της Πελαγονικής στην οροσειρά του Βόρα (Μακεδονία, Βόρεια Ελλάδα). ∆ελτίο της Ελληνικής Γεωλογικής Εταιρίας, XXXVI, 1540-1549.

Γρηγοριάδου, Α., Κορωναίος, Α. & Ελευθεριάδης, Γ. (2003). Ορυκτολογία του πλουτωνίτη της Καστοριάς (Δυτ. Μακεδονία). Δελτίο Ελληνικής Γεωλογικής Εταιρίας, XXXV, 46-60.

Κορωναίος, Α. (1991). Ορυκτολογία, πετρολογία και γεωχημεία του πλουτωνίτη του Ανατ. Βαρνούντα (ΒΔ Μακεδονία). Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Επιστημονική Επετηρίδα του Τμήματος Γεωλογίας, της Σχολής Θετικών Επιστημών, παράρτημα 13, p. 451.

Κορωναίος, Α., Παλαιολόγου, Μ., Poli, G. & Χριστοφίδης, Γ. (2015). Γεωχημεία και Γένεση του Γρανίτη της Δεσκάτης (ΒΔ Ελλάδα). Επιστημονική Επετηρίδα, Τμήμα Γεωλογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τιμητική έκδοση στη μνήμη του ομότιμου καθηγητή Γ. Ελευθεριάδη, Ειδικός τόμος 103, 27-30.

Παπαδόπουλος, Α.Α. (2011). Φυσική ραδιενέργεια σε σχέση με την ορυκτολογία, γεωχημεία ουρανίου και θορίου μαγματικών πετρωμάτων από τον Ελλαδικό χώρο: Συμβολή στη χρήση φυσικών δομικών υλικών. Διδακτορική Διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, p. 283.

Παπαδοπούλου, Λ.Χ. (2003). Ισορροπία ορυκτών φάσεων, συνθήκες κρυστάλλωσης και εξέλιξη του πλουτωνίτη της Μαρώνειας, Θράκη. Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, p. 342.

Σκλαβούνος, Σ.Α. (1981). Ο γρανίτης του Παρανεστίου. (Ορυκτολογία- Πετρογραφία). Διδακτορική διατριβή, Πανεπιστήμιο Θεσσαλονίκης, Επιστ. Επετ. της Φυσικομαθηματικής σχολής, παράρτημα 33, 20, p. 242.

Σολδάτος, Τ.Γ. (1985) . Πετρολογία και γεωχημεία του πλουτωνίτη της Ελατιάς (Κεντρική Ροδόπη). Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Τμήμα Γεωλογίας. Επιστημονική Επετηρίδα της Σχολής Θετικών Επιστημών Α.Π.Θ., παράρτημα 37, 23, p. 242.

Χριστοφίδης, Γ. (1977). Συμβολή εις τη μελέτην των πλουτωνικών πετρωμάτων της περιοχής Ξάνθης. Διατριβή επί διδακτορία, Πανεπιστήμιο Θεσσαλονίκης, Φυσικομαθηματική σχολή, p.249.

Abdel-Rahman, A. (1994). Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas. Journal of Petrology, 35, 2, 525–541.

Anders, B., Reischmann, T., Kostopoulos, D. & Poller, U. (2006). The oldest rocks of Greece: first evidence for a Precambrian terrane within the Pelagonian Zone. Geol. Mag., 143, 41-58.

Anderson, I.C., Frost, C.D. & Frost, B.R. (2003). Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambrian Research, 124, 243-267.

Anderson, J.L. & Bender, E.E. (1989). Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos, 23, 19-52.

Auwera, J.V., Bogaerts, M., Liégeois, J-P., Demaiffe, D., Wilmart, E., Bolle, O. & Duchesne, J.C. (2003). Derivation of the 1.0–0.9 Ga ferro-potassic A-type granitoids of

southern Norway by extreme differentiation from basic magmas. Precambrian Research, 124, 107-148.

Barker, F., Wones, D.R., Sharp, W.N. & Desborough, G.A. (1975). The Pikes Peak batholith, Colorado Front Range, and a model for the origin of the Gabbro-Anorthosite-Syenite-Potassic granite suite. Precambrian Research, 2, 97-160.

Bogaerts, M., Scaillet, B., Liégeois, J-P. & Auwera, J.V. (2003). Petrology and geochemistry of the Lyngdal granodiorite (Southern Norway) and the role of fractional crystallisation in the genesis of Proterozoic ferro-potassic A-type granites. Precambrian Research, 124, 149-184.

Bonin B. (2007). A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97, 1-29.

Boztuğ, D., Harlavan, Y., Arehart, G.B., Satir, M. & Avci, N. (2007). K–Ar age, whole-rock and isotope geochemistry of A-type granitoids

in the Divrigi–Sivas region, eastern–central Anatolia, Turkey. Lithos, Special Issue on A-type Granites and Related Rocks Through Time, 97, 193–218.

Chappell, B.J. & White, A.J.R. (1974). Two Contrasting Granite Types. Pac. Geol., 8, 173-174.

Chappell, B.W. &. White, A. J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489-499.

Chappell, B.W., White, A.J.R. & Wyborn, D. (1987). The importance of residual source material (restite) in granite petrogenesis. Journal of

Petrology 28, 1111–1138.

Christofides, G, Soldatos, T., Eleftheriadis, G. & Koroneos, A. (1998). Chemical and isotopic evidence for source contamination and crustal assimilation in the Hellenic Rhodope plutonic rocks. Acta Vulcanologica, 10, 305-318.

Christofides, G., Eleftheriadis, G., Esson, J., Soldatos, T., Koroneos, A. & Brocker, M. (2000a). The evolution of the Samothraki granitic pluton (N. Aegean sea, Greece): geochronology, chemical and isotopic constraints for AFC modelling. Proceedings in the Third International Conference on the Geology of the Eastern Mediterranean. Panayides, I., Xenophontos, C. & Malpas, J. (eds.), 193-209.

Christofides, G., Koroneos, A., Pe-Piper, G., Katirtzoglou, K. & Chatzikirkou, A. (1999). Pre-Tertiary A- Type magmatism in the Serbomacedonian massif (N. Greece): Kerkini granitic complex. Δελτίο Ελληνικής Γεωλογικής Εταιρίας, XXXIII, 131-148.

Christofides, G., Perugini, D., Koroneos, A., Soldatos, T., Poli, G., Eleftheriadis, G., Del Moro, A. & Neiva, A.M. (2007). Interplay between geochemistry and magma dynamics during magma interaction: An example from the Sithonia Plutonic Complex (NE Greece). Lithos, 95, 243-266.

Christofides, G., Soldatos, T. & Eleftheriadis, G. (2000b). Mesozoic magmatism in the area between the Vardar (Axios) Zone and the Serbo-Macedonian massif (Northern Greece), Proceedings of the international symposium geology and metallogeny of the Dinarides and the Vardar Zone. The Academy of Sciences and Arts of the Republic of SRPSKA, 1, 111-120.

Christofides, G., Soldatos, T. & Koroneos, A. (1990). Geochemistry and Evolution of the Fanos Granite, N. Greece. Mineralogy and Petrology, 43, 49-63.

Collins, W.J., Beams, S.D., White, A.J.R. & Chappell, B.W. (1982). Nature and origin of A-type granites with particular reference to

southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189–200.

Dall’Agnol, R., Teixeira, N.P., Rämö, O.T., Moura, C.A.V., Macambira, M.J.B. & Oliveira, D.C. (2005). Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajas metallogenic province, Brazil. Lithos, 80, 101-129.

Deer, Howie & Zussman. (2003).Rock-Forming Minerals, Sheet Silicates: Micas, 2nd edition by M.E. Fleet, The Geological Society, London, 3A, p. 758.

Eby, G.N. (1995). White Mountain Magma Series. (1995). Third Hutton Symposium at University of Maryland, College Park, MD, I, DOI: 10.13140/RG.2.1.1746.0883.

Eleftheriadis, G. & Koroneos, A. (2003). Geochemistry and Petrogenesis of Post-Collision Pangeon Granitoids in Central Macedonia, Northern Greece. Chemie der Erde, 63, 364-389.

Eleftheriadis, G., Frank, W. & Petrakakis, K. (1999). 40Ar/39Ar geochronology of the Pangeon granitoids, Rhodope Unit (northern Greece). Beih. z. Eur. J. Mineral., 11, 62.

Frisch, W. &Abdel-Rahman, A. (1999). Petrogenesis of the Wadi Dib alkaline ring complex, Eastern Desert of Egypt. Mineralogy and Petrology, 65, 249-275.

Frost, B.R., Barnes, G.C., Collins, W.J., Arculus, R.G., Ellis, D.J. & Frost, C.D. (2001). A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42, 11, 2003-2048.

Haapala, I., Frindt, S. & Kandara, J. (2007). Cretaceous Gross Spitzkoppe and Klein Spitzkoppe stocks in Namibia: Topaz-bearing A-type

granites related to continental rifting and mantle plume. Lithos, Special Issue on A-type Granites and Related Rocks Through Time, 97, 174–192.

Hergt, J., Woodhead, J. & Schofield, A. (2007). A-type magmatism in the Western Lachlan Fold Belt? A study of granites and rhyolites from the Grampians region, Western Victoria. Lithos, Special Issue on A-type Granites and Related Rocks Through Time, 97, 122–139.

Hine, R., Williams, I.S., Chappell, B.W. & White, A.J.R. (1978). Contrasts between I- and S-type granitoids of the Kosciusko Batholith. J. Geol. Soc. Aust., 25, 219-234.

Jung, S., Mezger, K. & Hoernes, S. (1998). Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites—a major and trace element and

Nd–Sr–Pb–O-isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 45, 147-175.

Jung, S., Mezger, K. & Hoernes, S. (2000). Geochronology and petrogenesis of Pan- African, syn-tectonic, S-type and post-tectonic A-type granite (Namibia): products of melting of crustal sources, fractional crystallization and wall rock entrainment. Lithos, 50, 259-287.

Katerinopoulos, A., Kokkinakis, A. & Kyriakopoulos, K. (1994). Petrology and chemical characteristics of Deskati granitic rocks, Thessaly, Greece. Δελτίο Ελληνικής Γεωλογικής Εταιρίας τομ. ΧΧΧ/3, 79-88, Πρακτικά 7ου Επιστημονικού Συνεδρίου, Θεσσαλονίκη.

Katerinopoulos, A., Kyriakopoulos, K., Del Moro, A., Kokkinakis, A. & Giannotti, U. (1998). Petrology, Geochemistry and Rb/Sr Age Determination of Hercynian Granitic Rocks from Thessaly, Central Greece. Chemie der Erde, 58, 64-79.

Katzir, Y., Eyal, M., Litvinovsky, B.A., Jahn, B.M., Zanvilevich, A.N.,

Valley, J.W., Beeri Y., Pelly I. & Shimshilashvili, E. (2007). Petrogenesis of A-type granites and origin of vertical zoning in the Katharina pluton, Gebel Mussa (Mt. Moses) area, Sinai, Egypt. Lithos, 95, 208-228.

Kleeman, G.J. & Twist, D. (1989). The compositionally-zoned sheet-like granite pluton of the Bushveld Complex: evidence bearing on the

nature of A-type magmatism. Journal of Petrology, 30, 1383–1414.

Koroneos, A. (2008). Biotites from biotite-rich crusts of enclaves and clots in the Monopigadon pluton (Macedonia, northern Greece). Per. Mineral., 77, 3, 3-20.

Koroneos, Α. & Eleftheriadis, G. (2002). Mineralogical constraints on the petrogenesis of the Pangeon granitoids (Central Macedonia, northern Greece). Geologica Balcanica, 32, 1, 13-29.

Kyriakopoulos, G. K. (1987). Geochonological, geochemical and mineralogical isotopic studies of the Tertiary plutonic rocks of Rhodope. Unpublished Ph. D. thesis, Athens University, Greece, p. 343.

Le Maitre, R.W. (2002). Igneous Rocks – a Classifcation and Glossary of Terms. Cambridge University Press, Cambridge, U.K, p. 236.

Li, Y., Barnes, M.A., Barnes, C.G. & Frost, C.D. (2007). Grenville-age A- type and related magmatism in southern Laurentia, Texas and New Mexico, U.S.A. Lithos, Special Issue on A-type Granites and Related Rocks Through Time, 97, 58–87.

Loiselle, M.C. & Wones, D.R. (1979). Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs, 11, 468.

Mclemore, V.T., Dunbar, N., Kosunen, P. J., Rämö, O.T., Heizler, M. & Haapala, I. (2002). Geology and geochemistry of the Redrock Granite and Anorthosite Xenoliths (Proterozoic) in the Northern Burro Mountains, Grant County, New Mexico, USA. Bulletin of the Geological Society of Finland, 74, 1–2, 7–52.

Mohamed, F. H. & Kanisawa, S. (1999). The Pan-African Intrusive Complex of Ghorabat Area, Southern Egypt: Geochemical and Mineralogical Constraints on Arc-related and Anorogenetic Magmatism. Chemie der Erde, 59, 259-286.

Nachit, H., Razafimahefa, N., Stussi, J.M. & Carron, J.P. (1985). Composition chimique des biotites et typologie magmatique des granitoı̈des. C.R. Acad. Sci., Paris, 301, 813-818.

Nardi, L.V.S. & Bitencourt, M.D.F. (2009). A-type granitic rocks in post-collisional settings in southernmost Brazil: their classification and relationship with tectonics and magmatic series. Canadian Mineralogist, 47, 1493-1503.

Nédélec, A., Paquette, J-L., Antonio, P., Paris, G. & Bouchez, J-L. (2016). A-type stratoid granites of Madagascar revisited: Age, source and links with the breakup of Rodinia. Precambrian Research, 280, 231-248.

Neiva, A.M.R., Christofides, G., Eleftheriadis, G. & Soldatos, T. (1996). Geochemistry of granitic rocks and their minerals from the Kavala pluton, Northern Greece. Chemie der Erde-Geochemistry, 56, 117-142.

O’ Neill, J.R. & Chappell, B.W. (1977). Oxygen and Hydrogen Isotope Pelations in the Berridale Batholith. J.Geol. Soc. Lond., 133, 559-571.

Pamic J. & Lanphere M.A. (1991). Alpine A-type granites from the collisional area of the northernmost Dinarides and Pannonian basin, Yugoslavia. Neues Jahrbuch Miner. Abh., 162, 2, 215-236.

Pathak M. (2017). Petrogenesis of Idar and Associated Granitoids of Sabarkantha District, Gujarat: An Assessment of Tectono-magmatic Evolution and Rare Metal and REE Potential of Idar Granite, Geological Survey of India. FSP No.: 2015-16/RP/WR/GUJ/2015/073; Item No-85 2016-17/RP/WR/GUJ/2015/072; Item No-97.

Poli, G., Christofides, G., Koroneos, A., Soldatos, T., Papadopoulou, L., Manetti, P., Papadopoulos, A. & Rocchi, S. (2013). Petrogenesis of the Eocene Gregoriou plutonic complex (Mt. Athos, Chalkidiki, Greece): interplay between magma mixing, assimilation, and fractional crystallization. Acta Vulcanologica, 25/1-1, 121-151.

Shang-Jie, F., Kui-Dong, Z., Hong-Fei, L., Pei-Rong, C., Wei-Feng, C., Tao, S, Shao-Yong, J. & Wei, P. (2014). Geochronology, elemental and Nd–Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China:

Constraints on petrogenesis and post-collisional extension of the Wuyi–Yunkai orogeny. Lithos, 206-207, 1-18.

Theodorikas, S. (1983). The mineralogy, petrology and geochemistry of the Serres-Drama granitic complex, Northern Greece. PhD Thesis, Scientific Annales of the Faculty of Physics Mathematics, University of Thessaloniki, 22, 28, p. 415.

Vijaya Kumar, K., Frost, C.D., Frost, B.R. & Chamberlain, K.R. (2007). The Chimakurti, Errakonda, and Uppalapadu Plutons, Eastern Ghats Belt, India: An unusual association of tholeiitic, and alkaline magmatism. Lithos, Special Issue on A-type Granites and Related Rocks Through Time, 97, 30–57.

Vilalva, F. C.J., & Vlach, S.R.F. (2014). Geology, petrography and geochemistry of the A-type granites from the Morro Redondo Complex (PR-SC), southern Brazil, Graciosa Province. Annals of the Brazilian Academy of Sciences, 86, 85-116.

Vlach, S.R.F. & Gualda, G.A.R. (2007). Allanite and chevkinite in A-type

granites and syenites of the Graciosa Province, southern Brazil. Lithos, Special Issue on A-type Granites and Related Rocks Through Time, 97, 58–87.

Volkert R.A., Feigenson M.D., Patino L.C., Delaney J.S. & Drake Jr.A.A. (2000). Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA. Lithos, 50, 325-347.

Weimin, L., Yongjiang, L., Wei, J., Neubauer, F., Yingli, Z., Chenyue, L., Quanbo, W., Zhiqiang, F., Jing, L. & Qing, L. (2017). Syntectonic emplacement of the Triassic biotite-syenogranite intrusions in the Taili area, western Liaoning, NE China: Insights from petrogenesis, rheology and geochronology. Journal of Asian Earth Sciences, 139, 202-223.

Whalen, J.B., Currie, K.L. & Chapell, B.W. (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Mineralogy and Petrology, 95, 407-419.

Xiaoqin, D., Touping, P., Taiping, Z. (2016). Geochronology and geochemistry of the late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 285, 127-146.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.