[Εξώφυλλο]

Προκαταρτική μελέτη του πορφυριτικού συστήματος στο Γερακαριό Κιλκίς = Preliminary study of the porphyry system in Gerakario of Kilkis

Ουρανία Χρήστος Τουμανίδου

Περίληψη


Το πορφυριτικό σύστημα Cu-Au και η επιθερμική μεταλλοφορία Sb στο Γερακαριό Κιλκίς σχηματίστηκε σε ένα μαγματικό-υδροθερμικό στάδιο που συνδέεται με την μαγματική δραστηριότητα κατά το Μειόκαινο στην ενότητα Βερτίσκου της Σερβομακεδονικής μάζας. Η μεταλλοφορία συνδέεται γενετικά με τον συηνιτικό πορφύρη ηλικίας 22±0.8 Ma. Τα ρήγματα οδήγησαν στην κυκλοφορία των διαλυμάτων και στην απόθεση των μεταλλικών ορυκτών της μεταλλοφορίας. Η μεταλλοφορία είναι κυρίως οξειδωμένη επιφανειακά και παρατηρήθηκε στα μαγματικά πετρώματα (συηνιτικός πορφύρης και γρανοδιοριτικός πορφύρης) και στα γειτονικά μεταμορφωμένα πετρώματα (γνεύσιοι) της ενότητας Βερτίσκου. Ο συηνιτικός πορφύρης εμφανίζει ποτασσική εξαλλοίωση ενώ ο γρανοδιοριτικός πορφύρης έχει υποστεί ποτασσική, σερικιτική και προπυλιτική εξαλλοίωση. Ο γνεύσιος έχει υποστεί στην επαφή με τον συηνιτικό πορφύρη έντονη σερικιτική εξαλλοίωση. Σε όλα αυτά τα πετρώματα διεισδύουν χαλαζιακές φλέβες τύπου A, B και D που περιέχουν περιορισμένη διάσπαρτη και φλεβική μεταλλοφορία σιδηροπυρίτη και χαλκοπυρίτη, κυρίως οξειδωμένη. Στην ανατολική πλευρά του πορφυριτικού συστήματος εντοπίζεται η επιθερμικού τύπου μεταλλοφορία Sb, η οποία φιλοξενείται σε χαλαζιακές φλέβες ανεπτυγμένες σε ρηξιγενείς ζώνες μέσα στον διμαρμαρυγιακό γνεύσιο. Κατά την μελέτη των ρευστών εγκλεισμάτων διαπιστώθηκε ότι μέσα στις φλέβες του πορφυριτικού συστήματος απομείχθηκε αρχικά ένα πρώιμο μαγματικό ρευστό στους 600 έως 1000° C ενώ στη συνέχεια με την πτώση της θερμοκρασίας (380° έως 460° C, με ένα διακριτό μέγιστο στους ~430° C), το ρευστό διασπάσθηκε σε συνθήκες βρασμού σε ένα υδάτινο διάλυμα υψηλής αλατότητας (35,7 έως 45,6% κβ ισοδ. NaCl) και σε ένα διάλυμα αέριας φάσης με μέτρια αλατότητα (14,8 έως 22,0% κβ ισοδ. NaCl) στο σύστημα H2O-NaCl-KCl. Τα ρευστά σχημάτισαν τις χαλαζιακές φλέβες Α και Β τύπου σε πιέσεις που κυμαίνονται από 100 έως 580 bar που δηλώνουν ένα μέγιστο βάθος σχηματισμού της μεταλλοφορίας Cu-Au, 2 χλμ. σε λιθοστατικές πιέσεις. Οι επιθερμικές φλέβες σχηματίστηκαν από ένα διάλυμα χαμηλής έως μέτριας αλατότητας (7,9 έως 10,4 % κβ ισοδ. ΝaCl) με θερμοκρασίες ομογενοποίησης από 280 έως 320° C, με ένα μέγιστο στους 290° C. Το διάλυμα αυτό δημιουργήθηκε κατά την μείξη ενός διαλύματος υψηλής έως μέτριας αλατότητας και μετεωρικού νερού. Οι υδροστατικές πιέσεις υπολογίστηκαν από 65 έως 116 bar, και αντιστοιχούν σε ένα βάθος από 600 έως 1000 μέτρα για τον σχηματισμό της επιθερμικής μεταλλοφορίας αντιμονίτη.

The Cu-Au porphyry and the Sb epithermal systems in Gerakario of Kilkis was formed at a magmatic-hydrothermal stage, associated with the Miocene magmatic activity in the Vertiskos unit of the Serbomacedonian massif. The ore mineralization is genetically linked to the syenite porphyry with an age of 22±0.8 Ma. The faults and fractures controlled the circulation of the fluids and the deposition of the mineralization. The mineralization at the surface is mainly oxidized and is hosted in the magmatic rocks (syenite porphyry and granodiorite porphyry) and in the adjacent metamorphic rocks (gneiss) of the Vertiskos unit. The syenite porphyry exhibits potassic alteration while the granodiorite porphyry has undergone potassic, sericitic, and propylitic alteration. The gneiss is characterized by sever sericite alteration at the contact with the syenite porphyry. Quartz veins of type A, B and D penetrate all these rocks and host restricted disseminated pyrite and chalcopyrite mineralization, mainly oxidized. At the east side of the porphyry system there is an epithermal Sb mineralization, which is hosted in quartz veins developed in fractured zones of the gneiss. The study of the fluid inclusions revealed that an early magmatic fluid was initially dissipated at 600 to 1000° C and subsequently the temperature dropped (380° to 460° C, with a discrete peak at 430° C). The fluid was decomposed under boiling conditions in a high saline aqueous fluid phase (35.7 to 45.6 wt% equiv. NaCl) and in a gas phase with a moderate salinity (14.8 to 22.0 wt% equiv. NaCl) in the H2O-NaCl-KCl system. The fluids were trapped in the A and B quartz veins at pressures ranging from 100 to 580 bar. This indicates a maximum depth of 2 km for the formation of the Cu-Au deposit, under lithostatic pressures. The epithermal veins were formed from a fluid of low to moderate salinity (7.9 to 10.4 wt% NaCl) with homogenization temperatures of 280 to 320° C, with a discrete peak at 290° C. This fluid was formed due to the mixing of a high to moderate salinity solution and meteoric water. Hydrostatic pressures ranged from 65 to 116 bar, corresponding to a depth of 600 to 1000 meters for the formation of the epithermal Sb mineralization.

Πλήρες Κείμενο:

PDF

Αναφορές


Arancibia, O.N., and Clark, A.H., 1996, Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit, British Columbia: Economic Geology, v. 91, p.402−438.

Archer, D.G. Thermodynamic properties of the NaCl+H2O system. II. Thermodynamic properties of NaCl (aq), NaCl⋅2H2 (cr), and phase equilibria. Journal of Physical and Chemical Reference Data 1992, 21.4, 793-829.

Arvanitidis N. (2010). New metallogenetic concepts and sustainability perspectives for non-energy metallic minerals in Greece. Proceedings of the 12th International Congress of the Geological Society of Greece. Bulletin of the Geological Society of Greece. Volume XLIII, Νο 5.

Audétat, A., Pettke, T., Heinrich, C. A., Bodnar, R. J., 2008. Special paper: the composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 103, 877-908.

Bassiakos, Y., Nerantzis, N., and Papadopoulos, S. (2019). Late Neolithic/Early Bronze Age metallurgical practices at Limenaria, Thasos: Evidence for silver and copper production. Archaeological and Anthropological Sciences, 11(6), 2743-2757.

Bodnar, R. J.; Lecumberri-Sanchez, P.; Moncada, D.; Steele-MacInnis, M. Fluid inclusions in hydrothermal ore deposits. In Treatise on Geochemistry, Second Edition. Elsevier, Oxford, 2014; pp. 119-142.

Bodnar, R.J., 2003. Introduction to fluid inclusions. In: Samson I.M., Anderson A.J., and Marshall D.D. (Eds.), Fluid inclusions: analysis and interpretation. Mineral. Assoc. Can. Short Course 32, 1-8.

Bonev, N. and Beccaletto, L. 2007. From syn- to postorogenic Tertiary extension in the north Aegean region: constraints on the kinematics in the eastern Rhodope- Thrace, Bulgaria-Greece and the Biga Peninsula, NW Turkey. In TheGeodynamics of the Aegean and Anatolia (eds T. Taymaz, Y. Yilmaz and Y. Dilek), pp. 113–42. Geological Society of London, Special Publication no. 291.

Bouzari, F., and Clark, A. H. (2006). Prograde evolution and geothermal affinities of a major porphyry copper deposit: the Cerro Colorado hypogene protore, I Región, northern Chile. Econ. Geol. 101, 95-134.

Brathwaite, R.L.; Simpson, M.; Faure, K.; Skinner, D. Telescoped porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins in the Thames District, New Zealand. Mineralium Deposita 2001, 36, 623-640.

Brimhall, G.H., Jr., 1979, Lithologic determination of mass transfer mechanisms of multiple- stage porphyry copper mineralization at Butte, Montana: Vein formation by hypogene leaching and enrichment of hypogene protore: Economic Geology, v. 74, p. 556−589.

Burnham, C.W. Magmas and hydrothermal systems. In Geochemistry of hydrothermal ore deposits (ed Barnes, H.L.), John Wiley & Sons, Inc., New York, 1997; pp. 63-123.

Cannell, J., Cooke, D.R., Walshe, J.L., and Stein, H., 2005, Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit: Economic Geology, v. 100, p. 979−1003.

Chivas, A.R., 1978, Porphyry copper mineralization at the Koloula igneous complex, Guadalcanal, Solomon Islands: Economic Geology, v. 73, p. 645−677.

Chouinard, A., Williams-Jones, A.E., Leonardson, R.W., Hodgson, C.J., Silva, P., Téllez, C., Vega, J., and Rojas, F., 2005, Geology and genesis of the multistage high-sulfidation epithermal Pascua Au-Ag-Cu deposit, Chile and Argentina: Economic Geology, v. 100, p. 463−490.

Christofides, G., Koroneos, A., Soldatos, T., Eleftheriadis, G. and Kilias, A. 2001. Eocene magmatism (Sithonia and Elatia plutons) in the internal Hellenides and implications for Eocene-Miocene geological evolution of the Rhodope massif (Northern Greece). Acta Vulcanologica 13, 73–89.

Dilek, Y. 2006. Collision tectonics of the Eastern Mediterranean region: causes and consequences. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia (eds Y. Dilek and S. Pavlides), pp. 1–13. Geological Society of America Special Paper no. 409.

Dilles, J.H., and Einaudi, M.T., 1992, Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—a 6−km vertical reconstruction: Economic Geology, v. 87, p. 1963−2001.

Dinter, D. A., A. Macfarlane, W. Hames, C. Isachsen, S. Bowring, and L. Royden, 1995, U-Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: Implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece, Tectonics, 14(4), 886–908, doi:10.1029/95TC00926.

Dixon, J.E., Dimitriadis, S., 1984. Metamorphosed ophiolitic rocks from the SerboMacedonian Massif, near Lake Volvi, North-east Greece. Geol. Soc. Lond., Spec. Publ. 17, 603–618

Echtler H, Matte P, Maluski H, 1987, Large southwestward ductile thrusting in the alpine Serbomacedonian belt. Terra Cogn 7: 106

Einaudi, M.T., Hedenquist, J.W., and Inan, E.E., 2003, Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments: Society of Economic Geologists Special Publication 10, p. 285−313.

Ford, J.H., 1978, A chemical study of alteration at the Panguna porphyry copper deposit, Bougainville, Papua New Guinea: Economic Geology, v. 73, p. 703−720.

Fornadel A.P., Voudouris P., Spry P.G., Melfos V. (2012). Mineralogical, stable isotope, and fluid inclusion studies of spatially related porphyry Cu and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece. Mineralogy and Petrology, 105, 85-111.

Frei, R. (1992), Isotope (Pb,Rb-Sr,S,O,C,U-Pb) geochemical investigations on Tertiary intrusives and related mineralizations in the Serbomacedonian Pb-Zn, Sb+Cu-Mo metallogenetic province in Northern Greece, PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich.

Galanopoulos E., Voudouris P., Mavrogonatos C., Spry P.G., Hart C., Melfos V., Federica Zaccarini F., Alfieris D. (2018). A New Porphyry Mo Mineralization at Aisymi-Leptokarya, South-Eastern Rhodope, North-East Greece: Geological and Mineralogical Constraints. Geosciences, 8, 435, 16 p. (doi:10.3390/geosciences8120435).

Goldstein, R.H., and Reynolds, T.J., 1994. Systematics of fluid inclusions in diagenetic minerals. Soc.Sed. Geol. Short Course 31, pp. 199.

Gustafson, L., Vidal, C., Pinto, R. and Noble, D., 2004, Porphyry-epithermal transistion, Cajamarca region, northern Perú: Society of Economic Geologists Special Publication 11, p. 279–300.

Gustafson, L.B., and Hunt, J.P., 1975, The porphyry copper deposit at El Salvador, Chile: Economic Geology, v. 70, p. 857−912.

Harris, A.C., Golding, S.D., and White, N.C., 2005, Bajo de la Alumbrera copper-gold deposit: Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids: Economic Geology, v. 100, p. 863−886.

Hedenquist, J.W., Arribas, A., Jr., and Reynolds, T.J., 1998, Evolution of anintrusion-centered hydrothermal system: Far Southeast-Lepanto porphyryand epithermal Cu-Au deposits, Philippines: Economic Geology, v. 93, p.373−404.

Himmerkus, F., Reischmann, T. and Kostopoulos, D. 2002. First evidence for Silurian magmatism in the Serbo-Macedonian Massif, northern Greece. Geochimica et Cosmochimica Acta, Goldschmidt Conference Abstract Volume.

Himmerkus, F., Reischmann, T. And Kostopoulos, D. 2003. The Serbo-Macedonian Massif, the oldest crustal segment of the internal Hellenides, identified by zircon ages. Geophysical Research Abstracts, 5, number 05671.

Himmerkus, F., Reischmann, T. and Kostopoulos, D. 2009. Triassic rift-related meta-granites in the Internal Hellenides. Geological Magazine 146, 252–65.

Himmerkus, F., Zachariadis, P., Reischmann, T. and Kostopoulos, D. 2005. The mafic complexes of the Athos-Volvi-Zone – a suture zone between the Serbo-Macedonian Massif and the Rhodope Massif? Geophysical Research Abstracts 7, paper EGU05-A-10240.

Jerome, S.E., 1966, Some features pertinent in exploration of porphyry copper deposits, in Titley, S.R., and Hicks, C.L., eds., Geology of the porphyry copper deposits, southwestern North America: Tucson, University of Arizona Press, p. 75−85.

Kelepertzis et al. (1986). Geochemical studies of porphyry type mineralization at Gerakario - Vathi of Kilkis area, Northern Greece. Mineral Wealth 42, 43-48.

Kockel F, Mollat H, Walther H, 1977, Erläuterungen zur geologischen Karte der Chalkidhiki und angrenzender Gebiete, 1:100,000 (Nord-Griechenland). Bundesanstalt fur Geowisseschaften und Rohstoffe, Hannover, 119 pp

Kockel, F., Mollat, H., and Gundlach, H., 1975, Hydrothermally altered and (copper) mineralized porphyritic intrusions in the Serbo-Macedonian Massif (Greece), Mineralium Deposita, v. 10, p. 195-204.

Kósaka, K., and Wakita, K., 1978, Some geological features of the Mamut porphyry copper deposit, Sabah, Malaysia: Economic Geology, v. 73, p.618−627.

Kydonakis K, Gallagher K, Brun J-P et al, 2014 Upper cretaceous exhumation of the western Rhodope Metamorphic Province (Chalkidiki Peninsula, northern Greece). Tectonics 33:2014TC003572. doi:10.1002/2014TC003572

Kydonakis, K., Brun, J.-P., Sokoutis, D. and Gueydan, F., 2015. Kinematics of Cretaceous subduction and exhumation in the western Rhodope (Chalkidiki block). Tectonophysics, 665:218–235

Leach, T.M., 1999, Evolution of selected porphyry copper-gold systems in the Southwest Pacific region and its relevance to exploration: Pacrim ’99 Congress, Bali, Indonesia, 1999, Proceedings: Melbourne, Australasian Institute of Mining and Metallurgy, p. 211−225.

Liati, A. 2005. Identification of repeated Alpine (ultra) high-pressure metamorphic events by U-Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of Northern Greece. Contributions to Mineralogy and Petrology 150, 608–30.

Lowell, J.D., and Guilbert, J.M., 1970, Lateral and vertical alteration-mineralization zoning in porphyry ore deposits: Economic Geology, v. 65, p. 373−408.

Lozada-Calderón AJ, McPhail DC (1996) Porphyry and high-sulfidation epithermal mineralization in the Nevados del Famatina mining district, Argentina.

Mack, E. (1983) Auriferous mineralization in northern Greece: history, exploration and evaluation. In: Scheider, H.J. (ed), Mineral deposits of the Alps and of the Alpine epoch in Europe. Springer, Berlin, Heidelberg, New York: 375-384.

Masterman, G.J., Cooke, D.R., Berry, R.F., Walshe, J.L., Lee, A.W., and Clark, A.H., 2005, Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile: Economic Geology, v. 100, p. 835−862.

Melfos V., Vavelidis M., Christofides G., Seidel E. (2002). Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Mineralium Deposita, 37, 648-668.

Melfos V., Voudouris P. (2017). Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geology Reviews, 89, 1030–1057.

Melfos, V. and Voudouris, P.C., 2012. Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals, 2(4), 300-317.

Melidonis N - Ann. Geol. Pays Hell., 1972, Geologic structure and mineralization of the Pontokerasia area

Meyer, C., and Hemley, J.J., 1967, Wall rock alteration, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits: New York, Holt, Rinehart and Winston, p. 166−235.

Monecke, T., Monecke, J., Reynolds, T. J., Tsuruoka, S., Bennett, M. M., Skewes, W. B., and Palin, R. M. 2018. Quartz solubility in the H2O-NaCl System: A framework for understanding vein formation in porphyry copper deposits. Econ. Geol. 113, 1007-1046.

Nerantzis, X., N. (2015) Rhesos’ Gold, Heracles’ Iron: The archaeology of metals exploration in Northeast Greece. Potingair Press Glasgow.

Ossandón, G., Fréraut, R., Gustafson, L.B., Lindsay, D.D., and Zentilli, M., 2001, Geology of the Chuquicamata mine: A progress report: Economic Geology, v.96, p. 249−270.

Padilla-Garza, R.A., Titley, S.R., and Eastoe, C.J., 2004, Hypogene evolution of the Escondida porphyry copper deposit, Chile: Society of Economic Geologists Special Publication 11, p. 141−165.

Panagos, A.G., PE, G.G. and Varnavas, S.P., 1978, The volcanic rocks of Strymonikon – Metamorphosis, Central Macedonia, Greece, Chem. Erde, 37, 50-61.

Papadakis A., Michailidis K. (1976). Hydrothermal alteration for porphyry copper type mineralization in the subvolcanic rocks at Eastern Chalkidiki, Greece. Sci. Fac. Phys. Math., 16, 452-474.

Perelló, J., Brockway, H., and Martini, R., 2004b, Discovery and geology of the Esperanza porphyry copper-gold deposit, Antofagasta Region, northern Chile: Society of Economic Geologists Special Publication 11, p. 167−186.

Perelló, J., Carlotto, V., Zárate, A., Ramos, P., Posso, H., Neyra, C., Caballero, A., Fuster, N., and Muhr, R., 2003, Porphyry-style alteration and mineralization of the middle Eocene to early Oligocene Andahuaylas-Yauri belt, Cuzco region, Peru: Economic Geology, v. 98, p. 1575−1605.

Perelló, J., Neyra, C., Posso, H., Zárate, A., Ramos, P., Caballero, A., Martini, R., Fuster, N., and Muhr, R., 2004a, Cotabambas: Late Eocene porphyry copper-gold mineralization southwest of Cuzco, Peru: Society of Economic Geologists Special Publication 11, p. 213−230.

Perelló, J.A., Fleming, J.A., O’Kane, K.P., Burt, P.D., Clarke, G.A., Himes, M.D., and Reeves, A.T., 1995, Porphyry copper-gold-molybdenum deposits in the Island Copper cluster, northern Vancouver Island, British Columbia: Canadian Institute of Mining, Metallurgy and Petroleum Special Volume 46, p. 214−238.

Potter, R.W., Clynne, M.A. and Brown, D.L. (1978). Freezing point depression of aqueous sodium chloride solutions. Econ. Geol., 73, 284-285.

Ramboz, C., Pichavant, M., and Weisbrod, A. 1982. Fluid immiscibility in natural processes. Use and misuse of fluid inclusion data. II Interpretation of fluid inclusions data in terms of immiscibility. Chem. Geol. 37, 29-48.

Richards, J. P. (2009). Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37(3), 247-250.

Richards, J.P. 2011 Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40, 1-26.

Richards, J.P., 2003. Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Economic Geology 98, 1515–1533.

Ricou, L.-E., Burg, J.-P., Godfriaux, I. and Ivanov, Z. 1998. The Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodinamica Acta 11, 285–309.

Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, vol. 12, Mineralogical Society of America, 646p.

Roedder, Ε. 1981. Origin of fluid inclusions and changes that occur after trapping. In: Short Course in Fluid Inclusions: Applications to Petrology. Eds. Hollister, L.S. and

Crawford, M.L. Mineralogical Association of Canada, 101-137.

Roedder, Ε., 1977. Fluid inclusions as tools in mineral exploration. Econ. Geol., 72, 503-525.

Rose, A.W., 1970, Zonal relations of wallrock alteration and sulfide distribution at porphyry copper deposits: Economic Geology, v. 65, p. 920−936

Schmatz, J., and Urai, J. L. 2011. The interaction of migrating grain boundaries and fluid inclusions in naturally deformed quartz: A case study of a folded and partly recrystallized quartz vein from the Hunsrück Slate, Germany. J. Struct. Geol. 33, 468-480.

Seedorff, E., Barton, M. D., Stavast, W. J., and Maher, D. J. (2008). Root zones of porphyry systems: Extending the porphyry model to depth. Economic Geology, 103(5), 939-956.

Seedorff, E., Dilles, J.H., Proffett, J.M., Jr., Einaudi, M.T., Zurcher, L., Stavast, W.J.A., Johnson, D.A., and Barton, M.D., 2005, Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume, 251−298.

Shepherd, T., Rankin, A. and Alderton, D., (1985). A practical guide to fluid inclusion studies. Blackie and Son, Glasgow.

Sillitoe, R. H. (1999). VMS and porphyry copper deposits: Products of discrete tectono-magmatic settings. Mineral Deposits: Processes to Processing, Balkema, Rotterdam, 7-10.

Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology 67, 184–197.

Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology 105, 3–41.

Sillitoe, R.H., and Gappe, I.M., Jr., 1984, Philippine porphyry copper deposits:Geologic setting and characteristics: Bangkok, Thailand, United Nations ESCAP, CCOP Technical Publication 14, 89 p.

Stampfli, G. M., Rosselet, F., and Bagheri, S. 2004. Tethyan oceans and sutures. 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, Greece, April 14–20, 2004, Ref: T1–21.

Stergiou C., Melfos V., Voudouris P., Michailidis K., Spry P., Chatzipetros A. (2016). Hydrothermal alteration and structural control of the Vathi porphyry Cu-Au-Mo-U ore system, Kilkis district, N. Greece. Scientific Annals of the School of Geology, Aristotle University of Thessaloniki (Honorary Publication in Memory of Professor A. Kasoli-Fournaraki), 105, 69-74.

Stergiou C.L., Lazos I., Melfos V., Chatzipetros A., Voudouris P., Pikridas C., Bitharis S. (2018). Links between the neotectonic regime and the Tertiary mineralization of the Vertiskos and Kerdylion Units, N. Greece. In: Neubauer F. et al. (Eds)., Abstract volume of the XXI International Congress of the Carpathian Balkan Geological

Association (CBGA), Salzburg, September 10-13, 2018, Geologica Balcanica, p. 281.

Tombouloglou Ch. (2001). Etude d’inclusions fluides dans le context hydrothermal de mineralizsations tertiaires, type cuivre porphyrique, du Massif Serbo-Mecadonien en Mecedoine, Grece. In: Special Volume in honor of the Emeritus Professor Ioannis Papageorgakis. Metsovion National Technical University, Athens, 225-261.

Van den Kerkhof, A.M.; Hein, U.F. (2001). Fluid inclusion petrography. Lithos, 55, 27-47.

Vavelidis, M., & Andreou, S. (2008). Gold and gold working in Late Bronze Age northern Greece. Naturwissenschaften, 95(4), 361.

Vavelidis, M., Andreou, S. (2008). Gold and gold working in Late Bronze Age Northern Greece. Naturwissenschaften, 95(4), 361-366.

Vavelidis, M., Gialoglou, G., Melfos, V., Wagner, G.A. (1996) Gold-grube in Palea Kavala/ Griechenland. Entdeckung von Skapte lyle, Erzmetal, Η9, 547-554.

Vaxevanopoulos, M., Vavelidis, M., Melfos, V., Malamidou, D., Pavlides, S. and Ben-Yozef, E., (2018). Ancient mining and metallurgical activity at the gold-silver-copper ore deposits in Mavrokorfi area, Mount Pangaeon (NE Greece). Mining for Ancient Copper: Essays in Memory of Beno Rothenberg, 385-98.

Veranis N. (1989). Gold bearing mineralizations in Servomacedonian zone, N. Greece. Application of panning for gold- targets selection. Internal report IGME.

Voudouris P., Mavrogonatos C., Melfos V., Spry P.G., Magganas A., Alfieris D., Soukis K., Tarantola A., Periferakis A., Kołodziejczyk J., Scheffer C., Repstock A., Zeug M. (2019a). The geology and mineralogy of the Stypsi porphyry Cu-Mo-Au-Re prospect, Lesvos Island, Aegean Sea, Greece. Ore Geology Reviews, 112.

Voudouris P., Mavrogonatos C., Spry P.G., Baker T., Melfos V., Klemd R., Haase K., Repstock A., Djiba A., Bismayer U., Tarantola A., Scheffer C., Moritz R.,Kouzmanov K.,

Alfieris D., Papavassiliou K., Schaarschmidt A., Galanopoulos E., Galanos E., Kołodziejczyk J., Stergiou C., Melfou M. (2019b). Porphyry and epithermal deposits in

Greece: an overview, new discoveries, and mineralogical constraints on their genesis. Ore Geology Reviews, 107, 654–691.

Voudouris P., Melfos V. (2013). Aluminum-phosphate-sulfate (APS) minerals in the sericitic advanced argillic alteration zone of the Melitena porphyry epithermal Mo-Cu±Au±Re prospect, western Thrace, Greece. Neues Jahrbuch für Mineralogie - Abhandlungen (Journal of Mineralogy and Geochemistry), 190, 11–27.

Voudouris P., Melfos V., Spry P.G., Bonsall T., Tarkian M., Economou-Eliopoulos M. (2008). Mineralogical and fluid inclusion constraints on the evolution of the Plaka intrusion-related ore system, Lavrion, Greece. Mineralogy and Petrology, 93, 79-110.

Voudouris P., Melfos V., Spry P.G., Kartal T., Schleicher H., Moritz R., Ortelli M. (2013). The Pagoni Rachi/Kirki Cu-Mo±Re±Au deposit, Northern Greece: Mineralogical and fluid inclusion constrains on the evolution of a telescoped porphyry-epithermal system. Canadian Mineralogist, 51, 411-442.

Watanabe, Y., and Hedenquist, J.W., 2001, Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile: Economic Geology, v. 96, p. 1775−1797.

Wilson, A.J., Cooke, D.R., and Harper, B.R., 2003, The Ridgeway gold-copper deposit: A high-grade alkalic porphyry deposit in the Lachlan fold belt, New South Wales, Australia: Economic Geology, v. 98, p. 1637−1666.

Zarasvandi, A.; Rezaei, M.; Raith, J.; Lentz, D.; Azimzadeh, A.M.; Pourkaseb, H. Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit, Central Iran. Journal of Asian Earth Sciences 2015, 111, 175-191.

Zhou, Y.; Lai, Y.; Shu, Q.; Sun, Y.; Xu, J.; Liang, Y. Geochronology and fluid inclusion study of the Shabutai porphyry Mo deposit, Inner Mongolia. Ore Geology Reviews 2017, 81, 745-759.

Αποστόλου Ν. και Στεφανίδης Π. (1987). Έκθεση για την γεωλογική και κοιτασματολογική χαρτογράφηση στην περιοχή Γερακαριού-Κεντρικού-Γάβρας Ν. Κιλκίς. Αδημοσίευτη Έκθεση ΙΓΜΕ, σελ. 44.

Βαβελίδης, Μ. (2009) Η μεταλλευτική και μεταλλουργική δραστηριότητα στη Μακεδονία και Θράκη, με αναφορά στη λατομική δραστηριότητα, από την αρχαιότητα μέχρι σήμερα. Στο: Μεταλλεία –Τόποι- Πόλεμοι. Αναγνώσεις χαρτών από το αρχείο της Επιθεώρησης Μεταλλείων Β. Ελλάδος του Υπουργείου Ανάπτυξης. ΕΚΕΠΠ-ΕΚΕΧΧΑΚ –

Εθνική Χαρτοθήκη.

Δήμου, Ε., Παπασταύρου, Στ., Sermet, R. (1987). Το Sb στην Ελλάδα (μέρος τρίτο) Νήσος Σάμος, Γερακάριο Ν.Κιλκίς, Πεύκα Ροδόπης, Στάγειρα Χαλκιδικής. Αδημοσίευτη Έκθεση ΙΓΜΕ, Αθήνα.

Διακάκης Ε. (1980). Κοιτασματολογική αναγνώριση και αξιολόγηση του Δ.Χ. 6923/73 στην περιοχή Γερακαριού του Ν. Κιλκίς. Αδημοσίευτη Έκθεση ΙΓΜΕ, σελ. 18.

Καντηράνης Ν, Στεργίου Α, Φιλιππίδης ΑΑ, Δρακούλης Α. (2004) Υπολογισμός του ποσοστού του άμορφου υλικού με τη χρήση περιθλασιογραμμάτων ακτίνων-X. Δελτίον της Ελληνικής Γεωλογικής Εταιρίας 36 (1), 446-453

Κάρμης Π., Ζαγκούρογλου Κ. (1987). Πρόδρομα αποτελέσματα γεωφυσικής και γεωχημικής έρευνας περιοχής Γερακαριού Ν. Κιλκίς. Αδημοσίευτη Έκθεση ΙΓΜΕ.

Μελιδώνης Ν.Γ. (1972). Το τόξο των Νεοηφαιστειακών πετρωμάτων Στρυμονικού Μεταμορφώσεως. Αδημοσίευτη Έκθεση ΙΓΜΕ.

Μιγκίρος Γ., Ιωαννίδης Κ., Κελεπερτζής Α. (1990). Φύλλο Χέρσον, 1:50.000, Γεωλογικός χάρτης ΙΓΜΕ, Αθήνα.

Μουντράκης Δ. (2010). Γεωλογία της Ελλάδας και γεωτεκτονική εξέλιξη. University Studio Press, Θεσσαλονίκη, σ. 374.

Σακελλαρίου, Δ., Dürr, St., 1993. Γεωλογική δομή της Σερβομακεδονικής Μάζας στη ΒΑ Χαλκιδική. Δελτ. Ελλ. Γεωλ. Εταιρ., τομ. XXVIII/1, 179-193.

Σιδηρόπουλος Ν. 1991. Λιθολογία, γεωχημεία, τεκτονική και μεταμόρφωση του ΒΔ τμήματος του Βερτίσκου. Η περιοχή του Ορους Δύσωρο (Κρούσια) βόρεια από το Κιλκίς. Διδακτ. Διατρ. Πανεπ. Θεσσαλονίκης, σ. 592.

Στεργίου Χρ. (2016). Ορυκτολογική, γεωχημική και τεκτονική μελέτη των υδροθερμικών εξαλλοιώσεων και της μεταλλοφορίας στο πορφυριτικό σύστημα Cu-Au±U±Mo στη Βάθη Κιλκίς, Β. Ελλάδα. Μεταπτυχιακή Διατριβή Ειδίκευσης, Τμήμα Γεωλογίας Α.Π.Θ. σελ. 118.

Ψυχογυτόπουλος (1990). Διερεύνηση επί της δυνατότητας αξιοποίησης των μεταλλοφόρων συγκεντρώσεων πορφυρικού τύπου χαλκού περιοχής Γερακαριού Νομού Κιλκίς. Αδημοσίευτη Έκθεση ΙΓΜΕ.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.