[Εξώφυλλο]

Μελέτη της θερμοκρασίας του αέρα στην περιοχή της Ευρώπης την τελευταία χιλιερίδα. = Study of the European surface temperature over the last millennium.

Αλέξανδρος Φιλίδης

Περίληψη


Σκοπός της διατριβής ήταν η αξιολόγηση του μοντέλου MPI – ESM (Max Planck Institute – Earth System Model) ως προς την προσομοίωση των θερμοκρασιών αέρα επιφανείας στην Ευρώπη την τελευταία χιλιετηρίδα (1000-2000μ.Χ.). Δόθηκε έμφαση στην αναγνώριση της Θερμής Μεσαιωνικής Περιόδου και της Μικρής Παγετώδους Περιόδου. Ακόμη, μελετήθηκε η επίδραση του ανθρωπογενούς παράγοντα (Θερμοκηπικά αέρα – Χρήσεις γης), στη θερμοκρασία για την περίοδο 1860–2000μ.Χ. Στη συνέχεια, υπολογίστηκαν οι θερμοκρασιακές διαφορές με περίοδο αναφοράς το διάστημα 1951-2000. Επίσης, εξετάστηκε η εποχιακή εξάρτηση και διακύμανση των θερμοκρασιών. Επιπλέον, χωρίστηκε η Ευρώπη σε έξι (6) υποπεριοχές με βάση τη στατιστική μέθοδο PCA με κανονικοποιημένη περιστροφή. Υπολογίστηκε η διακύμανση των θερμοκρασιακών διαφορών για κάθε υποπεριοχή κατά την περασμένη χιλιετία. Στη συνέχεια, υπολογίστηκε η κατανομή των ακραίων ετήσιων τιμών της θερμοκρασίας για κάθε υποπεριοχή. Τέλος, έγινε συσχέτιση των αποτελεσμάτων με ιστορικό υλικό (πίνακες ζωγραφικής, φωτογραφίες, κείμενα) που αφορά σημαντικά καταγεγραμμένα κλιματικά γεγονότα.  Τα αποτελέσματα έδειξαν ότι η δεκαετία 1981-90 ήταν η θερμότερη της περασμένης χιλιετίας και ότι η σύγχρονη θέρμανση δεν μπορεί να αποδοθεί χωρίς την επίδραση του ανθρωπογενούς παράγοντα. Επίσης, φάνηκε ότι η ΘΜΠ αφορά κυρίως τη Β. Ηπειρωτική Ευρώπη το 13ο και 14ο αιώνα και έχει πιο έντονο σήμα το χειμώνα, ενώ η ΜΠΠ εμφανίζεται στην ανατολική Ευρώπη το 19ο αιώνα με πιο έντονο το σήμα να είναι και πάλι στο χειμώνα. Βρέθηκε επίσης σημαντική εποχιακή εξάρτιση. Για παράδειγμα παρατηρήθηκαν πολύ θερμά καλοκαίρια στα μέσα της χιλιετίας στην ηπειρωτική Ευρώπη. Τελικά, το μοντέλο δίνει ικανοποιητικά αποτελέσματα για τη θερμοκρασία του αέρα επιφανείας την περασμένη χιλιετία στην Ευρώπη και ο ανθρώπινος παράγοντας συνέβαλε καθοριστικά στη διαμόρφωση του θερμοκρασιακού καθεστώτος τα τελευταία 150 χρόνια της περασμένης χιλιετίας.

The aim of the present thesis was the evaluation of the MPI – ESM (Max Planck Institute – Earth System Model) model regarding the simulation of the surface air temperature in Europe during the last millennium (1000-2000 A.D.). Emphasis was given on the identification of the Medieval Warm Period and the Little Ice Age. Additionally, the role of the human factor (Greenhouse gases – Land use) on the surface air temperature for the period 1860-2000 A.D. Furthermore, the temperature biases were calculated (reference period 1951-2000) and the seasonal contribution and variance was studied. Moreover, Europe was divided into six (6) sub-regions using the PCA statistical method (Varimax normalised). The temperature variance for each sub-region was calculated as well as the allocation of the extreme yearly temperature values during the last thousand years. Lastly, the results were correlated and compared with various historical data (paintings, photographs, texts) regarding some important climatic phenomena. According to the results, the period 1981-90 was the warmest decade of the last millennium and the warmth in the modern age can not be simulated without taking account the anthropogenic factor. The MWP is most apparent in the north continental parts of Europe and it has a strong signal in the winter season during the 13th and 14th centuries. The LIA period can be seen in east Europe during the 19th century especially in winter. Also, there is a strong seasonal dependency. More specifically, intense summers were recorded in the continental part of Europe during the middle of the last millennium. To conclude, the model seems to show satisfactory results about the surface air temperature in Europe in the last one thousand years and the human factor contributed substantially in the warming that is being observed in the modern age.

Πλήρες Κείμενο:

PDF

Αναφορές


Ahmad W, Fatima A, Awan UK and Anwar A (2014) Analysis of long term meteorological trends in the middle and lower Indus Basin of Pakistan-A non-parametric statistical approach. Global and Planetary Change, 122, 282–291. doi.org/10.1016/j.gloplacha.2014.09.007

Anders Moberg, Sonechki DM (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433(February), 613–617. doi.org/10.1038/nature03298.1.

Baehr J, Fröhlich K, Botzet M, Domeisen DIV, Kornblueh L, Notz D, … Müller WA, (2015) The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model, Climate Dynamics, 44(9–10), 2723–2735. doi.org/10.1007/s00382-014-2399-7

Betts RA (2001) Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmospheric Science Letters, 2(1–4), 39–51. doi.org/10.1006/ASLE.2001.0023

Bothe O, Evans M, Donado LF, Bustamante EG, Gergis J, Gonzalez-Rouco JF, … Zorita E. (2015) Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium, Climate of the Past, 11(12), 1673–1699. doi.org/10.5194/cp-11-1673-2015

Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, … Zhao Y (2012) Evaluation of climate models using palaeoclimatic data, Nature Climate Change, 2(6), 417–424. doi.org/10.1038/nclimate1456

Bradley RS and Jones P (1993) ‘Little Ice Age’ summer temperature variations: their nature and relevance to recent global warming trends. The Holocene, 3, 367–376. doi.org/10.1177/095968369300300409

Bradley R (2000) 1000 Years of Climate Change. Science, 288(5470), 1353–1355. doi.org/10.1126/science.288.5470.1353

Bradley RS (2003) CLIMATE CHANGE: Climate in Medieval Time. Science, 302(5644), 404–405. doi.org/10.1126/science.1090372

Brázdil R, Pfister C, Wanner H, Von Storch H, and Luterbacher J (2005) Historical climatology in Europe - The state of the art. Climatic Change, 70(3), 363–430. doi.org/10.1007/s10584-005-5924-1

Briffa KR, Jones PD, Schweingruber FH, Karlén W and Shiyatov SG (1996). Tree ring variables as proxy climate indicators: Problems with low frequency signals. Climatic Variations and Forcing Mechanisms of the Last 2000 Years. doi.org/10.1007/978-3-642-61113-1_2

Briffa KR (2000) Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quaternary Science Reviews, 19(1–5), 87–105. doi.org/10.1016/S0277-3791(99)00056-6

Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG and Vaganov, E. A. (2001). Low-frequency temperature variations from a nothern tree ring density network. Journal of Geophysical Research, 106(D3), 2929–2941. doi.org/10.1029/2000JD900617

Camuffo D (1987) Freezing of the venetian lagoon since the 9th century A.D. IN, 10, 43–66. doi.org/10.1007/BF00140556

Crowley T (2000) Causes of climate change over the past 1000 years. Science, 289(5477), 270–277. doi.org/10.1126/science.289.5477.270

Crowley TJ and Lowery TS (2000) How Warm Was the Medieval Warm Period ?, 29(1), 51–54. doi.org/10.1579/0044-7447-29.1.51

Davin EL, de Noblet-Ducoudré N and Friedlingstein P (2007) Impact of land cover change on surface climate: Relevance of the radiative forcing concept. Geophysical Research Letters, 34(13), n/a-n/a. doi.org/10.1029/2007GL029678

Davis BAS, Brewer S, Stevenson AC, Guiot J, Allen J, Almqvist-Jacobson H, … Zernitskaya VP (2003). The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 22(15–17), 1701–1716. doi.org/10.1016/S0277-3791(03)00173-2

Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, … Zhang X (2007) Couplings Between Changes in the Climate System and Biogeochemistry. Climate Change 2007: The Physical Science Basis, 21(7), 499–587

Drapela K and Drapelova I (2011) Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bily Kriz (Beskydy Mts., the Czech Republic) 1997--2010. Beskydy, 4(2), 133–146. ISSN : 1803-2451

Esdaile C (2008) Recent Writing on Napoleon and His Wars. The Journal of Military History, 73(1), 209–220. doi.org/10.1353/jmh.0.0155

Esper J, Cook ER and Schweingruber FH (2002) Low-Frequency Signals quently Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability, 295(5563), 2250–2253. doi.org/10.1126/science.1066208

Fairbridge RW (1987) Climate variation, historical record, The Encyclopedia of Climatology,Van Nostrand Reinhold Company, New York, 305– 323.

Fay R (1958) Some Variations in European Climatic Temperature. Journal of the Atmospheric Sciences, 467-474. doi.org/10.1175/1520-0469(1958)015<0467:SVIECT>2.0.CO;2

Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, … Zeng N (2006) Climate–Carbon Cycle Feedback Analysis: Results from the C 4 MIP Model Intercomparison. Journal of Climate, 19(14), 3337–3353. doi.org/10.1175/JCLI3800.1

Fritts HC and Swetnam TW (2013) Relationships among beech bark disease, climate, radial growth response and mortality of American beech in northern Maine, USA. Forest Ecology and Management, 42(3), 199–212. doi.org/10.1111/j.1439-0329.2011.00742.x

Galloway N, Schlesinger WH, Ii HL, Schnoor L and Tg N (1995) Nitrogen fixation: Anthropogenic enhancement-environmental response, Global Biogeochemical Cycles, 9(2), 235–252. doi.org/10.1029/95GB00158

Geirsdóttir Á, Hardardóttir J and Andrews JT (2000) Late-Holocene terrestrial glacial history of Miki and I.C. Jacobsen Fjords, East Greenland. Holocene, 10(1), 123–134. doi.org/10.1191/095968300666213169

Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, … Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison

Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572–597. doi.org/10.1002/jame.20038

Goosse H, Arzel O, Luterbacher J, Mann ME, Renssen H, Riedwyl N, … Wanner H (2006) The origin of the European “Medieval Warm Period.” Climate of the Past, 2(2), 99–113. doi.org/10.5194/cp-2-99-2006

Goosse H, Renssen H, Timmermann A and Bradley RS (2005) Internal and forced climate variability during the last millennium: A model-data comparison using ensemble simulations. Quaternary Science Reviews, 24(12–13), 1345–1360. doi.org/10.1016/j.quascirev.2004.12.009

Grove J (1988) The Little Ice Age, Methuen & Co. Ltd, Routledge, Chapman and Hall, Inc. 29 West 35th Street, New York NY 10001, 1-12. ISBN-10: 0415014492

Guiot J, Nicault A, Rathgeber CBK, Edouard JL, Guibal F, Pichard G and Till C. (2005) Last - millennium summer - temperature variations in western Europe based on proxy data. The Holocene, 15(4), 489–500. doi.org/10.1191/0959683605hl819rp

Hargreaves JC, Annan JD, Ohgaito R, Paul A and Abe-Ouchi A (2013) Skill and reliability of climate model ensembles at the last glacial maximum and mid-holocene. Climate of the Past, 9(2), 811–823. doi.org/10.5194/cp-9-811-2013

Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD and New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research Atmospheres, 113(20). doi.org/10.1029/2008JD010201

Hibler WD (1979) A Dynamic Thermodynamic Sea Ice Model. Journal of Physical Oceanography, 815-846. doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2

Holzhauser H, Magny M and Zumbühl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene, 15(6), 789–801. doi.org/10.1191/0959683605hl853ra

Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus, Series B: Chemical and Physical Meteorology,

(2), 378–390. doi.org/10.1034/j.1600-0889.2003.01450.x

Hughes MK and Diaz HF (1994a) The Medieval Warm Period (Vol. 3). doi.org/10.1007/978-94-011-1186-7

Hughes MK and Diaz HF (1994b) The Medieval Warm Period (Vol. 3). doi.org/10.1007/978-94-011-1186-7

Ingram MJ, Underhill DJ and Wigley TML (1978) Historical Climatology. Nature, (c), 1–4. doi.org/10.15713/ins.mmj.3

Jansen E, Overpeck J, Briffa KR, Duplessy JC, Joos F, Masson-Delmotte V, … Zhang D (2007) Paleoclimate. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 433–497. doi.org/10.2753/JES1097-203X330403

Jones PD, Briffa KR, Barnett TP and Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: Interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene, 8(4), 455–471. doi.org/10.1191/095968398667194956

Jones PD, Briffa KR and Osborn TJ (2003) Changes in the Northern Hemisphere annual cycle: Implications for paleoclimatology? Journal of Geophysical Research, 108(D18), 4588. doi.org/10.1029/2003JD003695

Jones PD, Briffa KR, Osborn TJ, Lough JM, Van Ommen TD, Vinther BM, … Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene, 19(1), 3–49. doi.org/10.1177/0959683608098952

Jones PD and Mann ME (2004) Climate over past mellinia. Reviews of Geophysics, 42(2003), 1–42. doi.org/10.1029/2003RG000143.CONTENTS

Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, … Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. Journal of Climate, 19(16), 3952–3972. doi.org/10.1175/JCLI3827.1

Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, … Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Climate of the Past, 6(5), 723–737. doi.org/10.5194/cp-6-723-2010

Karmeshu N (2012) Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the Northeastern United States. Mausam, 66(1), 1–6.

Lamb HH (1977) Climate : Present , Past and Future, Vol 2, Ch III & IV

Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N and Teng H (2013) Last millennium climate and its variability in CCSM4. Journal of Climate, 26(4), 1085–1111. doi.org/10.1175/JCLI-D-11-00326.1

Laskar J and Boudin F (1993): Orbital, precessional, and insolation quantities for the earth from -20 myr to +10 myr. Astronomy and Astrophysics, 270, 522-533.

Lott BF and Miller MJ (1997). A new subgrid‐scale orographic drag parametrization: Its formulation and testing, Quarterly Journal of the Royal Meteorological Society, 101–127. doi.org/10.1002/qj.49712353704

Lott F (1999) Alleviation of Stationary Biases in a GCM through a Mountain Drag Parameterization Scheme and a Simple Representation of Mountain Lift Forces. Monthly Weather Review, 127(5), 788–801. doi.org/10.1175/1520-0493(1999)127<0788:AOSBIA>2.0.CO;2

Luterbacher J, Dietrich D, Xoplaki E, Grosjean M and Wanner H (2004) European Seasonal and Annual Temperature Variability, Trends, and Extremes since 1500. Science, 303(5663), 1499–1503. doi.org/10.1126/science.1093877

Man W, Zhou T and Jungclaus JH (2014) Effects of large volcanic eruptions on global summer climate and east asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations. Journal of Climate, 27(19), 7394–7409. doi.org/10.1175/JCLI-D-13-00739.1

Manley G (1971) 1684: The coldest winter in the English instrumental record, 1435, 133–136. doi.org/10.1002/wea.788

Mann ME (2006) Climate changes over the past millennium: Relationships with Mediterranean climates. Nuovo Cimento Della Societa Italiana Di Fisica C, 29(1), 73–80. doi.org/10.1393/ncc/i2005-10223-1

Mann ME, Bradley RS and Hughes MK (1999) Northern Hemisphere temperatures during the past millennium. Climate Change: Evaluating Recent and Future Climate Change, 26(6), 759–762. doi.org/10.1029/1999GL900070

Mann ME, Gille E, Overpeck J, Gross W, Bradley RS, Keimig FT and Hughes MK (2000) Global Temperature Patterns in Past Centuries: An Interactive Presentation. Earth Interactions, 4(4), 1–1. doi.org/10.1175/1087-3562(2000)004<0001:GTPIPC>2.3.CO;2

Mann ME and Jones PD (2003) Global surface temperatures over the past two millennia. Geophysical Research Letters, 30(15), 15–18. doi.org/10.1029/2003GL017814

Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S and Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105(36), 13252–13257. doi.org/10.1073/pnas.0805721105

Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, … Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957), 1256–1260. doi.org/10.1126/science.1177303

Marsland SJ, Haak H, Jungclaus JH, Latif M and Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5(2), 91–127. doi.org/10.1016/S1463-5003(02)00015-X

Mauri A, Davis BAS, Collins PM and Kaplan JO (2014) The influence of atmospheric circulation on the mid-Holocene climate of Europe: A data-model comparison. Climate of the Past, 10(5), 1925–1938. doi.org/10.5194/cp-10-1925-2014

Mauri A, Davis BAS, Collins PM and Kaplan JO (2015) The climate of Europe during the Holocene: A gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews, 112, 109–127. doi.org/10.1016/j.quascirev.2015.01.013

Menzel A and Fabian P (1999) Growing season extended in Europe. Nature, 397(6721), 659. doi.org/10.1038/17709

Obukhov AM, (1947) Statistically homogeneous fields on a sphere. Uspethi Mathematicheskikh Nauk, 2, 196–198.

Osborn, TJ and Briffa KR (2006) The Spatial Extent od 20th-Century Warmth in the Context of the Past 1200 Years. Science, 311(5762), 847–851. doi.org/10.1126/science.1120514

Owens MJ, Lockwood M, Hawkins E, Usoskin I, Jones GS, Barnard L, … Fasullo J (2017) The Maunder minimum and the Little Ice Age: an update from recent reconstructions and climate simulations. Journal of

Space Weather and Space Climate, 7, A33. doi.org/10.1051/swsc/2017034

Pongratz J, Reick C, Raddatz T and Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochemical Cycles, 22(3). doi.org/10.1029/2007GB003153

Pfister C (2001) Klimawandel in der geschichte Europas: zur entwicklung und zum potenzial der historischen klimatologie. Österreichische Zeitschrift Für Geschichtswissenschaften : ÖZG, 12(2), 7–43.

Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, … Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Climate Dynamics, 29(6), 565–574. doi.org/10.1007/s00382-007-0247-8

Repapis CC, Schuurmans CJE, Zerefos CS and Ziomas J (1989) Theoretical and Applied Climatoiogy ©. Geographical, 217, 213–217.

Rodrigo FS, Esteban-Parra MJ and Castro-Diez Y (1998) On the Use of the Jesuit Order Private Correspondence Records in Climate Reconstructions: A Case Study From Castille (Spain) for 1634-1648 A.D., 257–262. doi.org/10.1023/A:1005316118817

Roeckner E et al. (2003) The atmospheric General Circulation Model -Model Description. Journal of Geophysical Research Atmospheres. doi.org/10.1029/2010JD014036

Sato M, Hansen JE, McCormick MP and Pollack JB (1993). Stratospheric Aerosol Optical Depths, 1850-1990, Journal of Geophysical research, 22987-22994. doi.org/10.1029/93JD02553

Shindell DT, Schmidt GA, Mann ME, Rind D, Shindell DT, Schmidt GA, … Waple A (2016) Solar Forcing of Regional Climate Change during the Maunder Minimum, Science, 2149–2152. doi.org/10.1126/science.1064363

Skeie RB, Berntsen TK, Myhre G, Tanaka K, Kvaleväg MM and Hoyle CR (2011) Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmospheric Chemistry and Physics, 11827–11857. doi.org/10.5194/acp-11-11827-2011

Sonali P and Nagesh Kumar D (2013) Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, 476, 212–227. doi.org/10.1016/j.jhydrol.2012.10.034

Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, … Roeckner E (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5(2), 146–172. doi.org/10.1002/jame.20015

Stothers RB (1984) The Great Tambora eruption in 1815 and its aftermath. Science, 224(4654), 1191–1198. doi.org/10.1126/science.224.4654.1191

Tanre D, Geleyn JF and Slingo JM (1984) First results of the introduction of an advanced aerosol-radiation interaction in the ecmwf low resolution global model. In: Aerosols and Their Climatic Effects, edited by

Gerber H and Deepak A, 133

Tiedtke M (1989) A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models Monthly Weather Review. doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

Von Storch H and Stehr N (1997) ‘The case for the social sciences in climate research’, Ambio 26, 66–71, ISSN 0344-9629

Wallace JM and Hobbs PV (2006) Atmospheric science, an introductory survey. Analysis (Vol. 7). doi.org/10.1007/s007690000247

Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, … Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews, 27(19–20), 1791–1828. doi.org/10.1016/j.quascirev.2008.06.013

Wetzel P, Maier-Reimer E, Botzet M, Jungclaus JH, Keenlyside N and Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. Journal of Climate, 19(16), 3973–3987. doi.org/10.1175/JCLI3828.1

Wilks DS (2011) Statistical methods in the atmospheric sciences. International Geophysics Series (Vol. 100). doi.org/0127519661

Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M and Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophysical Research Letters, 32(15), 2002–2005. doi.org/10.1029/2005GL023424

Yavuz V, Akcar N and Schlüchter C (2007) The frozen Bosphorus and its paleoclimatic implications based on a summary of the historical data. The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement, (January 2007), 633–649. doi.org/10.1007/978-1-4020-5302-3_26

Yu YS, Zou S and Whittemore D (1993) Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150(1), 61–80. doi.org/10.1016/0022-1694(93)90156-4

Yue S, Pilon P and Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1–4), 254–271. doi.org/10.1016/S0022-1694(01)00594-7

Zorita E (2005) Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophysical Research Letters, 32(8), L08707. doi.org/10.1029/2004GL021563

Zorita E, Von Storch H, Gonzalez-Rouco FJ, Cubasch U, Luterbacher J, Legutke S, … Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: Global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorologische Zeitschrift, 13(4), 271–289. doi.org/10.1127/0941-2948/2004/0013-0271

Zwiers FW and Zhang X (2003) Toward Regional-Scale Climate Change Detection. Journal of Climate, 16(5), 793–797. doi.org/10.1175/1520-0442(2003)016<0793:TRSCCD>2.0.CO;2

Zanon FS (1933) 'Fattori meteorologici straordinari in Venezia e nei dintorni ricordati dai cronisti', in G. Magfini (ed.), La Laguna di Venezia, Vol. Part. 2, Tome 3, Ferrari, Venice, 287-305.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.