[Εξώφυλλο]

Εντοπισμός ιχνών αεροσκαφών από δορυφορικά δεδομένα και εκτίμηση των ευνοϊκών ατμοσφαιρικών συνθηκών = Detection of Jet aircraft contrails from satellite data and estimation of favorable atmospheric conditions.

Γεώργιος Θεόδωρος Δεκουτσίδης

Περίληψη


Τα ίχνη αεροσκαφών – contrails, καθώς και τα παράγωγά τους νέφη contrail cirrus, ασκούν σημαντική επίδραση στο ισοζύγιο των ακτινοβολιών της ατμόσφαιρας και συνεπώς και στο κλίμα της Γης. Στην παρούσα εργασία γίνεται προσπάθεια, μέσω της χρήσης δορυφορικών δεδομένων, να μελετηθούν τα βασικά χαρακτηριστικά τους και να καθοριστούν οι ατμοσφαιρικές συνθήκες που πιθανά ευνοούν τον σχηματισμό των contrails. Η περιοχή ενδιαφέροντος περιλαμβάνει την Κεντρική και Δυτική Ευρώπη, και μελετάται για το έτος 2016. Ο εντοπισμός των contrails γίνεται στις εικόνες του ραδιομέτρου SEVIRI που φέρεται σε δορυφόρο MSG, με τη βοήθεια τροποποιημένης έκδοσης του αλγορίθμου αυτόματου εντοπισμού contrails CDA (Mannstein et al., 1999). Αξιοποιώντας ως κύρια βάση δεδομένων τα εντοπισμένα contrails, τίθενται τα ερωτήματα: ποια είναι τα μορφολογικά και μικροφυσικά χαρακτηριστικά των contrails και ποιες οι ατμοσφαιρικές συνθήκες που ευνοούν τον σχηματισμό τους; Η στατιστική ανάλυση των εντοπισμένων contrails, οδηγεί στο συμπέρασμα ότι στην περιοχή ενδιαφέροντος παρατηρούνται πέντε υποπεριοχές με συχνότερη εμφάνιση contrails, με την ακριβή κατανομή τους όμως να εμφανίζει ημερήσια και εποχιακή μεταβολή. Τα μήκη των εντοπισμένων contrails κυμαίνονται μεταξύ 225 km και 292,5 km, τα πλάτη τους μεταξύ 5,1 km έως 8,1 km και το συνολικό εμβαδόν τους μεταξύ 993 km2 και 1463 km2. Συνολικά η κάλυψη της σκηνής από contrails βρέθηκε να είναι μέχρι 0,085 %, με τις μέγιστες τιμές να παρατηρούνται τους χειμερινούς μήνες. Η σύγκριση των θέσεων των εντοπισμένων contrails με τα δεδομένα της βάσης δεδομένων reanalysis ERA-5, οδήγησε στον εντοπισμό των ατμοσφαιρικών συνθηκών που επικρατούν όταν εντοπίζονται contrails. Βρέθηκε ότι τα contrails εντοπίζονται κυρίως σε περιβάλλοντα κορεσμένα σε υδρατμούς (RH ≥ 100%), όταν η θερμοκρασία είναι 204 Κ έως 232 Κ (-69,15 οC έως -41,15 οC) και η ειδική υγρασία περίπου 0,025 gr/kg – 0,05 gr/kg. Προτιμητέα διεύθυνση ανέμου είναι η Δ-ΝΔ (240ο έως 260ο) με την ένταση να βρίσκεται από  10 m/s έως 30 m/s.

Jet aircraft contrails, and the contrail – cirrus clouds generated from them, have a great effect on the radiation balance of the atmosphere and thus impact the climate. This study aims to study the physical features of contrails and determine the possible atmospheric conditions that favor their formation, with the use of satellite data. The contrails are detected on satellite images obtained by the SEVIRI radiometer on board MSG satellites, with the use of a modified version of the Contrail Detection Algorithm (Mannstein et al., 1999). The area of interest includes central and Western Europe and the time period is the whole year 2016. Using a dataset of detected contrails in satellite images, it asks: what are the physical properties of those contrails and under what atmospheric conditions have they formed? The subsequent statistical analysis of the detected contrails leads to the conclusion that there are five main contrail detection hot-spots, although the geographical distribution of the contrails, varies depending on the time of day and the season. The length of the detected contrails lies between 225 km and 292,5 km, the mean width between 5,1075 km and 8,1 km and their overall area between 993 km2 and 1463 km2. The total contrail cover of the scenes was up to 0,085 %, with greater values being detected during winter. Comparison of the locations of the detected contrails with the ERA-5 reanalysis database, revealed the atmospheric conditions favoring their formation. Results show that contrail formation is favored in water saturated areas (RH ≥ 100%), when the temperature is between 204 Κ and 232 Κ (-69,15 οC to -41,15 οC) and the specific humidity between 0,025 gr/kg and 0,05 gr/kg. The favorable wind direction is W-SW (240ο - 260ο) and wind speed between 10 m/s and 30 m/s.

Πλήρες Κείμενο:

PDF

Αναφορές


Appleman, H. (1953). The Formation of Exhaust Condensation Trails by Jet Aircraft. Bulletin of the American Meteorological Society, 34(1), 14–20. https://doi.org/10.1175/1520-0477-34.1.14

Atlas, D., Wang, Z., & Duda, D. (2006). Contrails to Cirrus---Morphology, Microphysics, and Radiative Properties. Journal of Applied Meteorology and Climatology - J APPL METEOROL CLIMATOL, 45, 5–19. https://doi.org/10.1175/JAM2325.1

Bakan, S., Betancor, M., Gayler, V., & Graßl, H. (1994). Contrail frequency over Europe from NOAA-satellite images. Annales Geophysicae, 12(10), 962–968. https://doi.org/10.1007/s00585-994-0962-y

Bedka, S. T., Minnis, P., Duda, D. P., Chee, T. L., & Palikonda, R. (2013). Properties of linear contrails in the Northern Hemisphere derived from 2006 Aqua MODIS observations. Geophysical Research Letters, 40(4), 772–777. https://doi.org/10.1029/2012GL054363

Bock, L., & Burkhardt, U. (2019). Contrail cirrus radiative forcing for future air traffic. Atmospheric Chemistry and Physics, 19(12), 8163–8174. https://doi.org/10.5194/acp-19-8163-2019

Brewer, A. W. (1946). CONDENSATION TRAILS. Weather, 1(2), 34–40. https://doi.org/10.1002/j.1477-8696.1946.tb00024.x

Bugliaro, L., Mannstein, H., & Kox, S. (2012). Ice Cloud Properties From Space BT - Atmospheric Physics: Background – Methods – Trends. In Ulrich Schumann (Ed.) (pp. 417–432). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_25

Burkhardt, U., & Kärcher, B. (2011). Global radiative forcing from contrail cirrus. Nature Climate Change, 1(1), 54–58. https://doi.org/10.1038/nclimate1068

Busen, R., & Schumann, U. (1995). Visible contrail formation from fuels with different sulfur contents. Geophysical Research Letters, 22(11), 1357–1360. https://doi.org/10.1029/95GL01312

Chauvigné, A., Jourdan, O., Schwarzenboeck, A., Gourbeyre, C., Gayet, J. F., Voigt, C., … Schumann, U. (2018). Statistical analysis of contrail to cirrus evolution during the Contrail and Cirrus Experiment (CONCERT). Atmospheric Chemistry and Physics, 18(13), 9803–9822. https://doi.org/10.5194/acp-18-9803-2018

Dekoutsidis, G., & Feidas, H. (2019). Contrails and contrail-cirrus clouds characteristics based on satellite images and their relation to the atmospheric conditions. In Climatic Change, Variability and Climatic Risks (pp. 391–396). Thessaloniki.

Dietmüller, S., Ponater, M., Sausen, R., Hoinka, K.-P., & Pechtl, S. (2008). Contrails, Natural Clouds, and Diurnal Temperature Range. Journal of Climate, 21(19), 5061–5075. https://doi.org/10.1175/2008JCLI2255.1

Dominguez, F. (2011). Introduction to Physical Meteorology - Cold Clouds. Retrieved from www.atmo.arizona.edu

Duda, D., Minnis, P., Nguyen, L., & Palikonda, R. (2004). A Case Study of the Development of Contrail Clusters over the Great Lakes. Journal of The Atmospheric Sciences - J ATMOS SCI, 61, 1132–1146. https://doi.org/10.1175/1520-0469(2004)061<1132:ACSOTD>2.0.CO;2

Duda, D. P., Minnis, P., Khlopenkov, K., Chee, T. L., & Boeke, R. (2013). Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data. Geophysical Research Letters, 40(3), 612–617. https://doi.org/10.1002/grl.50097

Eichenlaub, V. L. (1982). Comments on “Midwestern Cloud, Sunshine and Temperature Trends since 1901; Possible Evidence of Jet Contrail Effects.” Journal of Applied Meteorology, 21(12), 1946–1948. https://doi.org/10.1175/1520-0450(1982)021<1946:COCSAT>2.0.CO;2

ENGELSTAD, M., SENGUPTA, S. K., LEE, T., & WELCH, R. M. (1992). Automated detection of jet contrails using the AVHRR split window. International Journal of Remote Sensing, 13(8), 1391–1412. https://doi.org/10.1080/01431169208904199

Ettenreich, R. (1919). Wolkenbildung über einer Feuersbrunst und an Flugzeugabgasen. Meteorologische Zeitschrift, 36, 355–356.

Forkert, T., Strauss, B., & Wendling, P. (1993). A New Algorithm for the Automated Detection of Jet Contrails from NOAA-AVHRR Satellite Images. In Proc. of the 6th AVHRR Data Users’ Meeting (pp. 513–519). EUMETSAT - Joint Research Centre of the Commission of the EC. Retrieved from https://elib.dlr.de/31899/

Freudenthaler, V., F, H., & H, J. (1995). Ground-based mobile scanning LIDAR for remote sensing of contrails. Annales Geophysicae, 12. https://doi.org/10.1007/s005850050117

Frömming, C., Ponater, M., Burkhardt, U., Stenke, A., Pechtl, S., & Sausen, R. (2011). Sensitivity of contrail coverage and contrail radiative forcing to selected key parameters. Atmospheric Environment, 45(7), 1483–1490. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.11.033

Gayet, J.-F., Febvre, G., Brogniez, G., Chepfer, H., Renger, W., & Wendling, P. (1996). Microphysical and Optical Properties of Cirrus and Contrails: Cloud Field Study on 13 October 1989. Journal of the Atmospheric Sciences, 53, 126–138. https://doi.org/10.1175/1520-0469(1996)053<0126:MAOPOC>2.0.CO;2

Gierens, K., Kärcher, B., Mannstein, H., & Mayer, B. (2009). Aerodynamic Contrails: Phenomenology and Flow Physics. Journal of the Atmospheric Sciences, 66(2), 217–226. https://doi.org/10.1175/2008JAS2767.1

Gierens, K. M. (1996). Numerical Simulations of Persistent Contrails. Journal of the Atmospheric Sciences, 53(22), 3333–3348. https://doi.org/10.1175/1520-0469(1996)053<3333:NSOPC>2.0.CO;2

Gierens, K., & Spichtinger, P. (2000). On the size distribution of ice-supersaturated regions in the upper troposphere and lowermost stratosphere. Annales

Geophysicae, 18(4), 499–504. https://doi.org/10.1007/s00585-000-0499-7

Gothe, M. B., & Graßl, H. (1993). Satellite remote sensing of the optical depth and mean crystal size of thin cirrus and contrails. Theoretical and Applied Climatology, 48(2), 101–113. https://doi.org/10.1007/BF00864917

Graf, K., Schumann, U., Mannstein, H., & Mayer, B. (2012). Aviation induced diurnal North Atlantic cirrus cover cycle. Geophysical Research Letters, 39. https://doi.org/10.1029/2012GL052590

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., … Zhang, S. (2005). Efficacy of climate forcings. Journal of Geophysical Research: Atmospheres, 110(D18). https://doi.org/10.1029/2005JD005776

Haywood, J. M., Allan, R. P., Bornemann, J., Forster, P. M., Francis, P. N., Milton, S., … Thorpe, R. (2009). A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus. Journal of Geophysical Research: Atmospheres, 114(D24). https://doi.org/10.1029/2009JD012650

Höhndorf, F. (1941). Beitrag zum Problem der Vermeidung von Auspuffwolken hinter Motorflugzeugen. Deutsche Luftfahrtforschung, Aerologisches Institut, Deutsche Forschungsanstalt Für Segelflug, FB, (1371), 15.

Iwabuchi, H., Yang, P., Liou, K., & Minnis, P. (2012). Physical and optical properties of persistent contrails: Climatology and interpretation. Journal of Geophysical Research (Atmospheres), 117, 6215. https://doi.org/10.1029/2011JD017020

Jensen, E J, Toon, O. B., Kinne, S., Sachse, G. W., Anderson, B. E., Chan, K. R., … Miake-Lye, R. C. (1998). Environmental conditions required for contrail formation and persistence. Journal of Geophysical Research Atmospheres, 103(D4), 3929–3936. https://doi.org/10.1029/97JD02808

Jensen, Eric J, Toon, O. B., Vay, S. A., Ovarlez, J., May, R., Bui, T. P., … Schumann, U. (2001). Prevalence of ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation. Journal of Geophysical Research: Atmospheres, 106(D15), 17253–17266. https://doi.org/10.1029/2000JD900526

Kärcher, B, Busen, R., Petzold, A., Schröder, F. P., Schumann, U., & Jensen, E. J. (1998). Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles: 2. Comparison with observations and sensitivity studies. Journal of Geophysical Research: Atmospheres, 103(D14), 17129–17147. https://doi.org/10.1029/98JD01045

Kärcher, B, Kleine, J., Sauer, D., & Voigt, C. (2018). Contrail Formation: Analysis of Sublimation Mechanisms. Geophysical Research Letters, 45(24), 13,513-547,552. https://doi.org/10.1029/2018GL079391

Kärcher, B, Mayer, B., Gierens, K., Burkhardt, U., Mannstein, H., & Chatterjee, R. (2009). Aerodynamic Contrails: Microphysics and Optical Properties. Journal of the Atmospheric Sciences, 66(2), 227–243. https://doi.org/10.1175/2008JAS2768.1

Kärcher, Bernd. (2018). Formation and radiative forcing of contrail cirrus. Nature Communications, 9(1), 1824. https://doi.org/10.1038/s41467-018-04068-0

Lee, D S, Pitari, G., Grewe, V., Gierens, K., Penner, J. E., Petzold, A., … Sausen, R. (2010). Transport impacts on atmosphere and climate: Aviation. Atmospheric Environment, 44(37), 4678–4734. https://doi.org/https://doi.org/10.1016/j.atmosenv.2009.06.005

Lee, David S, Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C. N., Lim, L. L., … Sausen, R. (2009). Aviation and global climate change in the 21st century. Atmospheric Environment, 43(22), 3520–3537. https://doi.org/https://doi.org/10.1016/j.atmosenv.2009.04.024

Lee, T. F. (1989). Jet Contrail Identification Using the AVHRR Infrared Split Window. Journal of Applied Meteorology (1988-2005), 28(9), 993–995. Retrieved from http://www.jstor.org/stable/26185248

Liou, K.-N. (1986). Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective. Monthly Weather Review, 114. https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2

Liou, K. N., Ou, S. C., & Koenig, G. (1990). An Investigation on the Climatic Effect of Contrail Cirrus BT - Air Traffic and the Environment — Background, Tendencies and Potential Global Atmospheric Effects. In U Schumann (Ed.) (pp. 154–169). Berlin, Heidelberg: Springer Berlin Heidelberg.

Mannstein, H, Brömser, A., & Bugliaro, L. (2010). Ground-based observations for the validation of contrails and cirrus detection in satellite imagery. Atmospheric Measurement Techniques, 3(3), 655–669. https://doi.org/10.5194/amt-3-655-2010

Mannstein, H, & Meyer, R. (1997). Contrail Observations using NOAA-AVHRR Infrared Data. In Proc. 1997 Meteorol. Satellite Data Users’ Conference (pp. 203–212).

Mannstein, Hermann, Meyer, R., & Wendling, P. (1999). Operational detection of contrails from noaa-avhrr-data. International Journal of Remote Sensing, 20(8), 1641–1660. https://doi.org/10.1080/014311699212650

Mannstein, Hermann, Vázquez-Navarro, M., Graf, K., Duda, D. P., & Schumann, U. (2012). Contrail Detection in Satellite Images BT - Atmospheric Physics:

Background – Methods – Trends. In Ulrich Schumann (Ed.) (pp. 433–447). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_26

Meerkötter, R., Schumann, U., Doelling, D. R., Minnis, P., Nakajima, T., & Tsushima, Y. (1999). Radiative forcing by contrails. Annales Geophysicae, 17(8), 1080–1094. https://doi.org/10.1007/s00585-999-1080-7

Meinert, D. (1994). Training a neural network to detect jet contrails in satellite images. In Impact of Emissions f rom Aircraft and Spacecraft upon the Atmosphere, Proceedings of an International Scientifi c Colloquium, Koeln, Germany, 18- 20 April 1994 (pp. 401–406).

Meinert, D., Stuhlmann, R., & Raschke, E. (1997). Impact of jet condensation trails upon the radiation budget over Northwest Europe and the North Atlantic.

Meyer, R, Buell, R., Leiter, C., Mannstein, H., Pechtl, S., Oki, T., & Wendling, P. (2007). Contrail observations over Southern and Eastern Asia in NOAA/AVHRR data and comparisons to contrail simulations in a GCM. International Journal of Remote Sensing, 28(9), 2049–2069. https://doi.org/10.1080/01431160600641707

Meyer, Richard, Mannstein, H., Meerkötter, R., & Wendling, P. (2002). Contrail and Cirrus Observations over Europe from 6 Years of NOAA-AVHRR Data. 2002 EUMETSAT Meteorological Satellite Conference (Vol. EUM P).

Minnis, P., Ayers, J., Palikonda, R., & Phan, D. (2004). Contrails, Cirrus Trends, and Climate. Journal of Climate, 17, 1671–1685. https://doi.org/10.1175/1520-0442(2004)017<1671:CCTAC>2.0.CO;2

Minnis, P., Palikonda, R., Walter, B., Ayers, J., & Mannstein, H. (2005). Contrail properties over the eastern North Pacific from AVHRR data. Meteorologische Zeitschrift, 14, 515–523. https://doi.org/10.1127/0941-2948/2005/0056

Minnis, P., Schumann, U., Doelling, D. R., Gierens, K., & Fahey, D. W. (1999). Global Distribution of Contrail Radiative Forcing. Geophysical Research Letters, 26, 1853–1856. https://doi.org/10.1029/1999GL900358

Minnis, P., Young, D. F., Garber, D. P., Nguyen, L., Smith Jr., W. L., & Palikonda, R. (1998). Transformation of contrails into cirrus during SUCCESS. Geophysical Research Letters, 25(8), 1157–1160. https://doi.org/10.1029/97GL03314

Palikonda, R., Minnis, P., Duda, D., & Mannstein, H. (2005). Contrail coverage derived from 2001 AVHRR data over the continental United States of America and surrounding areas. Meteorologische Zeitschrift, 14, 525–536. https://doi.org/10.1127/0941-2948/2005/0051

Penner, J. E., Chen, Y., Wang, M., & Liu, X. (2009). Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmospheric Chemistry and Physics, 9(3), 879–896. https://doi.org/10.5194/acp-9-879-2009

Ponater, M, Brinkop, S., Sausen, R., & Schumann, U. (1996a). Parameterization of Contrails in a Comprehensive Climate Model. In Proc. of the International

Colloquium on the Impact of Aircraft Emissions upon the Atmosphere, Comité Avion-Ozone, Paris, 15-18 October 1996 (pp. 373–378). Retrieved from

https://elib.dlr.de/32309/

Ponater, M, Brinkop, S., Sausen, R., & Schumann, U. (1996b). Simulating the global atmospheric response to aircraft water vapour emissions and contrails: a first approach using a GCM. Annales Geophysicae, 14(9), 941–960. https://doi.org/10.1007/s00585-996-0941-6

Ponater, Michael, Marquart, S., & Sausen, R. (2002). Contrails in a comprehensive global climate model: Parameterization and radiative forcing results. Journal of Geophysical Research: Atmospheres, 107(D13), ACL 2-1-ACL 2-15. https://doi.org/10.1029/2001JD000429

Pratt, W. (1991). Digital Image Processing (2nd ed.). New York: Wiley.

Pruppacher, H. R. (1995). A New Look at Homogeneous Ice Nucleation in Supercooled Water Drops. Journal of the Atmospheric Sciences, 52(11), 1924–1933.

https://doi.org/10.1175/1520-0469(1995)052<1924:ANLAHI>2.0.CO;2

Rosenow, J., & Fricke, H. (2019). Condensation trails in trajectory optimization. In 13th USA/Europe Air Traffic Management Research and Development Seminar 2019. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073417005&partnerID=40&md5=50d0751183cfe89f439274f8a51cae9f

Sassen, K., & Dodd, G. C. (1988). Haze Particle Nucleation Simulations in Cirrus Clouds, and Applications for Numerical and Lidar Studies. Journal of the Atmospheric Sciences, 46(19), 3005–3014. https://doi.org/10.1175/1520-0469(1989)046<3005:HPNSIC>2.0.CO;2

Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., & Ratier, A. (2002). AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG). Bulletin of the American Meteorological Society, 83(7), 977–992. https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2

Schmidt, E. (1941). Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren. Schriften Der Deutschen Akademie Der Luftfahrtforschung, Verlag R. Oldenbourg, München, Heft 44. Verlag R. Oldenbourg, München. Retrieved from https://elib.dlr.de/107948/

Schumann, U, & Wendling, P. (1990). Determination of contrails from satellite data and observational results. In Air Traffic and the Environment—Background, Tendencies and Potential Global Atmospheric Effects (pp. 138–153). Springer.

Schumann, Ulrich. (1990). Influence of propulsion efficiency on contrail formation. Aerospace Science and Technology, 4(6), 391–401. https://doi.org/https://doi.org/10.1016/S1270-9638(00)01062-2

Schumann, Ulrich. (1996). On conditions for contrail formation from aircraft exhausts. Meteorologische Zeitschrift, 5(1), 4–23. https://doi.org/10.1127/metz/5/1996/4

Schumann, Ulrich, Graf, K., Mannstein, H., & Mayer, B. (2012). Contrails: Visible Aviation Induced Climate Impact BT - Atmospheric Physics: Background – Methods – Trends. In Ulrich Schumann (Ed.) (pp. 239–257). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30183-4_15

Spangenberg, D., Minnis, P., Bedka, S., Palikonda, R., Duda, D., & Rose, F. (2013). Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data. Geophysical Research Letters, 40, 595–600. https://doi.org/10.1002/grl.50168

Spichtinger, P., Gierens, K., & Read, W. (2003). The Global Distribution of Ice-Supersaturated Regions as Seen by the Microwave Limb Sounder. Quarterly Journal of the Royal Meteorological Society, 129, 3391–3410. https://doi.org/10.1256/qj.02.141

Stephens, G. L., & Webster, P. J. (1981). Clouds and Climate: Sensitivity of Simple Systems. Journal of the Atmospheric Sciences, 38(2), 235–247. https://doi.org/10.1175/1520-0469(1981)038<0235:CACSOS>2.0.CO;2

Travis, D. J. (1996). Variations in Contrail Morphology and Relationships to Atmospheric Conditions. Journal of Weather Modification, 28(4), 50–58.

Vázquez-Navarro, M., Mannstein, H., & Kox, S. (2015). Contrail life cycle and properties from 1 year of MSG/SEVIRI rapid-scan images. Atmospheric Chemistry and Physics, 15(15), 8739–8749. https://doi.org/10.5194/acp-15-8739-2015

Zhang, G., Zhang, J., & Shang, J. (2018). Contrail recognition with convolutional neural network and contrail parameterizations evaluation. Scientific Online Letters on the Atmosphere, 14, 132–137. https://doi.org/10.2151/SOLA.2018-023

Καρτάλης, Κ., & Φείδας, Χ. (2006). Αρχές και εφαρμογές Δορυφορικής Τηλεπισκόπησης (1η). Αθήνα: Γκιούρδας Β.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.