[Εξώφυλλο]

Μεταβολή των δομικών χαρακτηριστικών του ελληνικού ατταπουλγίτη μετά την θέρμανση

Νίκη Σιούμπουρα

Περίληψη


Σκοπός της συγκεκριμένης διπλωματικής εργασίας είναι η μελέτη του ελληνικού ατταπουλγίτη πριν και μετά από θέρμανση προκειμένου να διαπιστωθούν οι δομικές αλλαγές που προκαλούνται στο πλέγμα του ορυκτού και πως αυτές επηρεάζουν τις ιδιότητές του. Έγινε δειγματοληψία αρχικού και θερμικά επεξεργασμένου δείγματος εργοστασιακού τύπου από τις εγκαταστάσεις της εταιρίας ΓΕΩΕΛΛΑΣ Α.Μ.Μ.Α.Ε. στην Κνίδη Γρεβενών. Τα δείγματα μελετήθηκαν ορυκτολογικά με χρήση της μεθόδου της περιθλασιμετρίας ακτίνων-Χ, έγινε λεπτομερείς μελέτη της ορυκτολογίας των αργιλικών ορυκτών και t;elow  κρυσταλλογραφική μελέτη της δομής του ατταπουλγίτη και των αλλαγών που αυτή υφίσταται με τη θέρμανση με τη χρήση της εφαρμογής CHECKCELL. Διαπιστώθηκε, ότι το ποσοστό του ατταπουλγίτη στο αρχικό και θερμασμένο δείγμα δεν εμφανίζει σημαντική διαφοροποίηση, όμως ο ατταπουλγίτης που είναι θερμικά επεξεργασμένος είναι περισσότερο σταθερός κατά τις κατεργασίες για τον προσδιορισμό της ορυκτολογίας των αργιλικών ορυκτών. Επιπλέον, η δομή του ατταπουλγίτη υφίσταται συρρίκνωση παράλληλα προς τον άξονα ανάπτυξης των δοκίδων που οδηγεί σε μείωση του όγκου της μοναδιαίας κυψελίδας. Όσον αφορά τις ιδιότητες του ατταπουλγίτη, η αφυδάτωση και ακολούθως η αφυδροξυλίωσή του σε συνδυασμο με την αναδιάταξη-συρρίκνωση της δομής του βελτιώνουν τις διηθητικές ιδιότητές του εξαιτίας της αύξησης της ενεργότητας της επιφάνειας του ορυκτού και του κενού χώρου εντός και μεταξύ των δοκίδων.    

The purpose of this bachelor thesis is to study the Greek attapulgite before and after heating in order to ascertain the structural changes caused by heating and how they affect its properties. Starting and heat-treated samples are of factory type and taken from the facilities of the GEOHELLAS A.M.M.E.E. in Knidi, Grevena. The samples were studied mineralogically using the X-ray diffractometry method. A detailed study of the clay mineralogy was also made in order to find the different clay mineral phases. Crystallographic study of the attapulgite structure and its changing after heating were measured using the CHECKCELL software. It has been found that the amount of the attapulgite in the starting and heated sample does not show significant differentiation. The heat treated attapulgite sample is more stable during the treatments for the determination of the clay mineral phases in the studied samples. In addition, the structure of the attapulgite is shrunk parallel to the axis of growth of the needle-like framework leading to a reduction in the unit cell volume. As regards the properties of attapulgite, dehydration and subsequent dehydroxylating thereof in combination with the rearrangement-shrinkage of its structure improve its filtering properties due to the increase in the surface activity of the mineral and also the increase of the empty space within and between the needle-like morphology.

Πλήρες Κείμενο:

PDF

Αναφορές


Ελληνική

Καντηράνης, Ν., Φιλιππίδης, Α., Δρακούλης, Α. και Τσιραμπίδης, Α., 2005. Μελέτη δεσμευτικής ικανότητας του μπεντονίτη της Μήλου και του ατταπουλγίτη των Γρεβενών. 2ο Συνέδριο της Επιτροπής Οικονομικής Γεωλογίας, Ορυκτολογίας και Γεωχημείας , Θεσσαλονίκη, Πρακτ. 105-112.

Κουκάκης, Π., 2016. Ατταπουλγίτης Βεντζίων Γρεβενών, ως υπόστρωμα στη σύνθεση άμορφων νανοσωλήνων άνθρακα. Διπλωματική εργασία, ΕΜΠ, 101 σ.

Μουντράκης, Μ.Δ., 2010. Γεωλογία και γεωτεκτονική εξέλιξη της Ελλάδας. University Studio Press, 374 σ.

Τσιραμπίδης, Α., 2005. Ο ορυκτός πλούτος της Ελλάδος. Εκδόσεις Γιαχούδη, 391 σ.

Τσιραμπίδης, Α. και Φιλιππίδης, Α., 2013. Ορυκτοί Πόροι Ελλάδος: Αποθέματα και Αξία. Τομέας Ορυκτολογίας-Πετρολογίας-Κοιτασματολογίας, Τμήμα Γεωλογίας, Α.Π.Θ., 46 σ.

Bradley, W.F., 1940. The structural scheme of attapulgite. American Mineralogist, 25, 405-410.

Callen, R.A., 1984. Clays of the palygorskite–sepiolite group: depositional environment, age and distribution. In: Singer, A. and Galan, E. (Eds.), Palygorskite–Sepiolite. Occurrence, Genesis and Uses. Developments in Sedimentology, v. 37. Elsevier, Amsterdam, pp. 1–37.

Chryssikos, D.G., Gionis, V., Kacandes, H.G., Stathopoulou, T.E., Suarez, M., Garcia-Romero, E., and Sanchez Del Rio, M., 2009. Octahedral cation distribution in palygorskite. American Mineralogist, 94, 200 – 203.

Galan, E., 1996. Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31, 443-453.

Galan, E. and Singer, A., 2011. Developments in palygorskite-sepiolite research a new outlook on these nanomaterials. Elsevier, ISBN: 9780444536082.

Gionis, V., Kacandes, G.H., Kastritis, I.D., and Chryssikos, G.D., 2007. Combined near-infrared and X-ray diffraction investigation of the octahedral sheet composition of palygorskite. Clays and Clay Minerals, 55(6), 543–553.

Giustetto, R. and Chiari, G., 2004. Crystal structure refinement of palygorskite from neutron powder diffraction. European Journal of Mineralogy, 16, 521–532.

Grim, R.E., 1953. Clay Mineralogy. McGraw-Hill.

Haden, L.W.Jr. and Schwine, I.A., 1967. Attapulgite, its properties and applications. Industrial and Engineering Chemistry, 59(9), 58-69.

Heivilin, F.G. and Murray, H.H., 1994. Clays. Hormites: palygorskite (attapulgite) and sepiolite. ln: Carr, D.D. (ed.): lndustrial Minerais and Rocks, 6th Ed., Littleton, Co, Society for Mining, Metallurgy, and Exploration, 249-254.

ICDD, 2003. PDF-data file. International Center of Diffraction Data.

Jamoussi, F., Ben Aboud, A., and López-Galindo, A., 2003. Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits. Clay Minerals, 38(2), 187-199.

Kastritis, I.D., Kacandes, G.H., and Mposkos, E., 2003. The palygorskite and Mg-Fe-smectite clay deposits of the Ventzia basin, western Macedonia, Greece. Mineral Exploration and Sustainable Development, Eliopoulos et al. (eds), Millpress, Rotterdam, ISBN 90 77017 77 1.

Klug, P.H. and Alexander, E.L., 1974. X‐ray diffraction procedures for polycrystalline and amorphous materials. John Wiley & Sons, New York, 960p.

Kulbicki, G., 1959. High Temperature phases in sepiolite, attapulgite and saponite. American Mineralogist, 44, 752-64.

Laugier, J. and Bochu, B., 2004. Chekcell. http://www.CCP14.ac.uk/ tutorial/lmgp/

Miller, J.G., Haden, L.W.Jr., and Oulton, T.D., 1963. Oxidizing power of the surface of attapulgite clay. Twelfth National Conference on Clays and

Clay Minerals, Atlanta, Georgia, September 30 - October 2, 1963, Proc. 381-395.

O’ Driscoll, M., 2004. Geohellas enters attapulgite market. Industrial Minerals, 439, 6-7.

Pickering, S. M. Jr. and Heiven, F.G., 2006. Fuller’s Earth. Industrial Minerals and Rocks, 7th Edition, pp.373-381.

Poppe, V.F., Paskevich, J.C., Hathaway, and Blackwood D.S. 2001. A laboratory manual for X-ray powder diffraction. USGS open-file report 01-041.

Preisinger, A. 1963. Sepiolite and related compounds: its stability and application. Clays and Clay Minerals, 10, 365-371.

Singer, A. and Galan, E., 1984. Developments in Sendimentology, Palygorskite, Sepiolite. Occurrences, Genesis and Uses. Developments in Sedimentology, vol. 37., Elsevier.

Singer, A., 1989. Palygorskite and sepiolite group minerals. In J.B. Dixon and S.B. Weed, Eds., Minerals in Soil Environments No. 1, Ch. 17, p. 829–872. Soil Science Society of America (SSSA) Book Series, Madison, Wisconsin.

USGS, 2015. Clays, Statistics and Information. Mineral Commodity Summaries, https:// minerals.usgs.gov/minerals/pubs/commodity/clays/mcs-2015-clays.pdf.

Vágvölgyi, V., Daniel, L.M., Pinto, C., Kristóf, J., Frost, R.L., and Horváth, E., 2008. Dynamic and controlled rate thermal analysis of attapulgite. Journal of Thermal Analysis and Calorimetry, 92(2), 589–594.

Velde, B., 1995. Origin and mineralogy of clays. New York, Springer, 334pp.

Yan, W., Yuana, P., Chena, M., Wangc, L., Liu, D., 2013. Infrared spectroscopic evidence of a direct addition reaction between palygorskite and pyrometallitic dianhydride. Applied Surface Science, 265, 585-590.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.