Βελτιστοποίηση Γεωτρητικών Ρευστών με Ενσωμάτωση Νανοσωματιδίων.
Περίληψη
Λέξεις κλειδιά: Γεωτρητικά ρευστά, Νανορευστά, Νανοσωματίδια οξειδίου σιδήρου
In recent years, several attempts have been made to develop improved drilling fluids using nanoparticles, especially for high pressure and high temperature (HPHT) environment. The addition, even at low concentrations of magnetite nanoparticles, reduces the “fluid loss” in the formation, while at the same time maintains the stability or even improves the rheological properties of the bentonite aqueous suspensions. The effect of the nanoparticles increases when they are coated with citric acid. In order to further optimize the drilling fluids, magnetic nanoparticles (NPs) were synthesized and coated with various organic compounds, such as citric acid, oxalic acid, fatty acids, dextran etc. The samples were examined by X-ray diffraction (XRD), BET and FTIR spectroscopy. It was found that in all cases, magnetite nanocrystallites were formed, with an average particle size of 10-15nm. The FTIR spectra showed that all the organic compounds added, were chemically bonded to the surface of the NPs. The prepared NPs were incorporated in aqueous bentonite solutions at several concentrations. The rheological properties of bentonite suspensions to which the NPs were added were compared with the properties of pure bentonite suspensions. Through shear stress measurements as a function of shear rate, it was found that the addition of coated magnetic NPs did not significantly modify the behavior of the fluids in the borehole, ensuring stable rheological properties.
Key words: Drilling fluids, nanofluids, Iron oxide Nanoparticles
Πλήρες Κείμενο:
PDFΑναφορές
G. M.Horn, D. Voege, «Coal, Oil and Natural gas», Chapter 1., 2010.
Βιοτάκη Α., «Μελέτη Μηχανικών Ιδιοτήτων Τσιμεντών Γεωτρήσεων Υδρογονανθράκων με Χρήση Οργάνων NMR και με Δοκιμές Αντοχής σε Μονοαξονική Θλίψη», Πολυτεχνείο Κρήτης, 2014.
Α. Γεωργακόπουλος, Κοιτασματολογία Πετρελαίου, Θεσσαλονίκη, 2015
https://petrowiki.org/Drilling_HP/HT_wells
Vryzas, et al., «Rheological and HP/HT Fluid Loss Behavior of Nano-Based Drilling Fluids Utilizing Fe3O4 Nanoparticles», PSCCE, 2017
Σχολή Μηχ. Μεταλλείων-Μεταλλουργών, Τομέας Μεταλλευτικής, Διδακτικό Υλικό στο Μάθημα «Τεχνολογία Γεωτρήσεων», Κεφάλαιο 4: ΡΕΥΣΤΑ ΔΙΑΤΡΗΣΗΣ, Σταματάκη Σ.
Skalle P., «Drilling Fluid Engineering», ISBN 978-87-7681-929-3, 2011.
J. B. Cheatham Jr., SPE, «Wellbore Stability», 1984.
Gantzis T. et al, «Effect of drilling fluids on coal permeability: Impact on horizontal wellbore stability», 2009.
https://petrowiki.org/Functions_of_drilling_fluid
Whittaker A., «Theory and Applications of Drilling Fluid Hydraulics», EXLOG.
Dhiman, «Rheological Properties & Corrosion Characteristics of Drilling Mud Additived,» 2012.
www.oilngasdrilling.com/types-of-drilling0fluid.html
www.petrowiki.org/Drilling_fluis_types
Z. Vryzas, Doctoral Thesis: «Synthesis and Development of Smart Drilling Fluids Using Nanoparticles to Tailor their Transport Properties for Enhanced Drilling Operations», School of Engineering, Dep. of Chemical Engineering, AUTH, 2018
S. R. Rafati, «Effect of nanoparticles on the modifications of drilling fluids properties: A review of recent advantages,» Journal of Petroleum Science and Engineering, 2017.
Mortatha S. A-Y. et al. , American Journal of Nano Research and Applications, Vol. 3, No. 3, 2015, pp. 41-45, 2015
R. M. Cornell, U. Schwertmann, «The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses», 1996
https://en.wikipedia.org/wiki/Magnetite
Lee B. et al, «Magnetite: Properties, Synthesis and Applications», Lehigh University, Volume 15, 2007.
Χ. Sun, J.Phys.Chem.C., 2009, 113, 16002-16008
W. Wu et al., Nanoscale Res. Lett, Vol.3 , p.397-415, 2008
https://nanoscalereslett.springeropen.com/articles/10.1007/s11671-008-9174-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998023/
A.P.A. Faiyas et al, Journal of Magnetism and Magnetic Materials, p.400-404, 2010.
Μ. C. Mascolo et al, Materials, Vol. 6, p.5549-5567, 2013
Rafati R., Sharifi Haddad A., Hamidi H. Experimental study on stability and rheological properties of aqueous foam
in the presence of reservoir natural solid particles, In Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016; 509: 19-31.
Ismail AR, Aftab A, Ibupoto ZH, Zolkifile N. The novel approach for the enhancement of rheological properties of water-based drilling fluids by using multi-walled carbon nanotube, nanosilica and glass beads. J. Pet. Sci. Eng. 2016; 139:264–75.
Anoop et al., 2014 Anoop K, Sadr R, Al-Jubouri M, Amani M. Rheology of mineral oil-SiO2 nanofluids at high pressure and high temperatures. Int. J. Therm. Sci. 2014; 77:108–15.
Youngsoo J. et al., «Effect of Nanoparticle-Additives on the Rheological Properties of Clay-Based Fluids at High Temperature and High Pressure», AADE-11-NTCE-2, 2011
Τερζίδου Α., Ζασπάλης Β., Βρύζας Ζ., Κελεσίδης Β., Ναλμπαντιάν Λ., «ΤΡΟΠΟΠΟΙΗΣΗ ΓΕΩΤΡΗΤΙΚΩΝ ΡΕΥΣΤΩΝ ΜΕ ΕΝΣΩΜΑΤΩΣΗ ΝΑΝΟΣΩΜΑΤΙΔΙΩΝ», 11ο ΠΕΣΧΜ, 2017.
L. H. Poedji et al., International Journal of Environmental Science and Development, Vol.4, No.3, 2013.
Terzidou A. , Master Thesis: «FERRITE NANOPARTICLES AND THEIR BENTONITE NANOFLUIDS: A PHYSICOCHEMICAL ANALYSIS», Faculty of Sciences, Dep. of Physics, AUTH, 2017.
M. Peng, L. Zheng, Y. Wan, Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo, May 2015.
P. B Shete, R. M. Patil, B.M Tiwale, S.H. Pawar, «Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications», Journal of Magnetism and Magnetic Materials, 2014.
L.Zhang, R.He, G.C.Gu Appl. Surf. Sci. 253 (2006) 2611–2617.
Nguyen T. T. et al., «Size Effect on the Structural andMagnetic Properties of Nanosized Perovskite LaFeO3 Prepared by DifferentMethods», Αdvances in Materials Science and Engineering, 2012.
M. Pedroni et al., «Water (H2O and D2O) Dispersible NIR-to-NIR Upconverting Yb3+/Tm3+ Doped MF2 (M = Ca, Sr) Colloids: Influence of the Host Crystal», ACS Publications, 2013.
Ye-Tang P. et al., «Fabrication of low-fire-hazard flexible poly (vinyl chloride) via reutilization of heavy metal biosorbents», Journal of Hazardous Materials 339, p.143-153, 2017.
Oana O. et al., «Preparation and characterization of urea-oxalic acid solid form», ΑIP Conf. Proc. 1425, p.35-38, 2012.
Muthuselvi C. et al., «Growth and Characterization of Oxalic Acid Doped with Tryptophan Crystal for Antimicrobial Activity», Der Chemica Sinica, 7(4), p.55-62, 2016.
Chao-Ming S. Et al, «pH-responsive magnetic micelles gelatin-gpoly(NIPAAm-co-DMAAm-co-UA)-g-dextran/Fe3O4 as a hydrophilic drug carrier†», RSC Adv., Vol.7, p.28207-28212, 2017.
Simone F. M. et al., «Thermally-Sensitive and Magnetic Poly(N-Vinylcaprolactam)-Based Nanogels by Inverse Miniemulsion Polymerization», J. Colloid Sci. Biotechnol., Vol.1, No. 1, 2012.
Βarra G. Et al., «Maleic Anhydride Grafting on EPDM: Qualitative and Quantitative Determination», J. Braz. Chem. Soc., Vol.10, No.1, p.31-34, 1999.
Kim P. et al.,» Preparation of mesoporous Ni–alumina catalyst by one-step sol–gel method: control of textural properties and catalytic application to the hydrodechlorination of o-dichlorobenzene», Catalysis Letters Vol.104, Nos. 3-4, 2005.
Liu J. et al., «Research on the preparation and properties of lauric acid/expandedperlite phase change materials» , Εnergy and Bulidings, Vol.110, p.108-111 , 2015
Junyang J. et al., «Design of a novel nanocomposite with C-S-H@LA for thermal energy storage: A theoretical and experimental study», Applied Energy, Vol.220 , p. 395-407, 2018.
Geoffrey P. et al, «Data on iron oxide core oil-in-water nanoemulsions for atherosclerosis imaging», Data in Brief, Vol.15, p.876-881, 2017.
Nouar S. L. et al., «ADSORPTION OF OLEIC ACID ON QUARTZ /WATER INTERFACE» , J. Saudi Chem. Soc., Vol. 11, No. 2; pp. 221-234 , 2007
Jafar M. et al., «In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy», European Journal of Pharmaceutics and Biopharmaceutics, 113, p.60-74, 2017.
(van Olphen, 1977) van Olphen, H., 1977. Introduction to clay colloidal chemistry. 2nd edt., Wiley, N.Y.
Luckham and Rossi, 1999) Luckham, P. F. and Rossi, S., 1999. The colloidal and rheological properties of bentonite suspensions, Adv. In Colloid and Interf. Sci., 82, 43–92.
Εισερχόμενη Αναφορά
- Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.