Εξώφυλλο

Στοχαστική μοντελοποίηση της σεισμογένεσης στην Ελλάδα: εφαρμογές στην εκτίμηση σεισμικής επικινδυνότητας = Stochastic modeling of seismogenesis in Greece: applications for seismic hazard assessment.

Ουρανία Γεώργιος Μαγγίρα

Περίληψη


Η εκτίμηση της σεισμικής επικινδυνότητας σύνθετων συστημάτων ρηγμάτων, ιδιαίτερα σε χώρες που πλήττονται συχνά από ισχυρούς σεισμούς, όπως η Ελλάδα, προσελκύει το ενδιαφέρον της επιστημονικής κοινότητας διεθνώς. Προς αυτή την κατεύθυνση είναι προσανατολισμένη η παρούσα διατριβή με απώτερο σκοπό να παραχθούν αξιόπιστα αποτελέσματα για την εκτίμηση πιθανοτήτων γένεσης επικείμενων σεισμών σε περιοχές που χαρακτηρίζονται από έντονη σεισμικότητα, όπως τον Κορινθιακό Κόλπο, τις κεντρικές Ιόνιες Νήσους, το Βόρειο Αιγαίο αλλά και τον ευρύτερο Ελληνικό χώρο. Αρχικά διερευνήθηκε το Μοντέλο Απελευθέρωσης Τάσης, όπου θεωρείται ότι η ελαστική ανηγμένη παραμόρφωση συσσωρεύεται σε ένα ρήγμα λόγω της συνεχούς τεκτονικής φόρτισης και απελευθερώνεται κατά τη διάρκεια ενός σεισμού. Το Συζευγμένο Μοντέλο Απελευθέρωσης Τάσης, που αποτελεί εκτεταμένη εκδοχή, εξετάζει τις αλληλεπιδράσεις μεταξύ ρηγμάτων και περιοχών, επιτρέποντας διέγερση ή αποδιέγερση της σεισμικής δραστηριότητας γειτονικών περιοχών, λόγω μεταφοράς τάσης. Ιδιαίτερη έμφαση δόθηκε σε υπολογιστικά ζητήματα και τρόπους με τους οποίους μπορεί να βελτιωθεί το μοντέλο. Έγινε εμβάθυνση στη βασική συνάρτηση που ελέγχει τη στοχαστική συμπεριφορά της διαδικασίας και ονομάζεται υπό συνθήκη συνάρτηση έντασης. Προτάθηκε μία τροποποίηση του μοντέλου, όπου διερευνάται η μνήμη της σημειακής διαδικασίας, με τέτοιο τρόπο ώστε η γένεση ενός επερχόμενου σεισμού να εξαρτάται μόνο από ένα περιορισμένο πλήθος προηγούμενων αφίξεων. Δόθηκαν διαφορετικοί τρόποι διερεύνησής των αλληλεπιδράσεων στο Συζευγμένο Μοντέλο Απελευθέρωσης Τάσης, που περιλαμβάνουν τον έλεγχο των διαστημάτων εμπιστοσύνης των παραμέτρων μεταφοράς, την εφαρμογή στατιστικών κριτηρίων αλλά και την εισαγωγή εκ των προτέρων περιορισμών που  έχουν προκύψει με βάση το γεωφυσικό νόημα της σημειακής διαδικασίας. Ένα τέτοιο χαρακτηριστικό παράδειγμα αποτελεί η εφαρμογή του σεισμικού μοντέλου μεταφοράς τάσης. Για τη μελέτη της βραχείας κλίμακας σεισμικότητας, εφαρμόστηκε το στατιστικό μοντέλο ETAS, το οποίο παρέχει τη δυνατότητα ποσοτικοποίησης της σχέσης μεταξύ των σεισμών. Για κάθε περιοχή μελέτης προτάθηκε ένα επιδημικό μοντέλο σύμφωνα με τα δεδομένα που προέρχονται από κάποια περίοδο εκμάθησης. Κατά την περίοδο αυτή το μοντέλο «εκπαιδεύεται» στο χωρο–χρονικό μοτίβο σεισμικότητας, προκειμένου να μπορεί να προσαρμοστεί έγκαιρα μετά τη γένεση ενός ισχυρού σεισμού και να προβλέψει μελλοντικά γεγονότα. Στη συνέχεια έγινε αναδρομικός έλεγχος της απόδοσης του μοντέλου σε κάποια περίοδο ελέγχου, που περιλαμβάνει κατά προτίμηση κάποιον ισχυρό σεισμό. Εκτός από τον έλεγχο με βάση τις ημερήσιες πιθανότητες γένεσης σεισμών πάνω από ένα ορισμένο κατώφλι μεγέθους, η σύγκριση περιελάμβανε το πλήθος των σεισμών –παρατηρούμενων και αναμενόμενων σύμφωνα με το μοντέλο – σε ημερήσια βάση. Επιπλέον, εκτιμήθηκε η χωρική κατανομή των αναμενόμενων σεισμών μέσα από χάρτες χρονικά εξαρτώμενης σεισμικότητας, με στόχο να ελεγχθεί αν συνάδει με τα επίκεντρα των παρατηρούμενων σεισμών. Υιοθετήθηκε τέλος η μέθοδος Pattern Informatics. Δημιουργήθηκαν πίνακες συνάφειας στους οποίους υπολογίζεται κάθε φορά το πλήθος των σεισμών που ορθώς προβλέφθηκαν, το πλήθος των εσφαλμένων συναγερμών, το πλήθος των επιτυχημένων προβλέψεων μη γένεσης και το πλήθος των σεισμών που δεν προβλέφθηκαν. Με βάση αυτές τις ποσότητες υπολογίστηκαν οι τιμές του Ρυθμού των Επιτυχιών και του Ρυθμού των Εσφαλμένων Συναγερμών, του R-αποτελέσματος και του κέρδους πιθανοτήτων, δηλαδή στατιστικών κριτηρίων για τον έλεγχο απόδοσης του μοντέλου, και κατασκευάστηκαν διαγράμματα ROC για να διαπιστωθεί αν τα αποτελέσματα σχετίζονται με αξιόπιστες εκτιμήσεις για την εξέλιξη μίας μετασεισμικής ακολουθίας.

Seismic hazard assessment of complex fault systems attracts the interest of the scientific community, especially in countries that are often struck by strong earthquakes, like Greece. The estimation of the occurrence time of future earthquakes, in a certain region, consists an indispensable part of the studies that are related to the investigation of seismic activity. The main goal of this dissertation is the extraction of reliable results regarding the estimation of probabilities of occurrence of upcoming earthquakes in regions that are characterized by intense seismic activity, namely the Corinth Gulf, central Ionian Islands, North Aegean area and the Greek territory. The Stress Release Model, has been investigated, where elastic strain is accumulated in a fault due to tectonic loading and is released when an earthquake occurs. A modification of the model has been proposed, where the memory of the point process is examined, such that the genesis of a subsequent earthquake depends only on the m most recent arrival times. The Linked Stress Release Model, which is an extended version of the original model, investigates the interactions among faults and regions allowing excitation or damping of the seismic activity of adjacent regions, due to stress transfer. Different ways for the determination of the interactions have been given, including check of the confidence intervals of the transfer parameters, application of statistical criteria and introduction of a priori constraints based on the geophysical meaning. Regarding the short-term seismicity, the statistical model named Epidemic Type Aftershock Sequence (ETAS) model, has been applied. For each study area an epidemic model has been suggested based on data derived from a learning period in which the model is “trained” in the spatio-temporal pattern of seismicity, in order to be able to quickly adjust after the genesis of a strong earthquake and predict future events. A retrospective check of the performance of the model is then carried out in a verification period, which should ideally include a strong event. Apart from checking the daily probabilities of occurrence of events above a certain magnitude threshold, the comparison comprised the number of – observed and expected according to the model – events in a daily basis. The spatial distribution of the expected events has also been estimated through maps of time-dependent seismicity, aiming at testing if it is consistent with the positions of the observed events. The method of Pattern Informatics has finally been adopted. Contingency tables have been constructed, in which the number of earthquakes that have successfully been predicted, the number of false alarms, the number of successful predictions of non-occurrence and the number of earthquakes that haven’t been predicted, are computed. The evaluation of the performance of the model has been carried out by means of statistical tools, such as the Hit Rate, the False Alarm Rate, the probability gain and the R-score. Relative Operating Characteristic diagrams have been created in order to find out if the results are related to reliable estimations regarding the evolution of an aftershock sequence.

Πλήρες Κείμενο:

PDF

Αναφορές


Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

Aki, K. (1965). Maximum likelihood estimate of b in the formula log n = a − bm and its confidence limits. Bulletin of the Earthquake Research Institute, 43, 99–103.

Aki, K. (1981). A probabilistic synthesis of precursory phenomena. In: Simpson DW, Richards PG (eds) Earthquake prediction. Washington: American Geophysical Union.

Aristotle University of Thessaloniki Seismological Network (1981). Permanent Regional Seismological Network operated by the Aristotle University of Thessaloniki. International Federation of Digital Seismograph Networks, Other/Seismic Network. https://doi.org/10.7914/SN/HT.

Armijo, R., Meyer, B., King, G.C.P., Rigo, A., & Papanastassiou, D. (1996). Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophysical Journal International, 126(1), 11 –53.

Bebbington, M., & Harte, D. (2001). On the statistics of the linked stress release process. Journal of Applied Probability, 38, 176-187.

Bebbington, M., & Harte, D. (2003). The linked stress release model for spatio-temporal seismicity: formulations, procedures and applications. Geophysical Journal International, 154, 925-946. https://doi.org/10.1046/j.1365-246X.2003.02015.x

Ben-Zion, Y. (2008). Collective behavior of earthquakes and faults: Continuum‐discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics, 46, RG4006. https://doi.org/10.1029/2008RG000260.

Ben-Zion, Sammis, C. G. Ben-Zion, Y., & Sammis, C. (2003). Characterization of Fault Zones. Pure and Applied Geophysics, 160, 677–715. https://doi.org/10.1007/PL00012554.

Bernard, P., Briole, P., Meyer, B., Lyon-Caen, H., Gomez, M., Tiberi, C., Berge, C., Cattin, R., Hatzfeld, D., Lachet, C., Lebrun, B., Dechamps, A., Courbouleux, F., Larroque, C., Rigo, A., Massonnet, D., Papadimitriou, P., Kassaras, J., Diagourtas, D., Makropoulos, K., Veis, G., Papazisi, E., Mitsakaki, C., Karakostas, V., Papadimitriou, E., Papanastasiou, D., Chouliaaras, M., & Stavrakakis, D. (1997). The Ms=6.2, June 15, 1995 Aigion earthquake (Greece): Evidence for low angle normal faulting in the Corinth rift. Journal of Seismology, 1, 131–150.

Bebbington, M. (2005). Information gains for stress release models. Pure and Applied Geophysics, 162, 2229-2319.

Ben-Zion, Y. (1996). Stress, Slip, and Earthquakes in Models of Complex Single-fault Systems Incorporating Brittle and Creep Deformations. Journal of Geophysical Research, 101, 5677–5706.

Billiris, H., Paradissis, D., Veis, G., England, P., Featherstone, W., Parsons, B., Cross, P., Rands, P., Rayson, M., Seleers, P., Ashkenazi, V., Davison, M., Jackson, J., & Ambraseys, N. (1991). Geodetic determination of tectonic deformation in central Greece from 1900 to 1988. Nature, 350, 124–129.

Borovkov, K., & Bebbington, M. (2003). A simple two-node stress transfer model reproducing Omori’s law. Pure and Applied Geophysic, 160, 1429-1445.

Bray, A. & Schoenberg, F. P. (2013). Assessment of Point Process Models for Earthquake Forecasting. Statistical Science, 28, 510–520.

Briole, P., Rigo, A., Lyon-Caen, H., Ruegg, J. C., Papazissi, K., Mitsakaki, C., Balodimou, A., Veis, G., Hatzfeld, D., & Deschamps, A. (2000). Active deformation of the Corinth rift, Greece: Results from repeated global positioning system surveys between 1990 and 1995. Journal of Geophysical Research B: Solid Earth, 105(B11), 25605–25625.

Bufe, C., & Varnes, D. (1993). Predictive modeling of the seismic cycle of the Greater San Francisco Bay Region. Journal of Geophysical Research, 98, 9871-9883.

Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A practical information-theoretic approach (2nd ed.). Verlag:Springer.

Cavanaugh, J. E. (1997). Unifying the derivations of the Akaike and corrected Akaike information criteria. Statistics & Probability Letters, 31(2), 201–208. https://doi.org/10.1016/s0167-7152(96)00128-9.

Cattania, C., Werner, M. J., Marzocchi, W., Hainzl, S. Rhoades, D. A., Gerstenberger, M. C. Liukis, M. Christophersen, A. Helmstetter, A. Jimenez, A. et al. (2018).

Evaluation of Coulomb-based seismicity forecasting models during the 2010–2012 Canterbury, New Zealand, earthquake sequence. Seismological Research Letters, 89(4). https://doi.org/10.1785/ 0220180033.

Chen, C.-C., Rundle, J. B., Li, H. -C., Holliday, J. R., Nanjo, K. Z., Turcotte, D. L., & Tiampo, K. F. (2006). From tornados to earthquakes: forecast verification for binary events applied to the 1999 Chi-Chi, Taiwan, Earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 17(3), 503–516.

Chousianitis, K., Ganas, A., & Evangelidis, C. P. (2015). Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. Journal of Geophysical Research, 120(5), 3909–3931. https://doi.org/10.1002/2014JB011762.

Chu, A., Schoenberg, F. P., Bird, P., Jackson, D. D. & Kagan, Y. Y. (2011). Comparison of ETAS parameter estimates across different global tectonic zones. Bulletin of the Seismological Society of America, 101(5), 2323–2339. https://doi.org/10.1785/0120100115.

Clarke, P. J., Davies, R. R., England, P. C., Parsons, B., Billiris, H., Paradissis, D., Veis, G., Cross, P. A., Denys, P. H., Ashkenazi, V., Bingley, R., Kahle, H. G., Muller, M. V., &

Briole, P. (1998). Crustal strain in Greece from repeated GPS measurements in the interval 1989-1997. Geophysical Journal International, 135(1), 195–214. https://doi.org/10.1046/j.1365-246X.1998.00633.x.

Cocco, M., & Rice, J. R. (2002). Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. Journal of Geophysical Research, 107. https://doi.org/10.1029/2000JB000138.

Console, R. (2001). Testing earthquake forecasting hypotheses. Tectonophysics, 338, 261 – 268.

Console, R., & Murru, M. (2001). A simple and testable model for earthquake clustering. Journal of Geophysical Research, 106, B5, 8699–8711.

Console, R., Murru, M. & Lombardi, A. M. (2003). Refining earthquake clustering models. Journal of Geophysical Research, 108, B10, 2468. https://doi.org/10.1029/2002JB002130.

Console R, Murru M, Catalli, F. (2006a) Physical and stochastic models of earthquake clustering. Tectonophysics, 417, 141–153. doi:10.1016/j.tecto.2005.05.052

Console, R.,. Rhoades, D. A, Murru, M., Evison, F. F., Papadimitriou, E. E., & Karakostas, V. (2006b). Comparative performance of time-invariant, long-range and short-range forecasting models on the earthquake catalogue of Greece. Journal of Geophysical Research, 111, B09, 304. https:// doi.org/10.1029/2005JB0044113.

Console, R., Murru, M., Catalli, F. & Falcone, G. (2007). Real time forecasts through an earthquake clustering model constrained by the rate-and-state constitutive law: comparison with a purely stochastic ETAS model. Seismological Research Letters, 78(1), 49–56.

Console, R., Jackson, D. D., & Kagan, Y. Y. (2010a). Using the ETAS Model for Cat-alog Declustering and Seismic Background Assessment. Pure and Applied Geophysics, 167, 819–830.

Console, R., Murru, M. & Falcone, G. (2010b). Probability gains of an epidemic-type aftershock sequence model in retrospective forecasting of m ≥ 5 earthquake in Italy. Journal of Seismology, 14(1), 9–26, https://doi.org/10.1007/ s10950-009-9161-3.

Console, R., Falcone, G., Karakostas, V., Murru, M., Papadimitriou, E., & Rhoades, D. (2013). Renewal models and coseismic stress transfer in the Corinth Gulf Greece, fault system. Journal of Geophysical Research, 118, 3655–3673.

Daley, D., & Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes, vol 1 (2nd ed.). New York: Springer.

De Arcangelis, L., Godano, C., Grasso, J. R., & Lippiello, E. (2016).Statistical physics approach to earthquake occurrence and forecasting. Physics Reports, 628, 1-91. https://doi.org/10.1016/j.physrep.2016.03.002.

Deng, J., & Sykes, L. R. (1997). Evolution of the stress field in southern California and triggering of moderate-size earthquakes: a 200-year perspective. Journal of Geophysical Research, 102, 9859–9886.

Di Luccio, F., Console, R., Imoto, M., & Murru, M. (1997). Analysis of short time-space range seismicity patterns in Italy. Annali Di Geofisica, 40, 783–798.

Dreger, D., & Savage B. (1999). Aftershocks of the 1952 Kern County, California, earthquake sequence. Bulletin of the Seismological Society of America, 89, 1094–1108.

Engle, R. F. & Russell, J. R. (1998). Autoregressive Conditional Duration: a New Model for Irregularly Spaced Transaction Data. Econometrica, 66, 1127-1162.

Erickson, L. (1986). User’s manual for DIS3D: a three-dimensional dislocation program with applications to faulting in the Earth, Master’s thesis, Stanford Univ.

Evangelidis, C.P. (2015). Imaging supershear rupture for the 2014 Mw 6.9 Northern Aegean earthquake by backprojection of strong motion waveforms. Geophysical Research Letters, 42, 307e315. https:// doi.org/10.1002/2014GL062513.

Falcone, G., Console, R. & Murru, M. (2010). Short-term and long-term earthquake occurrence models for Italy: ETES, ERS and LTST. Annals of Geophysics, 53(3), 41–50. https://doi.org/ 10.4401/ag-4760.

Felzer, K. R., Abercrombie, R. E., & Ekstrom, G. (2004). A common origin for aftershocks, foreshocks, and multiplets. Bulletin of the Seismological Society of America, 94(1), 88–98. https://doi.org/10.1785/0120030069.

Fletcher, R. (1987). Practical methods of optimization (2nd ed.). New York: John Wiley and Sons.

Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seismological Research Letters, 66, 8–21.

Ganas, A., Chousianitis, K., Batsi, E., Kolligri, M., Agalos, A., Chouliaras, G., & Makropoulos, K. (2013). The January 2010 Efpalion earthquakes (Gulf of Corinth, Central Greece): Earthquake interactions and blind normal faulting. Journal of Seismology, 17(2), 465–484. https://doi.org/10.1007/s10950-012-9331-6.

Gomberg, J., Belardinelli, M. E., Cocco, M., & Reasenberg, P. (2005). Time-dependent earthquake probabilities. Journal of Geophysical Research, 110. https:// doi.org/10.1029/2004JB003405.

Gospodinov, D., Karakostas, V., Papadimitriou, E., & Ranguelov, B. (2007). Analysis of relaxation temporal patterns in Greece through the RETAS model approach. Physics of the Earth and Planetary Interiors, 165, 158–175. https://doi.org/10.1016/j.pepi.2007.09.001.

Gospodinov, D., Karakostas, V., & Papadimitriou, E. (2015). Seismicity rate modeling for prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation. Natural Hazards 79, 1039–1058. https://doi.org/10.1007/s11069-015-1890-8.

Guo, Z., & Ogata, Y. (1997). Statistical relations between the parameters of aftershocks in time, space and magnitude. Journal of Geophysical Research, 102, 2857 – 2873.

Gutenberg , B., & Richter, C. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling. Journal of Geophysical Research, 110, B05S07.

Hainzl, S., Christophersen, A. & Enescu, B. (2008). Impact of earthquake rupture extensions on parameter estimations of point-process models, Bulletin of the Seismological Society of America, 98(4), 2066–2072 https://doi.org/ 10.1785/0120070256.

Hanssen, A.W., & Kuipers, W. J. A. (1965). On the relationship between frequency of rain and various meteorological parameters. Mededelingen en verhandelingen, 81, 2–15.

Hardebeck, J. L. (2004). Stress triggering and earthquake probability estimates. Journal of Geophysical Research, 109. https://doi.org/10.1029/2003JB002437.

Harris, R.A., & Simpson, R.W. (1996). In the shadow of the 1857 – the effect of the great Ft Tejon earthquake on subsequent earthquakes in southern California. Geophysical. Reearch Letters, 23, 229-232.

Harte, D.S., & Vere-Jones, D. (2005). The entropy score and its uses in earthquake forecasting. Pure and Applied Geophysics, 162, 1229–1253.

Harte, D. (2010). PtProcess: An R Package for Modelling Marked Point Processes Indexed by Time. Journal of Statistical Software, 35, 1-32.

Hatzfeld,D., Karakostas, V., Ziazia, M., Kassaras, I., Papadimitriou, E., Makropoulos, K., Voulgaris, N., & Papaioannou, C. (1996). The Galaxidi earthquake of 18 November 1992; A possible asperity within normal fault system of the Gulf of Corinth (Greece). Bulletin of the Seismological Society of America, 86(6), 1987–1991.

Hatzfeld, D., Karakostas, V., Ziazia, M. , Kassaras, I., Papadimitriou, E., Makropoulos, K., Voulgaris, N., & Papaioannou, C. (2000). Microseismicity and faulting geometry in the Gulf of Corinth. Geophysical Journal International, 141, 438–456.

Hawkes, A., & Oakes, D. (1974). A Cluster Process Representation of a Self-Exciting Process. Journal of Applied Probability, 11(3), 493-503. https://doi.org/10.2307/3212693.

Helmstetter, A. & Sornette, D. (2002). Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. Journal of Geophysical Research, 107(B10), 2237.

Helmstetter, A. & Sornette, D. (2003). Foreshocks explained by cascades of triggered seismicity. Journal of Geophysical Research, 108(B10), 2457.

Helmstetter, A., Sornette, D., & Grasso, J.-R. (2003). Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws? Journal of Geophysical Research, 108, 2046. https://doi.org/10.1029/2002JB001991.

Helmstetter, A., Kagan, Y.Y., & Jackson, D.D. (2005). Importance of small earthquakes for stress transfers and earthquake triggering. Journal of Geophysical Research: Solid Earth, 110(B5), B05S08. https:// doi.org/10.1029/2004JB003286.

Helmstetter, A., Kagan, Y. Y., & Jackson, D. D. (2006). Comparison of short-term and time-independent earthquake forecast models for Southern California. Bulletin of the Seismological Society of America, 96(1), 90–106, https://doi.org/10.1785/0120050067.

Holliday, J. R., Nanjo, K. Z., Tiampo, K. F., Rundle, J. B., & Turcotte, D. L. (2005). Earthquake forecasting and its verification. Nonlinear Processes in Geophysics, 12, 965–977.

Holliday, J. R., Rundle, J. B., Tiampo, K. F., Klein, W. & Donnelan, A. (2006a). Systematic procedural and sensitivity analysis of the pattern informatics method for forecasting large (M ≥ 5) earthquake events in southern California. Pure and Applied Geophysics, 163(11–12), 2433–2454.

Holliday, J. R., Rundle, J. B., Tiampo, K. F., Klein, W. & Donnelan, A. (2006b). Modification of the pattern informatics method for forecasting large earthquake events using complex eigenvectors. Tectonophysics, 413, 87–91.

Hubert, A., King, G., Armijo, R., Meyer, B., & Papanastassiou, D. (1996). Fault re–activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence. Earth and Planetary Science Letters, 142, 573–585.

Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297-307. https://doi.org/10.1093/biomet/76.2.297.

Iliopoulos, A., Chorozoglou, D., Kourouklas, C., Mangira, O., & Papadimitriou, E. (2019). Memory and renewal aging of strong earthquakes in Hellenic seismicity. Chaos,

Solitons and Fractals, 131. https://doi.org/10.1016/j.chaos.2019.109511.

Imoto, M. (2001). Application of the stress release model to the Nankai earthquake sequence, southwest Japan.Tectonophysics, 338, 287-295.

Imoto, M., & Hurukawa, N. (2006). Assessing potential seismic activity in Vrancea, Romania, using a stress-release model. Earth, Planets and Space, 58, 1511–1514.

Imoto, M., Maeda, K., & Yoshida, A. (1999). Use of statistical models to analyze periodic seismicity observed for clusters in the Kanto region, central Japan. Pure and Applied Geophysics, 155, 609-624.

Isham, V., & Westcott, M. (1979). A self-correcting point process. Stochastic Processes and their Applications, 8, 335–347.

Jackson, J. A. (1987). Active continental deformation and regional metamorphism. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 321, 47–66. https://doi.org/10.1098/rsta.1987.0004.

Jackson, J., Cagnepain, A., Houseman, J. G., King, G.C.P. Papadimitriou, P. Soufleris, C., & Virieux J. (1982). Seismicity, normal faulting and the geomorphological development of the Gulf of Corinth (Greece): The Corinth earthquakes of February and March 1981. Earth and Planetary Science Letters, 57, 377–397. https://doi.org/10.1016/0012-821X(82)90158-3.

Jackson, J. A., & White, N. J. (1989). Normal faulting in the upper continental crust: observations from regions of active extension. Journal of Structural Geology, 11, 15–36.

Jaumé, S. C, & Bebbington, M.S. (2004). Accelerating seismic release from a self‐correcting stochastic model. Journal of Geophysical Research, 109, B12301. https://doi.org/10.1029/2003JB002867.

Jeffreys, H. (1939). Theory of Probability. University Press (eds). Cambridge.

Jiang, M., Zhu, S., Chen, Y., & Ai. Y. (2011). A new multidimensional stress release statistical model based on coseismic stress transfer. Geophysical Journal International, 187, 1479–1494.

Jordan, T. (2006). Earthquake predictability, brick by brick. Seismological Research Letters, 77(1), 3–6 https://doi.org/10.1785/gssrl.77.1.3.

Kagan, Y.Y. (2004). Short-term properties of earthquake catalogs and models of earthquake source. Bulletin of the Seismological Society of America, 94(4),1207–1228.

Kagan, Y.Y., & Knopoff, L. (1977). Earthquake risk prediction as a stochastic process. Phyics of the Earth and Planetary Interiors, 14, 97–108.

Kagan, Y. Y., & Knopoff, L. (1981). Stochastic synthesis of earthquake catalogs. Journal of Geophysical Research, 86( B4), 2853– 2862. https://doi.org/10.1029/JB086iB04p02853.

Kagan, Y. Y., & Jackson, D. D. (1998). Spatial aftershock distribution: Effect of normal stress. Journal of Geophysical Research, 103(24), 24453–24467.

Kagan, Y. Y., & Jackson, D. D. (1991). Long-term earthquake clustering. Geophysical Journal International, 104, 117–133.

Kanamori, H., & Anderson, D.L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073-1095.

Kanamori, H., and Heaton, T. H. (2000). Microscopic and macroscopic physics of earthquakes. In: Geocomplexity and the Physics of Earthquakes, Geophysical Monograph,vol. 120, (eds) Rundle, J. B., Turcotte, D. L. & Klein, W. Washington, D. C.: American Geophysical Union. https://doi.org/10.1029/GM120p0147.

Kanamori, H., & Brodsky, E.E. (2004). The physics of earthquakes. Reports on Progress in Physics, 67, 1429–1496.

Kapetanidis, V., Deschamps, A., Papadimitriou, P., Matrullo, E., Karakonstantis, A., Bozionelos, G., Kaviris, G., Serpetsidaki, A., Lyon-caen, H., Voulgaris, N., Bernard, P.,

Sokos, E., & Makropoulos, K. (2015). The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophysical Journal International, 202, 2044–2073. https://doi.org/10.1093/gji/ggv249.

Karakostas, V. (2008). Relocation of aftershocks of the 2003 Lefkada sequence: Seismotectonic implications, in Proceedings of the 3rd Hellenic Conference of Earthquake Engineering and Engineering Seismology, 5–7 November 2008, Athens, Greece, CD ROM, 16pp.

Karakostas, V.G. & Papadimitriou, E.E. (2010). Fault complexity associated with the 14 August 2003 Mw6.2 Lefkada, Greece, aftershock sequence. Acta Geophysica, 58, 838–854.

Karakostas, V.G., Papadimitriou, E.E. & Papazachos, C.B. (2004). Properties of the 2003 Lefkada, Ionian Islands, Greece, earthquake seismic sequence and seismicity triggering. Bulletin of the Seismological Society of America, 94, 1976–1981.

Karakostas, V., Karagianni, E., & Paradisopoulou, P. (2012). Space-time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth Gulf. Natural Hazards, 63(2), 1181–1202.

Karakostas, V., Papadimitriou, E., & Gospodinov, D. (2014). Modelling the 2013 North Aegean (Greece) seismic sequence: geometrical and frictional constraints, and aftershock probabilities. Geophysical Journal International, 197, 525 – 541.

Karakostas, V., Papadimitriou, E., Mesimeri, M., Gkarlaouni, C. & Paradisopoulou, P. (2015). The 2014 Kefalonia doublet (Mw6.1 and Mw6.0) central Ionian Islands, Greece: seismotectonic implications along the Kefalonia transform fault zone. Acta Geophysica, 63, 1–16.

Karakostas, V., Mirek, K., Mesimeri, M., Papadimitriou, E., & Mirek, J. (2017). The Aftershock Sequence of the 2008 Achaia, Greece, Earthquake: Joint Analysis of Seismicity Relocation and Persistent Scatterers Interferometry. Pure and Applied Geophysics, 174(1), 151–176. https://doi.org/10.1007/s00024-016-1368-y.

Kaviris, G., Millas, C., Spingos, I., Kapetanidis, V., Fountoulakis, I., Papadimitriou, P., Voulgaris, N., & Makropoulos, K. (2018). Observations of shear-wave splitting parameters in the Western Gulf of Corinth focusing on the 2014 Mw=5.0 earthquake. Physics of the Earth and Planetary Interiors, 282, 60–76. https:// doi. org/ 10. 1016/j. pepi. 2018. 07.005.

King, G. C. P., & Cocco, M. (2001). Fault interaction by elastic stress changes: New clues from earthquake sequences. Advances in Geophysics, 44, 1–38.

Kiratzi, A., Tsakiroudi, E., Benetatos, C. & Karakaisis, G. (2016). The 24 May 2014 (Mw6.8) earthquake (North Aegean Trough): Spatiotemporal evolution, source and slip model from teleseismic data. Physics and Chemistry of the Earth. https:// doi.org/10.1016/j.pce.2016.08.003.

Knopoff, L. (1971). A stochastic model for the occurrence of main sequence events. Reviews of Geophysics and Space Physics, 9, 175-188.

Kokinou, E., Papadimitriou, E., Karakostas, V., Kamberis, E., & Vallianatos, F. (2006). The Kefalonia transform zone (offshore western Greece) with special emphasis to its prolongation towards the Ionian abyssal plain. Marine Geophysical Researches, 27, 241–252.

Kossobokov, V. G. (2006). Testing earthquake prediction methods: the West Pacific short-term forecast of earthquakes with magnitude MwHRV ≥ 5.8. Tectonophysics, 413(1–2), 25–31. https://doi.org/10.1016/j.tecto. 2005.10.006.

Kourouklas, C., Mangira, O., Iliopoulos, A., Chorozoglou, D., & Papadimitriou, Eleftheria (2020). A study of short-term spatiotemporal clustering features of Greek seismicity. Journal of Seismology, 24, 459–477. https://doi.org/10.1007/s10950-020-09928-1.

Kuehn, N. M., Hainzl, S., & Scherbaum, F. (2008). Non-Poissonian earthquake occurrence in coupled stress release models and its effect on seismic hazard. Geophysical Journal International, 174, 649–658.

Leptokaropoulos, K. M., Papadimitriou, E. E., Orlecka-Sikora, B., & Karakostas, V. G. (2012). Seismicity rate changes in association with the evolution of the stress field in northern Aegean Sea, Greece. Geophysical Journal International, 188, 1322–1338.

Lewis, P. A. W. & Shedler, G. S. (1979). Simulation of non homogeneous Poisson processes by thinning. Naval Research Logistics Quarterly, 26, 403–413.

Lippiello, E., Bottiglieri, M., Godano, C., & De Arcangelis, L. (2007). Dynamical scaling and generalized omori law. Geophysical Research Letters, 34(23), L23301. https:// doi.org/10.1029/2007GL030963.

Lippiello, E., Godano, C., De Arcangelis, L. (2012). The earthquake magnitude is influenced by previous seismicity. Geophysical Research Letters, 39(5), L05309. https:// doi.org/10.1029/2012GL051083.

Liu, G., Shi, Y., & Ma, L. (1995). Seismicity and Cellular Automata Model, Buletin of Northwest Seismoogy, 17, 20–25 (in Chinese).

Liu, J., Vere-Jones, D., Ma, L., Shi, Y., & Zhuang, J.C. (1998). The principal of coupled stress release model and its application. Acta Seismologica Sinica, 11,273–281.

Liu, C., Chen, Y., Shi, Y., & Vere-Jones, D. (1999). Coupled stress release model for time-dependent seismicity. Pure and Applied Geophysics, 155, 649–667.

Lombardi, A. M. (2015) Estimation of the parameters of ETAS models by Simulated Annealing. Science Reports, 5, 8417. https://doi.org/10.1038/ srep08417.

Lombardi, A. M. (2017). The epistemic and aleatory uncertainties of the ETAS-type models: an application to the Central Italy seismicity. Science Reports, 7, 11812. https://doi.org/10.1038/s41598-017-11925-3.

Lombardi, A. M. & Marzocchi, W. (2010). The ETAS model for daily forecasting of Italian seismicity in the CSEP experiment. Annals of Geophysics, 53(3), 155–164.

Louvari, E., Kiratzi, A. A., & Papazachos, B. C. (1999). The Cephalonia transform fault and its extension to western Lefkada island (Greece). Tectonophysics, 308, 223–236.

Lu, C. (2005). The degree of predictability of earthquakes in several regions of China: statistical analysis of historical data. Journal of Asian Earth Sciences, 25, 379-385.

Lu, C., & Vere-Jones, D. (2000). Application of linked stress release model to historical earthquake data: comparison between two kinds of tectonic seismicity. Pure and Applied Geophysics, 157, 2351–2364.

Lu, C., & Vere-Jones, D. (2001).Statistical analysis of synthetic earthquake catalogs generated by models with various levels of fault zone disorder. Journal of Geophysical Research, 106, 115-125.

Lu, C., Harte, D., & Bebbington, M. (1999). A linked stress release model for historical Japanese earthquakes: coupling among major seismic regions. Earth, Planets and Space, 51,907–916.

Lundberg, F. (1903). I. Approximerad Framställning av Sannolikhetsfunktionen. II. Återförsäkring av Kollektivrisker. Almqvist & Wiksell, Uppsala

Makropoulos, K., Kaviris, G., & Kouskouna, V. (2012). An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Natural Hazards and Earth Systems Sciences, 12, 1425–1430. https://doi.org/10.5194/nhess-12-1425-2012.

Mangira, O., Vasiliadis, G., & Papadimitriou, E. (2017). Application of a linked stress release model in Corinth Gulf and Central Ionian Islands (Greece). Acta Geophysica, 65(3). https://doi.org /10.1007/s11600-017-0031-z.

Mangira, O., Console, R., Papadimitriou, E., & Vasiliadis, G. (2018). A restricted Linked Stress Release Model (LSRM) for the Corinth gulf (Greece). Tectonophysics, 723, 162-171.

Mangira, O., Kourouklas, C., Chorozoglou, D., Iliopoulos, A. & Papadimitriou, E. (2019). Acta Geophysica, 67,739–752. https://doi.org/10.1007/s11600-019-00284-4.

Mangira, O., Console, R., Papadimitriou, E., Murru, M., & Karakostas, V. (2020). The short-term seismicity of the Central Ionian Islands (Greece) studied by means of a clustering model. Geophysical Journal International, 220, 856–875. https://doi.org/10.1093/gji/ggz481.

Mangira, O., Vasiliadis, G., Tsaklidis, G., & Papadimitriou, E. (2021). A constrained-memory stress release model (CM-SRM) for the earthquake occurrence in the Corinth Gulf (Greece). Environmental and Ecological Statistics. https://doi.org/10.1007/s10651-020-00478-w.

Marsan, D. and O. Longliné (2008). Extending earthquakes' reach through cascading. Science, 319, 1076-1079.

Marzocchi, W. & Lombardi, A. (2008). A double branching model for earthquake occurrence. Journal of Geophysical Research, 113, B08317.

Marzocchi, W., & Lombardi, A. M. (2009). Real-time forecasting following a damaging earthquake. Geophysical Research Letters, 36, L21, 302. https://doi.org/10.1029/2009GL040233.

Marzocchi, W., & Zhuang, J. (2011). Statistics between mainshocks and foreshocks in Italy and Southern California. Geophysical Research Letters, 38, L09, 310. https://doi.org/10.1029/2011GL047165.

Marzocchi, W., Murru, M. Lombardi, A. M., Falcone, G. & Console R. (2012). Daily earthquake forecasts during the May-June 2012 Emilia earthquake sequence (northern Italy). Annals of Geophysics, 55(4), 561–567.

Marzocchi, W., Taroni, M., & Falcone, G. (2017). Earthquake forecasting during the complex Amatrice-Norcia seismic sequence. Science Advances, 3, e1701239, https://doi.org/10.1126/sciadv.1701239.

Matthews, M. M., & Reasenberg, P. P. (1988). Statistical methods for investigating quiescence and other temporal seismicity patterns. Pure and Applied Geophysics, 126(2–4), 357–372. https://doi.org/10.1007/BF00879003.

McKenzie, D. (1972) Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 109–185.

McQuarrie, A. D. R. & Tsai, C. (1998). Regression and Time Series Model Selection. Singapore: World Scientific Publishing Company. https://doi.org/10.1142/3573.

Mesimeri, M., Karakostas, V., Papadimitriou, E., Schaff, D., & Tsaklidis, G. (2016). Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece). Journal of Seismology, 20(2), 595–614. https://doi.org/10.1007/s10950-015-9546-4.

Mesimeri, M., Kourouklas, C., Papadimitriou, E., Karakostas, V., & Kementzetzidou, D. (2018). Analysis of microseismicity associated with the 2017 seismic swarm near the Aegean coast of NW Turkey. Acta Geophysica, 66, 479–495. https://doi. org/10.1007/s11600-018-0157-7.

Molnar, P. (1979). Earthquake recurrence intervals and plate tectonics. Bulletin of the Seismological Society of America, 69,115-133.

Murru, M., Console, R., & Falcone, G. (2009). Real-time earthquake forecasting in Italy. Tectonophysics, 470(3-4), 214–223. https://doi.org/10. 1016/j.tecto.2008.090.010.

Ogata, Y. (1981). On Lewis’s simulation method for point processes. IEEE Transactions on Information Theory, IT27, 23-31.

Ogata, Y. (1983). Estimation of all parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. Journal of Physics of the Earth, 31, 115-124.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83, 9–27.

Ogata Y., (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50(2), 379 -402.

Ogata, Y., & Vere-Jones, D. (1984). Inference for earthquake models: a self-correcting model. Stochastic Processes and their Applications, 17, 337-347.

Ogata, Y., & Zhuang, J. (2006). Space–time ETAS models and an improved extension. Tectonophysics, 413(1-2), 13–23.

Ogata, Y., Jones, L. M., & Toda, S. (2003). When and where the aftershock activity was depressed: contrasting decay patterns of the proximate large earthquakes in southern California. Journal of Geophysical Research, 108, 2318. https://doi.org/10.1029/2002JB002009.

Omar, Kh. A., & Mangira, O. (2020). A stress release model in Egypt. Geotectonics, 54, 106-112. https://doi.org/10.1134/S0016852120010082.

Omi, T., Ogata, Y., Hirata, Y. & Aihara, K. (2014). Estimating the ETAS model from an early aftershock sequence. Geophysical Research Letters, 41, 850–857, https://doi.org/10.1002/2013GL058958.

Omori F., (1894). On after-shocks of earthquakes. Journal of the College of Science, Imperial University, 7, 111-200.

Papadimitriou, E. (2002). Mode of strong earthquake recurrence in the Central Ionian Islands (Greece): possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks. Bulletin of the Seismological Society of America, 92, 3293 – 3308.

Papadimitriou, E., Gospodinov, D., Karakostas, V., & Astiopoulos, A. (2013). Evolution of the vigorous 2006 swarm in Zakynthos (Greece) and probabilities for strong aftershock occurrence. Journal of Seismology, 17, 735–752. https://doi.org/10.1007/s10950-012- 9350-3.

Papadimitriou, E., Karakostas, V., Mesimeri, M., Chouliaras, G., & Kourouklas, C. (2017). The Mw6.5 17 November 2015 Lefkada (Greece) Earthquake: Structural Interpretation by Means of the Aftershock Analysis. Pure and Applied Geophysics, 174(10), 3869–3888. https://doi.org/10.1007/s00024-017-1601-3.

Papadimitriou, P., Kaviris, G., & Makropoulos, K. (2006). The Mw = 6.3 2003 Lefkada Earthquake (Greece) and induced transfer changes. Tectonophysics, 423, 73–82

Papadimitriou, P., Kassaras, I., Kaviris, G., Tselentis G.-A., Voulgaris, N., Lekkas, E., Chouliaras, G., Evangelidis, C., Pavlou, K., Kapetanidis, V., Karakonstantis, A., Kazantzidou-Firtinidou, D., Fountoulakis, I., Millas, C., Spingos, I., Aspiotis, T. Moumoulidou, A., Skourtsos, E., Antoniou, V., Andreadakis, E., Mavroulis, S., Kleanthi, M. (2018). The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations. Journal of Geodynamics, 115, 23-42. https://doi.org/10.1016/j.jog.2018.01.009.

Papazachos, B.C. (1999). An Alternative Method for a Reliable Estimation of Seismicity with an Application in Greece and the Surrounding Area. Bulletin of the Seismological Society of America, 89, 111-119.

Papazachos, B.C, & Comninakis, P. E. (1971). Geophysical and tectonic features of the Aegean arc. Journal of Geophysical Research, 178, 8517–8533.

Papazachos B.C., & Papazachou, C.C. (2003). The Earthquakes of Greece. Thessaloniki: Ziti Publications.

Papazachos, B. C., Karakaisis, G. F., & Hatzidimitriou, P. M. (1994). Further information on the transform fault of the Ionian Sea. XXIV General Assembly of the European Seismology Commission, Athens, 19–24 September, p. 12.

Papazachos, B.C., Papadimitriou, E. E., Karakaisis, G. F., & Panagiotopoulos, D. G. (1997). Long-term Earthquake Prediction in the CircumPacifc Convergent Belt. Pure and Applied Geophysics, 149, 173–217.

Papazachos, B. C., Papadimitriou, E. E., Kiratzi, A. A., Papazachos, C. B., &. Louvari, E. K. (1998). Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implication. Bollettino di Geofisica Teorica e Applicata, 39, 199-218.

Papazachos, B.C., Scordilis, E.M., Panagiotopoulos, D.G., Papazachos, C.B., & Karakaisis, G.F. (2004). Global relations between seismic fault parameters and moment magnitude of earthquakes. Bulletin of the Geological Society of Greece, 36, 8.

Parsons, T. (2005). Significance of stress transfer in time–dependent earthquake probability calculations. Journal of Geophysical Research, 109. https://doi.org/10.1029/2004JB003190.

Peacock, D. C. P., Knipe, R. J., & Sanderson, D. J. (2000). Glossary of normal faults. Journal of Structural Geology, 22(3), 291-305. https://10.1016/S0191-8141(00)80102-9.

Perez, O.J, & Scholz, C.H. (1984). .Heterogeneities of the instrumental seismicity catalog (1904-1980) for strong shallow earthquakes. Bulletin of the Seismological Society of America, 74, 669-686.

Rathbun, S. L. (1993). Modeling marked spatio-temporal point patterns, Bulletin of the International Statistical Institute, 55, Book 2, 379–396.

Reasenberg, P. A. (1985). Second-order moment of central California seismicity. Journal of Geophysical Research, 90, 5479–5495.

Reasenberg, P.A., & Jones, L.M. (1994). Earthquake aftershocks: Update. Science, 265(5176), 1251–1252. https://dx.doi.org/10.1126/science.265.5176.1251.

Reid, H. (1910). The mechanics of the earthquake. The California earthquake of April 18, 1906. Report of the state investigation commission, vol 2. Washington, DC: Carnegie Institution of Washington.

Rhoades, D.A., & Evison, F.F. (1989). On the reliability of precursors. Physics of the Earth and Planetary Interiors, 58, 137–140.

Rhoades, D. A., A. Christophersen, M. C. Gerstenberger, M. Liukis, F. Silva, M. Marzocchi, M. J. Werner, and T. H. Jordan (2018). Highlights from the first ten years of the New Zealand earthquake forecast testing center. Seismological Research Letters, 89(4). https://doi.org/ 10.1785/0220180032.

Rigo, A., Lyon–Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou, P., & Kassaras, I. (1996). Microseismicity study in the western part of the Gulf of Corinth (Greece): implications for large–scale normal faulting mechanisms. Geophysical Journal International, 126, 663–688.

Roberts, S., & Jackson, J. (1991). Active normal faulting in central Greece: An overview. In: The Geometry of Normal Faults, (eds) Roberts, A.M., Yielding, G., Freeman, B., Geological Society London Special Publications, 56.

Rotondi, R., & Varini, E. (2006). Bayesian analysis of marked stress release models for time-dependent hazard assessment in the western Gulf of Corinth. Tectonophysics, 423, 107-113.

Rotondi, R., & Varini, E. (2007). Bayesian inference of stress release models applied to some seismogenic zones. Geophysical Journal International, 169, 301–314.

Rotondi, R., & Varini, E. (2019). Failure models driven by a self-correcting point process in earthquake occurrence modeling. Stochastic Environmental Research and Risk Assessment, 33, 709-724.

Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1983). Akaike Information Criterion Statistics. Dordrecht: Reidel.

Schoenberg, F. P. (2003). Multidimensional residual analysis of point process models for earthquake occurrences. Journal of American Statistical Association, 98, 789–795.

Schoenberg, F., & Bolt, B. (2000). Short-term Exciting, Long-term Correcting Models for Earthquake Catalogs. Bulletin of the Seismological Society of America, 90, 849-858. https://doi.org/10.1785/0119990090.

Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting. Cambridge: Cambridge University Press.

Schorlemmer, D., Werner, M.J., Marzocchi, W., Jordan, T. H., Ogata, Y., Jackson, D. D., Mak S., Rhoades, D. A., Gerstenberger, M.C., Hiratam N., Liukism M., Maechling, P. J., Strader, A., Taroni, M., Wiemer, S., Zechar, J. D., & Zhuang, J. (2018). The Collaboratory for the study of earthquake predictability: achievements and priorities. Seismological Research Letters, 89(4), 1305–1313. https://doi.org/10.1785 /0220180053.

Scordilis, E.M., Karakaisis, G.F., Karakostas, B.G., Panagiotopoulos, D.G., Comninakis, P.E. & Papazachos, B.C. (1985). Evidence for transform faulting in the Ionian Sea: the Cephalonia Island earthquake sequence. Pure and Applied Geophysics, 123, 388–397.

Seif, S., Mignan, A., Zechar, J. D., Werner, M. J., & Wiemer, S. (2017). Estimating ETAS: The effects of truncation, missing data, and model assumptions. Journal of

Geophysical Research: Solid Earth, 122, 449–469, https://doi.org/10.1002/ 2016JB012809.

Senatorski, P. (2007). Apparent stress scaling and statistical trends. Physics of the Earth and Planetary Interiors, 160, 230–244.

Shi, Y. -L., & Bolt, A. (1982). The standard error of the magnitude frequency b value. Bulletin of the Seismological Society of America, 72(5), 1677–1687.

Shi, Y., Liu, J., Vere-Jones, D., Zhuang, J., & Ma, L. (1998). Application of Mechanical and Statistical Models to Study of Seismicity of Synthetic Earthquakes and the Prediction of Natural Ones. Acta Seismologica Sinica, 11, 421–430.

Shi, Y., Liu, J., & Zhang, G. (2001). An evaluation of Chinese annual earthquake predictions, 1990–1998. Journal of Applied Probability, 38A, 222–231.

Shimazaki, K., & Nakata, T. (1980). Time-predictable recurrence model for large earthquakes. Geophysical Research Letters, 7, 279–282.

Sokos, E., Zahradník, J., Kiratzi, A., Janský, J., Gallovič, F., Novotny, O., Kostelecky, J., Serpetsidaki, A., Tselentis, G. A. (2012). The January 2010 Efpalio earthquake sequence in the western Corinth Gulf (Greece). Tectonophysics, 530–531, 299–309. https://doi.org/ 10.1016/j.tecto.2012.01.005.

Sornette, D., & Werner, M. J. (2005a). Apparent clustering and apparent background earthquakes biased by undetected seismicity, Journal of Geophysical Research, 110, B09303. https://doi.org/10.1029/2005JB003621.

Sornette, D., & Werner, M. J. (2005b). Constraints on the size of the smallest triggering earthquake from the epidemic-type aftershock sequence model, B˚ath’s law, and observed aftershock sequences. Journal of Geophysical Research, 110, B08, 304. https://doi.org/10.1029/2004JB003535.

Steacy, S., Gomberg, J., & Cocco, M. (2005). Introduction to special section: Stress transfer, earthquake triggering, and time-dependent seismic hazard. Journal of Geophysical Research, 110. https://doi.org/10.1029/2004JB003356.

Stein, R., Barka, A., & Dieterich, J. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, 594–604.

Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402, 605–609.

Taroni, M., Marzocchi, W., Schorlemmer, D., Werner, M. J., Wiemer, S. Zechar, J. D., Heiniger, L. & Euchner, F. (2018). Prospective CSEP evaluation of 1-day, 3-month, and

-year earthquake forecasts for Italy. Seismological Research Letters, 89(4). https://doi.org/10.1785/0220180031.

Utsu T. (1957). Magnitudes of earthquakes and occurrence of their aftershocks (in Japanese with English summary). Zisin (Journal of the Seismological Society in Japan), Series 2, 10, 35-45.

Utsu, T., Ogata, Y. & Matsu’ura, R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43, 1–33.

Varini, E., & Rotondi, R. (2015). Probability distribution of the waiting time in the stress release model: the Gompertz distribution. Environmental and Ecological Statistics, 22, 493-511.

Varini, E., Rotondi, R., Basili, R., & Barba, S. (2016). Stress release models and proxy measures of earthquake size. Application to Italian seismogenic sources. Tectonophysics, 682, 147- 168.

Vere-Jones, D. (1978). Earthquake prediction—a statistician’s view. Journal of Physics of the Earth, 26, 129–146.

Vere-Jones, D. (1998). Probabilities and information gain for earthquake forecasting. Computational Seismology, 30, 249–263.

Vere-Jones, D. (2009). Earthquake occurrence and mechanisms, stochastic models for. In: Meyers R. A. (ed.), Encyclopedia of Complexity and Systems Science. New York, Springer, 2555-2580. https://doi.org/10.1007/978-0-387-30440-3_155.

Vere-Jones, D. (2010). Foundations of Statistical Seismology. Pure and Applied Geophysics, 167, 645–653. https://doi.org/10.1007/s00024-010-0079-z.

Vere-Jones, D., & Deng, Y. L. (1988).A point process analysis of historical earthquakes from North China. Earthquakes Research in China, 2, 165–181.

Vere-Jones, D., & Ogata, Y. (1984). On the moments of a self-correcting process, Journal of Applied Probability, 21, 335-342.

Vere-Jones, D. & Schoenberg, F. P. (2004). Rescaling marked point processes. Australian & New Zealand Journal of Statistics, 46, 133–143.

Vere-Jones, D., Ben-Zion, Y., & Zuniga, R. (2005). Statistical Seismology. Pure and Appied Geophysics, 162, 1023–1026.

Votsi, I., Tsaklidis, G., & Papadimitriou, E. (2011). Seismic hazard assessment in Central Ionian Islands Area based on stress release models. Acta Geophysica, 59, 701-727.

Wang A. L., Vere-Jones D., & Zheng X. (1991). Simulation and Estimation Procedures for Stress Release Model. In: Beckmann M.J., Gopalan M.N., Subramanian R. (eds) Stochastic Processes and their Applications. Lecture Notes in Economics and Mathematical Systems, vol 370. Berlin: Springer. https://doi.org/10.1007/978-3-642-58201-1_2.

Wang, Q., Jackson, D. D. & Zhuang, J. (2010). Missing links in earthquake clustering models. Geophysical Research Letters, 37, L21307. https://doi.org/10.1029/ 2010GL044858.

Wells, D.L., & Coppersmith, K.J. (1994). New empirical relationships between magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974e1002.

Werner, M. J. (2007). On the fluctuations of seismicity and uncertainties in earthquake catalogs: Implications and methods for hypothesis testing, Ph.D. thesis, Univ. of Calif., Los Angeles.

Werner, M. J., Helmstetter, A., Jackson, D. D., & Kagan, Y. Y. (2011). High-Resolution Long-Term and Short-Term Earthquake Forecasts for California. Bulletin of the Seismological Society of America, 101(4), 1630–1648. https://doi.org/10.1785/0120090340.

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic

Mapping Tools: Improved Version Released, EOS,Transactions American Geophysical Union, 94, 409–410.

Wiemer, S., & Katsumata, K. (1999). Spatial variability of seismicity parameters in aftershock zones, Journal of Geophysical Research: Solid Earth, 104(B6), 13135–13151. https:// doi.org/10.1029/1999JB900032.

Wiemer, S. & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western US and Japan, Bulletin of the Seismological Society of America, 90, 859–869.

Woessner, J., Hainzl, S., Marzocchi, W., Werner, M. J., Lombardi, A. M., Catalli, F., Enescu, B. Cocco, M., Gerstenberger, M. C., & Wiemer, S. (2011). A retrospective comparative forecast test on the 1992 Landers sequence. Journal of Geophysical Research, 116, B05, 305. https://doi.og/10.1029/2010JB007846.

Wu, F. & Huberman, B. (2007). Novelty and Collective attention. Proceedings of the National Academy of Sciences of the United States of America, 104, 17599-17601. https://doi.org/ 10.1073/pnas.0704916104.

Zechar, J. D., M. C. Gerstenberger, and D. A. Rhoades (2010). Likelihood-based tests for evaluating space-rate-magnitude earthquake forecasts, Bulletin of the Seismological Society of America, 100(3), 1184–1195. https://doi.org/ 10.1785/0120090192.

Zechar, J. D., & Jordan, T. H. (2007). Testing alarm-based earthquake predictions. Geophysical Journal International. https://doi.org/10.1111/j.1365- 246X.2007.03676.x

Zheng, X., & Vere-Jones, D. (1991). Applications of stress release models to earthquakes from North China. Pure and Applied Geophysics, 135, 559-576.

Zheng, X., & Vere-Jones, D. (1994). Further applications of the stochastic stress release model to historical earthquake data. Tectonophysics, 229, 101–121.

Zhu, S., & Shi, Y. (2002). Improved Stress Release Model: Application to the study of earthquake prediction in Taiwan area. Acta Seismologica Sinica, 15, 171-178.

Zhuang, J. (2003). Some applications of point processes in seismicity modelling and prediction, Ph.D. thesis, the Graduate Unversity for Advanced Studies, Kanagawa, Japan

Zhuang, J. (2011). Next-day earthquake forecasts by using the ETAS model. Earth, Planet, and Space, 63, 207–216.

Zhuang, J. C., Ma, L. (1998). The stress release model and results from modelling features of some seismic regions in China. Acta Seismologica Sinica, 11, 59-70.

Zhuang, J., & Ogata, Y. (2006). Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks. Physical Review E, 73, 046134. https://doi.org/10.1103/PhysRevE. 73.046134.

Zhuang, J., Ogata, Y. & Vere-Jones,D. (2002). Stochastic declustering of space-time earthquake occurrence. Joural of the American Statistical Association, 97(3), 369–380.

Zhuang, J., Ogata, Y. & Vere-Jones, D. (2004). Analyzing earthquake clustering features by using stochastic reconstruction. Journal of Geophysical Research, 109(3), B05301.

Zhuang, J., C.-P. Chang, Y. Ogata, & Chen, Y.-I. (2005). A study on the background and clustering seismicity in the Taiwan region by using a point process model. Journal of Geophysical Research, 110, B05S13. https://doi.org/ 10.1029/2004JB003157.

Zhuang, J., A. Christophersen, M. K. Savage, D. Vere-Jones, Y. Ogata, and D. D. Jackson (2008), Differences between spontaneous and triggered earthquakes: their influences on foreshock probabilities. Journal of Geophysical Research, 113, B11, 302. https://doi.org/10.1029/2008JB005579.

Zhuang, J., Werner, M.J., Hainzl, S. Harte, D. and Zhou, S. (2011). Basic models of seismicity: spatiotemporal models. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-07487583.

Zhuang, J., Harte, D. Werner, M. J. Hainzl, S. & Zhou, S. (2012). Basic models of seismicity: temporal models. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-79905851.

Zipkin, J., Schoenberg, F., Corognes, K., & Bertozzi, A. (2016). Point-process models of social network interactions: Parameter estimation and missing data recovery. European Journal of Applied Mathematics, 27(3), 502-529. https://doi.org/ 10.1017/S0956792515000492.

Zöller, G., & Hainzl, S. (2007). Recurrence Time Distributions of Large Earthquakes in a Stochastic Model for Coupled Fault Systems: The Role of Fault Interaction. Bulletin of the Seismological Society of America, 97(5), 1679–1687. https://doi.org/10.1785/0120060262.


Εισερχόμενη Αναφορά

  • Δεν υπάρχουν προς το παρόν εισερχόμενες αναφορές.