[Εξώφυλλο]

Τεκτονικές δομές στο ηλιακό σύστημα. = Tectonic structures at the solar system.

Άννα-Μαρία Ν. Μπογιατζόγλου

Περίληψη


Η παρούσα εργασία έχει ως στόχο τον συνδυασμό επιστημονικών στοιχείων που έχουν συλλεχθεί από ερευνητές, σχετικά με την τεκτονική δραστηριότητα που παρουσιάζουν ορισμένα σώματα του Ηλιακού συστήματος, και συγκεκριμένα ο Άρης, η Αφροδίτη, ο Ερμής και η Ευρώπη, ενώ κατά την ανάλυσή τους χρησιμοποιούνται αναλογίες της Γης και της Σελήνης. Τα μοντέλα που  προκύπτουν για κάθε ένα από τα παραπάνω σώματα, μας δίνουν μια εικόνα σχετικά με τις ομοιότητες και τις διαφορές μεταξύ των ουράνιων σωμάτων. Οι διαφορές αυτές εντοπίζονται κυρίως
στις διεργασίες σχηματισμού των δομών παρά στη γεωμετρία των δομών. Αντίθέτως, τα σώματα αυτά φαίνονται να εμφανίζουν όμοια μορφολογικά χαρακτηριστικά τα οποία οφείλονται σε  παρόμοιους ή τελείως διαφορετικούς ενδογενείς και εξωγενείς παράγοντες. Με βάση τα στοιχεία που συλλέγονται προκύπτει η γεωλογική ιστορία και η πορεία εξέλιξης των πλανητών αυτών. Ιδιαίτερα σημαντικό ρόλο στην κατανόηση των παραπάνω, αλλά και στην εξαγωγή συμπερασμάτων με βάση τα δεδομένα που συλλέγονται από διαστημικά οχήματα, παίζουν οι τάσεις στις οποίες
οφείλονται οι διάφορες δομές και γι’ αυτό το λόγο γίνεται εκτενής αναφορά σε αυτές σε κάθε σχετικό κεφάλαιο. Φυσικά όλα τα παρακάτω αποτελούν ένα δείγμα των ευρημάτων της επιστημονικής κοινότητας, ενώ οι απόψεις διαφέρουν μεταξύ των ερευνητών, εξαιτίας των ασαφιών των μετρήσεων, των διαφορετικών μοντέλων που χρησιμοποιούνται ανά περίπτωση, και κυρίως, των διαφορών που  προκύπτουν από την σύγκριση των παραπάνω παρατηρήσεων στα σώματα του ηλιακού συστήματος και της Γης, στις οποίες στηρίζεται η πλειοψηφία των συμπερασμάτων. Ως εκ τούτου γίνεται σαφές, ότι είναι απαραίτητη η περεταίρω έρευνα και συλλογή πληροφοριών για την αποκωδικοποίηση των μηχανισμών λειτουργίας των ουράνιων σωμάτων.

The present thesis aims at combining scientific data collected by researchers on the tectonic activity of certain bodies of the solar system, and specifically on Mars, Venus, Mercury and Europa, while their analysis uses analogies of the Earth and the Moon. The models that emerge for each of the above bodies give us an insight into the similarities and differences between the celestial bodies. These differences are mainly found in the procedures that create the structures rather than the geometry of the structures. Instead, these bodies appear to exhibit similar morphological characteristics due to similar or totally different endogenous and exogenous factors. Based on the data collected, we have a better image for the geological history and the course of evolution of these planets. Particularly important in understanding the above, but also in drawing conclusions based on data collected from space vehicles, are the stresses due to which the structures are formed, and for this reason extensive reference is made to them in each relevant chapter. Of course, all of the following are just a sample of the findings of the scientific community, while the views differ among researchers because of the measurement uncertainties, the different models used on a case-by-case basis and, above all, the differences between the ratios on which the majority of the conclusions are based. It is therefore clear that further investigation and collection of information is needed to decode the mechanisms of celestial bodies.


Πλήρες Κείμενο:

PDF

Αναφορές


Anderson, R. C., Dohm, J. M., Golombek, M. P., Haldemann, A. F. C., Franklin, B. J., Tanaka, K. L., Peer, B. (2001). Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. Journal of Geophysical Research E: Planets, 106(E9), 20563–20585. https://doi.org/10.1029/2000JE001278

Anderson, R. C., Dohm, J. M., Haldemann, A. F. C., Pounders, E., Golombek, M., & Castano, A. (2008). Centers of tectonic activity in the eastern hemisphere of Mars. Icarus, 195(2), 537–546. https://doi.org/10.1016/j.icarus.2007.12.027

Basilevsky, A. T., & Head, J. W. (2000). Geologic units on Venus: Evidence for their global correlation. Planetary and Space Science, 48(1), 75–111. https://doi.org/10.1016/S0032-0633(99)00083-5

Carr, M. H., & Head, J. W. (2010). Geologic history of Mars. Earth and Planetary Science Letters, 294(3–4), 185–203. https://doi.org/10.1016/j.epsl.2009.06.042

Connors, C. (2001). Constraints on magnitudes of extension on Venus from slope measurements. Journal of Geophysical Research E: Planets, 106(E2), 3237–3260. https://doi.org/10.1029/2000JE001256

Flamini, E., Ori, G. G., di Pippo, S., & Osinsky, G. (2009). Exploring Mars and its terrestrial analogues. Planetary and Space Science, 57(5–6), 509. https://doi.org/10.1016/j.pss.2009.02.004

Hauber, E., Grott, M., & Kronberg, P. (2010a). Martian rifts: Structural geology and geophysics. Earth and Planetary Science Letters, 294(3), 393–410. https://doi.org/https://doi.org/10.1016/j.epsl.2009.11.005

Hauber, E., Grott, M., & Kronberg, P. (2010c). Martian rifts: Structural geology and geophysics. Earth and Planetary Science Letters, 294(3–4), 393–410. https://doi.org/10.1016/J.EPSL.2009.11.005

Hoppa, G., Greenberg, R., Tufts, B. R., Geissler, P., Phillips, C., & Milazzo, M. (2000). Distribution of strike-slip faults on Europa. Journal of Geophysical Research E: Planets, 105(E9), 22617–22627. https://doi.org/10.1029/1999JE001156

J. RAITALA. (1993). Main fault tectonics of meshkenet tessera on venus. Earth, Moon and Planets, 55–70.

Karasözen, E. (n.d.). THE FORMATION MECHANISM OF SOUTH THARSIS RIDGE BELT , MARS.

Karasozen, E., Andrews-Hanna, J., Dohm, J., & Anderson, R. (2012). The formation mechanism of the south Tharsis Ridge belt, Mars. Lunar and Planetary.

Lefort, A., Burr, D. M., Nimmo, F., & Jacobsen, R. E. (2014). Channel slope reversal near the Martian dichotomy boundary: Testing tectonic hypotheses. Geomorphology, 240, 121–136. https://doi.org/10.1016/j.geomorph.2014.09.028

Mangold, N., Allemand, P., Thomas, P. G., & Vidal, G. (2000). Chronology of compressional deformation on Mars: evidence for a single and global origin. Planetary and Space Science, 48(12–14), 1201–1211. https://doi.org/10.1016/S0032-0633(00)00104-5

Márquez, Á., Fernández, C., Anguita, F., Farelo, A., Anguita, J., & de la Casa, M. Á. (2004). New evidence for a volcanically, tectonically, and climatically active Mars. Icarus, 172(2), 573–581. https://doi.org/10.1016/j.icarus.2004.07.015

Mocquet, A., & Menvielle, M. (2000). Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle. Planetary and Space Science, 48(12–14), 1249–1260. https://doi.org/10.1016/S0032-0633(00)00107-0

Mueller, K., & Golombek, M. (2004). Compressional Structures on Mars. Annual Review of Earth and Planetary Sciences, 32(1), 435–464. https://doi.org/10.1146/annurev.earth.32.101802.120553

Nahm, A. L., & Schultz, R. A. (2011). Magnitude of global contraction on Mars from analysis of surface faults: Implications for martian thermal history. Icarus, 211(1), 389–400. https://doi.org/10.1016/j.icarus.2010.11.003

Nimmo, F., & McKenzie, D. (1998). Volcanism and Tectonics on Venus. Annual Review of Earth and Planetary Sciences, 26(1), 23–51. https://doi.org/10.1146/annurev.earth.26.1.23

Watters, T. R. (1993). Compressional tectonism on Mars. Journal of Geophysical Research, 98(E9), 17049. https://doi.org/10.1029/93JE01138

Watters, T. R., Schultz, R. A., & Robinson, M. S. (2000). Displacement-Length Relations of Thrust Faults Associated with Lobate Scarps on Mercury and Mars: Comparison with images camera orientations and improved geometric rectification. Geophysical Research Letters, 27(22), 3659–3662. https://doi.org/10.1029/2000GL011554

Zuber, M. T. (2001). The crust and mantle of Mars Maria. Nature, 412(6843), 220–227. https://doi.org/10.1038/35084163

Watters, T.R., M.S. Robinson, and A.C. Cook, Topography of lobate scarps on Mercury: New constraints on the planet's contraction, Geology, 26, 991-994, 1998

Basilevsky AT, Head JW. 1995. Regional and global stratigraphy of Venus: a preliminary assessment and implications for the geological history of Venus. Planet. Space Sci 43:1523-53

Phillips RJ, Raubertas RF, Arvidson RE, Sarkar IC, Herrick RR,et al. 1992. Impact craters and Venus surfacing history. J. Geophys. Res. 97:15923-48

Storm RG, Schaber GG, Dawson DD. 1994. The global resurfacing of Venus. J.Geophys. Res. 99:10899-926

Basilevsky, A.T., Head, J.W., 1998. The geologic history of Venus: a stratigraphic view. J. Geophys. Res. 103, 8531-8544.

Basilevsky, A.T., Head, J.W., Schaber, G.G., Strom, R.G., 1997a. The resurfacing history of Venus. In: Bougher, S.W., Hunten, D.M., Phillips, D.J. (Eds.), Venus II Ð Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press, Tucson, pp. 1047-1086.

Dohm, J.M., Tanaka, K.L., 1999. Geologic map of Metis Regio quadrangle (V6), Venus. Lunar Planet. Sci. 30, 1449.

McKinnon, W.B., Zahnle, K.J., Ivanov, B.A., Melosh, H.J., 1997. Cratering on Venus: models and observations. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II Ð Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press, Tucson, pp. 969-1014.

Lodders, K., & Fegley, B. (1997). An oxygen isotope model for the composition of Mars. Icarus. https://doi.org/10.1006/icar.1996.5653

Nahm, A. L., and R. A. Schultz (2011), Magnitude of global contraction on Mars from analysis of surface faults: Implications for Martian thermal history, Icarus, 211, 389–400, doi:10.1016/j.icarus.2010.11.003.

Schultz,R .A., Multiple process origin of Vailes Marineris basins and troughs, Mars, Planet. Space. Sci., 46, 827-834, 1998

Andrews-Hanna, J.C., Zuber, M.T., Banerdt, B., 2008. The Borealis basin and the origin of the Martian crustal dichotomy. Nature 453, 1212–1215.

Watters, T.R., Robinson, M.S., Bina, C.R., Spudis, P.D., 2004. Thrust faults and the global contraction of Mercury. Geophys. Res. Lett. 31, L04701.

Hauber, E., Kronberg, P., 2001. Tempe Fossae, Mars: A planetary analogon to a terrestrial continental rift? J. Geophys. Res. 106, 165–194.

Hauber, E., Kronberg, P., 2005. The large Thaumasia graben on Mars: Is it a rift? J. Geophys. Res. 110. E07003.

Hauck II, S.A., Solomon, S.C., Phillips, R.J., 2003. Potential sources of Hesperian contractional tectonics on Mars. Lunar Planet. Sci. XXXIV. Abstract 1667.

Frey. H., Thermal history and climatic implications of early Hesperian ages for presumed Noachian age volcanic flows on Mars (abstract), Lunar Planet. Sci. Cod.. XXIII. 385-386.1992.

Knapmeyer, M., Oberst, J., Hauber, E., Wählisch, M., Deuchler, C., Wagner, R., 2006. Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111. doi:10.1029/2006JE002708.

Knapmeyer, M., Schneider, S., Misun, M., Wählisch, M., Hauber, E., 2008. An extended global inventory of Mars Surface Faults [abs.], vol. 10, European Geophysical Union General Assembly: Vienna, Austria, European Geophysical Union.

Watters, T.R., Nimmo, F., 2010. The tectonics of Mercury. In: Watters, T.R., Schultz, R.A. (Eds.), Planetary Tectonics. Cambridge Univ. Press, Cambridge, UK, pp. 15–79.

Watters, T.R., Solomon, S.C., Robinson, M.S., Head, J.W., André, S.L., Hauck II, S.A., Murchie, S.L., 2009. The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth Planet. Sci. Lett. 285, 283–296. doi:10.1016/j.epsl.2009.01.025.

Ebinger, C.J., Hayward, N.J., 1996. Soft plates and hot spots: views from Afar. J. Geophys. Res. 101 (B10), 21859–21876.

Fernández, C., Anguita, F., 2007. Oblique rifting at Tempe Fossae, Mars. J. Geophys. Res. 112. doi:10.1029/2007JE002889 CiteID E09007.

Hauber, E., Gwinner, K., Kleinhans, M., Reiss, D., di Achille, G., Ori, G.-G., Scholten, F., Marinangeli, L., Jaumann, R., Neukum, G., 2009. Sedimentary deposits in Xanthe Terra: implications for the ancient climate on Mars. Planet. Space Sci. 57, 944–957.

Scholz, C.H., Contreras, J.C., 1998. Mechanics ofcontinental rift architecture. Geology 26, 967–970

Rosendahl, B.R., 1987. Architecture of continental rifts with special reference to East Africa. Ann. Rev. Earth Planet. Sci. 15, 445–503.

Schultz, R.A., Moore, J.M., Grosfils, E.B., Tanaka, K.L., Mège, D., 2007. The Canyonland model for planetary grabens: revised physical basis and interpretation. In: Chapman, M. (Ed.), The Geology of Mars. Cambridge University Press, Cambridge, pp. 371–399.

Dreibus, G. & Wanke, H. Mars: a volatile-rich planet. Meteoritics 20, 367–382 (1985).

Schubert G., S.C. Solomon, D.L. Turcotte, M.J. Drake, and N.H. Slee. Origin and thermal evolution of Mars, in Mars, edited by HXieffer, Jakosky. C. Snyder and M. Matthews, pp. 147-183, University of Ariwna Press, Tucson, 1993

Stevenson, D.J., and S.S. Bittker, Why existing terrestrial planet thermal history calculations should not be believed (and what to do about it), Lunar Planet. Sci. XX, 515-516,1990.

Strom, R.G., N.J. Trask, and J.E. Guest, Tectonism and volcanism on Mercury, J. Geophys. Res., 80,2478-2507.1975

Greeley, R., and B.D. Schneid. Magma generation on Mars: Amounts. Rates and comparisons with Earth, Moon, and Venus. Science, 254,996-998.1991.

Scott D.H.. and J.M. Dohm. Faults and ridges: Historical development in Tempe Terra and Ulysses Patera regions of Mars, Proc. Lunar Planet. Sci. Conf.,20th,503-513,1990

Scott, D.H., and K.L. Tanaka, Geologic map of the western equatorial region of Mars, scale 1:15,000,000, U.S. Geol. Surv. Misc. Invest. Ser. Map, I-1802-A,1986

Tanaka, K.L., N.K. Isbell, D.H. Scott, R. Greeley and J.E. Guest, The resurfacing history of Mars: A synthesis of digitized, Viking-based geology, Proc. Lunar Planet. Sci. Conf., 18th, 665-678, 1988.

Tanaka, K.L., UP. Golomuek, and W.B. Banerdt, Reconciliation of stress and structural histories of the Tharsis region of Mars, J. Geophys. Res., 96, 15,617-15,633,1991.

Chicarro, A.F., Schultz, P.H., Masson, P., 1985. Global and regional ridge patterns on Mars. Icarus 63, 153–174.

Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. Geologic map of the northern plains of Mars. USGS Misc. Sci. Inv. Map 2888, scale 1:15,000,000.

Allemand, P., Thomas, P.G., 1995. Localization of Martian ridges by impact craters: Mechanical and chronological implications. J. Geophys. Res. 100 (E2), 3251-3262.

Schubert, G., Solomon, S.C., Turcotte, D.L., Drake, M.J., Sleep, N.H.,1992. Origin and thermal evolution of Mars. In: Snyder, C.W., Kie_er, H.H., Jakosky, B.M., Matthew, M.S. (Eds.), Mars. The University of

Arizona Press, Tucson, pp. 147-183.

Tanaka, K.L., 1997. Sedimentary history and mass ow structures of Chryse and Acidalia Planitia, Mars. J. Geophys. Res. 102 (E2), 4131-4149.

Schubert, G., Spohn, T., 1990. Thermal history of Mars and the sulfur content of its core. J. Geophys. Res. 95, 14,095-14,014.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.