[Εξώφυλλο]

Διερεύνηση της επιδεκτικότητας των ασβεστολιθικών σχηματισμών σε εκσκαφή με εκρηκτικά, σε σχέση με την ποιότητα της βραχομάζας, σε λατομεία αδρανών υλικών = Assessment of limestone excavation ability, with explosives, regarding to their rockmass quality, in aggregates quarries.

Λαμπρινή Σ. Δημητράκη

Περίληψη


Η παρούσα διδακτορική διατριβή πραγματεύεται τη διερεύνηση της σχέσης της τεχνικογεωλογικής δομής της βραχομάζας των ασβεστολίθων (εκρηκτική ικανότητα, αντοχή, δομή, ποιότητα της βραχομάζας, κατάσταση των ασυνεχειών), του εκάστοτε μετώπου εξόρυξης, σε λατομεία παραγωγής αδρανών υλικών, με την κοκκομετρία του υλικού που προκύπτει μετά την ανατίναξη, συνυπολογίζοντας την ποσότητα της εκρηκτική ύλης τύπου ANFO που εφαρμόζεται. Η κοκκομετρία του εξορυσσόμενου υλικού αποτελεί έναν πολύ σημαντικό παράγοντα στα λατομεία αδρανών, καθώς αυτή αποτελεί έναν δείκτη της αποτελεσματικότητας της ανατίναξης. Ένα αποδεκτό αποτέλεσμα, θεωρείται όταν τα τεμάχη που προκύπτουν δεν είναι απαραίτητο να υποστούν δευτερογενή θραύση με τη χρήση υδραυλικού σφυριού και επιπλέον υπάρχει μικρό ποσοστό λεπτόκοκκου υλικού στην εξορυσσόμενη σωρό. Το μέγεθος των τεμαχών εξαρτάται από παραμέτρους που διέπουν τόσο τα χαρακτηριστικά του ασβεστολίθου στο εξορυσσόμενο μέτωπο όσο και από παραμέτρους που συνθέτουν τη διαδικασία της ανατίναξης. Η παρούσα έρευνα εστιάζει στην επίδραση των τεχνικογεωλογικών παραγόντων και των παραμέτρων που διέπουν την ανατίναξη, μέσω της στατιστικής ανάλυσης αυτών αλλά και τη δημιουργία εύκολα διαχειρίσιμων νομογραμμάτων για επί τόπου χρήση στο πεδίο και αυτοματοποιημένων μοντέλων (ΑΝΝ).  
Ειδικότερα, το σύνολο των δεδομένων (100 καταγραφές, από 50 για κάθε λατομείο) συλλέχθηκε από δύο λατομεία εξόρυξης αδρανών υλικών της εταιρίας Ιντερμπετόν του ομίλου ΤΙΤΑΝ, το λατομείο του Δρυμού και των Ταγαράδων στην Κεντρική Μακεδονία, πλησίον της πόλης της Θεσσαλονίκης, όπου οι υπόλοιπες παράμετροι σύνθεσης των ανατινάξεων, παραμένουν σχεδόν σταθερές (κάναβος διάταξης διατρημάτων, διάμετρος και βάθος διατρημάτων κ.α.). Ο δείκτης εκρηκτικής ικανότητας αποτελεί μία πολύ σημαντική παράμετρο εκτίμησης της ευκολίας ή της δυσκολία εκσκαφής της βραχομάζας με τη χρήση εκρηκτικών υλών, υπό συγκεκριμένες συνθήκες σχεδιασμού της ανατίναξης, λαμβάνοντας υπόψη την κατανάλωση των εκρηκτικών, (Latham and Lu 1999). Η εκρηκτική ικανότητα (ΒΙ) εξαρτάται από τη δομή της βραχομάζας, την απόσταση και τον προσανατολισμό των ασυνεχειών, το ειδικό βάρος του πετρώματος και την αντοχή σε μονοαξονική θλίψη (Lilly 1986, 1992). Στην παρούσα διατριβή η δομή αποδόθηκε μέσω του Γεωλογικού δείκτη αντοχής (GSI) (Marinos et al. 2005), προκειμένου να εκτιμηθεί με μεγαλύτερη ακρίβεια η κατάσταση της βραχομάζας, οδηγώντας σε μία πιο ακριβή ταξινόμηση της εκρηκτικής ικανότητας ορίζοντας τον τροποποιημένο Δείκτη εκρηκτικής ικανότητας (ΜΒΙ), (Μodified Βlastability Ιndex).   
Από την αξιολόγηση των αποτελεσμάτων προέκυψε ότι δύο παράγοντες επιδρούν στο μέγεθος των αποσπώμενων τεμαχών και ο πρώτος αφορά τη συμπεριφορά της βραχομάζας (εκρηκτική ικανότητα και ποιότητα του ασβεστολίθου) ενώ ο δεύτερος την ποσότητα της εκρηκτικής ύλης τύπου ANFO που εφαρμόζεται στην εκάστοτε ανατίναξη. Περιγράφονται από υψηλούς συντελεστές συσχέτισης με την εκρηκτική ικανότητα να παρουσιάζει τον υψηλότερο με r=0.70, την ποιότητα του ασβεστολίθου με r=0.60 και την κατανάλωση της εκρηκτικής ύλης Powder Factor (ANFO kg/m3) με r=-0.67. Παρατηρήθηκε ότι η κατανομή του τροποποιημένου Δείκτη εκρηκτικής ικανότητας στα δεδομένα ακολουθεί σε μεγάλο βαθμό την κατανομή του μέσου και μέγιστου μεγέθους των εξορυσσόμενων τεμαχών. Οι υψηλές τιμές του ΜBI (81) αντιστοιχούν σε μέγεθος τεμαχών που ορίζουν τη μεγαλύτερη σχεδόν μέση τιμή (45 cm), ενώ στην περίπτωση που η εκρηκτική ικανότητα κυμαίνεται σε χαμηλά επίπεδα (περίπου 44 με 52), τότε και το μέσο μέγεθος κυμαίνεται σε μικρές τιμές μεταξύ 18 και 22 cm. Ακόμα και ογκόλιθοι μεγέθους από 1.10m έως 1.33m αντιστοιχούν σε υψηλές τιμές GSI (70-80), όπου η βραχομάζα χαρακτηρίζεται ως τεμαχώδης με καλή ποιότητα ασυνεχειών και αντίστοιχα το ΜBI κυμαίνεται μεταξύ 69 και 80.
Επιπλέον, από τις καταγραφές συμπεραίνεται ότι στην περίπτωση που το GSI του ασβεστολίθου κυμαίνεται σε χαμηλότερα επίπεδα, με υψηλές τιμές αντοχής από 55 MPa έως 70 MPa, το σύνολο των τιμών του ΜBI έχει εύρος μεταξύ 40 και 65. Αντίθετα, στις περιπτώσεις, όπου επικρατούν χαμηλότερες αντοχές (52 με 60 MPa), και υψηλοί δείκτες GSI ,τότε οι τιμές του ΜBI κινούνται σε υψηλά επίπεδα (60 έως 80). Από αυτό γίνεται κατανοητό το γεγονός της  σημαντικής επίδρασης που ασκεί η ποιότητα της βραχομάζας στην εκρηκτική ικανότητα, έναντι της αντοχής της.     
Τέλος, δημιουργήθηκαν νομογράμματα εύρεσης της μίας παραμέτρου σε σχέση με την άλλη, για επί τόπου χρήση στο πεδίο, που εκκινούν από την ταξινόμηση του ασβεστολίθου στο μέτωπο της εξόρυξης μέσω του GSI και καταλήγουν στους παράγοντες που περιγράφουν την ανατίναξη (κατανάλωση ANFO, αριθμός διατρημάτων, ποσότητα εξορυσσόμενης ύλης, μέσο μέγεθος αποσπώμενων τεμαχών). Παράλληλα με τις συμβατικές μεθόδους, προτείνεται τεχνητό νευρωνικό δίκτυο (ΑΝΝ) πρόβλεψης του μέσου μεγέθους των αποσπώμενων τεμαχών (με δεδομένα εισόδου τον τροποποιημένο Δείκτη εκρηκτικής ικανότητας, την κατανάλωση εκρηκτικής ύλης τύπου ANFO kg/m3, την ποσότητα της εξορυσσόμενης μάζας), με πολλά στρώματα, με δομή 3-5-1, εμπρόσθιας τροφοδότησης (feed-forward net) με επίβλεψη (supervised training), εκπαιδευμένο με τον αλγόριθμο οπισθοδιάδοσης με ορμή (back propagation with momentum) και βήμα εκπαίδευσης 0.5. Το δίκτυο αυτό υποδεικνύει υψηλή στατιστική αξιοπιστία, με ακρίβεια πρόβλεψης τα 2.5 cm και υψηλή υπεροχή έναντι της συμβατικής στατιστικής ανάλυσης (multiple regression analysis), (Dimitraki et al. 2018).       

The present Ph.D. thesis concerns about the investigation between the geotechnical characteristics of the limestone rock mass (blastability, strength, structure, quality, condition of the discontinuities) on pit faces, in aggregates quarries, and the size of the fragments in blasted rock piles, taking into account the quantity of the explosives (ANFO). The ultimate target is to assess the interaction of these parameters on blasted rocks. The size of fragments in blasted rock piles, is an appropriate index of the effectiveness of the blasting process in a pit face. An optimum fragmentation is considered when the fragments do not need to be subjected to secondary breaking (fewer oversize boulders) and the blasted rock pile is described by a small percent of ultra-fines. The fragment size depends on parameters which describe not only the rock mass but also the blasting process (specific charge, spacing, burden, etc.), (Lyana et al. 2016). The present study focuses on these parameters, using the statistical analysis and powerful, advanced computational tools, creating useful nomograms for field implementation.
For the aim of this study, 100 blasting processes were attended at the Drymos and Tagarades quarries in the Central Macedonia region of Greece and recorded for over two years. These two quarries belong to the Titan Company and offer a broad category of coarse to medium grained aggregate materials, including sand, gravels, and crushed stone. At this point, it is worth noting that the blast design (blasthole diameter, burden, space, height of the pit face, sub-drill, detonators), which concerns the blasting process for each quarry, is approximately the same for each blasting event. The BI is a significant mechanical parameter for estimating the vulnerability for the excavation of the rock mass under a specified blast design, by taking into consideration the explosives consumption (Latham and Lu 1999). The BI is related to the rock mass description (RMD), the space (JPS) and the orientation of the joints (JPO), the specific gravity of the rock (SGI) and the uniaxial compressive strength (UCS), through Lilly’s equation (Lilly 1986, 1992). In this equation the RMD is considered as a very wide parameter and needs more precision. Therefore, the geological strength index (GSI) (Marinos et al. 2005) was used, which is more precise for estimating and evaluating the rock mass behavior, leading to a specific classification of the blastability through the Modified Blastability Index (MBI).
After evaluating the results, it is concluded that two factors have an impact on the blasted fragment size. The first one is the rock mass behavior (blastability and quality of the limestone), while the second one concerns about the explosive quantity of ANFO, which is implemented in each blasting process. These factors are described by high correlation coefficients and more specifically the modified blastability index has the highest one with r=0.70, the quality of limestone with r=0.60 and the explosive consumption, Powder Factor (ANFO kg/m3) with r=-0.67. It is noticed that the modified blastability index distribution follows, to a great extent, the distribution of the average and maximum size of the blasted rocks. The high values of MBI (81) correspond to large values of average size (45 cm), while in case of ranging the MBI in low levels (approximately 44-52), and then the average size has lower values between 18 and 22 cm. Even the boulders with size from 1.10 to 1.33m correspond to high values of GSI (70-80), where the rock mass is characterized as blocky with good quality of discontinuities and the MBI ranges between 69 and 80. Furthermore, according to the recordings, it is assumed that in case of the GSI limestone fluctuates in lower levels, with high strength values (55-70 MPa), then the MBI values ranges from 40 to 65. On the contrary, limestone with lower strength (52-60) and high GSI then MBI ranges from 60 to 80. According to these results, it is obvious that the rock mass quality plays a significant role in the MBI contrary to the strength.
Finally, nomograms were created for determining the one parameter in relation to the other, for field implementation, which start from the rock mass classification of the pit face and result in the factors that describe the explosion (ANFO consumption, number of blastholes, quantity of blasted rock, and average size of blasted rock). At the same time, it is proposed an Artificial Neural Network (ΑΝΝ), for predicting the average size of fragments in aggregate blasted rock piles, with three input parameters: the MBI, the explosive consumption Powder Factor (ANFO kg/m3), the quantity of the rock pile. This ANN model is a feed-forward, supervised, multilayer perceptron network, with 3-5-1 structure. The model was trained with back propagation algorithm with momentum and learning rate 0.5. Furthermore, the statistical parameters ensure its efficiency, with prediction accuracy at 2.5 cm. On the other hand, the relationship between dependent and independent variables with the conventional regression analysis is described by unfavorable values of the statistical parameters, (Dimitraki et al. 2018).

Πλήρες Κείμενο:

PDF

Αναφορές


Adhikari, G., 1999. Studies on Flyrock at Limestone Quarries. Rock Mechanics and Rock Engineering, 32, 291-301.

Aimone, C., 1992. Rock breakage: Explosives, blast design. International H.L. Hartman (ed.), SME Mining Engineering Handbook, Society of mining engineers, Littleton, 722-746.

Alexander, M., Mindess, S., 2005. Aggregates in concrete, Modern Concrete Technology, CRC Press.

Al-Thyabat, S., & Miles, J., 2006. An improved estimation of size distribution from particle profile measurements. Powder Technology, 166, 152–160.

Al-Thyabat, S., Miles, J., Koh S., 2007. Estimation of the size distribution of particles moving on a conveyor belt. Minerals Engineering, 20, 72-83.

Ambraseys, R., Hendron, J., 1968. Dynamic behavior of rock masses, rock mechanics, In. K.G. Stagg & O.C. Zeinkiewicz (eds), Engineering Practice, John Wiley & Sons Inc., London.

Anon, 1980. Blaster’s Handbook, E.I., Wilmington.

Ash, L., 1968. The design of blasting rounds, In E.P. Pfleider (ed.), Surface Mining, AIME, New York.

Ash, L., 1973. The influence of geologic discontinuities on rock blasting, Ph.D. dissertation, University of Minnesota.

ASTM D 5873 (2000) Standard test methods for determination of rock hardness by rebound hammer method, Annual Book of ASTM

Standards Soil and Rock, Building stones, Section-4,Construction, V.04.08, ASTM Publication, 972.

Aswegen, V., and Cunningham, 1986. The estimation of fragmentation in blast muckpiles by means of standard photographs, Journal of the Southern African Institute of Mining and Metallurgy, 86, 469-474.

Atchinson, C., 1968. Fragmentation principles, In E.P. Pfleider (ed.), Surface mining, AIME, New York, 355-372.

Badal, R., Bhandari, S., 1992. Fragmentation mechanism in rock joints, International society of Rock Mechanics. Regional symposium of Rock Slopes, New Delphi, 337-385.

Bajpayee, S., Rehak, R., Mowrey, L., Ingram, K., 2004. Blasting injuries in surface mining with emphasis on flyrock and blast area security. Safety Res 35,47–57.

Barton, N., Lien, R., Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 189-236.

Bellairs, G., 1986. Blasthole density logging as an aid to blast pattern design Sheppard. Proceedings of Large Open Pit Mining Conference, Newman, 93- 97

Bergmann, R., Riggle, W., Wu C., 1973. Model rock blasting effect of explosives properties and their variables on blasting results. International Journal Rock Mechanics and Mining Science, 10, 585-612.

Bergmann, R., Wu C., Edl, W., 1974. Model rock blasting measures effects of delays and holes patterns on dock fragmentation. Engineering And Mining Journal, 175 (6), 124-127.

Berta, G., 1985. The explosive working tool, Italesplosivi, Milano.

Bhandari, S., 1974. Rock fragmentation with longitudinal charges. 3rd International Congress of Rock Mechanics, Denver, 137-1242.

Bhandari, S., 1996. Changes in fragmentation processes with blasting conditions. 5th Symposium of Rock Fragmentation by Blasting, Montreal, 301-309.

Bhandari, S., 1997. Engineering rock blasting operations, Balkema, Rotterdam.

Bieniawski, T., 1974. Geomechanics classification of rockmass and application in tunneling. Proceedings 3rd congress ISRM (Denver), 27.

Bond, C., Whittney, B., The work index in Blasting Quarterly of the Colorado School of Mines, 77-82.

Brady, H., Brown, T., 1985. Rock mechanics for underground mining, George Allen & Co., London.

Brulia, J., 1985. Power AN emulsion/ANFO explosive system. 11th Conference Proceedings Society of Explosives Engineers, San Diego, 293-299.

Burkle, C., 1979. Geology and its effect on blasting. Proceedings of the 5th Conference on Explosives and Blasting Techniques, Society of Explosives Engineers.

Carlsson, O., and Nyberg, L., 1983. A method for estimation of fragmentation size distribution with automatic image processing. Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting-FRAGBLAST, 333-345. Luleå, Sweden.

Cattell, B., 1978. The scientific use of factor analysis in behavioral and life sciences. New York, NY: Plenum Press.

Chakraborty, K., Raina, A., Ramulu, M., Bandopadhyay, C., 2004. Parametric study to develop guidelines for blast fragmentation improvement in jointed and massive formations. Engineering Geology, 105–116

Chatziangelou, M., Christaras, B., 2013. Rock Mass Blastability Dependence on Rock Mass Quality. Bulletin of the Geological Society of Greece, Proceedings of the 13th International Congress, 47, 1-12.

Chatziangelou, M., Christaras, B., 2013. Blastability index on poor quality rock mass. International Academy of Science, Engineering and Technology. International Journal of Civil Engineering.

Chiappetta, F., 1991. Pre-Splitting And Controlled Blasting Techniques, Proceedings of the Blast Technical Instrumentation and Explosives Application Seminar, San Diego, USA, 171-186.

Chimi, O., Hegarat, L., Vannier, E., Taconet, O., and Dusseaux, R., 2014. Automatic clod detection and boundary estimation from Digital Elevation Model images using different approaches, Catena, 118, 73–83.

Christaras, V., 1989. Mechanical behavior of marbles from the Rhodope massif; examples from Pangaio mountain and Thassos island. 2nd Hellenic – Bulgarian Symposium, Thessaloniki.

Christaras, V., 1994. Anisotropy effects on the elastic parameters of rocks; determination using ultrasonic techniques. 7th International Congress of Geological Society of Greece, 381-387.

Christaras, V., 1996. Non destructive methods for investigation of some mechanical properties of natural stones in the protection of monuments. Bulletin of IAEG.

Christaras, V., 1998. Non destructive methods used for the estimation of the damage (weathering and cracks) of the building and ornamental stones, PACT 55 (Revue du Conseil de l’Europe), 213-219.

Christaras, B., Chatziangelou, M., 2014. Blastability quality system (BQS) for using it, in bedrock excavation, Journal of Structural Engineering and Mechanics, Vol. 51.

Clark, B., 1987. Principles of rock fragmentation, John Wiley & Sons Inc., London.

Clerici, C., Mancini, R. et al, 1974. Blasting operations in quarry. Mutual influence between blasting and fragmentation. Proceedings of Congress on Ornamental Stones and Industrial Minerals Mining, Torino.

Coates, F., 1981. Rock mechanics principles, Ottawa: CANMET, Energy, Mines and Resources, Canada.

Cook, A., Cook, O., Clay, B., Keyes, J., Udy, L., 1966. Behavior of rock during blasting. Transactions of the Society of Mining Engineers, AIME, 235-283.

Cunningham, C., 1983. The Kuz-Ram model for prediction of fragmentation from blasting. 1st International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, 439-453.

Cunningham, C., 1987. Fragmentation estimations and the Kuz-Ram model – four years on. Proceedings of 1st International Symposium on Rock Fragmentation by Blasting, 439–453.

Cunningham, C., 2005. The kuz-ram fragmentation model - 20 years on. Proceedings of 3rd EFEE World Conference on Explosives and Blasting, 201-210.

Cunningham, C., 2006. Concepts of blast hole pressure applied to blast design, Fragblast. International Journal of blasting and fragmentation, 10, 33-46.

Daubney, P., 1988. The explosive industry has challenging task ahead, Chem. Business, 11-12.

Debes, K., Koenig, A., Gross, HM., 2005. Transfer functions in artificial neural networks. A simulation – based tutorial. Brains, Minds &Media.

Deere, U., 1963. Technical description of rock cores for engineering purposes. Rock Mechanics and Engineering Geology, 18.

De Gama, D., 1983. Use of comminution theory to predict fragmentation of jointed rock mass subjected to blasting. Proceedings of 1st International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, 563-579.

De Graaf, W., 2011. Specialised Blasting Techniques. Southern African Institute of Mining and Metallurgy. Namibia

Dick, A., Fletcher, L., Andrea, D., 1983. Explosives and Blasting Procedures Manual, US Department of Interior Office of Surface Mining Reclamation and Enforcement.

Dieterle, F., Busche, S., Gauglitz, G., 2003. Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements, Analytica Chemica Acta, 490, 71-83.

Dimitraki, L., Christaras, V., Marinos, V., Chatziangelou, M., 2016. The use of ultrasonic velocity for determining mechanical characteristics of limestones. Proceedings of XV Symposium Society of Geological Engineers and Technicians of Serbia, Belgrade, 340–350.

Dimitraki, L., Christaras, B., Marinos, V. et al., 2018. Predicting the average size of blasted rocks in aggregate quarries using artificial neural networks. Bulletin of Engineering Geology and the Environment.

Duvall, I., Atchinson, C., 1957. Rock breakage by explosives, US Bureau of mines, R.I. 5336, 52.

Duvall, I., Fogelson, E., 1962. Review of criteria for estimating damages to residences from blasting vibrations, US Buraeau of Mines, R.I. 5968.

Ermini, L., Catani, F., and Casagli, N., 2005. Artificial Neural Network applied to landslide susceptibility assessment. Geomorphology, 66, 327–343.

Farmer, W., Kemeny, M., McDoniel, C., 1991. Analysis of rock fragmentation in bench blasting using digital image processing. Proceedings of 7th ISRM International Congress on Rock Mechanics, Balkema, Rotterdam, 1037-1042.

Fausett, L., 1994. Fundamentals of neural networks architectures algorithms and applications. Prentice Hall, New Jersey.

Ferentinou, M., Sakellariou, M., 2007. Computational intelligence tools for the prediction of slope performance. Computers and Geotechnics, 362–384.

Franklin, A., and Maerz, H., 1988. Photographic measurements of jointing and fragmentation. 2nd International Symposium on Field Measurements in Geomechanics, Balkema, Rotterdam, 227-237.

Franklin, A., Maerz, H., 1996. Empirical design and rock mass characterisation, Measurement of Blast Fragmentation, Balkema, Rotterdam.

Graupe, D., 2007. Principles of artificial neural networks, 1st edition, University of Illinois, Chicago.

Grenon, M., Hadjigeorgiou, J., Liu, Q., 1998. Quantifying in-situ rock block size and

resulting fragment size distributions due to blasting. Fragblast - International journal of blasting and fragmentation, 205-218.

Gomez, H., and Kavzoglu, T., 2005. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa RiverBasin, Venezuela. Engineering Geology, 7, 11–27.

Gorgulu, K., 2014. Investigation of the effects of blasting design parameters and rock properties on blast-induced ground vibrations. Arabian Journal of Geosciences, 8(6).

Guney, A., Altindag, R., Yavuz, H. and Sarac, S., 2005. Evaluation of the Relationships Between the Schmidt Hardness Rebound Number and Other (Engineering) Properties of Rocks. 19th International Mining Congress and Fair of Turkey, JMCET, 1- 8.

Gupta, R., Singh, B., 1988. Prediction of peak particle velocity and peak air pressure generated by buried explosion. International Journal of Mining and Geological Engineering, 6, 15-26.

Hagan, N., 1973. Rock breakage by explosives. National Symposium of Rock Fragmentation, Adelaide, 1-17.

Hagan, N., Just D., 1974. Rock breakage by explosives: theory, practice and optimisation. Proceedings of 3rd Congress ISRM. National Academy Sciences, Washington, DC, 1349-1358.

Hagan, M., Demuth, H., Beale, MH., Jesus, O., 2014. Neural network design, 2nd edition, eBook.

Haghighi, G., Konya, J., 1986. Effects of geology on burden displacement. Proceedings of the 12th Conference on Explosives and Blasting Techniques, Society of Explosives Engineers, Montville, OH.

Harries, G., 1973. A mathematical problem of cratering and blasting. National symposium of rock fragmentation, Adelaide, 107-113.

Hartman, H., 1987. Introductory mining engineering, Michigan.

Haykin, S., 2017. Neural networks and learning machines, 3rd edition, Pearson, London.

Hecht-Nielsen, R., 1990. Kolmogorov’s mapping neural network existence theorem. Proceedings of 1st IEEE Annual International Conference on Neural Networks, San Diego, 11–14.

Heinio, M., 1999. Rock excavation handbook for civil engineering, Sandvik, Tamrock, Sweden.

Hemphill, B., 1981. Blasting operations, McGraw-Hill, New York.

Hendron, J., 1977. Engineering of rock blasting on civil projects, Structural and Geotechnical Mechanics, W.J. (ed.), Prectice Hall, NY.

Hino, K., 1959. Theory and Practice of Blasting, Noppon Kayaku Co, Ltd, Japan.

Hoek, E., Wood, D., Shah, S., 1992. A modified Hoek–Brown criterion for jointed rock masses. Proceedings of the rock mechanic symposium.

International Society of Rock Mechanics Eurock, British Geotechnical Society, London, 209–214

Hoek, E, Marinos, P., Benissi, M., 1998. Applicability of the geological strength index (GSI) classification for weak and sheared rock masses—the case of the Athens schist formation. Bulletin of Engineering Geology and the Environment, 57, 151–160.

Hopfield, J., 1984. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of National Academy of Science, 81, 3088–3092.

Jimeno, L., Jimeno, L., Carcedo, A., 1995. Drilling & Blasting of Rocks, A. A. Bulkema, Rotterdum, Brookfield Publication, 160-180.

Jemwa, T., and Aldrich, C., 2012. Estimating size fraction categories of coal particles on conveyor belts using image texture modeling methods. Expert Systems with Applications, 39, 7947–7960.

Johansson, H., Persson, A., 1974. Fragmentation systems. 3rd International Congress on Rock Mechanics, Denver, 1957-1966.

JKMRC, 1991. Advanced blasting technology, AMRIA P39D (1987-1990) Final Report, JKMRC, University of Queensland, Australia.

Just, D., 1973. The application of size distribution equations to rock breakage by explosives. Journal of Rock Mechanics and Mining Sciences, 3, 77-82.

Kauffmann, G., Kockel, F., Mollat, H., 1976. Notes on the stratigraphic and paleogeographic position of the Svoula Formation in the innermost Zone of the Hellenides (Northern Greece). Bulletin of the geological society of France, 18, 225-230.

Kecojevic, V., Radomsky, M., 2005. Flyrock phenomena and area security in blasting-related accidents. Safety Science, Elsevier, 739-750.

Khandelwal, M., 2010. Evaluation and Prediction of Blast Induced Ground Vibration using Support Vector Machine. International Journal of Rock Mechanics and Mining Sciences, 47 (3), 509-516.

Konya, C., Walter, E., 1990. Surface blast design, Prentice Hall, Engelwood Cliffs, New Jersey.

Konya, C., Walter, E., 1991. Rock blasting and overbreake control, U.S. Department of Transportation, National Highway Institute.

Kuznetsov, M., 1973. The mean diameter of the fragments formed by blasting rock. Soviet Mining Science, 9, 144-148.

Kwangmin, K., 2006. Blasting design using fracture toughness and image analysis of the bench face and muckpile, Virginia Tech.

Langefors, U., Kihlstrom, B., 1978. The modern technique of rock blasting, John Wiley & Sons Inc., New York.

Larson, C., Pugliese, M., 1974. Effect of jointing and bedding separation on limestone breakage at reduced scale, US Bureau of Mines, R.I. 7863.

Latham, J.P., and Lu P., 1998. Development of an assessment system for the blastability of rock masses. International Journal Rock Mechanics and Mining Science, 36, 41–55.

Lee, S., Ryu, H., Lee, J., Won, S., 2003. Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environmental Geology, 44, 820–833.

Lilly, P., A., 1986. An empirical method of assessing rock mass blastability. AwIhfM/JTAust. Large Open Pit. Mining Conference, Newman, 89–92.

Lilly, P., A., 1992 The use of the blastability index in the design of blasts foropen pit mines. Western Australian Conference on Mining Geomechanics, Kalgoorlie, 421–426.

Lilly, P., 1986. An empirical method of assessing rock mass blastability. AwIhfM/JTAust Large Open Pit. Mining Conference, Newman,89–92.

Lilly, P., 1992. The use of the blastability index in the design of blasts for open pit mines. Western Australian Conference on Mining Geomechanics, Kalgoorlie, 421–426.

Liu, Q., Tran, H., 1996. Comparing systems – Validatio of FragScan, WipFrag and Split. Measurements of blast fragmentation, Franklin & Katsabianis (eds), Balkema, Rotterdam, 151-156.

Lizotte, C., Scoble, J., 1994. Geological control over blast fragmentation, CIM Bulettin, 57-71

Lu, P., 1997. The characterization and analysis of in situ and blasted block size distributions and the blastability of rock masses. PhD Thesis, Queen Mary and Westfield College, University of London, England.

Maerz, H., 1996. Image sampling techniques and requirements for automated image analysis of rock fragmentation. Proceedings of Measurement of Blast Fragmentation, Balkema, Rotterdam.

Marinos, P., Hoek, E., 2000. GSI: a geologically friendly tool for rock mass strength estimation. Proceedings of the GeoEng2000 at the international conference on geotechnical and geological engineering, Melbourne, 1422–1446.

Marinos, V., Marinos, P., Hoek, E., 2005. The geological strength index: applications and limitations. Bulletin of Engineering Geology and the Environment, 64, 55-65.

Matheson, D., 1995. Aspects of highway rock engineering in the UK. In Engineering Geology of Construction (Eddleston et al. eds.), London: Geol. Soc., pp.169-187.

Mc Kenzie, S., 1967. Optimum blasting. Proceedings of Annual Minnesota Mining Duluth, MN, 181-188.

Mohanty, B., 1985. Characteristic crack patterns close to exploding charge, rock breakage and mechanical excavation, P. Baumgartener (ed.), Special Vol. No. 3, Canadian Institute of Mining Metallurgy Bulletin, 32-36.

Mohanty, B.,1996. Rock fragmentation by blasting, 1st edition. CRC Press/Balkema, Netherlands.

Monjezi, M., Singh, TN., Khandelwal, M., Sinha, S., Singh, V., Hosseini, I., 2008. Prediction and analysis of blast parameters using artificial neural network. Noise Vibrat Worldwide 37, 8–16.

Monjezi, M., Ghafurikalajahi, M., Bahrami, A., 2011. Prediction of blast-induced ground vibration using artificial neural networks. Tunneling and Underground Space Technology, 26, 46-50.

Moser, P., 2008. Energy controlled blasting, Environmental and mining geoengineering (GEAM, rivista della Associazione Georisorse e Ambiente).

Neaupane, M., and Achet, H., 2004. Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Engineering Geology, 74, 213– 226.

Neaupane, K., and Adhikari, N., 2006. Prediction of tunneling-induced ground movement with the multi-layer perceptron, Tunnelling and Underground Space Technology, 21, 151-159.

Nelson, M., Illingworth, W.T., 1990. A Practical Guide To Neural regression models. Proceedings of Intelligent Engineering Nets, Addison-Wesley, Reading, MA.

Nie, L., and Rustan, A., 1987. Techniques and procedures in analyzing fragmentation after blasting by photographic methods. Proceedings of 2nd International Symposium of Rock Fragmentation by blasting, 102-113.

Noren, H., Porter, D., 1974, A comparison of theoretical explosive energy and energy measured underwater with measured rock fragmentation. Proceedings of 3rd Congress of International Society of Rock Mechanics, Denver, II, 1371-1376.

Nur, L., Hareyani, Z., Kamar, S., Hazizan, M., 2015. Effect of geological condition on degree of fragmentation in a Simpang Pulai marble quarry. 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Minerals and Polymer (MAMIP), 694 – 701.

Onederra, A., and Riihioja, J., 2006. An alternative approach to determine the uniformity index of Rosin-Rammler based fragmentation models. Fragblast 8, Santiago, Chile.

Oriard, L., 2002. Explosives engineering, construction, vibrations and geotechnology, Published by Isee Explosive Engineers.

Orr, G., Muller, KR., 1998. Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, Springer.

Otuonye, O., Konya, J., Skidmore, R., 1983. Effects of stemming size distribution on explosive charge confinement: A laboratory study,

Transactions of the society of mining engineers of AIME.

Ozdemir, K., Kahriman, A., Karadogan, A., and Tuncer, G., 2003. Blasting Fragmentation Assessment and control using the split digital image analysis system. International Conference on Earth Sciences and Electronics.

Persson, A., Holmberg, R., Persson, G., 1970. The basic mechanism of rock blasting. Proceedings of 2nd International Congress of Society of Rock Mechanics, Belgrade, Vol. III, 19-33.

Persson, P.A., Holmberg, R., Lee, J., 1994. Rock Blasting and Explosives Engineering, CRC Press.

Poole, M., 1987. Recent development in blasting products and techniques, Mine and quarry eng. 19-20.

Rehak, R., Bajpayee, S., Mowrey, L., Ingram, K., 2001. Flyrock issues in blasting. Proceedings of the 27th annual conference onexplosives and blasting technique, vol. I. International Society ofExplosives Engineers, Cleveland, 165–175.

Rinehart, S., 1975. Stress transients in solids, hyperdynamics, Santa Fe, NM.

Rorke, A., 2003. BME Training Module: Pre-Splitting, Bulk Mining Explosives, Johannesburg. South Africa, 1-24.

Rosin, P., Rammler, E., 1933. The laws governing the fineness of powdered coal. Journal of Institute of Fuel, 7, 29–36.

Roy, J., Ranjit, P., Sarim, M., Suraj, K., 2017. Geological Discontinuities, Blast Vibration And Fragmentation Control – A Case Study. 7th Asian Mining Congress & IME 2017.

Rumelhart DE, McClelland JL, PDP Research Group, 1986. Parallel distributed processing: explorations in the microstructure of cognition, MIT Press, Cambridge.

Rustan, A., 1981. Fragmentation influencing factors in rock blasting, Lulea University of Techn, Sweden.

Rustan, A., Vutukuri, S., Naartijarvi, T., 1983. The influence from specific charge, geometric scale and physical properties of homogenous rock on fragmentation, Proceedings of 1st International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, 115-142.

Rzhevsky, N., Novik, G., 1971. The Physics of rocks, Mir Publishers, Moscow.

Ryu, W., Shim, J., Han, Y., Ahn, 2009. Prediction of rock fragmentation and design of blasting pattern based on 3-D spatial distribution of rock factor. International journal of rock mechanics and mining sciences, 326-332.

Sadwin, D., Duvall, I., 1965. A comparison of explosives by cratering and other methods. Transactions of the Society of Mining Engineers, AIME, 232, 110.

Sassa, K., Ito, I., 1974. On the relation between the strength of a rock and the pattern of breakage by blasting. Proceedings of 3rd International Congress of rock mechanics, Denver, 1501-1505.

Sastry, V., Chandar, K., 2004. Influence of the initiation system on blast results: case studies. Fragblast, n.8, 207- 220.

Schuhmann, R, 1960. Energy input and size distribution in comminution. Trans. Am. 1st Min. Metall. Petrol. Engrs, 217-225.

Scott, A., Chitombo, P., Kleine, T., 1993. The challenge of the prediction and control of fragmentation in mining. 4th International Symposium

of Rock Fragmentation by Blasting, Vienna, 507-517.

Seccatore, Jacopo & de Tomi, Giorgio & Munaretti, Enrique & Dompieri, Mauricio. 2011. Blasting fragmentation management: An innovative approach using complexity analysis, 64, 525-530.

Sharma, P., 2010. Application of Air-Deck Technique in Surface Blasting, miningandblasting.wordpress.com/tag/air-deck/.

Sharma, P., 2012. Rock breakage and blast design considerations in openpit, Technical papers for mining and blasting.

Singh, P., Sarma, S., 1983. Influence of joints on rock blasting- A model scale study. 1st International Symposium of Rock Fragmentation by blasting, Lulea, 533-554.

Singh, P., Sastry, R., 1986. Rock fragmentation by blasting influence of joint filling material. Journal of Explosives Engineers, 18-27.

Singh, A., Scoble, M., Lizotte, Y. & Crowther, G., 1991. Characterization of underground rock fragmentation. Geotechnical and Geological Engineering, 9, 93-107.

Singh, P., Singh, N. and Goyal, M., 1994. Ground vibration due to blasting and its effect, In: Pradhan, G.K., Hota, J..K, editors, ENVIROMIN, Bhubaneshwar, India, 287–93.

Singh, P., 2003. The Influence of Rock mass Quality in Controlled Blasting. 12th International Symposium on Mine Planning and Equipment Selection, Kalgoorlie, Australia, 219-222.

Singh, P., Narendura, R., Duffy, D., 2005. Influence of blasted muck on the productivity of the loading equipment. 3rd EFEE Conference on explosives and blasting, 347-353.

Singh, P., Roy, M., Paswan, R., Sarim, M., Kumar, S., Jha, R., 2016. Rock fragmentation control in opencast blasting. Journal of Rock Mechanics and Geotechnical Engineering, 225-237.

Siskind, E., Fumanti, R., 1974. Blast-produced fractures in Lithuania granite, US Bureau of mines, TPR 78.

Siskind, E., Kopp, W., 1995. Blasting accidents in mines: a 16-year summary. Proceedings of the 21st annual conference on explosives and blasting technique, International society of Explosives Engineers, Cleveland, 224–239.

Stagg, S., Otterness, E., Siskind, E., 1992. Effects of blasting practices on fragmentation. Proceedings of the 33rd US Symposium in rock Mechanics.

Surface Blasting Handbook, 2014. AEL Mining Services, Johannesburg.

Singh, K., Roy, P., Paswan, K., Md. Sarim, S., Jha R., 2015. Rock fragmentation control in opencast blasting. Journal of Rock Mechanics and Geotechnical Engineering.

Scott, A., Onederra, I., 2015. Characterising rock mass properties for fragmentation modelling. Proceedings of the 11th International Symposium on Rock Fragmentation by Blast, Sydney.

Thornely, M., Aldert A., 1981. Aluminised blasting agent. 7th Conference Proceedings Society of Explosives Engineers, Phoenix, 271-292.

Thornson, D., Kanchibolta, S., Brunton, I., 2002. Modelling the impact of rock mass and blast design variation on blast fragmentation,

Fragblast - International journal of blasting and fragmentation, 6, The Netherlands.

Thurley, J., 2011. Automated online measurement of limestone particle size distributions using 3D range data. Journal of Process Control, 21, 254–262.

Turata, U., Galimulin, T., Pancheko, F., 1966. Time relations in shotfiring. Soviet Mining Science, 3, 32-36.

U.S. Army Corps of Engineers, 1972. Systematic drilling and blasting for the surface excavation, Engineering and Design, Department of the Army, Washington.

United States, National Park, 1999. National Park Service Handbook for the Storage, Transportation and Use of Explosives, Minnesota.

Verzani, J., 2014. Using R for introductory statistics, 2nd edition, CRC Press, Florida

Wang, H., Latam, J-P, Poole, B., 1991. Blasting design for armour-stone production, Quarry management.

Wang, W., 2006. Size and shape measure of particles by image analysis. 11th International Workshop, IWCIA Proceedings, Berlin, Germany, 4040, 253 – 262.

Wiss. J., 1981. Construction vibrations: State - of- the – art. Journal of the Geotechnical Engineering Division, 107, 167-181.

Workman, J., Calder, P., 1994. Flyrock prediction and control in surface mine blasting. Proceedings conference on explosives and blasting technique, Austin Texas, 59-74.

Wythoff, J., 1993. Backpropagation neural networks: a tutorial. Training Using Genetic Algorithms, World Scientific, Singa - Chemometr. Intell. Lab. Syst. 18, 115–155.

Xu, S., Grasso, P., Mahtab, A., 1990. Use of Schmidt hammer for estimating mechanical properties of weak rock. Proceedings of 6th International IAEG Congress, Balkema, Rotterdam, 511 – 519.

Yesilnacar, E. and Topal, T., 2005. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79, 251–266.

Zelin, Z., Jianguo, Y., Lihua, D. & Yuemin, Z., 2012. Estimation of coal particle size distribution by image segmentation. International Journal of Mining Science and Technology, 22, 739–744.

Ελληνική Βιβλιογραφία

Αγιουτάντης, Ζ., 1996. Εκμετάλλευση ΙΙ: Τεχνολογία Εξόρυξης (Διάτρηση και Ανατίναξη), Πανεπιστημιακές σημειώσεις, Πολυτεχνείο Κρήτης, Χανιά

Βουδούρης, Κ., 2004. Στατιστική ανάλυση δεδομένων στην εφαρμοσμένη και περιβαλλοντική γεωλογία, Πανεπιστημιακές σημειώσεις, Τμήμα Γεωλογίας, Α.Π.Θ., Θεσσαλονίκη

Διαμαντάρας, Κ., 2007. Τεχνητά νευρωνικά δίκτυα, Εκδόσεις Κλειδάριθμος, Αθήνα

Κανονισμός Μεταλλευτικών και Λατομικών Εργασιών (ΚΜΛΕ), ΥΑ 2223 ΦΕΚ 1227, 14/06/11

Κουλάλης, Ι., 2003. Πειραματική και θεωρητική διερεύνηση της ταχύτητας έκρηξης εντός διατρημάτων επιφανειακών ανατινάξεων, Διπλωματική εργασία, Σχολή Μηχανικών Ορυκτών Πόρων, Πολυτεχνείο Κρήτης

Μουντράκης, Δ., 2010. Γεωλογία και Γεωτεκτονική εξέλιξη της Ελλάδας, Εκδόσεις University Studio Press, Θεσσαλονίκη

Μπαρκονίκος, Α., 2015. Επανασχεδιασμός εκμετάλλευσης λατομείου αδρανών υλικών στη θέση «Μύτη Σεσμελή» του δήμου Θέρμης και εκτίμηση των επιπτώσεων στο τοπίο, Διπλωματική εργασία, Ε.Μ.Π. Σχολή Μηχανικών Μεταλλείων-Μεταλλουργών, Τομέας Μεταλλευτικής Τεχνολογίας

Παναγιώτου, Γ., 2014 . Εξόρυξη πετρωμάτων Ι, Εξόρυξη με εκρηκτικές ύλες, Πανεπιστημιακές Εκδόσεις, Ε.Μ.Π., Αθήνα

Τσουτρέλης, Χ., 1997. Εκρηκτικές ύλες και τεχνική των ανατινάξεων, Τόμος 1ος, Πανεπιστημιακές Εκδόσεις Ε.Μ.Π., Αθήνα

Διαδικτυακές Πηγές

AEL Mining Services, www.aelminingservices.com (ανακτήθηκε την 14-09-2017)

Blast Training International, http://online.blasttraining.com.au (ανακτήθηκε την 29-06-2017)

Explosives Trading Company SA, www.extraco.gr (ανακτήθηκε την 10-03-2018)

Hellenic Ministry of Environment & Energy, http://www.ypeka.gr/ (ανακτήθηκε την 20-04-2018)

International Society of Explosives (ISEE), https://www.isee.org/ (ανακτήθηκε την 10-03-2018)

Institute of Geology & Mineral Exploration, www.igme.gr (ανακτήθηκε την 10-05-2018)

Institute of Makers of Explosives (IME), https://www.ime.org/ (ανακτήθηκε την 10-03-2018)

Neuroph Java Neural Network Framework, http://neuroph.sourceforge.net/ (ανακτήθηκε την 23-09-2017)

TITAN Group, www.titan.gr (ανακτήθηκε την 2-02-2015)

WipFrag – WipWare – Fragmentation Analysis Software and Hardware, http://wipware.com/products/wipfrag/ (ανακτήθηκε την 24-10-2015)

www.orykta.gr (ανακτήθηκε την 10-04-2018)

https://www.lafargeholcim.com/ (ανακτήθηκε την 8-06-2018)


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.