Συμβολή στη μελέτη της σεισμικότητας, της σεισμικής επικινδυνότητας και της ενεργού τεκτονικής στο Ν. Αιγαίο = Study of the seismicity, seismic hazard and active tectonics in the Southern Aegean area
Περίληψη
Στην παρούσα διατριβή μελετήθηκε το πεδίο στην ευρύτερη περιοχή του Νοτίου Αιγαίου χρησιμοποιώντας όλους τους διαθέσιμους μηχανισμούς γένεσης, χρησιμοποιώντας διαφορετικές τεχνικές αντιστροφής. Η περιοχή μελέτης χαρακτηρίζεται από υψηλή σεισμικότητα αφού επανειλημμένα έχουν συμβεί μεγάλοι σεισμοί (επιφανειακοί και ενδιάμεσου βάθους) (έως και Μ ~ 8.0). Ένας μεγαλύτερος αριθμός διαθέσιμων μηχανισμών γένεσης που έχει συλλεχτεί για το Νότιο Αιγαίο αποτέλεσε τη βάση για τη λεπτομερή μελέτη της χωρικής κατανομής του ενεργού πεδίου τάσεων χρησιμοποιώντας τις πληροφορίες που παρέχονται από τους άξονες P και T των μηχανισμών γένεσης. Το σύνολο των δεδομένων συμπληρώνεται με τη αξιοποίηση επιπλέον μηχανισμών γένεσης που υπολογίζονται στο πλαίσιο αυτής της μελέτης. Το πεδίο των τάσεων μελετήθηκε χρησιμοποιώντας τρεις αλγορίθμους, καθώς και μια προσαρμοσμένη μέθοδο που προτείνεται σε αυτή τη μελέτη, με βάση τη στατιστική επεξεργασία των λύσεων που παρέχονται από τη μέθοδο Gephart και Forsyth (1984). Τα αποτελέσματα που προέκυψαν από όλες τις μεθόδους δείχνουν ότι η μέθοδος Gephart και Forsyth εμφανίζει συστηματικά τη μεγαλύτερη απόκλιση σε σύγκριση με τις άλλες προσεγγίσεις. Το πεδίο των τάσεων που έχει υπολογιστεί δείχνει παρόμοια σεισμοτεκτονικά χαρακτηριστικά με προηγούμενες μελέτες, αναγνωρίζοντας πέντε τύπους ρηγμάτων και πεδία τάσεων στον χώρο του Ν. Αιγαίου, και ειδικότερα:
α) Ανάστροφα ρήγματα που υπάρχουν στην περιοχή του Ελληνικού τόξου σε βάθη 0-60Km, με την κύρια διεύθυνση των αξόνων συμπίεσης (P-άξονες) να είναι κάθετη στην γενική διεύθυνση του τόξου στις δυτικές και κεντρικές περιοχές του τόξου, ενώ στις ανατολικές περιοχές (π.χ. Ρόδος) η διεύθυνση αυτή συμπίπτει με την διεύθυνση του Ελληνικού τόξου.
β) Κανονικά ρήγματα σε βάθη 0-30km με άξονες εφελκυσμού (T-άξονες) με διεύθυνση ~Β-Ν σχεδόν κάθετη με την γενική διεύθυνση του ηφαιστειακού τόξου.
γ) Κανονικά ρήγματα σε βάθη 0-30Km στην περιοχή του εξωτερικού ιζηματογενές τόξου με τους άξονες εφελκυσμού (T-άξονες) να έχουν ~Α-Δ διεύθυνση.
δ) Ρήγματα οριζόντιας μετατόπισης με σημαντική ανάστροφη συνιστώσα που συνδέονται με τους ενδιάμεσου βάθους σεισμούς κατά μήκος της καταδυόμενης ζώνης Benioff. Τα βάθη των σεισμών αυτών αυξάνουν από το βάθος των ~50km κοντά στην Κρήτη και στα Κύθηρα μέχρι το βάθος των ~100-120km στην περιοχή του ηφαιστειακού τόξου
ε) Ρήγματα οριζόντιας μετατόπισης που επικρατούν κυρίως στην περιοχή του NA τμήματος του Ελληνικού τόξου σε βάθος μέχρι τα 60km.
Στην συνέχεια χρησιμοποιήθηκε η στοχαστική μέθοδος πεπερασμένων πηγών με την χρήση δυναμικής γωνιακής συχνότητας και εφαρμόστηκε στους σεισμούς ενδιαμέσου βάθους του Νοτίου Αιγαίου με την χρήση του λογισμικού EXSIM (Motazedian and Atkinson, 2005; Boore, 2009). Για την παραμετρική διερεύνηση χρησιμοποιήσαμε ενόργανα δεδομένα (κυματομορφές), τόσο από επιταχυνσιογράφους, όσο και από σεισμόμετρα ευρέος φάσματος (ταχύτητας) για σεισμούς ενδιάμεσου βάθους (βάθη ~45-140 Km) και μεγέθη στο εύρος μεταξύ Μ=4.5-6.7 που συνέβησαν κατά μήκος της Ζώνης Wadati-Benioff του Νότιου Αιγαίου. Η ανελαστική απόσβεση που έχει χρησιμοποιηθεί στην διατριβή αυτή υιοθετήθηκε από την εργασία των Skarlatoudis et al. (2013) και αντιστοιχεί σε δυο μεγάλες κατηγορίες σεισμών: α) στους σεισμούς που βρίσκονται στην οπισθότοξη περιοχή με βάθη ≥60km και, β) στους σεισμούς που βρίσκονται κατά μήκος του εξωτερικού Ελληνικού τόξου με τα βάθη τους να κυμαίνονται από 45-60km. Στην παρούσα εργασία χρησιμοποιήθηκαν οι φασματικές κλίσεις της επιτάχυνσης (τιμές κ) από την εργασία της Ventouzi et al. (2013), οι οποίες προέρχονται από διάφορους σταθμούς καταγραφής και υποκεντρικές αποστάσεις και οι οποίες υπολογίστηκαν από την ανάλυση μεγάλου αριθμού σεισμών από το προσωρινό δίκτυο EGELADOS. Λόγω της έλλειψης πληροφοριών που αφορούν τις εδαφικές συνθήκες, χρησιμοποιήθηκαν γενικευμένες φασματικές ενισχύσεις (NEHRP, 1994; Klimis, 1999) για την περιοχή του Νοτιου Αιγαίου. Η τιμή της παραμέτρου τάσης (Δσ) εξετάστηκε με τη μέθοδο της «δοκιμής και απόρριψης» (trial and error), για όλους τους σεισμούς της διατριβής. Με βάση τις υπολογισμένες τιμές της πτώσης τάσης είναι εμφανές ότι για τους σεισμούς ενδιάμεσου βάθους με μεγέθη Mw>6.0, οι αντίστοιχες τιμές της είναι > 300bars. Με βάση τα αποτελέσματα που προέκυψαν πρέπει να ληφθεί υπόψη ότι η προτεινόμενη μεθοδολογία με βάση την βαθμονόμηση των παραμέτρων μπορεί να χρησιμοποιηθεί για ρεαλιστικές «τυφλές» προβλέψεις, τόσο για μελλοντικούς, όσο και για ιστορικούς σεισμούς στην ίδια περιοχή.
Η μέθοδος της στοχαστικής προσομοίωσης με το μοντέλο πεπερασμένων διαστάσεων εφαρμόστηκε για την προσομοίωση τεσσάρων σημαντικών ιστορικών σεισμών ενδιαμέσου βάθους για τους οποίους ήταν διαθέσιμες μόνο μακροσεισμικές εντάσεις. Παράμετροι όπως οι διαστάσεις των ρηγμάτων, η παράμετρος τάσης και η ανελαστική απόσβεση έχουν χρησιμοποιηθεί στην προσομοίωση των ιστορικών σεισμών ενδιάμεσου βάθους. Αρχικά υπολογίστηκαν κατάλληλες σχέσεις για τη μετατροπή των τιμών PGA και PGV σε μακροσεισμικές εντάσεις για τους σεισμούς ενδιαμέσου βάθους του Νοτίου Αιγαίου. Επίσης, η καλή συσχέτιση της βαθμίδας της τοπογραφίας με τις τιμές των Vs30 αξιοποιήθηκε για τον καθορισμό της προσεγγιστικής επίδρασης των τοπικών εδαφικών συνθηκών σε περιοχές που υπάρχουν διαθέσιμα μακροσεισμικά δεδομένα. Από την σύγκριση των παρατηρημένων μακροσεισμικών εντάσεων με τα αποτελέσματα από την στοχαστική προσομοίωση (EXSIM) φαίνεται η καλή συμφωνία που υπάρχει, επιβεβαιώνοντας την καλή προσέγγιση των παραμέτρων που υπολογιστήκαν. Με σκοπό να ερευνήσουμε τις πιθανές επιπτώσεις άλλων μεγάλων σεισμών ενδιάμεσου βάθους στην περιοχή του νότιου Αιγαίου, παρουσιάζουμε επιπρόσθετα αποτελέσματα από σενάρια προβλέψεων για δύο επιλεγμένες περιοχές όπου αρκετοί μεγάλοι ιστορικοί σεισμοί έχουν προκαλέσει σοβαρές ζημιές και καταστροφές με μεγάλες εντάσεις (IMM > 6) να παρατηρούνται σε ολόκληρη την περιοχή του κεντρικού και ανατολικού εξωτερικού τόξου, όπως την Κρήτη (π.χ. Ηράκλειο), σε πολύ καλή συμφωνία με τις διαθέσιμες παρατηρημένες μακροσεισμικές εντάσεις.
Λέξεις κλειδιά: Μηχανισμοί γένεσης; Ν. Αιγαίο; Στοχαστική προσομοίωση; Ιστορικοί σεισμοί
We examine the active stress field in the broader southern Aegean Sea subduction area from fault plane solution data, focusing on the results from the application of different stress inversion methods. The study area is characterized by high seismicity levels and has been struck repeatedly by large destructive shallow and intermediate-depth earthquakes (up to M~8.0). A larger number of previously published Fault Plane Solutions (FPS) were collected and evaluated for the Southern Aegean Sea, providing the basis for a detailed study of the spatial distribution of the active stress field, using the information provided by the P and T axes of the FPS data. This dataset is complemented by including additional FPS computed in the framework of this study. The active stress field is examined using three well-established algorithms, as well as an adapted method proposed in this study, based on the statistical processing of solutions provided by the Gephart and Forsyth (1984) method. The results obtained from all methods show a systematic consistency, with the Gephart and Forsyth method exhibiting the largest discrepancy in comparison to other approaches. The determined active stress field reveals several domains with similar seismotectonic characteristics:
a) Along the volcanic arc, the dominant ~N-S extension field shows an excellent correlation with the arc geometry (arc-normal extension).
b) The outer arc is characterized by compression, as a result of the active subduction, with an almost constant NE-SW direction.
c) Between these two regions, a narrow zone with dominant ~EW extension develops along the whole Hellenic Arc, with subtle spatial differences.
d) In the eastern Hellenic Arc, a well-developed strike-slip faulting pattern is recognized along the broader area of the Pliny and Strabo trenches.
e) Finally, all intermediate-depth events show the same transpressional pattern, with a characteristic down-dip extension along the subduction direction and an arc-parallel compression, which follows the local arc orientation.
We employ the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as adapted by Boore (2009), for the simulation of Fourier Amplitude Spectra (FAS) of intermediate-depth earthquakes in the southern Aegean Sea subduction. To calibrate the necessary model parameters of the stochastic finite-fault method, we used waveform data from both acceleration and broadband-velocity sensor instruments for intermediate-depth earthquakes (depths ~45-140km) with M4.5-6.7 that occurred along the southern Aegean Sea Wadati-Benioff zone. The anelastic attenuation parameters employed for the simulations were adapted from recent studies, suggesting large back-arc/fore-arc attenuation differences. High-frequency spectral slopes (kappa values) were constrained from the analysis of a large number of earthquakes from the high-density EGELADOS temporary network. Due to the lack of site-specific information, generic site-amplification functions available for the Aegean Sea region were adopted. Using the previous source, path and site-effect constraints, we solved for the stress-parameter values by a trial-and-error approach, in an attempt to fit the FAS of the available intermediate-depth earthquakes waveforms. Despite the fact that most source, path and site model parameters are based on independent studies and a single source parameter (stress-parameter) is optimized, an excellent comparison between observations and simulations is found for both PGA, PGV and Fourier spectra values. The final stress-parameter values increase with moment magnitude, reaching large values (>300bar) for events M>6.0. Blind tests for events not used for the model calibration verify the good agreement of the simulated and observed ground motions for both back-arc and along-arc stations. The results suggest that the employed approach can be efficiently used for the modeling of large historical intermediate-depth earthquakes, as well as for seismic hazard assessment for similar intermediate-depth events in the southern Aegean Sea area.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >100km from the earthquake epicenters. We also consider two additional "prediction" but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.
Λέξεις κλειδιά: Focal mechanism solutions; S. Aegean; Stochastic simulation; Historical earthquakes
Πλήρες Κείμενο:
PDFΑναφορές
Aristotle University of Thessaloniki Seismological Network (1981): Permanent Regional Seismological Network operated by the Aristotle University of Thessaloniki. International Federation of Digital Seismograph Networks. Other/Seismic Network., doi:10.7914/SN/HT.
Aki, K. (1967), Scaling law of seismic spectrum, J. Geophys. Res., 72, 1217 – 1231.
Aki, K., and P. Richards (1980), Quantative Seismology: Theory and methods, Freeman,San Fransisco,Calofornia, 557 pp.
Aki, K., and P. G. Richards (2002), Quantitative Seismology (2nd ed.), University Science Books.
Allen, R. V. (1978), Automatic earthquake recognition and timing from single traces, Bulletin of the Seismological Society of America, 68(5), 1521-1532.
Ambraseys, N. N. (2001), Reassessment of earthquakes, 1900-1999, in the Eastern Mediterranean and the Middle East, Geophysical Journal International, 145(2), 471-487, doi:10.1046/j.0956-540X.2001.01396.x.
Ameri, G., A. Emolo, F. Pacor, and F. Gallovic (2011), Ground-Motion Simulations for the 1980 M 6.9 Irpinia Earthquake (Southern Italy) and Scenario Events, Bulletin of the Seismological Society of America, 101(3), 1136-1151, doi:10.1785/0120100231.
Anderson, H., and J. Jackson (1987), Active tectonics of the Adriatic region, Geophys. J. R. Astr. Soc, 91, 937-983.
Anderson, J. G., and S. E. Hough (1984), A model for the shape of the Fourier amplitude spectrum of acceleration at the high frequencies, Bull. Seism. Soc. Am. , 74, 1969-1993.
Angelier, J., J. F. Dumont, H. Karamandersei, A. Poisson, S. Sinsek, and S. Uysal (1981), Analyses of fault mechanisms and expansion of southwestern Anatolia since the late Miocene. , Tectonophysics, 75, T1–T9.
Arias, A. (1970), A measure of earthquake intensity, in Seismic Design for Nuclear Power Plants, in MIT Press, edited by R. Hansen, pp. 438-483, Cambridge, MA.
Armijo, R., E. Carey, and A. Cisternas (1982), The inverse problem in microtectonics and the separation of tectonic phases., Tectonophysics, 82, 145–160.
Armijo, R., B. Meyer, G. C. P. King, A. Rigo, and D. Papanastassiou (1996), Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean, Geophysical Journal International, 126(1), 11-53, doi:10.1111/j.1365-246X.1996.tb05264.x.
Arrigo, G., Z. Roumelioti, C. Benetatos, A. Kiratzi, A. Bottari, G. Neri, D. Termini, A. Gorini, and S. Marcucci (2006), A Source Study of the 9 September 1998 (Mw 5.6) Castelluccio Earthquake in Southern Italy using Teleseismic and Strong Motion Data, Natural Hazards, 37(3), 245-262, doi:10.1007/s11069-005-4644-1.
Arvidsson, R., and G. Ekström (1998), Global CMT analysis of moderate earthquakes MW ≥ 4.5 using intermediate period surface waves. , Bull. Seismol. Soc. Am. , 88, 1003–1013.
Atkinson, G., and R. Mereu (1992), The shape of ground motion attenuation curves in southeastern Canada, Bull. Seism. Soc. Am., 82, 2014–2031.
Atkinson, G. M. (2004), Empirical attenuation of ground-motion spectral amplitudes in southeastern Canada and the northeastern United States, Bull. Seism. Soc. Am., 94, 1079–1095.
Atkinson, G. M., and I. Beresnev (1997), Don't Call it Stress Drop, Seismological Research Letters, 68(1), 3-4, doi:10.1785/gssrl.68.1.3.
Atkinson, G. M., and D. M. Boore (1995), Ground motion relations for eastern North America, Bull. Seism. Soc. Am., 85, 17 – 30.
Baskoutas, I. (1996), Dependence of code attenuation on frequency and lapse time in Central Greece, Pure Appl. Geophys., 147, 3.
Benetatos, C., A. Kiratzi, A. Ganas, M. Ziazia, A. Plessa, and G. Drakatos (2006), Strike-slip motions in the Gulf of Siğaçik (western Turkey): Properties of the 17 October 2005 earthquake seismic sequence, Tectonophysics, 426(3–4), 263-279, doi:http://dx.doi.org/10.1016/j.tecto.2006.08.003.
Benetatos, C., A. Kiratzi, C. Papazachos, and G. Karakaisis (2004), Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc, Journal of Geodynamics, 37(2), 253-296, doi:10.1016/j.jog.2004.02.002.
Benetatos, C. A., and A. A. Kiratzi (2004), Stochastic strong ground motion simulation of intermediate depth earthquakes: the cases of the 30 May 1990 Vrancea (Romania) and of the 22 January 2002 Karpathos island (Greece) earthquakes, Soil Dynamics and Earthquake Engineering, 24(1), 1-9, doi:10.1016/j.soildyn.2003.10.003.
Benetatos, C., & Kiratzi, A. (2006). Source characteristics of the 8 January 2006 (Mw 6.7) intermediate depth Kythera earthquake.
Beresnev, I. A., and G. M. Atkinson (1997), Modeling finite-fault radiation from the ωn spectrum, Bull. Seism. Soc. Am., 87, 67 – 84.
Beresnev, I. A., and G. M. Atkinson (1998a), FINSIM – a FORTRAN program for simulating stochastic acceleration time histories from finite faults, Seism. Res. Lett. , 69, 27 – 32.
Beresnev, I. A., and G. M. Atkinson (1998b), Stochastic finite – fault modelling of ground motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites, Bull. Seism. Soc. Am. , 88, 1392 – 1401.
Beresnev, I. A., and G. M. Atkinson (1999), Generic finite-fault model for groundmotion prediction in eastern north america., Bull. Seism. Soc. Am., 89, 608–625.
Bijwaard, H., W. Spakman, and E. R. Engdahl (1998), Closing the gap between regional and global travel time tomography, Journal of Geophysical Research: Solid Earth, 103(B12), 30055-30078.
Bock, G. (2012), NMSOP-GFZ: IS3.8 Source parameters and moment-tensor solutions.
Bohnhoff, M., J. Makris, D. Papanikolaou, and G. Stavrakakis (2001), Crustal investigation of the Hellenic subduction zone using wide aperture seismic data, Tectonophysics, 343, 239-262.
Bohnhoff, M., M. Rische, T. Meier, B. Endrun, D. Becker, H.-P. Harjes, and G. Stavrakakis (2004), CYC-NET: A Temporary Seismic Network on the Cyclades (Aegean Sea, Greece), Seismological Research Letters, 75(3), 352-359, doi:10.1785/gssrl.75.3.352.
Bolt, B. A. (1973), Duration of strong ground motions, paper presented at 5th World Conference on Earthquake Engineering, Acapulco,Paper 84
Boore, D. M. (1983), Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra,, Bull. Seism. Soc. Am., 73, 1865 – 1894.
Boore, D. M. (2000), SMSIM: Fortran programs for simulating ground motions from earthquake. version 2.0, U.S. Geol. Surv., Open-File Rept. 00-509 , 55.
Boore, D. M. (2003), Analog-to-digital conversion as a source of drifts in displacements derived from digital recordings of ground acceleration, Bull. Seism. Soc. Am., 93, 2017-2024.
Boore, D. M. (2005), On pads and filters: processing strong-motion data, Bull. Seism. Soc. Am., 95, 745–750.
Boore, D. M. (2009), Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM, Bulletin of the Seismological Society of America, 99(6), 3202-3216.
Boore, D. M., and G. M. Atkinson (1987), Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in eastern North America, Bull. Seism. Soc. Am., 77, 440 – 467.
Boore, D. M., and J. Boatwright (1984), Average body-wave radiation coefficients, Bull. Seism. Soc. Am. , 74, 1615 – 1621.
Boore, D. M., K. W. Campbell, and G. M. Atkinson (2010), Determination of Stress Parameters for Eight Well-Recorded Earthquakes in Eastern North America, Bulletin of the Seismological Society of America, 100(4), 1632-1645, doi:10.1785/0120090328.
Boore, D. M., A. A. Skarlatoudis, B. N. Margaris, C. B. Papazachos, and C. Ventouzi (2009), Along-Arc and Back-Arc Attenuation, Site Response, and Source Spectrum for the Intermediate-Depth 8 January 2006 M 6.7 Kythera, Greece, Earthquake, Bulletin of the Seismological Society of America, 99(4), 2410-2434, doi:10.1785/0120080229.
Boore, D. M., and E. M. Thompson (2014), Path Durations for Use in the Stochastic-Method Simulation of Ground Motions, Bulletin of the Seismological Society of America, 104(5), 2541-2552, doi:10.1785/0120140058.
Bott, M. H. P. (1959), The Mechanics of Oblique Slip Faulting, Geological Magazine, 96(02), 109-117, doi:doi:10.1017/S0016756800059987.
Brocher, T. M. (2005), Empirical relations between elastic wavespeeds and density in the Earth’s crust, Bull. Seism. Soc. Am., 95, 2081—2092.
Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997 – 5009.
Brune, J. N. (1971), Correction, J. Geophys. Res., 76, 5002.
Brüstle, A., W. Friederich, T. Meier, and C. Gross (2014), Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms, Solid Earth, 5(2), 1027-1044, doi:10.5194/se-5-1027-2014.
Calcagnile, G., F. D'Ingeo, P. Farrugia, and G. F. Panza (1982), The lithosphere in the central-eastern Mediterranean area, Pure and Applied Geophysics PAGEOPH, 120(2), 389-406, doi:10.1007/BF00877044.
Casten, U., and K. Snopek (2006), Gravity modelling of the Hellenic subduction zone — a regional study, Tectonophysics, 417(3-4), 183-200, doi:10.1016/j.tecto.2005.11.002.
Castro, R. R., A. Rovelli, M. Cocco, M. Di Bona, and Pacor F. (2001), Stochastic simulation of strong – motion records from the 26 September 1997 (Mw 6), Umbria – Marche (Central Italy) earthquake, Bull. Seism. Soc. Am., 91, 27-39.
Cesca, S., S. Heimann, K. Stammler, and T. Dahm (2010), Automated point and kinematic source inversion at regional distances, J. Geophys. Res, doi:10.1029/2009JB006450.
Chailas, S., R. G. Hipkin, and E. Lagios (1993), Isostatic studies in the Hellenides, 2nd Congress of the Hellenic Geophysical Union, 2, 492-504.
Chopra, S., D. Kumar, and B. K. Rastogi (2010), Estimation of Strong Ground Motions for 2001 Bhuj (M w 7.6), India Earthquake, Pure and Applied Geophysics, 167(11), 1317-1330, doi:10.1007/s00024-010-0132-y.
Comninakis, P., and B. Papazachos (1986), A catalogue of earthquakes in Greece and the surrounding area for the period 1901-1985 univ thessaloniki geophys, Lab. Publ.
Comninakis, P. E., and B. C. Papazachos (1980), Space and time distribution of the intermediate focal depth earthquakes in the Hellenic arc, Tectonophysics, 70(3), T35-T47, doi:http://dx.doi.org/10.1016/0040-1951(80)90278-4.
Delibasis, N., J. Makris, and J. Drakopoulos (1988), Seismic investigation of the crust and the upper mantle in Western Greece, Ann. Geol. Pays Hell, 33, 69-83.
Dimitriadis, I., E. Karagianni, D. Panagiotopoulos, C. Papazachos, P. Hatzidimitriou, M. Bohnhoff, M. Rische, and T. Meier (2009), Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network, Tectonophysics, 465(1-4), 136-149, doi:10.1016/j.tecto.2008.11.005.
Dziewonski, A. M., T. A. Chou, and J. H. Woodhouse (1981), Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, Journal of Geophysical Research: Solid Earth, 86(B4), 2825-2852, doi:10.1029/JB086iB04p02825.
Foucher, J., N. Chamot-Roocke, S. Alexandry, J. M. Augustin, S. Monti, P. Pavlakis, and M. Voisset (1993), Multibeam bathymetry and seabed reflectivity maps of the MEDRIFF corridor across the eastern Mediterranean Ridge, Terra Cognita (Ed.), EUG (VII), London, Blackwell Scientic Publication:, 278-279.
Friederich, W., and J. Dalkolmo (1995), Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the Green's function in the frequency domain, Geophysical Journal International, 122(2), 537-550, doi:10.1111/j.1365-246X.1995.tb07012.x.
Friederich, W., and T. Meier (2008), Temporary Seismic Broadband Network Acquired Data on Hellenic Subduction Zone, Eos, Transactions American Geophysical Union, 89(40), 378-378, doi:10.1029/2008EO400002.
Fytikas, M., F. Innocenti, P. Manetti, R. Mazzuoli, A. Pecerillo, and L. Villari (1985), Tertiary to Quaternary evolution of the volcanism in the Aegean region. In: J.F. Dixon and A.H.F. Robertson (Editors), The Geological Evolution of the Eastern Mediterranean, Blackwell Publ., Oxford, pp. 848.
Ganas, A., and T. Parsons (2009), Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift, Journal of Geophysical Research, 114(B6), doi:10.1029/2008jb005599.
Gephart, J. W. (1990a), FMSI: A FORTRAN program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Computers & Geosciences., Vol. 16, no. 17, p. 953-989.
Gephart, J. W. (1990b), Stress and the direction of slip on fault planes., Tectonics, v. 9, no. 4, p. 845-858.
Gephart, J. W., and D. W. Forsyth (1984), An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence:, Jour. Geophys. Res., no. B11, p. 9305-9320.
Goldsworthy, M., J. Jackson, and J. Haines (2002), The continuity of active fault systems in Greece, Geophysical Journal International, 148(3), 596-618, doi:10.1046/j.1365-246X.2002.01609.x.
Graves, R. W., and A. Pitarka (2010), Broadband ground-motion simulation using a hybrid approach, Bull. Seism. Soc. Am., 100(5A), 2095-2123.
Gusev, A., Radulian, M., Rizescu, M., & Panza, G. F. (2002). Source scaling of intermediate-depth Vrancea earthquakes. Geophysical Journal International, 151(3), 879-889.
Hanka, W., and R. Kind (1994), The GEOFON Program, Ann. di Geofis., 37(5).
Hanks, T. C. (1979), b values and ω-γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of highfrequency strong ground motion, J. Geophys. Res., 84, 2235 – 2242.
Hanks, T. C., and R. K. McGuire (1981), The character of high-frequency strong ground motion, Bull. Seism. Soc. Am., 71, 2071 – 2095.
Hardebeck, J. L., and E. Hauksson (2001), Stress orientations obtained from Earthquake focal mechanisms: What are appropriate uncertainty estimates?, Bull. Seismol. Soc. Am., 91, 250–262, doi:10.1785/0120000032.
Hashida, T., G. Stavrakakis, and K. Shimazaki (1988), Three-dimensional seismic attenuation structure beneath the Aegean region and its tectonic implication, Tectonophysics, 145(1-2), 43-54, doi:10.1016/0040-1951(88)90314-9.
Haskell, N. A. (1953), The dispersion of surface waves on multilayered media, Bull. Seism. Soc. Am., 43(1), 17-34.
Hatzidimitriou, P. M. (1993), Attenuation of code waves in northern Greece, Pageoph, 140, 63–78.
Hatzidimitriou, P. M. (1994), Scattering and anelastic attenuation of seismic energy in northern Greece, Pure Appl. Geophys., 143, 587–601.
Hatzidimitriou, P. M. (1995), S-wave attenuation in the crust in northern Greece, Bull. Seism. Soc. Am., 85, 1381–1387.
Heimann, S., S. Cesca, F. Krüger, and T. Dahm (2008), Stable estimation of extended fault proper-ties for medium-sized earthquakes using teleseismic waveform data, Geophysical Research Abstracts, pp. EGU2008– A–2007,2568.
Herrmann, R. B. (1985), An extension of random vibration theory estimates of strong ground motion to large distances, Bull. Seismol. Soc. Am., 75, 1447–1453.
Husid, L. R. (1969), Características de terremotos, Análisis general, paper presented at Revista del IDIEM 8, Santiago del Chile,pp. 21-42
Jackson, J., and D. McKenzie (1988a), Rates of active deformation in the Aegean Sea and surrounding regions, Basin Research, 1(3), 121-128.
Jackson, J., and D. McKenzie (1988b), The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East, Geophysical Journal - Royal Astronomical Society, 93(1), 45-73.
Jost, M. L., and R. B. Herrmann (1989), A Student’s Guide to and Review of Moment Tensors, Seismological Research Letters, 60(2), 37-57, doi:10.1785/gssrl.60.2.37.
Karagianni, E. E., and C. B. Papazachos (2007), Shear velocity structure in the Aegean area obtained by joint inversion of Rayleigh and Love waves, in The Geodynamics of the Aegean and Anatolia, vol. 291, edited by T. Taymaz, Y. Yilmaz, and Y. Dilek, pp. 159–181, Geological Society, Special Publications, London.
Karagianni, E. E. et al. (2002), Rayleigh wave group velocity tomography in the Aegean area, Tectonophysics, 358(1-4), 187–209, doi:10.1016/S0040-1951(02)00424-9.
Karagianni, E. E., C. B. Papazachos, D. G. Panagiotopoulos, P. Suhadolc, a. Vuan, and G. F. Panza (2004), Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves, Geophys. J. Int., 160(1), 127–143, doi:10.1111/j.1365-246X.2005.02354.x.
Karagianni, I., C. Papazachos, E. Scordilis, and G. Karakaisis (2015), Reviewing the active stress field in Central Asia by using a modified stress tensor approach, doi:10.1007/s10950-015-9481-4.
Kastens, K. A. (1991), Rate of outward growth of the Mediterranean ridge accretionary complex, Tectonophysics, 199(1), 25-50, doi:http://dx.doi.org/10.1016/0040-1951(91)90117-B.
Kenyon, N. H., R. H. Belderson, and A. H. Stride (1982), Detailed tectonic trends on the central part of the Hellenic outer ridge and in the Hellenic trench system, Geol. Soc. Lond., 10, 335–343.
Khalil, A. E. (2013), Strong motion simulation at Abu Zenima city, Gulf of Suez, Egypt, NRIAG Journal of Astronomy and Geophysics, 2(1), 139-145, doi:10.1016/j.nrjag.2013.06.017.
Kiratzi, A. (2013), The January 2012 earthquake sequence in the Cretan Basin, south of the Hellenic Volcanic Arc: Focal mechanisms, rupture directivity and slip models, Tectonophysics, 586, 160-172, doi:10.1016/j.tecto.2012.11.019.
Kiratzi, A., and E. Louvari (2003), Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database, Journal of Geodynamics, 36(1–2), 251-274, doi:http://dx.doi.org/10.1016/S0264-3707(03)00050-4.
Kiratzi, A., and C. Papazachos (1995), Active seismic deformation in the southern Aegean Benioff zone, J. Geodynamics, 19, 65-78.
Kiratzi, A., Z. Roumelioti, A. Chatzipetros, and G. Papathanassiou (2015), Simulation of Off-Fault Surface Effects from Historical Earthquakes: The Case of the City of Thessaloniki (Northern Greece), in Engineering Geology for Society and Territory - Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation, edited by G. Lollino, A. Manconi, F. Guzzetti, M. Culshaw, P. Bobrowsky and F. Luino, pp. 957-963, Springer International Publishing, Cham, doi:10.1007/978-3-319-09048-1_185.
Kkallas, C., K. Papazachos, E. Scordilis, and V. Margaris (2013), Re-examining the stress field of the broader Southern Aegean subduction area using an updated focal mechanism database, Bulletin of Geoleological Society of Greece / Δελτίον της Ελληνικής Γεωλογικής Εταιρίας.
Klimis, N. S., B. N. Margaris, and P. K. Koliopoulos (1999), Site-dependent amplification functions and response spectra in greece., Journal of Earthquake Engineering, 3(02), 237–270.
Knapmeyer, M., and H. P. Harjes (2000), Imaging crustal discontinuities and the downgoing slab beneath western Crete, Geophysical Journal International, 143(1), 1-21, doi:10.1046/j.1365-246X.2000.00197.x.
Knopoff, L., and M. J. Randall (1970), The compensated linear-vector dipole: A possible mechanism for deep earthquakes, Journal of Geophysical Research, 75(26), 4957-4963, doi:10.1029/JB075i026p04957.
Koliopoulos, P. K., B. N. Margaris, and N. S. Klimis (1998), Duration and Energy Characteristics of Greek Strong Motion Records, Journal of Earthquake Engineering, 2(3), 391-417, doi:10.1080/13632469809350328.
Kostrov, V. V. (1974), Seismic moment and energy of earthquakes, and seismic flow of rock, Izv. Acad. Sci. USSR Phys. Solid Earth, 1, 23-44.
Kovachev, S. A., I. P. Kuzin, S. O. Yu, and S. L. Soloviev (1991), Attenuation of S-waves in the lithosphere of the Sea of Crete according to OBS observations, Phys. Earth Planet. Int., 69, 101–111.
Le Pichon, X., N. Chamot-Rooke, S. Lallemant, R. Noomen, and G. Veis (1995), Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics, Journal of Geophysical Research: Solid Earth, 100(B7), 12675-12690, doi:10.1029/95JB00317.
LePichon, X., and J. Angelier (1979), The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area, Tectonophysics, 60, 1-42.
Louvari, E., and A. Kiratzi (2001), Source parameters of the 7 September 1999 Athens (Greece) earthquake based on teleseismic data, Journal of the Balkan Geophysical Society, 4(3), 51-60.
Louvari, E., A. Kiratzi, and B. Papazachos (1999), The Cephalonia transform fault and its extension to western Lefkada Island (Greece), Tectonophysics, 308(1), 223-236.
Lyon-Caen, H., et al. (1988), The 1986 Kalamata (South Peloponnesus) Earthquake: Detailed study of a normal fault, evidences for east-west extension in the Hellenic Arc, Journal of Geophysical Research: Solid Earth, 93(B12), 14967-15000, doi:10.1029/JB093iB12p14967.
Makris, J. (1973), Some geophysical aspects of the evolution of the Hellenides, Bull. Geol. Soc. Greece, 10(1), 206-213.
Makris, J. (1976), A dynamic model of the Hellenic Arc deduced from geophysical data, Tectonophysics, 36(4), 339-346, doi:http://dx.doi.org/10.1016/0040-1951(76)90108-6.
Makris, J. (1977), Geophysical investigations of the Hellenides, Hamburger Geophysikalische Einzelschriften, 34, 1-124.
Makris, J. (1978), The crust and upper mantle of the Aegean region from deep seismic soundings, Tectonophysics, 46(3-4), 269-284, doi:10.1016/0040-1951(78)90207-X.
Makris, J., and L. Moller (1977), Geophysical studies of the Chalkidiki ophiolites and their tectonic implications., VI Coll. Geol. Aegean Region,623-643
Makropoulos, K. C., J. K. Drakopoulos, and J. B. Latousakis (1989), A revised and extended earthquake catalogue for Greece since 1900, Geophysical Journal International, 98(2), 391-394.
Margaris, B. N., and D. M. Boore (1998), Determination of Δσ and κ0 from response spectra of large earthquakes in Greece, Bulletin of the Seismological Society of America, 88(1), 170-182.
Margottini, C., and G. Margottini (1982), Osservazioni su alcuni grandi terremoti con epicentro in oriente: campo macrosismico in Italia del terremoto greco del 1903.
Martin, C. (1988), Geometric et Cinematique de la Subduction Egeene Structure en Vitesse et en Attenuation Sous le Peleponnese., Ph.D thesis, 261 pp, Univ. Joseph Fourier, Grenoble.
Mavroeidis, G., and A. Papageorgiou (2003), A Mathematical Representation of NearFault Ground Motions, Bulletin of the seismological Society of America, 93, 1099-1131.
McClusky, S., et al. (2000), Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, Journal of Geophysical Research: Solid Earth, 105(B3), 5695-5719, doi:10.1029/1999JB900351.
McGuire, R. K., and T. C. Hanks (1980), rms accelerations and spectral amplitudes of strong ground motion during the San Fernando, California, earthquake, Bull. Seism. Soc. Am., 70, 1907 – 1919.
McKenzie, D. (1970), The plate tectonics of the Mediterranean region, Nature, 226, 239-243.
McKenzie, D. (1972), Active Tectonics of the Mediterranean Region, Geophysical Journal of the Royal Astronomical Society, 30(2), 109-185, doi:10.1111/j.1365-246X.1972.tb02351.x.
McKenzie, D. (1978), Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions, Geophysical Journal International, 55(1), 217-254, doi:10.1111/j.1365-246X.1978.tb04759.x.
McKenzie, D., and J. Jackson (1983), The relationship between strain rates, crustal thickening, palaeomagnetism, finite strain and fault movements within a deforming zone, Earth and Planetary Science Letters, 65(1), 182-202, doi:http://dx.doi.org/10.1016/0012-821X(83)90198-X.
McKenzie, D. P. (1969), The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. seism. SOC. Am., 59, 591.
Meier, T., K. Dietrich, B. Stöckhert, and H. P. Harjes (2004), One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Geophysical Journal International, 156(1), 45-58, doi:10.1111/j.1365-246X.2004.02121.x.
Michael, A. J. (1987), Use of focal mechanisms to determine stress: A control study, J. Geophys. Res., 92(B1), 357 - 368.
Motazedian, D. (2006), Region-Specific Key Seismic Parameters for Earthquakes in Northern Iran, Bulletin of the Seismological Society of America, 96(4A), 1383-1395, doi:10.1785/0120050162.
Motazedian, D., and G. M. Atkinson (2005), Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency, Bulletin of the Seismological Society of America, 95, 995-1010.
Moustafa, S., and H. Takenaka (2009), Stochastic ground motion simulation of the 12 October 1992 Dahshour earthquake, Acta Geophysica, 57(3), doi:10.2478/s11600-009-0012-y.
Novotný, O., J. Zahradník, and G.A. Tselentis (2001), North-Western Turkey earthquakes and the crustal structure inferred from surface waves observed in Western Greece, Bull. Seismol. Soc. Amer., 91, 875-879.
Nyst, M., and W. Thatcher (2004), New constraints on the active tectonic deformation of the Aegean, Journal of Geophysical Research: Solid Earth, 109(B11), n/a-n/a, doi:10.1029/2003jb002830.
Panagiotopoulos, D. G. (1984), Travel time curves and crustal structure in the southern Balkan region, in Greek thesis, 159 pp, Univ. of Tessaloniki.
Panagiotopoulos, D. G., and B. C. Papazachos (1985), Travel times of Pn-waves in the Aegean and surrounding area, Geophysical Journal International, 80(1), 165-176, doi:10.1111/j.1365-246X.1985.tb05083.x.
Papadopoulos, G. A., Ziazia M., Plessa A., Ganas A., Karastathis V., Melis N., and G. Stavrakakis (2002), Seismic Anisotropy in the East Mediterranean Lithosphere: The Mw=6.3 Karpathos Intermediate Depth Earthquake of 22 January 2002 in the Hellenic Arc., paper presented at XXVII GENERAL ASSEMBLY OF THE EUROPEAN SEISMOLOGICAL SOCIETY, Genova, Palazzo Ducale
Papageorgiou, A. S., and K. Aki (1983), A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. I. Description of the model, Bull. Seism. Soc. Am., 73, 693 – 722.
Papazachos, B., S. Dimitriadis, D. Panagiotopoulos, C. Papazachos, and E. Papadimitriou (2005), Deep structure and active tectonics of the southern Aegean volcanic arc, Developments in Volcanology, 7, 47-64.
Papazachos, B., E. Papadimitriou, A. Kiratzi, C. Papazachos, and E. Louvari (1998), Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implications, Boll. Geof. Teor. Appl, 39(3), 199-218.
Papazachos, B., M. Polatou, and N. Mandalos (1967), Dispersion of surface waves recorded in Athens, Pure and Applied Geophysics PAGEOPH, 67(1), 95-106, doi:10.1007/BF00880566.
Papazachos, B. C. (1973), Distribution of Seismic Foci in the Mediterranean and Surrounding Area and its Tectonic Implication, Geophysical Journal International, 33(4), 421-430, doi:10.1111/j.1365-246X.1973.tb02377.x.
Papazachos, B. C. (1996), Large seismic faults in the Hellenic arc, Ann. Geophys., 39, 892–903.
Papazachos, B. C., and P. E. Comninakis (1969), Geophysical features of the Greek island arc and eastern Mediterranean ridge, Com. Ren. Séances Conf. Reunie Madrid, 16(16), 74-75.
Papazachos, B. C., and P. E. Comninakis (1971), Geophysical and tectonic features of the Aegean arc, Geophys. Res, 76, 8517-8533.
Papazachos, B. C., and P. E. Comninakis (1978), Geotectonic significance of the deep seismic zones in the Aegean area, Thera and the Aegean World, 1, 121-129.
Papazachos, B. C., P. E. Comninakis, P. M. Hatzidimitriou, E. C. Kiriakidis, A. A. Kiratzi, D. G. Panagiotopoulos, E. E. Papadimitriou, C. A. Papaioannou, S. B. Pavlides, and E. Tzanis (1982), Atlas of Isoseismal Maps for Earthquakes in Greece 1902-1981, Geophys. Lab. Univ. Thessaloniki, 4, 124.
Papazachos, B. C., and N. D. Delibassis (1969), Tectonic stress field and seismic faulting in the area of Greece, Tectonophysics, 7, 231 - 255.
Papazachos, B. C., S. T. Dimitriadis, D. G. Panagiotopoulos, C. B. Papazachos, and E. E. Papadimitriou (2003), Deep structure and active tectonics of the Southern Aegean volcanic arc, Developments in Volcanology: The South Aegean Volcanic Arc, Elsevier, 391pp, 47-64.
Papazachos, B. C., S. T. Dimitriadis, D. G. Panagiotopoulos, C. B. Papazachos, and E. E. Papadimitriou (2004), Deep structure and active tectonics of the Southern Aegean Volcanic arc, The International, Conference: The South Aegean Active Volcanic Arc: Present Knowledge and Feature Perspectives (SAAVA 2003).
Papazachos, B. C., V. G. Karakostas, C. B. Papazachos, and E. M. Scordilis (2000), The geometry of the Wadati-Benioff zone and the lithospheric kinematics in the Hellenic arc, Tectonophysics, 319, 275-300.
Papazachos, B. C., V. G. Karakostas, E. M. Scordilis, C. B. Papazachos, C. A. Papaioannou, and G. F. Karakaisis (1997), A catalog for the Aegean and surrounding area for the time period 550BC-1997, paper presented at IASPEI 29th General Assembly, Thessaloniki, 18-28 August 1997
Papazachos, B. C., A. A. Kiratzi, P. Hatzidimitriou, and A. Rocca (1984), Seismic faults in the Aegean area, Tectonophysics, 106, 71-85.
Papazachos, B. C., and D. G. Panagiotopoulos (1993), Normal faults associated with volcanic activity arc, Tectonophysics, 220(1-4), 301-308, doi:10.1016/0040-1951(93)90237-E.
Papazachos, B. C., and C. B. Papazachou (2003), The earthquakes of Greece, Ziti, Thessaloniki.
Papazachos, C., and A. Kiratzi (1992), A formulation for reliable estimation of active crustal deformation and its application to central Greece, Geophysical Journal International, 111, 424-432.
Papazachos, C., and C. Papaioannou (1998), Further information on the macroseismic field in the Balkan area: Reply on the comment of M.D. Trifunac on the paper 'The macroseismic field of the Balkan area' by C. Papazachos and Ch. Papaioannou, Journal of Seismology, 2(4), 363-375.
Papazachos, C. B. (1992), Anisotropic radiation modeling of macroseismic intensities for estimation of the attenuation structure of the upper crust in Greece., Pure Appl. Geophys., 138, 445-470.
Papazachos, C. B. (1993), Determination of crustal thickness by inversion of travel times with an application in the Aegean area, in 2nd Congress of the Greek Geophysical Union, edited by Greek Geophys. Union, Florina,Greece.
Papazachos, C. B. (1999), Seismological and GPS evidence for the Aegean-Anatolia interaction, Geophysical Research Letters, 26(17), 2653-2656.
Papazachos, C. B. (2002), A tecto-kinematic model for the Aegean using seismological and GPS data, in Proc. 11th Gen. Ass. WEGENER, edited, 12-14 June.
Papazachos, C. B., and A. A. Kiratzi (1996), A detailed study of active crustal in the Aegean and surrounding region, Tectonophysics 253, 129-153.
Papazachos, C. B., and G. Nolet (1997), P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times, J.Geoph. Res., 102, 8349-8367.
Papazachos, C. B., P.M. Hatzidimitriou, D.G. Panagiotopoulos, and G.N. Tsokas (1995), Tomography of the crust and upper mantle in southeast Europe, J. Geophys. Res., 12, 405-412.
Papazachos, G., C. Papazachos, A. Skarlatoudis, H. Kkallas, and E. Lekkas (2015), Modelling macroseismic observations for historical earthquakes: the cases of the M = 7.0, 1954 Sofades and M = 6.8, 1957 Velestino events (central Greece), Journal of Seismology, doi:10.1007/s10950-015-9517-9.
Plomerova, J., V. Babuska, P. Pujdusak, P. Hatzidimitriou, D. Panagiotopoulos, J. Kalogeras, and S. Tassos (1989), Seismicity of the Aegean and surrounding areas in relation to topography of the lithospere - Asthenosphere transition, Proc. 4th Inter. Sym. Analysis Seismicity and Seismic Risk, 209-215.
Raghu Kanth, S. T. G., and B. Kavitha (2012), Stochastic Finite Fault Modeling of Subduction Zone Earthquakes in Northeastern India, Pure and Applied Geophysics, 170(11), 1705-1727, doi:10.1007/s00024-012-0622-1.
Reilinger, R. E., S. C. McClusky, M. B. Qral, R. W. King, M. N. Toksoz, A. A. Barka, I. Kinik, O. Lenk, and I. Sanli (1997), Global positioning system measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone, Journal of Geophysical Research B: Solid Earth, 102(B5), 9983-9999.
Rontogianni, S., K. I. Konstantinou, N. S. Melis, and C. P. Evangelidis (2011), Slab stress field in the Hellenic subduction zone as inferred from intermediate-depth earthquakes, Earth, Planets and Space, 63(2), 139-144, doi:10.5047/eps.2010.11.011.
Roumelioti, Z., C. Benetatos, A. Kiratzi, G. Stavrakakis, and N. Melis (2004a), A study of the 2 December 2002 (M5. 5) Vartholomio (western Peloponnese, Greece) earthquake and of its largest aftershocks, Tectonophysics, 387(1), 65-79.
Roumelioti, Z., and A. Kiratzi (2002), Stochastic simulation of strong-motion records from the 15 April 1979 (M 7.1) Montenegro earthquake, Bulletin of the Seismological Society of America, 92(3), 1095-1101.
Roumelioti, Z., A. Kiratzi, N. Theodoulidis, and Papaioannou Ch. (2002), A comparative study of a stochastic and deterministic simulation of strong ground motion applied to the Kozani-Grevena (NW Greece) 1995 sequence, Annali di Geofisica, 43, 951-966.
Roumelioti, Z., A. Kiratzi, and N. Theodulidis (2004b), Stochastic Strong Ground-Motion Simulation of the 7 September 1999 Athens (Greece) Earthquake, Bulletin of the Seismological Society of America, 94(3), 1036-1052, doi:10.1785/0120030219.
Roumelioti, Z., A. Kiratzi, N. Theodulidis, and C. Papaioannou (2000), A comparative study of a stochastic and deterministic simulation of strong ground motion applied to the Kozani-Grevena (NW Greece) 1995 sequence, Annals of Geophysics, 43(4).
Sachpazi, M., A. Galvé, M. Laigle, A. Hirn, E. Sokos, A. Serpetsidaki, J. M. Marthelot, J. M. Pi Alperin, B. Zelt, and B. Taylor (2007), Moho topography under central Greece and its compensation by Pn time-terms for the accurate location of hypocenters: The example of the Gulf of Corinth 1995 Aigion earthquake, Tectonophysics, 440(1-4), 53–65, doi:10.1016/j.tecto.2007.01.009.
Scordilis, E., G. Karakaisis, B. Karacostas, D. Panagiotopoulos, P. Comninakis, and B. Papazachos (1985), Evidence for transform faulting in the Ionian Sea: the Cephalonia island earthquake sequence of 1983, pure and applied geophysics, 123(3), 388-397.
Shaw, B., N. Ambraseys, P. England, M. Floyd, G. Gorman, T. Higham, J. Jackson, J. Nocquet, C. Pain, and M. Piggott (2008), Tectonics and Tsunami Hazard in the Eastern Mediterranean Inferred From the AD 365 Earthquake, AGU Fall Meeting Abstracts, 1, 1943.
Shebalin, N. V., V. Kárnik, and D. Hadzievski (1974), Catalogue of Earthquakes 1901–1970, and Atlas of Isoseismal Maps, UNDP/UNESCO Balkan Project,Skopje, 3.
Skarlatoudis, A. A., and B. N. Margaris (2006), Kythera 2006 Earthquake: Data Processing Of Strong Motion From Various Digital Sensors, in 1st European Conference on Earthquake Engineering and Seismology, edited, Geneva, Switzerland.
Skarlatoudis, A., C. Papazachos, B. Margaris, C. Papaioannou, C. Ventouzi, D. Vamvakaris, A. Bruestle, T. Meier, W. Friederich, and G. Stavrakakis (2009), Combination of acceleration-sensor and broadband velocity-sensor recordings for attenuation studies: The case of the 8 January 2006 Kythera intermediate-depth earthquake, Bulletin of the Seismological Society of America, 99(2A), 694-704.
Skarlatoudis, A. A., C. B. Papazachos, B. N. Margaris, C. Ventouzi, and I. Kalogeras (2013), Ground-Motion Prediction Equations of Intermediate-Depth Earthquakes in the Hellenic Arc, Southern Aegean Subduction Area, Bulletin of the Seismological Society of America, 103(3), 1952-1968, doi:10.1785/0120120265.
Sodoudi, F., A. Brüstle, T. Meier, R. Kind, W. Friederich, and E. w. group (2015), Receiver function images of the Hellenic subduction zone and comparison to microseismicity, Solid Earth, 6(1), 135-151, doi:10.5194/se-6-135-2015.
Sodoudi, F., X. Yuan, Q. Liu, R. Kind, and J. Chen (2006), Lithospheric thickness beneath the Dabie Shan, central eastern China from S receiver functions, Geophysical Journal International, 166(3), 1363-1367, doi:10.1111/j.1365-246X.2006.03080.x.
Sokolov, V., Bonjer, K. P., Oncescu, M., & Rizescu, M. (2005). Hard rock spectral models for intermediate-depth Vrancea, Romania, earthquakes. Bull. Seism. Soc. Am., 95(5), 1749-1765.
Spakman, W. (1986), Subduction beneath Eurasia in connection with the Mesozoic Tethys, Geologie en Mijnbouw, 65(2), 145-153.
Spakman, W. (1988), Upper mantle delay time tomography: with an application to the collision zone of the Eurasian, African, and Arabian plates, Geologica Ultraiectina, 53, 1-200.
Spakman, W., S. van der Lee, and R. van der Hilst (1993), Travel-time tomography of the European-Mediterranean mantle down to 1400 km, Physics of the Earth and Planetary Interiors, 79(1), 3-74.
Spakman, W., M. Wortel, and N. Vlaar (1988), The Hellenic subduction zone: a tomographic image and its geodynamic implications, Geophysical research letters, 15(1), 60-63.
Stein, S., and M. Wysession (2009), An introduction to seismology, earthquakes, and earth structure, John Wiley & Sons.
Stewart, J. P., N. Klimis, A. Savvaidis, N. Theodoulidis, E. Zargli, G. Athanasopoulos, P. Pelekis, G. Mylonakis, and B. Margaris (2014), Compilation of a Local VS Profile Database and Its Application for Inference of VS30 from Geologic- and Terrain-Based Proxies, Bulletin of the Seismological Society of America, 104(6), 2827-2841, doi:10.1785/0120130331.
Stiros, S. C. (2001), The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data, Journal of Structural Geology, 23(2–3), 545-562, doi:http://dx.doi.org/10.1016/S0191-8141(00)00118-8.
Taymaz, T., J. Jackson, and D. McKenzie (1991), Active tectonics of the north and central Aegean Sea, Geophysical Journal International, 106(2), 433-490, doi:10.1111/j.1365-246X.1991.tb03906.x.
Taymaz, T., J. Jackson, and R. Westaway (1990), Earthquake mechanisms in the Hellenic Trench near Crete, Geophysical Journal International, 102(3), 695-731.
Theodulidis, N., Z. Roumelioti, A. Panou, A. Savvaidis, A. Kiratzi, V. Grigoriadis, P. Dimitriu, and T. Chatzigogos (2006), Retrospective Prediction of Macroseismic Intensities Using Strong Ground Motion Simulation: The Case of the 1978 Thessaloniki (Greece) Earthquake (M6.5), Bulletin of Earthquake Engineering, 4(2), 101-130, doi:10.1007/s10518-006-9001-6.
Theodulidis, N. P., and B. C. Papazachos (1992), Dependence of strong ground motion on magnitude-distance, site geology and macroseismic intensity for shallow earthquakes in greece: I, peak horizontal acceleration, velocity and displacement., Soil Dynamics and Earthquake Engineering, 11(7), 387–402.
Thomson, W. T. (1950), Transmission of Elastic Waves through a Stratified Solid Medium, Journal of Applied Physics, 21(2), 89-93, doi:doi:http://dx.doi.org/10.1063/1.1699629.
Tselentis, G. A., and L. Danciu (2008), Empirical Relationships between Modified Mercalli Intensity and Engineering Ground-Motion Parameters in Greece, Bulletin of the Seismological Society of America, 98(4), 1863-1875, doi:10.1785/0120070172.
Ugurhan, B., and A. Askan (2010), Stochastic Strong Ground Motion Simulation of the 12 November 1999 Duzce (Turkey) Earthquake Using a Dynamic Corner Frequency Approach, Bulletin of the Seismological Society of America, 100(4), 1498-1512, doi:10.1785/0120090358.
Vamvakaris, D. A., C. B. Papazachos, E. E. Karagianni, E. M. Scordilis, and P. M. Hatzidimitriou (2005), Determination of fault plane solutions using waveform amplitudes and radiation pattern, Bull. Geol. Soc.Greece, 36, 1529-1538.
Vamvakaris, D. A., C. B. Papazachos, E. E. Karagianni, E. M. Scordilis, and P. M. Hatzidimitriou (2006), Small-scale spatial variation of the stress field in the back-arc Aegean area: Results from the seismotectonic study of the broader area of Mygdonia basin (N. Greece), Tectonophysics, 417(3-4), 249-267, doi:10.1016/j.tecto.2006.01.007.
Ventouzi, C., C. B. Papazachos, C. Papaioannou, P. Hatzidimitriou, and the EGELADOS working group (2013), Obtaining information on the Q-structure of the southern Aegean subduction area by spectral slopes from temporary and permanent networks., in Proceedings of the 13th International Congress of the Geological Society of Greece, edited, p. 1366, Chania, Greece.
Ventouzi, C., C. B. Papazachos, C. Papaioannou, P. Hatzidimitriou, and the EGELADOS working group (2015), Qp and Qs attenuation models of the southern aegean subduction area, paper presented at 15th european conference on earthquake engineering & 34th general assembly of the european seismological commission, Istanbul,turkey
Wald, D. J., and T. I. Allen (2007), Topographic Slope as a Proxy for Seismic Site Conditions and Amplification, Bulletin of the Seismological Society of America, 97(5), 1379-1395, doi:10.1785/0120060267.
Wald, D. J., V. Quitoriano, T. H. Heaton, and H. Kanamori (1999), Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California, Earthquake Spectra, 15(3), 557-564.
Wang, R. (1999), A simple orthonormalization method for stable and efficient computation of Green's functions, Bulletin of the Seismological Society of America, 89(3), 733-741.
Yazdani, A., and M. Kowsari (2013), Earthquake ground-motion prediction equations for northern Iran, Natural Hazards, 69(3), 1877-1894, doi:10.1007/s11069-013-0778-8.
Yılmaztürk, A., and P. W. Burton (1999), Earthquake source parameters as inferred from the body waveform modeling, southern Turkeyfn1, Journal of Geodynamics, 27(4–5), 469-499, doi:http://dx.doi.org/10.1016/S0264-3707(98)00021-0.
Yolsal-Çevikbilen, S., and T. Taymaz (2012), Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean, Tectonophysics, 536-537, 61-100, doi:10.1016/j.tecto.2012.02.019.
Zhai, W.-B., X.-Z. Chen, and K.-F. Cao (2005), Global multifractal relation between topological entropies and fractal dimensions, Chaos, Solitons & Fractals, 23(2), 511-518, doi:10.1016/j.chaos.2004.05.036.
Zhu, L., N. Akyol, B. J. Mitchell, and H. Sozbilir (2006), Seismotectonics of western Turkey from high resolution earthquake relocations and moment tensor determinations, Geophysical Research Letters, 33(7), doi:10.1029/2006gl025842.
Βεντούζη, Χ. (2016), Συμβολή στην μελέτη της τρισδιάστατης δομής απόσβεσης των σεισμικών κυμάτων στον χώρο του Αιγαίου., Ph.D thesis, Α.Π.θ, θεσσαλονίκη.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.