[Εξώφυλλο]

Στατιστική και Δυναμική μελέτη των ψυχρών χειμερινών ακολουθιών στην περιοχή της Βαλκανικής χερσονήσου = Statistical and Dynamical study of the cold winter spells over the Balkan peninsula.

Ευσταθία Τρίγγα

Περίληψη


Η παρούσα μεταπτυχιακή διατριβή αποτελεί μια συμβολή στη μελέτη των ψυχρών χειμερινών ακολουθιών, που έλαβαν χώρα στην περιοχή της Βαλκανικής χερσονήσου, σε μια περίοδο 59 ετών (1961-2019). Στόχος της μελέτης είναι η εξέταση των στατιστικών και των δυναμικών χαρακτηριστικών των ψυχρών χειμερινών ακολουθιών, με απώτερο σκοπό τη διερεύνηση της σχέσης που συνδέει τις ψυχρές χειμερινές ακολουθίες με τους τύπους ατμοσφαιρικής κυκλοφορίας, πάνω από την ευρύτερη βαλκανική περιοχή.
Για την διεκπεραίωση αυτής της μελέτης χρησιμοποιείται ένα σύνολο δεδομένων 59 ετών (1961-2019) από 25 σταθμούς των Βαλκανίων, καθώς επίσης και δύο ημερολόγια της εξελιγμένης αυτοματοποιημένης κατάταξης τύπων κυκλοφορίας κατά Mahera (Anagnostopoulou et al. 2009), ευέλικτα στις περιοχές ενδιαφέροντος. Η επιλογή των σταθμών έγινε σύμφωνα με τη διαθεσιμότητα των δεδομένων. Η συλλογή αυτών πραγματοποιήθηκε από το “European Climate Assessment and Datasets” (https://www.ecad.eu/) και από το Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης και συνίστανται σε ημερήσιες μετρήσεις θερμοκρασίας στην επιφάνεια των σταθμών (μέγιστη, μέση, ελάχιστη θερμοκρασία).
Στο πρώτο στάδιο της μελέτης πραγματοποιήθηκε μια εκτεταμένη κλιματολογική ανάλυση με στόχο την κατανόηση των μετεωρολογικών συνθηκών που επικρατούν σε κάθε έναν σταθμό ξεχωριστά. Τα αποτελέσματα ανέδειξαν ότι οι βορειότεροι σταθμοί έχουν καταγράψει τις πιο ακραίες ελάχιστες θερμοκρασίες συγκριτικά με τους σταθμούς που βρίσκονται στα κεντρικά και στα παράλια της βαλκανικής χερσονήσου.
Ακολούθως, πραγματοποιήθηκε στατιστική ανάλυση των ψυχρών χειμερινών ακολουθιών. Ως ψυχρές χειμερινές ακολουθίες ορίστηκαν οι περίοδοι τουλάχιστον τριών διαδοχικών ημερών όπου η ημερήσια ελάχιστη θερμοκρασία κυμαίνεται κάτω από το 5% των εμπειρικών κατανομών του χειμώνα. Το έτος 1962-1963 αναδείχθηκε στην πλειοψηφία των σταθμών ως το έτος με τις μεγαλύτερες σε διάρκεια ψυχρές ακολουθίες. Ως γενική τάση στη συχνότητα εμφάνισής τους, αυτή εμφανίζει μείωση προς τα τέλη της υπό μελέτης περιόδου.
Τα ημερολόγια αυτόματης κατάταξης των τύπων κυκλοφορίας (Anagnostopoulou et al. 2009), εφαρμόστηκαν με κύριο στόχο να προσδιοριστούν οι τύποι που επικρατούν πριν ή κατά τη διάρκεια των ψυχρών χειμερινών ακολουθιών, έτσι ώστε στο μέλλον οι πρώιμες ενδείξεις τέτοιων προτύπων να μπορούν να συμβάλλουν στην ταχύτερη πρόγνωση αντίστοιχων ακραίων ψυχρών γεγονότων. Η εφαρμογή των ημερολογίων πραγματοποιήθηκε για τρεις μεταβλητές (μέγιστη, μέση, ελάχιστη θερμοκρασία) σε δύο γεωδυναμικά ύψη 500hPa και 1000hPa. Τα αποτελέσματα έδειξαν ότι κατά τη διάρκεια των ψυχρών χειμερινών ακολουθιών, ο τύπος κυκλοφορίας με το μεγαλύτερο ποσοστό επικράτησης για όλες τις μεταβλητές και στα δύο γεωδυναμικά ύψη είναι ο νοτιοανατολικός κυκλωνικός τύπος Cse. Αντίστοιχα, για μια ημέρα πριν την έναρξη των ψυχρών ακολουθιών τα αποτελέσματα έδειξαν ότι τόσο στα 500hPa όσο και στα 1000hPa ο επικρατέστερος τύπος κυκλοφορίας είναι ο νοτιοανατολικός κυκλωνικός τύπος Cse, ενώ δύο ημέρες πριν την έναρξη της ψυχρής ακολουθίας τόσο στα 500hPa όσο και στα 1000hPa επικρατέστερος τύπος κυκλοφορίας είναι ο βορειοανατολικός κυκλωνικός τύπος Cne.

This Master’s thesis is a contribution to the study of winter cold spells (WCSPs), which took place in the Balkan Peninsula, over a period of 59 years, for the time period from 1961 to 2019. The aim of the study is to examine the statistics and dynamic characteristics of WCSPs with the goal to investigate the relationship between WCSPs and types of atmospheric circulation over the Balkan region.
For the purposes of this study, a data set of 59 years (1961-2019) from 25 Balkan’s stations is used, as well as two daily circulation type calendars, derived from the advanced automatic classification according to Mahera (Anagnostopoulou et al. 2009), flexible over the areas of interest. The stations were selected according to availability of data. Τhe meteorological data come from the "European Climate Assessment and Datasets" and from the Aristotle University of Thessaloniki and consist of daily temperature observations on the station’s surface (maximum, mean, minimum temperature).
On the first step of the study, an extensive climatic analysis was carried out to understand the meteorological conditions prevailing in each station. The results showed that the northern stations have recorded the most extreme minimum temperatures in contrast to the stations located in the central and coastal areas of the Balkan Peninsula.
Subsequently, a climatic analysis of the WCSPs was performed. Winter Cold Spells (WCSPs) are defined as periods of at least three consecutive days where the daily minimum temperature is below 5% of the empirical winter distributions. The year 1962-1963 in the most stations was the year with the longest WCSPs. As a general trend in the frequency of their occurrence, it shows a decrease towards the end of the period of study.
The automatic daily circulation type calendars (Anagnostopoulou et al. 2009), were used with the main aim of identifying the types that prevail before or during WCSPs, so that in the future the early indications of such patterns will contribute to the faster prediction of corresponding extreme cold events. The circulation type calendar was used for three variables (maximum, mean, minimum temperature) at two geopotential heights of 500 and 1000hPa. The results showed that during the WCSPs, the circulation type with the highest prevalence for all variables at both geopotential heights is the southeastern cyclonic type Cse. Respectively, for one day before the start of the WCSPs the results showed that at both 500hPa and 1000hPa the predominant circulation type is the southeastern cyclonic type Cse, while two days before the start of the WCSPs at both 500hPa and 1000hPa the predominant circulation type is the northeastern cyclonic type Cne.

Πλήρες Κείμενο:

PDF

Αναφορές


Anagnostopoulou, C., Tolika, K., Lazoglou, G., Maheras, P., 2017. The Exceptionally Cold January of 2017 over the Balkan Peninsula: A Climatological and Synoptic Analysis. Atmosphere, 8, 252, doi:10.3390/atmos8120252.

Balafoutis, C. J. and A, Arseni-Papadimitriou., 2002. Lengths of very warm and very cold spells at Southern Balkans. Scientific activities of professor Wladyslaw Gorczynski and their continuation. Climatological Symposium in Nicholas Copernicus University, Torun,155-162.

Ballester, J., Douville, H., Chauvin, F., 2009a. Present-day climatology and projected changes of warm and cold days in the CNRM-CM3 global climate model. Climate Dynamics, 32, 35–54.

Beniston, M. and Stephenson, D. B., 2004. Extreme climatic events and their evolution under changing climatic conditions. Glob Planet Change, 44, 1–9.

Brown, S. J., Caesar, J., Ferro, A. T., 2008. Global changes in daily extreme temperatures since 1950. Journal of Geophysical Research, 113, D05115, doi.org/10.1029/2006JD008091.

Christidis, N., Stott, P., Brown, S., Hegerl, G., Caesar, J., 2005. Detection of changes in temperature extremes during the second half of the 20th century. Geophysical Research Letters, 32, 20, doi: 10.1029/2005GL023885.

Dash, S. K. and Mamgain, A., 2011. Changes in the Frequency of Different Categories of Temperature Extremes in India. Journal of Applied Meteorology and Climatology, 50, 1842–1858, doi: 10.1175/2011JAMC2687.1.

Domonkos, P., Kyselý, J., Piotrowicz, K., Petrovic, P., Likso, T., 2003. Variability of extreme temperature events in south-central Europe during the 20th century and its relationship with large scale circulation. International Journal of Climatology, 23, 987-1010, doi.org/10.1002/joc.929.

Easterling, D. R., Evans. J. L., Ya, P., Groisman et al., 2000. Observed variability and trends in extreme climate events: a brief review. Bull American Meteorological Society 81, 3, 417-426, doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2.

Efthymiadis, D., Goodness, C. M., Jones, P. D. 2011. Trends in Mediterranean girdded temperature extremes and large-scale circulation influences. Natural Hazards and Earth System Sciences, 11, 2199-2214.

Frich, P., Alexander, L. V., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank AMG., Peterson, T., 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 3, 193–212, doi: 10.3354/cr019193.

Hylke de Vries., Haarasma, R. J., Hazeleger, W., 2012. Western European cold spells in current and future climate. Geophysical Research Letters, 39, 4, doi.org/10.1029/2011GL050665.

Jones, P.D., Horton, E.B., Folland, C.K., et al., 1999. The use of indices to identify changes in climatic extremes. Climate Dynamics, 42, 131-149.

Joshi, M.M., Gregory, J. M., Webb. M.J., Sexton. D.M.H., Johns. T.C., 2008. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dynamics. 30, 455-465, doi: 10.1007/s00382-007-0306-1.

Karapiperis, L. 1953. On the spells of cold weather over the East Mediterranean during the autumn. Climate Research, 4, 420–430.

Kassomenos, P., Flocas, H. A., Lycoudis, S., Petrakis, M., 1998. Analysis of mesoscale patterns in relation to synoptic conditions over the Urban Mediterranean Basin. Theoretical and Applied Climatology, 59, 215-229.

Klein Tank, AMG., Zwiers, F. W., Zhang, X., 2009. Climate Data and Monitoring: Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation. WCDMP-No. 72, WMO-TD No. 1500.

Kodra. E., Steinhaeuser. K., Ganguly. A. R., 2011. Persisting cold extremes under 21st-century warming scenarios. Geophysical Research Letters, 38, L08705, doi:10.1029/2011GL047103.

Kostopoulou, E. and Jones, P. D., 2005. Assessment of climate extremes in the Eastern Mediterranean. Meteorology and Atmospheric Physics, 89, 69-85, doi: 10.1007/s00703-005-0122-2.

Kodra, E., Steinhaeuser. K., Ganguly, A. R., 2011. Persisting cold extremes under 21st-century warming scenarios. Geophysical Research Letter, 38, L08705, doi:10.1029/2011GL047103.

Kyselý, J., 2008. Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: analysis over the 20th century. Global and Planetary Change, 62, 1-2, 147–163, doi:10.1016/j.gloplacha.2008.01.003.

Maheras, P., 1988a. The synoptic Weather Types and Objective Delimitation on the Winter Period in Greece Weather. 43, 40-45.

Maheras, P., 1988b, Changes in precipitation conditions in the western Mediterranean over the last century. Journal of Climatology, 8, 179-189.

Maheras, P., 1989. Delimitation of the Summer-Dry period in Greece According to the Frequency of Weather-Types. Theoretical and Applied Climatology, 39, 171-176

Maheras, P., Patrikas, J., Karakostas, T., Anagnostopoulou, C., 2000a. Automatic classification of circulation types in Greece: Methodology, Frequency, Variability and Trend Analysis. Theoretical and Applied Climatology, 67, 205-223, 10.1007/s007040070010.

Maheras, P., Anagnostopoulou, C., 2003. Circulation types and their influence on the

interannual variability and precipitation changes in Greece. Springer, Berlin, 215–239.

Maheras, P., Tolika, K., Anagnostopoulou, C., Vafiadis, M., Patrikas, I., Flocas, H. A., 2004. On the relationships between circulation types and changes in rainfall variability in Greece. International Journal of Climatology, 24, 1695–1712.

Maheras, P., Flokas, H., Tolika, K., Anagnostopoulou, C., Vafiadis, M., 2006. Circulation types and extreme temperature changes in Greece. Climate Research, 30, 161–174.

McGregor, G. R., Ferro, C. A., Stephenson, D. B., 2005. Projected changes in extreme weather and climate events in Europe. Extreme Weather Climate Events Public Health Responses, Part 1, 13–23, doi:10.1007/3-540-28862-7_2

McMichael, A. J., Campbell-Lendrum, D. H., Corvalan, C. F., Ebi KL, Githelo, A., Scheraga, J. D., Woodward, A., 2003. Climate change and human health: risks and responses. World Health Organ, Geneva.

Michaelides, S.C., Savvidou, K., Nicolaides, K.A., Orphanou, A., Photiou, G., Kannaourous, C., 2008. Synoptic, thermodynamic and agroeconomic aspects of severe hail events. Natural Hazards and Earth System Sciences, 8, 461-471.

Michailidou, C., Maheras, P., Arseni-Papadimitriou, A., Kolyva-Machera, F., Anagnostopoulou, Chr., 2009. A study of the weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, Part I: Two step Cluster Analysis. Theoretical and Applied Climatology, 97, 163-177, doi: 10.1007/s00704-008-0057-x.

Michailidou, C., Maheras, P., Arseni-Papadimitriou, A., Kolyva-Machera, F., Anagnostopoulou, Chr., 2009. A study of the weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, Part II: Discriminant Analysis. Theoretical and Applied Climatology, 97: 179-194, doi: 10.1007/s00704-008-0058-9.

Moberg, A., Jones, P. D., Lister, D et al., 2006. Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. Journal of Geophysical Research, 111, D22, doi:10.1029/2006JD007103.

Pappas, C., Hatzianastassiou, N., Katsoulis, B. D., 2004. Analysis of cold spells in the Greek region. Climate Research, 27, 211-223.

Parker, D. E., 1994. Effects of changing exposure of thermometers at land stations. International Journal of Climatology. 14, 1.

Plavcová, E. and Kyselý, J., 2015. Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Springer, 46, 2805-2820, doi.org/10.1007/s00382-015-2733-8

Plavcová, E. and Kyselý, J., 2019. Temporal Characteristics of Heat Waves and Cold Spells and Their Links to Atmospheric Circulation in EURO-CORDEX RCMs. Hindwai, doi.org/10.1155/2019/2178321.

Peel, M. C., Finalayson, B. L., McMahon, T. A., 2007. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633-1644.

Peterson, T. C., Zhang, X., Brunet-India, M., Vázquez-Aguirre, J. L., 2008. Changes in North American extremes derived from daily weather data. Journal of Geophysical Research Atmosphere, 113, D07113, doi:10.1029 / 2007JD009453.

Ramos, A. M., Trigo, R. M., Santo, F. E., 2011. Evolution of extreme temperatures over Portugal: recent changes and future scenarios. Climate Research, 48, 177–192, doi:10.3354/cr00934.

Russo, S. and Sterl, A., 2011. Global changes in indices describing moderate temperature extremes from the daily output of a climate model, Journal of Geophysical Research Atmosphere, 116, doi:10.1029/2010JD014727.

Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B., Zhai, P., 2007. Observations: surface and atmospheric climate change. In: Solomon, S., Qin, D., Manning. M., Chen, Z., Marquis, M., Averyt, K. B.,

Tignor, M., Miller, H. L. (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Unkašević, M. and Tošić, I., 2013. Trends in temperature indices over Serbia: relationships to large-scale circulation patterns. International Journal of Climatology, 33, 3152-3161, doi.org/10.1002/joc.3652.

Yiou, P. and Nogaj, M., 2004. Extreme climatic events and weather regimes over the North Atlantic: when and where? Geophysical Research Letters, 31, L07202, doi:10.1029/2003GL019119.

Vavrus, S. J., Walsh, J. E., Chapman, W. L., Portis, D., 2006. The behavior of extreme cold air outbreaks under greenhouse warming. International Journal of Climatology, 26, 1133–1147, doi.org/10.1002/joc.1301.

Vuković, Α., Mandić, M. V., 2018. Study on climate change in the Western Balkans region. Regional Cooperation Council Secretariat, ISBN: 978-9926-402-09-9.

Διαδικτυακές Πηγές

World Meteorological Organization (WMO), https://public.wmo.int/en (ανακτήθηκε την 24-06-2020).


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.