[Εξώφυλλο]

Groundwater flow simulation using the FeFLOW software, for the alluvial aquifer of Kastoria = Προσομοίωση της υπόγειας ροής του αλλουβιακού υδροφορέα της Καστοριάς με τη χρήση του κώδικα FeFLOW.

Dimitrios Antoniou Voulanas

Περίληψη


This thesis deals with the groundwater resources management of Kastoria basin of Western Macedonia, Greece though the use of FeFLOW v.7.2 groundwater flow modelling package in conjunction with ARCGIS v.10.6 and MATLAB, which were used to manage all the data used in this thesis and also to prepare the input data in the structure and format required by FeFLOW. Kastoria basin houses an extensive alluvial aquifer system, which is of fluvio-torrential origin and consists of alternating layers of coarse and fine-grained layers of small spatial and vertical extent. Precipitation is the main recharge element of the aquifer, where a representative annual value for the former is 770 mm. The modelled area consisted of the main body of the alluvial aq-uifer as a 100 m thick layer. Such an environment provides an inherit uncertainty regarding to the hydraulic properties, to alleviate a part of this uncertainty a stochastic approach used through PEST. The groundwater flow model was successfully calibrated first manually and then finally by PEST in all aspects, yielding RMSE=0.758 for the entire transient simulation. The water bal-ance elements produced resemble those presented by previous studies. To further assess the evo-lution of the groundwater resources at Kastoria basin precipitation and temperature data of re-gional climate models were extracted from the EURO-CORDEX project, which provides the needed high spatial resolution (EUR-11) to spatially represent the future climate condition at the study area, for three 20 year long sub-periods between 2019-2078. After bias-correction of the 53 extracted EUR-11 region climate models, ten of those were selected and used further. Bias-correction was performed with the linear scaling method and monthly observed data of the 1986-2005 period. This showed improvements at the bias-corrected RCM data in comparison to raw data in representing observed patterns. The analysis presented that, as mean annual values, pre-cipitation will reduce by 6% while temperature will increase by 2.5°C throughout the projected period. Based on the selected RCM data, ten groundwater scenarios were simulated by feeding the bias-corrected RCM data to the calibrated groundwater flow model. In summary of the results of the former, the groundwater level will practically remain the same. Kastoria lake water level will drop, if left unchecked, due to higher evaporation, reduced precipitation and lower lateral flow from Kastoria alluvial aquifer reduction while surface runoff will slightly increase. This will lead to the reduction of the total runoff or discharge through the Gkioli stream by a mean an-nual value of 4.82 x 106 m3 or 9.2%. Finally, options to counter this change at the water balance of the basin were also proposed.
Keywords: FeFLOW, PEST, MATLAB, Groundwater Resources Management, EUROCORDEX, Regional Climate Models, RCM, ArcMAP, Kastoria basin, Water District GR 09, Alluvial Aqui-fer, Water Balanc, Groundwater Flow Simulation

Η παρούσα διπλωματική εργασία ασχολείται με τη διαχείριση των υπόγειων υδάτων στη λεκάνη της Καστοριάς της Δυτικής Μακεδονίας με την χρήση του πακέτου προσομοίωσης ροής υπογείων υδάτων FeFLOW v.7.2 σε συνδυασμό με το ARCGIS v.10.6 και το MATLAB, τα οποία χρησιμοποιήθηκαν για τη διαχείριση όλων των δεδομένων που χρησιμοποιήθηκαν σε αυτή τη διατριβή και επίσης στο να προετοιμαστούν τα δεδομένα εισόδου στη δομή και τη μορφή που απαιτεί το FeFLOW. Η βροχόπτωση είναι το κύριο στοιχείο εμπλουτισμού της λεκάνης, όπου μία αντιπροσωπευτική ετήσια τιμή για την πρώτη είναι ίση με 770 mm. Στη λεκάνη της Καστοριάς βρίσκεται ένα εκτεταμένο προσχωσιγενές σύστημα υδροφόρου, το οποίο έχει χειμμαρική προέλευση και τα πρώτα 100 μέτρα αποτελούνται από εναλλασσόμενα στρώματα από χονδρόκοκκα και λεπτόκοκκα ιζήματα μικρής χωρικής έκτασης. Η περιοχή προσομοίωσης αποτελείται από το κύριο σώμα του προσχωσιγενή υδροφορέα ως στρώμα πάχους 100 μέτρων. Ένα τέτοιο περιβάλλον παρέχει μια αβεβαιότητα σχετικά με τις υδραυλικές παραμέτρους, για να απαληφεί ένα μέρος αυτής της αβεβαιότητας χρησιμοποιήθηκε μια στοχαστική προσέγγιση με βάση το PEST. Το μοντέλο ροής των υπόγειων υδάτων ρυθμίστηκε με επιτυχία πρώτα με δοκιμασία προσπάθειας-λάθους και τελικά με το PEST, αποδίδοντας RMSE = 0,758 για ολόκληρη την προσομοίωση. Τα στοιχεία υδατικού ισοζυγίου που παράχτηκαν από την προσομοίωση είναι παρόμοια με εκείνα που παρουσιάστηκαν από προηγούμενες μελέτες. Για να αξιολογηθεί περαιτέρω η εξέλιξη του ισοζυγίου των υπογείων υδάτων στη λεκάνη της Καστοριάς, χρησιμοποιήθηκαν δεδομένα, τριών υποπεριόδων 20 ετών για την περίοδο 2019-2078, των περιφερειακών κλιματικών μοντέλων του έργου EURO-CORDEX project, το οποίο παρέχει την απαιτούμενη υψηλή χωρική ανάλυση για τη χωρική αναπαράσταση της μελλοντικής κλιματικής κατάστασης στην περιοχή μελέτης. Μετά από τη διόρθωση των εξαγόμενων 53 κλιματικών μοντέλων, δέκα από αυτά επιλέχθηκαν και χρησιμοποιήθηκαν περαιτέρω. Η διόρθωση των bias των κλιματικών μοντέλων έγινε με τη μέθοδο linear scaling και τα μηνιαία ιστορικά δεδομένα της περιόδου 1986-2005. Η διόρθωση παρουσίασε βελτιώσεις στα δεδομένα των κλιματικών μοντέλων σε σύγκριση με τα μη διορθωμένα δεδομένα. Το αποτέλεσμα της ανάλυσης είναι ότι η βροχόπτωση θα μειωθεί κατά μέσο όρο 6% ενώ η θερμοκρασία θα αυξηθεί κατά 2,5°C, καθ 'όλη την προβλεπόμενη περίοδο. Με βάση τα επιλεγμένα δεδομένα, προτάθηκαν δέκα σενάρια εξέλιξης των υπόγειων υδάτων του αλλουβιακού υδροφορέα της Καστοριάς. Συνοπτικά τα αποτελέσματα αυτών παρουσιάσαν ότι το επίπεδο των υπόγειων υδάτων θα παραμείνει ως επί το πλείστον το ίδιο. Η στάθμη του νερού της λίμνης της Καστοριάς θα ελλαττωθεί, εάν αφεθεί ανεξέλεγκτη, λόγω της υψηλότερης εξάτμισης, της μειωμένης βροχόπτωσης και της χαμηλότερης πλευρικής εισροής από τον αλλουβιακό υδροφορέα της Καστοριάς παρόλου που η επιφανειακή απορροή θα αυξηθεί ελαφρά. Αυτό θα οδηγήσει σε μείωση της συνολικής απορροής ή εκφόρτισης μέσω του ρέμματος Γκιόλι κατά μέσο ετήσιο όρο των 4.82 x 106 m3 or 9.2%. Τέλος, προτάθηκαν λύσεις για την αντιμετώπιση αυτής της αλλαγής στο υδάτινο ισοζύγιο της υπό μέλετης λεκάνης απορροής.
Λέξεις-κλειδιά: FeFLOW, PEST, MATLAB, Διαχείριση Υδατικών Πόρων, EUROCORDEX, Re-gional Climate Models, RCM, ArcMAP, Λεκάνη της Καστοριάς, Water District GR 09, Αλλουβιακός Υδροφορέας, Υδατικό Ισοζύγιο, Προσομοίωση της υπόγειας ροής

Πλήρες Κείμενο:

PDF

Αναφορές


Abdo, K. S., Fiseha, B. M., Rientjes, T. H. M., Gieske, A. S. M., & Haile, A. T., 2009; Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia, 3669(September), pp. 3661–3669

Al-jawad, J. Y., Alsa, H. M., Bertram, D., & Kalin, R. M., 2019; A comprehensive optimum integrated water resources management approach for multidisciplinary water resources management problems, 239(February), pp. 211–224

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., & Ab, W., 1998; Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56, pp. 1–15

Ampas, V., Baltas, E. & Papamichail, D., 2007; Comparison of different methods for the estimation of the reference crop evapotranspiration in the Florina region. WSEAS Journal, 2(12), pp. 1449-1454.

Anderson M. & Woessner W., 1991; Applied groundwater modelling. Simulation of flow and advective transport: London, Academic Press

Antonopoulos, V. Z., & Antonopoulos, A. V., 2018; Evaluation of different methods to estimate evapotranspiration in a Mediterranean area monthly reference, pp. 61–77

Arampatzis, G., Panagopoulos, A., Pisinaras, V., Tziritis, E. & Wendland, F., 2018; Identifying potential effects of climate change on the development of water resources in Pinios River Basin, Central Greece. Applied Water Science, 8(2), pp. 1–17

Aubouin, J., 1959; Contribution a l’étude géologique de la Grèce septentrionale: Les confines de l’ Epire et de la Thessalie. Ann. Géol. Pays Hell. vol. X., Athènes, pp. 1-484

Bergström, S., Carlsson, B., Gardelin, M., Lindström, G., Pettersson, A., & Rummukainen, M, 2001; Climate change impacts on runoff in Sweden – assessments by global climate models, dynamical downscaling and hydrological modelling. Climate Research 16, pp. 101–112

Biel, R. E., 1944; Climatology of the Mediterranean area: Chicago, The University of Chicago Press.

Blaney, H.F. & Criddle, W.D., 1950; Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data, USDA (SCS) TP-96

Block, P. J., Filhou, F. A. S., Sun, L. & Kwon, H.-H., 2009; A streamflow forecasting framework using multiple climate and hydrological models. Journal of the American Water Resources Association (JAWRA) 45(4), pp. 823–843

Blyth, E. M., Harding, R. J., & Essery, R., 1999; A coupled dual source GCM SVAT. Hydrology and Earth System Sciences 3(1), pp. 71–84

Booij, M. J., 2005; Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of Hydrology 303, pp. 176–198

Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa, M., Schär, C., 2013; Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour Res 49(3), pp. 1523–1536

Brunn, J., 1956; Contribution a l’étude géologique du Pinde septentrional et d’une, partie de la Macédoine occidentale. Ann. Geol. des Pays Hell. 7.

Brunn, J., 1959; Zone du Vardar et Pélagonienne en Grèce, C. R. Somm. Soc. Geol. France, No 6, pp. 138-139.

Brunn, J., 1961; Les sutures ophiolitiques. Contribution à I' étude des relations entre phenomènes magmatiques et orogéniques. Rev. Gé-ogr. Phys. Geol. dyn. IV, fasc. 2, p. 86-96, et fasc. 3, pp. 181-202.

Burlando, P., & Rosso, R., 2002; Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy, 1175(October 2001), pp. 1151–1175

Chahine, M. T., 1992. The hydrologic cycle and its influence on climate. Nature, 359, pp. 373-380

Chirokov, A., 2016; Scattered Data Interpolation and Approximation using Radial Base Functions (https://www.mathworks.com/matlabcentral/fileexchange/10056-scattered-data-interpolation-and-approximation-using-radial-base-functions?s_tid=prof_contriblnk), MATLAB Central File Exchange. Retrieved June 14, 2018.

Christensen, J.H, & Christensen, O.B 2010; A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81, pp. 7–30

Cohen, S.J., 1990; Bringing the global warming issue closer to home: the challenge of regional impact studies. Bulletin of the American Meteorological Society, 71, pp. 520-526

Council, E.P., 2000; Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Parliament, pp. 1–72

DEH, 1974; Pournari Hydroelectric Project - Hydrology Report, Public Power Corporation, Athens.

Deidda, R., Marrocu, M., Caroletti, G, Pusceddu, G., Langousis, A., Lucarini, V., Puliga, A., Speranza, A., 2013; Regional climate models’ performance in representing precipitation and temperature over selected Mediterranean areas. Hydrol Earth Syst Sci 17(12), pp. 5041–5059

Déqué, M., Rowell, D. P., Lüthi, D., & Giorgi, F., 2007; An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections, pp. 53–70

D'Errico, J., 2012; fminsearchbnd, fminsearchcon (https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon?s_tid=FX_rc3_behav), MATLAB Central File Exchange. Retrieved June 14, 2018.

Doherty, J., 2015; Calibration and Uncertainty Analysis for Complex Environmental Models. Watermark Numerical Computing, Brisbane, Australia. ISBN: 978-0-9943786-0-6.

Doorenbos J. & Pruitt W., 1977; Guidelines for predicting crop water requirements: Rome, Food and Agriculture Organization, Irrigation and drainage paper.

Dubrovsky, M., Hayes, M. J., Duce, P., Trnka, M., Svoboda, M., & Zara, P., 2013; Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Regional Environmental Change, 14(December), pp. 1907–1919

Efthimiou, N., Alexandris, S., Karavitis, C., & Mamassis, N., 2013; Comparative analysis of reference evapotranspiration estimation between various methods and the FAO56 Penman - Monteith procedure, pp. 19–34.

ELSTAT, 1991,2001,2011; Population data for Kastoria basin

Emberger, L., 1930; Climate on a formula applicable in botanical geography. Comptes Rendus de l’Académie des Sciences, 1991, 389-390.

Engwirda, D., 2018; INPOLY: A fast points-in-polygon test (https://www.github.com/dengwirda/inpoly), GitHub. Retrieved July 01, 2018.

European Environment Agency, 2009; Water resources across Europe- confronting water scarcity and drought. EEA Report No 2/2009. http://www.eea.europa.eu/publicatio ns/water -resources-across-europe. Accessed 2 Aug 2018

FEFLOW 7.2 (Finite Element Subsurface Flow & Transport Simulation System) User’s Manual, 2009; WASY Institute for Water Resource Planning and Systems Research Ltd., Berlin.

Fetter C., 1989; Applied hydrogeology, USA, Merrill Publishing Company.

Fiseha, B.M., Setegn, S.G., Melesse, A.M., Volpi, E., Fiori, A., 2014; Impact of climate change on the hydrology of upper Tiber River Basin using bias corrected regional climate model. Water Resour Manag 28(5), pp. 1327–1343

Foughali, A., Tramblay, Y., Bargaoui, Z., Carreau, J., & Ruelland, D., 2015; Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions, pp. 459–473

Fowler, H.J., Blenkinsop, S. & Tebaldi, C., 2007; Review Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International journal of climatology, 27: pp. 1547-1578

Franke L.O., Reily T.E. & Bennett G.D., 1987; Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems - An introduction, Techniques of water-resources investigations of the United States Geological Survey: Washington, US Government Printing Office Book 3.

Freeze AR. & Cherry J.A., 1979; Groundwater: Englewood Cliffs, NJ, Prentice Hall, Inc.

García-Ruiz, J.M., López-Moreno, J.I., Vicente-Serrano, S.M., Lasanta– Martínez, S.T. & Begueía, S., 2011; Mediterranean water resources in a global change scenario. Earth Sci Rev 105(3), pp. 121–139

Gates, W.L., 1985; The use of general circulation models in the analysis of the ecosystem impacts of climatic change. Climate Change, 7, pp. 267-284

Georgiou, PJ, Papamichail, D.M. & Papazifiriou, Z., 2000; Comparative Assessment of Penman and Penman-Monteith Methods with Evidence of Evapotranspiration Reporting in Greece. Proceedings of the 5th Pan-Hellenic Scientific Conference of Meteorology - Climatology and Atmospheric Physics, pp. 395-402. (in Greek)

Geraghty & Miller, Inc., 1993; Computer Aided Design Software for groundwater modeling: Virginia.

Gianneli E., 2009; Hydrogeology investigation of basins of Greece: example from the basin of Agioi Anargiroi, Kastoria, Aristotle University of Thessaloniki. (in Greek)

Giorgi, F. & Lionello, P., 2008; Climate change projections for the Mediterranean region. Global Planet Change 63(2), pp. 90–104

Giorgi, F., 2006; Climate change hot-spots, Geophysical Research Letters, 33, L08707.

Giorgi, F., Marinucci, M. R., Bates, G. T. & De Canio, G., 1993; Development of a second-generation regional climate model (RegCM2), I. Boundary-layer and radiative transfer, Mon. Weather Rev., 121, pp. 2794–2813

Gobiet, A. & D. Jacob, 2011; The EURO-CORDEX-Initiative. WCRP Open Science Conference Denver, 24-28 Oct. 2011. Poster no. W108B

Graham, L.P., Andréasson, J., Carlsson, B., 2007; Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—a case study on the Lule River basin. Climate Change 81(S1), pp. 293–307

Greek Ministry of Agriculture, 1989; Determination of minimum and maximum crop water requirements for rational use of irrigation water, F16/6631: Athens, National Publishing Organization of Greece. (in Greek)

Hansen V., Israelsen O., & Stringham G., 1980; Irrigation principles and practices: New York, John Wiley and Sons.

Hargreaves, G.H., Samani, Z.A., 1982; Estimating potential evapotranspiration. J. Irrig. Drain. Eng. ASCE, 108(3), pp. 225–230

Hargreaves, G.H., Samani, Z.A., 1985; Reference crop evapotranspiration from temperature. Trans. ASAE, 1(2), pp. 96-99

Haugen, J. & Haakensatd, H., 2005; Validation of HI-AR version 2 with 50km and 25km resolution, Tech. Rep. General Technical report 9, RegClim

Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L., & Goodess, C. M., 2006; Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future projections. International Journal of Meteorology, 1415(March), pp. 1397–1415

Hellenic Center for Marine Research, 2008; Network Development and Monitoring of the Inland, Transitional and Coastal Waters of the Country - Assessment / Classification of their Ecological Situation: Assessment of Ecological Quality of Water Bodies, defined by the Central Water Service in the 14 Water districts of Greece for the types of water bodies defined in Directive 2000/60/EU (in Greek)

Hellenic Ministry for the Environment, Energy and Climate Change- Special Secretariat for Water, 2014; Compilation of management plan for the river basins of Western Macedonia water district (GR09)-management plan. Special Secretariat for Water, Athens

Hellstrom, C., Chen, D., Achberger, C. & Raisanen, J., 2001; Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Climate Research 19, pp. 45–55

Hewitson, B. C., & Crane, R. G., 1996; Climate downscaling: techniques and application, Clim Res, 07(2), pp. 85–95

Hrissanthou, V., Mylopoulos, N., Tolikas, D., & Mylopoulos, Y., 2003; Simulation Modeling of Runoff, Groundwater Flow and Sediment Transport into Kastoria Lake, Greece. Water Resources Management, 17(March), pp. 223–242

Hydrological and Hydrogeological study of Kastoria lake. Proposals for artificial recharge. IGME, 2005, Kozani (in Greek)

IGME, 1990; Kastoria Sheet: Athens, Institute of Geology and Mineral exploration, Geological map of Greece, 1: 50,000.

IGME, 1990; Koritsa-Mesopotamia Sheet: Athens, Institute of Geology and Mineral exploration, Geological map of Greece, 1: 50,000.

IGME: Savoyat, E., Verdier, A., Monopolis D., 1971; Argos Orestiko Sheet: Athens, Institute of Geology and Mineral exploration, Geological map of Greece, 1: 50,000. (in Greek)

Ines, A. V. M. & Hansen, J. W., 2006; Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology 138, pp. 44–53

Institute of Geology and Mining Research, Department of Water Resources and Environment, 2010; Registration and evaluation of the Hydrogeological characteristics of Groundwater and Aquifers Systems, Subproject 3: Monitoring of water balances of the upper part of Aliakmonas river, Vermio, Ptolemaida (EL 09)

IPCC, 1995a.; Climate Change 1995: The Science of Climate Change Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Houghton JT, Meiro Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds). Cambridge University Press: pp. 572

IPCC, 1995b.; Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific–Technical Analyses Contribution ofWorking Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Watson RT, Zinyowera MC, Moss RH (eds). Cambridge University Press: 878

IPCC, 1995c.; Climate Change 1995: Economic and Social Dimensions ofClimate Change Contribution ofWorking Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Bruce J, Lee H, Haites E (eds). Cambridge University Press: pp. 448

IPCC, 1997.; The regional impacts of climate change: an assessment of vulnerability, Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds). A special report of IPCC Working Group II

IPCC, 2007.; Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

Jacob, D., 2001; A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin, Meteorology and Atmospheric Physics, 77(1- 4), pp. 61-73

Jacob, D., Bärring, L., Christensen, O.B., Christensen, J.H, de Castro, M., Déqué, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones, R., Kjellström, E., Lenderink, G., Rockel, B., Sánchez, E., Schär, C., Seneviratne, S.I., Somot, S., van Ulden, A., van den Hurk, B., 2007; An inter-comparison of regional climate models for Europe: model performance in in present-day climate. Clim Change 81, pp. 31–52

Jacob, D., Elizalde, A., Haensler, A., Hagemann, S., Kumar, P., Podzun, R., Rechid, D., Remedio, A.R., Saeed, F., Sieck, K., Teichmann, C. & Wilhelm, C., 2012; Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3, pp. 181–199, doi: 10.3390/atmos3010181

Jha, M., Pan, Z., Takle, E. S. & Gu, R., 2004; The impacts of climate change on stream flow in the Upper Mississippi River Basin: a regional climate model perspective. Journal of Geophysical Research 109, pp. 1–12

Kalogeropoulos, K. & Chalkias, C., 2013; Modelling the impacts of cli- mate change on surface runoff in small Mediterranean catchments: empirical evidence from Greece. Water Environ J 27(4), pp. 505–513

Kilias, A. & Mountrakis, D., 1989; The Pelagonian Nappe, tectonics, metamorphism and magmatism. Bulletin of Geological Society of Greece, 23(1), pp. 29-46.

Kilias, A., 1980; Geological and Tectonic investigation of East Varnounta Mount (NW Macedonia), Phd Dissertation, Thessaloniki, pp. 271. (in Greek).

Kim, J.W., Chang, J.T., Baker, N.L., Wilks, D.S. & Gates, W.L., 1984; The statistical problem of climate inversion: Determination of the relationship between local and large-scale climate. Monthly Weather Review, 112, pp. 2069–2077

Kleinn, J., Frei, C., Gurtz, J., Lu, D., Vidale, P. L., & Scha, C., 2005; Hydrologic simulations in the Rhine basin driven by a regional climate model, 110, pp. 1–18

Koster, R. D. & Suarez, M. J., 1994; The components of a SVAT scheme and their effects on a GCMs hydrological cycle. Advances in Water Resources 17(1–2), pp. 61–78

Koutroulis, A.G, Grillakis, M.G, Daliakopoulos, I.N, Tsanis, I.K, Jacob, D.,2016; Cross sectoral impacts on water availability at + 2 °C and + 3 °C for east Mediterranean island states: the case of Crete. J Hydrol 532, pp. 16–28

Kupiainen, M., Samuelsson, P., Jones, C., Jansson, C., Willén, U., Hansson, U., Ullerstig, A., Wang, S. & Döscher, R., 2011; Rossby Centre regional atmospheric model, RCA4. Rossby Centre Newsletter

Lagouvardos, K., Kotroni, V., Bezes, A., Koletsis, I., Kopania, T., Lykoudis, S., & Vougioukas, S., 2017; The automatic weather stations NOANN network of the National Observatory of Athens: operation and database. https://doi.org/10.1002/gdj3.44

Leander, R. & Buishand, T.A. 2007; Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology, 332: 487-496

Leander, R., Buishand, T. A., van den Hurk, B. J. J. M. & de Wit, M. J. M., 2008; Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. Journal of Hydrology 351, pp. 331–343

Lee, D.-K., Cha, D.-H. & Kang, H.-S., 2004; Regional climate simulation of the 1998 summer flood over East Asia. Journal of the Meteorological Society of Japan 82, pp. 1735–1753

Lerner, D., Issar, A. & Simmers, I., (eds.), 1990; Groundwater recharge. A guide to understanding and estimating natural recharge, 8: Hannover, Verlag Heinz Heise

Ludwig, R., Roson, R., Zografos, C. & Kallis, G., 2011; Towards an inter- disciplinary research agenda on climate change, water and security in Southern Europe and neighboring countries. Environ Sci Policy 14(7), pp. 794–803

Luo, X., Xu, Y., & Xu, J., 2010; Application of Radial Basis Function Network for Spatial Precipitation Interpolation. 18th International Conference on Geoinformatics: GIScience in Change, Geoinformatics 2010, Peking University, Beijing, China, June, 18-20, 2010

Maratos, G., 1972; Geology of Greece; Vol. A, Athens, pp. 183

Mavrommatis, G., 1980a; The bioclimate of Greece. Climate and natural vegetation relations, bioclimatic maps. I.D.E.A, Athens.

Milano, M., Ruelland, D., Fernandez, S., Dezetter, A., Fabre, J., Servat, E., Fritsch, J-M, Ardoin-Bardin, S. & Thivet, G., 2013; Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrol Sci J 58(3), pp. 498–518

Ministry of Agriculture and Food, 2013; Chemical quality control of water supply (surface and underground) at basin river scale of Macedonia – Thrace and Thessalia (in Greek)

Mountrakis D., 1983; Geoogical Structure of Norrthern Pelagonian Zone and the geotectonic evolution of Internal Hellinides, Treatise for Geography, Aristotle University of Thessaloniki, pp. 289. (in Greek)

Mountrakis D., 2010; Geology of Greece, Thessaloniki, University Studio Press. (in Greek)

Mountrakis, D., 1982b; Emplacement of the Kastoria ophiolite on the western edge of the Internal Hellenides (Greece). Ofioliti, 7, Ν. 2/3, pp. 397-406.

Mountrakis., D., 1979; Resultats préliminaires de I' étude stratigraphique de la région de Kastoria (NW Macédoine, Grèce). Sei. Ann. Fac. Phys. Mathem., Univ. Thessaloniki, 19, pp. 163-173.

Murphy, J, 2000; Predictions of climate change over Europe using statistical and dynamical downscaling techniques. International Journal of Climatology 20, pp. 489–501

Murphy, J., 1998; An evaluation of statistical and dynamical techniques for downscaling local climate. Journal of Climate 12, pp. 2256–2284

Navarra, A., & Tubiana, L., 2013; Regional assessment of climate change in the Mediterranean. Springer, Dordrecht

OPEKEPE, 2006-2018; Statistical Agricultural Data for Kastoria Basin

OPEKEPE, 2006-2018; Statistical Live stock Data for Kastoria Basin

Panagopoulos A., 1996; A methodology for groundwater resources management of a typical alluvial aquifer system in Greece, Ph.D. dissertation. The University of Birmingham, Birmingham.

Panagopoulos A., Pechlivanidou S., Vrouhakis Y., Karyotis Th., Arampatzis G., Hatzigiannakis E. & Panoras A., 2008; Determining reference conditions for groundwater bodies using simple historical data; the case of eastern Thessaly, Greece. E-Proc. 36th Int. Congress of the International Association of Hydrogeologists, Toyama, pp. 1-7.

Panagopoulos, A., Arampatzis, G., Tziritis, E., Pisinaras, V. & Herrmann, F., 2016; Assessment of climate change impact in the hydrological regime of River Pinios Basin, central Greece, Desalination and Water Treatment, 57(March 2014), pp. 2256–2267

Pantelis D., Kouskouras A., Chastas G., Chrysoulas Ch., 2015; Management Plan of the Conservation Area of Lake Kastoria, Region of Western Macedonia, Directorate-General for Development Planning, Environment and Infrastructure, Directorate of Technical Works of Kastoria, Greek Republic, pp. 293

Papadopoulou-Mourkidou E., Spyridis A. - Koutalou V.E. - YETOS, Perleros V., Lionis M., Levoyannis M., 2013; Chemical control of irrigation waters (surface and underground) on a scale basis river basin of Macedonia-Thrace and Thessaly. (in Greek)

Pavlopoulos K., Skendos A. & Kotabassis Ch., 2010; Geomorphological mapping and study of the wider area of Dispilio-Limni Kastoria. (in Greek)

Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N. & Lettenmaier, D. P., 2004; Mitigating the effects of climate change on the water resources of the Columbia river basin. Climatic Change 62, pp. 233–256

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T. & Fang, J., 2010; Resources and agriculture in China, Nature, 467(7311), pp. 43–51

Pisinaras, V., 2016; Assessment of Future Climate Change Impacts in A Mediterranean Aquifer. Global Nest Journal, 18(1), pp. 119–130

Robinson, P.J. & Finkelstein, P.L., 1989; Strategies for Development of Climate Scenarios. Final Report to the U.S. Environmental Protection Agency. Atmosphere Research and Exposure Assessment Laboratory, Office of Research and Development, USEPA, Research Triangle Park, NC, pp. 73

Rockel, B., Will, A. & Hense, A. (eds.), 2008; Special issue Regional climate modelling with COSMO-CLM (CCLM). Meteorologische Zeitschrift 17 (4).

Rushton K.R. & Wedderburn L.A., 1973; Starting conditions for aquifer simulations: Ground Water, v. 11, no. 1, pp.37-42.

Ruti, P., Somot, S., Giorgi, F., Dubois, C. et al., 2016; MED-CORDEX initiative for Mediterranean Climate studies, Bulletin of the American Meteorological Society

Sakkas, C., 1985; Engineering Hydrology. Issue 1: Hydrology Surface Water, Xanthi

Schmidli, J., Frei, C. & Vidale, P. L., 2006; Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology 26, pp. 679–689

Schröter, D., Cramer, W., Leemans, R., Prentice, I. C. et al., 2005; Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752), pp. 1333–1337

Schwanghart, W., 2010; Ordinary Kriging (https://www.mathworks.com/matlabcentral/fileexchange/29025-ordinary-kriging), MATLAB Central File Exchange. Retrieved June 14, 2018.

Schwanghart, W., 2010; variogramfit (https://www.mathworks.com/matlabcentral/fileexchange/25948-variogramfit?s_tid=FX_rc1_behav), MATLAB Central File Exchange. Retrieved June 14, 2018.

Shaw E.M., 1994; Hydrology in practice. Third edition: London, Chapman and Hall.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Duda, D.M.B.M.G., Huang, X.Y., Wang, W. & Powers, J.G., 2008; A description of the advanced research WRF version 3. NCAR Technical note 475

Smith, J.B. & Tirpak, D.A. (eds.) 1989; The Potential Effects of Global Climate Change on the United States. Report to Congress, United States Environmental Protection Agency, EPA-230-05-89- 050, Washington, DC, pp. 409

Soulios G., 1985; Contribution to the hydrogeological study of the karst aquifer systems of the Greek Domain, Thessaloniki, Aristotle University of Thessaloniki. (in Greek)

Stamos, A., Mattheopoulos A., 2002; Hydrogeological recognition of Kastoria basin - Programming Agreement KEDKE-YPEDA-IGME, IGME. (in Greek)

Taylor, K.E., 2001; Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106(D7), pp. 7183–7192

Teutschbein, C. & Seibert J., 2013; Is bias correction of Regional Climate Model (RCM) simulations possible for non-stationary conditions? Hydrol Earth Syst Sci 17, pp. 5061–5077

Teutschbein, C., & Seibert, J., 2010; Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies, 7, pp. 834–860

Tolika, K., Anagnostopoulou, C., Maheras, P., & Vafiadis, M., 2008; Simulation of future changes in extreme rainfall and temperature conditions over the Greek area: a comparison of two statistical downscaling approaches. Global Planet Change 63, pp. 132–151

Tolika, K., Anagnostopoulou, C., Velikou, K., Vagenas, C., 2016; A comparison of the updated very high-resolution model RegCM3_10km with the previous version RegCM3_25km over the complex terrain of Greece: present and future projections. Theoretical and Applied Climatology, 126 (3-4), pp. 715-726

Tolika, K., Zanis, P. & Anagnostopoulou, C., 2012; Regional climate change scenarios for Greece: Future temperature and Precipitation projections from Ensembles of RCMs. Global Nest Journal, 14(4), pp. 407-421

Tolikas, D., Mylopoulos, G., 2000; Determination of discharges, sediments and water quality of the torrents of the catchment area of Kastoria lake. Trend investigations and application of alternative load reduction scenarios. Aristotle University of Thessaloniki, Department of Civil Engineering, Department of Hydraulics & Environmental Engineering. Thessaloniki. (in Greek)

Tsakiri P. E., 2009; Bryophyte flora of Greece: phytogeographical and ecological study of bryophytes at the aquatic system of the Upper Aliakmonas river (Western Macedonia), Department of Biology, Aristotle University of Thessaloniki.

Tsakiris G., 2008; Protection and Management of Water Resources in Greece. (in Greek)

Turco M., Quintana-Seguí P., Llasat M.C., Herrera S. & Gutiérrez J.M., 2011; Testing MOS precipitation downscaling for ENSEMBLES regional climate models over Spain, Journal of Geophysical Research, 116, D18109

Vafeiadis P., 1983; Ηydrogeological investigation of Kastoria basin, Aristotle University of Thessaloniki.

Van der Linden, P. & Mitchell, J. F. B., 2009; ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, available at: http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf

Van Meijgaard E., van Ulft L., van de Berg W., Bosveld B., van der Hurk B., Lenderik G., & Siebesma A., 2008; The knmi regional atmospheric climate model RA-EC version 2.1., Tech. Rep. 302, KNMI, http, //www.knmi.nl/knmilibrary/knmipubTR/TR302.pdf

Ven Te Chow, 1964; Handbook of Applied Hydrology: USA, Mc Graw Hill.

Wang H.F., Anderson M.P., 1982; Introduction to groundwater modeling, New York, W.H. Freeman and Company.

Wilby, R. L. & Wigley, T. M, 1997; Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography 21, pp. 530–548

Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P. & Mearns, L. O., 2004; Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods, Supporting material to the Intergovernmental Panel on Climate Change 27

Wilby, R.L., Charles, S.P., Zorita, E., Timbal, B., Whetton, P., Mearns, L.O., 2004; Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernamental Panel on Climate Change

Wilby, R.L., Hay, L.E., Gutowski, W.J., Arritt, R.W., Tackle, E.S., Leavesley, G.H. and Clark, M. 2000. Hydrological responses to dynamically and statistically downscaled General Circulation Model output. Geophysical Research Letters, 27, pp. 1199–1202

Wilcke, R.A.I., Mendlik, T. & Gobiet, A., 2013; Multi-variable error correction of regional climate models, Climatic Change, 120:871, pp. 871–887

Wright E., Benfield A., Edmunds W., Kitching R., 1982; Hydrogeology of the Kufra and Sirte basins, eastern Libya: Quaiierly Journal of Engineering Geology, v. 15, pp. 83-103.

Xu, C.-Y. & Singh, V.P., 2002; Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland. Water Resources Management, 16, pp. 197–219

Xu, C.Y., Widen, E., & Halldin S., 2005; Modeling hydrological consequences of climate change - Progress and challenges. Advances in Atmospheric Sciences, 22(6), pp. 789-797

Yeh W.G., 1986; Review of parameter identification procedures in groundwater hydrology: The inverse problem: Water Resources Research, v. 22, no. 2, pp. 95-108.

Yeh, T. J. I. M., 1992; Stochastic Modelling of Groundwater Flow And Solute Transport In Aquifers, 6 (September 1989), pp. 369–395

Zanis, P., Katragkou, E., Ntogras, C., Marougianni, G., Tsikerdekis, A., Feidas, H., Anadranistakis, E. & Melas, D., 2015; A transient high-resolution regional climate simulation for Greece for the period 1960-2100: Evaluation and future projections, Climate Research, 64: pp. 123–140

Zhang, X., & Srinivasan, R., 2009; GIS-based Spatial Precipitation Estimation: A Comparison of Geostatistical Approaches. Journal of the American Water Resources Association, 45(4), pp. 894–906


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.