[Εξώφυλλο]

Μελέτη της ευαισθησίας ενός αριθμητικού μοντέλου πρόγνωσης καιρού στην παραμετροποίηση της ανοδικής μεταφοράς. = Sensitivity study of a numerical weather prediction model on the parameterization of convection.

Χρήστος Χατζούδης

Περίληψη


Στην παρούσα διπλωματική εργασία γίνεται η μελέτη της ευαισθησίας του μη υδροστατικού μοντέλου WRF-ARW στα σχήματα παραμετροποίησης της ανοδικής μεταφοράς Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ) και Grell-Freitas (GF). Συνολικά χρησιμοποιούνται δέκα συνδυασμοί αυτών των σχημάτων και εξήντα προσομοιώσεις. Επιχειρείται η αξιολόγηση του μοντέλου στη χρήση ή όχι, και ποιου σχήματος, σε πλέγμα υψηλής ανάλυσης (1,667kmX1,667km) ενώ στην περίπτωση της μη χρήσης ερευνάται ποιο σχήμα δίνει τα καλύτερα αποτελέσματα με την ενεργοποίησή του στα αμέσως μεγαλύτερα πλέγματα (coarser parent grids). Η αξιολόγηση γίνεται για τη διάρκεια της θερμής περιόδου, η οποία προσδιορίζεται από το Μάιο έως και το Σεπτέμβριο, για έξι περιπτώσεις οι οποίες διακρίθηκαν σε τρεις περιπτώσεις ισχυρού και τρεις περιπτώσεις ασθενούς δυναμικού εξαναγκασμού (ΠΙΔΕ και ΠΑΔΕ αντίστοιχα) οι οποίες επιλέγησαν από έξι διαφορετικά χρόνια και επηρέασαν την ευρύτερη περιοχή της Θεσσαλονίκης. Για την αξιολόγηση του μοντέλου ως προς τις συνεχείς μεταβλητές (θερμοκρασία στα 2m, θερμοκρασία σημείου δρόσου στα 2m και πίεση στη μέση στάθμη θάλασσας) χρησιμοποιήθηκαν παρατηρήσεις σταθμών επιφανείας ενώ, ως προς τη μεταβλητή του υετού χρησιμοποιήθηκαν οι εκτιμήσεις μετεωρολογικού Ραντάρ. Διαπιστώθηκε ότι για τις συνεχείς μεταβλητές, η ενεργοποίηση του σχήματος ανοδικής μεταφοράς στο πλέγμα υψηλής ανάλυσης βελτιώνει τα αποτελέσματα του μοντέλου σε όλες τις περιπτώσεις. Για τη μεταβλητή του υετού, τα καλύτερα αποτελέσματα λαμβάνουν χώρα δίχως την ενεργοποίηση των σχημάτων ανοδικής μεταφοράς στο πλέγμα υψηλής ανάλυσης, με το σχήμα των Kain-Fritsch να είναι καλύτερο στις περιπτώσεις με ισχυρό δυναμικό εξαναγκασμό και το σχήμα των Betts-Miller-Janjic  να είναι καλύτερο στις περιπτώσεις με ασθενές δυναμικό εξαναγκασμό. Αυτή η συμπεριφορά φαίνεται να σχετίζεται με τη μεθοδολογία ενεργοποίησης του κάθε σχήματος καθώς, το σχήμα των Kain-Fritsch απαιτεί ικανοποιητικά κατώφλια ανοδικών ταχυτήτων κάτι το οποίο προσφέρεται από τη σύγκλιση των αερίων μαζών στις περιπτώσεις με ισχυρό δυναμικό εξαναγκασμό ενώ το σχήμα των Betts-Miller-Janjic ενεργοποιείται ευκολότερα στις περιπτώσεις με ασθενές δυναμικό εξαναγκασμό όπου ο αέρας κοντά στο έδαφος θερμαίνεται και ανυψώνεται ευκολότερα.

The sensitivity of the non-hydrostatic WRF-ARW numerical weather prediction model on Convection Parameterization Schemes of Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ) and Grell-Freitas (GF) was considered in this work. Ten combination of these CPS were used and totally sixty runs were simulated. The sensitivity of the model skill on the above-mentioned CPS combination was investigated in order to answer the next two questions. Is the usage of a convection scheme in the finest grid of model (1,667kmX1,667km) necessary for better model performance and which one? If not, which convection scheme can be used in the coarser outer grid in order to achieve the best scores? The validation of model takes place during the warm period simulating three cases with strong dynamic forcing and three cases of weak dynamic forcing which occurred over the greater area of Thessaloniki. The cases were chosen from six different years. Three continuous variables (temperature, dew point temperature and mean sea level pressure) were evaluated against observations from meteorological weather stations. The categorical variable of precipitation was evaluated using precipitation estimates from a meteorological Radar. The statistical scores showed that the usage of convection schemes in the finer grid improved the model prediction, concerning the continoues variables, in all cases. In the contrary, concerning the categorical variable, the use of a convection scheme did not improve the model prediction. KF scheme produced the best precipitation scores in the strong dynamic forcing cases and BMJ scheme in the weak dynamic forcing cases. It is estimated that this different behavior is associated with the triggering function of each scheme. The KF scheme demands satisfactory thresholds of vertical updrafts which are induced by convergence in the cases of strong dynamic forcing. The Betts-Miller-Janjic scheme is activated more easily in cases of weak dynamic cases where the atmospheric conditions permit the air above the ground to be heated and rised considerably.



Πλήρες Κείμενο:

PDF

Αναφορές


Ελληνική βιβλιογραφία

Ζάνης, Π., 2016. Θερμοδυναμική και Στατική της Ατμόσφαιρας. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Καρακώστας, Θ., 2017a. Δυναμική Μετεωρολογία. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Καρακώστας, Θ., 2017b. Φυσική Νεφών και Τροποποίηση Καιρού. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Καρακώστας Θ., Α. Φλόκας, Ε. Φλόκα, Ο. Κακαλιάγκου και Χ. Ρίζου, 1992: Μελέτη των συνοπτικών καταστάσεων στην περιοχή της Ανατολικής Μεσογείου. Πρακτικά 1ου Πανελληνίου Επιστημονικού Συνεδρίου Μετεωρολογίας Κλιματολογίας-Φυσικής της Ατμόσφαιρας, 21-23 Μαΐου, Θεσσαλονίκη, 469-477.

Καρούτσος, Γ., 2013. Εφαρμογή φίλτρου Kalman σε προγνώσεις θερμοκρασίας τριών αριθμητικών μοντέλων πρόγνωσης καιρού. Μεταπτυχιακή διπλωματική εργασία στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ. Σελίδες 91.

Κάρτσιος, Σ., 2013. Αμεση σύζευξη αριθμητικών μοντέλων για τη μελέτη δασικών πυρκαγιών. Μεταπτυχιακή διπλωματική εργασία στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ. Σελίδες 130.

Κορνάρος, Γ., 1999. Κλιματολογικά στοιχεία των ελληνικών μετεωρολογικών σταθμών. Διεύθυνση Κλιματολογίας της Εθνικής Μετεωρολογικής Υπηρεσίας. Σελίδα 148.

Μαζαράκης, Ν., 2010. Παρατηρησιακή και αριθμητική μελέτη των δυναμικών και φυσικών διεργασιών που συνδέονται με τη θερινή καταιγιδοφόρο δραστηριότητα στον ελλαδικό χώρο. Διδακτορική διατριβή στο Εργαστήριο Φυσικής της Ατμόσφαιρας. Τμήμα Φυσικής, Πανεπιστήμιο Πατρών. Σελίδες 176.

Μπαμπζέλης, Δ., 2013. Διερεύνηση συνθηκών εφαρμογής προγραμμάτων αύξησης βροχής, εφαρμογή στην ευρύτερη περιοχή της Θεσσαλίας. Διδακτορική διατριβή στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ. Σελίδες 290.

Μυστακίδης, Σ., 2011. Αξιολόγηση και βελτιστοποίηση ενός περιοχικού κλιµατικού µοντέλου. Μεταπτυχιακή διπλωματική εργασία στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ. Σελίδες 197.

Πυθαρούλης, Ι., 2017a. Συνοπτική Μετεωρολογία. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Πυθαρούλης, Ι., 2017b. Αριθμητική Πρόγνωση Καιρού. Πρόγραμμα Μεταπτυχιακών Σπουδών στη «Μετεωρολογία, Κλιματολογία και Ατμοσφαιρικό Περιβάλλον». Τμήμα Γεωλογίας, Α.Π.Θ.

Πυθαρούλης, Ι., Φείδας, Χ., Καρακώστας, Θ., 2012. Μελέτη ενός επεισοδίου αστραπών-κεραυνών με τη βοήθεια υψηλής ανάλυσης προσομοιώσεων. Τομέας Μετεωρολογίας – Κλιματολογίας. Τμήμα Γεωλογίας, Α.Π.Θ. Περιοδικό ΓΕΩΓΡΑΦΙΕΣ, Νο 20, 2012, 51-78.

Φλόκας, Α., 1990, Μαθήματα Μετεωρολογίας και Κλιματολογίας. Εκδόσεις Ζήτη. Θεσσαλονίκη 1990.

American Meteorological Society (AMS), Glossary of Meteorology, http://glossary.aΚmetsoc.org/wiki/Stability_index

Anagnostopoulou, C., 2009. A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, part II: discriminant analysis. Theor. Appl. Climatol. 97, 179–194.

Anagnostopoulou, C., Tolika, K., Maheras, P., 2009. Classification of circulation types: a new flexible automated approach applicable to NCEP and GCM datasets. Theor. Appl. Climatol. 96, 3–15.

Anagnostopoulou, C., Tolika, K., 2012. Extreme precipitation in Europe: statistical threshold selection based on climatological criteria. Theor. Appl. Climatol. 107, 479–489.

Arakawa, A., 1969. Parameterization of cumulus convection, Proc. WMO/IUGG symposium on Numerical Weather Prediction in Tokyo. Jpn. Meteor Agency 8–1.

Arakawa, A., Schubert, W.H., 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmospheric Sci. 31, 674–701.

Baldwin, M.E., Kain, J.S., Kay, M.P., 2002. Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Weather Forecast. 17, 1063–1079.

Bauer, P., Thorpe, A., Brunet, G., 2015. The quiet revolution of numerical weather prediction. Nature 525, 47.

Betts, A.K., 1975. Parametric interpretation of trade-wind cumulus budget studies. J. Atmospheric Sci. 32, 1934–1945.

Betts, A.K., 1986. A new convective adjustment scheme. Part I: Observational and theoretical basis. Q. J. R. Meteorol. Soc. 112, 677–691.

Betts, A.K., Miller, M.J., 1986. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 112, 693–709.

Betts, A.K., Miller, M.J., 1993. The Betts-Miller scheme, in: The Representation of Cumulus Convection in Numerical Models. Springer, pp. 107–121.

Bukovsky, M.S., Karoly, D.J., 2009. Precipitation simulations using WRF as a nested regional climate model. J. Appl. Meteorol. Climatol. 48, 2152–2159.

Carbone, R.E., Tuttle, J.D., 2008. Rainfall occurrence in the US warm season: The diurnal cycle. J. Clim. 21, 4132–4146.

Charney, J.G., Fjörtoft, R., Neumann, J. von, 1950. Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254.

Chen, F., Dudhia, J., 2001. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 129, 569–585.

Clark, A.J., Gallus Jr, W.A., Weisman, M.L., 2010. Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM. Weather Forecast. 25, 1495–1509.

Doswell III, C.A., Brooks, H.E., Maddox, R.A., 1996. Flash flood forecasting: An ingredients-based methodology. Weather Forecast. 11, 560–581.

Doswell, C.A., Bosart, L.F., 2001. Extratropical synoptic-scale processes and severe convection, in: Severe Convective Storms. Springer, pp. 27–69.

Dudhia, J., 1993. A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121, 1493–1513.

Ebert, E.E., 2008. Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework. Meteorol. Appl. 15, 51–64.

Ferrier, B.S., Jin, Y., Lin, Y., Black, T., Rogers, E., DiMego, G., 2002. Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model, in: Conference on Weather Analysis and Forecasting. AMS, pp. 280–283.

Fowler, L.D., Skamarock, W.C., Grell, G.A., Freitas, S.R., Duda, M.G., 2016. Analyzing the Grell–Freitas convection scheme from hydrostatic to nonhydrostatic scales within a global model. Mon. Weather Rev. 144, 2285–2306.

Fritsch, J.M., Kane, R.J., Chelius, C.R., 1986. The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Clim. Appl. Meteorol. 25, 1333–1345.

Fritsch, J.M., Houze Jr, R.A., Adler, R., Bluestein, H., Bosart, L., Brown, J., Carr, F., Davis, C., Johnson, R.H., Junker, N., 1998. Quantitative precipitation forecasting: Report of the eighth prospectus development

team, US Weather Research Program. Bull. Am. Meteorol. Soc. 79, 285–299.

Fritsch, J.M., Carbone, R.E., 2004. Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Am. Meteorol. Soc. 85, 955–966.

Gallus Jr, W.A., Segal, M., 2001. Impact of improved initialization of mesoscale features on convective system rainfall in 10-km Eta simulations. Weather Forecast. 16, 680–696.

Gerard, L., 2007. An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Q. J. R. Meteorol. Soc. J. Atmospheric Sci. Appl. Meteorol. Phys. Oceanogr. 133, 711–730.

Gofa, F., Pytharoulis, I., Andreadis, T., Papageorgiou, I., Fragkouli, P., Louka, P., Avgoustoglou, E., Tyrli, V., 2008. Evaluation of the operational numerical weather forecasts of the Hellenic National Meteorological Service, in: Proceedings of the 9th Conference on Meteorology, Climatology and Atmospheric Physics, Thessaloniki, Greece. pp. 28–31.

Grell, G.A., 1993. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 121, 764–787.

Grell, G.A., Dudhia, J., Stauffer, D.R., 1994. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5).

Grell, G.A., Dévényi, D., 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 29, 38–1.

Grell, G.A., Freitas, S.R., 2014. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos Chem Phys 14, 5233–5250.

Hess, P., Brezovsky, H., 1977. Katalog der Grosswetterlagen Europas (1881–1976) Berichte des Deutschen Wetterdienstes, Nr. 113 Bd. 15. Selbstverlag Deutchen Wetterdienstes Offenb. Am Main.

Hong, S.-Y., Dudhia, J., 2012. Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Am. Meteorol. Soc. 93, ES6–ES9.

Hoskins, B.J., McIntyre, M.E., Robertson, A.W., 1985. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877–946.

Houssos, E.E., Bartzokas, A., 2006. Extreme precipitation events in NW Greece. Adv. Geosci. 7, 91–96.

Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., Collins, W.D., 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmospheres 113.

Janjić, Z.I., 1994. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 927–945.

Jansa, A., Garcia-Moya, J.A., Rodriguez, E., 1991. Numerical experiments on heavy rain and Mediterranean cyclones. WMO/TD 420, 37–47.

Jansa, A., Genoves, A., Garcia-Moya, J.A., 2000. Western Mediterranean cyclones and heavy rain. Part 1: Numerical experiment concerning the Piedmont flood case. Meteorol. Appl. 7, 323–333.

Jansa, A., Alpert, P., Arbogast, P., Buzzi, A., Ivancan-Picek, B., Kotroni, V., Llasat, M.C., Ramis, C., Richard, E., Romero, R., 2014. MEDEX: a general overview. Nat. Hazards Earth Syst. Sci. 14, 1965–1984.

Kain, J.S., Fritsch, J.M., 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmospheric Sci. 47, 2784–2802.

Kain, J.S., Fritsch, J.M., 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme, in: The Representation of Cumulus Convection in Numerical Models. Springer, pp. 165–170.

Kain, J.S., Baldwin, M.E., Weiss, S.J., 2003. Parameterized updraft mass flux as a predictor of convective intensity. Weather Forecast. 18, 106–116.

Kain, J.S., 2004. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181.

Karacostas, T.S., 1984. The design of the Greek national hail suppression program, in: Proc. 9th Conf. on Weather Modif. pp. 26–27.

Karacostas, T.S., Flocas, A.A., Flocas, H.A., Kakaliagou, O., Rizou, C., 1992. A study of the synoptic situations over the area of Eastern Mediterranean, in: Proceedings, 1st Greek Conf. On Meteorology-Climatology-Physics of the Atmosphere. pp. 21–23.

Karacostas, T., Kartsios, S., Pytharoulis, I., Tegoulias, I., Bampzelis, D., 2018. Observations and modelling of the characteristics of convective activity related to a potential rain enhancement program in central Greece. Atmospheric Res. 208, 218–228.

Karagiannidis, A.F., Karacostas, T., Maheras, P., Makrogiannis, T., 2012. Climatological aspects of extreme precipitation in Europe, related to mid-latitude cyclonic systems. Theor. Appl. Climatol. 107, 165–174.

Kartsios, S., Karacostas, T.S., Pytharoulis, I., Dimitrakopoulos, A.P., 2017. The Role of Heat Extinction Depth Concept to Fire Behavior: An Application to WRF-SFIRE Model, in: Perspectives on Atmospheric Sciences. Springer, pp. 137–142.

Kassomenos, P., Flocas, H.A., Lykoudis, S., Petrakis, M., 1998. Analysis of Mesoscale Patterns in Relation to Synoptic Conditionsover an Urban Mediterranean Basin. Theor. Appl. Climatol. 59, 215–229.

Katragkou, E., García Díez, M., Vautard, R., Sobolowski, S.P., Zanis, P., Alexandri, G., Cardoso, R.M., Colette, A., Fernández Fernández, J., Gobiet, A., 2015. Regional climate hindcast simulations within EURO-

CORDEX: evaluation of a WRF multi-physics ensemble.

Koletsis, I., Kotroni, V., Lagouvardos, K., Soukissian, T., 2016. Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes. Renew. Sustain. Energy Rev. 60, 234–245.

Kostopoulou, E., Jones, P.D., 2007. Comprehensive analysis of the climate variability in the eastern Mediterranean. Part I: map-pattern classification. Int. J. Climatol. 27, 1189–1214.

Kotroni, V., Lagouvardos, K., 2001. Precipitation forecast skill of different convective parameterization and microphysical schemes: application for the cold season over Greece. Geophys. Res. Lett. 28, 1977–1980.

Kotroni, V., Lagouvardos, K., 2004. Evaluation of MM5 high-resolution real-time forecasts over the urban area of Athens, Greece. J. Appl. Meteorol. 43, 1666–1678.

Kuo, H.-L., 1974. Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmospheric Sci. 31, 1232–1240.

Lamb, H.H., 1972. British Isles weather types and a register of the daily sequence of circulation patterns 1861-1971. Her Majesty’s stationery office.

Limsakul, A., Singhruck, P., 2016. Long-term trends and variability of total and extreme precipitation in Thailand. Atmospheric Res. 169, 301–317.

Maheras, P., Patrikas, I., Karacostas, T., Anagnostopoulou, C., 2000. Automatic classification of circulation types in Greece: methodology, description, frequency, variability and trend analysis. Theor. Appl.

Climatol. 67, 205–223.

Maheras, P., Tolika, K., Anagnostopoulou, C., Vafiadis, M., Patrikas, I., Flocas, H., 2004. On the relationships between circulation types and changes in rainfall variability in Greece. Int. J. Climatol. J. R. Meteorol. Soc. 24, 1695–1712.

Mahoney, K.M., Lackmann, G.M., 2006. The sensitivity of numerical forecasts to convective parameterization: A case study of the 17 February 2004 East Coast cyclone. Weather Forecast. 21, 465–488.

Mapes, B.E., 1997. Equilibrium vs. activation control of large-scale variations of tropical deep convection, in: The Physics and Parameterization of Moist Atmospheric Convection. Springer, pp. 321–358.

Mass, C.F., Ovens, D., Westrick, K., Colle, B.A., 2002. Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull. Am. Meteorol. Soc. 83, 407–430.

Matsangouras, I.T., Nastos, P.T., Pytharoulis, I., 2016. Study of the tornado event in Greece on March 25, 2009: Synoptic analysis and numerical modeling using modified topography. Atmospheric Res. 169, 566–583.

Mazarakis, N., Kotroni, V., Lagouvardos, K., Argiriou, A.A., 2008. Storms and lightning activity in Greece during the warm periods of 2003–06. J. Appl. Meteorol. Climatol. 47, 3089–3098.

Mazarakis, N., Kotroni, V., Lagouvardos, K., Argiriou, A.A., 2009. The sensitivity of numerical forecasts to convective parameterization during the warm period and the use of lightning data as an indicator for convective occurrence. Atmospheric Res. 94, 704–714.

Mazarakis, N., Kotroni, V., Lagouvardos, K., Argiriou, A.A., Anderson, C.J., 2011. The sensitivity of warm period precipitation forecasts to various modifications of the Kain-Fritsch Convective Parameterization scheme. Nat. Hazards Earth Syst. Sci. 11, 1327–1339.

Michailidou, C., Maheras, P., Arseni-Papadimititriou, A., Kolyva-Machera, F., Anagnostopoulou, C., 2009. A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, part II: discriminant analysis. Theor. Appl. Climatol. 97, 179–194.

Molinari, J., Dudek, M., 1992. Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Weather Rev. 120, 326–344.

Muller, R.A., 1977. A synoptic climatology for environmental baseline analysis: New Orleans. J. Appl. Meteorol. 16, 20–33.

Nastos, P.T., Zerefos, C.S., 2007. On extreme daily precipitation totals at Athens, Greece. Adv. Geosci. 10, 59–66.

Nastos, P.T., Zerefos, C.S., 2008. Decadal changes in extreme daily precipitation in Greece. Adv. Geosci. 16, 55–62.

Pakalidou, N., Karacosta, P., 2018. Study of very long-period extreme precipitation records in Thessaloniki, Greece. Atmospheric Res. 208, 106–115.

Papadopoulos, A., Katsafados, P., 2009. Verification of operational weather forecasts from the POSEIDON system across the Eastern Mediterranean. Nat. Hazards Earth Syst. Sci. 9, 1299–1306.

Papagiannaki, K., Lagouvardos, K., Kotroni, V., 2013. A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001–2011. Nat. Hazards Earth Syst. Sci. 13, 727–736.

Partal, T., Kahya, E., 2006. Trend analysis in Turkish precipitation data. Hydrol. Process. 20, 2011–2026.

Pissimanis, D.K., Notaridou, V.A., Spyrou, C.K., 2006. On the main characteristics of synoptic weather conditions associated with thunderstorm activity during the months of July and August in the city of

Thessaloniki (Northern Greece). Theor. Appl. Climatol. 83, 153–167.

Pytharoulis, I., Karagiannidis, A.F., Brikas, D., Katsafados, P., Papadopoulos, A., Mavromatidis, E., Kotsopoulos, S., Karacostas, T.S., 2010. Sensitivity of WRF precipitation on microphysical and boundary layer parameterizations during extreme events in Eastern Mediterranean, in: 12th Plinius Conference on Mediterranean Storms, Held September 1-4, 2010 in Corfu Island, Greece. Http://Meetings. Copernicus. Org/Plinius12, Id. Plinius12-76.

Pytharoulis I., I. Tegoulias, S. Kotsopoulos, D. Bampzelis, Th. Karacostas and E.Katragkou, 2014a: Evaluation of the operational numerical weather predictions of

the WaveForUs project. Proceedings of the 12th international conference on Meteorology, Climatology and Atmospheric Physics (COMECAP2014), 28-31 May, Heraklion, Crete, Greece, Vol. 3, 96-101

Pytharoulis I., I. Tegoulias, S. Kotsopoulos, D. Bampzelis, E. Katragkou and T. Karacostas, 2014b: A high-resolution numerical weather prediction system for Greece: model setup and performance analysis. Proceedings of the 10th International Congress of the Hellenic Geographical Society, 22-24 October, Thessaloniki, Greece, 135-145

Pytharoulis I., I. Tegoulias, S. Kotsopoulos, D. Bampzelis, T. Karacostas and E. Katragkou, 2015: Verification of the operational high-resolution WRF forecasts produced by WAVEFORUS project. 16th Annual WRF Users’ Workshop, 15-19 June, Boulder, Colorado, USA

Pytharoulis, I., Kotsopoulos, S., Tegoulias, I., Kartsios, S., Bampzelis, D., Karacostas, T., 2016. Numerical modeling of an intense precipitation event and its associated lightning activity over northern Greece. Atmospheric Res. 169, 523–538.

Pytharoulis, I., 2018. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmospheric Res. 208, 167–179.

Randall, D.A., Abeles, J.A., Corsetti, T.G., 1985. Seasonal simulations of the planetary boundary layer and boundary-layer stratocumulus clouds with a general circulation model. J. Atmospheric Sci. 42, 641–676.

Roberts, N.M., Lean, H.W., 2008. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 136, 78–97.

Ruiz-Leo, A.M., Hernández, E., Queralt, S., Maqueda, G., 2013. Convective and stratiform precipitation trends in the Spanish Mediterranean coast. Atmospheric Res. 119, 46–55.

Schwartz, C.S., Kain, J.S., Weiss, S.J., Xue, M., Bright, D.R., Kong, F., Thomas, K.W., Levit, J.J., Coniglio, M.C., Wandishin, M.S., 2010. Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Weather Forecast. 25, 263–280.

Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., 2012. Changes in climate extremes and their impacts on the natural physical environment.

Sindosi, O.A., Batzokas, A., Kotroni, V., Lagouvardos, K., 2010. A study of MM5 model skill on precipitation over Epirus by using various horizontal resolutions and cumulus parameterization schemes, in: Proceedings of the 10th Hellenic Conference on Meteorology, Climatology and Atmospheric Physics, University of Patra, Patra. pp. 158–168.

Sindosi, O.A., Bartzokas, A., Kotroni, V., Lagouvardos, K., 2012. Verification of precipitation forecasts of MM5 model over Epirus, NW Greece, for various convective parameterization schemes. Nat. Hazards Earth Syst. Sci. 12, 1393–1405.

Sioutas, M., Rudolph, R.C., 1993. Z–R relationships for summertime convective rainfall in northern Greece, in: 4th International Conference on Precipitation, Sponsored by NASA, NOAA, The University of Iowa and AGU, AMS, Iowa City, April. pp. 26–28.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G., 2008. A description of the advanced research WRF Version 3, NCAR technical note, Mesoscale and Microscale Meteorology Division. Natl. Cent. Atmospheric Res. Boulder Colo. USA.

Stensrud, D.J., 1996. Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmospheric Sci. 53, 3503–3527.

Stensrud, D.J., Anderson, J.L., 2001. Is midlatitude convection an active or a passive player in producing global circulation patterns? J. Clim. 14, 2222–2237.

Stolaki, S., Pytharoulis, I., Karacostas, T., 2012. A Study of Fog Characteristics Using a Coupled WRF–COBEL Model Over Thessaloniki Airport, Greece. Pure Appl. Geophys. 169, 961–981. https://doi.org/10.1007/s00024-011-0393-0

Storm, B., Dudhia, J., Basu, S., Swift, A., Giammanco, I., 2009. Evaluation of the weather research and forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 12, 81–90.

Tolika, K., Maheras, P., Anagnostopoulou, C., 2017. The exceptionally wet year of 2014 over Greece: a statistical and synoptical-atmospheric analysis over the region of Thessaloniki. Theor. Appl. Climatol. 1–13.

Tribbia, J.J., 1991. The rudimentary theory of atmospheric teleconnections associated with ENSO. Cambridge University Press Cambridge, UK.

Tymvios, F., Charalambous, D., Michaelides, S., Lelieveld, J., 2018. Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF-ARW model. Atmospheric Res. 208, 45–59.

Wang, W., Bruyère, C., Duda, M., Dudhia, J., Gill, D., Kavulich, M., Keene, K., Lin, H.C., Michalakes, J., Rizvi, S., 2012. User’s Guide for the Advanced Research WRF (ARW) Modeling System Version 3.4, Mesoscale and Microscale Meteorology Division. Natl. Cent. Atmospheric Reserach Boulder.

Weiss, S.J., Pyle, M.E., Janjic, Z., Bright, D.R., Kain, J.S., DiMego, G.J., 2008. The operational high resolution window WRF model runs at NCEP: Advantages of multiple model runs for severe convective weather forecasting, in: Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc. P.

Weusthoff, T., Ament, F., Arpagaus, M., Rotach, M.W., 2010. Assessing the benefits of convection-permitting models by neighborhood verification: Examples from MAP D-PHASE. Mon. Weather Rev. 138, 3418–3433.

Xoplaki, E., Luterbacher, J., Burkard, R., Patrikas, I., Maheras, P., 2000. Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during wintertime. Clim. Res. 14, 129–146.

Yair, Y., Lynn, B., Price, C., Kotroni, V., Lagouvardos, K., Morin, E., Mugnai, A., Llasat, M. del C., 2010. Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and

Forecasting (WRF) model dynamic and microphysical fields. J. Geophys. Res. Atmospheres 115.

Yu, X., Lee, T.-Y., 2010. Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus Dyn. Meteorol. Oceanogr. 62, 617–632.

Zhu, H., Smith, R.K., 2002. The importance of three physical processes in a minimal three-dimensional tropical cyclone model. J. Atmospheric Sci. 59, 1825–1840.

Zilitinkevich, S., 1995. Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows, Air Pollution III, Vol. 1. Air Pollution Theory and Simulation, eds. H. Power, N.

Moussiopoulos & CA Brebbia, Comp. Mech. Publ., Southampton, рр.-53-60.

Διαδίκτυο

http://www.dtcenter.org/wrf-nmm/users

http://www.meted.ucar.edu

http://www.mmm.ucar.edu

http://www.wrf-model.org

http://www.cawcr.gov.au/projects/verification/#Contingency_table

http://www.cawcr.gov.au/projects/verification/BootstrapCIs.html

http://weather.uwyo.edu/upperair/sounding.html

https://dtcenter.org/met/users/index.php

http://glossary.ametsoc.org/wiki/Stability_index

https://www.wunderground.com

http://www.ogimet.com/metars.phtml.en

http://www.jma.go.jp


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.