[Εξώφυλλο]

Η Γεωχημεία των μαγμάτων που δημιουργούνται στα διαφορετικά είδη νησιώτικων τόξων = The Geochemistry of magmas originated in the different kinds of island arcs.

Ηρώ Νικόλαος Διανέλλου

Περίληψη


Zώνη υποβύθισης ονομάζεται το όριο μεταξύ δύο λιθοσφαιρικών πλακών, όπου μία πλάκα βυθίζεται κάτω από μία άλλη. Αναλόγως αν βυθίζεται ωκεάνια λιθόσφαιρα  κάτω από ωκεάνια ή κάτω από ηπειρωτική, το σύστημα ονομάζεται νησιώτικο τόξο ή ενεργό ηπειρωτικό περιθώριο αντίστοιχα. Πρόσφατα η κατηγορία των νησιώτικων τόξων  έχει αρχίσει να διαχωρίζεται από ορισμένους The Geochemistry of magmas originated in the different kinds of island arcsεπιστήμονες σε ensimatic και ensialic. Τα πρώτα αντιστοιχούν στον κλασσικό ορισμό του νησιώτικου τόξου, ενώ στα δεύτερα  η ωκεάνια πλάκα βυθίζεται κάτω από ηπειρωτική λιθόσφαιρα, όπως στα ενεργά ηπειρωτικά περιθώρια. Σε αυτή την περίπτωση υπόκεινται ηπειρωτικός φλοιός κάτω από το
σχηματιζόμενο νησιώτικο τόξο. Το τόξο χωρίζεται από την υπερκείμενη ενιαία ηπειρωτική πλάκα με μία θαλάσσια λεκάνη κάτω από την οποία υπόκεινται ωκεάνιος φλοιός,  σε αντίθεση με τα ενεργά περιθώρια . Επομένως τεκτονικά υπάρχουν διαφορές μεταξύ ενός ensialic, ενός ενεργού περιθωρίου και ενός ensimatic τόξου. Ο στόχος της  εργασίας αυτής είναι, κάνοντας σύγκριση των ηφαιστειακών πετρωμάτων μεταξύ των τριών γεωτεκτονικών περιβαλλόντων ensimatic, ensialic, ενεργών περιθωρίων,  να απαντήσει στο ερώτημα εάν γεωχημικά υπάρχουν χαρακτηριστικά που να ξεχωρίζουν το ένα σύστημα από το άλλο. Στην εργασία γίνεται αρχικά η θεωρητική περιγραφή των νησιώτικων τόξων και στην συνέχεια των ensimatic, ensialic και των ενεργών περιθωρίων. Αναφέρονται τα χαρακτηριστικά που διαχωρίζουν τεκτονικά τα τρία συστήματα. Ύστερα περιγράφεται η διαδικασία της γένεσης μάγματος στα νησιώτικα τόξα και τα ενεργά περιθώρια. Επακολούθως αναφέρεται ο βιβλιογραφικός τρόπος επιλογής  των δειγμάτων που χρησιμοποιήθηκαν στην εργασία και περιγράφονται σύντομα τα τόξα προέλευσής τους. Τέλος έγιναν διαγράμματα Harker με SiO2 και MgO στον χ άξονα κύριων στοιχείων και ιχνοστοιχείων, διαγράμματα συνδυασμών λόγων ιχνοστοιχείων ως προς λόγους ιχνοστοιχείων και οξειδίων κύριων στοιχείων, διαγράμματα σπανίων γαιών,  αραχνογράμματα πρωταρχικού μανδύα και ορισμένα πετροτεκτονικά διαγράμματα. Σε ορισμένα διαγράμματα είναι εμφανείς οι διαφορές μεταξύ των ενεργών ηπειρωτικών  περιθωρίων και των ensimatic νησιώτικων τόξων. Αντίθετα τα ensialic νησιώτικα τόξα βρίσκονται γεωχημικά συνήθως μεταξύ των ενεργών ηπειρωτικών περιθωρίων και των ensimatic νησιώτικων τόξων και δεν παρουσιάζουν σημαντικές διαφορές με τα πρώτα και τα δεύτερα. Διαγράμματα που διακρίνουν τα 3 είδη τόξων είναι τα La-SiO2, Nb-SiO2, La/Lu-SiO2, La/Sm-SiO2, La/Yb-SiO2, τα διαγράμματα σπανίων γαιών και πρωταρχικού μανδύα και ορισμένα πετροτεκτονικά διαγράμματα.

Subduction zone is called the boundary between two lithospheric plates, where an oceanic  plate subducts beneath the other. Depending on whether the oceanic plate subducts beneath an oceanic or a continental plate, the system is called island arc or active continental margin respectively. Recently  the term “island arc” has been divided in “ensimatic” and “ensialic” island arcs. Ensimatic arc corresponds to the classic definition of island arc, while  the ensialic arc is a system where oceanic lithosphere subducts beneath  continental lithosphere, just like in an active continental margin, and an island arc underlain by continental crust is formed. Also, in contrast to an active continental margin, between the continent and the arc there is a marine basin underlain by oceanic crust. Therefore, there are tectonic differences among an ensialic, an active continental margin and an ensimatic island arc. The aim of this thesis is to compare volcanic rocks, of the three above mentioned systems, from the geochemical point of view, in order to distinguish one type of arc from the others. At the beginning island arcs (both ensimatic and ensialic) and active continental margins are described. After that the tectonic characteristics  distinguishing the three systems are mentioned. That is followed by the description of the process of magma genesis in island arcs and in active continental margins. Representative samples of each arc were selected and used in the thesis. A brief description of the arcs is given. Major and trace element Harker diagrams vs. SiO2
and MgO, as well as plots of trace element ratios vs. trace element ratios and major element oxides, REE and spider diagrams and some petrotectonic diagrams were prepared. The most important conclusions, from all the above comparisons are: In all the diagrams the three systems share a common area of range values in the y and x axis. This is due, probably, to a common magma source. Additionally the three systems show different trends in the La-SiO2, Nb-SiO2, La/Lu-SiO2, La/Sm-SiO2, La/Yb-SiO2 diagrams. The three groups, in the majority of the diagrams, are LREE enriched relative to HREE. The active continental margins are the most enriched in LREE and mostly the less HREE enriched. The ensialic arcs, are mostly HREE enriched compared to the other two groups. The Ba positive anomaly  and the Th negative anomaly are observed more frequently in ensimatic arcs relative to the ensialic arcs and are not observed in active continental margins.  The K positive anomaly exists more frequently in ensialic compared to ensimatic arcs and doesn’t exist in active continental margins. The Ti negative anomaly is observed more frequently in active continental margins and in ensialic compared to ensimatic arcs. Ensialic arcs are the only not showing alkalic affinities and not belonging at all in the shosontitic series but mostly in the calc-alkaline series.

Πλήρες Κείμενο:

PDF

Αναφορές


Almeev R.R., Kimura J.I., Ariskin A.A., Ozerov A.Y., Decoding crystal fractionation in calc-alkaline magmas from the Bezymianny Volcano (Kamchatka, Russia) using mineral and bulk rock compositions, Journal of Volcanology and Geothermal Research (2013), 263, p. 141–171, http://dx.doi.org/10.1016/j.jvolgeores.2013.01.003

Arakawa Y., Endo D., Oshika J., Shinmura T., Ikehata K., High-silica rhyolites of Niijima volcano in the northern Izu–Bonin arc, Japan: Petrological and geochemical constraints on magma generation and supply, Lithos 330–331 (2019) 223–237, https://doi.org/10.1016/j.lithos.2019.02.014

Bailey J.C., Jensen E.S., Hansen A., Kann A.D.J., Kann K., Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc, Lithos (2009), 110, p. 20-36

Beaumais A., Bertrand H., Chazot G., Dosso L., Robin C., Temporal magma source changes at Gaua volcano, Vanuatu island arc, Journal of Volcanology and Geothermal Research (2016), http://dx.doi.org/10.1016/j.jvolgeores.2016.02.026

Bloomer S.H., Stern R.J., Smoot N.C., Physical Volcanology of the submarine Mariana and Volcano Arcs, Bulletin of Volcanology (1989), 51, p. 210-224

Brown G.M., Holland J.G., Sigurdsson H., Tomblin J.F., Arculus R.J., Geochemistry of the Lesser Antilles volcanic island arc, Geochimica et Cosmochlmica Acta (1977), Vol. 41, p. 785-801

Bryant J.A., Yogodzinski G.M., Hall M.L., Lewicki J.L., Bailey D.G., Geochemical Constraints on the Origin of Volcanic Rocks from the Andean Northern Volcanic Zone, Ecuador, Journal of Petrology (2006), Vol. 47, 6, p. 1147-1175, doi: 10.1093/petrology/egl006

Caulfield J.T., Turner S.P., Smith I.E.M., Cooper L.B., Jenner G.A., Magma Evolution in the Primitive, Intra-oceanic Tonga Arc: Petrogenesis of Basaltic Andesites at Tofua Volcano, Journal of Petrology (2012), Vol. 53, 6, p. 1197-1230, doi: 10.1093/petrology/egs013

Chandrasekharam D., Santo A.P., Capaccioni B., Vaselli O., Alam M.A., Manetti P., Tassi F., Volcanological and petrological evolution of Barren Island (Andaman Sea, Indian Ocean), Journal of Asian Earth Sciences (2009), 35, p. 469–487, doi: 10.1016/j.jseaes.2009.02.010

Chan .F., Tepper J.H., Nelson B.K., Petrology of the Grays River volcanics, southwest Washington: Plume-influenced slab window magmatism in the Cascadia forearc, GSA Bulletin (2012), Vol. 124, 7/8, p. 1324–1338, doi: 10.1130/B30576.1

Chiaradia M., Merino D., Spikings R., Rapid transition to long-lived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru), Earth and Planetary Science Letters (2009), 288, p. 505–515

Chiaradia M., Müntener O., Beate B., Enriched Basaltic Andesites from Mid-crustal Fractional Crystallization, Recharge, and Assimilation (Pilavo Volcano, Western

Cordillera of Ecuador), Journal of Petrology (2011), Vol. 52, 6, p. 1107-1141, doi: 10.1093/petrology/egr020

Churikova T., Dorendorf F., Wörner G., Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from Across-arc Geochemical Variation, Journal of Petrology (2001), Vol. 42, 8, p. 1567-1593

Clark S.K., Reagan M.K., Plank T., Trace element and U-series systematics for 1963-1965 tephras from Irazú Volcano, Costa Rica: Implications for magma generation processes and transit times, Geochimica et Cosmochimica Acta (1998), Vol. 62, 15, p. 2689–2699

Coats R.R., Magma Type and Crustal Structure in the Aleutian Arc, The Crust of the Pacific Basin (1962) Geophysical monograph Series, Vol.6, doi:

https://doi.org/10.1029/GM006p0092

Creixell C., Parada M.A., Morata D., Roperch P., Arriagada C., The genetic relationship between mafic dike swarms and plutonic reservoirs in the mesozoic of central chile (30_–33_450S):insights from AMS and geochemistry, Int J Earth Sci (Geol Rundsch) (2009), 98:177–201, doi: 10.1007/s00531-007-0240-9

De Grave J., Zhimulev F.I., Glorie S., Kuznetsov G.V., Evans N., Vanhaecke F., Mclnnes B., Late Palaeogene emplacement and late Neogenee-Quaternary exhumation of the Kuril island-arc root (Kunashir island) constrained by multi-method thermochronometry, Geoscience Frontiers (2015), http://dx.doi.org/10.1016/j.gsf.2015.05.002

Di Piazza A., Rizzo A.L., Barberi F., Carapezza M.L., De Astis G., Romano C., Sortino F., Geochemistry of the mantle source and magma feeding system beneath Turrialba volcano, Costa Rica, Lithos (2015), 232, p. 319–335

DuFrane S.A., Turner S., Dosseto A., Soest M., Reappraisal of fluid and sediment contributions to Lesser Antilles magmas, Chemical Geology (2009), 265, p. 272–278

Duggen S., Portnyagin M., Baker J., Ulfbeck D., Hoernle K., Garbe-Schönberg D., Grassineau N., Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting, Geochimica et Cosmochimica Acta (2007), 71, p. 452–480, doi: 10.1016/j.gca.2006.09.018

Elliott T., Plank T., Zindler A., White W., Bourdon B., Element transport from slab to volcanic front at the Mariana arc, Journal of Geophysical research (1997), Vol. 102, 14,991, 15019

Ewart A., Brothers R.N., Mateen A., An Outline of the Geology and Geochemistry, and the possible Petrogenetic Evolution of the Volcanic rocks of the Tonga-Kermadec –New Zealand Island Arc, Journal of Volcanology and Geothermal Research (1977), 2, p. 205-250

Ewart A., Bryan W.B., Petrography and Geochemistry of the Igneous Rocks from Eua, Tongan Islands, Geological Society of America Bulletin (1972), Vol. 83, p. 3281-3298

Fedorov P.I., Bogomolov E.S., Ultrapotassic Volcanism of the Valagin Ridge, Kamchatka, Petrology (2018), Vol. 26, 1, p. 65–81, doi: 10.1134/S0869591118010034

Feeley T., Davidson J.P., Petrology of Calc-Alkaline Lavas at Volcan Ollagiie and the Origin of Compositional Diversity at Central Andean Stratovolcanoes, Journal of Petrology (1994), Vol. 35, 5, p. 1295-1340

Fiorentini M.L., Garwin S.L., Evidence of a mantle contribution in the genesis of magmatic rocks from the Neogene Batu Hijau district in the Sunda Arc, South Western Sumbawa, Indonesia, Contrib Mineral Petrol (2010), 159, p. 819–837, doi: 10.1007/s00410-009-0457-7

Firth C.W., Cronin S.J., Turner S.P., Handley H.K, Gaildry C., Smith I., Dynamics and pre-eruptive conditions of catastrophic, ignimbrite-producing eruptions from the Yenkahe Caldera, Vanuatu, Journal of Volcanology and Geothermal Research (2015), 308, p. 39–60, http://dx.doi.org/10.1016/j.jvolgeores.2015.10.012

Firth C., Handley H., Turner S., Cronin S., Smith I., Variable Conditions of Magma Storage and Differentiation with Links to Eruption Style at Ambrym Volcano, Vanuatu, Journal of Petrology (2016), Vol. 0, 0, p. 1-24, doi: 10.1093/petrology/egw029

Frisch W., Meschede M., Blakey R., Plate tectonics: Continental drift and mountain building, Springer (2011) , p. 212

Fytikas M., Manetti P., Mazzuoli R., Peccerillo A., Villari L., Tertiary to Quaternary evolution of volcanism in the Aegean region, Geological Society, London, Special Publications (1984), Vol. 17, p. 687-699, doi: 10.1144/GSL.SP.1984.017.01.55

Garrison J.M., Davidson J.P., Hall M., Mothes P., Geochemistry and Petrology of the Most Recent Deposits from Cotopaxi Volcano, NorthernVolcanic Zone, Ecuador, Journal of Petrology (2011), Vol 52, 9, p. 1641-1678, doi: 10.1093/petrology/egr023

Gill J., Whelan P., Postsubduction Ocean Island Alkali Basalts in Fiji, Journal of Geophysical Research (1989), Vol. 94, B4, p. 4579-4588

Handley H.K., Davidson J.P., Macpherson C.G., Stimac J.A., Untangling differentiation in arc lavas: Constraints from unusual minor and trace element variations at Salak

Volcano, Indonesia, Chemical Geology 255 (2008) 360–376, doi:10.1016/j.chemgeo.2008.07.007

Handley H.K., Macpherson C.G., Davidson J.P., Geochemical and Sr–O isotopic constraints on magmatic differentiation at Gede Volcanic Complex, West Java, Indonesia, Contrib Mineral Petrol (2010), 159, p. 885–908, doi: 10.1007/s00410-009-0460-z

Handley H.K., Turner S., Macpherson C.G., Gertisser R., Davidson J.P., Hf–Nd isotope and trace element constraints on subduction inputs at island arcs: Limitations of Hf anomalies as sediment input indicators, Earth and Planetary Science Letters (2011), 304, p. 212–223, doi: 10.1016/j.epsl.2011.01.034

Harris R., Rise and fall of the Eastern Great Indonesian arc recorded by the assembly, dispersion and accretion of the Banda Terrane, Timor, Gondwana Research (2006), 10 , p. 207–231, doi: 10.1016/j.gr.2006.05.010

Hergt J.M., Hawkseworth C.J., 28 Pb-, Sr-, and Nd- Isotopic Evolution of the Lau Basin: Implications for Mantle Dynamics during Backarc opening, Proceedings of the Ocean Drilling Program, Scientific Results (1994), Vol. 135

Hernando I.R., Aragón E., Frei R., González P.D., Spakman W., Constraints on the Origin and Evolution of Magmas in the Payún Matrú Volcanic Field, Quaternary Andean Back arc of Western Argentina, Journal of Petrology (2014), Vol. 55, 1, p. 209-239, doi: 10.1093/petrology/egt066

Herrington R.J., Scotney P.M., Roberts S., Boyce A.J., Harrison D., Temporal association of arc–continent collision, progressive magma contamination in arc volcanism and formation of gold-rich massive sulphide deposits on Wetar Island (Banda arc), Gondwana Research (2011), 19 , p. 583–593, doi: 10.1016/j.gr.2010.10.011

Haschke M., Siebel W., Günther A., Scheuber E., Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21_–26_S), Journal of Geophysical Research (2002), Vol. 107, B1, 2019, doi: 10.1029/2001JB00032

Hastie A.R., Kerr A.C., Pearce J.A., Mitchell S.F, Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th^Co Discrimination Diagram, Journal of Petrology (2007), Vol. 48, 12, p. 2341-2357, doi: 10.1093/petrology/egm062

Heydolph K., Hoernle K., Hauff F., Bogaard P., Portnyagin M., Bindeman I., Garbe-Schönberg D., Along and across arc geochemical variations in NW Central America: Evidence for involvement of lithospheric pyroxenite, Geochimica et Cosmochimica Acta (2012), 84, p. 459–491, doi: 10.1016/j.gca.2012.01.035

Hickey-Vargas, R., Sun, M., Holbik, S., Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas, Geochimica et Cosmochimica Acta (2016), doi: http://dx.doi.org/10.1016/j.gca.2016.03.033

Hidalgo S., Gerbe M.C., Martin H., Samaniego P., Bourdon E., Role of crustal and slab components in the Northern Volcanic Zone of the Andes (Ecuador) constrained by Sr–Nd–O isotopes, Lithos 132-133 (2012) 180–192, doi:10.1016/j.lithos.2011.11.019

Hoang N., Itoh J., Miyagi I., Subduction components in Pleistocene to recent Kurile arc magmas in NE Hokkaido, Japan, Journal of Volcanology and Geothermal Research (2011), 200, p. 255–266, doi: 10.1016/j.jvolgeores.2011.01.002

Hoang N., Miyagi I., Itoh J., Miocene–Pleistocene magmas in the Monbetsu area, Northeast Hokkaido, tap N-MORB-like sources contaminated by slab-derived fluids, Journal of Geodynamics (2015), 86, p. 10–25, http://dx.doi.org/10.1016/j.jog.2015.02.004

Holm, Paul M., Søager, Nina, Alfastsen, Mads, Bertotto, Gustavo W., Subduction Zone Mantle Enrichment by Fluids and Zr-Hf-depleted Crustal Melts as Indicated by Backarc Basalts of the Southern Volcanic Zone, Argentina, Lithos (2016), doi: 10.1016/j.lithos.2016.06.029

Holm P.M., Søager N., Dyhr C.T., Nielsen M.R., Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust, Contrib Mineral Petrol (2014) 167:1004, doi: 10.1007/s00410-014-1004-8

Ishikawa T., Tera F., Source, composition and distribution of the fluid in the Kurile mantle wedge: Constraints from across-arc variations of BrNb and B isotopes, Earth and Planetary Science Letters (1997), 152, p. 123–138

Ishizuka O., Taylor R.N., Yuasa M., Ohara Y., Making and breaking an island arc: A new perspective from the Oligocene Kyushu‐Palau arc, Philippine Sea, Geochem. Geophys. Geosyst. (2011), Vol. 12, 5, Q05005, ISSN: 1525‐2027, doi: 10.1029/2010GC003440

Jicha B.R., Singer B.S., Brophy J.G., Fournelle J.H., Johnson C.M., Beard B.L., Lapen T.J., Mahlen N.J., Variable Impact of the Subducted Slab on Aleutian Island Arc Magma Sources: Evidence from Sr, Nd, Pb, and Hf Isotopes and Trace Element Abundances, Journal of Petrology (2004), Vol. 45, 9, p. 1845-1875, doi: 10.1093/petrology/egh036

Kepezhinskas P., McDermott F., Defant M.J., Hochstaedter A., Drummond M.S., Hawkesworth C.J., Koloskov A., Maury R.C., Bellon H., Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis, Geochimica et Cosmochimica Acta (1997), Vol. 61, 3, p. 577-600

Kuritani T., Yokoyama T., Nakamura E., Generation of Rear-arc Magmas Induced by Influx of Slab-derived Supercritical Liquids: Implications from Alkali Basalt Lavas from Rishiri Volcano, Kurile Arc, Journal of Petrology (2008), Vol. 49, 7, p. 1319-1342, doi: 10.1093/petrology/egn027

Labanieh S., Chauvel C., Germa A., Quidelleur X., Martinique: a Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench, Journal of Petrology (2012), Vol. 53, 12, p. 2441-2464, doi: 10.1093/petrology/egs055

Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J

Petrology 27: 745-750

Lebti P.P., Thouret J.C., Wörner G., Fornari M., Neogene and Quaternary ignimbrites in the area of Arequipa, Southern Peru: Stratigraphical and petrological correlations, Journal of Volcanology and Geothermal Research (2006), 154, p. 251–275

Lee H.Y., Chung S.L., Yang H.M., Late Cenozoic volcanism in central Myanmar: Geochemical characteristics and geodynamic significance, Lithos (2016), 245, p. 174–190

Leeman W.P., Smith D.R., Hildreth W., Palacz Z., Rogers N., Compositional Diversity of Late Cenozoic Basalts in a Transect Across the Southern Washington Cascades: Implications for Subduction zone Magmatism, Journal of Geophysical Research (1990), Vol. 95, B12, p. 19.561-19582

Leslie R.A.J., Danyushevsky L.V., Crawford A.J., Verbeeten A.C., Primitive shoshonites from Fiji: Geochemistry and source components, Geochem. Geophys. Geosyst. (2009), Vol. 10, 7, Q07001, doi:10.1029/2008GC002326

Macdonald R., Hawkesworth C.J., Heath E., The Lesser Antilles volcanic chain: a study in arc magmatism, Earth-Science Reviews (2000), 49, p. 1–76

McDonough, W.F., Sun, S.-S., Ringwood, A.E., Jagoutz, E. and Hofmann, A.W. (1992). Potassium, Rubidium and Cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochimica et Cosmochimica Acta 56: 1,001-1,012. doi: 10.1016/00167037(92)90043I

Mahlburg Kay S., Kay R.W., Citron G.P., Tectonic Controls on Tholeitic and Calc-Alkaline magmas in the Aleutian Arc, Journal of Geophysical Research (1982), Vol. 87, B5, p. 4051-4072

Martynov A.Y., Kimura J.I., Martynov Y.A., Rybin A.Y., Geochemistry of late Cenozoic lavas on Kunashir Island, Kurile Arc, iIsland Arc (2010), 19, p. 86–104, doi:

1111/j.1440-1738.2009.00684.xr_6

Middlemost, E., The Basalt Clan. Earth-Science Reviews (1975), 11, p. 337-564. http://dx.doi.org/10.1016/0012-8252(75)90039-2

Mitchell E.C., Asmerom Y., U-series isotope systematic of mafic magmas from central Oregon : Implications for fluid involvement and melting processes in the Cascade arc, Earth and Planetary Science Letters (2011), 312, p. 378–389, doi:10.1016/j.epsl.2011.09.060

Mitropoulos P., Tarney J., Significance of mineral composition variations in the Aegean Island arc, Journal of Volcanology and Geothermal research (1992), 51, p. 283-303

Nyström J.O., Vergara M., Morata D., Levi B., Tertiary volcanism during extension in the Andean foothills of central Chile (338159–338459S), GSA Bulletin (2003), Vol. 115, 12, p. 1523–1537

Park S.I., Kwon S., Kim S.W., Evidence for the Jurassic arc volcanism of the Lolotoi complex, Timor: Tectonic implications, Journal of Asian Earth Sciences (2014), http://dx.doi.org/10.1016/j.jseaes.2014.05.007

Pearce J.A. (1996) A User’s Guide to Basalt Discrimination Diagrams. In Wyman D A. (ed) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12, pp 79-113

Pearce J.A., Stern R.J., Bloomer S.H., Fryer P., Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components, Geochem. Geophys. Geosyst. (2005), Vol. 6, Q07006, doi:10.1029/2004GC000895

Peate D.W., Pearce J.A., Hawkesworth C.J., Colley H., Edwards C.M.H., Hirose Kei, Geochemical Variations in Vanuatu Arc Lavas: the Role of Subducted Material and a Variable Mantle Wedge Composition, Journal of Petrology (1997), Vol. 38, 10, p. 1331-1358

Peccerillo A., Taylor S.R. (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58: 63-81

Pe-Piper G., Piper D.J.W., Koukouvelas I., Dolansky L.M., Kokkalas S., Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece, Geological Society of America Bulletin (2009), 121, p. 1-2;39-54

Petrinovic I.A., Riller U., Brod J.A., The Negra Muerta Volcanic Complex, southern Central Andes: geochemical characteristics and magmatic evolution of an episodically active volcanic centre, Journal of Volcanology and Geothermal Research (2005), 140, p. 295– 320

Quandt, D., Trumbull, R.B., Altenberger, U., Cardona, A., Romer, R.L., Bayona, G., Ducea, M., Valencia, V., Vásquez, M., Cortes, E., Guzman, G., The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications, Journal of South American

Earth Sciences (2018), doi: 10.1016/ j.jsames.2018.06.019

Reagan M.K., Hanan B.B., Heizler M.T., Hartman B.S., Hickey-Vargas R., Petrogenesis of Volcanic Rocks from Saipan and Rota, Mariana Islands, and Implications for the Evolution of Nascent Island Arcs, Journal of Petrology (2008), Vol. 49, 3, p. 441-464, doi:10.1093/petrology/egm087

Reagan M.K., Ishizuka O., Stern R.J., Kelley K.A., Ohara Y., Blichert‐Toft J., Bloomer S.H., Cash J., Fryer P., Hanan B.B., Hickey‐Vargas R., Ishii T., Kimura J.I., Peate D.W., Rowe M.C., Woods M., Fore‐arc basalts and subduction initiation in the Izu‐Bonin‐Mariana system, Geochem. Geophys. Geosyst. (2010), Vol. 11, 3, Q03X12, ISSN: 1525‐2027, doi:10.1029/2009GC002871

Reynaud C., Jaillard É., Lapierre H., Mamberti M., Mascle G.H., Oceanic plateau and island arcs of southwestern Ecuador: their place in the geodynamic evolution of northwestern South America, Tectonophysics (1999), 307, p. 235–254

Rioux M., Mattinson J., Hacker B., Kelemen P., Blusztajn J., Hanghøj K., Gehrels G., Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak Island, Alaska: An analogue for low‐velocity middle crust in modern arcs, Tectonics (2010), Vol. 29, TC3001, doi: 10.1029/2009TC002541

Risse A., Trumbull R.B., Kay S.M., Coira B., Romer R.L., Multi-stage Evolution of Late Neogene Mantle-derived Magmas from the Central Andes Back-arc in the Southern

Puna Plateau of Argentina, Journal Of Petrology (2013), Vol. 0, 0, p. 1-33, doi: 10.1093/petrology/egt038

Rollinson H.R., Using Geochemical Data: Evaluation, Presentation, Interpretation, Pearson Prentice Hall (1993), p. 352

Rowe M.C., Kent A.J.R., Nielsen R.L., Subduction Influence on Oxygen Fugacity and Trace and Volatile Elements in Basalts Across the Cascade Volcanic Arc, Journal of Petrology (2009), Vol. 50, 1, p. 61-91, doi:10.1093/petrology/egn072

Rudnick R.L., Fountain D.M., Nature and Composition of Continental Crust: A Lower Crustal Perspective, Reviews of Geophysics (1995), 95RG01302, p. 267-309

Schmidt M.E., Grunder A.L., Deep Mafic Roots to Arc Volcanoes: Mafic Recharge and Differentiation of Basaltic Andesiteat North Sister Volcano, Oregon Cascades, Journal

of Petrology (2011), Vol. 52, 3, p. 603-641, doi: 10.1093/petrology/egq094

Schmidt M.E., Grunder A.L., Rowe M.C., Segmentation of the Cascade Arc as indicated by Sr and Nd isotopic variation among diverse primitive basalts, Earth and Planetary Science Letters 266 (2008) 166–181, doi:10.1016/j.epsl.2007.11.013

Schnurr W.B.W., Trumbull R.B., Clavero J., Hahne K., Siebel W., Gardeveg M., Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: Geochemistry and magma genesis of ignimbrites from 25 to 27 °S, 67 to 72 °W, Journal of Volcanology and Geothermal Research (2007), 166, p. 17–46

Schuth S., Rohrbach A., Münker C., Ballhaus C., Garbe-Schönberg D., Qopoto C., Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands, Contrib Mineral Petrol (2004), 148, p. 288–304, doi: 10.1007/s00410-004-0604-0

Schuth S., Rohrbach A., Münker C., König S., Qopoto C., Basi S., Garbe-Schönberg D., Ballhaus C., Petrogenesis of Lavas along the Solomon Island Arc, SW Pacific: Coupling of Compositional Variations and Subduction Zone Geometry, Journal of Petrology (2009), V. 50, 5, p. 781-811, doi: 10.1093/petrology/egp019

Shinjo R., Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system, Chemical Geology (1999), 157, p. 69–88

Shinjo R., Kato Y., Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin, Lithos (2000), 54, p. 117–137

Shinjo R., Woodhead J.D., Hergt J.M., Geochemical Variation within the northern Ryukyu Arc: magma source compositions and geodynamic implications, Contrib Mineral Petrol (2000), 140, p. 263-282

Shu, Y., Nielsen, S.G., Zeng, Z., Shinjo, R., Blusztajn, J., Wang, X., Chen, S., Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: Evidence from thallium isotopes, Geochimica et Cosmochimica Acta (2017), doi: http://dx.doi.org/10.1016/j.gca.2017.08.035

Silver E.A., Reed D., McCaffrey R., Joyodiwiryo Y., Back Arc Thrusting in the Eastern Sunda Arc, Indonesia: A Consequence of Arc-Continent Collision, Journal of Geophysical Research (1983), Vol. 88, B9, p. 7429-7448

Simon A., Yogodzinski G.M., Robertson K., Smith E., Selyangin O., Kiryukhin A., Mulcahy S.R., Walker J.D., Evolution and genesis of volcanic rocks from Mutnovsky Volcano, Kamchatka, Journal of Volcanology and Geothermal Research (2014), 286, p. 116–137

Sisson T.W., Salters V.J.M., Larson P.B., Petrogenesis of Mount Rainier andesite: Magma flux and geologic controls on the contrasting differentiation styles at stratovolcanoes of the southern Washington Cascades, Geological Society of America Bulletin (2014), Vol. 126, 1/2, p. 122-144, doi: 10.1130/B30852.1

Smith I.E.M., Price R.C., The Tonga–Kermadec arc and Havre–Lau back-arc system: Their role in the development of tectonic and magmatic models for the western Pacific, Journal of Volcanology and Geothermal Research (2006), 156, p. 315–331 doi: 10.1016/j.jvolgeores.2006.03.006

Smith I.E.M., Stewart R.B., Price R.C., The petrology of a large intra-oceanic silicic eruption: the Sandy Bay Tephra, Kermadec Arc, Southwest Pacific, Journal of Volcanology and Geothermal Research (2003), 124, 173-194

Smith I.E.M., Stewart R.B., Price R.C., Worthington T.J., Are arc-type rocks the products of magma crystallisation? Observations from a simple oceanic arc volcano: Raoul Island, Kermadec Arc, SW Pacific, Journal of Volcanology and Geothermal Research (2010), 190, p. 219–234, doi: 10.1016/j.jvolgeores.2009.05.006

Soder C., Altherr R., Romer R.L., Mantle Metasomatism at the Edge of a Retreating Subduction Zone: Late Neogene Lamprophyres from the Island of Kos, Greece, Journal of Petrology (2016), Vol. 57, 9, p. 1705-1728

Steven Holbrook W., Lizarralde D., McGeary S., Bangs N., Diebold J., Structure and composition of the Aleutian island arc and implications for continental crustal growth, Geology (1999), Vol. 27, 1, p. 31–34, doi: 10.1130/00917613(1999)027<0031:SACOTA>2.3.CO;2

Streckeisen A., Le Maitre R. W. (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. Neu Jb Mineral, Abh 136:169-206

Sun C.H., Stern R.J., Genesis of Mariana shoshonites: Contribution of the subduction component, Journal of Geophysical research (2001), Vol. 106, B1, p. 589-608

Sun, S.S. and McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Magmatism in the ocean basins. Saunders, A.D. and Norry, M.J. (Editors), Geological Society of London, London. 42: 313-345

Tamura Y., Gill J.B., Tollstrup D., Kawabata H., Shukuno H., Chang G., Silicic Magmas in the Izu-Bonin Oceanic Arcband Implications for Crustal Evolution (2001)., Journal of Petrology , Vol. 50, 4, p. 685-723, doi: 10.1093/petrology/egp017

Tamura Y., Ishizuka O., Sato T., Nichols A.R.L., Nishinoshima volcano in the Ogasawara Arc: New continent from the ocean?, Island arc (2018), p. 1–20, https://doi.org/10.1111/iar.12285

Tamura Y., Ishizuka O., Stern R.J., Nichols A.R.L., Kawabata H., Hirahara Y., Chang Q., Miyazaki T., Kimura J.I., Embley R.W., Tatsumi Y., Mission Immiscible: Distinct

Subduction Components GenerateTwo Primary Magmas at Pagan Volcano, Mariana Arc, Journal of Petrology (2013), Vol. 0, 0, p. 1-39, doi: 10.1093/petrology/egt061

Tassara A., Götze H.J., Schmidt S., Hackney R., Three dimensional density model of the Nazca plate and the Andean continental margin, Journal of Geophysical Research (2006), Vol. 111, B09404, doi:10.1029/2005JB003976

Taussi M., Godoy B., Piscaglia F., Morata D., Agostini S., Rouxe P.L., González-Maurel O., Gallmeyer G., Menzies A., Renzulli A., The upper crustal magma plumbing system of the Pleistocene Apacheta-Aguilucho Volcanic Complex area (Altiplano-Puna, northern Chile) as inferred from the erupted lavas and their enclaves, Journal of Volcanology and Geothermal Research (2019), 373, p. 179–198

Taylor R.N., Nesbitt R.W., Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu–Bonin Arc, Japan, Earth and Planetary Science Letters (1998), 164, p. 79–98

Todd E., Gill J.B., Wysoczanski R.J., Hergt J., Wright I.C., Leybourne M.I., Mortimer N., Hf isotopic evidence for small‐scale heterogeneity in the mode of mantle wedge enrichment: Southern Havre Trough and South Fiji Basin back arcs, Geochem. Geophys. Geosyst. (2011), Vol. 12, 9, Q09011, ISSN: 1525-2027, doi: 10.1029/2011GC003683

Toothill J., Williams C.A., Macdonald R., Turner S.P., Rogers N.W., Hawkesworth C.J., Jerram D.A., Ottley C.J., Tindle A.G., A Complex Petrogenesis for an Arc Magmatic Suite, St Kitts, Lesser Antilles, Journal of Petrology (2007), Vol. 48, 1, p.3-42, doi: 10.1093/petrology/egl052

Turner S., Hawkesworth C., Rogers N., Bartlett J., Worthington T., Hergt J., Pearce J., Smith I., 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec arc, Geochimica et Cosmochimica Acta (1997), Vol. 61, 22, p. 4855-4884

Turner S.P., Peate D.W., Hawkesworth C.J., Eggins S.M., Crawford A.J., Two mantle domains and the time scales of fluid transfer beneath the Vanuatu arc, Geology (1999), Vol. 27, 11, p. 963-966

Varekamp J.C., Hesse A., Mandeville C.W., Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina), Journal of Volcanology and Geothermal Research 197 (2010) 313–328

Von Der Borch C.C., Continent Island Arc Collision in the Banda arc, Tectonophysics (1979), 54, p. 169-193

Walker J.A., Patino l.C., Cameron B.I., Carr M.J., Petrogenetic insights provided by compositional transects across the Central American arc: Southeastern Guatemala and

Honduras, Journal of Geophysical Research (2000), Vol. 105, B8, p. 18.949-18963

Wheller G.E., Varne R., Foden J.D., Abbott M.J., Geochemistry of Quaternary Volcanism in the Sunda-Banda Arc, Indonesia, and three-component genesis of Island-Arc

Basaltic magmas, Journal of Volcanology and Geothermal Research (1987), 32, p. 137-160

Wilson M., Igneous Petrogenesis, Springer (1989), p. 466

Yanagi T., Arc Volcano of Japan: Generation of Continental Crust from the Mantle, Springer (2011), p. 123, doi: 10.1007/978-4-431-53996-4

Yogodzinski G.M., Brown S.T., Kelemen P.B., Vervoort J.D., Portnyagin M., Sims K.W.W., Hoernle K.,. Jicha B.R., Werner R., The Role of Subducted Basalt in the Source of Island Arc Magmas: Evidence from Seafloor Lavas of the Western Aleutians, Journal of Petrology (2015), p. 1–52, doi: 10.1093/petrology/egv006

Yokoyama T., Kobayashi K., Kuritani T., Nakamura E., Mantle metasomatism and rapid ascent of slab components beneath island arcs: Evidence from 238U-230Th-226Ra disequilibria of Miyakejima volcano, Izu arc, Japan, Journal of Geophysical Research (2003), Vol. 108, B7, p. 2329, doi: 10.1029/2002JB002103

Zappettini E.O., Villar L.M., Hernández L.B., Santos J.O., Geochemical and isotopic constraints on the petrogenesis of the Puesto La Peña undersaturated potassic complex, Mendoza province, Argentina: Geodynamic implications, Lithos 162-163 (2013) 301–316

<β>Ιστολόγιοβ>

http://georoc.mpch-mainz.gwdg.de/georoc/


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.