[Εξώφυλλο]

Estimating error and uncertainty of cloud-aerosol-radiation interactions in regional climate model simulations = Εκτίμηση σφαλμάτων και αβεβαιότητας αλληλεπιδράσεων νεφών-αερολυμάτων-ακτινοβολίας σε κλιματικές προσομοιώσεις περιοχικής κλίμακας

Vasileios S. Pavlides

Περίληψη


The subject of the thesis is to study the effects of atmospheric aerosols on regional climate simulations over Europe with the WRF climate model. We mainly study the interactions of aerosols with radiation (direct and semi-direct effect) while the interactions of aerosols with clouds are also simulated. The dissertation is divided into two main parts. In the first part, 5-year sensitivity simulations (2004-2008) were performed using different aerosol configurations in the model as well as different datasets of aerosol optical properties. The results showed that the introduction of the aerosol-radiation interaction significantly reduced the shortwave radiation at the surface (-3 to -8%), leading to a decrease in temperature which may well exceed 1 ° C at the regional level. The effect on the direct and diffuse component of the solar radiation is much stronger with a sharp decrease in the direct and a sharp increase in the diffuse component. Minor changes in precipitation and cloud cover were observed and in certain cases parameterization and the communication of radiation and microphysics parameterizations with respect to the radius of cloud particles. Both experiments showed a strong effect on the solar radiation reaching the ground. In the second part of the thesis, 30 years long simulations were performed with the WRF regional model driven by the global model CESM1, for the historical (1971-2000) and future climate (2021-2050) based on the Rcp8.5 emission scenario.  A static in time aerosol field as well as a decreasing in time aerosol field were used. The effect of the aerosol-radiation interactions was similar to that observed in the sensitivity simulations, leading to a decrease in radiation and surface temperature. The use of a realistic aerosol field with a decreasing trend over the historical period has led to an increasing trend of solar radiation at the surface (brightening) which is consistent with observational data. All simulations of the future climate show an increase in temperature over Europe in relation to the historical period. Also, the reduction of the optical depth of the aerosols in the future compared to the historical period leads to increased ground radiation and an intensification of the overall warming.

Το αντικείμενο μελέτης της διατριβής είναι οι επιδράσεις των ατμοσφαιρικών αιωρούμενων σωματιδίων (αεροζόλ) σε περιοχικές κλιματικές προσομοιώσεις πάνω από την Ευρώπη με το κλιματικό περιοχικό μοντέλο WRF. Μελετώνται κατά κύριο λόγο οι αλληλεπιδράσεις των αεροζόλ με την ακτινοβολία (direct και semi-direct effect) ενώ προσομοιώνονται και οι αλληλεπιδράσεις των αεροζόλ με τα νέφη. Η διατριβή χωρίζεται σε δύο κύρια μέρη. Στο πρώτο μέρος πραγματοποιήθηκαν προσομοιώσεις ευαισθησίας διάρκειας 5 ετών (περίοδος 2004-2008) στις οποίες χρησιμοποιήθηκαν διαφορετικές παραμετροποιήσεις των αεροζόλ στο μοντέλο καθώς και διαφορετικά δεδομένα των οπτικών τους ιδιοτήτων. Τα αποτελέσματα έδειξαν ότι η εισαγωγή της αλληλεπίδρασης αεροζόλ-ακτινοβολίας μειώνει σημαντικά την μικρού μήκους κύματος ακτινοβολία στην επιφάνεια (-3 με -8%) οδηγώντας σε μείωση της θερμοκρασίας η οποία σε περιοχικό επίπεδο μπορεί να ξεπεράσει και τον 1οC. Η επίδραση στην άμεση και την διάχυτη συνιστώσα της ηλιακής ακτινοβολίας είναι αρκετά πιο ισχυρή με έντονη μείωση της άμεσης και έντονη αύξηση της διάχυτης συνιστώσας. Παρατηρήθηκαν μικρές αλλαγές στην βροχόπτωση και την νεφοκάλυψη ενώ σε συγκεκριμένες περιπτώσεις παρατηρήθηκαν κυκλωνικές ανωμαλίες στο πεδίο του ανέμου πάνω από τα σημεία έντονης ψύξης. Στο πρώτο μέρος έγιναν επίσης πειράματα ευαισθησίας που αφορούν την επιλογή της παραμετροποίησης της νεφοκάλυψης καθώς και την επικοινωνία των παραμετροποιήσεων της ακτινοβολίας και της μικροφυσικής όσον αφορά την ακτίνα των νεφοσταγόνων. Και τα δύο πειράματα αυτά έδειξαν έντονη επίδραση στην ηλιακή ακτινοβολία που φτάνει στο έδαφος. Στο δεύτερο μέρος της διατριβής πραγματοποιήθηκαν μεγαλύτερης διάρκειας προσομοιώσεις 30 ετών με το περιοχικό μοντέλο WRF οδηγούμενο από το παγκόσμιο μοντέλο CESM1, για το ιστορικό (1971-2000) αλλά και για το μελλοντικό κλίμα (2021-2050) με βάση το σενάριο εκπομπών Rcp8.5. Έγινε χρήση στατικού στο χρόνο πεδίου αεροζόλ όσο και πεδίου αεροζόλ με μειωτική τάση. Η επίδραση των αλληλεπιδράσεων αεροζόλ-ακτινοβολίας ήταν παρόμοια με αυτήν που παρατηρήθηκε στις προσομοιώσεις ευαισθησίας οδηγώντας σε μείωση της ακτινοβολίας και της θερμοκρασίας στην επιφάνεια. Η χρήση ρεαλιστικού πεδίου αεροζόλ με μειωτική τάση κατά την ιστορική περίοδο οδήγησε σε μια αυξητική τάση της ακτινοβολίας (brightening) η οποία είναι σε σύμπτωση με τα παρατηρησιακά δεδομένα.  Όλες οι προσομοιώσεις του μελλοντικού κλίματος δείχνουν μια αύξηση της θερμοκρασίας πάνω από την Ευρώπη σε σχέση με την ιστορική περίοδο. Επίσης η μείωση του οπτικού βάθους των αεροζόλ στην μελλοντική σε σχέση με την ιστορική περίοδο οδηγεί σε αύξηση της ακτινοβολίας στο έδαφος και σε εντατικοποίηση της συνολικής θέρμανσης.

Πλήρες Κείμενο:

PDF

Αναφορές


Alapaty, K., Herwehe, J. A., Otte, T. L., Nolte, C. G., Bullock, O. R., Mallard, M. S., Kain, J. S. and Dudhia, J.: Introducing subgrid‐scale cloud feedbacks to radiation for regional meteorological and climate modeling, Geophys. Res. Lett., 39(24), 2012GL054031, doi:10.1029/2012GL054031, 2012.

Alexandri, G., Georgoulias, A. K., Zanis, P., Katragkou, E., Tsikerdekis, A., Kourtidis, K. and Meleti, C.: On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations, Atmos. Chem. Phys., 15(22), 13195–13216, doi:10.5194/acp-15-13195-2015, 2015.

Bae, S. Y., Hong, S.-Y. and Lim, K.-S. S.: Coupling WRF Double-Moment 6-Class Microphysics Schemes to RRTMG Radiation Scheme in Weather Research Forecasting Model, Adv. Meteorol., 2016, 1–11, doi:10.1155/2016/5070154, 2016.

Baró, R., Palacios-Peña, L., Baklanov, A., Balzarini, A., Brunner, D., Forkel, R., Hirtl, M., Honzak, L., Luis Pérez, J., Pirovano, G., San José, R., Schröder, W., Werhahn, J., Wolke, R., Åabkar, R. and Jiménez-Guerrero, P.: Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models, Atmos. Chem. Phys., 17(15), 9677–9696, doi:10.5194/acp-17-9677-2017, 2017.

Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., Vautard, R., Jerez, S. and Imecs, Z.: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe, Clim. Dyn., 49(7–8), 2665–2683, doi:10.1007/s00382-016-3471-2, 2017.

Basart, S., Pérez, C., Cuevas, E., Baldasano, J. M. and Gobbi, G. P.: Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations, Atmos. Chem. Phys., 9(21), 8265–8282, doi:10.5194/acp-9-8265-2009, 2009.

Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R. and Meirink, J. F.: The MSG-SEVIRI-based cloud property data record CLAAS-2, Earth Syst. Sci. Data, 9(2), 415–434, doi:10.5194/essd-9-415-2017, 2017.

Bruyère, C. L., Done, J. M., Holland, G. J. and Fredrick, S.: Bias corrections of global models for regional climate simulations of high-impact weather, Clim. Dyn., 43(7–8), 1847–1856, doi:10.1007/s00382-013-2011-6, 2014.

Cattiaux, J., Douville, H. and Peings, Y.: European temperatures in CMIP5: origins of present-day biases and future uncertainties, Clim. Dyn., 41(11–12), 2889–2907, doi:10.1007/s00382-013-1731-y, 2013.

Christensen, J. H., Carter, T. R., Rummukainen, M. and Amanatides, G.: Evaluating the perfomance of regional climate models: The PRUDENCE project, Clim. Change, 81(6), 1–6, doi:10.1007/s10584-006-9211-6, 2007.

Clerbaux, N., Ipe, A., De Bock Veerle, Urbain, M., Baudrez, E., Velazquez-Blazquez, A., Akkermans, T., Moreels, J., Hollmann, R., Selbach, N., and Werscheck, M.: CM SAF Aerosol Optical Depth (AOD) Data Record - Edition 1, 15 https://doi.org/10.5676/EUM_SAF_CM/MSG_AOD/V001, 2017.

Colarco, P., Da Silva, A., Chin, M. and Diehl, T.: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depthfile:///C:/Users/PC/Desktop/Φακελοι/PhD/paper/DaSilva_Thompson_aerosol_2018.pdf, J. Geophys. Res. Atmos., 115(14), doi:10.1029/2009JD012820, 2010.

Cusworth, D. H., Mickley, L. J., Leibensperger, E. M. and Iacono, M. J.: Aerosol trends as a potential driver of regional climate in the central United States: Evidence from observations, Atmos. Chem. Phys., 17(22), 13559–13572, doi:10.5194/acp-17-13559-2017, 2017.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally,

A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N. and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137(656), 553–597, doi:10.1002/qj.828, 2011.

Dudhia, J.,: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional model. J. Atmos. Sci., 46, 3077–3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2PDF, 1989

Dufresne, J.-L., Gautier, C., Ricchiazzi, P. and Fouquart, Y.: Longwave Scattering Effects of Mineral Aerosols, J. Atmos. Sci., 59(12), 1959–1966, doi:10.1175/1520-0469(2002)059<1959:LSEOMA>2.0.CO;2, 2002.

Forkel, R., Werhahn, J., Hansen, A. B., McKeen, S., Peckham, S., Grell, G. and Suppan, P.: Effect of aerosol-radiation feedback on regional air quality – A case study with WRF/Chem, Atmos. Environ., 53, 202–211, doi:10.1016/j.atmosenv.2011.10.009, 2012.

Forkel, R., Balzarini, A., Baró, R., Bianconi, R., Curci, G., Jiménez-Guerrero, P., Hirtl, M., Honzak, L., Lorenz, C., Im, U., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J. and Žabkar, R.: Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions, Atmos. Environ., 115, 630–645, doi:10.1016/j.atmosenv.2014.10.056, 2015.

García-Díez, M., Fernández, J. and Vautard, R.: An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation, Clim. Dyn., 45(11–12), 3141–3156, doi:10.1007/s00382-015-2529-x, 2015.

Ginoux, P., Chin, M., Tegen, I., Prospero, J., Holben, B., Dubovik, O., and Lin, S.-J.: Sources and distributions of dust aerosols simulated with the GOCART model, Journal of Geophysical Research Atmospheres, 106, 20 255–20 273, 33, https://doi.org/10.1029/2000JD000053, 2001

Giorgi, F. and Gutowski, W.J., J.: Regional Dynamical Downscaling and the CORDEX Initiative, Annual Review of Environment and Resources, 40, 467–490, https://doi.org/10.1146/annurev-environ-102014-021217, 2015.

Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14(10), 5233–5250, doi:10.5194/acp-14-5233-2014, 2014.

Gutiérrez, C., Somot, S., Nabat, P., Mallet, M., Gaertner, M. Á. and Perpiñán, O.: Impact of aerosols on the spatiotemporal variability of photovoltaic energy production in the Euro-Mediterranean area, Sol. Energy, 174(March), 1142–1152, doi:10.1016/j.solener.2018.09.085, 2018.

Hansen, J., Sato, M. and Ruedy, R.: Radiative forcing and climate response, J. Geophys. Res. Atmos., 102(D6), 6831–6864, doi:10.1029/96JD03436, 1997.

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D. and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006, J. Geophys. Res. Atmos., 113(20), doi:10.1029/2008JD010201, 2008.

Haywood, J., Office, U. K. M. and Boucher, O.: Estimates of the Direct and Indirect Radiative Forcing Due To Tropospheric Aerosols : a Review, , (1999), 513–543, 2000.

Hofstra, N., Haylock, M., New, M. and Jones, P. D.: Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature, J. Geophys. Res. Atmos., 114(21), doi:10.1029/2009JD011799, 2009.

Hogan, R. J. and Illingworth, A. J.: Deriving cloud overlap statistics from radar, Q. J. R. Meteorol. Soc., 126(569), 2903–2909, doi:10.1256/smsqj.56913, 2000.

Hong, S.-Y., Noh, Y. and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134(9), 2318–2341, doi:10.1175/MWR3199.1, 2006.

Hubanks, P., Platnick, S., King, M. and Ridgway, B.: MODIS atmosphere L3 gridded product algorithm theoretical basis document Collection 6.0 & 6.1 Version 4.4, Tech. Rep. ATBD-

MOD-30, NASA, 2019.

Huszar, P., Miksovsky, J., Pisoft, P., Belda, M. and Halenka, T.: Interactive coupling of a regional climate model and a chemical transport model: evaluation and preliminary results on ozone and aerosol feedback, Clim. Res., 51(1), 59–88, doi:10.3354/cr01054, 2012.

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res. Atmos., 113(13), 2–9, doi:10.1029/2008JD009944, 2008.

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G.,

Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S.,

Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B. and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Chang., 14(2), 563–578, doi:10.1007/s10113-013-0499-2, 2014.

Ji, Z., Kang, S., Zhang, Q., Cong, Z., Chen, P. and Sillanpää, M.: Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model, Atmos. Res., 178–179, 484–496, doi:10.1016/j.atmosres.2016.05.003, 2016.

Jimenez, P. A., Hacker, J. P., Dudhia, J., Haupt, S. E., Ruiz-Arias, J. A., Gueymard, C. A., Thompson, G., Eidhammer, T. and Deng, A.: WRF-SOLAR: Description and clear-sky assessment of an augmented NWP model for solar power prediction, Bull. Am. Meteorol. Soc., 97(7), 1249–1264, doi:10.1175/BAMS-D-14-00279.1, 2016.

Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P. and García-Bustamante, E.: A Revised Scheme for the WRF Surface Layer Formulation, Mon. Weather Rev., 140(3), 898–918, doi:10.1175/MWR-D-11-00056.1, 2012.

Jin, J., Miller, N. L. and Schlegel, N.: Sensitivity Study of Four Land Surface Schemes in the WRF Model, Adv. Meteorol., 2010, 1–11, doi:10.1155/2010/167436, 2010.

Johnson, B. T., Shine, K. P. and Forster, P. M.: The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus, Q. J. R. Meteorol. Soc., 130(599), 1407–1422, doi:10.1256/qj.03.61, 2004.

Jones, P. D. and Moberg, A.: Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and an Update to 2001, J. Clim., 16(2), 206–223, doi:10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2, 2003.

Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, J. Appl. Meteorol., 43(1), 170–181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.

Karlsson, K. G. and Hollmann, R.: Validation Report, Cloud Products, CM SAF Cloud, Albedo, Radiation dataset, AVHRR-10 based, Edition 1 (CLARA-A1), Tech. rep., Satellite Application Facility on Climate Monitoring, https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V001, 2012.

Karlsson, K. G. and Johansson, E.: On the optimal method for evaluating cloud products from passive satellite imagery using CALIPSO-CALIOP data: Example investigating the CM SAF CLARA-A1 dataset, Atmos. Meas. Tech., 6(5), 1271–1286, doi:10.5194/amt-6-1271-2013, 2013.

Karlsson, K. G., Riihelä, A., Müller, R., Meirink, J. F., Sedlar, J., Stengel, M., Lockhoff, M., Trentmann, J., Kaspar, F., Hollmann, R. and Wolters, E.: CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data, Atmos. Chem. Phys., 13(10), 5351–5367, doi:10.5194/acp-13-5351-2013, 2013.

Katragkou, E., Garciá-Diéz, M., Vautard, R., Sobolowski, S., Zanis, P., Alexandri, G., Cardoso, R. M., Colette, A., Fernandez, J., Gobiet, A., Goergen, K., Karacostas, T., Knist, S., Mayer, S., Soares, P. M. M., Pytharoulis, I., Tegoulias, I., Tsikerdekis, A. and Jacob, D.: Regional climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble,

Geosci. Model Dev., 8(3), 603–618, doi:10.5194/gmd-8-603-2015, 2015.

Kedia, S., Cherian, R., Islam, S., Das, S. K. and Kaginalkar, A.: Regional simulation of aerosol radiative effects and their influence on rainfall over India using WRFChem model, Atmos. Res., 182, 232–242, doi:10.1016/j.atmosres.2016.07.008, 2016.

Koch, D. and Del Genio, A. D.: Black carbon semi-direct effects on cloud cover: Review and synthesis, Atmos. Chem. Phys., 10(16), 7685–7696, doi:10.5194/acp-10-7685-2010, 2010.

Komkoua Mbienda, A. J., Tchawoua, C., Vondou, D. A., Choumbou, P., Kenfack Sadem, C. and Dey, S.: Impact of anthropogenic aerosols on climate variability over Central Africa by using a regional climate model, Int. J. Climatol., 37(1), 249–267, doi:10.1002/joc.4701, 2017.

Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., Van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K. and Wulfmeyer, V.: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7(4), 1297–1333, doi:10.5194/gmd-7-1297-2014, 2014.

Lamarque, J., Kyle, G. P., Meinshausen, M., Riahi, K., Smith, S. J., van Vuuren, D. P., Conley, A. J. and Vitt, F.: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways, Clim. Change, 109(1–2), 191–212, doi:10.1007/s10584-011-0155-0, 2011.

Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K. and Van Vuuren, D. P.: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application, Atmos. Chem. Phys., 10(15), 7017–7039, doi:10.5194/acp-10-7017-2010, 2010.

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B. and Slater, A. G.: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3(1), n/a-n/a, doi:10.1029/2011MS00045, 2011.

McCormick, M. P., Thomason, L. W. and Trepte, C. R.: Atmospheric effects of the Mt Pinatubo eruption, Nature, 373(6513), 399–404, doi:10.1038/373399a0, 1995.

McSweeney, C. F., Jones, R. G., Lee, R. W. and Rowell, D. P.: Selecting CMIP5 GCMs for downscaling over multiple regions, Clim. Dyn., 44(11–12), 3237–3260, doi:10.1007/s00382-014-2418-8, 2015.

Mehta, M., Singh, R., Singh, A., Singh, N. and Anshumali: Recent global aerosol optical depth variations and trends — A comparative study using MODIS and MISR level 3 datasets, Remote Sens. Environ., 181, 137–150, doi:10.1016/j.rse.2016.04.004, 2016.

Mooney, P. A., Mulligan., F. J. and Fealy, R.: Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of europe over the period 1990-95, J. Clim., 26(3), 1002–1017, doi:10.1175/JCLI-D-11-00676.1, 2013.

Mueller, R. and Träger-Chatterjee, C.: Brief accuracy assessment of aerosol climatologies for the retrieval of solar surface radiation, Atmosphere (Basel)., 5(4), 959–972, doi:10.3390/atmos5040959, 2014.

Müller, R., Pfeifroth, U., Träger-Chatterjee, C., Trentmann, J. and Cremer, R.: Digging the METEOSAT treasure-3 decades of solar surface radiation, Remote Sens., 7(6), 8067–8101, doi:10.3390/rs70608067, 2015.

Nabat, P., Somot, S., Mallet, M., Sanchez-Lorenzo, A. and Wild, M.: Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980, Geophys. Res.

Lett., 41(15), 5605–5611, doi:10.1002/2014GL060798, 2014.

Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M. and Wild, M.: Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model, Clim. Dyn., 44(3–4), 1127–1155, doi:10.1007/s00382-014-2205-6, 2015a.

Nabat, P., Somot, S., Mallet, M., Michou, M., Sevault, F., Driouech, F., Meloni, D., Di Sarra, A., Di Biagio, C., Formenti, P., Sicard, M., Léon, J. F. and Bouin, M. N.: Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol-atmosphere-ocean model over the Mediterranean, Atmos. Chem. Phys., 15(6), 3303–3326, doi:10.5194/acp-15-3303-2015, 2015b.

Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog, Boundary-Layer Meteorol., 119(2), 397–407, doi:10.1007/s10546-005-9030-8, 2006.

Norris, J. R. and Wild, M.: Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming,” and solar “brightening,” J. Geophys. Res., 112(D8), D08214, doi:10.1029/2006JD007794, 2007.

Van Oldenborgh, G. J., Drijfhout, S., Van Ulden, A., Haarsma, R., Sterl, A., Severijns, C., Hazeleger, W. and Dijkstra, H.: Western Europe is warming much faster than expected, Clim. Past, 5(1), 1–12, doi:10.5194/cp-5-1-2009, 2009.

Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J., Levis, S., Swenson, S. C., Thornton, E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L.,

Lamarque, J., Niu, G., Qian, T., Running, S., Sakaguchi, K., Slater, A., Stöckli, R., Wang, A., Yang, L., Zeng, X. and Zeng, X.: Technical Description of version 4 . 0 of the Community Land

Model ( CLM ), , (April), 2010.

Péré, J. C., Bessagnet, B., Mallet, M., Waquet, F., Chiapello, I., Minvielle, F., Pont, V. and Menut, L.: Direct radiative effect of the Russian wildfires and its impact on air temperature and atmospheric dynamics during August 2010, Atmos. Chem. Phys., 14(4), 1999–2013, doi:10.5194/acp-14-1999-2014, 2014.

Platnick, S., et al.: MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA: http://dx.doi.org/10.5067/MODIS/MOD08_M3.006, 2015

Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W. and Duda, M. G.: The weather research and forecasting model: Overview, system efforts, and future directions, Bull. Am. Meteorol. Soc., 98(8), 1717–1737, doi:10.1175/BAMS-D-15-00308.1, 2017.

Qian, Y. and Giorgi, F.: Interactive coupling of regional climate and sulfate aerosol models over eastern Asia, J. Geophys. Res. Atmos., 104(D6), 6477–6499, doi:10.1029/98JD02347, 1999.

Qian, Y., Ruby Leung, L., Ghan, S. J. and Giorgi, F.: Regional climate effects of aerosols over China: modeling and observation, Tellus B, 55(4), 914–934, doi:10.1046/j.1435-6935.2003.00070.x, 2003.

Quaas, J.: Evaluating the “critical relative humidity” as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data, J. Geophys. Res. Atmos., 117(9), 1–10, doi:10.1029/2012JD017495, 2012.

Ramanathan, V., Crutzen, P. J., Kiehl, J. T. and Rosenfeld, D.: Atmosphere: Aerosols, climate, and the hydrological cycle, Science (80-. )., 294(5549), 2119–2124, doi:10.1126/science.1064034, 2001.

Rodríguez, E., Kolmonen, P., Sundström, A.-M., Sogacheva, L., Virtanen, T. and de Leeuw, G.: Satellite study over Europe to estimate the single scattering albedo and the aerosol optical depth, in AIP Conference Proceedings, vol. 1531, pp. 196–199., 2013.

Ruiz-Arias, J. A., Dudhia, J., Santos-Alamillos, F. J. and Pozo-Vázquez, D.: Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model, J. Geophys. Res. Atmos., 118(17), 9901–9913, doi:10.1002/jgrd.50778, 2013.

Ruiz-Arias, J. A., Dudhia, J. and Gueymard, C. A.: A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model, Geosci. Model Dev., 7(3), 1159–1174, doi:10.5194/gmd-7-1159-2014, 2014.

Sanchez-Lorenzo, A., Brunetti, M., Calbó, J. and Martin-Vide, J.: Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized data set, J. Geophys. Res., 112(D20), D20115, doi:10.1029/2007JD008677, 2007.

Sarangi, C., Kanawade, V. P., Tripathi, S. N., Thomas, A. and Ganguly, D.: Aerosol-induced intensification of cooling effect of clouds during Indian summer monsoon, Nat. Commun., 9(1), 3754, doi:10.1038/s41467-018-06015-5, 2018.

Schultze, M. and Rockel, B.: Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe, Clim. Dyn., 50(9–10), 3331–3354, doi:10.1007/s00382-017-3808-5, 2018.

Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., Dürr, B., Fuchs, P., Gratzki, A., Hechler, P., Hollmann, R., Johnston, S., Karlsson, K.-G., Manninen, T., Müller, R., Reuter, M., Riihelä, A., Roebeling, R., Selbach, N., Tetzlaff, A., Thomas, W., Werscheck, M., Wolters, E. and Zelenka, A.: Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF), Atmos. Chem. Phys., 9(5), 1687–1709, doi:10.5194/acp-9-1687-2009, 2009.

Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall’s Tau, J. Am. Stat. Assoc., 63(324), 1379–1389, doi:10.1080/01621459.1968.10480934, 1968.

Da Silva, N., Mailler, S. and Drobinski, P.: Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region, Ann. Geophys., 36(2), 321–335, doi:10.5194/angeo-36-321-2018, 2018.

Skamarock, W. C., Klemp, J. B., Dudhi, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W. and Powers, J. G.: A Description of the Advanced Research WRF Version 3, Tech. Rep., (June), 113, doi:10.5065/D6DZ069T, 2008.

Solmon, F., Mallet, M., Elguindi, N., Giorgi, F., Zakey, A. and Konaré, A.: Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties, Geophys. Res. Lett., 35(24), L24705, doi:10.1029/2008GL035900, 2008.

Solmon, F., Elguindi, N. and Mallet, M.: Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model, Clim. Res., 52(1), 97–113, doi:10.3354/cr01039, 2012.

Squintu, A. A., van der Schrier, G., Brugnara, Y. and Klein Tank, A.: Homogenization of daily ECA&D temperature series, Int. J. Climatol., 1–25, doi:10.1002/joc.5874, 2019.

Stjern, C. W., Kristjánsson, J. E. and Hansen, A. W.: Global dimming and global brightening-an analysis of surface radiation and cloud cover data in northern Europe, Int. J. Climatol., 29(5), 643–653, doi:10.1002/joc.1735, 2009.

Streets, D. G., Wu, Y. and Chin, M.: Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition, Geophys. Res. Lett., 33(15), L15806, doi:10.1029/2006GL026471, 2006.

Sundqvist H., Berge E., Kristjánsson. J. E., 1989. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model, Mon. Weather Rev., 117, 1641–1657.

Tegen, I., Hollrig, P., Chin, M., Fung, I., Jacob, D. and Penner, J.: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results, J. Geophys. Res. Atmos., 102(D20), 23895–23915, doi:10.1029/97JD01864, 1997.

Theil, H.: A rank-invariant method of linear and polynomialregression analysis. Springer, Netherlands. doi:10.1007/978-94-011-2546-8_20, 1992

Thompson, G. and Eidhammer, T.: A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone, J. Atmos. Sci., 71(10), 3636–3658, doi:10.1175/JAS-D-13-0305.1, 2014.

Thompson, G., Field, P. R., Rasmussen, R. M. and Hall, W. D.: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization, Mon. Weather Rev., 136(12), 5095–5115, doi:10.1175/2008MWR2387.1, 2008.

Tombette, M., Chazette, P., Sportisse, B. and Roustan, Y.: Simulation of aerosol optical properties over Europe with a 3-D size-resolved aerosol model: comparisons with AERONET data, Atmos. Chem. Phys., 8(23), 7115–7132, doi:10.5194/acp-8-7115-2008, 2008.

Tuccella, P., Menut, L., Briant, R., Deroubaix, A., Khvorostyanov, D., Mailler, S., Siour, G. and Turquety, S.: Implementation of Aerosol-Cloud Interaction within WRF-CHIMERE Online Coupled Model: Evaluation and Investigation of the Indirect Radiative Effect from Anthropogenic Emission Reduction on the Benelux Union, Atmosphere (Basel)., 10(1), 20, doi:10.3390/atmos10010020, 2019.

Vestreng, V., Myhre, G., Fagerli, H., Reis, S. and Tarrasón, L.: Twenty-five years of continuous sulphur dioxide emission reduction in Europe, Atmos. Chem. Phys., 7(13), 3663–3681, doi:10.5194/acp-7-3663-2007, 2007.

Wild, M.: Global dimming and brightening: A review, J. Geophys. Res., 114(1), D00D16, doi:10.1029/2008JD011470, 2009.

Witte, J. C., Douglass, A. R., da Silva, A., Torres, O., Levy, R. and Duncan, B. N.: NASA A-Train and Terra observations of the 2010 Russian wildfires, Atmos. Chem. Phys., 11(17), 9287–9301, doi:10.5194/acp-11-9287-2011, 2011.

Xu, Y., Lamarque, J. and Sanderson, B. M.: The importance of aerosol scenarios in projections of future heat extremes, , 393–406, doi:10.1007/s10584-015-1565-1, 2018.

Xu, K.-M., Randall, D. A.,: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 3084-3102, 1996

Zanis, P.: A study on the direct effect of anthropogenic aerosols on near surface air temperature over Southeastern Europe during summer 2000 based on regional climate modeling, Ann. Geophys., 27(10), 3977–3988, doi:10.5194/angeo-27-3977-2009, 2009.

Zanis, P., Ntogras, C., Zakey, A., Pytharoulis, I. and Karacostas, T.: Regional climate feedback of anthropogenic aerosols over Europe using RegCM3, Clim. Res., 52(1), 267–278, doi:10.3354/cr01070, 2012.

Zubler, E. M., Lohmann, U., Lüthi, D. and Schär, C.: Intercomparison of aerosol climatologies for use in a regional climate model over Europe, Geophys. Res. Lett., 38(15), 1–5, doi:10.1029/2011GL048081, 2011a.

Zubler, E. M., Folini, D., Lohmann, U., Ltühi, D., Schr, C. and Wild, M.: Simulation of dimming and brightening in Europe from 1958 to 2001 using a regional climate model, J. Geophys. Res. Atmos., 116(18), 1–13, doi:10.1029/2010JD015396, 2011b.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.